
ETL techniques to load and transform data from various
sources using SQL Server 2017 Integration Services

Cookbook

SQL Server 2017
Integration Services

Christian Cote, Matija Lah, Dejan Sarka

Christian Cote
Matija Lah
Dejan Sarka

BIRMINGHAM - MUMBAI

SQL Server 2017 Integration Services
Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1300617

ISBN 978-1-78646-182-7

Credits

Authors

Christian Cote
Matija Lah
Dejan Sarka

Copy Editor

Safis Editing

Reviewers

Jasmin Azemovic
Marek Chmel
Tomaz Kastrun
Ruben Oliva Ramos

Project Coordinator

Nidhi Joshi

Commissioning Editor

Amey Varangaonkar

Proofreader

Safis Editing

Acquisition Editor

Vinay Agrekar

Indexer

Pratik Shirodkar

Content Development Editor

Cheryl Dsa

Graphics

Tania Dutta

Technical Editor

Dinesh Pawar

Production Coordinator

Deepika Naik

About the Authors
Christian Cote is a database professional from Montreal, Quebec, Canada. For the past 16
years, he's been involved in various data warehouse projects and business intelligence
projects. He has contributed to business intelligence solutions in various domains like
pharmaceutical, finance, insurance, and many more. He's been a Microsoft Most Valuable
Professional since 2009 and leads the Montreal PASS chapter.

Matija Lah has more than 15 years of experience working with Microsoft SQL Server,
mostly from architecting data-centric solutions in the legal domain. His contributions to the
SQL Server community have led to the Microsoft Most Valuable Professional award in 2007
(data platform). He spends most of his time on projects involving advanced information
management, and natural language processing, but often finds time to speak at events
related to Microsoft SQL Server where he loves to share his experience with the SQL Server
platform.

Dejan Sarka, MCT and SQL Server Most Valuable Professional, is an independent trainer
and consultant who focuses on the development of database and business intelligence
applications, located in Ljubljana, Slovenia. Besides his projects, he spends around half of
his time on training and mentoring. He is the founder of the Slovenian SQL Server and
.NET users group. Dejan is the main author and coauthor of many books and courses about
databases and SQL Server. He is a frequent speaker at many worldwide events.

About the Reviewers
Jasmin Azemovic is a university professor, active in the areas of database systems,
information security, data privacy, forensic analysis, and fraud detection. His PhD degree
was in the field of modeling design and developing an environment for the preservation of
privacy inside database systems. He is the author of many scientific-research papers and
two books: Writing T-SQL Queries for Beginners Using Microsoft SQL Server 2012 and Securing
SQL Server 2012. He is an active member of the professional IT world: Microsoft MVP (Data
Platform—eight years so far) and a security consultant. He is an active speaker at many IT
professional and community conferences.

Marek Chmel is an IT consultant and trainer with more than 10 years of experience. He's a
frequent speaker with a focus on Microsoft SQL Server, Azure ,and security topics. Marek
writes for Microsoft's TechnetCZSK blog, and since 2012 he's an MVP: Data Platform.
Marek is also recognized as a Microsoft Certified Trainer: Regional Lead for Czech Republic
for a few years in a row, he holds many MCSE certifications, and on the top of that he's an
ECCouncil Certified Ethical Hacker and holder of several eLearnSecurity certifications.
Marek earned his MSc (Business and Informatics) degree from Nottingham Trent
University. He started his career as a trainer for Microsoft Server courses. Later, he joined
AT&T, as a sr. database administrator with a specialization in MSSQL Server, Data
Platform, and Machine Learning.

Tomaz Kastrun is an SQL Server developer and data analyst. He has more than 15 years of
experiences in the field of business warehousing, development, ETL, database
administration, and query tuning. He also has more than 15 years of experience in the fields
of data analysis, data mining, statistical research, and machine learning. He is Microsoft
SQL Server MVP for data platforms and has been working with a Microsoft SQL Server
since version 2000. Tomaz is a blogger, the author of many articles, the coauthor of a
statistical analysis book, speaker at community and Microsoft events, and an avid coffee
drinker.

Thanks to people who inspired me, the community, and the SQL family. Thank you, dear
reader, for doing this. For endless inspiration, thank you Rubi.

Ruben Oliva Ramos is a computer systems engineer with a master's degree in computer
and electronic systems engineering, teleinformatics, and networking specialization from
University of Salle Bajio in Leon, Guanajuato, Mexico. He has more than five years of
experience in developing web applications to control and monitor devices connected with
Arduino and Raspberry Pi using web frameworks and cloud services to build IoT
applications.

He is a mechatronics teacher at University of Salle Bajio and teaches students on the
master's degree in Design and Engineering of Mechatronics Systems. He also works at
Centro de Bachillerato Tecnologico Industrial 225 in Leon, Guanajuato Mexico, teaching
subjects like: electronics, robotics and control, automation and microcontrollers at
mechatronics technician career, consultant and developer projects in areas like: monitoring
systems and datalogger data using technologies: Android, iOS, Windows Phone, HTML5,
PHP, CSS, Ajax, JavaScript, Angular, ASP, .NET databases: SQlite, mongoDB, MySQL, web
servers: Node.js, IIS, hardware programming: Arduino, Raspberry pi, Ethernet Shield, GPS
and GSM/GPRS, ESP8266, control and monitor systems for data acquisition and
programming.

I would like to thank God for helping me reviewing this book; my wife, Mayte, my sons,
Ruben and Dario, for their support while writing this book and in general for their support
in all my projects. To my parents and my brother and sister, whom I love.

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: SSIS Setup 7

Introduction 7
SQL Server 2016 download 7

Getting ready 7
How to do it... 8

Installing JRE for PolyBase 13
Getting ready 13
How to do it... 14
How it works... 20

Installing SQL Server 2016 20
Getting ready 20
How to do it... 21

SQL Server Management Studio installation 42
Getting ready 42
How to do it... 42

SQL Server Data Tools installation 46
Getting ready 47
How to do it... 47

Testing SQL Server connectivity 55
Getting ready 55
How to do it... 56

Chapter 2: What Is New in SSIS 2016 58

Introduction 58
Creating SSIS Catalog 59

Getting ready 59
How to do it... 60

Custom logging 64
Getting ready 65
How to do it... 65
How it works... 68
There's more... 68

Create a database 69
Create a simple project 70

[ii]

Testing the custom logging level 92
See also 99

Azure tasks and transforms 99
Getting ready 99
How to do it... 100
See also 106

Incremental package deployment 106
Getting ready 107
How to do it... 107
There's more... 114

Multiple version support 114
Getting ready 115
How to do it... 115
There's more... 116

Error column name 117
Getting ready 117
How to do it... 117

Control Flow templates 125
Getting ready 126
How to do it... 126

Chapter 3: Key Components of a Modern ETL Solution 132

Introduction 132
Installing the sample solution 136

Getting ready 136
How to do it... 137
There's more... 139

Deploying the source database with its data 139
Getting ready 139
How to do it... 139
There's more... 149

Deploying the target database 151
Getting ready 151
How to do it... 152

SSIS projects 156
Getting ready 159
How to do it... 160

Framework calls in EP_Staging.dtsx 165
Getting ready 168
How to do it... 169

[iii]

There's more... 171

Chapter 4: Data Warehouse Loading Techniques 172

Introduction 172
Designing patterns to load dimensions of a data warehouse 174

Getting ready 183
How to do it... 183
There's more... 189

Loading the data warehouse using the framework 190
Getting ready 190
How to do it... 191

Near real-time and on-demand loads 199
Getting ready 199
How to do it... 199
There's more... 202

Using parallelism 202
Getting ready 202
How to do it... 202
There's more... 204

Chapter 5: Dealing with Data Quality 205

Introduction 205
Profiling data with SSIS 208

Getting ready 208
How to do it... 209

Creating a DQS knowledge base 213
Getting ready 214
How to do it... 214

Data cleansing with DQS 218
Getting ready 218
How to do it... 218

Creating a MDS model 222
Getting ready 222
How to do it... 222

Matching with DQS 230
Getting ready 230
How to do it... 233

Using SSIS fuzzy components 239
Getting ready 240
How to do it... 240

[iv]

Chapter 6: SSIS Performance and Scalability 244

Introduction 244
Using SQL Server Management Studio to execute an SSIS package 248

Getting ready 248
How to do it... 249
How it works... 253

Using T-SQL to execute an SSIS package 253
How to do it... 254
How it works... 257

Using the DTExec command-line utility to execute an SSIS package 257
How to do it... 257
How it works... 258
There's more... 258

Scheduling an SSIS package execution 258
Getting ready 259
How to do it... 259
How it works... 268

Using the cascading lookup pattern 268
How to do it... 268
How it works... 276

Using the lookup cache 277
How to do it... 278
How it works... 283

Using lookup expressions 283
How to do it... 283
How it works... 288

Determining the maximum number of worker threads in a data flow 289
How to do it... 289
How it works... 291

Using the master package concept 291
How to do it... 292
How it works... 296

Requesting an execution tree in SSDT 296
How to do it... 297
How it works... 304

Monitoring SSIS performance 305
Establishing a performance monitor session 306

How to do it... 306
How it works... 308

[v]

Configuring a performance monitor data collector set 309
How to do it... 309
How it works.... 312

Chapter 7: Unleash the Power of SSIS Script Task and Component 313

Introduction 313
Using variables in SSIS Script task 314

Getting ready 315
How to do it... 315

Execute complex filesystem operations with the Script task 318
Getting ready 318
How to do it... 319

Reading data profiling XML results with the Script task 322
Getting ready 322
How to do it... 322

Correcting data with the Script component 325
Getting ready 325
How to do it... 326

Validating data using regular expressions in a Script component 331
Getting ready 332
How to do it... 332

Using the Script component as a source 343
How to do it... 343
How it works... 350

Using the Script component as a destination 350
Getting ready 351
How to do it... 351
How it works... 357

Chapter 8: SSIS and Advanced Analytics 358

Introduction 358
Splitting a dataset into a training and test set 359

Getting ready 359
How to do it... 359

Testing the randomness of the split with a SSAS decision trees model 362
Getting ready 363
How to do it... 363

Preparing a Naive Bayes SSAS data mining model 370
Getting ready 370
How to do it... 370

[vi]

Querying the SSAS data mining model with the data mining query
transformation 374

Getting ready 374
How to do it... 375

Creating an R data mining model 379
Getting ready 379
How to do it... 380

Using the R data mining model in SSIS 383
Getting ready 384
How to do it... 384

Text mining with term extraction and term lookup transformations 389
Getting ready 389
How to do it... 389

Chapter 9: On-Premises and Azure Big Data Integration 394

Introduction 394
Azure Blob storage data management 395

Getting ready 395
How to do it... 395

Installing a Hortonworks cluster 401
Getting ready 401
How to do it... 401

Copying data to an on-premises cluster 404
Getting ready 404
How to do it... 404

Using Hive – creating a database 409
Getting ready 409
How to do it... 410
There's more... 412

Transforming the data with Hive 412
Getting ready 412
How to do it... 412
There's more... 415

Transferring data between Hadoop and Azure 415
Getting ready 416
How to do it... 416

Leveraging a HDInsight big data cluster 423
Getting ready 423
How to do it... 423
There's more... 428

[vii]

Managing data with Pig Latin 428
Getting ready 428
How to do it... 428
There's more... 430

Importing Azure Blob storage data 431
Getting ready 431
How to do it... 431
There's more... 436

Azure Data Factory and SSIS 436

Chapter 10: Extending SSIS Custom Tasks and Transformations 438

Introduction 438
Designing a custom task 439

Getting ready 441
How to do it... 443
How it works... 457

Designing a custom transformation 458
How to do it... 462
How it works... 483

Managing custom component versions 484
Getting ready 485
How to do it... 485
How it works... 490

Chapter 11: Scale Out with SSIS 2017 491

Introduction 491
SQL Server 2017 download and setup 492

Getting ready 492
How to do it... 492
There's more... 507

SQL Server client tools setup 507
Getting ready 508
How to do it... 508

Configuring SSIS for scale out executions 515
Getting ready 515
How to do it... 515
There's more... 520

Executing a package using scale out functionality 520
Getting ready 520
How to do it... 521

[viii]

Index 531

Preface
SQL Server Integration Services is a tool that facilitates data extraction, consolidation, and
loading options (ETL), SQL Server coding enhancements, data warehousing, and
customizations. With the help of the recipes in this book, you'll gain hands-on experience of
SSIS 2017 as well as the new 2016 features, design and development improvements
including SCD, tuning, and customizations. At the start, you'll learn to install and set up
SSIS as well other SQL Server resources to make optimal use of this business intelligence
tool. We’ll begin by taking you through the new features in SSIS 2016/2017 and
implementing the necessary features to get a modern scalable ETL solution that fits the
modern data warehouse. Through the course of the book, you will learn how to design and
build SSIS data warehouses packages using SQL Server Data Tools. Additionally, you'll
learn how to develop SSIS packages designed to maintain a data warehouse using the data
flow and other control flow tasks. You'll also go through many recipes on cleansing data
and how to get the end result after applying different transformations. Some real-world
scenarios that you might face are also covered and how to handle various issues that you
might face when designing your packages. At the end of this book, you'll get to know all the
key concepts to perform data integration and transformation. You'll have explored on-
premises big data integration processes to create a classic data warehouse, and will know
how to extend the toolbox with custom tasks and transforms.

What this book covers
, SSIS Setup, contains recipes describing the step by step setup of SQL Server 2016

to get the features that are used in the book.

 , What Is New in SSIS 2016, contains recipes that talk about the evolution of SSIS
over time and what's new in SSIS 2016. This chapter is a detailed overview of Integration
Services 2016, new features.

 , Key Components of a Modern ETL Solution, explains how ETL has evolved over the
past few years and will explain what components are necessary to get a modern scalable
ETL solution that fits the modern data warehouse. This chapter will also describe what each
catalog view provides and will help you learn how you can use some of them to archive
SSIS execution statistics.

 , Data Warehouse Loading Techniques, describes many patterns used when it comes
to data warehouse or ODS load. You will learn how to effectively load a data warehouse
and process a tabular model, maintain data partitions and modern data refresh rates.

Preface

[2]

 , Dealing with Data Quality, focuses on how SSIS can be leveraged to validate and
load data. You will learn how to identify invalid data, cleanse data and load valid data to
the data warehouse.

 , SSIS Performance and Scalability, will talk about how to monitor SSIS package
execution. It will also provide solutions to scale out processes by using parallelism. You will
learn how to identify bottlenecks and how to resolve them using various techniques.

 , Unleash the Power of SSIS Script Task and Component, covers how to use scripting
with SSIS. You will learn how script tasks and script components are very valuable in many
situations to overcome the limitations of stock toolbox tasks and transforms.

 , SSIS and Advanced Analytics, talks about how SSIS can be used to prepare the
data you need for further analysis. Here, you will learn how you can make use of SQL
Server Analysis Services (SSAS) and R models in the SSIS data flow.

 , On-Premises and Azure Big Data Integration, describes the Azure feature pack that
allows SSIS to integrate Azure data from blob storage and HDInsight clusters. You will
learn how to use Azure feature pack components to add flexibility to their SSIS solution
architecture and integrate on-premises Big Data can be manipulated via SSIS.

 , Extending SSIS Tasks and Transformations, talks about extending and
customizing the toolbox using custom developed tasks and transforms and security
features. You will learn the pros and cons of creating custom tasks to extend the SSIS
toolbox and secure your deployment.

, Scale Out with SSIS 2017, talks about scaling out SSIS package executions on
multiple servers. You will learn how SSIS 2017 can scale out to multiple workers to enhance
execution scalability.

What you need for this book
This book was written using SQL Server 2016 and all the examples and functions should
work with it. Other tools you may need are Visual Studio 2015, SQL Data Tools 16 or higher
and SQL Server Management Studio 17 or later.

In addition to that, you will need Hortonworks Sandbox Docker for Windows Azure
account and Microsoft Azure.

The last chapter of this book has been written using SQL Server 2017.

Preface

[3]

Who this book is for
This book is ideal for software engineers, DW/ETL architects, and ETL developers who
need to create a new, or enhance an existing, ETL implementation with SQL Server 2017
Integration Services. This book would also be good for individuals who develop ETL
solutions that use SSIS and are keen to learn the new features and capabilities in SSIS 2017.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also). To give clear instructions on how to
complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The last
characters and are for case insensitive and accent sensitive, respectively." A block of
code is set as follows:

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the Sign in visible
at the right (top) to log into Visual Studio Dev Essentials."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail

, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you. You can download the

code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code

bundles from our rich catalog of books and videos available at
. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to

and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

11
SSIS Setup

In this chapter, we will cover the following recipes:

SQL Server 2016 download
Installing JRE for PolyBase
Installing SQL Server 2016
SQL Server Management Studio installation
SQL Server Data Tools installation
Test SQL Server connectivity

Introduction
This chapter will cover the basics of how to install SQL Server 2016 to properly go through
the examples in this book. The version of SQL Server used through out this book is the
Developer edition of SQL Server 2016. It's available for free as long as you subscribe to
Visual Studio Dev Essentials.

SQL Server 2016 download
Following are the steps to download and install SQL Server 2016.

Getting ready
You need to have access to the internet for this recipe.

SSIS Setup

[8]

How to do it...
Open your browser and paste this link: 1.

. The following page appears in your browser:

SSIS Setup

[9]

Click on Sign in visible at the right (top) to log in Visual Studio Dev Essentials. If2.
you don't have an existing subscription, you can create one by clicking on the
Join or access now button in the middle of the page, as shown in the following
screenshot:

SSIS Setup

[10]

You are directed to the My Information page. Click on My Benefits at the top of3.
the page to access the download section as shown in the following screenshot:

SSIS Setup

[11]

Click on the Download link in the Microsoft SQL Server Developer Edition tile4.
as highlighted in the following screenshot:

SSIS Setup

[12]

This will redirect you to the SQL Server 2016 Developer Edition page. Click on5.
the green arrow to start downloading the ISO file as shown in the following
screenshot:

SSIS Setup

[13]

Due to its pretty large size, the file may take some time to download. The6.
following screenshot is shows 44% done and 10 seconds left to download. This is
due to the fact that the file is being downloaded on an Azure VM. It might take
longer for you to download it. Depending on your browser, you should see the
file downloading as in the following screenshot:

Don't mount the ISO file for now. We have to install an external component7.
described in the next section before we proceed with the installation of SQL
Server.

Installing JRE for PolyBase
Java Runtime Engine (JRE) is required for PolyBase installations. SQL Server PolyBase is
the technology that allows data integration from other sources other than SQL Server tables.
PolyBase is used to access data stored in Hadoop File System (HFS) or Windows Azure
Storage Blob (WASB).

As you will see later in this book, SSIS can now interact with these types of storage natively
but having PolyBase handy can save us valuable time in our ETL.

Getting ready
For this recipe you will need to have access to the internet and have administrative rights
on your PC to install JRE.

SSIS Setup

[14]

How to do it...
To download JRE, follow this link:1.

.
You will see the screen shown in the following screenshot:

This directs you to the Java SE Download at Oracle.

SSIS Setup

[15]

Click the download link in the JRE section as shown in the following screenshot:2.

SSIS Setup

[16]

You must accept the license agreement to be able to select a file to download.3.
Select Accept License Agreement as indicated in the following screenshot:

Since SQL Server 2016 only exists in a 64-bit version, download the 64-bit JRE.4.
The version of Java SE runtime environment might be different from the one
show in the screenshot, which is the one available at the time this book was
written:.

SSIS Setup

[17]

Once downloaded, launch the installer. Click on Run as shown in Edge browser.5.
Otherwise, go to your folder and double-click on the file you just
downloaded (in our case); you will see the
following window:

SSIS Setup

[18]

The Oracle JRE installation starts. Click on Install. The following screen appears.6.
It indicates the progress of the JRE installation.

Once the installation is completed, click on Close to quit the installer:7.

SSIS Setup

[19]

You are now ready to proceed to install SQL Server 2016. We'll do that in the next section.

SSIS Setup

[20]

How it works...
Microsoft integrated PolyBase in SQL Server 2016 to connect almost natively to the Hadoop
and NoSQL platforms. Here are the technologies it allows us to connect to:

HDFS (Hortonworks and Cloudera)
Azure Blob Storage

Since Hadoop is using Java technology, JRE is used to interact with its functionalities.

Installing SQL Server 2016
This section will go through the installation of SQL Server engine, which will host the
database objects used throughout this book.

These are the features available for SQL Server setup:

Database engine: It is the core of SQL Server. It manages the various database
objects such as tables, views, stored procedures, and so on.
Analysis services: It allows us to create a data semantic layer that eases data
consumption by users.
Reporting services (native): It allow us to create various reports, paginated,
mobile, and KPI's for data consumption.
Integration services: It is the purpose of this book, SQL Server data movement
service.
Management tools: We'll talk about these in the next section.
SQL Server Data Tools: We'll talk about these in the next section.

Getting ready
This recipe assumes that you have downloaded SQL Server 2016 Developer Edition and
you have installed Oracle JRE.

SSIS Setup

[21]

How to do it...
The first step is to open the ISO file that you downloaded from the Microsoft1.
Visual Studio Dev Essentials website as described in the SQL Server 2016 download
recipe. If you're using Windows 7, you'll need to extract the ISO file into a folder.
Third-party file compression utilities such as WinRAR, WinZip, or 7-Zip (and
there are many more) can handle ISO file decompression. The setup files will be
uncompressed in the folder of your choice. In other versions of Windows such as
Windows 8.1, Windows 10, or Windows Server 2012 and beyond, simply double-
click on the ISO file that you have downloaded previously and a new drive will
appear in Windows Explorer.
Double-click on the file named to start the SQL Server installation2.
utility. The features we're going to install are as follows:

New SQL Server stand-alone installation or adding features to an
existing installation: This will install a local instance (service) of SQL
Server on your PC
SQL Server Management Tools: The tools used to create, query, and
manage SQL Server objects
Install SQL Server Data Tools: This contains Visual Studio templates
to develop and deploy SQL Server databases, integration services
packages, analysis service cubes, and reporting services

SSIS Setup

[22]

From the installation utility, select the New SQL Server stand-alone3.
installation... option as shown in the following screenshot. A new SQL Server
setup window opens.

SSIS Setup

[23]

The Product Key page allows us to specify an edition to install. Since we're going4.
to use the free Developer Edition, click Next to go to the next page, as shown in
the following screenshot:

SSIS Setup

[24]

Accept the license terms and click Next to go to the next page, as shown in the5.
following screenshot:

SSIS Setup

[25]

In this step, the SQL Server setup will check for product updates and will6.
integrate itself into Windows update checks that are done regularly on your
machine. This step is not mandatory but it's better to use the latest code. Check
Use Microsoft Update... and click Next, as shown in the following screenshot:

SSIS Setup

[26]

Some updates might be found during setup. You can get more information on7.
these updates by clicking the link in the More Information column. Click Next to
install the updates, as shown in the following screenshot:

SSIS Setup

[27]

This step simply checks to make sure that the latest version of SQL Server is8.
installed. Click Next once the setup files are installed, as shown in the following
screenshot:

SSIS Setup

[28]

SQL Server setup will check several rules to ensure that the computer where we9.
want to install it is setup properly. You might get a warning due to Windows
firewall rules. This tells you that the port (by default) is not open and SQL
Server won't be available from outside your PC. Don't worry about it. Since we'll
be using SQL Server from our PC only, we do not need to open any ports for
now. Click Next to advance to the feature selection page, as shown in the
following screenshot:

SSIS Setup

[29]

Select all features checked in the preceding screenshot and click Next, as shown10.
in the following screenshot:

SSIS Setup

[30]

Instance configuration allows to specify a name for the SQL Server service. This is11.
done by selecting the Named instance radio button. Since we'll only use one SQL
Server instance, leave Default instance selected and click Next, as shown in the
following screenshot:

SSIS Setup

[31]

This page allows SQL Server to be part of a PolyBase scale out group. Since we're12.
only setting up SQL Server PolyBase to be used by one instance, leave the default
Use this SQL Server as standalone PolyBase-enabled instance and click Next, as
shown in the following screenshot:

SSIS Setup

[32]

Now for server configuration. This step allows us to specify distinct or specific13.
service accounts. Since we're installing SQL Server on a single development
machine, we'll use the default accounts, as shown in the following screenshot:

Click on the Collation tab as highlighted on the preceding screenshot. The14.
default collation used by SQL server is . This
is a legacy collation. The choice of the collation is important for character string
columns. The latest (fewer bugs) collation is . The last
characters and are for case-insensitive and accent-sensitive, respectively.
We'll change the collation defaults. Click Customize... at the end of 15.

, as shown in the following screenshot:

SSIS Setup

[33]

As stated previously, we'll use the Windows collation designator16.
. Uncheck Accent-sensitive. This allows SQL Server to

sort character columns without using accentuated characters. For example,
suppose that our application has a column and we have the
following first names:

If we query SQL Server filtering on with the Accent-17.
sensitive collation option, we end up retrieving the value only. If we do not
select the Accent-sensitive collation option, we will get both values.

SSIS Setup

[34]

Click OK when done to return to the previous screen. We'll do the same for18.
analysis services; click Customize... to customize analysis service collation, as
shown in the following screenshot:

SSIS Setup

[35]

Again, choose in Collation designator and uncheck the19.
Accent-sensitive checkbox. Click OK to return to the previous screen. Click on
Next, as shown in the following screenshot:

SSIS Setup

[36]

This will direct you to the following screen. For the database engine20.
configuration, we'll use Mixed Mode to allow us to use SQL Server logins and
Windows logins. The default authentication is Windows authentication mode,
which is more secure than SQL Server authentication because it uses the Kerberos
security protocol, password, and account lockout policies, and password
expiration. Make sure you use strong passwords for SQL Server logins. By
default, password policy, password expiration, and user must change password
at next login are turned on also for SQL Server login. You should not disable the
password policy and the password expiration. Select the Mixed Mode radio box
and enter a password for the SA account. Click on Add Current User as shown in
the screenshot to add your Windows account as an administrator of the instance.
You'll have all rights on it. Click Next, which will direct you to the Analysis
Services Configuration window, as shown in the following screenshot:

SSIS Setup

[37]

For analysis services configuration, the Server Mode we'll use is Tabular Mode21.
and again click on Add Current User as shown in the following screenshot to add
your Windows account as an administrator of the service. Click Next.

SSIS Setup

[38]

For the Reporting services configuration, leave the default values and click Next,22.
as shown in the following screenshot:

SSIS Setup

[39]

We're finally ready to install. Click Install to start the installation process, as23.
shown in the following screenshot:

SSIS Setup

[40]

The following screenshot shows the installation progress:24.

SSIS Setup

[41]

Once the installation is complete, you get the following screen:25.

We're done. We just installed SQL Server 2016! In the next section, we'll install SQL Server
Management Studio.

The number, the order, and the appearance of the setup screens change
slightly with every version of SQL Server, or even with a service pack. If
you encounter a new screen not mentioned here, just use the default
settings and proceed with the installation.

SSIS Setup

[42]

SQL Server Management Studio installation
SQL Server Management Studio is a separate download from SQL Server. This program
will allow us, among other things, to create database objects and query SQL Server. Without
this tool, we wouldn't be able to manage SQL Server databases easily.

Getting ready
This section assumes that you have installed SQL Server 2016.

How to do it...
To download and install SQL Server Management Studio, click on Install SQL1.
Server Management Tools, as shown in the following screenshot:

SSIS Setup

[43]

The SSMS download page opens in your browser. Click Download SQL Server2.
Management Studio (the latest version) to start the download process. Once
downloaded, run the installation as shown in the following screenshot:

SSIS Setup

[44]

Click Install, as shown in the following screenshot:3.

SSIS Setup

[45]

This will direct you to the Microsoft SQL Server Management Studio installation4.
screen as follows. The installation is in progress; it may take several minutes to
complete.

SSIS Setup

[46]

Click Close to close the installation wizard, as shown in the following screenshot:5.

SQL Server Data Tools installation
The last part of our SQL Server 2016 setup is to install SQL Server Data Tools. This will
install a Visual Studio Shell that contains BI templates necessary for the following:

SQL Server integration services
SQL Server analysis services

SSIS Setup

[47]

SQL Server reporting services
Database object management

Getting ready
We'll use SSDT throughout this book to create, deploy, and maintain our SSIS packages and
some databases.

How to do it...
From the SQL Server 2016 setup utility, click on SQL Server Data Tools (SSDT).1.
This will open the Download SQL Server Data Tools (SSDT) download page in
your browser as shown in the following screenshot:

Here, there are two choices:

Install SSDT only: This is the simplest scenario. It only installs SSDT
and a development shell.

SSIS Setup

[48]

Install Visual Studio and SSDT: You choose this if you plan to use
source control inside Visual Studio or when you want to implement
different types of development (.NET, Python, and so on) such as
SSIS/SSAS/SSRS development. Since we'll talk about custom
components in this book, we'll install Visual Studio Community Edition.
This version is free for individuals.

Click on the Download Visual Studio Community 2015 link to download the2.
Visual Studio installer.
Once downloaded, click on Run to launch the Visual Studio installer.3.
Accept the default installation type and click Install to start the installation4.
process. This will give you the following window:

SSIS Setup

[49]

Once the installation is completed, since we haven't installed SSDT, don't launch5.
Visual Studio yet. Close this window. We'll install SQL Server Data Tools first.
Return to the browser window and click Download SQL Server Data Tools for
Visual Studio 2015 as shown in the following screenshot:

SSIS Setup

[50]

This will direct you to the SSDT download screen shown as follows:6.

SSIS Setup

[51]

From the browser page that opens, choose English (United States). The SSDT7.
setup executable file download starts. Since it's a small file, it takes only a few
seconds to download. Once the download completes, click Run or double-click
on the newly downloaded file to start SSDT installation. Accept the defaults and
click Next to proceed to the next step, as shown in the following screenshot:

SSIS Setup

[52]

Accept the license agreement by checking the I agree to the license terms and8.
conditions and click Install, as shown in the following screenshot:

SSIS Setup

[53]

The SSDT installer will download the necessary files and proceed to the9.
installation, as shown in the following screenshot:

SSIS Setup

[54]

Once the installation completes, you might have to restart your computer. If10.
that's the case, restart it, as shown in the following screenshot. Once that's done,
look for SQL Server Data Tools in your Start menu and launch it.

SSIS Setup

[55]

From the File menu, select New Project. Once the New Project window appears,11.
you will see Business Intelligence in the project templates, as shown in the
following screenshot:

Close SSDT; we're done with it for now.12.

Testing SQL Server connectivity
SQL Server Management Studio has been installed in this chapter in the SQL Server
Management Studio installation recipe. We'll now test whether we're able to connect to our
local instance.

Getting ready
This recipe assumes that you have successfully installed SQL Server 2016 Developer Edition
as well as SQL Server Management Studio.

SSIS Setup

[56]

How to do it...
Look for SQL Server Management Studio in your Start menu and launch it.1.
Once the application opens, you should see your PC's name in the Server Name2.
field. Click on Connect. SSMS will now connect to your local SQL Server
instance, as shown in the following screenshot:

SSIS Setup

[57]

You are now able to connect to your local SQL Server instance, and we're now3.
ready to begin work! You will get the following screen:

22
What Is New in SSIS 2016

This chapter will cover the following recipes:

Creating an SSIS Catalog
Custom logging
Azure tasks and transforms
Incremental package deployment
Multiple version support
Error column name
Control flow templates

Introduction
The 2016 release of SQL Server Integration Services is a major revision of the software. But,
instead of being a complete re-write of the product, it's more an evolution of the product.
Here is the SSIS timeline since its beginning in SQL Server 7.0 (1998):

What Is New in SSIS 2016

[59]

In the early years of SQL Server, Microsoft introduced a tool to help developers and
database administrator (DBA) to interact with the data: Data Transformation Services
(DTS). The tool was very primitive compared to SSIS and it mostly relied on ActiveX and T-
SQL to transform the data. SSIS V1.0 (2005) appeared in 2005. The tool was a game changer
in the ETL world at the time. It was a professional and (pretty much) reliable tool for 2005.
2008/2008 R2 versions were much the same as 2005 in the sense that they didn't add much
functionality, but they made the tool more scalable.

In 2012, Microsoft enhanced SSIS in many ways. They rewrote the package XML to ease
source control integration and make the package code easier to read. They also greatly
enhanced the way packages are deployed by using an SSIS Catalog in SQL Server. Having
the catalog in SQL Server gives us execution reports and many views that allow us access to
metadata or metaprocess information in our projects.

Version 2014 didn't have anything for SSIS. Version 2016 brought other set of features, as
you will see in the remainder of this chapter. We now also have the ability to integrate with
big data, which we'll talk about in some later sections of the book.

Creating SSIS Catalog
This section will walk you through the various steps to create an SSIS Catalog in SSMS. As
mentioned before, the SSIS Catalog contains information about the package components
and their execution. As we will see later in the book, SSIS projects are deployed into this
catalog. It can be easily queried for custom reports as well, allowing us to create SSIS
executions using T-SQL. This is very useful for on-demand executions of SSIS packages.

SSIS versions prior to 2012 did not have these capabilities since the catalog appeared with
2012. It is still possible to bypass the deployment to an SSIS Catalog by using a special
mode: the package deployment model. This is mostly used for backward compatibility with
previous SSIS frameworks.

Getting ready
This section assumes you have already installed SQL Server Management Studio (SSMS).

What Is New in SSIS 2016

[60]

How to do it...
We'll first create the SSIS Catalog in SSMS. Open SSMS and connect to your local1.
instance:

Look for the folder in object explorer.2.
Right-click on it and select the option Create Catalog....3.

What Is New in SSIS 2016

[61]

If the Create Catalog... option is not available (disabled - greyed out), it means4.
that a catalog has already been created. Even if the folder is called

 - plural, only one Integration Services Catalog can be
created by the SQL Server instance. The Create Catalog dialog box appears:

SQL Server CLR must be enabled to be able to create a catalog. It's also a good5.
practice to check Enable automatic execution of Integration Services stored
procedures at SQL Server startup. This creates a job that cleans up the SSIS
Calalog tables. To enable the job, the SQL Server Agent must be enabled and
started. To enable the SQL Server Agent, right-click on SQL Server Agent and
select Start from the contextual menu that appears.

What Is New in SSIS 2016

[62]

A confirmation screen appears to confirm that we want to start the Agent:6.

What Is New in SSIS 2016

[63]

Once the Agent has successfully started, we can see in the folder a job called7.
SSIS Server Maintenance Job:

Double-clicking on it, you can see that this job is running every day to clean up8.
the SSIS Catalog based on the retention window:

By default, the retention window is set to 365 days. We don't have to change it for9.
the recipes we're going to implement from this book. But you should adjust the
retention window setting to ensure that the catalog doesn't get filled with too
many execution logs.
One of the benefits of this job is to execute clean up log entries in the catalog. As10.
all executions are logged (we'll talk about logging in a later section), the catalog
tables can fill up fast.

What Is New in SSIS 2016

[64]

To manage the retention window, in SSMS object explorer right-click on the11.
catalog (SSISDB) and select Properties from the drop-down menu. The following
window appears:

You can now modify the Retention Period (days) property, as shown in the12.
preceding screenshot. Notice that you also have the ability to stop the clean logs
schedule by setting the Clean Logs Periodically to False.

Custom logging
This section will talk about various loggings and how we can customize logging to suit our
needs in terms of logging information. The reason why we need logging is because we want
to retrieve some information on our package executions.

What Is New in SSIS 2016

[65]

Here are some examples of logging info we might be interested in getting:

How much time it took to execute a specific package
How many rows have been transferred from one transform to another in our data
flows
What were the warnings or errors that were issued by the package execution
The new values that have been assigned to a variable in a package, and so on

All the topics listed here will be discussed in the next sections of the book. For now, we'll
focus on the customized logging levels.

There are various ways that we can log package execution information in SSIS. In versions
prior to 2012 (or if we opt for a Package Deployment Mode instead of the default one, the
Project Deployment Mode), the only way to enable logging was to enable it in each
package. If we forgot to enable it in one package, the latter would not log anything. The
default Project Deployment Mode can also log using package logging, but it's better to use
SSIS Catalog logging, since it's integrated with projects once deployed and SSIS built-in
execution reports will use it to display package execution information.

We'll talk about the various deployment models in the next chapter, , Key
Components of a Modern ETL Solution.

Getting ready
This section requires you to have already installed SSMS and SQL Server Data Tools, and
created an SSIS Catalog.

How to do it...
We'll start SQL Server Management Studio and connect to our local instance.1.
We'll then expand the Integration Services Catalogs:

What Is New in SSIS 2016

[66]

The following screen appears. Click on the Create button to create a custom2.
logging level:

What Is New in SSIS 2016

[67]

The Create Customized Logging Level screen appears. Set the various properties3.
as shown in the following screenshot but leave the Create from existing logging
level unchecked:

In the configuration screen, select Component Data Volume Statistics, click4.
Save, and then Close, as shown in the following screenshot:

What Is New in SSIS 2016

[68]

That's it for now! We have created our custom logging level.

How it works...
Using logging while executing our SSIS packages creates entries in the SSIS Catalog table
called in the schema. This table is meant to
record data movement statistics in SSIS packages.

We never use tables in the internal schema, as they are seen as system tables. That's the
reason we use the view instead.

There's more...
Creating our logging level in SSMS will allow us to use it when our SSIS project will be
deployed in the SSIS Catalog. We'll do that in the next recipe, Azure tasks and transforms;
we'll create a simple SSIS package that will use this logging level when we execute it.

What Is New in SSIS 2016

[69]

Create a database
This recipe, like many others in this book, requires a database to be created. It can be done
by using SQL Server Management Studio. Start SSMS, connect to your local instance and
right-click on the database folder. From the contextual menu, choose New Database.... The
following window appears:

Fill in the Database name and click OK as we don't need to change the Owner and
Database files information. You should now see the database under the folder
in SSMS. We're now ready to create an SSIS package that'll use it.

What Is New in SSIS 2016

[70]

Create a simple project
This recipe will show you how to create an SSIS project to be able to use the custom logging
level that we just created in the previous part of the recipe.

First, start SQL Server Data Tools and create a new Integration Services project: File | New
| Integration Services Project. The following screenshot suggests how the project can be
named:

What Is New in SSIS 2016

[71]

Once the project has been created, we should see a package called . We'll
right-click on it and select Rename, as shown in the following screenshot:

We'll name it . The solution should now look like the next
screenshot:

What Is New in SSIS 2016

[72]

We will now add a Data Flow Task in our package. A Data FlowTask is a container that
will allow us to do data transformations. Its toolbox has a rich set of data transformation
tools.

From the SSIS Toolbox, drag a Data Flow Task to the package's control flow as shown in
the following screenshot:

Rename the Data Flow Task , as shown in the following
screenshot:

What Is New in SSIS 2016

[73]

In the next chapter, we'll talk about the way we name our SSIS tasks and transforms.

In the next few steps, we'll start customizing our SSIS toolbox. Double-click on the
 Data Flow Task to go into it.

Throughout the book, we'll often customize the SSIS Toolbox to suit our needs. You'll
notice that the toolbox has sections such as: Favorites, Common, Azure (this will be covered
in the next recipe), Other Sources, Other Transforms, and Other Destinations.

For now, we remove the source and destination assistants and add OLE DB Source and
destination to the favorites transforms:

In the SSIS Toolbox, scroll down to Other Sources and right-click on OLE DB1.
Source. From the contextual menu that appears, select Move to Favorites.

What Is New in SSIS 2016

[74]

Next, scroll down again to Other Destinations, right-click on OLE DB2.
Destination, and select Move to Favorites as shown in the following screenshot:

Now scroll up to the Favorites group at the top. We'll remove the source and3.
destination assistants from the Favorites. As the following screenshot
demonstrates, right-click on the Destination Assistant and select Move to Other
Destinations. Repeat the same process for the Source Assistant:

Repeat same process for the Source Assistant. We'll move it to the Other Sources4.
group.

What Is New in SSIS 2016

[75]

Now, we're ready to create a connection manager. We'll use it to read or insert5.
data into the database that we created earlier. As shown
in the following screenshot, right-click in the Connection Managers area and
select New OLE DB Connection from the menu that appears.

What Is New in SSIS 2016

[76]

Click on New in the Configure OLE DB Connection window that appears and6.
the following screen will appear. Set the Server Name to the name of your
machine or the named instance you might have chosen when you set up SQL
Server. Select as the Database Name. The following
screenshot shows the two properties set up for my PC. Click OK once finished.

What Is New in SSIS 2016

[77]

You're back on click OK in the Configure OLE DB Connection Manager 7.
window as shown in the following screenshot:

We'll now rename our connection manager. Select the newly created connection8.
manager () to
as shown in the following screenshot:

What Is New in SSIS 2016

[78]

Now, from the favorite section of the SSIS toolbox, drag and drop an OLEDB9.
source on the surface of the Data Flow. Now, as shown in the following
screenshot, rename it to . Double-click on it to get to the OLE
DB Source Editor window. Set the OLE DB connection manager to

 as demonstrated in the screenshot. Set the Data
access mode to SQL command.

What Is New in SSIS 2016

[79]

Now, enter the following SQL command in the command text and click on OK:10.

Again, from the Favorites section of the SSIS Toolbox, drag an OLE DB11.
Destination in the Data Flow. Connect the source to the destination and rename
the OLE_DB Destination . Double-click on it,
assign the OLEDB connection manager property, and click OK on the New
button at the right of the name of the table or the view property. The

 window appears. Modify the command as shown in the following
screenshot and click on OK:

Click on Mappings in the list at the top left of the OLE DB Destination Editor.12.
You should get the same screen as in the following screenshot:

What Is New in SSIS 2016

[80]

Click on OK to close the OLE DB Destination Editor.13.

What Is New in SSIS 2016

[81]

Now, we'll bring in the Layout toolbar. We'll use it throughout this book to14.
format our package objects properly. Right-click anywhere in an empty section of
the quick access toolbar and select Layout, as highlighted in the following
screenshot:

What Is New in SSIS 2016

[82]

Now, from the Edit menu, select Select All or press Ctrl + A to select the entire15.
Data Flow content. In the Layout toolbar, click on the *, Make Same Width
button, as shown in the following screenshot:

What Is New in SSIS 2016

[83]

From the menu, select Auto Layout | Diagram. This will format the data flow16.
objects, as shown in the following screenshot:

What Is New in SSIS 2016

[84]

Now, right-click anywhere in the data flow task background and select Execute17.
Task from the contextual menu that appears. The data flow should execute
successfully as follows.

What Is New in SSIS 2016

[85]

Now, we're ready to deploy our project to the SSIS Catalog that we created at the18.
beginning of the chapter, in the recipe Creating an SSIS Catalog. Right-click on the

 project in the Solution Explorer at the top right of SSDT and hit
Deploy. The project deployment wizard starts, as shown in the following
screenshot:

What Is New in SSIS 2016

[86]

The first page explains the step performed by the wizard. Check Do not show19.
this page again as in the following screenshot if you want to skip this step in
future deployments of the project or individual packages, as we'll see later in this
chapter.

The wizard is now asking for an SSIS Catalog and folder. Since we don't have any20.
folder yet in the catalog, we'll create one called , as shown in the
following screenshot:

Select the Server name by clicking on the Browse button. Select your1.
machine name from the list and click on OK.

What Is New in SSIS 2016

[87]

The Path property specifies where the project will be deployed in the2.
SSIS Catalog. To assign a path to the project deployment, click on
Browse at the right of it. The Browse for Folderor Project window
appears. We're going to create a folder for our project. Click on New
folder. From the Create New Folder window that appears, fill the text
boxes as shown in the following screenshot. Click OK to save and close
the window.

What Is New in SSIS 2016

[88]

Your screen will look like the following screenshot. Click OK again to close the21.
Browse for Folder or Project window.

What Is New in SSIS 2016

[89]

Back on the Integration Services Deployment Wizard, click on the Next button22.
to go to the next deployment step. You should have a window similar to the
following screenshot:

What Is New in SSIS 2016

[90]

Click on Deploy, as shown in the following screenshot:23.

What Is New in SSIS 2016

[91]

As the following screenshot shows, the project is deployed in the SSIS Catalog. If24.
this fails, click on the Report button to investigate the error details. Whenever
deployment errors occur, you can click on Previous to make a correction. Click
Close to terminate the deployment wizard.

What Is New in SSIS 2016

[92]

Testing the custom logging level
This part of the recipe will guide you through the steps to execute our sample package on
the server (the SSIS Catalog on the local machine). We will use the custom logging level that
we created previously in the recipe.

Open SSMS and expand the as shown in1.
the following screenshot. Expand the folder and navigate to the
package as shown in the following screenshot:

What Is New in SSIS 2016

[93]

When you expand the SSISDB catalog, you'll notice that there is a folder called2.
; it has been created previously in this recipe when we deployed

the SSIS project.

What Is New in SSIS 2016

[94]

Click on the dropdown list near the Logging level property and select Select3.
customized logging level... as shown in the following screenshot:

What Is New in SSIS 2016

[95]

Make sure that our custom logging level, CustomLogging, is selected and click4.
OK as shown in the following screenshot:

What Is New in SSIS 2016

[96]

Make sure that the Logging level property is set to Customized: CustomLogging5.
and click on OK to close the window and start package execution as in the
following screenshot.

What Is New in SSIS 2016

[97]

The following screen appears. Click on Yes to see the execution report.6.

The execution report tells us that the package executed properly, as shown in the7.
following screenshot:

What Is New in SSIS 2016

[98]

Click on New Query in SSMS and type the following query. Click on Execute or8.
F5 to execute the query. You should see that the package read and inserted two
rows.

What Is New in SSIS 2016

[99]

See also
We'll talk more about logging in the next chapter where we'll talk about an SSIS framework.
In the meantime, this recipe introduced you to logging in SSIS but there's much more to be
covered later in the book.

Azure tasks and transforms
This section will guide you on how to install the Azure Feature Pack that, in turn, will
install Azure control flow task and data flow components. The Azure ecosystem is
becoming predominant in Microsoft ecosystems and SSIS has not been left over in the past
few years.

The Azure Feature Pack is not an SSIS 2016 specific feature. It's also available for SSIS
version 2012 and 2014. It's worth mentioning that it appeared in July 2015, a few months
before the SSIS 2016 release.

Getting ready
This section assumes that you have installed SQL Server Data Tools 2015.

What Is New in SSIS 2016

[100]

How to do it...
We'll start SQL Server Data Tools, and open the project if not already
done:

In the SSIS Toolbox, scroll to the Azure group. Since the Azure tools are not1.
installed with SSDT, the Azure group is disabled in the toolbox. Thee toolss must
be downloaded using a separate installer. Click on the Azure group to expand it
and click on Download Azure Feature Pack as shown in the following
screenshot:

What Is New in SSIS 2016

[101]

Your default browser opens and the Microsoft SQL Server 2016 Integration2.
Services Feature Pack for Azure opens. Click on Download as shown in the
following screenshot:

What Is New in SSIS 2016

[102]

From the popup that appears, select both the 32-bit and 64-bit versions. The 32-bit3.
version is necessary for SSIS package development since SSDT is a 32-bit
program. Click Next as shown in the following screenshot:

What Is New in SSIS 2016

[103]

As shown in the following screenshot, the files are downloaded:4.

Once the download completes, run one the installers downloaded. The following 5.
screen appears. In this case, the 32-bit (x86) version is being installed. Click Next
to start the installation process.

What Is New in SSIS 2016

[104]

As shown in the following screenshot, check the box near I accept the terms in6.
the License Agreementand click Next. The installation starts.

What Is New in SSIS 2016

[105]

The following screen appears once the installation is completed. Click Finish to 7.
close the screen.

Install the other feature pack you downloaded using previous recipe steps in8.
Custom logging.
If SSDT is opened, close it. Start SSDT again and open the CustomLogging9.
project we created in another recipe. In the Azure group in the SSIS toolbox, you
should now see the Azure tasks as shown in the following screenshot:

What Is New in SSIS 2016

[106]

See also
This book contains a dedicated chapter on Azure tasks and transforms: , On-
Premises and Azure Big Data Integration. They will be explained in more detail with useful
examples.

Incremental package deployment
Prior to SSIS 2012, packages needed to be deployed one by one. We were usually
downloading all packages from the source control software, such as Team Foundation
Server (TFS), Visual Source Safe, SVN, and so on. Once downloaded, packages were moved
to their destination. At that time, the person who deployed the packages had the choice to
overwrite or skip existing packages. Usually, they overwrote all the packages since they
were using the source control.

For those who didn't use the source control, they had all the necessary flexibility to deploy
what needed to be deployed. Usually, they were keeping a backup somewhere on a file
share of all packages. The reason why they chose what to deploy was mainly because they
had doubts about the consistency of the packages in the file share. They were simply not
sure of the state of the packages because they were using a manual process to maintain their
solution. The source control software helps a lot with this. We have the possibility to
compare versions between packages committed in the source control, and when and who
pushed the package, among other benefits.

Enter SSIS 2012 with Project Deployment. The only way to deploy a package was to deploy
the entire project, and thus, all packages in it. If the source control was in place to manage
the package code, this was barely an issue. But, not everybody is using the source control
and Microsoft recognized it. With SSIS 2016, we can now deploy part of your project
packages. You're not forced to deploy the entire project.

What Is New in SSIS 2016

[107]

Getting ready
This recipe assumes that you have created and deployed the CustomLogging recipe.

How to do it...
With the CustomLogging project opened, right-click on the1.

 package and select Copy as shown in the following
screenshot:

What Is New in SSIS 2016

[108]

Now, right-click on the folder and select Paste as shown in the2.
following screenshot:

What Is New in SSIS 2016

[109]

A copy of the package is created and named as shown3.
in the following screenshot:

What Is New in SSIS 2016

[110]

Right-click on the newly created package, , and select4.
Deploy Package from the menu as shown in the following screenshot:

What Is New in SSIS 2016

[111]

As shown in the following screenshot, the Server name is already selected since5.
we've deployed the project there before. It can be changed if necessary. The Path
is where the deployed package will be located; the

 folder in the SSIS Catalog. Click Next
to advance to the next step.

Now we are at the Review screen as shown in the following screenshot.6.

What Is New in SSIS 2016

[112]

Notice that the package to be deployed is . It
is tagged as Package#1 since we might have selected multiple
packages to deploy. Click Deploy to proceed to the deployment.

What Is New in SSIS 2016

[113]

If everything goes well, you should get a screen like the following screenshot7.
meaning that the package has been successfully deployed. Click on Close to get
rid of it.

Now, go to SSMS and open the SSIS Catalog as shown in the following8.
screenshot. You will see that the package has been deployed. We won't execute it
for now as we only wanted to demonstrate how single package deployment
works.

What Is New in SSIS 2016

[114]

There's more...
The capability to deploy individual packages is possible with SSIS 2016 only. If we have
tried to deploy to a SSIS Catalog of a previous version of SSIS (2012-2014), the deployment
would have failed. So, to reinforce the point here, SSDT can show you the option that you
can deploy individual packages but you'll need SSIS 2016 to be able to use it.

Multiple version support
Since its inception, SSIS designer never supported backward compatibility. For example, if
you developed a package in SSIS 2014 and tried to deploy it in a SSIS 2012 catalog, you
would not be able to do it. Or worse, if you opened a package developed with SSIS 2012
with a SSDT that was used with SSIS 2014, the package was upgraded. When another
developer tried to open it with SSDT used for SSIS 2012, he/she was not able to do it. The
package was upgraded, period.

With SSIS 2016, SSDT had the following enhancements:

Backward compatibility to prior SSIS versions down to SSIS 2012.
Unified SSDT: as we'll see later in the book, SSDT can be used for BI components
development as well as database development. Prior to SSDT for Visual Studio
2015, it was confusing whether we were using SSDT-BI for BI development or
SSDT-SQL for database development.

What Is New in SSIS 2016

[115]

Getting ready
This recipe assumes that you have created an SSIS project in SSDT. We'll be using the
CustomLogging SSIS project developed in a previous recipe in this chapter.

How to do it...
With SSDT and CustomLogging SSIS project opened, right-click on the project1.
and select Properties as shown in the following screenshot:

What Is New in SSIS 2016

[116]

The CustomLogging Property Pages dialog box opens. Select Configuration2.
Properties and you'll notice a drop-down list near the property
TargetServerVersion. In our case, the selected version is SQL Server 2016. You'll
notice that you can select prior versions as shown in the following screenshot.
Click on OK to close this window.

There's more...
This simple recipe shows you how easily we can now use SSDT for Visual Studio 2015 with
prior SSIS versions. If you open an existing SSIS project that is developed in the SQL Server
2012 or 2014 SSDT version, the designer (SSDT) will be smart enough to select the right
target version (2012 or 2014) without upgrading your project or packages.

What Is New in SSIS 2016

[117]

The default Target Server version is SQL Server 2016. If you created your SSIS project
without setting this property and try to deploy it on a prior version to 2016, the deployment
will fail. Also, if you change this property from, for example, SQL Server 2016 down to SQL
Server 2014 and your package uses new SSIS functionality, the project won't build and
therefore you will not be able to deploy it.

Error column name
This recipe will show you a new neat feature of SSIS, which is the error column name. We
could achieve something similar before SSIS 2016 but it involves using a script component
and it is difficult to reuse this kind of transform. Although we can copy and paste a script
component from one package to another, every time we do so, we must change the input
columns and recompile the script. It's not very difficult but it's a tedious task. The error
column name native implementation in SSIS 2016 is very welcome.

Getting ready
This recipe assumes that you have created the CustomLogging project and package from
previous recipe.

How to do it...
In the package, navigate to the1.

 by double-clicking on the Data Flow task. Click on the
path (blue arrow) between the and the

 transform to select it. Right-click on it and select
Delete to delete it.

What Is New in SSIS 2016

[118]

Drag and drop a derived column transform from the SSIS Toolbox onto the data2.
flow. Link it to the and double-click on it to open the
derived column transformation. As shown in the following screenshot, do the
following:

Derived Column Name: DateToConvert
Derived Column: leave it as <Add as new column>
Expression: Type . This is not a valid date; it will cause an
error and that's precisely what we want.

What Is New in SSIS 2016

[119]

Click on OK when finished.3.

Rename the derived column .4.
Now, drag and drop a data conversion transform onto the dataflow task. Attach5.
it to the derived column created previously and double-click on it
to open the Data Conversion Transformation Editor. Enter the values as shown
in the following screenshot:

Input Column: Check the column DateToConvert in the Available
Input Columns.
Output Alias: Change it to DateConverted.
Data Type: Select date [DT_DATE] from the drop-down list.

What Is New in SSIS 2016

[120]

It is also shown in the following screenshot:

What Is New in SSIS 2016

[121]

The Data Conversion Transformation Editor should now look like the following6.
screenshot. Click on the Configure Error Output... button.

You will get a screen like the following screenshot. By default, the Error and7.
Truncation errors will fail the component.

Select both columns and from the drop-down list near Set this value to1.
select cells, select Redirect row. Click Apply.
You should now see that both column values are now set to Redirect2.
row.

What Is New in SSIS 2016

[122]

Click OK to close the editor and rename the transform as3.
.

Now, bring an audit transform from other transforms onto the dataflow task. The8.
following steps detail what's in the following screenshot:

Attach the Data Conversion Error Output (red path or arrow) to it.1.

What Is New in SSIS 2016

[123]

Right-click on the error path and select Enable Data Viewer from the2.
menu that appears.

As we did before in the Customized logging level recipe, select all the
transforms and click on Make Same Width from the Layout toolbar. From
the Format menu, select Format Auto Layout à Diagram to format the
data flow task objects properly.

What Is New in SSIS 2016

[124]

Your data flow task should look like the following screenshot. Now, right-click9.
anywhere in the background of the data flow task and select Execute Task from
the menu.

What Is New in SSIS 2016

[125]

You should see a data viewer like the following screenshot:10.

It is explain in as follows:

The DateToConvert is the column we tried to convert.
The second column is the ErrorCode, an internal code to SSIS.
The third column is the ErrorColumn which is a lineage ID that SSIS assigns to all
columns in the data flow task.
The ErrorCode - Description column gives us the reason for the error.
The ErrorColumn - Description gives us the column that failed to be converted
(DateConverted).

Control Flow templates
Control Flow templates are an addition to SSIS 2016 that will surely be promising...in the
future. For now, Microsoft put the foundation of something that looks very interesting.

If there's one thing missing with SSIS it is the reusability of custom components without
doing .NET code. We'll see how to achieve custom task and transforms later in this book
using .NET and you'll see that it's tedious to achieve even for something simple. Let's say
that we would like to create a truncated table task; that is, a task that we would use to solely
erase a table's content. This task would then appear in the SSIS toolbox and be available to
all packages in your projects. This recipe is exactly what we will do using Control Flow
templates.

What Is New in SSIS 2016

[126]

Getting ready
This recipe assumes that you have done all previous recipes in this chapter or you have
your own SSIS project open.

How to do it...
In SSDT, with your project open, right-click on the folder in the1.
Package Parts section of the solution explorer. As shown in the following
screenshot, select New Control Flow Package Part from the contextual menu.
Rename it .

What Is New in SSIS 2016

[127]

Drag and drop an Execute SQL task on it:2.
Rename it .1.
Click anywhere in the Control Flow. Set its description property to2.
This is a simple template that is meant to truncate the table
[dbo].[CustomLogging].
As shown in the following screenshot, right-click in the Connection3.
Managers area and choose New OLE DB Connection... from the menu
that appears:

What Is New in SSIS 2016

[128]

As shown in the following screenshot, select the existing connection3.
(SSISCOOKBOOK\TestCustomLogging in this case) in the top left or create a
new one by clicking on NEW.... Click on OK when done to close the Configure
OLE DB Connection Manager window.

Double-click on the task to open the4.
Execute SQL Task Editor. Set the properties in the SQL Statement section as
follow:

ConnectionType: OLE DB, the default value
Connection: Set it to the connection manager created in the previous
step.

What Is New in SSIS 2016

[129]

SQLSourceType: Leave the default value, Direct input type the
following SQL DML statement in the SQL Statement property:

It is also shown in the following screenshot:

Save and close the package part.5.

What Is New in SSIS 2016

[130]

Now, open the package from the solution explorer. As shown in6.
the following screenshot, there is now a new component in the Package Parts
section of the SSIS Toolbox: the Chapter2Part created in the previous steps. Also,
notice the description below the Package Parts section. This is the one that we
assigned at the Control Flow level of the package part when it was created.

Drag and drop a Chapter2Part onto the Control Flow of the 7.
package. Now to get the same as in the following screenshot:

What Is New in SSIS 2016

[131]

Execute the following steps:

Connect it to the dft_dbo_CustomLogging data flow task.8.
Select all Control Flow components9.
In the Layout toolbar, click Make Same Size10.
From the Format menu, select Auto Layout Diagram to properly align the tasks11.
Execute the package to make sure that the package part is properly working and12.
stop the package execution when done.
Double-click on the Chapter2Part to view its properties as shown in the following13.
screenshot. Go to the Connection Managers tab. Locate the ConnectionString
property as highlighted in the screenshot. Notice that it has a fixed value. This is
the biggest limitation of these parts; there is no way for now to alter any of the
property at runtime. We cannot use package configurations or parameters to alter
these values dynamically as we can with regular tasks.

33
Key Components of a Modern

ETL Solution
This chapter will cover the following recipes:

Installing the sample solution
Deploying the source database with its data
Deploying the target database
SSIS projects
ETL framework

Introduction
Now, let's go for the real stuff! This chapter will cover many topics that will lay out the
foundations of a simple and effective ETL solution. Over the years, I have seen many SSIS
implementations and one of the goals of this chapter is to give the readers the following:

A simple but effective SSIS framework
SSIS development best practices
New data source integrations

All remaining chapters assume that we want to load a data warehouse that is a star schema
with its staging area.

Key Components of a Modern ETL Solution

[133]

The source (operational) database used is , an old well-known
database. The following diagram describes the source database that we're going to use:

From this database, we'll insert data in a staging area and finally into a data warehouse. The
staging area and the data warehouse will be separated in schemas in a database that we'll
manage using SSDT.

The following diagram is the representation that describes the staging schema of the
 database:

Key Components of a Modern ETL Solution

[134]

Not all tables are copied in the staging area and three sections have been identified:

Orders: These tables contain order information as well as dates related
information. In the data warehouse section, these sections have their own tables.
Customer: These tables contain information related to a customer and their
addresses. In the data warehouse, these tables are grouped.
Product: These tables contain the product information such as model, description
in multiple languages, and so on. Like customer data, these tables are grouped in
the data warehouse.

Key Components of a Modern ETL Solution

[135]

Once in the staging area, the data will be copied into a star schema database representation.
The tables are in the same database, but have a separate schema called DW. The following
diagram shows the DW tables:

The goal of the data warehouse is to ease data consumptions. It's easy to understand by
most users and data is categorized into areas (tables) that represent the subjects that the end
users will base their analysis on.

Key Components of a Modern ETL Solution

[136]

The customer information has been regrouped into two tables, and
. The table has two links to the fact table. These relationships

represent the multiple addresses, two in our case: the billing and shipping address of the
customer.

The product information has been flattened into one dimension: . Although the
base model allowed for more than one language when it comes to the product descriptions,
only two are retained in the dimension: French and English - and

.

The orders tables have been merged into one fact table: . The
dimension has been added to allow better querying of the orders using various dates: order,
shipped, and due dates. The and are
considered derived dimensions and stay in the fact table. We don't have enough
information that can be derived from these columns and they are strongly tied to the facts.

The remaining dimension, , has no source in the
 operational database. It has been added and is managed by Master

Data Services, another service that comes with SQL Server 2016 Developer Edition. We'll
talk about this service and this dimension later in this book.

In the next few recipes, we'll deploy these databases and the ETL's (SSIS packages) that load
these tables.

Installing the sample solution
This section will walk you through the deployment of the databases contained in the
sample solution.

Getting ready
This section assumes that you have downloaded the solution files.

Key Components of a Modern ETL Solution

[137]

How to do it...
We'll first create a folder that will hold the solution files. In our case, we created a1.
folder called and we uncompressed the solution
file in it, as shown in the following screenshot:

Now, we open the solution in Visual Studio by double-clicking on the2.
 solution file, as highlighted in the preceding screenshot.

The solution opens and you will see its projects, as shown in the following3.
screenshot:

Key Components of a Modern ETL Solution

[138]

The following point will describe the projects that are shown in the Solution Explorer in
SQL Server Data Tools (Visual Studio):

: This is an SQL Server database project that contains the
 database objects.

: This is the SQL Server database project that contains
the staging, DW, the framework database objects. We'll talk about the framework
in a subsequent recipe.

: This is an SSIS project that fills the tables in the DW schema.
: This is an SSIS project that connects to Master Data Services

and loads the table in the
database.

: This is an SSIS project that loads the tables in the staging schema
in the database.

Key Components of a Modern ETL Solution

[139]

There's more...
The solution is not completed yet. We'll add new projects as we move forward in the
chapter's recipes.

Deploying the source database with its data
The first thing we have to do now is to deploy the SQL Server database, which are

 and .

Getting ready
This section requires you to have copied the sample solution on your PC and opened the

 solution file.

How to do it...
In SQL Server Data Tools (Visual Studio), right-click on the1.

 project and select Publish..., as shown in the following
screenshot:

Key Components of a Modern ETL Solution

[140]

Key Components of a Modern ETL Solution

[141]

The following screen appears; click on the Edit... button to create a connection2.
string to our local SQL Server instance:

Key Components of a Modern ETL Solution

[142]

As shown in the following screenshot, clicking on the Browse tab brings up a3.
screen where we can choose the SQL Server instance location. In our case, we'll
choose . Expand the label and choose your SQL Server instance, in
our case . The Server Name textbox will display the server you
chose. Click OK to return to the previous screen.

Key Components of a Modern ETL Solution

[143]

Back in the Publish Database screen, click on the Advanced... button, and the4.
following screen appears. This screen allows us to manage many options when
we deploy a database. Check the Always re-create database option and click on
OK to close the screen.

Key Components of a Modern ETL Solution

[144]

Back in the Publish Database screen, fill the textboxes as follows:5.
Database name:
Publish script name:

It is also shown in the following screenshot:

Click on the Save Profile As... button.6.

Key Components of a Modern ETL Solution

[145]

We're going to save these settings as a publish profile for this database project.7.
That will allow us to reuse it in the future without having to repeat the preceding
steps. Fill in the filename as shown in the following screenshot. It will create a
publish profile in the project. As shown in the following screenshot, name the
publish profile and click on Save.

Back in the Publish Database window, click the Publish button as shown in the8.
following screenshot. The Generate Script option is used when we want to only
create a deployment script without deploying the database immediately. A good
example of this is when we create a script to handle it to a DBA that will be
responsible for the database deployment.

Key Components of a Modern ETL Solution

[146]

The Data Tools Operations window opens and displays the steps required that9.
are executed to deploy the database. You should get something very similar to
the following screenshot:

Key Components of a Modern ETL Solution

[147]

Start SQL Server Management Studio (SSMS) and look for the10.
 database in the object explorer, as shown in the following

screenshot:

Key Components of a Modern ETL Solution

[148]

Right-click on any table and choose Select Top 1000 Rows, as shown in the11.
following screenshot:

Key Components of a Modern ETL Solution

[149]

This command will generate an SQL statement and execute it. The right pane will12.
show that the table has data, as shown in the following screenshot:

There's more...
Usually, SSDT database projects only create empty database shells when we select the
option that always recreates the database. The reason why we have data in the newly
deployed database is because we added a script to the database project, as shown in the
following screenshot ():

Key Components of a Modern ETL Solution

[150]

This file contains statements that load the different tables. You can glimpse its
content in the following screenshot:

This SQL file is called via a special script in SSDT: a post deployment script. To create it, we
simply need to add a script in the project, as shown in the following screenshot. This dialog
box appears when we right-click on a folder and select Add | New | Script.

Key Components of a Modern ETL Solution

[151]

Several scripts are available. The following list describes them and how they can be used:

Post-deployment script: This script is executed after all the database objects have
been deployed. This is what we've used to load the database
tables.
Pre-deployment script: This script is executed before the database objects are
created. It might be used to back up certain data from tables or views before
altering a table structure.
Script (build): These scripts are SQLCMD scripts that are parsed for errors by
SSDT when it builds the database project.
Script (not in build): These scripts are not included in the build, meaning that
their content is not validated by SSDT when the project is built, only their
existence will be checked, that is, that the scripts really exist. There can be any
SQL in these scripts. It's the developer's responsibility to make sure that the SQL
is valid inside the scripts. Otherwise, the script will throw an error at
deployment. An example of a script not in build is

.

The following screenshot shows the post deployment script used in the
 project:

The command starts with , which is an SQL command that tells SQL Server to simply run
the file following command, in our case, .

Deploying the target database
We'll now deploy the data warehouse database that is called .

Key Components of a Modern ETL Solution

[152]

Getting ready
This recipe assumes that you have access to the sample solution that is available for this
book and you have read and executed all the steps to deploy the source database.

How to do it...
The steps will be essentially similar to the ones used to deploy the source database. Since
we explained most of the steps previously, this recipe will be more concise:

The project contains the following schemas:1.
: This contains specific database objects, mainly views that can be

used by an SSAS cube.
: This the default schema.

: This folder contains database objects that belong to the schema,
that is, the data warehouse star schema objects.

: This is a folder that holds pre or post-deployment scripts, as
well as utility scripts.

: This folder contains database objects used by the
schema.

: This folder contains database objects used by the SSIS
framework. We'll talk about it in a section later in this book.

It is also shown in the following screenshot:

Key Components of a Modern ETL Solution

[153]

Right-click on the project in the solution and select2.
Publish... as shown in the following screenshot:

The Publish Database window appears. Click on Load Profile... and select the3.
 profile from the Publish Settings

window that appears. Click on Open, as shown in the following screenshot:

Key Components of a Modern ETL Solution

[154]

Back in the Publish Database window, click on Publish to deploy the database,4.
as shown in the following screenshot:

The database starts deploying. You can see its progress in the Data Tools5.
Operations window, located at the bottom of the screen. It should look like the
following screenshot:

Key Components of a Modern ETL Solution

[155]

Once the deployment has completed, open SSMS and verify that6.
 is in the object explorer, as shown in the following

screenshot:

Expand the database by clicking on the + sign. You will see that all database7.
objects are published successfully, as shown in the following screenshot:

Key Components of a Modern ETL Solution

[156]

As with the database, there are some tables that contain8.
data: the dimensions. There's a post-deployment script that calls another not in
build script: . This script contains SQL

 statements, one for each table. These SQL statements insert one entry in
the dimensions with a value for the primary key column, for the codes,
and for longer text entries. They are referred to as unknown
members and we'll talk about them in a later chapter of this book covering data
warehouse loads.
If you right-click on a dimension table -- they're all prefixed with .9.

SSIS projects
This section will now focus on the SSIS projects that move the data from various locations.
There are several SSIS projects in the solution:

: This contains SSIS packages that transfer data from
 to the schema in

: This contains packages that transfer and transform data from the
 schema to the schema in

We'll have recipes in this section that will explain how the packages are structured and how
we'll deploy and run them to load data from the source database to the data warehouse.

There are two types of SSIS packages in the projects:

Entry-point packages: These packages orchestrate the Extract, Transform, and
Load (ETL) flow of the solution. It's in these packages that other packages call
and in what order they are called. In the solution, there's only one entry-point
package per project.

Key Components of a Modern ETL Solution

[157]

Regular (child) packages: These packages are doing the ETL work, that is,
extracting the data from the source system and loading it in the destination
tables. There is one child package for each destination table. For example, the

 package will only load the
 table. Doing so gives better

flexibility in terms of orchestration of packages in the entry-point packages. As
we will see later, we can make good use of parallelism since our child package
does only one task. It also makes the naming of the packages more
straightforward: we give them the same name as the destination table that they
load.

This project contains packages that load the schema of the
 database. The following screenshot shows the structure of the

project:

Key Components of a Modern ETL Solution

[158]

In project deployment mode, the following sections are present in the project:

: This project artifact contains parameters that are passed by the
calling program or job of any of the packages in the project. Most of the time, a
project's connection manager's connection strings are part of it. The following
screenshot shows a glimpse of the project parameters:

: The project's level connection managers are available to
all packages in the project. In , the following project's connection
managers have been created:

: Connection to the database
: Connection to the Master Data Services database
: Connection to the source database

It is also shown in the following screenshot:

Key Components of a Modern ETL Solution

[159]

: This folder contains all the packages necessary to load the
 schema of the database. As stated

previously, there's one package per table loaded, as shown in the following
screenshot:

As shown in the following screenshot, the package called is
the main package of the project. It is tagged as Entry-point Package. We'll see
later what it does when the project will be deployed. So stands for entry-point
in that case. There's usually one entry-point package per project.

We'll now deploy the project and load the staging tables from the sources.

Key Components of a Modern ETL Solution

[160]

Getting ready
This recipe assumes that you have access to the companion solution and have the

 SSIS project handy.

How to do it...
From SSDT, right-click on the project and choose Deploy from the1.
contextual menu, as shown in the following screenshot:

Key Components of a Modern ETL Solution

[161]

From the Integration Services Deployment Wizard, create2.
, as shown in the following screenshot:

Click on OK twice to dismiss both the Create New Folder and the Browse for3.
Folder in Project windows. Make sure that the path is named

 and click on Next and then
Deploy to deploy the project.
Once deployed, go back to SSMS; we're going to configure the project. Navigate4.
to the project and right-click on it. As shown in the following screenshot, select
Configure:

Key Components of a Modern ETL Solution

[162]

As shown in the preceding screenshot, click on the ellipsis (...) button for each5.
parameter and set the property as follows:

:

:

: No need to change it
:

Key Components of a Modern ETL Solution

[163]

Once set, you should have something like the following screenshot. Configuring6.
the project parameters stores the values in the project's catalog view

. Click on OK to close the
window and go back to SSMS.

Still in SSMS object explorer, navigate to the package. Right-7.
click on it and select Execute... from the contextual menu that appears, as shown
in the following screenshot:

Key Components of a Modern ETL Solution

[164]

Click on Yes when asked to view the execution report. Your screen should look8.
like the following screenshot:

Still in SSMS, right-click on any table in the schema to view its data. The9.
 schema is now loaded.

Key Components of a Modern ETL Solution

[165]

Framework calls in EP_Staging.dtsx
This section of the book introduces an ETL framework. The purposes of such a framework
are the following:

Store execution statistics outside the SSIS catalog: although the Microsoft SSIS
team always enhances catalog performance, keeping all execution data in the
catalog will degrade catalog performance.
Align the data in such a way to be able to do some analytics on the execution
data. In that case, think of the framework as an SSIS package execution data
warehouse.

The following diagram is the ER diagram of the framework tables. These tables are stored in
the schema:

Key Components of a Modern ETL Solution

[166]

Here's the table list and their purposes:

: This table contains one value: sample
solution. The purpose of this table, coupled with the table that we'll
describe next, is to group many SSIS executions together into a common solution.
For example, in this book, we'll have an entry-point package that will call the
execution of the entry-point packages of both and projects.

: Using this table is not mandatory. The purpose of this table is to group
many SSIS executions together to know how much time it took to execute all
related projects. It can also be used to determine if all related projects finished
successfully or not.

: This table contains information related to a specific SSIS
execution. The execution start and end time allow us to calculate the execution
time, while the execution status will tell us what happened for this execution.

: Now we're as detailed as possible in SSIS package
components. This table contains various row counts and/or execution times for
each component in the SSIS package.

: This table shows SSIS execution statuses according to the
product's documentation:

: This table will hold row that have failed to load properly in
a target table. The column can contain error code as well as business keys.
The rows values hold the column values for a specific row from the source. We'll
talk about this table's usage later in the book.

: This table is mainly used to hold various warnings and
errors that occur during packages execution.

Key Components of a Modern ETL Solution

[167]

: This table contains the possible message types used
by the framework:

Errors
Warnings
Information

These tables have been deployed as part of the database. They are
used with stored procedures called Execute SQL Tasks from the entry-point packages.

These stored procedures are in the schema. The following list describes the
various stored procedures used to load these tables:

: This procedure inserts a row in the table and it
returns the column value to the calling program; in our case, an entry-
point package. The newly created row status is set to and the

 is set to the system date and time of the machine where the
code is executed.

: This procedure takes a parameter and does the following
updates on the table table:

Check if all related entries have run successfully.
If that's the case, the status will change from to .
Otherwise, the status will be set to .
In any case, set the value to the system date
and time of the machine where the code is executed.

: This procedure has the following parameters:
: The SSIS execution ID that is sent from the

calling SSIS package.
: The table's value. Since this

value is optional, the parameter has a default value of .

It then inserts a row in the table
with parameters values and system date and time. It also returns
the column value that has been assigned by the
insertion of the row to the calling program (SSIS entry-point
package).

Key Components of a Modern ETL Solution

[168]

: This is one of the most complex procedures. It receives a
single parameter, and does the following:

It retrieves the status for the column value for
the value
It retrieves the row counts of various packages components for the

 and inserts them into the
 table

It assigns the column to system date
and time

: This procedure receives three parameters:
, , and . It

simply inserts a row into the table.
: This procedure is used to log rows that have been

rejected by the package executions. It has three parameters: ,
, and .

This constitutes the basics of an ETL framework. As well see in future recipes, we'll use the
preceding procedures in the entry-point packages.

The , , and tables have some
predefined data inserted via a .

Now we're going to insert the framework procedure calls into the package.

Getting ready
This recipe assumes that you have access to this book's companion solution.

Key Components of a Modern ETL Solution

[169]

How to do it...
With the solution opened, expand the SSIS project. Select the1.

 package and open it. Navigate to the Event Handler tab and
select the event handler from the drop-down list, as shown in the
following screenshot:

As shown in the following screenshot, click the hyperlink to create the2.
 event handler:

If you look at the Variable pane, you'll notice that there are is a variable in that3.
package that is called . This variable will hold the value
returned by the stored procedure call. From the SSIS
toolbox, drag and drop an Execute SQL Task onto the designer surface and name
it .
Double-click on the SQL task (or right-click on it and select Edit) and set the4.
following properties on the General tab:

ResultSet: Choose None from the drop-down list. This is the default
value.
Connection: From the drop-down list, choose .
SQLStatement: Enter

.The marks
correspond to parameters. We'll set them up next in this recipe.

Key Components of a Modern ETL Solution

[170]

Now, click on the Parameter Mapping tab in the list at the left of the Execute5.
SQL Task Editor and add the following parameters:

First parameter:
Variable Name:
Direction:
Data Type:
Parameter Name:
Parameter Size:

Second parameter:
Variable Name:
Direction:
Data Type:
Parameter Name:
Parameter Size:

Third parameter:
Variable Name:
Direction:
Data Type:
Parameter Name:
Parameter Size:

Now, right-click on the task and select Execute Task from the contextual menu6.
that appears. The task should execute successfully.
In SSMS, right-click on the table and click on the7.
Select Top 1000 Row to see the data. You should have one row in the table.
Now, let's move to the event handler. Click the hyperlink to8.
create an event handler and drag an SQL task onto its surface.
Assign the following properties on the General tab:

ResultSet: Choose None from the drop-down list. This is the default
value.
Connection: From the drop-down list, choose .
SQLStatement: Enter

. The marks
correspond to parameters. In this case, we have only one.

Key Components of a Modern ETL Solution

[171]

Now, click on the Parameter Mapping tab in the list at the left of the Execute9.
SQL Task Editor and add the following parameters:

First parameter:
Variable Name:
Direction:
Data Type:
Parameter Name:
Parameter Size:

That's it! All framework objects are set up for the SSIS project! In10.
the next chapter, we'll have a look at the project integration with SQL jobs and
automation.

There's more...
The issue faced many times with SSIS load applications is that collecting execution statistics
and messages are not built up front. In the past, before the SSIS catalog facilities, developers
needed to add substantial elements, such as Execute SQL Tasks in the various event
handlers or add row counts and variables in every child package. This was most of the time
accomplished by using template packages, packages that contained all the necessary
plumbing. They were then adapted to the load tasks necessary to load data. When these
templates were not used up front, developers needed to open all developed packages and
modify them. With medium to large sized project's that had 50+ packages, this task was
tedious and most of the time not done.

Creating framework calls in SSIS entry-point packages is the simplest way to collect row
counts and execution messages while the package is executing. The framework shown here
is both simple and efficient at doing it. Nothing special must be set in the called (child)
package to record execution information.

44
Data Warehouse Loading

Techniques
This chapter will cover the following recipes:

Designing patterns to load dimensions of a data warehouse
Loading the data warehouse using the framework
Near real-time and on-demand loads
Using parallelism

Introduction
Once the framework is set up, it's time to focus on the different layers of our data
warehouse. There are various architectural schools of thought when it comes to data
warehouses:

Corporate Information Factory (CIF)
The Kimball Group dimensional data warehouse
Data vault

The main difference between the Kimball Group and the others is the way a datamart is
loaded. The Kimball Group approach loads data into a staging area and from there,
refreshes the data warehouse. The latter is modeled as a dimensional data warehouse. It is
also known as a datamart or star schema. The Kimball Group approach uses denormalized
tables in its data warehouse.

Data Warehouse Loading Techniques

[173]

A typical data warehouse using the Kimball Group method has the following components:

Data sources that can be in different formats such as text files, databases, Excel,
and so on
A staging area that can be either persistent (contains all history of data loaded) or
transient (emptied every time data is loaded)
One or more datamarts that are tied to business processes such as sales in the
samples of this book

It is also shown in the following screenshot:

The two other approaches load data into a staging area and transfer it to another layer. The
CIF approach uses a data warehouse that consists of tables modeled at third normal form.
The data vault approach requires loading data into special entities such as hubs, satellites,
and links. Once the data is loaded in this layer, it is most often loaded into a datamart for
ease of consumption.

As stated in the previous chapter, the database uses the
Kimball Group architecture. The reason for this is that it's a simpler architecture, especially
since our sample database has only data source.

Data Warehouse Loading Techniques

[174]

Designing patterns to load dimensions of a
data warehouse
The difference between these patterns is the way historical data is stored in the dimensions.
We call them Slowly Changing Dimensions (SCD). The following points give an overview
of various SCD types:

Type 0: This retains the original. This means that any changes to a specific
member of the dimension will result in a new member inserted with new values.
As opposed to SCD type 2, there's no concept of the current version or start and
end date of a row. This SCD type is rarely used.
Type 1: This overwrites changes, no history is kept. For example, let's say we
have a person's attribute in a dimension. If the
initial value at insertion was , the attribute value is updated to
when the person gets married.
Type 2: This keeps history (versioning). A bunch of system columns are added to
the dimension:

The start and end date of the dimension member (row). Usually,
the start date equals the date when the row was first inserted in the
dimension, and the end date is set to a value that is very far in the
future (for example, December 31, 9999). This allows us to report
using a specific date as the interval and see the member value with
its historical value.
Often, a Boolean column, , is used in conjunction with
the dates. It eases the retrieval of the latest dimension value
without using dates.
For the preceding example, a person's marital status, instead of
overwriting the person attribute, a new row is
inserted. The previous row (where the person marital status was
single) sees its value set to false while the new row
becomes current.

Type 3: A column is added to the dimension n to hold the previous value. For the
person marital status example, we would have the
and the columns. The first column would be added to the
dimension structure.

Data Warehouse Loading Techniques

[175]

Type 4: Adds a mini dimension. It is mainly used for large dimensions, this
pattern allows the update of dimensions members that change frequently without
having to query or update a very large table. An example of this would be the
demographic attributes of a large dimension for a company that
sells shows (circus, festivals, and so on). If the organization has a promotion for a
certain type of member (frequent assistance, high salary, age group), it would be
easier to link these dimension attributes in a separate table attached to the fact
table. The following screenshot shows an example of this modeling technique:

Type 5: Adds a mini dimension and type 1 outrigger. When the
 dimension becomes large, we might need to filter the

current attributes against the base dimension. This is exactly what the SCD type 5
does. The following screenshot shows that a small outrigger is used to better slice
the dimension by bringing the current demographic attributes
of each member into a more manageable dimension table:

Type 6: This is a combination of SCD types 1, 2, and 3. Basically, the dimension
has date ranges to preserve history, some attributes (columns) are overwritten,
and there may be some denormalization of attributes (type 3).

In the sample solution, we've implemented SCD types 1 and 6 only.

Data Warehouse Loading Techniques

[176]

This recipe discusses type 1 implementation. We'll go through an existing package and
explain how to complete it. All the type 1 dimension's packages have been completed
except one: . As a reference, you can always look at the
completed package: . The incomplete package is shown in the following
screenshot:

Data Warehouse Loading Techniques

[177]

The contains a query from the table:

The is parameterized with the package parameter
(), as shown in the following screenshot:

Data Warehouse Loading Techniques

[178]

This parameter is given by a framework-stored procedure call (). It
allows you to query the latest slice of staging data that has not been inserted in the data
warehouse yet.

A derived column is used to add the data warehouse to the pipeline. It
also converts the integer source product ID from an integer to a small integer, as shown in
the following screenshot:

Data Warehouse Loading Techniques

[179]

Then, there are a bunch of lookups that bring attributes to the pipeline. For example, the
following screenshot shows how we retrieve the column from the

 table using the product category ID from the OLE DB
source. At the same time, the column is retrieved to get the
category in a subsequent lookup:

Data Warehouse Loading Techniques

[180]

All the lookups use what is called lookup expressions. This means that the lookup cache is
built with only the latest available for the staging area environment. To
set the lookup expression, we click anywhere in the background of the data flow task and
go to the Properties pane. We scroll down to Expressions and we set the

 SQL command, as shown in the following screenshot:

Clicking on the ellipsis button (...) will produce the following dialog box:

Data Warehouse Loading Techniques

[181]

To set the expression, we click on the ellipsis button again. The Expression Builder appears
as shown in the following screenshot:

The SQL statement is filtered using the package parameter.
This filtering is used to cache only the necessary rows in memory as lookups with full cache
might use lots of memory if we're not careful.

After all the lookups, we have a derived column that replaces all the nullable columns with
default values.

Data Warehouse Loading Techniques

[182]

Doing so has the following benefits:

Simplifies the dimension usage when querying. A null value cannot be compared
to another value even if it's null. Using default values simplifies the queries.
Null values cannot be indexed. Having a value instead of a null will surely help
querying performances.
Null values have to be handled differently in many SSIS transforms. Using non-
null values simplifies the code.

The following screenshot shows the content of the columns:

All right, enough talk now. Let's complete the package.

Data Warehouse Loading Techniques

[183]

Getting ready
You will need to have access to the sample solution to follow this recipe.

How to do it...
Open the if not done and go into the data flow task1.
().
Add a lookup transform after the and rename it2.

.
Double-click on it to open the Lookup Transformation Editor.3.
On the General tab, change how to handle rows with no matching entry to4.
redirect rows to no matching output.
On the Connection tab, select Use result of SQL query and paste the following5.
query in the textbox:

Data Warehouse Loading Techniques

[184]

On the Columns tab, select all the columns except and rename them6.
as shown in the following screenshot:

Data Warehouse Loading Techniques

[185]

Click OK to close the Lookup Transformation Editor.7.
From the SSIS toolbox, insert a script component transform. Select transformation8.
script type and rename it . This script will be
used to enhance performance of the data flow. If the product exists in the

 dimension, we check if there are real differences before updating
the dimension. Updates in the data flow are executed row by row. Every time an
update is sent to an command transform, a connection is opened to the
database, the row is updated, and a command is issued. So, if there's
nothing to update, the row will not be sent to the dimension, saving us
unnecessary updates, and performance will be greatly enhanced.
Tie the script component to the lookup match output of the9.

 lookup.
Go to the Input Columns. Select everything except the following columns:10.

, , , and .
Go to Inputs and Outputs. Rename to . Set its11.

 property to . This will allow us to use this output selectively
later, as you will see in the script.
Add a new output called . This output is useful to debug the script12.
component. Set its to

. Also set its property to .
Now, go back to the Script tab and click on the Edit Script... button. The VSTA13.
editor opens. Type the script as shown in the following screenshot:

Data Warehouse Loading Techniques

[186]

Then declare a Boolean variable and every statement. Check if there's a14.
difference between a column in the source and its matching component in the
dimension. At the end of the script, if there's a difference, we need to update the
row and the method is called. This is
possible because we previously set the property of the output
to . If no difference has been found, the row is sent to the output.
Now, we'll do the final wiring of the data flow task. Add an OLE DB destination15.
from the SSIS toolbox and rename it .

Data Warehouse Loading Techniques

[187]

From the lookup, drag the green path (arrow) to16.
it. Double-click on it to open the OLE DB Destination Editor and set the
properties as shown in the following screenshot:

Data Warehouse Loading Techniques

[188]

Click on the Mappings tab and map the columns as shown in the following17.
screenshot. Click OK to close the OLE DB Destination Editor:

Data Warehouse Loading Techniques

[189]

The final version of the package should end up looking like the following18.
screenshot:

The package is now complete! You can now right-click on the background of the data flow
task and select Execute Task to execute the data flow.

There's more...
This recipe showed you how a SCD type 1 dimension can be implemented in SSIS. There
are many ways of doing so, but the method we used is quite straightforward and we've
seen many solutions using it.

Data Warehouse Loading Techniques

[190]

Loading the data warehouse using the
framework
This section of the chapter will focus on data warehouse refresh types. The recipes we'll be
working through will show you how data is usually refreshed in a data warehouse. This
section will basically cover the following topics:

Full historical load: This type of loading technique is usually used once to
initialize the data warehouses when they are empty
Incremental loads: This only loads changes in the source into the data warehouse
Near real-time loads (on demand): This is usually used to refresh specific tables
with the latest changes for reporting

This recipe will show how the data warehouse loads data in batches. The load programs
(SSIS packages) are triggered via a schedule. You'll see that all the packages use the
framework to filter the data loaded into the staging. This is the basis of the incremental load
that we're going to implement in the data warehouse packages.

Getting ready
This section assumes you have downloaded the solution files and you are the administrator
of your PC.

Data Warehouse Loading Techniques

[191]

How to do it...
Open SSMS and go to Security | Credentials. Right-click on the folder and select1.
New Credential from the contextual menu.
Set the different properties as shown in the following screenshot:2.

Data Warehouse Loading Techniques

[192]

For the Identity textbox, use your domain (or machine name) login. This3.
information can easily be found if you open a command prompt and execute the
command .
Once the credential is set, we'll create a SQL Agent proxy. Expand the SQL Server4.
Agent node as shown in the following screenshot. If the agent is not started,
right-click on it to start the service.
Right-click on the folder and select New5.
Proxy from the contextual menu that appears. The New Proxy Account window
appears. To set the Credential name, click on the ellipsis button at the right of the
textbox and select the credential created in an earlier step. Set the
properties similar to those that are shown in the following screenshot:

Data Warehouse Loading Techniques

[193]

Click on OK to save the proxy and close the window.6.
We'll create the SQL job now. Right-click on the folder and select New Job7.
from the menu that appears. The New Job window appears. Set the properties
like those in the following screenshot:

Data Warehouse Loading Techniques

[194]

Click on the Steps in the left menu. The left pane appears. Click on the New...8.
button at the bottom of the window. The Job Step Properties window appears.
Fill the textboxes as shown in the following screenshot:

Data Warehouse Loading Techniques

[195]

Click on the Configuration tab beside the package one. The parameters'9.
configuration is now visible. For each parameter, click on the ellipsis button (...)
to set the value of the parameters as shown in the following screenshot:

Data Warehouse Loading Techniques

[196]

Click OK to close the Edit Literal Value for Execution window. Still in the10.
Configuration tab, click on the Advanced tab. From there, select the custom
logging level we created in , What Is New in SSIS 2016. Your screen
should look like the following screenshot. Click OK to close the Job Step
Properties windows and save your changes:

Data Warehouse Loading Techniques

[197]

Repeat the same steps for the entry-point package.11.
Your job window should now look like the following screenshot. Click on OK to12.
close the New Job window and create the job:

Data Warehouse Loading Techniques

[198]

Right-click on the job and select Start Job at Step. A window like the one in the13.
following screenshot appears. Click on Start to start the job execution:

The database is now completely loaded.

Data Warehouse Loading Techniques

[199]

Near real-time and on-demand loads
Triggering loads using SQL Server Agent has some limitations. For one, we cannot run the
job more than once at a time. Another limitation is that it is hard to trigger jobs
programmatically. There is a stored procedure called that can do it. It starts
the job but doesn't wait for it to complete, so we can't have the execution status (success,
failed) returned by the job. We can use TSQL scripts that pool the job status while it's
executing but still, it's not an out-of-the-box solution.

When using SSIS project-model deployment, package execution can be called via TSQL.
This recipe will show you how it can be done.

Getting ready
This recipe assumes that you have deployed the two sample SSIS projects in the SSIS
catalog.

How to do it...
Open SSMS if not already open and go to the SSIS catalog node. Expand it and1.
navigate to the entry-point package. Right-click on it and select
Execute from the menu that appears.
The Execute Package window opens. Click on the ellipsis button (...) to set all2.
parameter values, and accept the default that is used in the project.
As shown in the following screenshot, click on script and select New Query3.
Editor Window:

Data Warehouse Loading Techniques

[200]

The execution script is created into a New Query Editor Window. Click on4.
Cancel to close the Execute Package window.
Going back to SSMS, you can see that all execution steps have been scripted.5.

Data Warehouse Loading Techniques

[201]

The package execution will run but, like the procedure, it will be6.
an asynchronous process, meaning that the execution will start, but will not wait
till the end of the execution before returning the control to the calling process. To
circumvent this limitation, we'll add a parameter to the set execution
synchronous, as shown in the following screenshot:

The script first creates an execution for the package and7.
returns the execution ID—the one used in the framework in previous recipes. The
execution procedure has to know in which folder and project the package is
located. And, finally, if we want to run using 32-bit mode, this parameter is
mostly used when SSIS interacts with 32-bit drivers such as Oracle, Excel, Access,
and so on.
Then, the parameters are filled using the values we specified previously when we8.
clicked on the ellipsis buttons.
The parameters are then associated to the execution. Notice the highlighted9.
parameter that specifies that we want the execution to be synchronous.
Finally, the execution is triggered. It will return the control to the calling process10.
once the execution terminates.
To grab the execution status, we need to run the following query once the11.
execution is completed:

Data Warehouse Loading Techniques

[202]

There's more...
That's all that is needed to run the package in TSQL. This technique is sometimes used by
certain schedulers to call SSIS execution. This method could also be used in reports to
refresh certain tables in a near real-time approach.

Using parallelism
This section will now focus on how we can enhance the performance of our package
execution. Using parallelism in SSIS is very easy. A simple use of parallelism is in the
entrypoint packages. Other parallelism can be implemented in the data flow tasks by using
multiple source and destination components. In fact, every source we use in a data flow
task has its own thread in SSIS, meaning that SSIS will try to execute all source transforms
at once using different hardware resources.

In this recipe, we'll complete the entry-point package for the schema load. In this
package, we have linked the dimensions together first. We now think that there are no
dependencies between them and we'll separate them.

Getting ready
This recipe assumes that you have access to this book's sample solution.

How to do it...
From the project, open the package from the1.
solution explorer.

Data Warehouse Loading Techniques

[203]

You'll see that all dimensions are called in sequence, one after the other. An2.
execute package task has to complete before the other starts, as shown in the
following screenshot:

Data Warehouse Loading Techniques

[204]

From the SSIS toolbox, add a sequence container to the package's control flow3.
and name it .
Delete the link between the fact-tables container and the dimension.4.
Select all the dimensions and drag them into the newly added sequence5.
container.
Delete all the links between the dimensions.6.
Now, link the sequence contained in the fact sequence7.
container.
That's it; now SSIS will call the dimension table package execution in parallel. The8.
following screenshot shows the completed package:

There's more...
The solution is not completed yet. We'll add packages as we move forward in the book's
recipes.

55
Dealing with Data Quality

n this chapter, we will cover the following recipes:

Profiling data with SSIS
Creating a DQS knowledge base
Data cleansing with DQS
Creating a MDS model
Matching with DQS
Using SSIS fuzzy components

Introduction
Business intelligence projects often reveal previously unseen issues with the quality of the
source data. Dealing with data quality includes data quality assessment, or data profiling,
data cleansing, and maintaining high quality over time.

In SSIS, the data profiling task helps you find unclean data. The data profiling task is not
like the other tasks in SSIS because it is not intended to be run over and over again through
a scheduled operation. Think about SSIS as being the wrapper for this tool. You use the SSIS
framework to configure and run the data profiling task, and then you observe the results
through the separate data profile viewer. The output of the data profiling task will be used
to help you in your development and design of the ETL and dimensional structures in your
solution. Periodically, you may want to rerun the data profile task to see how the data has
changed, but the package you develop will not include the task in the overall recurring ETL
process.

Dealing with Data Quality

[206]

SQL Server Data Quality Services (DQS) is a knowledge-driven data-quality solution. This
means that it requires you to maintain one or more knowledge base (KB). In a KB, you
maintain all knowledge related to a specific portion of data—for example, customer data. In
DQS projects, you perform cleansing, profiling, and matching activities. You can also use an
intermediate staging database to which you copy your source data and export DQS project
results. DQS includes server and client components. Before you can use DQS, you must
start by installing the DQS components.

The following diagram shows the DQS architecture:

The Data Quality Server component includes three databases:

: This includes DQS stored procedures. The DQS stored procedures
make up the actual DQS engine. In addition, database includes
published KBs. A published KB is a KB that has been prepared for use in
cleansing projects.

: This includes data for KB management and data needed during
cleansing and matching projects.

: This provides an intermediate storage area where you can
copy source data for cleansing and where you can export cleansing results.

Dealing with Data Quality

[207]

You can prepare your own knowledge bases locally, including reference data. However,
you can also use reference data from the cloud. You can use Windows Azure Marketplace
data market to connect to reference data providers. You can also use a direct connection to a
third-party reference data provider through a predefined interface.

With the data quality client application, you can manage knowledge bases; execute
cleansing, profiling, and matching projects; and administer DQS. SQL Server includes two
tools to assist with these tasks. You can use the SSIS DQS cleansing transformation to
perform cleansing inside a data flow of your SSIS package. This allows you to perform
batch cleansing without the need for interactivity required by the data quality Client. With
the free master data services (MDS) add-in for Microsoft Excel, you can perform master
data matching in an Excel worksheet. The DQS components must be installed together with
MDS in order to enable DQS/MDS integration.

Many companies or organizations do regular data cleansing. When you cleanse the data,
the data quality goes up to some higher level. The data quality level is determined by the
amount of work invested in the cleansing. As time passes, the data quality deteriorates, and
you need to repeat the cleansing process. If you spend an equal amount of effort as you did
with the previous cleansing, you can expect the same level of data quality as you had after
the previous cleansing. Then the data quality deteriorates over time again, and the
cleansing process starts over and over again.

The idea of data quality Services is to mitigate the cleansing process. While the amount of
time you need to spend on cleansing decreases, you will achieve higher and higher levels of
data quality. While cleansing, you learn what types of errors to expect, discover error
patterns, find domains of correct values, and so on. You don't throw away this knowledge.
You store it, and use it to find and correct the same issues automatically during your next
cleansing process.

The idea of master data management, which you can perform with MDS, is to prevent data
quality from deteriorating. Once you reach a particular quality level, the MDS
application—together with the defined policies, people, and master data management
processes—allows you to maintain this level permanently.

There are four main parts of the MDS application. In the MDS database, the master data is
stored along with MDS system objects. MDS system objects include system tables and many
programmatic objects such as system stored procedures and functions. The MDS service
performs the business logic and data access for the MDS solution. Master data manager is a
web application for MDS users and administrators. In addition, advanced users can use the
master data services add-in for Microsoft Excel.

Dealing with Data Quality

[208]

The following diagram shows the MDS architecture:

Profiling data with SSIS
The objective of this task is to work with SSIS to profile the data to find the potentially
wrong values. In this exercise, you will create an SSIS package with a single task, the data
profiling task. Then you will execute the package to profile a set of data. Finally, you will
check the results with the data profile viewer application.

Getting ready
You need to have installed the demo database for this exercise.

Dealing with Data Quality

[209]

You can download the full database backup ZIP file
 from this link:

. In addition, the backup file is
provided with the source code for this book. Assuming that you copied the

 file to the folder, you can use SQL
Server Management Studio (SSMS) to execute the following command to restore the
database:

Then you need to prepare the table you are going to profile. In SSMS, execute the following
code:

For your convenience, the T-SQL code needed for this chapter is provided
in the file.

Dealing with Data Quality

[210]

How to do it...
Open SQL Server Data Tools (SSDT) and create a new project using the1.
Integration Services Project template. Place the solution in the

 folder and name the project .
Rename the default package to .2.
From the SSIS toolbox, drag the data profiling task onto the control flow work3.
area.
Double-click the task to open the Data Profiling Task Editor.4.
On the General page of the Data Profiling Task Editor, select FileConnection in5.
the drop-down list for the DestinationType property. Select New File
Connection from the Destination property drop-down list. In the File
Connection Manager Editor that appears, select Create File and enter

. Click Open, and then click OK.
Back in the Data Profiling Task Editor set the OverwriteDestination property to6.
True. Your Data Profiling Task Editor should look like the following screenshot:

Dealing with Data Quality

[211]

Go to Profile Requests page. Click somewhere in the first row of the Profile7.
Type column and select the Column Length Distribution Profile Request. Click
the Request ID column to finish creating this request.
Fill in the Request Properties section in the lower half of the window. For the8.
ConnectionManager property, create a new ADO.NET connection to connect to
the database on the local SQL Server instance. Select
the table for the TableOrView property. Select the
MiddleName column.
Add another profile request, but this time create a Functional Dependency9.
Profile Request. Use the same ADO.NET connection manager and the same
table. Use , , , and

 for the DeterminantColumns property. Use for
the DependentColumn property. Lower the FDStrengthThreshold property to

 so that slightly lower strength dependencies are included.
Add a Candidate Key Profile Request. For the KeyColumns property, select all10.
the columns from the table.
Add a Column Null Ratio Profile Request. Select the column.11.
Add a Column Pattern Profile Request. Select the column.12.
Add a Column Statistics Profile Request. Select the column.13.
Add a Column Value Distribution Profile Request. Select the14.

 column.
Your Data Profiling Task Editor window should resemble the one shown in the15.
following screenshot. Click OK to close the Data Profiling Task Editor:

Dealing with Data Quality

[212]

Save the package and execute it in debug mode. When the execution is finished,16.
exit the debugging mode. Review the XML file that was created during execution
with Visual Studio, Notepad, or Internet Explorer. Close SSDT.
Start the Data Profile Viewer.17.
In the Data Profile Viewer window, click the Open button in the upper-left18.
corner.
Navigate to the folder and open the19.

 file.
Click the Candidate Key Profiles option in the left-hand pane. Check which20.
columns are suitable to be used as keys (these are the columns that have more
unique values than the threshold Percentage property for the profile).

Dealing with Data Quality

[213]

Click the Column Length Distribution Profiles option in the left-hand pane.21.
Check the distribution. In the middle area of the right-hand pane,
click the row that shows the distribution for length . In the right-hand corner of
this middle area, click the drill down button to show the source row, as shown in
the following screenshot:

Check the Column Pattern Profiles. Note the patterns extracted from the22.
 column. The patterns are expressed as regular expressions. You

can use these regular expressions in a rule for the column in a DQS knowledge
base domain.
Check the other profiles. After you have finished, close the Data Profile Viewer.23.
If it is still open, close SSDT as well.

Dealing with Data Quality

[214]

Creating a DQS knowledge base
A DQS KB is the place where you store the knowledge about the data and the cleansing in
order to speed up the regular cleansing process. In a real-life scenario, you constantly add
knowledge to the KB, and thus improve the cleansing process over time. In this recipe, you
will create a basic DQS KB.

Getting ready
For this recipe, you will need DQS and Data Quality Client installed. Please refer to the
following link to learn how to install the DQS components:

.

You also need to prepare the data you will use to create a DQS KB. In SSMS, execute the
following code:

How to do it...
Open the Data Quality Client application and connect to your DQS instance.1.
In the Knowledge Base Management group, click the New KnowledgeBase2.
button.
Name the database . If you want, add a description. Make sure that3.
the None option is selected in the Create Knowledge Base from drop-down list.
Select the Knowledge Discovery option in the Select Activity list in the lower-
right corner of the screen. Click Next.
On the Map tab of the Knowledge Base Management screen, select SQL Server4.
as your data source. Select the database and the

 table.

Dealing with Data Quality

[215]

In the Mappings section, click the Create a domain button (the third button from5.
the left in the group of buttons above the Mappings grid, marked with a circle
with a yellow star) to create a domain.
In the dialog box that appears, enter as the Domain Name, and use String6.
as the Data Type. Make sure that the Use Leading Values, Normalize String,
and Disable Syntax Error Algorithms options are checked, and that the Enable
Speller option is not checked. Make sure that the Format Output to option is set
to None and that the Language selected is English, as shown in the following
screenshot. Click OK:

Create two additional domains, named and , with the same7.
settings you used for the domain in step 6.
In the Mappings grid, select the column from the source in the left-hand8.
column of the first row and map it to the domain in the right-hand column
of the first row in the grid.
Repeat step 8 twice to add a mapping from the source column9.
to the domain, and from the source column to the

 domain. Click Next.

Dealing with Data Quality

[216]

On the Discover tab, click the Start button to start the knowledge discovery. Wait10.
until the process is finished, then review all of the information in the Profiler
section. This section gives you a quick profile of your data. When you are
finished reviewing the profiler information, clickan class="packt_screen">Next.

On the Manage Domain Values tab, make sure that the domain is selected11.
in the left-hand pane. Then click the Add new domain value button (the button
with a small green plus sign on a grid) in the right-hand pane above the grid
listing the extracted domain values.
In the cell, enter . Change the type to Error (a red cross). Enter12.

 in the cell. Press the Enter key and note that the data is
rearranged alphabetically.

To write , hold the Alt key and type 0252 or 129 on the numeric
keyboard.

Click the other two domains in the left-hand pane to check the extracted values.13.
Then click Finish. Select No in the pop-up window because you are not ready to
publish the KB yet. You will edit the domains.
Click the Open Knowledge Base button in the Knowledge Base Management14.
group on the Data Quality Client main screen.
In the grid in the left-hand pane, select the KB. Make sure that the15.
Domain Management activity is selected. Click Next.
In the Domain Management window, make sure that the domain is16.
selected in the left-hand pane. Click the Domain Values tab in the right-hand
pane. Then click the Add new domain value button in the right-hand pane above
the grid with the extracted domain values.
In the cell, enter . Change the type to Error (a red cross). Enter17.

 in the cell. Press the Enter key and note that the data is
rearranged alphabetically.
Find the München value in the grid. Note that this is now the leading value for18.
two additional synonyms, and .
In the left-hand pane, click the Create a domain button. Name the domain19.

 and use String as the data type. Make sure that the Use Leading
Values, Normalize String, and Disable Syntax Error Algorithms options are
checked, and that the Enable Speller option is not checked. Also make sure that
the Format Output to option is set to None and that the language selected is
English. Click OK.

Dealing with Data Quality

[217]

Click the Term-Based Relations tab for the domain. You will20.
add a term-based relation to correct all occurrences of a term in the domain
values.
Click the Add new relation button. Enter . in the cell and in the21.

 cell. Press Enter. The Apply Changes button should be unavailable
because you do not have any domain values yet.
Add a new domain called . Select Date as the data type. Use the22.
leading values and do not format the output. Click OK.
Click the Domain Rules tab for the domain. In the right-hand pane,23.
click the Add a new domain rule button.
In the rules grid, enter in the cell.24.
In the Build a Rule: MinBirthDate section, make sure that the Value is greater25.
than option is selected in the drop-down condition list. Then enter in
the textbox and press Enter. Check whether this was successfully changed to

.
Add a new domain, . Use String as the data type. Make sure that the26.
Use Leading Values and Normalize String options are checked. However, this
time Enable Speller should be checked and uncheck Disable Syntax Error
Algorithms. Do not format the output, and use the English language. Click OK.
Add a new domain, . Use String as the data type. Make sure that27.
the Use Leading Values, Normalize String, and Disable Syntax Error
Algorithms options are checked, and that the Enable Speller option is not
checked. Do not format the output, and use the English language. Click OK.
Click the Domain Rules tab for the domain. Add a new rule28.
called .
Select the Value matches regular expression option in the Build a Rule:29.
EmailRegEx Conditions drop-down list. Then enter

 as the expression. Click outside the textbox.
Click the Add a new condition to the selected clause button (the leftmost button30.
in the upper-right part of the Build a Rule area).
Select the OR operator to connect the conditions. Select the Value matches31.
regular expression option for the second condition from the drop-down list in
the Build a Rule: EmailRegEx Conditions drop-down list. Then enter

 as the expression. Click outside the textbox.

Dealing with Data Quality

[218]

The regular expressions needed for this exercise were extracted with the
data profiling task in the previous recipe.

Click Finish to complete domain management. Then click the Publish button in32.
the pop-up window. Finally, click OK in the next pop-up window. Your
knowledge base is now prepared for use.

Data cleansing with DQS
In this recipe, you will create a view with some dirty data and use a DQS cleansing project
to cleanse it. You will use the DQS knowledge base prepared in the previous exercise.

Getting ready
This recipe assumes that you have built the DQS knowledge base from the previous recipe.
In addition, you need to prepare some demo data in advance. In SSMS, use the following
query to prepare the data:

How to do it...
The data prepared in the previous section is clean. For the DQS cleansing project,1.
use the following code to add two rows with incorrect data:

Dealing with Data Quality

[219]

Open the Data Quality Client application if necessary, and connect to your DQS2.
instance.
In the Data Quality Projects group, click the New Data Quality Project button.3.
Name the project . Use the knowledge4.
base you created in the previous exercise. Make sure that the Cleansing activity is
selected. Click Next.
The Data Quality Project window will open with the Map tab as the active tab.5.
Select SQL Server as the data source, choose the database,
and select the table in the Table/View drop-down list.
In the Mappings area, click the button with the small green plus sign above the6.
Mappings grid twice to add two rows to the Mappings grid. (Five mappings are
provided by default, but you need seven.)
Use the drop-down lists in the Source Column and Domain cells to map the7.
following columns and domains:

Dealing with Data Quality

[220]

Column Domain

The following screenshot shows the correct mappings of columns to domains.8.
When your mappings are correct, click Next:

Dealing with Data Quality

[221]

On the Cleanse tab, click Start. Wait until the computer-assisted cleansing is9.
finished, then review the results of the profiling. Click Next.
On the Manage and View results tab, check the results, one domain at a time.10.
Start with the domain. There should be one invalid value. Make sure
that the domain is selected in the left-hand pane, and click the
Invalid tab in the right-hand pane. Note the invalid value that was detected. You
could write a correct value now in the Correct to cell of the grid with invalid
values, but this action is not needed for this exercise. Note that all correct values
were suggested as new.
Select the domain in the left-hand pane. One value should be11.
corrected. However, because only the term-based relation (and not the whole
value) was corrected, it does not appear among the corrected values. It should
appear among the new values. Click the New tab in the right-hand pane. Search
for the value . and note that it was corrected with 100 percent
confidence to .
Clear the Search Value textbox. Select the domain in the left-hand pane.12.
Click the New tab in the right-hand pane. Note that one value () was
found as new. The similarity threshold to the original value () was
too low for DQS to automatically correct or even suggest the value. You could
correct this value manually, but this is not needed in this exercise.
Select the domain in the left-hand pane. Two values should be corrected.13.
Click the Corrected tab in the right-hand pane. Note the corrections of the
synonyms for (and) to the leading value ().
Note also that the confidence for these two corrections is 100 percent. All other
values already existed in the KB, and therefore DQS marked them as correct.
Select the domain in the left-hand pane. One value should be suggested.14.
Click the Suggested tab in the right-hand pane. Note that DQS suggests replacing

 with with 70 percent confidence. You can approve a single
value by checking the Approve option in the grid. However, don't approve it,
because, of course, this is a wrong suggestion. Note that DQS identified all other
countries as correct.
Select the domain in the left-hand pane. One value should be15.
invalid. Click the Invalid tab in the right-hand pane. DQS tells you that the

 email address does not comply with the
 rule. Note that all other values are marked as new.

Dealing with Data Quality

[222]

Select the domain in the left-hand pane. Note that all values are16.
new. Click the New tab in the right-hand pane. Note that the value
is underlined with a red squiggly line. This is because you enabled the spelling
checker for the domain. Enter in the
field for the incorrect row. Note that, because you corrected the value manually,
the confidence is set to percent. Select the Approve checkbox for this row.
The row should disappear and appear among the corrected values. Click the
Corrected tab. Observe the corrected value along with the reason. Click Next.
On the Export tab, look at the output data preview on the left-hand side of the17.
window. You could export the results to a SQL Server table and then correct the
original data. However, you don't need to export the results in this lab. Just click
Finish.
Close SSMS and the Data Quality Client application.18.

Creating a MDS model
In this recipe, you are going to create an MDS model with the entities, attributes, and
hierarchies needed for a customer's entity set. Then you will populate the entities and check
your business rules.

Getting ready
In order to test this recipe, you need to have MDS installed. Please refer to the following
link to learn how to install the MDS components:

.

How to do it...
You need to open the Master Data Manager application. Open your web browser,1.
navigate to your Master Data Manager site, and log in. Navigate to the home
page.
Click the System Administration link.2.
In the Manage Models page, click Add.3.

Dealing with Data Quality

[223]

Name the model . Make sure that the option Create entity with the4.
same name as model is checked. Leave the Description textbox empty, and Log
Retention drop-down list to the default, System Setting, as the shown in the
following screenshot. Click the Save button:

Dealing with Data Quality

[224]

On the Manage Models page, click the Entities link in the Go to section.5.
On the Manage Entities page, click the Add button. Name the entity6.

. Check the Create code values automatically option. Write in
the Start with text box. Make sure that the Enable data compression checkbox is
checked and the Approval Required is not checked. Click the Save button.
Click the Manage Entities link at the top left of the page. Create another entity,7.

, with the same settings as the created in the
previous step. Save it.
Click the Manage Entities link at the top left of the page. Click the8.

 entity in the list of entities to highlight it. Click the Attributes
link in the Go to section.
Note that there are already two attributes created, the and the 9.
attributes.
Click the Add button. Name the new attribute . Make the new10.
attribute domain-based and use the entity for the domain
values. Do not change the display pixel width and do not enable change tracking.
Save the attribute.
Start editing the entity. Select it in the Entity drop-down list. Add a11.
domain-based leaf member attribute, . Use the
entity for the domain of possible values. Do not enable change tracking. Save the
attribute.
Add a free-form leaf member attribute, . Use the Text data type.12.
Change the to . Do not enable change tracking.
Save the attribute.
Add a free-form leaf member attribute, . Use the Text data type. Leave the13.
default length of and the default pixel width of . Do not enable change
tracking. Save the attribute.
Add a free-form leaf member attribute, . Use the Text data type.14.
Leave the default length of and the default pixel width of . Do not enable
change tracking. Save the attribute.
Add a free-form leaf member attribute, . Use the Text data type.15.
Change the length to . Change the display pixel width to . Do not enable
change tracking. Save the attribute.
Add a free-form leaf member attribute, . Use the DateTime data type.16.
Use the default pixel width of . Use the input mask. Do not
enable change tracking. Save the attribute.

Dealing with Data Quality

[225]

Add a free-form leaf member attribute, . Use the Number data17.
type with two decimals. Use the default pixel width of . Use the -#### input
mask. Do not enable change tracking. Save the attribute.
Navigate to the Manage Entities page (Home | AWCustomer Model | Manage18.
Entities). Select the entity.
Click the Attribute Groups link. Click Add. Name the group .19.
In the Attributes section, add the , , and20.

 attributes to this attribute group, as shown in the following
screenshot, and then save the attribute group:

Dealing with Data Quality

[226]

Navigate to the Manage Entities page (Home | AWCustomer Model | Manage21.
Entities). Select the entity.
Click the Business Rules link. Click Add. Name the rule .22.
In the Add Business Rule pop-up window, click the Add link in the Then23.
section.
In the Create Action pop-up window, select the attribute in the24.
Attribute drop-down list.
In the Operator drop-down list, select the must contain the pattern operator.25.
In the Must contain the pattern drop-down list, select Attribute value.26.
In the Attribute value textbox, write the sign. Make sure that your Create27.
Action pop-up window looks like the one in the following screenshot, then click
Save:

Dealing with Data Quality

[227]

In the Add Business Rule window, click Save.28.
In the Business Rules window, click the Publish All button to activate all29.
business rules.
Navigate to the home page. Make sure that the model is selected in30.
the Model drop-down list. Then click Explorer.
Click the Entities button at the top-left of the screen, and select the31.

 entity. In the editor, click the Add Member button.
In the Details pane on the right, enter as the value of the field.32.
Note that the value for the field is assigned automatically. Click OK.
Add another member with the value as the field.33.
Using the Entities button, select the entity. In the editor, click34.
the Add Member button.
In the Details pane, enter as the value of the field. Note that35.
the value for the field is assigned automatically. In the
drop-down list, select . Click OK.
Add another member with the value for the field. Click the36.
button to the right of the drop-down list to open another
window with a list of members of the entity. Check the code for
the member. Go back to the window where you are editing the

 entity and insert the appropriate code. Click
OK.
Using the Entities button, select the entity. Note that there are two37.
views: one with the attributes from the attribute group only and
another one with all the attributes. Click the [All Attributes] tab to see all of the
attributes. You are going to add two members with data based on two customers
from the table in the sample
database. In the editor, click the Add Member button.

Dealing with Data Quality

[228]

Insert the following information and then click OK:38.

Parameters Values

Add another customer with the following information:39.

Parameters Values

Before clicking OK to save the member, try to change the value of the40.
 field to . You should get an error immediately

notifying you that the length of this field cannot be greater than one. Correct the
value back to .
Try to insert the birth date in a different format.41.
Note that the field contains the character instead of the 42.
character. Click OK to save the member anyway.

Dealing with Data Quality

[229]

Note that in the grid showing all customers, there is a red exclamation point near43.
the entry. Point to it and read the message. Note also the
message about validation errors in the Details pane on the right, as shown in the
following screenshot:

Dealing with Data Quality

[230]

In the Details pane, correct the value in the field and click OK.44.
Now the validation should succeed.

Matching with DQS
Often, you need to match entities without having a common identification. For example,
you might get data about customers from two different sources. Then you need to do the
matching based on similarity of attributes, for example, names and addresses. Matching is a
very complex task. In SQL Server, DQS is one of the tools that can help you with this task.

Getting ready
In order to test the DQS matching, you need to prepare some data. The following section
contains a lot of code; therefore, you might want to use the code provided in the book's
companion content.

First, you need to prepare a table with clean data. In SSMS, execute the following code:

Then you create a similar table for the dirty data, and also initially populate it with clean
data:

Dealing with Data Quality

[231]

The next step is the most complex one. You need to make random changes in the dirty data
table. Note that in this table, the original column is multiplied by , and that
there is a space for the clean . This way, you will be able to check the quality
of the matches. Nevertheless, the following code makes somehow random changes in the
table, mimicking human errors:

Dealing with Data Quality

[232]

Dealing with Data Quality

[233]

You can compare the data after the changes with the original data using the following
query:

There should be more than 700 rows updated. The exact number changes with every
execution. When executing the code as an example for this chapter, I got 756 rows updated.
This means 756 customers that need to be matched with the clean data table.

How to do it...
In SSDT, open the solution from the first recipe of this chapter.1.
Add a new package to the solution and rename it to .2.
Create a new package OLE DB connection manager to your local SQL Server3.
instance, the database.
In the control flow of the package, add a data flow task. Open the data flow4.
editor for this task.
Add an OLE DB source. Rename it to . Open the OLE DB5.
Source Editor and select the table as the source table.
Click the Columns tab to check the columns. Click OK to close the editor.
The next step in the preparation for identity mapping (or matching) is to perform6.
the exact matches. Drag the lookup transformation to the working area and
connect it with the blue data flow path using the OLE DB source. Name it

 and double-click it to open its editor.

Dealing with Data Quality

[234]

In the Lookup Transformation Editor, select the Connection tab in the left-hand7.
pane. Use the connection manager for the database. Select
the table. Click the Columns tab.
Drag the and columns from the Available Input8.
Columns onto the columns with the same name in the Available Lookup
Columns table. Select the checkbox next to the column in the
Available Lookup Columns table. In the Lookup Operation field in the grid in
the bottom part of the editor, select the option.
Rename the output alias , as shown in the following
screenshot:

Click the General tab. In the Specify how to handle rows with no matching9.
entries drop-down list, select the Redirect rows to no match output option. Click
OK to close the Lookup Transformation Editor.

Dealing with Data Quality

[235]

Drag two multicast transformations to the working area. Rename the first one10.
 and the second one . Connect the lookup transformation with

them, the first by using the lookup match output and the second by using the
lookup no match output. You do not need to multicast the data for this recipe.
However, you are going to expand the package in the next recipe.
In SSMS, create a new table in the database in the 11.
schema and name it . Use the following code:

Add another new table in the schema and name it12.
. Use the following code, which uses the same schema

as the previous table:

In the data flow in SSDT, add a new OLE DB destination and rename it13.
. Connect it to the match multicast transformation.

Double-click it to open the editor. Select the table.
Click the Mappings tab to check the mappings. Click OK.
Add a new OLE DB destination and rename it .14.
Connect it to the no match multicast transformation. Double-click it to open the
editor. Select the table. Click the Mappings tab
to check the mappings. Click OK.

Dealing with Data Quality

[236]

Save the project. Execute the package in debug mode. After the execution has15.
completed, review the contents of the and

 tables.
Stop debugging. Do not exit SSDT.16.
In the database in SSMS, create a table that unions clean and17.
dirty customer data by using the following code:

Start the Data Quality Client and connect to your DQS server.18.
Create a new knowledge base. Name it . Make sure that19.
the Matching Policy activity is selected. Click Next.
In the Knowledge Base Management window, on the Map tab (the first one),20.
select SQL Server as the data source. Select the database
and the table.
Create a domain named . Use the data type String, and select the Use21.
Leading Values, Normalize String, and Disable Syntax Error Algorithms
checkboxes. Clear the Enable Speller checkbox. Set the Format Output to option
to None and select English as the language. Click OK.
Create another domain named with the same settings as for the22.

 domain.
Map the column to the domain, and map the23.

 column to the domain.

Dealing with Data Quality

[237]

Create a new composite domain (click the second icon from the right, above the24.
column/domain mappings grid in the left-hand pane). For matching, you
typically use a composite domain, which encompasses all columns involved in an
approximate match. Name the domain and add the and

 columns from the Domain List listbox to the Domains in
Composite Domains listbox. Click OK. Your screen should resemble the one
shown in the following screenshot. After you have made sure that you have the
correct domains and mappings, click Next.

Dealing with Data Quality

[238]

On the Matching Policy tab, click the Create a matching rule button in the left-25.
hand pane. In the Rule Details pane on the right-hand side, change the name of
the rule to .
In the Rule Editor area on the right, click the Add a new domain element button26.
in the upper-right corner. The domain should appear. Scroll to the
right of the column (leave the value in it) to show the

 column. Change the weight to for the composite
domain. You could also start matching with exact matches for one domain by
requesting this domain as a prerequisite—for example, by selecting the checkbox
in the column for the domain to lower the number of
rows for matching in one pass. However, the number of customers to match is
not too high for this recipe, so you do not need to additionally reduce the
matching search space. When you are done defining the rule, click Start in the
Matching Results section of the screen to run the matching policy.
When the matching policy run has finished, review the results. Filter on matched27.
or unmatched records by selecting the appropriate option in the Filter drop-
down list.
You should test multiple rules. Therefore, create a new rule. Name it28.

. In the Rule Editor section, click the Add a new domain
element button. Scroll to the right of the column (leave the value

 in it) to show the column. Change the weight to for the
 domain and for the domain. Click to test

this rule.
When the rule testing has finished, review the results. Double-click a few of the29.
matched records to get the Matching Score Details window for the records.
Check how much the name and how much the address contributed to the score.
Then close the window. When you are done with your review, click Next.
In the Matching Results window, you can check all the relevant rules at once.30.
Make sure that the Execute on previous data option (which is below the Start
button) is selected. Click the Start button. Wait until DQS finishes the process,
then check the Profiler, Matching Rules, and Matching Results. In Matching
Results, double-click a few of the matched records to show the Matching Score
Details window, and check which rule was used. The composite domain should
be used more often than the single domains.
When you are done with your review and have closed the Matching Score31.
Details window, click Finish. Then click Publish in the pop-up window to
publish the KB. When it is published, click OK in the next pop-up window.
The next step is to create a DQS matching project. Click the New Data Quality32.
Project button in the Data Quality Client main screen.

Dealing with Data Quality

[239]

Name the project . Select the33.
 KB. Make sure that the Matching activity is selected.

Click Next.
On the Map tab (the first one) in the Knowledge Base Management window,34.
select SQL Server as the data source. Select the database
and the table. Note that in a real project, you would have a
separate table with sample data for learning during the KB creation and another
table for the actual matching.
Map the column to the domain and the 35.
column to the domain, unless they have already been mapped
automatically. Click Next.
On the Matching tab, click Start. Wait until the matching process finishes, then36.
review the results. When you are finished, click Next.
On the Export page, choose SQL Server as the destination type and choose the37.

 database. Select both the Matching Results and
Survivorship Results checkboxes. Export the matching results to a table named

 and the survivorship results to a table named
. Do not add schema names to table names; the tables

will be created in the schema. Select the Most complete and longest record
survivorship rule. Click the Export button.
When the export is finished, click Close in the Matching Export pop-up window38.
and then click Finish.
In SSMS, review the exported results. You can quickly see that the survivorship39.
policy is not sophisticated enough because many customers with negative

 values are selected as survivors. You should use the matching
results and define your own survivorship rules, or select the survivors manually.
Close the Data Quality Client.40.

Using SSIS fuzzy components
SSIS includes two really sophisticated matching transformations in the data flow. The fuzzy
lookup transformation is used for mapping the identities. The fuzzy grouping
transformation is used for de-duplicating. Both of them use the same algorithm for
comparing the strings and other data.

Dealing with Data Quality

[240]

Identity mapping and de-duplication are actually the same problem. For example, instead
for mapping the identities of entities in two tables, you can union all of the data in a single
table and then do the de-duplication. Or vice versa, you can join a table to itself and then do
identity mapping instead of de-duplication. This recipe shows how to use the fuzzy lookup
transformation for identity mapping.

Getting ready
This recipe assumes that you have successfully finished the previous recipe.

How to do it...
In SSMS, create a new table in the database in the 1.
schema and name it . Use the following code:

Switch to SSDT. Continue editing the DataMatching package.2.
Add a fuzzy lookup transformation below the no match multicast transformation.3.
Rename it and connect it to the no match multicast
transformation with the regular data flow path. Double-click the transformation
to open its editor.
On the Reference Table tab, select the connection manager you want to use to4.
connect to your database and select the

 table. Do not store a new index or use an existing index.

Dealing with Data Quality

[241]

When the package executes the transformation for the first time, it
copies the reference table, adds a key with an integer data type to the
new table, and builds an index on the key column. Next, the
transformation builds an index, called a match index, on the copy of
the reference table. The match index stores the results of tokenizing the
values in the transformation input columns. The transformation then
uses these tokens in the lookup operation. The match index is a table in
a SQL Server database. When the package runs again, the
transformation can either use an existing match index or create a new
index. If the reference table is static, the package can avoid the
potentially expensive process of rebuilding the index for repeat
sessions of data cleansing.

Click the Columns tab. Delete the mapping between the two 5.
columns. Clear the checkbox next to the input column.
Select the checkbox next to the lookup column. Rename the output
alias for this column to . You are replacing the original
column with the one retrieved during the lookup. Your mappings should
resemble those shown in the following screenshot:

Dealing with Data Quality

[242]

Click the Advanced tab. Raise the Similarity threshold to to reduce the6.
matching search space. With similarity threshold of 0.00, you would get a full
cross join. Click OK.
Drag the union all transformation below the fuzzy lookup transformation.7.
Connect it to an output of the transformation and an output of
the fuzzy lookup transformation. You will combine the exact and
approximate matches in a single row set.
Drag an OLE DB destination below the union all transformation. Rename it8.

 and connect it with the union all transformation.
Double-click it to open the editor.
Connect to your database and select the9.

 table. Click the Mappings tab. Click OK. The
completed data flow is shown in the following screenshot:

Dealing with Data Quality

[243]

You need to add restart ability to your package. You will truncate all destination10.
tables. Click the Control Flow tab. Drag the execute T-SQL statement task above
the data flow task. Connect the tasks with the green precedence constraint from
the execute T-SQL statement task to the data flow task. The execute T-SQL
statement task must finish successfully before the data flow task starts.
Double-click the execute T-SQL statement task. Use the connection manager to11.
your database. Enter the following code in the T-SQL
statement textbox, and then click OK:

Save the solution. Execute your package in debug mode to test it. Review the12.
results of the fuzzy lookup transformation in SSMS. Look for rows for which the
transformation did not find a match, and for any incorrect matches. Use the
following code:

You can use the following code to clean up the and13.
 databases:

When you are done, close SSMS and SSDT.14.

66
SSIS Performance and

Scalability
This chapter covers the following recipes:

Using SQL Server Management Studio to execute an SSIS package
Using T-SQL to execute an SSIS package
Using the DTExec command-line utility to execute an SSIS package
Scheduling an SSIS package execution
Using the cascading lookup pattern
Using the lookup cache
Using lookup expressions
Determining the maximum number of worker threads in a data flow
Using the master package concept
Requesting an execution tree in SSDT
Establishing a performance monitor session
Configuring a performance monitor data collector set

Introduction
This chapter discusses the various methods of SSIS package execution, how to monitor the
performance of running SSIS packages, and how to plan the utilization of resources for a
given SSIS package. You will also learn how to use different techniques of acquiring
reference data (also referred to as data look ups), and their impact on SSIS execution
performance.

SSIS Performance and Scalability

[245]

One of the objectives followed in the design of the SSIS execution engine is to maximize the
use of resources on the system hosting SSIS package executions. In part, this is reflected in
the capabilities of parallel execution of various operations; for instance, using multiple
threads to perform data movements and transformations in the data flow, parallelizing the
execution of operations in the control flow, or even scaling out the execution of packages to
multiple hosting servers. Some of the techniques that you can use to improve resource
utilization for SSIS executions are also discussed in this chapter.

SSIS execution techniques can be divided into two groups:

On-demand execution is performed through intervention: A user creates,
configures, and starts, the execution of an SSIS package. Typically, on-demand
execution is used for SSIS solutions that only need to run when a user has
decided that the work needs to be performed. Alternatively, SSIS packages are
executed on demand when they have been integrated into existing systems, or
tools, that the organization is using to perform its data management operations.
In such cases, the execution is created, configured, and started, by a client
application or a service.
Scheduled execution is performed automatically: An administrator configures
the execution of an SSIS package, where the execution starts automatically (in
absence of user intervention). Typically, automated execution is performed on a
schedule prepared in advance; for instance, using the SQL Server Agent, or
another similar scheduling tool. Alternatively, the execution can also be started
automatically based on certain other criteria defined in advance, the state of
which can be determined automatically; for instance, a scheduled operation
checks whether these criteria are met, and either starts the execution of an SSIS
package, or completes without starting it.

When SSIS packages designed under the project deployment model are executed, the
following three steps are performed:

An execution instance is created for the given SSIS package with the selected SSIS1.
environment. If an environment is not associated with this execution, design-time
values for any parameters, or any other configurable settings, are used.
After the execution has been created successfully, further settings can be2.
configured; for instance, the logging level, the operational mode, or any other
accessible property of the SSIS package. In this step, any configurable design-time
settings can be overridden.

SSIS Performance and Scalability

[246]

After all the execution properties have been set, the execution is started. This step3.
actually invokes the execution of the package. Two modes of operation are
supported:

In synchronous mode, the control is not returned to the caller until the
execution of the package has completed (either successfully or with
errors); this mode is useful for situations where the next operation in a
sequence should not start until the preceding one has finished. When
SSIS packages are set up as individual steps of an SQL Server Agent
job, the next step must not begin until the preceding step has
completed; therefore, SQL Server Agent uses synchronous executions.
In asynchronous mode, the control is returned to the caller
immediately after the execution has started, allowing the caller to
perform other work concurrently. This mode is useful when multiple
packages, or multiple instances of the same package, need to be
executed in parallel. In order to monitor the asynchronous execution of
packages, the caller application needs to check the current state of the
executions by querying the SSIS catalog. Typically, asynchronous
executions are used when SSIS packages are integrated in the
organization's existing systems, where other operations might need to
be executed at the same time.

Steps 1 and 3 are mandatory, step 2 is optional. Both mandatory steps must be performed;
otherwise, the execution cannot start. Step 2 needs to be performed for each additional
setting, and can therefore be performed multiple times in a single execution.

SSIS deployment models

The project deployment model has been the default deployment model
since SQL Server 2012; it perceives all packages of the same SSIS project as
a single unit of work from design, deployment, configuration, and
administration aspects.

The deployment model used in SSIS 2005, 2008, and 2008 R2, where
individual packages are deployed, configured, and administered,
independently even if they were developed as part of the same project, is
now referred to as the package deployment model.

SSIS Performance and Scalability

[247]

Several methods are available for on-demand execution of SSIS packages:

At design time, the SSIS package can be executed in debug mode from within
SQL Server Data Tools (SSDT). You should already be familiar with design-time
package execution from previous chapters.
After the packages have been deployed to the target environment, they can be
executed using the DTExec utility, provided by the SQL Server installation, by
using Windows PowerShell, or through the integration services API. Starting
with SQL Server 2012, SSIS packages deployed to the SSIS catalog can also be
executed using T-SQL. As you have seen in previous chapters, SSIS execution is
also fully integrated into SQL Server Management Studio. Depending on the
deployment model used, this can either be achieved by accessing the SSIS catalog
(under the project deployment model), or by connecting to the legacy SSIS service
(when the packages have been deployed to the database, or the managed
SSIS package store—both under the package deployment model).

Connecting to the legacy SSIS service in SQL Server 2012 and later
versions

Starting with SQL Server 2012, special Windows operating system
privileges are required to access the SSIS service. By starting SSMS as an
administrator, members of the administrators users group are allowed to
connect to the SSIS service.

You can find more information about the legacy SSIS service in the book's
online article entitled Integration Services Service (SSIS Service), at

.

This chapter assumes that you have completed , What Is New in SSIS 2016, and
that you have deployed at least the project to the SSISDB catalog.

SSIS Performance and Scalability

[248]

If, for some reason, you were not able to complete the exercises in , What Is New
in SSIS 2016, follow these steps to prepare the environment:

In SSMS, open the script located in the1.
 folder.

Carefully review the script, and then execute it. Any missing database objects2.
used in the package will be created.
Use Windows Explorer to navigate to the3.

 folder, and locate the
 command file.

Double-click the file to start the deployment. After it completes, you will be4.
prompted to press any key to close the Command Prompt window.

Using SQL Server Management Studio to
execute an SSIS package
In this recipe, you are going to use SQL Server Management Studio (SSMS) to prepare,
and invoke, the execution of an SSIS package deployed to the SSISDB catalog.

Getting ready
Even if you have successfully completed the exercises in , What Is New in SSIS
2016, follow these steps to create an SSIS environment, and configure the
project:

In SSMS, open the script located in the1.
 folder.

Carefully review the script, and then execute it. The script will create the2.
 environment with a single environment variable, and associate it

with the project. The variable
will allow you to configure the connection manager used by the project.

SSIS Performance and Scalability

[249]

How to do it...
Start SSMS, unless it is already running, and make sure that the Object Explorer1.
is connected to the local SQL Server instance on your machine.
In the Object Explorer, locate the Integration Services Catalogs node, and expand2.
it fully to locate the package in the
project of the folder, as shown in the following screenshot:

SSIS Performance and Scalability

[250]

Right-click the package, and in the shortcut menu select Execute... to open the3.
Execute Package dialog, as shown in the following screenshot:

SSIS Performance and Scalability

[251]

On the General page of the Execute Package dialog, on the Parameters tab, check4.
the Environment option at the bottom of the dialog, and make sure that the
Chapter06 environment is selected, as shown in the following screenshot:

SSIS Performance and Scalability

[252]

On the Connection Managers tab, you will see that the5.
 variable is used to set the value of the

connection string of the connection manager.

SSIS Performance and Scalability

[253]

On the Advanced tab, observe the Logging level setting, and make sure that it is6.
set to Basic, as shown in the following screenshot:

Click OK to confirm the settings and start the execution of the package.7.
When prompted by the Microsoft SQL Server Management Studio dialog, click8.
Yes to open the execution report.
It should take just a few seconds to complete the execution; nevertheless, you9.
might need to refresh the report a few times until it displays the final result.
Observe the messages returned by the execution.

How it works...
When using SSMS to execute packages, the Execute Package wizard queries the SSISDB
Catalog to access the package properties, and the properties of the associated environments,
which allows you to configure the execution. When you start the execution, SSMS invokes
the stored procedures used to create, configure, and start the execution of a package, as
explained earlier.

In brief: SSMS uses Transact-SQL to execute SSIS packages deployed to the SSISDB Catalog;
this is explained in more detail in the following recipe.

SSIS Performance and Scalability

[254]

Using T-SQL to execute an SSIS package
In this recipe, you are going to perform all three steps of SSIS package execution by using
three special stored procedures in the SSISDB database.

This procedure can be used only on packages deployed to the SSISDB Catalog.

How to do it...
In SSMS, connect to the SSISDB database; that is, the user database hosting the1.
SSISDB catalog. You can use the following command:

For your convenience, the T-SQL code needed for this chapter is provided
in the script, located in the

 folder.

Use the following query to retrieve the identifier of the environment reference,2.
and assign the value to a variable:

All of the queries in this recipe actually need to be executed as a single
batch; for now, review them without executing them.

SSIS Performance and Scalability

[255]

The following query is used to create the execution, and it uses the environment3.
reference identifier determined using the first query:

When the execution is created, its identifier (returned by the 4.
output parameter) is also assigned to a variable; it will be needed in two more
procedure calls.
The following invocation of the 5.
procedure sets the of the execution; the value of represents the
Basic logging level:

SSISDB catalog logging levels are shown in the following table:

Value Name Description

None Logging is turned off. Only the package execution status is logged.

Basic All events are logged, except custom and diagnostic events. This is
the default value.

Performance Only performance statistics and and events are
logged.

Verbose All events are logged, including custom and diagnostic events.

Note the execution identifier being passed into the6.
 procedure; the setting must be

associated with the correct execution instance.

SSIS Performance and Scalability

[256]

By default, SSIS package executions are started asynchronously, meaning that the7.
control is returned to the caller immediately. To start an execution
synchronously, so that the caller will wait for the execution to complete, invoke
the procedure once more:

After all the required settings have been determined, the execution should be8.
started using the following command (once more, the correct execution identifier
needs to be passed into the procedure):

To execute the package, use the mouse, or the keyboard, to highlight and execute9.
all of the preceding statements as a single batch. Afterwards you can observe the
execution progress by right-clicking the package name in the Object Explorer in
SSMS, and selecting the Reports | Standard Reports | All Executions command
from the shortcut menu, as shown in the following screenshot:

SSIS Performance and Scalability

[257]

How it works...
When using T-SQL to execute SSIS packages, all the individual steps of the operation are
performed using the corresponding stored procedures. Certain steps depend on a value
determined in a preceding step, or query; therefore, it is necessary to store these values in
variables.

Using the DTExec command-line utility to
execute an SSIS package
In this recipe, you are going to execute an SSIS package using the DTExec command-line
utility. This utility supports not only packages deployed to the SSISDB catalog, but also
packages managed by the legacy SSIS Service (stored in the system database, or in the
managed SSIS package store), and even packages stored in the filesystem.

How to do it...
Using Windows Explorer, locate the 1.
command file in the folder.
Right-click the file, and select Edit from the shortcut menu to open the file in2.
Notepad.
Inspect the DTExec command line:3.

The argument provides the name of the SSIS Server, the
argument instructs the utility to load the SSIS package from the SSISDB
Catalog (the complete path to the package must be provided), the
argument provides the environment reference identifier, and the
arguments provide a way to supply any other runtime settings.

Close Notepad, and return to Windows Explorer.4.
Double-click the file to execute the package. The execution results should be5.
listed in a Command Prompt window.
When the execution finishes, close the Command Prompt window.6.

SSIS Performance and Scalability

[258]

How it works...
When using the DTExec command-line utility you need to provide all the configuration
settings in the command line; for instance, if you want to use a specific environment, you
need to query the SSISDB database first to retrieve it.

In the background, the DTExec utility also uses T-SQL procedures in the SSISDB database
to create, configure, and start SSIS package executions, and also to receive any messages
from the execution engine.

There's more...
Alternatively, SSIS packages can be executed from Windows PowerShell, or from DOT.NET
applications, by using the SSIS Managed API. The complete object model is accessible
through the classes available in the

 namespace. By using the
API, SSIS packages can be even more closely integrated into your existing client
applications, or services.

More information about the SSIS Managed API is available on the
Microsoft Developer Network (MSDN) website, at

.

Scheduling an SSIS package execution
In this recipe, you are going to create an SQL Server Agent job with a single step using an
SSIS package, configured with a specific SSIS environment. You are going to assign a
schedule to the job so that it can be executed automatically.

SQL Server Agent is a special SQL Server feature, hosted on the SQL Server instance, which
supports the automation of a variety of operations and processes. One of them is the
execution of SSIS packages; these can be configured as one or more steps of an SQL Server
Agent job.

SSIS Performance and Scalability

[259]

SQL Server Agent and SQL Server Agent jobs

SQL Server Agent is available in SQL Server 2016 Enterprise, Standard,
and Web editions; it is not available in the Express, nor Express with
Advanced Services editions.

SQL Server Agent Job is a collection of one or more operations that
represent a complete unit of work to be performed automatically, for
example, on a schedule. Multiple steps of an SQL Server Agent job are
executed in sequence.

In addition to facilitating automation, SQL Server Agent includes additional functionalities
to provide a complete automated environment experience:

Schedules: SQL Server Agent jobs can be executed automatically, on a schedule.
Alerts: In case of errors, or even after successful executions, alerts can be
configured so that the administrators of the hosting environments can be notified
via email or through a paging system.
Operators: Responses to certain events during SQL Server Agent job executions
can also be configured. An operator can, for instance, be used to start another job
in case the originating job has failed.

Getting ready
If you haven't performed any of the preceding recipes yet, you need to perform the same
preparatory steps described at the beginning of this chapter.

How to do it...
In SSMS, in the Object Explorer, locate the SQL Server Agent node. Expand it to1.
show its contents, and locate the folder.

If the SQL Server Agent of the selected SQL Server instance is not running,
right-click its node in the Object Explorer, and select Start from the
shortcut menu to start it.

SSIS Performance and Scalability

[260]

Right-click the folder in the Object Explorer, and select the New Job...2.
command from the shortcut menu to open the New Job wizard, as shown in the
following screenshot:

SSIS Performance and Scalability

[261]

On the General page of the New Job wizard, enter as the3.
Name of the job, as shown here:

On the Steps page, click New... to add a new job step, and use the following4.
settings to configure it:

Setting Value

Step name

Type SQL Server Integration Services Package

SSIS Performance and Scalability

[262]

In the lower part of the Steps page, in the Package tab, use the following settings:5.

Setting Value

Package source

Server

Log on to the server

To select the package, click on the ellipsis icon on the far-right side of the Package6.
text box, and in the Select an SSIS Package dialog locate the

 package in the project of the
 folder, as shown here:

SSIS Performance and Scalability

[263]

Click OK to confirm the selection. Use the following screenshot to verify your7.
settings:

On the Configuration tab of the General page, under Parameters, check the8.
Environment option and make sure that the Chapter06 environment is selected
in the selection box to the right.
Under Connection Managers, verify that the correct variable is used for the9.
connection string of the cmgr_TestCustomLogging connection manager, as
shown in the following screenshot:

SSIS Performance and Scalability

[264]

On the Advanced page of the New Job wizard, use the following settings to10.
configure the rest of the step properties:

Setting Value

On success action Quit the job reporting success

On failure action Quit the job reporting failure

Log to table Checked

Include step in job history Checked

SSIS Performance and Scalability

[265]

Leave other settings unchanged; refer to the following screenshot to verify your11.
settings:

Click OK to confirm the step configuration.12.
The expected result is shown in the following screenshot:13.

SSIS Performance and Scalability

[266]

On the Schedules page, click New... to create a new schedule by using the14.
following settings:

Setting Value

Name

Schedule type Recurring

Enabled Checked

Frequency

Occurs Daily

SSIS Performance and Scalability

[267]

Recurs every

Daily frequency

Occur every

Leave the rest of the settings unchanged; refer to the following screenshot to15.
verify the schedule configuration:

Click OK to confirm the schedule, and then click OK once more to complete the16.
creation of a new SQL Server Agent job.

SSIS Performance and Scalability

[268]

How it works...
As long as the SQL Server Agent service is running, and the job has not been disabled, the
execution begins automatically at the scheduled time. Recurring jobs run continuously in
the defined intervals between the Start date (by default the date when the schedule was
created) and the End date of the schedule. When no end date is specified, the schedule will
be used until you disable it.

Using the cascading lookup pattern
Typically, the structure and the semantics of a data flow source correspond to the data
model used in the source data store; this structure, or the semantics used to represent data
in the source system, might not be aligned with the structure or the semantics of the
destination system.

For instance, the client entity in the source system might be represented by a single set, but
the data warehouse might have to distinguish between a client, who is a person, and a client
that represents a company. To correctly interpret the source data, you would need
appropriate logic in the data flow to differentiate between source rows representing
persons, and source rows representing companies, before loading the data correctly into the
data destination data store.

How to do it...
In SSDT, open the solution located in the1.

 folder.
Make sure that the SSIS package is open, locate the2.
Resolve Client Data task in the control flow, and open it in the data flow
designer.
The data flow contains one source component named Source Client Data that3.
extracts client data from a flat file.
Double-click the source component to open the Flat File Source editor, and on4.
the Connection Manager page, click Preview... to inspect the source data.

SSIS Performance and Scalability

[269]

The source contains a single column with a list of clients, and no other
information about them.

Click Close to close the Data View window, and then click Cancel to close the5.
Flat File Source editor.
From the SSIS Toolbox drag a Lookup transformation to the data flow designer,6.
and change its name to "Person Lookup".
Connect the regular data path from the Source Client Data source to the Person7.
Lookup, and then double-click the Lookup transformation to open the Lookup
Transformation Editor.

SSIS Performance and Scalability

[270]

On the General page, change the Specify how to handle rows with no matching8.
entries setting to Redirect rows to no match output, as shown here:

On the Connection page, select in the OLE DB connection9.
manager selection box, select the Use results of an SQL query option, and enter
the following query in the text box:

SSIS Performance and Scalability

[271]

Use the following screenshot to verify your settings:10.

On the Columns page, connect the ClientName column in the Available Input11.
Columns list to the ClientName column in the Available Lookup Columns list.

SSIS Performance and Scalability

[272]

Check the BusinessEntityID and IsPerson columns in the Available Lookup12.
Columns list, as shown in the following screenshot:

Click OK to confirm the configuration.13.
From the SSIS Toolbox, drag another Lookup transformation to the data flow14.
designer, and change its name to .
Connect the regular data path from the Person Lookup transformation to the15.
Company Lookup transformation.

SSIS Performance and Scalability

[273]

In the Input Output Selection dialog, under Output, select Lookup No Match16.
Output, as shown in the following screenshot:

Click OK to confirm the selection.17.
Double-click the Company Lookup transformation to open the Lookup18.
Transformation Editor, and on the General page change the Specify how to
handle rows with no matching entries setting to Ignore failure.
On the Connection page, select in the OLE DB connection19.
manager selection box, select the Use results of an SQL query option, and enter
the following query in the text box:

On the Columns page, connect the ClientName column in the Available Input20.
Columns list to the ClientName column in the Available Lookup Columns list.
Check the BusinessEntityID and IsPerson columns in the Available Lookup21.
Columns list, as you did in Step 9 for the Person Lookup transformation.
Click OK to complete the configuration.22.
From the SSIS Toolbox, drag a Union All transformation to the data flow23.
designer.

SSIS Performance and Scalability

[274]

Connect the regular data path from the Person Lookup transformation to the24.
Union All transformation, and then do the same with the regular data path from
the Company Lookup transformation.
In the Input Output Selection dialog, under Output, select Lookup Match25.
Output, as shown in the following screenshot:

Click OK to confirm the selection.26.
From the SSIS Toolbox, drag an OLE DB Destination component to the data flow27.
designer, and change its name to .
Double-click the Resolved Client destination to open the OLE DB Destination28.
Editor, and on the Connection Manager page use the following settings to
configure the destination:

Property Value

OLE DB connection manager

Name of the table or the view

SSIS Performance and Scalability

[275]

Leave the rest of the settings unchanged; refer to the following screenshot to29.
verify your settings:

On the Mappings page, make sure that all the source columns are mapped to the30.
corresponding destination columns, and then click OK to complete the
configuration.
Save the solution, execute it in debug mode, and observe the results of the data31.
flow task. Out of 19,905 rows, 122 rows should not be recognized as persons.

SSIS Performance and Scalability

[276]

Stop the debug mode execution.32.
In SSMS, use the following query to inspect the results:33.

SSIS Performance and Scalability

[277]

How it works...
At the beginning of the execution, all reference data about persons and companies is loaded
into memory; this is reflected by the messages in the Output window: Company Lookup
and Person Lookup. Reference sets are extracted during the data flow's Pre-Execute phase.
Data processing in this data flow cannot commence until the lookup data is cached.

After the data is extracted from the source flat file, it is first checked in the Person Lookup
transformation: matching rows are placed in the Lookup Match Output, and non-matching
rows are placed in the Lookup No Match Output. Only unmatched rows from the Person
Lookup transformation are then checked in the Company Lookup transformation and
placed in the Lookup Match Output.

Because of the Ignore failure setting in the Company Lookup transformation, 18 additional
unmatched rows (that is, rows that were resolved neither as persons, nor as companies)
were also placed into the Lookup Match Output; however, the and

 columns of these rows are NULL, as is evident from the results of the query you
used in Step 29.

Using the lookup cache
The Lookup Transformation can use two different connection types: the OLE DB
connection, which requires the reference data to be stored in a data store that can be
accessed by the OLE DB data provider, or a Cache connection that requires thee data to be
available in an SSIS cache object.

In essence, there are three different modes of operation (depending on how the reference
data is made available):

In full cache mode, the reference data needs to be loaded completely into
memory (cached) before the transformation can be used. Data is either loaded
automatically (when an OLE DB connection is used to retrieve the lookup set), or
needs to be loaded before the data flow, in which the lookup set is needed, and
starts executing (when the cache connection is used to access the reference set).
With partial cache, the reference data is loaded into memory at run time, while
the pipeline rows are being processed, and the execution engine determines
automatically (based on the reference query) which rows, and how many, are
loaded into cache.
Under no cache mode, no data is loaded into cache, and the reference query is
called for each row in the pipeline.

SSIS Performance and Scalability

[278]

All three modes of operation are supported when the OLE DB connection is used, but only
the full cache mode is supported when the cache connection is used.

In this recipe, you will learn how to make the data available in an SSIS cache object, and
how to configure the Lookup Transformation to use it.

How to do it...
Make sure that the solution is open in SSDT, and that1.
the package is active in the control flow designer. The
solution is located in the

 folder.

This package is a variation of the package you developed in the preceding
recipe; instead of processing a single source file, it uses the loop
container to traverse a folder in the filesystem and process one or more files
that correspond to the search criteria.

From the SSIS Toolbox, drag a Data Flow component to the control flow2.
designer, and change its name to .
Remove the precedence constraint leading from the Truncate Resolved Client3.
task to the Foreach File container, and establish a new sequence:

Truncate Resolved Client
Load Person Cache
Foreach File

Open the Load Person Cache task in the data flow designer.4.
From the SSIS Toolbox, drag an OLE DB Source component to the data flow5.
designer and change its name to Person Data.
Edit the Person Data source, and on the Connection Manager page use the6.
following settings:

Property Value

OLE DB connection manager

Data access mode SQL command

SSIS Performance and Scalability

[279]

Enter the following query into the SQL command text box:7.

Refer to the following screenshot to verify your settings:

SSIS Performance and Scalability

[280]

On the Columns page, make sure that all the source columns are selected, and8.
then click OK to complete the configuration.
From the SSIS Toolbox, drag a Cache Transform component to the data flow9.
designer, and change its name to .
Connect the regular data path from the Person Data source to the Person Cache10.
transformation.
Double-click the Person Cache component to open the Cache Transform Editor.11.
On the Connection Manager page, on the right-hand side of the Cache12.
Connection Manager selection box, click New... to open the Cache Connection
Manager Editor.
In the Cache Connection Manager Editor, on the General tab, use 13.
as the Connection manager name property, as shown here:

SSIS Performance and Scalability

[281]

On the Columns tab, set the Index Position property of the ClientName column14.
to 1. This will instruct the transformation to create an index on the ClientName
column.

Refer to the following screenshot to verify your settings:

Click OK to complete the configuration.15.
On the Mappings page of the Cache Transformation Editor, make sure that all16.
source columns are mapped to the corresponding columns of the cache object,
and then click OK to complete the configuration.
Open the Resolve Client Data task in the data flow designer, and edit the Person17.
Lookup transformation.

SSIS Performance and Scalability

[282]

On the General page of the Person Lookup transformation editor, change the18.
Connection type to the Cache connection manager. A warning should appear at
the bottom of the editor, prompting you to continue the configuration on the
Connection page.
On the Connection page, make sure that the PersonCache object is selected in the19.
Cache connection manager selection box, as shown here:

On the Columns page, make sure that all the settings have remained as they were20.
set in steps 8 through 9 of the preceding recipe, and then click OK to complete the
configuration.

SSIS Performance and Scalability

[283]

Save the solution, and then execute it in debug mode. Observe the control flow,21.
and inspect the messages in the Output window.

How it works...
In the control flow of the SSIS package, you changed the way the
person reference data is cached; instead of relying on the Person Lookup transformation to
load the data into cache, you decided when the data is going to be cached.

In the Output window, you can see that the person reference data was cached only once,
whereas the company reference data was cached for each file processed by the Foreach File
container—that is, altogether three times.

Once populated, the cache object can be used multiple times in the same
package, in the execution in which it was populated. Alternatively, the
cache object can also be configured to store the cached data in a file; once
populated, such a file can even be used by other packages in separate
executions.

Using lookup expressions
To take advantage of the full cache mode in Lookup transformations, but only retrieve a
subset of reference rows, you can supply the lookup query at run time. Certain properties of
the data flow task can be modified at run time using expressions; the query used in a
Lookup transformation is one such property.

In this recipe, you are going to dynamically determine the query restrictions and prepare
the reference query in each iteration of the Foreach loop container processing the input files.

How to do it...
Make sure that the solution is open in SSDT, and that1.
the package is active in the control flow designer. The
solution is located in the

 folder.
Create three new package variables using the following information; the2.
Variables window can be opened by selecting Variables in the SSIS menu when
an SSIS package is active in the control flow designer:

SSIS Performance and Scalability

[284]

Name Data type

String

String

String

Make sure the personLookupQuery variable is selected in the Variables3.
window, and click the Move Variable icon (the second from the left) to change
the variable's scope.
In the Select New Scope dialog, locate and select the Foreach File object in the4.
package's object tree, as shown here:

Click OK to confirm the move, and repeat steps 4 and 5 for the other two5.
variables created in step 2.

SSIS Performance and Scalability

[285]

The currentFileName variable must remain scoped to the package level. Refer to6.
the following screenshot to verify your settings:

Use the following query as the value of the variable:7.

In the control flow designer, drag three Expression Tasks from the SSIS Toolbox8.
to the Foreach File container, and name them Lower Boundary, Upper Boundary,
and Person Lookup Query, respectively.
Establish the following sequence of operations inside the file container:9.

Lower Boundary
Upper Boundary
Person Lookup Query
Resolve Client Data

Edit each Expression Task and use the following expressions in their Expression10.
text boxes:

Expression
Task

Expression

Lower
Boundary

SSIS Performance and Scalability

[286]

Upper
Boundary

Person
Lookup
Query

Select the Resolve Client Data task in the control flow designer and in the11.
Properties pane locate the Expressions property and click inside the empty text
box on the right.
Click on the ellipsis icon on the far-right side to open the Property Expression12.
Editor.
In the Property column, select the property,13.
and then click the ellipsis icon on the far-right side of the corresponding row to
open the Expression Editor.

SSIS Performance and Scalability

[287]

Drag the User::personLookupQuery variable from the 14.
 tree to the Expression text box, and click Evaluate to validate the

expression.

Refer to the following screenshot to verify your settings:

SSIS Performance and Scalability

[288]

Click OK to confirm the configuration of the expression, and refer to the15.
following screenshot to verify the settings in the Property Expression Editor:

Click OK to confirm the property configuration.16.
The Resolve Client Data task should now have a new fx mark in the upper left17.
corner; this means that the task is configured using property expressions.
Save the package, execute it in debug mode, and observe the execution.18.

How it works...
As in the preceding recipe, the package traverses the specified folder and processes
multiple files. In this particular case, each filename also contains the information about
which clients it contains; for instance, the file contains data for clients
whose names start with letters H to R. This information is used to prepare the person
lookup query by storing the first letter in the variable, and the last letter of
the range in the variable. Both variables are referenced in the expression
used to determine the value of the variable, which is then used to
configure the Person Lookup transformation at run time.

In each iteration of the Foreach File container, a new pair of and
 variable values is extracted from the variable; as a

consequence, in each iteration the Person Lookup transformation loads a different subset of
reference data into cache. You can also observe this in the Output window; three different
sets of Person data are cached in each iteration.

SSIS Performance and Scalability

[289]

As long as the reference set is aligned with the expected values in the pipeline, the entities
will be resolved correctly.

Determining the maximum number of worker
threads in a data flow
Generally, multiple operations can be performed concurrently in SSIS, as long as sufficient
resources are available in the environment hosting the execution. Parallelism can be
achieved at several different levels, depending on the nature of the operations and the
availability of resources.

Inside a data flow task, the data movements and transformations can be performed on one
or more worker threads. Generally, the execution engine will always attempt to parallelize
as many of the operations of a particular data flow as possible—in line with the nature of
the transformations, and restricted by the available resources.

For instance, provided that enough worker threads are available for a particular
transformation, and enough system memory can be allocated for the pipeline buffers, more
than one instance of the same transformation can run concurrently. By setting the
EngineThreads data flow property, you can restrict the number of concurrent data flow
instances.

In this recipe, you are going to restrict the number of worker threads in a data flow task to
the minimum, thus preventing the data flow from being parallelized. This is useful in cases
where you know at design time that the data flow cannot be parallelized due to the nature
of its transformations, the sources, or destinations used in it. Disabling parallelism at design
time is also recommended when you know that one or more transformations in the data
flow (typically, script or custom transformations) should only run as a single instance.

How to do it...
In SSDT, open the solution, located in the1.

 folder.
Open the package, locate the 2.
data flow task in the control flow, and open it in the data flow designer.
Click on the empty canvas of the data flow designer to make sure that the data3.
flow as a whole is selected.

SSIS Performance and Scalability

[290]

In the Properties pane, you should now have access to the data flow properties.4.
Locate the EngineThreads property, and set its value to the minimum number of5.
2, as shown in the following screenshot:

Save the package.6.

SSIS Performance and Scalability

[291]

How it works...
By setting the number of worker threads to its minimum value, you have made certain that
this data flow will not be parallelized. By using a number greater than 2, you instruct the
SSIS execution engine to try to assign more than one thread to the data flow.

Note though, that at run time the SSIS engine might assign fewer (or more) threads than
specified at design time—it takes into account the actual needs of a particular data flow (for
instance, the size of the data, the complexity of the transformations, and so on), and it also
considers the availability of resources (that is, the actual number of available worker
threads, the actual amount of memory that can be allocated to this particular data flow, and
so on).

Using the master package concept
By using the master package concept, it is possible to parallelize the execution of multiple
child packages as determined in the control flow of the master package. Typically, this
approach is used to parallelize packages that use separate data sources and data
destinations (for instance, processing separate dimension tables in data warehousing
scenarios), or to parallelize packages with CPU-intensive operations to run concurrently
with packages with I/O-intensive operations.

In the control flow, you use precedence constraints and containers to determine which
operations can be performed in parallel, and which of them must be performed in sequence.
Through the package property, you can determine the
maximum number of tasks to be performed simultaneously.

For instance, in data warehousing scenarios, fact tables are processed after the associated
dimension tables have been processed successfully. Prior to fact processing, most
dimension tables, or even all of them, can be processed concurrently as long as their data
sources can be accessed independently of one another.

In this recipe, you are going to learn about the master package concept; you are going to
orchestrate the execution of multiple child packages from within a single master package.

SSIS Performance and Scalability

[292]

How to do it...
Make sure that the solution from the1.

 folder is open
in SSDT.
Open the package; this package implements the master2.
package design—most of the child packages are already configured.
From the SSIS Toolbox, drag an Execute Package Task to the seqc_Dimensions3.
sequence container. Change the task name to .
Double-click the newly added task to open the Execute Package Task Editor, and4.
on the Package page use the following settings to configure the task:

Property Value

Leave the Password property unchanged; no passwords are used in these5.
packages.
On the Parameter bindings page, click Add to add a new child package6.
parameter, and use the following settings to configure the parameter:

Property Value

Child package parameter

Binding parameter or variable

Click OK to complete the configuration.7.

SSIS Performance and Scalability

[293]

Change the sequence of the operations in the container so8.
that:

The and tasks are completed
successfully before the task starts
The , ,

, and
 tasks are completed

successfully before the task starts

Save the package.9.
In the following screenshot, you can observe one way of implementing the10.
sequence described in step 7:

Click the empty canvas of the control flow designer, so that the Properties pane11.
displays the package properties.

SSIS Performance and Scalability

[294]

Locate the MaxConcurrentExecutables property, and set its value to 4, as shown12.
here:

Save the package.13.
In the Solution Explorer, right-click each package, and make sure that the Entry-14.
point Package setting in the shortcut menu is checked only for the

 master package, and uncheck it for all the child packages, as
shown in the following screenshot:

SSIS Performance and Scalability

[295]

Save the solution, and then execute the master package in debug mode. Observe15.
how each individual child package is activated and executed.

SSIS Performance and Scalability

[296]

How it works...
The master package concept allows you to divide the work among the members of the
development team, so that multiple packages, representing individual units of work, can be
developed at the same time. This modular approach to SSIS development also means that
the same package, since it facilitates only a very specific process, can be reused in another
project.

The master package concept also allows you to determine the best way to orchestrate the
execution of the complete work, because all the individual packages can be controlled from
a single point—both in the ability to specify what moment, and under what circumstances,
a specific operation will be performed, as well as in the ability to centralize the
configuration of the child packages.

By setting the package property to a specific value, you
instruct the SSIS execution engine as to how many control flow tasks should be running
concurrently. By keeping this number lower than the total number of CPUs available for
SSIS executions, you effectively make room for other operations that might have to run in
the production environment on the same server, and at the same time. By keeping this
number close to the total number of CPUs, you can improve the utilization of server
resources during the maintenance window.

The Entry-point Package property allows you, at design time, to specify which of the
multiple packages in the same SSIS project will actually be exposed for configuration. This
allows you to hide the child packages from the production environment administrators, so
that they only need to configure the project properties, and the properties exposed through
the entry-point (master) package. This way all child (non-entry-point) package properties
can be under full control of the master package.

Requesting an execution tree in SSDT
Every time the execution of an SSIS package is started, the SSIS execution engine first
prepares the execution plan. This plan contains the package metadata used by the execution
engine to determine the range of resources that are going to be needed to perform the
operations defined by the package.

SSIS Performance and Scalability

[297]

The Execution Tree of a given SSIS package, representing its execution plan, can be
prepared on demand at design time. The functionality is available when the SSIS package is
being edited in SSDT. The purpose of the Execution Tree is to provide you with the same
information the execution engine uses to determine resource usage. By examining the
Execution Trees, you can understand the expected behavior of the package in terms of
resource usage, and become familiar with resource requirements before the SSIS package is
deployed, or used, in the destination environment.

In this recipe, you are going to configure an SSIS package to capture two special events
during an execution in debug mode in SSDT. You are then going to inspect the captured
event data.

The following events can be used at design time to help you understand the resource
requirements of your data flows:

The event provides access to the execution plan of the
data flow—how the pipeline buffers will be managed
The event provides the information about how the
operations are going to be executed—how the buffers will be used

Typically, you would capture these events at design time so that you can get a good
estimate of how many resources will be required by a particular data flow, and how the
execution of one data flow might affect the concurrent executions of other data flows.

How to do it...
In SSDT, open the solution located in the1.

 folder.
Open the package in the control flow designer.2.
Right-click on the empty canvas of the control flow designer, and select3.
Logging... from the shortcut menu to open the Configure SSIS Logs editor, as
shown in the following screenshot:

SSIS Performance and Scalability

[298]

In the Containers tree on the left-hand side, check the package,4.
and the data flow task, to enable logging on both
objects.

SSIS Performance and Scalability

[299]

Select (but do not uncheck!) the package node in the Containers tree.5.
On the right side of the window, on the Providers and Logs tab, select the SSIS6.
log provider for Windows Event log in the Provider type selection box, and click
Add... to add a new log provider.
In the Select the logs to use for the container list, check the newly added SSIS log7.
provider, as shown here:

SSIS Performance and Scalability

[300]

In the Containers list, now select the data flow.8.
In the Select the logs to use for the container list, check the SSIS log provider9.
for Windows Event logs, as shown here:

SSIS Performance and Scalability

[301]

On the Details tab, check the PipelineExecutionPlan and the10.
PipelineExecutionTrees events, as shown in the following screenshot:

Click OK to confirm the configuration.11.

SSIS Performance and Scalability

[302]

In the View menu, expand the Other Windows sub-menu, and select Log Events12.
to open the Log Events pane, as shown in the following screenshot:

SSIS Performance and Scalability

[303]

Execute the package in debug mode; as the execution progresses, events are13.
captured and displayed in the Log Events pane.
Do not stop the execution.14.
In the Log Events pane, locate the User::PipelineExecutionPlan event, and open15.
the Log Entry details by double-clicking the event name. Observe the data flow
execution plan, as shown here:

SSIS Performance and Scalability

[304]

In the Log Entry window, you can navigate between the events by using the16.
icons with the up and down arrows in the top right corner of the window.
In the following screenshot, you can observe the PipelineExecutionTrees event17.
data:

When you are done inspecting the event data, click Done to close the Log Entry18.
window.
Stop the package execution.19.

How it works...
By inspecting the event data of the PipelineExecutionTrees event, you can see how the data
will flow from the source components through the transformations, all the way to the
destination components. In the preceding example, one main data path is used throughout
the data flow, with two additional sub-paths for the two Lookup transformations.

SSIS Performance and Scalability

[305]

The PipelineExecutionPlan event shows the individual operations that will be performed
in order to facilitate the data movement through the pipeline. In the previous example, you
can see that the buffers created in the source component (represented by the main data path
in the execution tree) will be reused throughout this particular data flow. Because only non-
blocking transformations are used in this data flow, the buffers can be shared by
downstream components—by using views to access the buffers created in upstream
components (these are represented by the sub-paths in the execution tree).

Monitoring SSIS performance
When SSIS packages are executed, the execution engine emits a variety of events and
messages that can be captured in the operating system hosting the execution. Typically,
Windows Performance Monitor, an application of the Windows operating system, can be
configured to capture the SSIS performance counters during SSIS executions.

The following performance counters are available in SQL Server 2016:

Performance
counter

Description

BLOB bytes read The number of bytes of binary large object (BLOB) data that the data
flow engine has read from all sources.

BLOB bytes written The number of bytes of BLOB data that the data flow engine has
written to all destinations.

BLOB files in use The number of BLOB files that the data flow engine currently is
using for spooling.

Buffer memory The amount of memory that is in use. This may include both
physical and virtual memory. When this number is larger than the
amount of physical memory, the Buffers Spooled count rises as an
indication that memory swapping is increasing. Increased memory
swapping slows performance of the data flow engine.

Buffers in use The number of buffer objects, of all types, that all data flow
components and the data flow engine is currently using.

Buffers spooled The number of buffers currently written to the disk. If the data flow
engine runs low on physical memory, buffers not currently used are
written to the disk and are then reloaded when needed.

SSIS Performance and Scalability

[306]

Flat buffer memory The total amount of memory, in bytes, that all flat buffers use. Flat
buffers are blocks of memory that a component uses to store data. A
flat buffer is a large block of bytes that is accessed byte by byte.

Flat buffers in use The number of flat buffers that the data flow engine uses. All flat
buffers are private buffers.

Private buffer
memory

The total amount of memory in use by all private buffers. A buffer is
not private if the data flow engine creates it to support data flow. A
private buffer is a buffer that a transformation uses for temporary
work only. For example, the Aggregation transformation uses
private buffers to do its work.

Private buffers in
use

The number of buffers that transformations use.

Rows read The number of rows that a source produces. The number does not
include rows read from reference tables by the Lookup
transformation.

Rows written The number of rows offered to a destination. The number does not
reflect rows written to the destination data store.

You can find more information about the SSIS performance counters in the
book's online article entitled Performance Counters, at

.

The Performance Monitor can be used to establish an ad-hoc monitoring session, where the
performance counters are observed for the duration of the monitoring session, or by
configuring a data collector set to be run automatically on a schedule. After the data
collection has completed, you can use the Performance Monitor to inspect the behavior of
the server during the execution.

Establishing a performance monitor session
In this recipe, you are going to prepare an ad-hoc performance monitoring session by using
the Performance Monitor, a component of the Windows operating system.

SSIS Performance and Scalability

[307]

How to do it...
In the Windows Start menu, locate the Performance Monitor and open it.1.
In the tree on the left, expand the Monitoring Tools node, and select the2.
Performance Monitor node.
In the command ribbon on the right side of the window, click the Add icon,3.
marked by the green plus sign, to open the Add Counters dialog.
In the Available counters list, locate the SQL Server SSIS Pipeline 13.0 group,4.
and expand it by clicking the tiny downward arrow to the right of the group
name.
With the help of the ctrl button on your keyboard, and the mouse, select the5.
following counters:

Buffer memory
Buffers in use
Buffers spooled
Flat buffer memory
Flat buffers in use
Private buffer memory
Private buffers in use

Click Add >> below the list. The counters should now be listed in the Added6.
counters list on the right, as shown in the following screenshot:

SSIS Performance and Scalability

[308]

Click OK to complete the configuration. As soon as you add the counters, the7.
Performance Monitor should start collecting data and displaying it in the graph.
If the Performance Monitor is not running, click the Unfreeze display icon in the8.
command ribbon, marked by a green arrow.
In SSDT, open the solution, located in the9.

 folder.
Open the package, and execute it in debug mode.10.
Observe the activity in the Performance Monitor window.11.

How it works...
While the performance monitor session is running, the selected counters, emitted by the
SSIS execution engine, are captured by the Performance Monitor and are displayed in a
chart in the tool's graphical user interface.

SSIS Performance and Scalability

[309]

Configuring a performance monitor data
collector set
In this recipe, you are going to prepare a Performance Monitor data collector set using the
same settings that you used in the previous recipe. This time the performance monitoring
operation is going to run in the background, and you will be able to inspect the
performance data after it completes.

How to do it...
Open the Performance Monitor.1.
In the tree on the left side of the window, navigate to the Performance Monitor2.
node, as described in the previous recipe.
When the graph is visible, right-click the Performance Monitor node, expand the3.
New sub-menu in the shortcut menu, and select Data Collector Set, as shown
here:

SSIS Performance and Scalability

[310]

The Data Collector Set wizard starts. On the first page, enter in the4.
Name text box, and then click Next.
On page two, leave the default value of the Root directory property unchanged,5.
and click Next.
On page three, leave the <Default> value of the Run as property unchanged, and6.
make sure that the Save and close option is selected, as shown in the following
screenshot:

Click Finish to complete the configuration.7.
Locate the Data Collector Set that you just created in the tree on the left side of8.
the window, under Data Collector Sets / User Defined.

SSIS Performance and Scalability

[311]

Select the Chapter06 node to open the data collector set contents on the right.9.
Right-click the System Monitor Log item, and select Properties from the shortcut10.
menu.
On the Performance Counters tab, click Add... to add the SSIS performance11.
counters, as described in steps 4 through 7 of the preceding recipe.
After the counters have been added and the System Monitor Log Properties12.
dialog is active again, change the Sample interval to 1 second, check the
Maximum samples option, and enter 120 into the text box below this option.
Refer to the following screenshot to verify your settings:13.

SSIS Performance and Scalability

[312]

Click OK to complete the configuration.14.
In SSDT, make sure that the solution from the15.

 folder
is open, and that the package is active.
In the Performance Monitor, in the tree on the left, right-click the Chapter06 data16.
collector set and select Start from the shortcut menu.
Switch to SSDT, and start the execution.17.
Switch back to the Performance Monitor, and either wait for the data collection18.
to complete, or stop it manually by right-clicking the Chapter06 node and
selecting Stop from the shortcut menu.
To inspect the latest results, right-click the Chapter06 node, and select Latest19.
Report from the shortcut menu.
To access all of the collected results, navigate to the Chapter06 node, under20.
Reports /User Defined. The reports are listed under the Data Collector Set node;
their names are made up of the server name, the date of the collection, and an
ordinal number.

How it works....
Performance Monitor data collection can either be started on demand, or performed on a
schedule. When data collection is started, the Performance Monitor begins capturing the
configured counters and it saves the data to the location specified when the data collector
set was configured.

The data can be inspected after the scheduled run is completed (or stopped manually).

77
Unleash the Power of SSIS
Script Task and Component

In this chapter, we will cover the following recipes:

Using variables in SSIS Script task
Execute complex filesystem operations with the Script task
Reading data profiling XML results with the Script task
Correcting data with the Script component
Validating data using regular expressions in a Script component
Using the Script component as a source
Using the Script component as a destination

Introduction
The Script task and Script component allow you to execute a custom Visual Basic or Visual
C# code inside your SSIS package control flow or data flow. This way, you can perform
complex operations beyond the capabilities of other built-in tasks and transformations. The
Script task works like any other task in the control flow. You can use the Script component
in the data flow as the source, transformation, or destination.

Both the Script task and the Script component have two design-time modes: you begin
editing by specifying properties using the common editors for tasks and components that
you are already familiar with, and then switch to a development environment to write the
.NET code. The second environment is the Microsoft Visual Studio Tools for Applications
(VSTA) environment.

Unleash the Power of SSIS Script Task and Component

[314]

The Script task provides the entire infrastructure for the custom code for you, letting you
focus exclusively on the code. You can use any .NET class library and namespace in your
code. In addition, from your code, you can interact with the containing SSIS package
through the global Dts object. For example, the Dts object exposes package variables, and
you can read and modify them in your custom code.

When you add the Script component to your data flow, you have to make the first decision
immediately. You can use the Script component as a custom data source, a destination, or a
transformation. When you add it to the data flow, you will be asked which Script
component type you are creating.

The next step to designing a Script component, after you have determined its type, is to
configure its metadata. In the metadata configuration part, you use the Script Component
Editor to define the component's properties, such as the name and the language you will
use. You also have to enlist the SSIS package variables you are going to use in the script in
the and properties. Note that, as always,
variable names are case sensitive.

The Script component metadata configuration is slightly more complex than the Script task
configuration. You need to define the input and output columns of the data flow buffers for
the component as well. If you use the Script component as a data source, then you define
the output columns only. The Script component is then responsible for creating the data
flow buffers. If you use the component for a transformation, then you have to configure
input and outputs. If you use it for a data destination, you configure the input only. You
have to select which columns from the input buffers you are going to use in the script, and
which columns you are going to send to the output buffers or to the data destination.

An output of an SSIS component can be synchronous or asynchronous, and thus the
component can be non-blocking or blocking. Each output of the component has the

 property. If the value of this property is None, then the output is
asynchronous, and you can completely redefine it. In addition, you can also define whether
the output is sorted. If the value of the property is the component's
input ID, then the output is synchronous. You process input row by row, and you cannot
change the sort order of the input rows for the output. If you use synchronous outputs, then
you can also configure the property to identify redirections of rows to
different outputs. For example, you could redirect some of the rows to the regular output
and some to the error output.

Using variables in SSIS Script task
The objective of this task is to teach you how to work with SSIS variables in a Script task.

Unleash the Power of SSIS Script Task and Component

[315]

You will learn two ways, a more complex one and a simpler one. You will typically use the
latter in your packages.

Getting ready
There are no special prerequisites for this recipe, except, of course, SSIS 2016. In addition,
you can use either your own text files for testing, or the three text files provided with the
code for this chapter , , and).

For your convenience, the VB and C# code snippets needed for this
chapter are provided in the file.

How to do it...
Open SQL Server Data Tools (SSDT) and create a new project using the1.
Integration Services Project template. Place the solution in the

 folder and name the project
.

Rename the default package .2.
Create a variable with data type and a default value of .3.
Create a variable of type String with the default value blank. Your4.
Variables window should look like the following screenshot:

Add a container to the control flow. Rename it .5.
Add a container to the control flow. Rename it .6.

Unleash the Power of SSIS Script Task and Component

[316]

Connect the container with the container with7.
the green (on success) arrow from the LoopThreeTimes container. The
container should finish with success before the Foreach Loop container starts
executing.
Start editing the container. Set the following properties:8.

InitExpression to @intCounter = 0
EvalExpression to @intCounter < 3
AssignExpression to @intCounter = @intCounter + 1

When you have finished setting the expressions, click on OK.9.
Add a Script task to the container. Rename it10.

. You will use the class from the
 namespace to handle a variable in the

script. With this class, you have a detailed control over locking and unlocking
variables during the script. You need to lock the variables inside the script either
for reading or for writing before you use them, because the SSIS execution is
parallelized, and some other thread might want to use the same variables at the
same time.
Double-click the task to open the Script Task editor.11.
Change the default script language to Microsoft Visual Basic 2015. Leave the

 and properties empty. Click the
Edit Script button.
Expand the Imports region. Note that the12.

 namespace is already imported for you.
Locate the method. Place the following script between the 13.

 and the
line:

Save the script and close the VSTA environment. Click on OK in the Script task14.
editor to close it.
Double-click the container to open the editor. Click the15.
Collection tab.
Specify the Foreach File Enumerator in the Enumerator property.16.

Unleash the Power of SSIS Script Task and Component

[317]

Use the folder (or any other folder17.
you wish if you have put the text files provided in some other folder). Three text
files, , , and are provided with the
code download for this book.
Specify the file pattern in the Files textbox. Retrieve the name and18.
extension only.
Do not check the Traverse subfolders checkbox. The following screenshot shows19.
what your settings should look like:

Click the Variable Mappings tab.20.
Map the variable to Index 0. Click on OK.21.

Unleash the Power of SSIS Script Task and Component

[318]

Drag the Script task to the container. Rename it . Open the22.
task editor.
In the Script tab, select Microsoft Visual Basic 2015 as the scripting language.23.
Select the User::strFile variable in the ReadOnlyVariables property. When you24.
define variables here, they are locked for the whole script. Lock and unlock
happen automatically. This is a much simpler way to do the locking than with the
VariableDispenser class, although you have more control, or control on a finer
grain, with the VariableDispenser class.
Click the Edit Script button.25.
Locate the method. Place the following script between the 26.

 and the
line:

Save the script and close the VSTA environment. Click on OK in the Script task27.
editor to close it.
Execute the package. Note how you see three iterations and three files. Save the28.
solution, but don't exit SSDT if you want to continue with the next recipe.

Execute complex filesystem operations with
the Script task
In the previous recipe, you retrieved filenames filtered by name and extension using the
Foreach File enumerator of the Foreach Loop container. Sometimes you need more precise
filters. For example, you might need to retrieve files with a larger size than a predefined
value. You can get the collection of the filenames that satisfy your custom criteria with the
Script task.

Getting ready
There are no special prerequisites for this recipe, except, of course, SSIS 2016. In addition,
you can use either your own text files for testing, or the three text files provided with the
code for this chapter (, , and). Note that the
length of the file is 3 bytes, the file is 8 bytes, and the

 file is 10 bytes.

Unleash the Power of SSIS Script Task and Component

[319]

How to do it...
In File Explorer, right-click the file and select Properties, as shown1.
in the following screenshot:

Note the file size, 8 bytes. Click OK.2.
In SSDT, add a new package to the project. Rename it3.

.

Unleash the Power of SSIS Script Task and Component

[320]

Add two variables to the package:4.
, with data type , and default value
, with data type , default

Add a new Script task to the control flow. Rename it .5.
Open the task editor. This time, use the Microsoft Visual C# 2015 language. Add6.
the variable to the and the

 variable to the collection.
Click on Edit Script.7.
Expand the Namespaces region and add the following two lines:8.

Just before the method, add the following declarations of the constants and9.
variables:

Please note that you might need to change the and 10.
constants appropriately.
In the method, add the following code, that reads the file size limit from the11.
package variable , declares an array to store the names of the local files,
a variable to store the file size, and an , which will hold the filenames
that will satisfy your custom criteria. The method returns
an array of the full names (including paths) for the files in the specified directory:

Unleash the Power of SSIS Script Task and Component

[321]

Add the following code to populate the ArrayList with the qualifying filenames:12.

Finally, just before the 13.
line, add the following code to show the number of matching files and to
populate the package variable:

Save the code and exit the VSTA environment. Also exit the Script task editor.14.
Add a container to the control flow. Connect it with the FilesBySize15.
Script task with the green arrow from the Script task. Rename the container

. Open the container editor.
In the Collection tab, specify the Foreach From Variable Enumerator. Use the16.

 variable.
In the Variable Mappings tab, map the variable to index .17.
Click on OK to close the editor.
Add a Script task inside the container. Rename it . Open the18.
Script task editor.
Use the Microsoft Visual C# 2015 language. Define the variable19.
as a read only variable. Click on Edit Script.
Add the following line of code to the method to show the names of the20.
qualifying files:

Save the script and exit the task editor.21.
Run the package and observe the results.22.

Unleash the Power of SSIS Script Task and Component

[322]

Reading data profiling XML results with the
Script task
In this recipe, you will read the XML file produced by the Data Profiling task and use the
Script task to read the regular expressions extracted and store them in package variables.

Getting ready
This recipe assumes that you have finished the first recipe of ,
Dealing with Data Quality, and have the results of the Data Profiling task at your hand.

For your convenience, the results of the Data Profiling task needed for this
recipe are provided in the file.

How to do it...
Add a new package to the project. Rename the default1.
package .
Create two package variables. Name them and . Use2.
the String data type for both variables.
Drag the Script task to your control flow. Rename it .3.
Open the editor for this task. On the Script page of the Script Task Editor, make4.
sure that the Visual C# language is selected. Add the and

 variables to the property, as shown
in the following screenshot:

Unleash the Power of SSIS Script Task and Component

[323]

Click the Edit Script button. Expand the Namespaces region. Add the5.
 namespace with the following code: .

Declare private variables for the class. These private variables will6.
point to the Data Profiling task result XML file, to the XML namespace URI for
the Data Profiling task results, and to the two nodes in the XML file with the
extracted regular expressions. Enter the following code right after the

 class definition and before the first help region in the class:

Unleash the Power of SSIS Script Task and Component

[324]

The previous part of the code looks ugly. This is due to the fact that XML is ugly.7.
Modify the method of the class. Add the following code after the //8.
TODO:... comment and before the last command of the method, the
Dts.TaskResult =... command.

Note that this code reads the data profiling results, loads the XML file, and then9.
assigns the extracted regular expression patterns to the values of the two SSIS
package variables you just created. Finally, the code shows the variable values in
two message boxes.

Unleash the Power of SSIS Script Task and Component

[325]

Save the script and close the VSTA environment. In the Script Task Editor, click10.
on the OK button to close the editor.
Right-click the ReadPatterns task and execute it. Check the two message boxes11.
with the two regular expressions extracted by the Data Profiling task. Click on
OK in each of the boxes to close them. Stop debugging the package.

Correcting data with the Script component
In this recipe, you will use the Script Component in the data flow as a transformation for
advanced data cleansing. You will read an Excel file and do a custom transformation in
order to make the output ready for further processing in the data flow.

Getting ready
In order to test this recipe, you need to have an Excel file prepared. In the file, there should
be a single sheet with the following content:

For your convenience, an Excel file with the content needed is provided in
the file.

Note that the table represents simple orders with order details. However, the order info is
added to the first order details line only. Your task is to add the appropriate order info to
every single line.

Unleash the Power of SSIS Script Task and Component

[326]

How to do it...
Add a new package to the project. Rename it1.

.
Add a new package-level Excel connection manager. Rename it2.

. Point to your Excel file path and define your Excel version
appropriately, as shown in the following screenshot:

Add a Data Flow task to the control flow. Rename it to .3.
Open the Data Flow tab.
Add an Excel source. Double-click it to open the editor.4.
Using the Connection Manager tab, define the Excel connection manager. Point5.
to the connection manager you just created. Use the Table
or view data access mode. Select in the name of the Excel sheer drop-
down list. Click on the Preview button to preview the content of the file, as
shown in the following screenshot:

Unleash the Power of SSIS Script Task and Component

[327]

You can note in the data preview pop-up window that order info columns are6.
NULL except for the first order detail of an order. When finished with the
preview, click the Close button.
Click the Columns tab to check the columns mapping. Then click on OK to close7.
the data source editor.
Add a Script Component to the data flow. In the Select Script Component Type8.
pop-up window, make sure that Transformation option button is selected. Then
click on OK.
Connect the Script component with the blue arrow (regular data flow) from the9.
data source.
Double-click the Script component to open the editor. Note that the Script tab is10.
more complex than the Script tab of the Script task. Nevertheless, you can easily
find the , , and
properties. Leave all of them with their defaults, meaning you will use the
Microsoft Visual C# 2015 language and that you don't need any variables in the
script.

Unleash the Power of SSIS Script Task and Component

[328]

Click the Input Columns tab. In the table, select all11.
columns. In the lower part of the window, check the mappings between input
columns and output aliases. Don't change any of the output aliases. However,
change the usage type for the and columns to , as
shown in the following screenshot:

Unleash the Power of SSIS Script Task and Component

[329]

When setting up the columns correctly, click the Script tab and then the Edit12.
Script button to open the VSTA environment.
In the script, find the method. Add the following13.
two variables just before the method definition and after the comments, with the
summary and parameters description of this method:

Save the code end exit the VSTA environment. In the Script Transformation14.
Editor, click on OK.
Add a Multicast transformation to the data flow and connect it with the blue15.
arrow from the Script component. This transformation serves as a placeholder
only, in order to enable a Data Viewer after the Script transformation does its job.

Unleash the Power of SSIS Script Task and Component

[330]

Enable two Data Viewers, one on the path from the source to the Script16.
component, and one from the Script component to the Multicast transformation.
Your data flow should look as shown in the following screenshot:

Unleash the Power of SSIS Script Task and Component

[331]

Note that, depending on the Excel version you are using, you might need to17.
change the property of your project to False before running
the package, as shown in the following screenshot:

Save the package and run it. Observe the data before correction with the Script18.
component and after it. When finished, stop debugging.

Validating data using regular expressions in
a Script component
In this recipe, you will create a Script Component that will use the regular expressions in
the file to validate the emails of the personal data extracted from a
flat file.

Unleash the Power of SSIS Script Task and Component

[332]

Getting ready
This recipe assumes that you successfully completed the Reading data profiling XML results
with Script task recipe earlier in this chapter. If you did not complete that recipe, you can
prepare an appropriate SSIS package simply by completing step 1 of that recipe.

How to do it...
Make sure that the package is active in the control flow1.
designer.
Right-click in the empty canvas of the Connection Managers pane at the bottom2.
of the SSDT window and select New Flat File Connection... from the shortcut
menu.
Use the Flat File Connection Manager Editor to create a new connection3.
manager, and on the General page enter into the Connection
manager name textbox.
To determine the File name property, click Browse..., and then select the4.

 file in the
folder.

The file should be recognized as a Unicode file automatically; otherwise,
check the Unicode option below the Browse... button.

Leave the rest of the properties unchanged, as shown in the following screenshot:5.

Unleash the Power of SSIS Script Task and Component

[333]

On the Columns page, verify that all the source columns have been recognized:6.
Title, FirstName, MiddleName, LastName, Suffix, and EmailAddress.

Unleash the Power of SSIS Script Task and Component

[334]

If any of the columns are missing, click Reset Columns below the columns
list.

Click on OK to complete the configuration.7.
Add a new package parameter by using the following settings:8.

Property Value

Name

Data type

Value

Save the package.9.
From the SSIS Toolbox, drag a Data Flow task to the control flow designer,10.
change its name to , and—as long as you have
completed the Reading data profiling XML results with Script task—connect the
precedence constraint from the ReadPatterns task to the newly added data flow
task.
Open the Validate Person Data task in the data flow designer.11.
For the SSIS Toolbox, drag a Flat File Source component to the data flow, and12.
change its name to Person Data.
Configure the Person Data source to connect to the PersonData flat file13.
connection manager, and make sure that all the source columns are extracted.
From the SSIS Toolbox, drag a Script Component to the data flow designer.14.
When prompted about its type, select Transformation, as shown in the following
screenshot:

Unleash the Power of SSIS Script Task and Component

[335]

Click OK to confirm the component type, and then change its name to Validate15.
Email.
Connect the regular data path from the Person Data source to the Validate Email16.
transformation.
Double-click the Validate Email transformation to open the Script Task Editor.17.

Unleash the Power of SSIS Script Task and Component

[336]

On the Script page, add the $Package::DataProfileName package parameter to18.
the ReadOnlyVariables collection, and make sure that Microsoft Visual C# 2015
is selected as the ScriptLanguage property, as shown in the following screenshot:

Unleash the Power of SSIS Script Task and Component

[337]

On the Input Columns page, make sure that all the input columns are selected;19.
their usage type should be ReadOnly.
On the Inputs and Outputs page, in the Inputs and outputs list, select the Input20.
0 input, and in the properties pane on the right-hand side of the editor, change its
Name property to .
Select the Output 0 output, and change its name to .21.
In the properties, locate the property22.
and make sure it references the
input.

This means that the component's output is synchronous.

Expand the in the Inputs and outputs list and select the23.
Output Columns node.
Click on Add Column to create a column in the output; use the following settings24.
to configure it:

Click on OK to confirm the component's configuration so far.25.

It is recommended to save all Script component settings, such as variables,
inputs, outputs, and additional connection managers, before creating the
script.

This way, if there are problems with the script that you cannot resolve
during editing, the rest of the settings do not need to be set again.

Open the Validate Email transformation editor again, and on the Script page26.
click Edit Script... to start Visual Studio for Applications (VSTA) IDE.
Locate the region at the beginning of the component definition and27.
add the following references to the region:

Unleash the Power of SSIS Script Task and Component

[338]

In the class definition, add the following constant and private28.
variable declarations:

Typically, variable definitions are placed at the beginning of the class
definition, right after the three regions.

At the end of the class definition (before the last closing brace) place29.
the following function definition:

Unleash the Power of SSIS Script Task and Component

[339]

This function extracts all relevant regular expression patterns from the data
profiling result and loads them into a variable.

Right after the function, add another function:30.

This function tests the supplied email address against all available regular
expressions, and returns as soon as one of the patterns is matched;
otherwise, it returns .

Locate the method add the following command to its definition:31.

The data flow component method is called at the beginning
of the data flow execution, before the rows are acquired from the upstream
pipeline. As the same set of regular expressions is going to be used
throughout the data flow execution, it only needs to be loaded once, not for
every row.

Unleash the Power of SSIS Script Task and Component

[340]

Locate the method, and add the32.
following command to its definition:

The function needs to be called for each row as it needs to
validate each e-mail address extracted from the source.

Save the VSTA project and build it by selecting the Build command from the33.
Build menu.

If you entered all the code correctly, the build should succeed; otherwise, you
need to follow the error messages in the Error pane to resolve the errors.

After the successful build, close the VSTA window, and return to SSDT.34.
In the Script Transformation Editor, click on OK, to confirm and save the35.
component script, and then save the package.
From the SSIS Toolbox, drag a Conditional Split transformation to the data flow36.
designer, and change its name to .
Connect the regular data path from the Validate Email transformation to the37.
Conditional Split transformation.
Double-click the newly added transformation to open the Conditional Split38.
Transformation Editor.
Create a new output using the following settings:39.

Property:
Output name:
Condition:

Alternatively, to reduce typing, you can drag the column
from the Columns list in the top-left part of the Conditional Split
Transformation Editor.

Unleash the Power of SSIS Script Task and Component

[341]

Change the Default output name to .40.

Refer to the following screenshot to verify your settings:

Unleash the Power of SSIS Script Task and Component

[342]

Click on OK to complete the configuration.41.
From the SSIS Toolbox, drag a Multicast transformation to the data flow designer42.
and connect the regular data path from the Valid or Invalid Email
transformation to it.
When prompted by the Input Output Selection dialog, select the Invalid Email 43.
in the Output selection box, as shown in the following screenshot:

Click on OK to confirm the selection.44.
Enable the Data Viewer on the Invalid Email data path.45.
Save the package and execute it in debug mode. Observe the execution and46.
inspect the rows placed in the Invalid Email data path.
Stop the debug mode execution; leave the solution open, as you will need it for47.
the next recipe.

Unleash the Power of SSIS Script Task and Component

[343]

Using the Script component as a source
In this recipe, you will create a custom source by using the Script Component as a data flow
source.

You will connect to a web service and retrieve the data from it, which you will then place
into the data flow pipeline.

How to do it...
Add a new SSIS package to the AdventureWorksETL project you created at the1.
beginning of this chapter.
Change the name of the newly created package to CustomWebServiceSource.dtsx2.
and save it.
Make sure the CustomWebServiceSource.dtsx package is active, and then create3.
a new package parameter using the following settings:

Property:
Name:
Data type:
Value:

Drag a Data Flow task to the control flow designer and change its name to4.
Airport Information.
Open the Airport Information task in the data flow designer and drag a Script5.
Component to the data flow designer.
In the Select Script Component Type dialog, select Source, as shown in the6.
following screenshot:

Unleash the Power of SSIS Script Task and Component

[344]

Click on OK to confirm the selection.7.
Change the name of the Script component to Airport Info by Country.8.
Double-click on the Airport Info by Country source to open the Script9.
Transformation Editor.
On the Script page, add the parameter to the10.

 collection, and make sure that Microsoft Visual C# 2015 is
selected as the ScriptLanguage property.
On the Inputs and Outputs page, select Output 0 and change its name to11.

.
Add columns to the output's Column Collection using the following settings:12.

Unleash the Power of SSIS Script Task and Component

[345]

Refer to the following screenshot to verify your settings:

To ensure that each new column is added to the end of the list, click on the
Output Columns node before adding the next column.

Click OK to confirm the configuration.13.
Open the Airport Info by Country transformation editor again, and this time14.
click Edit Script... to start VSTA.

Unleash the Power of SSIS Script Task and Component

[346]

In the Solution Explorer, right-click the References node and select Add Service15.
Reference... from the shortcut menu, as shown in the following screenshot:

In the Add Service Reference dialog, click on Advanced... on the bottom-left of16.
the dialog.
In the Service Reference Settings dialog, click on Add Web Reference... to open17.
the Add Web Reference dialog.
Enter the following URL in the URL textbox:18.

Click the arrow pointing to the right, on the right-hand side of the textbox, to19.
load the information from the web service.

Unleash the Power of SSIS Script Task and Component

[347]

Enter into the Web reference name textbox.20.

Refer to the following screenshot to verify your settings:

Click Add Reference to confirm the settings and create the reference.21.
Save the project.22.
In the component definition, at the beginning of the code, locate the 23.
region and expand it to list the existing references.
Add another command after the last one, and start typing the name of the24.
project (it should be similar to);
allow the Visual Studio intellisense to suggest the complete namespace, and then
complete the reference to the namespace:

Unleash the Power of SSIS Script Task and Component

[348]

The value in this example is used25.
for the name of the VSTA project and for its default namespace. When you add a
web reference to the project, proxy classes, and functions are created
automatically and placed in the project's default namespace.
Add the following reference as it will be needed later:26.

From the Build menu, select Build, to save and build the project.27.
If you followed the preceding steps correctly, the project should build28.
successfully; otherwise, inspect the errors reported in the Error pane and make
the necessary corrections.

If errors are returned from the automatically generated code, remove1.
the web reference by right-clicking it in the Solution Explorer and
selecting Delete from the shortcut menu, then rebuild the project and
repeat steps 14 through 21.

Add the following variable declarations to the class of the29.
component definition:

Add the following commands to the method:30.

The function of the given web service31.
returns a list of airports and their properties for the supplied country name. This
function only needs to be invoked once per data flow execution; therefore, you
should place it in the method, which is invoked once, at the
beginning of the data flow execution.

Unleash the Power of SSIS Script Task and Component

[349]

Add the following commands to the method:32.

This code will read all the items retrieved from the web service
 function and place each one of

them in the component's output.

Use the Build command from the Build menu to save and build the component33.
project. In case of any errors, inspect the Error pane and resolve the problems.
After the project is built successfully, close the VSTA window and return to34.
SSDT.
In the Script Transformation Editor, click OK to complete the configuration of35.
the Airport Info by Country source component.
Save the package.36.
From the SSIS Toolbox, drag a Multicast transformation to the data flow37.
designer.
Connect the regular data path from the Airport Info by Country source38.
component to the Multicast transformation and activate the Data Viewer on this
data path.
Save, and execute the package in debug mode. Observe the rows in the Data39.
Viewer.
Stop the debug mode execution; leave the solution and the package open, as you40.
will need them in the following recipe.

Unleash the Power of SSIS Script Task and Component

[350]

How it works...
The Airport Info by Country source component connects to a publicly available web
service that provides information about airports in various countries. It retrieves the list of
airports for the country specified by the CountryName package parameter.

Alternatively, the country name could also be supplied via a variable populated in a
Foreach Loop container, so that the same data flow is executed multiple times for multiple
countries.

After the data is retrieved from the web service, it is placed into a variable. When the
component starts to generate rows, specific properties of each item retrieved from the web
service are placed into the downstream pipeline. Each row in the components output
represents one entity retrieved from the web service.

Using the Script component as a destination
In this recipe, you will design a custom data flow destination by using the Script
Component.

You will use the data retrieved by using the source component created in the Using the
Script component as a source recipe and export it in JSON format to one or more files.

The acronym JSON stands for JavaScript Object Notation, an open-source format for
representing data in human-readable form that can also be consumed by automated
processes.

Unleash the Power of SSIS Script Task and Component

[351]

Getting ready
Before you can complete this recipe, you need to complete the Using the Script component as a
source recipe.

How to do it...
Make sure that the package of the1.

 solution from the
 folder is active in the control

flow editor.
Add a package parameter using the following settings:2.

Property:
Name:
Data type:
Value:

Add another package parameter using the following settings:3.
Property:
Name:
Data type:
Value:

Open the Airport Information data flow in the data flow designer.4.
Form the SSIS Toolbox, drag a Script Component to the data flow designer.5.

Unleash the Power of SSIS Script Task and Component

[352]

In the Select Script Component Type dialog, select Destination, as shown in the6.
following screenshot:

Click on OK to confirm the selection.7.
Change the name of the destination component to JSON File.8.
Connect the regular data path from the Multicast transformation to the JSON File9.
destination.
Double-click the JSON File destination to open its editor, and on the Script page,10.
add the and
parameters to the collection.
On the Input Columns page, make sure that all the input columns are selected.11.
The usage type for all the columns can remain ReadOnly.
On the Inputs and Outputs page, rename the Input 0 input to .12.
Click OK to confirm the configuration.13.

Unleash the Power of SSIS Script Task and Component

[353]

Open the JSON File destination again, and on the Script page click Edit Script...14.
to open the component's project in VSTA.
In the Solution Explorer, right-click References and select Add Reference... from15.
the shortcut menu.
In the Reference Manager, in the navigator on the left, make sure that the16.
Assemblies / Framework node is selected, and then in the list in the middle of
the dialog, locate the System.Web.Extensions assembly and check it, as shown in
the following screenshot:

Click OK to confirm the selection.17.
At the beginning of the component definition, locate the region and18.
expand it to inspect the existing namespace references.
Add the following references below the existing ones:19.

Unleash the Power of SSIS Script Task and Component

[354]

The namespace contains the
functionalities needed to create and consume JSON data. The
namespace provides access to the functionalities needed to work with the
Windows operating system filesystem.

In the class, add the following constant and variable declarations:20.

Also inside the class, at the end of the existing code (before the last21.
closing brace), add the following class definition:

This class allows you to store the pipeline data during processing, and it
provides the metadata to the
method that creates the JSON documents.

Unleash the Power of SSIS Script Task and Component

[355]

Unless explicitly marked public, class members are, by default,
marked private, and thus inaccessible to the caller. If the metadata for
the JSON document cannot be determined, the serialization will not
fail, but the resulting document will also not contain any data for
which the metadata was not available during serialization.

Before the class definition, place the definition of the function that22.
will be used to write the data to the file:

Add the following variable assignments to the method:23.

Remove the method, as this component24.
will not process individual rows in the traditional way.
Instead, just after the method definition, enter a new line, and25.
start typing the directive. Visual Studio will list the overridable
methods of the component; select the method
to override, and add the following code to its definition:

Unleash the Power of SSIS Script Task and Component

[356]

Build the project by selecting the Build command from the Build menu.26.
Close VSTA and return to SSDT.27.
In the Script Transformation Editor, click OK to complete the configuration of the28.
JSON File destination.
Save the package and execute it in debug mode. The JSON File destination loads29.
the rows from the pipeline into files, 50 rows at a time.
In Windows Explorer, navigate to the C:\SSIS2016Cookbook\Chapter07\Files30.
folder; it should contain six additional files, named AirportInfo_001.JSON
through AirportInfo_006.JSON.
Right-click one of the files and use the Open With command to open the file in31.
Notepad. Inspect the file; it should contain the JSON representation of the
information about the airports.
Return to SSDT, stop the debug mode execution, and close SSDT.32.

Unleash the Power of SSIS Script Task and Component

[357]

How it works...
The JSON File destination receives the rows from the upstream component, stores them in
a variable (50 rows at a time), and converts the row set into a JSON document, which it then
loads into a file in the file system.

The method contains all the logic needed to process the
incoming pipeline data; it creates batches of up to 50 rows so that no resulting JSON
document contains more than 50 items.

The function uses the method of the
 class to create a JSON document from the row set, and the

metadata needed to create the document's structure is provided by the class.

88
SSIS and Advanced Analytics

In this chapter, we will cover the following recipes:

Splitting a dataset into a training and test set
Testing the randomness of the split with a SSAS decision tree model
Preparing a Naive Bayes SSAS data mining model
Querying the SSAS data mining model with the data mining query
transformation
Creating an R data mining model
Using the R data mining model in SSIS
Text mining with term extraction and term lookup transformations

Introduction
Advanced analytics, including statistics, data mining, and machine learning, has become
very popular in recent years. You can use SSIS to prepare the data you need for further
analysis. Often, you need to prepare a sample of your data. The sample has to be random.
For predictive algorithms, you typically split the data into a training set, used to train
multiple models, and a test set, used to perform predictions on it, and see which model
gives you the best results. You can use the row sampling and the percentage sampling
transformations to create random samples.

In the SQL Server suite, you can use SQL Server Analysis Services (SSAS), installed in
multidimensional and data mining mode, to create data mining models. In addition, from
SQL Server 2016, you can also use the R language to do nearly any kind of advanced
analysis you want. You will learn in this chapter how you can use both SSAS and R models
in the SSIS data flow.

SSIS and Advanced Analytics

[359]

You will use the data mining query transformation for predictions from the SSAS mining
model, and SQL Server source to execute the R code inside SQL Server with the

 system procedure.

Analyzing texts is also an important part of advanced analytics. In SSIS, you can use two
transformations, term extraction and term lookup, for this task.

Splitting a dataset into a training and test set
In this recipe, you will split the data into training and test sets using the SSIS percentage
sampling transformation. You will use 70 percent of the data for the training set and 3
percent for the test set.

Getting ready
There are no special prerequisites for this recipe, except, of course, SSIS 2016 installed, and
the database available in your SQL Server instance.

How to do it...
Open SQL Server Data Tools (SSDT) and create a new project using the integration
services project template. Place the solution in the folder and name
the project :

Rename the default package to .1.
In the Control Flow tab in the Package Designer, add a new data flow task by2.
dragging and dropping it from the SSIS toolbox.
Right-click the task and select Rename from the pop-up menu. Change the task's3.
name to .
Click the Data Flow tab.4.
Create a new OLE DB source. Name it .5.
Double-click the data source.6.
On the General tab, create a new connection manager.7.
Prepare the connection to the database on your SQL8.
Server instance.
Select the Table or view option in the Data access mode drop-down list.9.
Select the vTargetMail view.10.

SSIS and Advanced Analytics

[360]

Click the Columns row in the left-hand list to check the mapping between input11.
and output columns. Leave the default mappings. Click OK to close the OLE DB
Source Editor.
Add the percentage sampling transformation and name it . Connect it12.
to the source with the gray arrow that goes out from the source connection object.
Set the following properties for the new transformation and then click OK to
close the Percentage Sampling Transformation Editor:

Property Value

Percentage of rows

Sample output name

Unselected output name

Use the following random seed Leave unchecked

The following screenshot shows how you should set up the properties of the13.
percentage sampling transformation:

SSIS and Advanced Analytics

[361]

Add two derived column transformations.14.
Name the first transformation and the second one15.

.
Drag the first blue arrow from the percentage sampling transformation to the16.
identify training set transformation. Select the output.
Drag the second blue arrow from the percentage sampling transformation to the17.
identify test set transformation. Make sure that the output is selected.
Double-click the transformation. Add a new column,18.
called , with a constant expression of one and a datatype of signed 4-
byte integer.
Double-click the transformation. Add a new column, called19.

, with a constant expression of two and a datatype of signed 4-byte
integer.
Add two OLE DB destinations. Name the first destination , and20.
the second one .
Connect the destination to the output of the21.

 transformation, and connect the destination
to the output of the transformation.
Double-click the destination. Select the connection manager you22.
created to connect to your database. Click the New
button near the name of the table, or the view drop-down menu, to create a new
table. Check the columns and click OK.
Click Mappings to get the mapping page of the OLE DB Destination Editor.23.
Check the mappings between input and output columns. Click OK to close the
OLE DB Destination Editor.
Repeat the last two steps for the destination. Make sure that your24.
data flow looks as follows:

SSIS and Advanced Analytics

[362]

In solution explorer, right-click the package and execute it. After the25.
package has executed, stop the debugging.
Save the project. Do not exit SSDT.26.

Testing the randomness of the split with a
SSAS decision trees model
You need to test the randomness of the split from the previous recipe. You will use the
SSAS decision trees algorithm to check whether you can predict a set membership with
input variables. You should get a very shallow tree, meaning there are no patterns that
could explain the set membership.

SSIS and Advanced Analytics

[363]

Getting ready
For this recipe, you need to have SSAS installed in multidimensional and data mining
mode. You also need to finish the previous recipe.

How to do it...
In SSDT, add a new analysis services multidimensional and data mining project1.
to the solution and name the project .
In solution explorer, right-click the folder and select New Data2.
Source to create a new data source.
In the Data Source Wizard welcome screen, click Next.3.
In the Select how to define the connection screen, create a data source using a4.
connection database. Click Next.
In the Impersonation Information screen, you need to define how SSAS will5.
connect to SQL Server to read the data. Use a Windows user that has permission
to read the data. Click Next.
In the Completing the Wizard screen, accept the default name and click Finish.6.
Create a new data source view based on the data source you just created. Right-7.
click the folder and select New Data Source View.
In the welcome screen of the Data Source View Wizard, click Next.8.
In the Select a Data Source screen, select the data source you just created and9.
click Next.
In the Select Table and Views screen, do not select any tables or views, just click10.
Next.
In the Completing the Wizard screen, accept the default name and click Finish.11.
In the Data Source View Editor, right-click somewhere in the main working pane12.
and select New Names Query option.
In the Create Named Query pop-up window, name the named query13.

. This query will combine the test and training sets you created in the
previous recipe.
In the Query definition part of the window, in the bottom area, write the14.
following query:

SSIS and Advanced Analytics

[364]

Note that using an asterisk () to select all columns () is usually not15.
recommended in production. However, in this case, it is not a problem because
the Create Named Query editor spells out column names explicitly and thus
corrects your queries. The Create Named Query editor should look like the
following screenshot. Then click OK:

SSIS and Advanced Analytics

[365]

Use as a logical primary key. In the Data Source View editor,16.
right-click the column in the named query you just created, and
select the Set Logical Primary Key option.
In solution explorer, right-click the folder and select New17.
Mining Structure.
In the Data Mining Wizard welcome screen, click Next.18.
In the Select the Definition Method screen, use the existing relational database19.
or data warehouse.
In the Create the Data Mining Structure screen, select the Microsoft Decision20.
Trees technique.
In the Select Data Source View screen, use the data21.
source view you just created.
In the Specify Table Types screen, select the table as a case table.22.
In the Specify the Training Data screen, use as a Key column23.
(selected by default), as the Predictable column, and the following
columns as Input columns:

The following screenshot shows how your columns should be selected:24.

SSIS and Advanced Analytics

[366]

SSIS and Advanced Analytics

[367]

In the Specify Columns' Content and Data Type screen, click the Detect button.25.
Change the and content type to discretized (they are
continuous variables, and you will use SSAS discretization).
In the Create Testing Set screen, change the Percentage of data for testing option26.
to .
Name the structure , and name the model (these27.
should be the default names). Then click Finish.
In the Mining Structure window, click the column. Open the Properties28.
window for this column if it is closed. (The Properties window is open by
default. If you have closed it, you can open it from the View menu or with the F4
key.) Set the DiscretizationBucketCount property to and the
DiscretizationMethod property to .
Repeat the previous step for the attribute.29.
Click the Mining Models tab. Right-click the model and select the30.
Set Algorithm Parameters option.
Refine the model parameters so it can find fine patterns. Use for31.

 and for , and then click OK. By
setting low values for these two parameters, you are forcing the splitting of the
decision tree. You are also forcing SSAS to find any patterns. Note that the
patterns should be clear. Otherwise, the data split between the training and test
sets would not be random. The following screenshot shows how the parameters
should be set:

SSIS and Advanced Analytics

[368]

Save the project. In solution explorer, right-click the project and select32.
Deploy. Wait until the deployment is finished.
Click the Mining Model Viewer tab. Use the default Decision Tree view.33.

SSIS and Advanced Analytics

[369]

Color the background using value of the attribute. This way, you34.
can easily find branches with a higher percentage of data in the training set. If the
split was done randomly, all branches should be colored nearly equally. In
addition, expand all levels of the tree by selecting All Levels in the Default
Expansion drop-down list. You shouldn't get a very deep tree. For example, you
should get a tree like the one in the following screenshot. As you can see, in this
case, it has only three levels, with a nearly equal percentage of training and test
data in each branch:

SSIS and Advanced Analytics

[370]

Note that your tree should differ slightly from the tree in the screenshot. This is35.
because the SSIS package splits the data randomly.
Although the tree found a few patterns, none of them is significant. Either the36.
distributions between the training and test sets do not vary significantly, and/or
the support of the nodes is low. This is a good split, as you could expect from a
SSIS sampling transformation.
Save the solution.37.

Preparing a Naive Bayes SSAS data mining
model
In this recipe, you will determine the factors that influence buying bikes. You will use the
Naive Bayes algorithm with the training set you prepared in the previous recipe.

Getting ready
For this recipe, you need to have SSAS installed in multidimensional and data mining
mode. You also need to finish the first recipe in this chapter.

How to do it...
In SSDT, add a new analysis services multidimensional and data mining project1.
to the solution. Name it .
Create a new data source using the database. Use the2.
Native OLE DB\SQL Server Native Client 11.0 provider. Use a Windows user
that has permission to read the data. Use the default name for the data source.
Create a new data source view based on the data source created in step 2. Select3.
the and tables created in the first recipe of this
chapter for the training and test sets. Use the default name for the data source
view.
Set the column as the logical primary key for both tables.4.
In solution explorer, right-click the folder and select New5.
Mining Structure.
Use the existing relational database or data warehouse.6.
Select the Microsoft Naive Bayes data mining technique.7.

SSIS and Advanced Analytics

[371]

Use data source view.8.
Specify as the case table.9.
Use as the column (selected by default), as the10.

 attribute, and the following columns as the columns:

In the Specify Columns' Content and Data Type screen, click the Detect button.11.
Change the Content Type of all the columns to , except for the

 column, which should be , and the and
columns, which should be , as shown in the following screenshot:

SSIS and Advanced Analytics

[372]

In the Create Testing Set screen, change the percentage of data for testing to .12.
You already created the test set, so you do not need SSAS to create it.

SSIS and Advanced Analytics

[373]

Name the structure , and name the model . Then click Finish.13.
Discretize the and mining structure columns into five14.
groups using the method. On the Mining Structure tab of the Data
Mining Designer, open the Properties window of each column. Make sure that
the Content property is set to , and change the

 property to and the
property to .
Save and deploy the project. Processing should also start automatically.15.
Click the Mining Model Viewer tab.16.
The first view you get is Dependency Network. Find the three attributes with the17.
highest influence on . These attributes should be

, , and , as the following screenshot shows:

SSIS and Advanced Analytics

[374]

Click the Attribute Profiles tab. Check how the attribute is distributed18.
between customers that do not buy bikes.
Click the Attribute Characteristics tab. Check the characteristics for bike buyers19.
(value of the attribute). You should see that they typically do not
have children at home, are either married or single, and are from North America.
Finally, check the Attribute Discrimination tab. Find out what factors influence20.
buying a bike.
Save the project.21.

Querying the SSAS data mining model with
the data mining query transformation
In this recipe, you are going to use the data mining query transformation. Based on the
Naive Bayes model built in the previous recipe, you will use a (Data Mining Extensions
(DMX) prediction query to get predictions from the SSAS mining model for the test dataset
you created in the first recipe of this chapter.

Getting ready
In order to test this recipe, you need to have SSAS installed in multidimensional and data
mining mode. In addition, you need to finish the first and third recipes of this chapter.

For your convenience, the SSIS and SSAS projects needed here are
provided in the solution.

SSIS and Advanced Analytics

[375]

How to do it...
Add a new package to the project. Rename it .1.
In the control flow of the package, add a new data flow task by dragging it from2.
the SSIS toolbox to the control flow work area.
Click the Data Flow tab to open the Data Flow Designer.3.
Create a new OLE DB source. Name it . Double-click the 4.
data source.
On the General tab, create a new connection manager. Use the5.

 database on your SQL Server instance.
Select the Table or view option in the Data access mode drop-down list.6.
Select the table.7.
Click the Columns row in the left-hand list to check the mapping between the8.
input and output columns. Leave the default mappings.
Add the data mining query transformation and name it . Connect9.
it to the source with the blue arrow that goes out from the source connection
object.
Double-click the transformation to open the Data Mining Query10.
Transformation Editor.
On the Mining Model tab, create a new connection manager. Click the button11.
New near the Connection Manager drop-down list.
In the Add Analysis Services Connection Manager pop-up window, click the12.
Edit button.

SSIS and Advanced Analytics

[376]

Use your SSAS server, and use Windows integrated security. Select13.
 for the Initial catalog. Make sure that the Microsoft OLE DB

Provider for Analysis Services 13.0 is used for the provider, as shown in the
following screenshot. Then click OK:

SSIS and Advanced Analytics

[377]

Click OK twice to get back to the Data Mining Query Transformation Editor.14.
In the Mining structure drop-down list, select the mining structure.15.
In the Mining models box at the bottom of the editor, select the mining16.
model.
Click the Query tab. Click the Build New Query button to use the DMX Query17.
Builder to build a new prediction query.
In the DMX Query Builder, in the Source drop-down list, select the Data Flow18.
Input Columns option. In the Field drop-down list, select .
In the DMX Query Builder, in the Source drop-down list, select the 19.
mining model option. In the Field drop-down list, select . In the
Alias text box, write .
In the DMX Query Builder, in the Source drop-down list, select the Prediction20.
function option. In the Field drop-down list, select . In the
Alias text box, write . Drag the column
from the mining model at the top left of the window to the Criteria/Argument
field of the function.
When your screen looks like the following screenshot, click OK:21.

SSIS and Advanced Analytics

[378]

Your query should be like the following. Click OK when you're finished with the22.
DMX query to close the Data Mining Query Transformation Editor:

SSIS and Advanced Analytics

[379]

Add a new sort transformation. Connect it with the blue line from the data23.
mining query transformation.
Sort the data by the column, in ascending order.24.
You are done with this recipe. You will finish the package in the Using the R data25.
mining model in SSIS recipe, when you will add predictions from the R model.
Then you will be able to compare the quality of the predictions from different
models.
If you want to test the data flow you created, you can enable a data viewer on the26.
last path. Don't forget to disable it when you finish with testing.

Creating an R data mining model
In this recipe, you will create another Naive Bayes mining model, this time using R. This is a
preparation for the next recipe, when you will use R in SSIS.

Getting ready
You can download R from the Comprehensive R Archive Network (CRAN) site at

. You can get the R engine for Windows, Linux, or macOS.
After installation, you start working in an interactive mode. You can use the R console client
tool to write the code line by line. However, the most widely used free tool for writing and
executing R code is RStudio IDE. It is a free tool, and you can download it from

.

SSIS and Advanced Analytics

[380]

This section assumes you use RStudio for the code examples. In addition, you need to have
a web connection in order to install additional R packages you need for this recipe.

Note that if you are not interested in R, you can completely skip this recipe. The R code
developed here is used in the next recipe as a parameter of the

 SQL Server system procedure, so you can switch to
the next recipe immediately.

For your convenience, the R code for this recipe is provided in the
 file.

How to do it...
In RStudio, open a new script file (File | New File | R Script). Save the file in the1.

 file.
Install the RODBC package and load the library to memory. You can use the2.
following code for this task. Highlight the code in RStudio and press Ctrl + Enter
to execute the code. Note that you need to have a web connection in order to
install a package:

In SQL Server, create a SQL Server login named , with the password3.
. Create a database user in the database for

this user and add it to the role. You can execute the following
code in SSMS to create this login and user:

SSIS and Advanced Analytics

[381]

In the ODBC Data Source Administrator tool, create a new system DSN, name it4.
, and connect to the database of your SQL Server

instance. Log in with the login you just created.
Back in RStudio, use the following code to connect to your SQL Server:5.

Close the connection with the following code:6.

The and the columns are ordered. You need to inform R7.
about the order by creating a factor from each one of them. Use the following
code:

SSIS and Advanced Analytics

[382]

You can check whether you defined the order correctly by quickly plotting the8.
two ordered variables. The following code shows how to create a plot for

:

The following screenshot shows the plot:9.

SSIS and Advanced Analytics

[383]

You need to split the data into training and test sets again. Note that you could10.
also read the data from the two tables into two separate data frames immediately.
However, the system stored procedure in
SQL Server accepts only a single input query. Therefore, this code will be directly
used in the next recipe. Use the following code to do the split:

You will use the Naive Bayes algorithm from the package. Install the11.
package and load it to memory:

Build a Naive Bayes model with the function. Use columns to12.
 as input columns and column as a predictable one. Use the following code:

Make predictions on the test set with the function and store the13.
predictions in a new data frame:

Bind the predictions to the test dataset with the function and store the14.
result to the new data frame. View the new data frame and check a few
predictions. You may notice that some predictions are incorrect. Use the
following code:

When finished, save the script and exit RStudio.15.

SSIS and Advanced Analytics

[384]

Using the R data mining model in SSIS
The R code developed in the previous recipe can be used directly in the

 system stored procedure. You will test this in SSMS.
Then you will use the procedure in an OLE DB source inside a SSIS data flow.

Getting ready
In order to continue with this recipe, you need to have R Services (In-Database). This is the
installation that integrates R in SQL Server. It includes a database service that runs outside
the SQL Server database engine and provides a communication channel between the
database engine and R runtime. You install it with SQL Server setup. The R engine includes
the open-source R components, and in addition, a set of scalable R packages.

How to do it...
First, you need to enable external scripts in SQL Server. In SSMS, execute the1.
following code:

For your convenience, the T-SQL code for this and the previous recipe
is provided in the file.

SSIS and Advanced Analytics

[385]

Then you need to install the package. You need to run as administrator2.
 the R Command Prompt from the

 folder and execute the
following commands:

install.packages("e1071");
q();

In SSMS, use the following code to create an R Naive Bayes model and make3.
predictions on a test set. Note that the code that is used as parameters for the

 procedure is copied from the previous
recipe:

SSIS and Advanced Analytics

[386]

Check whether the results are the same as you got in RStudio.4.
Switch back to SSDT. You will continue to develop the 5.
package you created in the fourth recipe of this chapter. Open the data flow
editor.
Create a new OLE DB source. Name it . Double-click the data6.
source.
Use the connection manager.7.
Select the SQL Command option in the Data access mode drop-down list.8.
In the SQL Command text, copy and paste the code that executes the9.

 system procedure from SSMS.
Click the Columns row in the left-hand list to check the mapping between the10.
input and output columns. Leave the default mappings.
Add a transformation and connect it with the blue arrow from11.
the data source.

Add a new derived column, with 4-byte signed integer datatype. Name1.
it . Use the following formula for the expression:

SSIS and Advanced Analytics

[387]

Add another derived column. Name it . Use the double-12.
precision float datatype. Use the following formula for the expression:

Add a new transformation. Connect it with the blue line from the 14.
 transformation.

Sort the data by the column, in ascending order.15.
Add a transformation. Use the first Sort transformation as the left16.
input, and the second transformation as the right input. Use the Inner join
as the join type. Select the , , , and

 columns from the left input, and the
and the columns from the right input. Close the Merge
Join Transformation Editor.
Add a transformation and connect it with the blue line from the17.

 transformation. This transformation will serve just as a placeholder
for enabling a data viewer.
Enable the Data Viewer on the path between the and the18.

 transformations. Your data flow should look like the following
screenshot:

SSIS and Advanced Analytics

[388]

Save the package and execute it. Observe the actual value of the 19.
column, and the predictions from SSAS and R.

SSIS and Advanced Analytics

[389]

Text mining with term extraction and term
lookup transformations
In this recipe, you will see how text mining works. You will use a text file with some blogs
as a source, extract terms from them, and then look up terms in them.

Getting ready
You need to have the file available. You can get it with the code from the code
download for this book.

How to do it...
In SSDT, add a new package to the SSIS project. Name it1.

.
On the Control Flow tab in the Package Designer, add two data flow tasks.2.
Name them and and connect them with the green
arrow. The term extraction task should be first.
Click the Data Flow tab. Select the task. Prepare the data flow3.
for this task.
Add a flat file source. Name it . Set the properties for this source:4.

Create a new connection manager called , whose source file
is . Select the column names that
are in the first data row checkbox.
Click Columns. Check whether you see the data in tabular format with
three columns and five rows. The columns delimiter should be a
semicolon. The row delimiter should be .
Click the Advanced option. Set the properties to

 for the column, for the column and for
the column. Click OK.

SSIS and Advanced Analytics

[390]

Click the Columns tab of the Flat File Source Editor. Click OK twice to close the5.
Flat File Source Editor.
Add the transformation. Name it . Connect it with6.
the source transformation with the gray arrow. You will save the imported blogs
into a SQL Server table, which will feed the term extraction transformation.
Add an OLE DB destination. Name it . Connect it with the 7.
transformation with the blue arrow. Create a new OLE DB connection manager to
the database, and then create a new table named

 in the database.
Click the Mappings tab to map the input and the destination columns (the8.
mappings between columns should happen automatically because the input and
the destination columns have the same names). Click OK.
Add a transformation. Connect it with the second blue arrow9.
from the transformation. Configure it:

Specify the column for the input column.
Keep the default names for the output columns (and).
Configure the error output to ignore failures.
Check what you can configure on other tabs (exclusion table and
advanced options). Click OK.

Add an OLE DB destination. Name it . Connect it with the 10.
 transformation. Use the connection manager to your local

 database. Create a new table, , in the
 database.

Click the Mappings tab to map the input and the destination columns. Click OK.11.

SSIS and Advanced Analytics

[391]

Make sure your data flow looks as follows:12.

Configure the term lookup data flow.13.
Add a new OLE DB source. Name it . Use the table created in14.
the previous data flow from the database.
Add a transformation and connect it with the blue arrow from the15.
source. Configure it:

Use the table as the reference table.
Click the tab. Connect the input column with
the reference column.
Make and Pass-Through Columns.

SSIS and Advanced Analytics

[392]

Your term lookup configuration should look like the following screenshot:16.

Add an OLE DB destination. Name it . Connect it with the 17.
 transformation. Use the connection manager to your local

 database. Create a new table named in
the database.
Click the Mappings tab to map the input and the destination columns. Click OK.18.
In solution explorer, right-click the package and19.
execute it. Follow the execution. After the package is executed, stop the
debugging. If you have to repeat the execution of the package, you might have to
delete the tables created in the package and recreate them.
Check the output of the package by querying the tables created in the package:20.

SSIS and Advanced Analytics

[393]

You can use the following code to clean up the 21.
database:

99
On-Premises and Azure Big

Data Integration
This chapter will cover the following recipes:

Azure Blob storage data management
Installing a Hortonworks cluster
Copying data to an on-premises cluster
Using Hive – creating a database
Transforming the data with Hive
Transferring data between Hadoop and Azure
Leveraging a HDInsight big data cluster
Managing data with Pig Latin
Importing Azure Blob storage data

Introduction
Data warehouse architects are facing the need to integrate many types of data. Cloud data
integration can be a real challenge for on-premises data warehouses for the following
reasons:

The data sources are obviously not stored on-premises and the data stores differ a
lot from what ETL tools such as SSIS are usually made for. As we saw earlier, the
out-of-the-box SSIS toolbox has sources, destinations, and transformation tools
that deal with on-premises data only.

On-Premises and Azure Big Data Integration

[395]

The data transformation toolset is quite different to the cloud one. In the cloud,
we don't necessarily use SSIS to transform data. There are specific data
transformation languages such as Hive and Pig that are used by the cloud
developers. The reason for this is that the volume of data may be huge and these
languages are running on clusters. as opposed to SSIS, which is running on a
single machine.

While there are many cloud-based solutions on the market, the recipes in this chapter will
talk about the Microsoft Azure ecosystem.

Azure Blob storage data management
This recipe will cover the following topics:

Creating a Blob storage in Azure
Using SSIS to connect to a Blob storage in Azure
Using SSIS to upload and download files
Using SSIS to loop through the file using a for each loop task

Getting ready
This recipe assumes that you have a Microsoft Azure account. You can always create a trial
account by registering at .

How to do it...
In the Azure portal, create a new storage account and name it .1.
Add a new package in the project and call it2.

.
Right-click in the Connection Manager pane and select New file connection3.
from the contextual menu that appears.
The Add SSIS Connection Manager window appears. Select Azure Srorage and4.
click on the Add... button.

On-Premises and Azure Big Data Integration

[396]

Fill the Storage account name textbox, as shown the following screenshot:5.

On-Premises and Azure Big Data Integration

[397]

Rename the connection manager .6.
Right-click on the newly created connection manager and select Convert to7.
Project Connection, as shown in the following screenshot:

Parameterize the , as shown in the following screenshot:8.

On-Premises and Azure Big Data Integration

[398]

On-Premises and Azure Big Data Integration

[399]

Copy and paste the Azure Blob storage key in the9.
 parameter.

From the SSIS toolbox-Azure section, drag and drop an Azure Blob upload task10.
to the control flow. Set its properties as shown here:

Rename the task
Assign the Connection property to the

 connection manager we created
earlier.
Create a folder on your C drive and name it .
Copy any file; in our case, we used a file called

.
Set the BlobContainer property to .
Set the optional property BlobDirectory to .
Set the LocalDirectory to .
Leave the other properties as they are.

See also shown in the following screenshot:

On-Premises and Azure Big Data Integration

[400]

Now, right-click on the package to execute it.11.

On-Premises and Azure Big Data Integration

[401]

After the execution has completed, go to your Azure storage account and you12.
should see the file uploaded there, as shown in the following screenshot:

That's it. We have successfully uploaded a file to a Blob storage with SSIS. We just did a
 test. The next recipes with Azure will fill out this storage account with more

useful files.

Installing a Hortonworks cluster
In the previous recipe, we created and managed files using an Azure Blob storage. This
recipe will do similar actions but this time using an on-premises Hadoop cluster.

Getting ready
This recipe assumes that you can download and install a virtual machine on your PC.

How to do it...
You will need to download and install a Hortonworks sandbox for this recipe. Go1.
to to download a Docker version of the
sandbox. You can choose the sandbox you want, as shown in the following
screenshot:

On-Premises and Azure Big Data Integration

[402]

Download the VM you want; in our case, we used the last one, DOWNLOAD2.
FOR DOCKER. Once done, follow the instructions to configure it and make sure
you have added the following entry to the

 file:

This is shown in the following screenshot:

On-Premises and Azure Big Data Integration

[403]

Open your browser and navigate to3.
. Your browser screen should look

like the following screenshot:

Click on NEW TO HDP. The Ambari screen will appear. Now, click the more4.
icon, as shown in the following screenshot, and select Files View:

On-Premises and Azure Big Data Integration

[404]

The following screen appears. Click on New Folder and type as5.
shown in the following screenshot. Click on the +Add button to add the folder:

That's it! We're now ready to interact with our local cluster using SSIS.

Copying data to an on-premises cluster
In this recipe, we'll add a package that will copy local data to the local cluster.

Getting ready
This recipe assumes that you have access to an on-premises cluster and have created a
folder to hold the files in it from the previous recipe.

How to do it...
In the solution explorer, open (expand) the project and right-click on it to1.
add a new package. Name it .

On-Premises and Azure Big Data Integration

[405]

Go to the Parameters tab and add a new parameter:2.
Name:
Data type:
Value: Leave the default value
Sensitive: Leave the default value
Required:

Add a data flow task on the control flow and name it .3.
In the data flow task, drag and drop an OLE DB source. Name it4.

.
Double-click on it to open the OLE DB source editor.5.
Set the OLE DB connection manager to .6.
For data access mode, use the SQL command.7.
Set the SQL command text to the following:8.

Click on OK to close the OLE DB Source Editor.9.
Drag and drop a Derived Column transform from the SSIS toolbox.10.
Name it and tie it to the .11.
Open it and assign the following properties:12.

Derived Column Name:
Derived Colum: Leave the default (add as new column)
Expression:

Click on OK to close the derived column editor.13.
Right-click on the Connection Manager pane and select New Connection... from14.
the contextual menu that appears. The ADD SSIS Connection Manager window
opens.

On-Premises and Azure Big Data Integration

[406]

Select Hadoop from the Type column as shown in the following screenshot and15.
click on Add...:

On-Premises and Azure Big Data Integration

[407]

The Hadoop connection manager editor opens. Set the properties as shown in the16.
following screenshot. Make sure the connection works and click on OK to close
the window.

Drag and drop a HDFS File Destination from the SSIS toolbox onto the data flow17.
task. Tie it to the derived column. Name it

. Double-click on OK and set the properties as follows:
In the Hadoop Connection Manager select
Set the File path to
Select mappings from the left-hand pane to set the mapping between
the source and destination columns

On-Premises and Azure Big Data Integration

[408]

Click on OK to close the HDFS File Destination Editor.18.
Now, as usual, make sure that the transforms are the same size and aligned19.
properly. Your data flow task should look like the following screenshot:

On-Premises and Azure Big Data Integration

[409]

Now we can run the package. Once done, we can see that a file has been created20.
in the cluster in the folder, as shown in the following
screenshot. Go to Ambari | Files View and browse to the

 folder. You can open the file as shown in the following
screenshot:

That's it! We have successfully transferred data from SQL Server to our Hortonworks
sandbox cluster on HDFS, a totally different OS and filesystem than Windows. We'll
continue working with the file in the following recipes.

Using Hive – creating a database
Hive is one of the languages used in Hadoop to interact with large volumes of data. It is
very easy to learn since it uses SQL commands. This recipe will show you how we can use
Hive to transform data from our source. Although we have only 542 lines of data in our file,
we can still use it to learn Hadoop services calls.

In this recipe, we're going to create a database in Hive.

On-Premises and Azure Big Data Integration

[410]

Getting ready
This recipe assumes that you have access to a Hortonworks sandbox on-premises or in
Azure. It is also assumed that you have executed the previous recipe.

How to do it...
Open Ambari and navigate to . Use1.

 for both the username and password to log in.
Click on the more icon (nine-squares button near) in the toolbar and2.
select Hive View 2.0, as shown in the following screenshot:

On-Premises and Azure Big Data Integration

[411]

Type in Worksheet1 and click on Execute, as3.
shown in the following screenshot:

On-Premises and Azure Big Data Integration

[412]

Refresh your browser and click on Browse, as shown in the following screenshot.4.
The database has been created.

There's more...
The first step is done; we have created the database. We'll interact with the data in the
following recipe.

Transforming the data with Hive
The data is now in the cluster in HDFS. We'll now transform it using a SQL script. The
program we're using is Hive. This program interacts with the data using SQL statements.

With most Hadoop programs (Hive, Pig, Sparks, and so on), source is read-only. It means
that we cannot modify the data in the file that we transferred in the previous recipe. Some
languages such as HBase allow us to modify the source data though. But for our purpose,
we'll use Hive, a well-known program in the Hadoop ecosystem.

Getting ready
This recipe assumes that you have access to a Hortonworks cluster and that you have
transferred data to it following the previous recipe.

How to do it...
If not already done, open the package created in the previous recipe,1.

.

On-Premises and Azure Big Data Integration

[413]

Add a Hadoop Hive task and rename it .2.
Double-click on it to open the Hadoop Hive Task Editor, as shown in the3.
following screenshot:

On-Premises and Azure Big Data Integration

[414]

Update the following parameters:

HadoopConnection:

SourceType:

InlineScript: Use the following script:

On-Premises and Azure Big Data Integration

[415]

The preceding script does the following:

Switches context to the database we created in a preceding recipe.
Creates an external table, that is, a table stored outside Hive. These tables have
the characteristic that, whether we drop the table in Hive, the data file will not be
dropped. Regular (internal) tables will drop the files underneath when dropped.
The external table created has the same structure as the data we copied over in a
preceding recipe. The command skips one line, the
header line of the file.
Then, another external table is created but this time in another folder: . It
will create a file called . The trailing is the reducer number that
created the file. If we had a large volume of data and were using a real cluster
that would create the result in parallel we would have many files (,

, and so on). You will notice that a comma is now used as the column
delimiter.
Lastly, we insert into the table previously created. The overwrite clause will
overwrite the table content as opposed to appending it, like a regular
command would have done.

There's more...
The recipe, as simplistic as it is, was a quick introduction to Hive in Hadoop. This language
mainly transforms the data by creating structures on top of others. In a further recipe later
in this chapter, we'll use another program to transform the data: Pig Latin. But now, we'll
leave the on-premises big data world to go into Azure.

On-Premises and Azure Big Data Integration

[416]

Transferring data between Hadoop and
Azure
Now that we have some data created by Hadoop Hive on-premises, we're going to transfer
this data to a cloud storage on Azure. Then, we'll do several transformations to it using
Hadoop Pig Latin. Once done, we'll transfer the data to an on-premises table in the staging
schema of our database.

In this recipe, we're going to copy the data processed by the local Hortonworks cluster to an
Azure Blob storage. Once the data is copied over, we can transform it using Azure compute
resources, as we'll see in the following recipes.

Getting ready
This recipe assumes that you have created a storage space in Azure as described in the
previous recipe.

How to do it...
Open the project and add a new package to it. Rename it1.

.
Add a Hadoop connection manager called like we did in2.
the previous recipe.
Add another connection manager, which will connect to the Azure storage like3.
the we did in a previous recipe in this
chapter.
Add a Foreach Loop container to the control flow and rename it4.

.

On-Premises and Azure Big Data Integration

[417]

Double-click on it to open the Foreach Loop editor. Set the Collection properties,5.
as shown in the following screenshot:

On-Premises and Azure Big Data Integration

[418]

Click on the Variable Mappings, create a new variable at the package level, and6.
name it , as shown in the following screenshot:

Click OK to close the Foreach Loop editor.7.
Go to the Variables pane and set the value of the to8.

.
From the SSIS toolbox, drag and drop a HDFS file source into the9.

 Foreach Loop container. Rename it
.

Click anywhere in the data flow task background and go to the Properties pane10.
(or press F4 to display it). Scroll down to Expressions and click on the ellipsis (...)
button.
From the drop-down list, click on the ellipsis button to the right of the11.

 expression. Fill the Expression
Builder, as shown in the following screenshot. Click on OK to close the
Expression Builder:

On-Premises and Azure Big Data Integration

[419]

Close and reopen the package to force the expression to be considered.12.
Double-click on it to open the HDF File Source editor and assign the following:13.

Hadoop Connection Manager: Select the
from the drop-down list.
File Path: It should be . This is the
value of the variable expression we set earlier.
File format: Leave the default, .
Column delimiter character: Use the vertical bar ().

Click on the Columns tab and set the columns at the left of the editor and rename14.
them, as shown in the following screenshot. Once done, click on OK to close the
HDFS File Source Editor:

On-Premises and Azure Big Data Integration

[420]

Add a Derived Column to the data flow task and link it to15.
. Rename it

. Open the Derived Column Editor and add a column
called . Set the value to the Package::LoadExecutionId
package parameter.
Add an Azure Blob Destination to the data flow task and rename it16.

. Link it to the
 transform.

On-Premises and Azure Big Data Integration

[421]

Double-click on it to open the Azure Blob Destination Editor. Set its properties17.
as shown in the following screenshot:

Click on the column mapping and verify that our input columns are mapped.18.
The final data flow task should look like the following screenshot:19.

On-Premises and Azure Big Data Integration

[422]

Execute the data flow task. Once completed, go to the Azure portal20.
(), go into your HDInsight cluster | Storage accounts | Blob
service, and click on Import Blob. You should have a screen similar to the
following screenshot:

Right-click on the file and select Download. The21.
content of the file will open in your browser.

On-Premises and Azure Big Data Integration

[423]

That's it! We've transferred the local HDP cluster data to another one. In the following
recipe, we'll do something with the transferred data.

Leveraging a HDInsight big data cluster
So far, we've managed Blobs data using SSIS. In this case, the data was at rest and SSIS was
used to manipulate it. SSIS was the orchestration service in Azure parlance. As stated in the
introduction, SSIS can only be used on- premises and, so far, on a single machine.

The goal of this recipe is to use Azure HDInsight computation services. These services allow
us to use (rent) powerful resources as a cluster of machines. These machines can run Linux
or Windows according to user choice, but be aware that Windows will be deprecated for the
newest version of HDInsight. Such clusters or machines, as fast and powerful as they can
be, are very expensive to use. In fact, this is quite normal; we're talking about a potentially
large amount of hardware here.

For this reason, unless we want to have these computing resource running continuously,
SSIS has a way to create and drop a cluster on demand. The following recipe will show you
how to do it.

Getting ready
You will need to have access to an Azure subscription to do this recipe.

How to do it...
If not open, open the package we're using from the previous recipe:1.

.
Right-click on the Connection Manager pane, add New Connection..., and select2.

. Fill out the properties following the instructions
provided at the following link:

.

On-Premises and Azure Big Data Integration

[424]

Your connection manager should look like the one in the following screenshot:3.

Drag and drop an Azure Create Cluster task from the SSIS toolbox on the control4.
flow and attach it to the Foreach Loop container. Rename the
task for Azure Create Cluster as .

On-Premises and Azure Big Data Integration

[425]

Double-click on it to open the Azure HDInsight Create Cluster Editor. Fill the5.
properties as shown in the following screenshot. For the SubsciptionId, use your
Azure subscription ID. The location depends on where you created your storage
account. To avoid extra fees, you should have your cluster created in the same
region as the one you used for your storage account:

Now, for this task to work correctly, you have to parameterize both passwords:6.
cluster password and SSH password.

On-Premises and Azure Big Data Integration

[426]

Now we'll test if the cluster creation works. Right-click on the task and select7.
Execute Task. The cluster creation starts. This task might take several minutes to
complete. In our case, it takes up to 15 minutes.
Once completed, open a bash terminal. We will use the one that comes with8.
Windows 10. Go to the Azure portal and look for the HDInsight cluster that has
been created. In the overview, there is an option to connect using SSH. Click on it
and copy the SSH command. Paste it in the bash terminal. It should consist of a
command similar to the following:

ssh User@yourcluster-ssh.azurehdinsight.net

It is also shown in the following screenshot:

On-Premises and Azure Big Data Integration

[427]

Next, we'll add a task to drop the cluster once we've finished with it. From the9.
SSIS toolbox, drag and drop an Azure HDInsight Delete Cluster Task on the
control flow. Rename it . Double-click on it and set the
properties as shown in the following screenshot:

On-Premises and Azure Big Data Integration

[428]

Click OK to close the task. Right-click on it and select10.
Execute Task from the contextual menu that appears. Once executed
successfully, go to the Azure portal and verify that the cluster has been dropped.

There's more...
That's it! We can now create and drop clusters on demand. The following recipe will show
how we can use the cluster with Pig.

Managing data with Pig Latin
Pig Latin is one of the programs available in big data clusters. The purpose of this program
is to run scripts that can accept any type of data. "Pig can eat everything," as the mantra of
the creators states.

This recipe is just meant to show you how to call a simple Pig script. No transformations are
done. The purpose of the script is to show you how we can use an Azure Pig task with SSIS.

Getting ready
This recipe assumes that you have created a HDInsight cluster successfully.

How to do it...
In the SSIS package, drag and drop an Azure Pig1.
Task onto the control flow. Rename it .

On-Premises and Azure Big Data Integration

[429]

Double-click on it to open the Azure HDInsight Pig Task Editor and set the2.
properties as shown in the following screenshot:

In the script property, insert the following code:3.

The first line holds a reference to the file.4.
The second line removes (deleting) the directory . Finally, the data is
copied over to a new file in the folder using a vertical bar () as a
delimiter.

On-Premises and Azure Big Data Integration

[430]

Right-click on the and select Execute Task from the5.
contextual menu that appears to run the script.
Once done successfully, go to the Blob storage in the Azure portal to check that6.
the file has been created.
If any error occurs, go to the log file located in the directory that you specified in7.

.
Your package should now look like the following screenshot:8.

On-Premises and Azure Big Data Integration

[431]

There's more...
You'll notice that the data hasn't been modified, as the purpose of the recipe was to show
how to call a Pig script from SSIS.

Importing Azure Blob storage data
So far, we've created and dropped a HDInsight cluster and called a Pig script using the
Azure Pig task. This recipe will demonstrate how to import data from an Azure Blob
storage to a table in the staging schema.

Getting ready
This recipe assumes that you have completed the previous one.

How to do it...
From the SSIS toolbox, drag and drop, and Execute SQL Task on the control1.
flow, and rename it .
Double-click on it to open the SQL Task Editor. Set the properties as follows and2.
click on OK:

Connection:
SQL Statement:

From the SSIS toolbox, drag a Foreach Loop Container and rename it3.
.

On-Premises and Azure Big Data Integration

[432]

Double-click on it to open the Foreach Loop Editor, and assign the properties in4.
the Collection pane, as shown in the following screenshot:

Now go to the Variable Mappings pane and add a string variable called5.
. Make sure the scope is at the package level.

Drag a Data Flow Task into the and rename it6.
.

Go into the Data Flow Task and drag an Azure Blob Source from the SSIS7.
toolbox. Rename it .
Click anywhere on the background of the data flow and go to the Properties8.
pane. Select Expressions. Click on the ellipsis button () and select

 from the list. Assign
 as the value.

On-Premises and Azure Big Data Integration

[433]

Double-click on the to open the Azure Blob9.
Source Editor, and assign the various properties as shown in the following
screenshot. And click OK.

On-Premises and Azure Big Data Integration

[434]

Drag an OLE DB Destination to the Data Flow Task and rename it10.
. Attach it to

.
Double-click on it and set the properties as follows:11.

OLE DB connection manager:
Name of the table or view:

Go into the Mappings panes and make sure that all columns are mapped. Click12.
OK to close the editor. Your screen should look like the following screenshot:

Go back to the control flow and right-click on . Select13.
Execute from the contextual menu to execute the container.

On-Premises and Azure Big Data Integration

[435]

Attach to both the14.
 and the tasks.

Your final package should look like the following screenshot:

On-Premises and Azure Big Data Integration

[436]

That's it! We now have a package that can read from a local Hadoop cluster, transfer data to
and from Azure, and execute Azure HDInsight tasks.

There's more...
This chapter gave a 360° overview of how SSIS can interact with the big data world, be it
on- premises or in the clouds. The next section will consist of a brief discussion on the
difference between SSIS and the Azure Data Factory.

There is a service available in Azure that can do about as much as SSIS can do with Azure
data. In fact, if your data is only in Azure, this is the service you should use in conjunction
with SSIS.

Azure Data Factory and SSIS
Azure Data Factory (ADF) is a service that orchestrate data integration using different
services available in Azure. Like SSIS, it can move data from one location to another. The
main differences are the following:

SSIS needs a windows machine to run. Even to copy data, the service runs on a
windows server. ADF doesn’t needs anything to accomplish copy data tasks since
the service runs in Azure
SSIS has a rich toolset integrated into it to transform data; the dataflow task. ADF
has nothing that come close to it built-in.
ADF relies on compute services like HDInsight clusters that can run Hive and Pig
scripts to transform data.
SSIS can transform data on without leaving the package and, without necessarily
staging it. It can transform and load data immediately to the destination. ADF
calls a service that will transform the data but this service might not be able to
load the data directly in a destination.

For example, we need to load data from Oracle, transform and load it into SQL Server. SSIS
can do it in one single package. ADF would have to copy the data to an intermediately
storage, call a service to transform the data and finally load it into the destination. SSIS 2016
service runs on a Windows OS based machine; ADF runs in Azure where there’s no OS to
consider.

On-Premises and Azure Big Data Integration

[437]

Generally, when most of your enterprise data is in Azure ecosystem and you barely use
data on premises, it makes sense to use ADF. In that case, you are probable making the ETL
using ADF and/or TSQL be it stored procedure or DML statements.

But, if your enterprise data is mostly on premises and some of it is in Azure, it makes more
sense to use SSIS. Same statement if you’re using on-premises Big Data cluster as you saw
earlier in this chapter. SSIS now has a lot of connectors to leverage big data clusters on
premises as well as in Azure.

110
Extending SSIS Custom Tasks

and Transformations
This chapter covers the following recipes:

Designing a custom task
Designing a custom transformation
Managing custom components versions

Introduction
This chapter discusses SSIS customization-the built-in capability of the SSIS platform that
allows you to extend the natively provided programmatic elements. In addition to the
system-provided tasks and components, including the script task and the script component,
the SSIS programming model allows you to implement your own programmatic logic by
designing your own control flow tasks (custom tasks) or your own data flow components
(custom components).

Typically, a custom task would be needed when none of the system-provided tasks
facilitate the specific operation that you need to implement in your SSIS solution; for
instance, the built-in File Transfer Protocol (FTP) task does not support Secure FTP, so if
you need to access remote file locations using the Secure File Transfer Protocol (SSH FTP),
you need to design a custom task.

Extending SSIS Custom Tasks and Transformations

[439]

The most frequent uses of the custom component are custom transformations that either
provide operations that are not provided by the built-in components, or they encapsulate a
series of transformations within a single one. In the latter case, you might also implement
the operations by using multiple built-in transformations, but you would prefer to reduce
the complexity of the data flow by implementing them as a single component.

Script tasks and components are discussed in more detail in , Unleash the Power of
SSIS Script Tasks and Components. In both cases, the custom code is embedded in the SSIS
package definition; you can create and modify it during package development, and it is
deployed together with the package.

When using custom tasks or components, the custom code is developed in a separate Visual
Studio project. You should create a separate assembly for each custom task, or component;
this allows you to develop, modify, and deploy them without having to redeploy any of the
packages in which they are used, and independently of any other custom tasks or
components.

To decide whether to use scripting, or whether to design a custom task or component, you
can use the following rule: use scripting if the complete logic of the task or component can
be encapsulated into a single script and if the same script does not need to be used in
multiple packages. Otherwise, you are encouraged to consider using custom tasks or
components, especially in situations where the same custom logic needs to be implemented
in numerous packages.

Designing a custom task
To design a custom control flow task, you create a DOT.NET assembly based on the Class
Library Visual Studio template; the task's definition must be placed in a class derived from
the base class, of the namespace (located in
the assembly). This class also needs to
implement the that is used to identify the class as an SSIS task and
provide the elementary properties used when implementing the custom task in SSIS control
flows.

Optionally, you can provide a custom graphical user interface for the custom task, which
will be used as the task editor when the task is configured during SSIS package
development. If a custom editor is not provided, the custom task can be edited by using the
built-in advanced editor.

Extending SSIS Custom Tasks and Transformations

[440]

The task base class provides two methods that you need to override, and in them provide
your custom code to:

Validate the configuration of the task. This method is called automatically by the
SSIS control flow designer whenever the task settings are changed, and allows
you to communicate with the SSIS package developers to help them understand
the task's configuration and help them configure it correctly before it can be used.
You also need to provide the logic needed to execute the task. This method will
be called at runtime, when the package execution reaches the task in the control
flow sequence. This method also allows access to various SSIS package resources:

The SSIS variables can be read or written
The connections accessible to the package can be used to connect to
various data sources
The custom task may send log entries to the event log
You are encouraged to implement events in your custom task, so
that its performance can be captured by SSDT at design time, and
by the SSIS server after the packages implementing the task have
been deployed
In the custom task, you can also detect whether the operation is
participating in a transaction, and use this information when
connecting to a data source

Both the preceding methods return a value specifying the result of the
validation, or the execution; this communicates the outcome of each method to the SSIS
package developer, as well as the SSIS execution engine. The following values are
supported by the enumeration:

 is used to specify that the validation, or the execution, completed
successfully.

 specifies that the validation, or the execution, has failed. Generally, in
case of failure, additional events should be returned from the task to provide
more information about the failure to the SSIS package developer, or to the
administrator of the deployment environment.

 can be used for executions when either or are not
relevant results, or not specific enough. For instance, if a task completes its work
successfully it returns , if it fails, it returns , but if no work was
performed, even though the configuration was in order, the task might return

 to communicate a specific result that is neither a success nor failure.

Extending SSIS Custom Tasks and Transformations

[441]

 is used to report to the SSIS execution engine that the execution had to
be interrupted; for instance, before even reaching the point in its execution that
could be interpreted as any of the other three results.

Normally, only and should be used in the method.

To deploy a custom task - either to the development workstation used in SSIS package
development, or to the environment, in which it is going to be used - the assemblies
containing the task need to be copied to the following folders:

 - for the 64-bit
edition of the assembly

 - for the 32-
bit edition of the assembly

If the assembly is platform-independent, the file needs to be copied to both folders.

The assembly, and all of the assemblies it references, must also be registered in the Global
Assembly Cache (GAC). To register the assemblies on the SSIS development workstation,
you can use the command-line utility (it is installed together with Visual
Studio); however, on a production server might not be available. You can
also use an appropriate Windows PowerShell script to perform the registration.

In this recipe, you are going to develop a custom task, deploy it to your development
workstation, and use it in an SSIS package.

This custom task is going to use an external library to allow you to perform FTP tasks in
SSIS using the (SSH FTP).

For your convenience, the C# code snippets needed for this chapter are
provided in the file.

Getting ready
Before you begin, you need to install the class library from the

 website; WinSCP is a free tool that you can use in your own
solutions, under the terms of the GNU General Public License as published by the Free
Software Foundation ().

Extending SSIS Custom Tasks and Transformations

[442]

Please review the WinSCP GNU license, at
.

To install and register the external library on your workstation, follow these steps:

Download version 5.9.5 of the Installation package, or the .NET assembly / COM1.
library of WinSCP from .
We recommend that you use the installation package, which will install the2.
application and the necessary assemblies in a folder expected by the recipes in
this chapter.
If you decided on using the installation package, run it, and then follow the3.
instructions in the installation wizard to complete the installation.
If you prefer to download only the assembly, download the archive file, and then4.
unzip it into the folder.
After the installation has completed successfully, or after you placed the files in5.
the specified folder, use Windows Explorer to navigate to the

 folder.
Locate the command file, and open it in6.
Notepad.
Inspect the file, and then close it.7.
In Windows Explorer, right-click the command file, and select Execute as8.
administrator... from the shortcut menu.
In the User Account Control dialog click OK to allow the execution.9.
After the execution completes, press any key to close the command prompt10.
window.

You are now ready to design the custom task.

Extending SSIS Custom Tasks and Transformations

[443]

How to do it...
Start Visual Studio 2015 and create a new project.1.
In the New Project dialog, make sure that .NET Framework 4.5.2 is selected, and2.
then under Templates \ Visual C#, select the Class Library template. Use

 as the project name, place it in the
 folder, check Create directory for

solution, and use as the solution name. Refer to the
following screenshot to verify your settings:

Extending SSIS Custom Tasks and Transformations

[444]

Click OK to confirm the configuration and create the solution.3.
In the Solution Explorer, right-click the newly created 4.
project, and select Properties from the shortcut menu to open the

 properties pane.
On the Application page, change the default namespace value to5.

.
On the Signing page, check Sign the assembly, and select <Browse...> in the6.
Choose a strong name key file selection box.
In the Select File dialog, navigate to the7.

 folder, and select the
 strong name key file, as shown in the following

screenshot:

Extending SSIS Custom Tasks and Transformations

[445]

Click Open to confirm the selection.8.
Save the solution, and then close the project properties pane.9.
In the designer pane, change the namespace of the class to10.

, and change the name to .
In the Solution Explorer, change the file name to ,11.
and then save the solution.
In the Solution Explorer, right-click References, and then select Add Reference...12.
from the shortcut menu to open the Reference Manager dialog.
Under Assemblies / Extensions, check the13.

, ,
and WinSCPnet assemblies, as shown in the following screenshot:

Extending SSIS Custom Tasks and Transformations

[446]

Click OK to confirm the selection.14.
In the file, at the top of the source code, replace all existing15.
namespace references with the following ones:

The class must be derived from16.
 base class, and it must also

implement the :

The base class provides the
functionalities necessary in any SSIS control flow task, and the

 allows you to configure some principal properties of the
custom task. Together they allow the class in the assembly to be recognized
as an SSIS Task, which in turn allows it to be used in an SSIS package.

Add the following private constants to the class:17.

Extending SSIS Custom Tasks and Transformations

[447]

These constants are going to be used by the custom task's methods to convey
information about the state of the task to the SSIS package developers when
configuring the task.

Create the following public members of the class:18.

These public members of the class will be accessible in the SSDT
as task properties, and will allow the SSIS package developers to configure
the custom task; in SSDT, the values can be supplied as literal values or by
using expressions.

Add the following enumeration to the class definition:19.

Extending SSIS Custom Tasks and Transformations

[448]

This enumeration lists the supported modes of operation of the Secure
FTP Task; two of them are implemented using the code in this recipe:

 receives the files from and sends the files to the
specified FTP site. Of course, the enumeration itself does not contain the
complete programmatic logic needed to perform these operations.

You can extend the range by implementing additional functions available
in the WinSCP library. You can find more information about the library at

.

Add the following private function to the class:20.

This function creates an instance of the class; it connects to
the FTP server, establishes the appropriate security context, and allows the
operations to be performed against the remote site.

Add another private function to the class:21.

Extending SSIS Custom Tasks and Transformations

[449]

Extending SSIS Custom Tasks and Transformations

[450]

This function extends the method of the base class by
encapsulating additional validation rules that need to be performed on the
string properties of this particular task. The function reports any string
properties that do not have their values set, through SSIS events.

Below the class public member declarations, create some space, and22.
start typing the directive; Visual Studio Intellisense should list the

 base class methods that you can override; select the method.
Replace the default definition of the newly overridden method with the following23.
code:

Extending SSIS Custom Tasks and Transformations

[451]

The method is going to be used whenever the SSIS package, in
which the task is used, is validated or executed, and will report any incorrect
or missing settings, as well as notify the caller of any exceptions returned by
the library. This method also invokes the
method created in step 21.

Extending SSIS Custom Tasks and Transformations

[452]

Make some more room below the method definition, and start24.
typing the directive again; this time select the method to
override, and replace its default definition with the following code:

Extending SSIS Custom Tasks and Transformations

[453]

Save the class file and build the project. If you followed the25.
preceding instructions correctly, the build should succeed. If the build fails,
inspect the Error List pane, and check whether any errors have occurred.
Investigate each error and resolve it accordingly.
In the Visual Studio toolbar, select Release in the Solution Configuration26.
selection box, as shown in the following screenshot:

Build the project again. The files are now created in the27.
release folder and are ready to be deployed.
Use Window Explorer to locate the 28.
command file in the folder.
Run the command file as the administrator. This will copy the custom task29.
assembly to the appropriate folders, and register the assemblies in the Windows
GAC, SSDT (at design time), and the SSIS runtime (at runtime), and it needs the
relevant assemblies to be registered in GAC.
In SSDT, open the solution, located in the30.

 folder.

Extending SSIS Custom Tasks and Transformations

[454]

Open the SSIS package in the control flow designer.31.
Inspect the package properties and the variables; this package contains most32.
information needed to configure the Secure FTP Task that you created earlier in
this recipe.
Make sure that the control flow designer is active, and inspect the SSIS Toolbox.33.
The Secure FTP Task should be listed in the Common section. If the task is
missing, right-click the SSIS Toolbox, and select Refresh Toolbox from the
shortcut menu. If that doesn't help, close SSDT and open the solution again. If not
even that helped, close SSDT, and repeat steps 26 to 33.
From the SSIS Toolbox, drag the Secure FTP Task to the control flow designer,34.
and change its name to Download Files.
Double-click the task to open its editor; the following warning should pop up:35.

You did not design a custom editor for your custom task; therefore, in order
to use the task, you need to configure its properties in the Properties pane.

While the Secure FTP Task is selected in the control flow, inspect its properties in36.
the Properties pane. In addition to the base task properties, all of the public
members of the class that you created in step 18 should be listed in
the Misc section.
Locate the Expressions collection, click its text box, and then click the ellipsis icon37.
on the far-right side to start the Property Expression Editor.
In the Property Expression Editor, in the Property column select the38.

 property.
Click the ellipsis icon on the far right in the same row to open the Expression39.
Builder dialog.

Extending SSIS Custom Tasks and Transformations

[455]

In the Expression Builder, drag the parameter to the40.
Expression text box, and then click Evaluate to validate the expression, as shown
in the following screenshot:

Click OK to confirm the expression.41.

Extending SSIS Custom Tasks and Transformations

[456]

Repeat steps 38 through 41 for the rest of the properties; use the following42.
settings:

Property Parameter or variable

Use the following screenshot to verify your settings:

Click OK to confirm the property expressions.43.

Extending SSIS Custom Tasks and Transformations

[457]

In the Secure FTP TaskProperties pane, locate the FtpOperationName property44.
and set its value to (without the quotation marks).
Save the package.45.
Use Windows Explorer to navigate to the46.

 folder; the folder should not
contain any files.
In SSDT, execute the SSIS package in debug mode.47.
Observe its execution, and inspect the messages in the Progress pane.

The public FTP site used in this example is hosted on ; the
site exposes one folder with read-only permissions for the purposes of FTP
testing. Several file transfer protocols are supported, and a few files are
available in the folder for testing purposes.
As file access is restricted to read-only, the site cannot be used to upload
files. Therefore, in order to test the operation mode, you need to
connect to another site - for instance, create your own FTP server.
You can find additional information on the Rebex company website, at

.

Stop the execution and switch back to Windows Explorer. The folder should now48.
contain 18 PNG files and a file.
Close the solution.49.

How it works...
In your custom task, the Secure FTP Task, you implemented your custom logic in the

 and methods. You exposed the settings needed to perform the file
transfer operations as public members of the class.

The base class allows the task to be used in
an SSIS control flow, its public properties are accessible from SSDT, and the custom
programmatic logic allows the task to be validated and executed.

If configured correctly, the task can either download files from, or upload them to, an FTP
site.

When you used the task in the SSIS package, you were not able to
configure it using a custom editor, because this recipe did not cover the design of such an
editor. However, you were able to configure the task by accessing its properties directly.

Extending SSIS Custom Tasks and Transformations

[458]

All of the properties were passed into the task using property expressions, except for the
 property, for which you used a literal value.

When you executed the package, the Secure FTP Task connected to the remote server,
traversed the files in the remote folder, and downloaded them to the local folder.

Designing a custom transformation
To design a Custom Data Flow Component, you need to create a .NET assembly based on
the Class Library Visual Studio template; the class with the component's definition must be
derived from the base class of the

 namespace. The class also needs to implement the
 that allows the class to be identified as an SSIS

component and to provide the essential properties of the component used in the
development of SSIS data flows.

If you want to simplify the configuration of the component, you can provide a custom
graphical user interface; otherwise, the Advanced Transformation Editor will be used to
configure the component during SSIS package development.

The component also needs access to the interfaces and classes of the
 namespace. Depending on the

functionalities provided by the component, additional references might be needed to the
 and

 namespaces.

The custom component, be it a source, a destination, or a transformation, must implement
two sets of methods of the base class:

Design time methods are used, as the name suggests, at design time; they are
called during SSIS package development when the custom component is
implemented in the data flow. These methods provide a way for the SSIS package
developer to correctly configure the component. They also provide a way for the
developer of the component to communicate with the package developers,
making sure that they understand how the component is to be used, and to
configure it correctly.
Run time methods are used by the execution engine at run time, when the SSIS
packages are being executed. These methods provide the programmatic logic
needed to perform the operations against the data flow pipeline.

Extending SSIS Custom Tasks and Transformations

[459]

The following design time methods must be provided in order for the custom component to
be available and configurable in an SSIS package:

The method is invoked when the component
is dropped into the data flow designer. In this method, you provide the
configuration of the component's inputs and/or outputs, its custom properties,
and any other settings that must be set for the component to be ready for design
time configuration.
The method is used to validate the component and its settings; it is
invoked every time the SSIS package developer confirms (or attempts to confirm)
the settings during data flow development. Therefore, this method also provides
a way for you, the component developer, to communicate with the package
developers and to help them configure the component correctly. Use the

, , and methods to notify the
package developer of any missing or incorrect settings by using the appropriate
error messages or warnings.
The method is invoked when, based on the result of
the validation, the component's metadata needs to be reset and reinitialized.

The following run time methods are used to provide the principal programmatic logic of
the custom component:

The method is used to determine the values of any
settings that need to be set before the rows are received from any upstream
components, and for any processing that needs, and can be, performed before the
rows have been placed into the pipeline. When this method is executed, no
additional connections are available yet.
The and methods are used to
manage connections to any additional data sources that are needed in the
component and are not provided by any of the component's inputs. Use the
former to establish connections to external data sources, and the latter to release
them. is invoked during validation, and again at the
beginning of the execution, whereas is invoked at the
end of the validation, and again at the end of the execution.

Extending SSIS Custom Tasks and Transformations

[460]

When the method is invoked, the rows are already available in
the pipeline, and any external connections are also ready, which means that this
method can be used to determine any settings that depend on the pipeline data,
or the data from the external data sources. If the data acquired from any external
sources can be cached (for instance, because its size allows it to be placed
completely in memory), this method is also a good alternative to the

 method when you need to close the external
connections early to save on resources.

The method is used in source components, and in
transformations that use asynchronous outputs; it allows these outputs to start
consuming data. If the component implements multiple outputs, the method
must be capable of preparing each one of them - rows can only be placed into
primed outputs. In a source component, this is the principal data processing
method.
The method represents the principal data processing method
in transformation and destination components; it is used to consume the data
received from the upstream components.

The rows in the current buffer need to be consumed in a loop with the aid
of the method of the instance.

In SSIS data flows, the data is placed into one or more buffers; therefore, the
 method may be invoked multiple times. In addition,

depending on the complexity of the data flow and the availability of
resources, the SSIS execution engine can also parallelize the execution of data
flow components.

To make sure that all the upstream rows have been consumed, and to
complete the processing of any asynchronous outputs correctly, you also
need to check whether more buffers are available with the help of the

 method of the instance. This check needs to
be made after all the rows of the given buffer instance have been received.

Synchronous outputs will be closed automatically after all input buffers have
been consumed, but asynchronous outputs must be closed explicitly. When
no more rows are to be placed into any asynchronous output, you must state
this by invoking the method of the output

 instance.

If the component uses multiple inputs, it must also be capable of processing
each one of them.

Extending SSIS Custom Tasks and Transformations

[461]

The and methods are invoked at the end of the data
flow execution; the former is called as soon as all the pipeline data has been
consumed, and the latter is invoked last. You should use them to assign values to
any writable variables, and complete any unfinished operations.

The method is called after the
method; therefore, in the method you might still have access to
any external data sources that you haven't released up to this point in the
execution.
Use the method to release any remaining resources that were used in
the data flow, in order to make a clean exit from the execution. This is also the
last place where variable assignments can be made.

To deploy a custom component - either to the development workstation used in SSIS
package development, or to the environment in which it is going to be used - the assemblies
containing the component need to be copied to the following folders:

 -
for the 64-bit edition of the assembly

 - for the 32-bit edition of the assembly

If the assembly is platform-independent, the file needs to be copied to both folders.

The assembly, and all of the assemblies it references, must also be registered in the GAC. To
register the assemblies on the SSIS development workstation, you can use the
command-line utility (it is installed together with Visual Studio); however, on a production
server might not be available. You can also use an appropriate Windows
PowerShell script to perform the registration.

In this recipe, you are going to port the logic from a script transformation that you
developed in , Unleash the Power of SSIS Script Tasks and Components, into a custom
transformation, deploy it to your development workstation, and use it in an SSIS package.

Extending SSIS Custom Tasks and Transformations

[462]

How to do it...
In Visual Studio 2015, open the solution that you1.
created in the previous recipe, Designing a custom task; it should be located in the

 folder.
In case you have not followed the previous recipe, follow steps 1 through 3 to
create the solution.
In the Solution Explorer, right-click the Solution node, and select Add New2.
Project... from the shortcut menu to add a new project.
In the Add New Project dialog, select the Class Library template, located in the3.
Visual C# template group; use as the project name.
Refer to the following screenshot to verify your settings:

Extending SSIS Custom Tasks and Transformations

[463]

Click OK to confirm the configuration, and create the project.4.
In the Solution Explorer, right-click the newly created 5.
project, and select Properties from the shortcut menu to open the

 properties pane.
On the Application page, change the default namespace value to6.

.
On the Signing page, check Sign the assembly, and select <Browse...> in the7.
Choose a strong name key file selection box.
In the Select File dialog, navigate to the8.

 folder, and select the
 strong name key file, as shown in the following

screenshot:

Click Open to confirm the selection.9.
Save the solution, and then close the project properties pane.10.
In the designer pane, change the namespace of the class to11.

, and change the name to .

Extending SSIS Custom Tasks and Transformations

[464]

In the Solution Explorer, change the file name to12.
, and then save the solution.

In the Solution Explorer, right-click References, and then select Add Reference...13.
from the shortcut menu to open the Reference Manager dialog.
Under Assemblies | Extensions, check the14.

,
, and

 assemblies, as shown in the
following screenshot:

If multiple versions of the same assembly are available, make sure that only
version 13.0.0.0 is checked.

Click OK to confirm the selection.15.
In the Solution Explorer, make sure that the References node is expanded.16.

Extending SSIS Custom Tasks and Transformations

[465]

Select the Microsoft.SqlServer.DTSPipelineWrap node, locate the Embed17.
Interop Types setting in the assembly's properties, and make sure it is set to
False, as shown in the following screenshot:

Extending SSIS Custom Tasks and Transformations

[466]

Do the same for the assembly.18.
Save the project.19.
Make sure that is open in the designer, and replace the20.
existing list of assembly references at the top of the definition with the following
references:

The references provide the functionalities needed to develop a complete SSIS
component, and to perform its operations.

Modify the class definition so that it is derived from the21.
 base class, and

implement the attribute:

The base class provides the design-time and run-time functionalities that
every SSIS component needs to implement, and the

 attribute allows the class to be recognized as an
SSIS component - at design time as well as run time.

Extending SSIS Custom Tasks and Transformations

[467]

Add the following private constant declarations to the class22.
definition:

Extending SSIS Custom Tasks and Transformations

[468]

Object names and descriptions are defined in these constants, as well as all
the messages used in communicating the current state of the component to
the SSIS package developers.

Add the following private variables to the class:23.

These variables allow the principal settings of the component to be set once,
and reused as many times as needed during validation and execution.

At the bottom of the class definition, add the following private24.
functions:

Extending SSIS Custom Tasks and Transformations

[469]

This function checks whether the data profile file contains the profile information25.
about the specified column:

Extending SSIS Custom Tasks and Transformations

[470]

This function extracts the regular expressions patterns for the specified column26.
from the data profile file that can be used to validate the column values:

This last private function reads the component properties configured by the
SSIS package developer, and stores them in private variables for later use.
The function is invoked at package validation and at execution.

Extending SSIS Custom Tasks and Transformations

[471]

Observe the and
 variable assignments; if the custom

property contains the name of a variable or a parameter, the
actual value is retrieved from the corresponding variable or
parameter; otherwise, the literal value is used.

Immediately before the functions you just added, add the following private27.
function that is going to be used to validate the email addresses:

The function in this component is the same as the one used
in the Validating data using regular expressions in a script component recipe
presented in , Unleash the Power of SSIS Script Tasks and Components.
Compared to the rest of the code of the class, it might
appear insignificant; a lot of programmatic logic is needed to make custom
components behave correctly at design and at runtime.

Make some space just below the private variable declarations and start typing the28.
 directive; from the list of suggested

 base class
overridable methods, select and replace its
default definition with the following code:

Extending SSIS Custom Tasks and Transformations

[472]

Extending SSIS Custom Tasks and Transformations

[473]

The component is defined by the
method—its custom properties, its inputs, and outputs. This method is
invoked when the component is placed in the data flow designer during SSIS
package development.

Below the method definition you just29.
created, create some more space, and start typing the directive again;
this time select the method to override, and replace its default
definition with the following commands:

Extending SSIS Custom Tasks and Transformations

[474]

Extending SSIS Custom Tasks and Transformations

[475]

Components are validated whenever the package is loaded in SSDT, when
the SSIS developer confirms the component's configuration at the beginning
of the execution, and whenever deployed packages are validated explicitly.

To guide the SSIS package developers, and prevent them from inadvertently30.
corrupting the component's configuration, add the following overrides to the

 class definition:

Extending SSIS Custom Tasks and Transformations

[476]

This method will prevent the SSIS developers from creating any additional
inputs:

This method will prevent the SSIS developers from creating any additional
outputs:

This method will prevent the SSIS developers from adding any additional
columns to the default output:

Extending SSIS Custom Tasks and Transformations

[477]

This method will prevent the SSIS developers from removing the default
output; it will allow them to remove other outputs, but only theoretically,
because adding an output is already prevented by the preceding

 method override:

This last override will prevent SSIS developers from removing the built-in
output columns. Theoretically, it will allow them to remove user-defined
columns; however, the overridden method
prevents them from being added at all.

By using the same technique as in steps 26 and 27, override the 31.
base class method, and use the following code as its definition:

All the settings needed to process the pipeline data are determined in the
 method.

Extending SSIS Custom Tasks and Transformations

[478]

Next, override the method and replace its default definition32.
with the following commands:

Extending SSIS Custom Tasks and Transformations

[479]

Column value validation is performed in the method. The
data is retrieved from the specified column based on the input column data
type - and large object (LOB) data types require special
handling, whereas the data in and can be read simply with
the method.

In the overridden method, use the following commands:33.

After the rows have been processed, the method releases
the resources; it clears the regular expressions collection, as it is no longer
needed.

Save the solution, and build the project by selecting the Build34.
SSISCustomComponents command from the Build menu - first using Debug,
and then again using the Release solution configuration. If you followed the
preceding instructions correctly, the project should build successfully. In case of
any errors, inspect the messages in the Error List pane and make the appropriate
corrections.
Use Windows Explorer to navigate to the35.

 folder, and locate the
 command file.

Execute the command file as the administrator, observe the messages returned in36.
the Command Prompt window, and finally press any key to complete the
deployment.

Extending SSIS Custom Tasks and Transformations

[480]

In SSDT, open the solution, located in the37.
 folder.

Open the package in the control flow; the package is38.
based on a similar package with the same name that you created in the Validating
data using regular expressions in a script component recipe of , Unleash the
Power of SSIS Script Tasks and Components.
Open the Validate Person Data task in the data flow designer.39.
From the SSIS toolbox, drag the Validate Email transformation to the data flow40.
designer; it should be located in the Common section. If the Validate Email
transformation is not available in the SSIS Toolbox, right-click the toolbox, and
select Refresh Toolbox from the shortcut menu. If that doesn't help, close SSDT,
and open the solution again. If not even that resolves
the problem, return to the Visual Studio instance with
open, and repeat steps 32 through 34 to redeploy the assembly.
Connect the regular data path from the Person Data source component to the41.
Validate Email transformation.
Double-click the Validate Email transformation to open the Advanced Editor for42.
Validate Email.
On the Component Properties page, use the following settings to configure the43.
component's custom properties:

Property Value

Data Profile Column Name

Data Profile File Name

Extending SSIS Custom Tasks and Transformations

[481]

Refer to the following screenshot to verify your settings:

On the Input Columns page, make sure that all the input columns are selected;44.
leave their Usage Type set to READONLY.

Extending SSIS Custom Tasks and Transformations

[482]

On the Input and Output Properties page, locate the Input Column Name45.
custom property of the input, and use as
its value, as shown in the following screenshot:

Extending SSIS Custom Tasks and Transformations

[483]

Click OK to confirm the configuration. If you followed the preceding instructions46.
correctly, no validation errors should be reported. If the component is in error
(marked by a red X mark), or if there are any warnings (marked by an
exclamation mark), inspect the Error List pane, investigate each message, and
resolve them accordingly.
In the data flow designer, connect the regular data path from the Validate Email47.
transformation to the Valid or Invalid Email transformation.
Make sure that the Data Viewer is enabled on the regular data path leading from48.
the Valid or Invalid Email transformation to the Multicast component.
Save the package, and then execute it in debug mode.49.
107 rows should be extracted from the source file, and seven rows should be
listed in the Invalid Email Data Viewer.
Stop the debug mode execution, and close the AdventureWorksETL.sln solution.50.

How it works...
To create a custom data flow component, you need to create a class that derives from the

 base class, which provides
the functionalities needed to configure the component at design time and perform the
operations at run time. By implementing the attribute, you allow
the class to be recognized as an SSIS component by SSDT at design time and by the SSIS
execution engine at run time.

By overriding the base class method, you established
the essential elements of the component: the input, the output, and in it the output column
to hold the result of the transformation. You defined the custom properties (two for the
component and one for the input) that the SSIS package developers can use to configure the
component.

By overriding the method, and some additional design-time methods, you
implemented all the necessary checks needed to guide the SSIS package developer to
complete the configuration correctly.

You used the method to prepare the execution of the component - namely,
to load the email address validation rules from the Data Profile file you created in

, Dealing with Data Quality, for the column specified in the Data Profile Column Name
custom property. You used the method to release these resources after the
execution completes.

Extending SSIS Custom Tasks and Transformations

[484]

The principal part of the transformation, however, is implemented in the
method, where each row received from the upstream pipeline is validated: data is read
from the column specified by the Input Column Name custom input property and
validated against the Regular Expressions patterns from the Data Profile file. Validation
results are then placed in the IsValidEmail output column, to be consumed by the
downstream components of the data flow.

Managing custom component versions
Over time you might need to make changes to a custom component, for instance because
you needed to optimize or refactor the code, implement new features, or replace the
external assemblies. As long as the interface of the component (its custom properties and its
inputs and outputs) remain unchanged in a later version, you simply deploy the new
version to the destination environments, register it in the GAC, and the new version of the
component will be used the next time the package is executed or edited in SSDT. You do not
even have to modify its version number.

However, if the change affects the components interface - for instance, if you need to add,
remove, or modify any of its custom properties - you need to make the component
upgradable. This upgrade is performed automatically - at design time or at run time - by
invoking a special design-time method of the .

 base class, namely method. The method is
invoked automatically in SSDT when the SSIS package is being designed or by the SSIS
execution engine when the SSIS package is being executed, if the
property of the attribute was set in the component.

You use the method in the later version of the component to make the
necessary changes to the properties of the earlier version of the component, for instance by
adding a property that was not available in the earlier version, by removing a property that
is no longer used, or by modifying an existing property of the earlier version of the
component so that it can be used by the later component.

In this recipe, you are going to create version two of the component that you created in the
Designing a custom transformation recipe earlier in this chapter. The new version is going to
use an additional custom parameter, and will allow the initial version to be upgraded
automatically.

Extending SSIS Custom Tasks and Transformations

[485]

Getting ready
Before you can use this recipe, you need to design the custom component, as described in
the Designing a custom transformation recipe earlier in this chapter.

Alternatively, you can use the SSISCustomComponents project of the
 solution, located in the

 folder.

How to do it...
Open the solution that you created in the Designing a1.
custom transformation recipe, earlier in this chapter.
In the project, locate the file, and2.
open it in the designer.
Modify the attribute of the class, and3.
add the property, as shown in the following example:

Do not forget the comma after the property declaration! When the
 property is set, SSDT at design time and the SSIS execution

engine at run time will invoke the base class method,
and attempt to upgrade an earlier version of the component used in an SSIS
package to the current one registered in the GAC.

Add the following private constant declarations to the end of the current list of4.
constants:

Extending SSIS Custom Tasks and Transformations

[486]

These constants contain some of the settings needed by version two of the
component: object names, descriptions, and messages.

Another private variable is required; place it next to the existing ones:5.

Modify the method, and add the following6.
new custom property declaration:

This property will allow the SSIS package developers to not only specify
which regular expressions patterns to use, and against which column, but
also which regular expressions options to use for matching.

Extend the method by adding the following test at the end of the7.
method's definition (before the command):

Extending SSIS Custom Tasks and Transformations

[487]

Extend the private function by8.
adding the following variable assignment to its definition:

In the private function, amend the call to the9.
 method so that the Regular Expressions options can be

passed to it dynamically, as shown in the following example:

Make some space below the method definition, and start typing10.
the override directive; from the list of possible overrides, select the

 method. Use the following code to replace the method's
default definition:

Extending SSIS Custom Tasks and Transformations

[488]

Save the project, and build it - first using the Debug, and then again using11.
Release solution configuration. In case of any errors, inspect the messages in the
Error List pane and make the appropriate corrections.
Use Windows Explorer to navigate to the12.

 folder, and locate the
 command file.

Execute the command file as the administrator, observe the messages returned in13.
the Command Prompt window, and finally press any key to complete the
deployment.
In SSDT, open the solution, located in the14.

 folder.
Open the package in the control flow, and then open15.
the Validate Person Data task in the data flow designer. In case you did not use
the previous recipe, follow steps 38 through 46 of the Designing a custom
transformation recipe to complete the data flow; otherwise, the Validate Email
transformation should already be in place.

Extending SSIS Custom Tasks and Transformations

[489]

In the Advanced Editor for the Validate Email transformation, under Custom16.
Properties, the new Regular Expressions Options property should be available
with the default value of 513 (the value represents the case-insensitive, and
culture-invariant, regular expressions matching options). This value is applied
during the upgrade. Refer to the following screenshot to verify your settings:

Extending SSIS Custom Tasks and Transformations

[490]

Click OK to confirm the configuration.17.
Save the package and execute it in debug mode. Out of 107 source rows, seven18.
should fail the EmailAddress column validation.
Stop the debug mode execution.19.
Close the and solutions.20.

How it works...
By specifying the version number of the custom component, in the

 attribute, you mark the new version of the component; a new
version is needed only if the exposed properties, inputs, and/or outputs, have been
modified.

Of course, setting the new version number is not enough to allow the earlier versions of the
component that are already in use in deployed SSIS packages to be upgraded accordingly.
The upgrade is performed by overriding the base class method. In the
preceding example, a new component custom property is added.

After the upgrade, the component's version number is changed as well, to the version
number of the component currently registered in the GAC.

When the new version of the component is deployed and registered, any SSIS package that
uses the component will be upgraded, either the next time you edit it in SSDT or the next
time it is executed.

111
Scale Out with SSIS 2017

This chapter will cover the following recipes:

SQL Server 2017 download and setup
SQL Server client tools setup
SSIS configuration for scale out executions
Scaling out a package execution

Introduction
Since its inception, SSIS was meant to execute on a single machine running Windows. The
service by itself could not scale on multiple machines. Although it would have been
possible to call package execution with custom orchestration mechanism, it didn't have
anything built in. You needed to manually develop an orchestration service and that was
tedious to do and maintain. See this article for a custom scale-out pattern with SSIS:

.

What lots of developers wanted was a way to use SSIS a bit like the way Hadoop works: call
a package execution from a master server and scale it on multiple workers (servers). The
SSIS team is delivering a similar functionality in 2017, enabling us to enhance scalability
and performance in our package executions.

As mentioned before, the scale out functionality is like Hadoop. The difference is that we
use tools we have more knowledge of. It's also a lot easier to work with SSIS since we are on
the Windows filesystem. As we saw in , On-Premises and Azure Big Data
Integration, on big data, we needed to use ssh to connect to the machine where the files were
copied and produced. Another advantage is that we can consume data at the source. We
don't have to copy it to another machine and SSIS can connect to lots of different sources.

Scale Out with SSIS 2017

[492]

We do not pretend that the SSIS scale out functionality is a replacement for Hadoop. In
many situations, it might be a good option before exploring other solutions such as
Hadoop/HDInsight or Azure SQL Data Warehouse.

SQL Server 2017 download and setup
This recipe will cover the following subtopics:

Download SQL Server 2017
Set up SQL Server with SSIS scale out options

Getting ready
This recipe assumes that you have the necessary permissions to install SQL Server on your
machine.

How to do it...
Open your web browser and navigate to1.

.
Select Download the preview, as shown in the following screenshot:2.

Scale Out with SSIS 2017

[493]

On the page that appears, select Windows in the platform menus at the right and3.
click on Install on Windows, as shown in this screenshot:

As shown in the following screenshot, fill in the form and click on Continue:4.

Scale Out with SSIS 2017

[494]

Choose ISO and click on Continue, as shown here:5.

Choose the language (we selected English) and click on Download, as shown in6.
the following screenshot:

Scale Out with SSIS 2017

[495]

The download will now start. Once completed, navigate to the folder where you7.
saved the file named and double-click on
it. Select setup.exe to proceed with the SQL Server 2017 CTP 2.1 installation, as
shown in the following screenshot:

Scale Out with SSIS 2017

[496]

Once SQL Server Installation Center appears, click on New SQL Server stand-8.
alone installation or add features to an existing installation. The SQL Server
2017 CTP 2.1 Setup window appears, as shown in the following screenshot. Click
on Next.

Scale Out with SSIS 2017

[497]

Accept the License Terms and click on Next:9.

Scale Out with SSIS 2017

[498]

As shown in the following screenshot, allow Microsoft Update to run and click10.
on Next:

Scale Out with SSIS 2017

[499]

Once Initial Setup Files completes, as shown in this screenshot, click on Next:11.

Scale Out with SSIS 2017

[500]

Once the updates are done, the Install Rules window appears; click on Next on12.
this one once the rules check is completed. As shown in the next screenshot,
there's always a firewall warning. Since we're working on an all-in-one
configuration, this warning can be skipped:

Scale Out with SSIS 2017

[501]

The Feature Selection window appears. In our case, we'll only install the13.
database engine and SSIS. You'll notice that we select both Scale Out Master and
Worker in Integration Services, the new features we're interested in. Select the
features shown in the following screenshot and click on Next:

Scale Out with SSIS 2017

[502]

The Instance Configuration window appears; since we might have multiple14.
instances of SQL Server 2017 until the final release, we'll use a named instance.
This creates separate sets of services for each version of SQL Server installed on a
machine. Be aware that each instance of SQL Server consumes resources, and the
PC where it is installed might have performance issues if you install too many
versions and run them at same time. Enter for MSSQL 2017 CTP
2.1 in the Named instance textbox and click on Next:

In the Server Configuration window, click on the Collation tab and set the15.
collation to Latin1_General_100_CI_AI, as shown in the following screenshot.
You might want to refer to , SSIS Setup for an explanation of the
collation choice and definition. Click on Next:

Scale Out with SSIS 2017

[503]

The Database Engine Configuration window appears. In the Server16.
Configuration tab, select Mixed Mode as the authentication mode. Enter a
password for the SA account. The Mixed Mode authentication is required by
Scale Out Workers (SSIS) to be able to write into SSISDB. Add the current user
(you) also as an SQL Server Administrator, as shown in the following screenshot.
Leave the other settings as default and click on Next:

Scale Out with SSIS 2017

[504]

We are now directed to Integration Services Scale Out Configuration - Master17.
Node. Since we're using an all-in-one sample configuration, which means the
master node will reside on the same machine as the worker node, the port
configuration is not very important. We currently don't have any SSL Certificate
handy. Leave the settings to their default values and click on Next.

Scale Out with SSIS 2017

[505]

The Integration Services Scale Out Configuration - Worker Node window18.
appears. As highlighted in the following screenshot, this step is useful when we
install separate worker nodes on different machines. In these cases, we need to
specify the trusted certificate used to authenticate to the master worker node. In
an all-in-one configuration, this step is facultative. Click on Next to continue.

Scale Out with SSIS 2017

[506]

The Ready to Install window appears. As shown in the following screenshot, this19.
step allows you to review what will be installed. We can always click on < Back
to change anything that we selected before. In our case, everything is fine; click
on Install to start installing SQL Server 2017 CTP1.

The Installation Progress window appears. It might take several minutes to20.
complete. As shown in the following screenshot, there's a progress bar that tells
us the progress of the installation:

Scale Out with SSIS 2017

[507]

The last step will show you that the installation is complete.21.

There's more...
We have now installed the server portion of SQL Server. The next steps will show you how
to install SQL Server Management Studio (SSMS) and SQL Server Data Tools (SSDT).

SQL Server client tools setup
We will see how to setup SQL Server client tools.

Scale Out with SSIS 2017

[508]

Getting ready
This recipe assumes that you have access to the internet and you have the necessary rights
to install the software on your PC.

How to do it...
From SQL Server Installation Center, click on Install SQL Server Management1.
Tools, as highlighted in the following screenshot:

Scale Out with SSIS 2017

[509]

A browser opens and the following page opens. Select version 17.1 (the latest2.
version available at the time of writing this book), highlighted in the following
screenshot:

Scale Out with SSIS 2017

[510]

Once the download completes, double-click on the downloaded file to start the3.
installation process. Once completed, you get a window similar as the one shown
in the following screenshot:

Scale Out with SSIS 2017

[511]

Go back to SQL Server Installation Center, and this time, click on Install SQL 4.
Server Data Tools, as highlighted in this screenshot:

Scale Out with SSIS 2017

[512]

You are directed to the SSDT website. As shown in the following screenshot,5.
download the latest version (17.1 at the time of writing) of SSDT:

Scale Out with SSIS 2017

[513]

The SSDT installer appears as shown in the following screenshot. Although only6.
SQL Server Integration Services is necessary for this chapter, it doesn't hurt to
install the other component as you might want to use it later. Click on Next to
start the installation:

Scale Out with SSIS 2017

[514]

The Microsoft Software License Terms page appears. Check I agree to the7.
license terms and conditions and click on the Install button, as shown in the
following screenshot:

The Setup Progress page appears as SSTD gets installed, as shown in the8.
following screenshot:

Scale Out with SSIS 2017

[515]

Once the installation completes, we're ready to proceed to the setup of SSIS to run9.
in scale out mode.

Configuring SSIS for scale out executions
We'll now configure the SSIS catalog and workers to be able to use scale out executions with
SSIS.

Getting ready
This recipe assumes that you've installed SQL Server 2017, SSIS in scale out mode as well as
SSMS 17.1 or later.

Scale Out with SSIS 2017

[516]

How to do it...
Open SQL Server Management Studio and connect to the newly installed SQL1.
Server 2017 instance.
In the Object Explorer, right-click on the Integration Services Catalogs node and2.
select Create Catalog.
The Create Catalog window appears. As shown in the following screenshot,3.
check the Enable this server as SSIS scale out master option as well as providing
a password for the catalog. Click on OK when finished.

Scale Out with SSIS 2017

[517]

Still in SSMS, run the following SQL statements. The first statement lists the4.
workers available. Copy the WorkerAgentId into the clipboard by right-clicking
on the value in the grid and select Copy.
Type the second SQL statement and use the clipboard's content as parameter (the
grayed-out shape in the screenshot). This will enable this specific worker.

We'll now create a simple database to hold our test scale out data. In SQL Server5.
Object Explorer, right-click on the Databases folder and select Create Database.
Name it and click on OK.
By default, the workers run under the 6.
Windows user. This user is not a login in SQL Server. In SQL Server Object
Explorer, expand the Security folder and right-click on the Logins folder; select
New Login from the contextual menu. The Login - New window appears. As
shown in the following screenshot, type
in the login name:

Scale Out with SSIS 2017

[518]

Click on User Mapping in the upper-left pane.7.

Scale Out with SSIS 2017

[519]

As shown in the following screenshot, select the TestSSISScaleOut database and8.
assign both db_datareader and db_datawriter database roles to the login. Click
on OK to complete the login creation.

Scale Out with SSIS 2017

[520]

The last operation ensures that the worker will have access to the database objects9.
in read/write mode.

There's more...
SSIS is now configured for scale out executions. The next recipe will just show how we can
execute a package in scale out mode.

Executing a package using scale out
functionality
Finally, we're able to do the real work: creating a simple package and execute it in scale out
mode.

Getting ready
You will need SQL Server 2017, SSIS 2017, SSDT, and SSMS 2017 to complete this recipe. It
is also assumed that you have configured SSIS in the previous recipe.

Scale Out with SSIS 2017

[521]

How to do it...
Open SSDT and create a new SSIS project named , as1.
shown in the following screenshot. Click on OK to create it:

Scale Out with SSIS 2017

[522]

In the Solution Explorer, right-click on the Package.dtsx that is created with the2.
project and select Delete, as shown in this screenshot:

Scale Out with SSIS 2017

[523]

Right-click on the project and select Properties from the contextual menu. As3.
shown in the following screenshot, change the ProtectionLevel property of the
project to Do not save sensitive data and click on OK in both windows. You'll
get a warning telling you that you'll have to do the same for all packages in the
project. We don't have any, so we simply get rid of the warning dialog.
Sensitive data means usernames and passwords. It's better to use parameters
instead of relying on SSIS to keep this information. It doesn't hurt to leave this
property as default, but we'll get annoying warnings at deployment time. So, the
best practice is to use parameters and not the Encrypt sensitive data with user
key setting.

Now, right-click on the project and select New SSIS package from the contextual4.
menu. Rename it .
From the SSIS toolbox, drag and drop a data flow task on the control flow of the5.
package. Name it and double-click on it to go into the data
flow task.

Scale Out with SSIS 2017

[524]

From the connection managers pane, right-click and select New OLEDB6.
Connection Manager. In the configure OLEDB Connection Manager window,
click on New and set the properties as shown in the following screenshot:

Scale Out with SSIS 2017

[525]

Click on the Test Connection button to test the connection. If everything is okay,7.
get rid of the test dialog box and click on OK to create the connection manager.
Rename it as .8.
From the SSIS toolbox | Other sources, drag and drop an OLEDB source.9.
Rename it . Double-click on it and enter the following query:

Add a derived component to the data flow. Rename it to10.
 and tie it to the source. Open it.

Add a column, , and set its expression to
. Leave other columns as they are and click

on OK to close the Derived Column Transformation Editor.
From the SSIS toolbox | Other destinations, drag and drop an OLEDB11.
destination onto the data flow surface. Rename it as .
Open it and click on the New button beside the table or view dropdown. Instead
of choosing an existing table, since we don't have any yet, we'll create a new one.
As shown in the following screenshot, adapt the T-SQL, create the table script to12.
remove the , and click on OK.

Scale Out with SSIS 2017

[526]

The query is as follows:

Click on the Mappings tab to set the links between pipeline and table columns.13.
Click on OK in the OLE DB Destination Editor to close it. Your data flow should
look like the following screenshot:

Test the package, ensuring that everything works correctly.14.
We'll now deploy the project. In the Solution Explorer, right-click on the SSIS15.
and deploy it in the SSIS Catalog created in the previous recipe.
Once deployed, open SSMS; expand to the Integration Services Catalogs until16.
you get to the ScaleOut.dtsx package. Right-click on it and select Execute in
Scale Out... from the contextual menu, as shown in the following screenshot:

Scale Out with SSIS 2017

[527]

The Execute Package In Scale Out window opens, as shown here:17.

Scale Out with SSIS 2017

[528]

Click on Machine Selection in the upper-left pane. You can see that the worker18.
we registered in the previous recipe is there. By default, Allow any machine to
execute the selected package is checked. Since we have only one worker
registered, we'll leave it checked. Modifying this setting would be useful if we
had many workers and we'd like to be able to choose from among them the
worker(s) to execute the package.

Click on OK and you'll get a message, as the following screenshot shows. This19.
confirms that the package execution has been queued to execute. Click on OK to
close this dialog box.

Scale Out with SSIS 2017

[529]

In the SQL Server Object Explorer, right-click again on the ScaleOut.dtsx20.
package. As shown in the following screenshot, go to Report | Standard Reports
| All Executions from the contextual menu:

The report opens and you can see that the execution has succeeded, as shown in21.
the following screenshot. Click on the All Message link under the Report
column.

Scale Out with SSIS 2017

[530]

The report messages are now detailed. As highlighted in the following22.
screenshot, we can see that SSIS tried to scale out the insertion in the destination,
even though it was a very simple package.

That's it! We've run the SSIS package using scale out mode. That completes the recipe.

Index

A
asynchronous
Azure Blob storage data management , ,

, ,
Azure Blob storage data
 importing , , , ,
Azure tasks , , , , ,
Azure transforms , , , , ,

C
Cache connection
cascading lookup pattern
 using , , , , , ,
complex filesystem operations
 executing, with Script task , ,
Comprehensive R Archive Network (CRAN)
Control Flow templates , , , ,
Corporate Information Factory (CIF)
custom components version
 managing , , , ,
custom logging , ,
custom logging level
 testing , , , , ,
custom task
 designing , , , , , , ,

, , , , ,
custom transformation
 design time
 designing , , , , , , ,

, , , , , , , ,
 run time

D
data cleansing
 with DQS ,
data flow

 worker threads, determining ,
data mart
Data Mining Extensions (DMX)
data mining query transformation
 SSAS data mining model, querying , ,

data profiling XML results
 reading, with Script task ,
Data Quality Server
 about
 DQS_MAIN
 DQS_PROJECTS
 DQS_STAGING_DATA
Data Quality Services (DQS)
 about
 data cleansing ,
 matching , , , ,
Data Transformation Services (DTS)
data warehouse
 full historical load
 incremental loads
 loading, framework used , , ,
 near real-time loads
 patterns, designing to load dimensions , ,

, , , , , ,
data
 copying, to on-premises cluster , , ,

, ,
 correcting, with Script component , , ,

,
 managing, with Pig Latin , ,
 profiling, with SSIS , , ,
 transferring, between Azure , , , ,

,
 transferring, between Hadoop , , ,

, ,
 transforming, with Hive ,

[532]

 validating, regular expressions used in Script
component , , , , , ,

,
database administrator (DBA)
database
 creating
dataset
 splitting, into test set ,
 splitting, into training ,
destination
DQS components
 reference link
DQS knowledge base
 creating ,
DTExec command-line utility
 using, to execute an SSIS package
Dts object

E
error column name , , , , , ,

execution tree
 about
 requesting, in SSDT , , , ,

F
File Transfer Protocol (FTP)
Framework calls
 in EP_Staging.dtsx , , , , ,

,
framework
 used, for loading data warehouse , , ,

G
Global Assembly Cache (GAC)

H
Hadoop File System (HFS)
HDInsight big data cluster
 leveraging , , , , ,
Hive
 data, transforming
 using , ,
Hortonworks cluster

 installing ,

I
incremental package deployment , ,
Installation package
Integration Services Service (SSIS Service)
 reference link

J
Java Runtime Engine (JRE)
 about
 installing, for PolyBase , , ,
 URL, for downloading

K
knowledge base (KB)

L
lookup cache
 full cache mode
 no cache mode
 partial cache mode
 using , , ,
lookup expressions
 about
 using , ,

M
master data services (MDS)
master package concept
 using , ,
MDS components
 URL, for installing
MDS model
 creating , , ,
Microsoft Developer Network (MSDN)
 reference link
Microsoft Visual Studio Tools for Applications

(VSTA)
multiple version support ,

N
Naive Bayes SSAS data mining model
 preparing , ,

[533]

Naive Bayes
 SSAS data mining model, preparing
near real-time ,

O
OLE DB connection
on-demand loads ,
on-premises cluster
 data, copying , , , , ,

P
package
 executing, scale out functionality used , ,

, , , , , ,
parallelism
 using ,
performance monitor data collector set
 configuring ,
performance monitor session
 establishing
PolyBase
 Java Runtime Engine (JRE), installing , ,

, ,

R
R data mining model
 creating ,
 using, in SSIS , ,
randomness of split
 testing, with SSAS decision trees model ,

, , ,
regular expressions
 used, for validating data in Script component

, , , , , , ,
RStudio
 reference link

S
sample solution
 installing , ,
scale out executions
 Scale Out Workers (SSIS), configuring , ,

scale out functionality

 used, for executing package , , ,
, , , , ,

Scale Out Workers (SSIS)
 about
 configuring, for scale out executions , ,

Script component
 data validating, regular expressions used ,

,
 data, correcting , , , , , ,

, , ,
Script Component
 used, as destination , , ,
 used, as Source , , , , , ,

Script task
 about
 complex filesystem operations, executing ,

,
 data profiling XML results, reading ,
Secure File Transfer Protocol (SSH FTP)
simple project
 creating , , , , , , , , , ,

, , , , , , ,
slowly changing dimensions (SCD)
 about
 types
source
source database
 deploying, with data , , , , ,

, , ,
SQL Server 2016
 analysis services
 database engine
 downloading , , ,
 installing , , , , , , , , , ,

,
 integration services
 management tools
 reporting services
 SQL Server Data Tools
SQL Server 2017
 downloading , , , , , ,

, , ,
 setting up , , , , , , ,

, ,
SQL Server Agent Job
SQL Server Agent
 about
 alerts
 operators
 schedules
SQL Server Analysis Services (SSAS)
SQL Server client tools
 setting up , , , , ,
SQL Server connectivity
 testing ,
SQL Server Data Tools (SSDT)
 about , ,
 execution tree, requesting , , , ,

SQL Server Data Tools
 installing , , , ,
SQL Server Management Studio (SSMS) ,

, ,
SQL Server Management Studio
 installing , ,
 using, to execute an SSIS package , ,

SSAS data mining model
 querying, with data mining query transformation

, ,
SSAS decision trees model
 randomness of split, testing , , , ,

SSIS Catalog
 creating , , ,
SSIS execution techniques
 on-demand execution, performed through

intervention
 scheduled execution, performed automatically

SSIS fuzzy components
 using ,
SSIS Managed API
SSIS package execution
 scheduling , , , , , ,

SSIS package
 executing, DTExec command-line utility used

 executing, SQL Server Management Studio used
, ,

 executing, T-SQL used ,
SSIS performance counters
 reference link
SSIS performance
 monitoring
SSIS projects , , , , , ,
SSIS Script task
 variables, used , , ,
staging area
 customer
 orders
 product
star schema
synchronous

T
T-SQL
 using, to execute an SSIS package ,
target database
 deploying , , , ,
Team Foundation Server (TFS)
text mining
 with term extraction , , , ,
 with term lookup transformations , , ,

,
transformation

V
variables
 using, in SSIS Script task , , ,

W
Windows Azure Storage Blob (WASB)
WinSCP
 reference link
worker threads
 determining, in data flow ,

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: SSIS Setup
	Introduction
	SQL Server 2016 download
	Getting ready
	How to do it...

	Installing JRE for PolyBase
	Getting ready
	How to do it...
	How it works...

	Installing SQL Server 2016
	Getting ready
	How to do it...

	SQL Server Management Studio installation
	Getting ready
	How to do it...

	SQL Server Data Tools installation
	Getting ready
	How to do it...

	Testing SQL Server connectivity
	Getting ready
	How to do it...

	Chapter 2: What Is New in SSIS 2016
	Introduction
	Creating SSIS Catalog
	Getting ready
	How to do it...

	Custom logging
	Getting ready
	How to do it...
	How it works...
	There's more...
	Create a database
	Create a simple project
	Testing the custom logging level

	See also

	Azure tasks and transforms
	Getting ready
	How to do it...
	See also

	Incremental package deployment
	Getting ready
	How to do it...
	There's more...

	Multiple version support
	Getting ready
	How to do it...
	There's more...

	Error column name
	Getting ready
	How to do it...

	Control Flow templates
	Getting ready
	How to do it...

	Chapter 3: Key Components of a Modern ETL Solution
	Introduction
	Installing the sample solution
	Getting ready
	How to do it...
	There's more...

	Deploying the source database with its data
	Getting ready
	How to do it...
	There's more...

	Deploying the target database
	Getting ready
	How to do it...

	SSIS projects
	Getting ready
	How to do it...

	Framework calls in EP_Staging.dtsx
	Getting ready
	How to do it...
	There's more...

	Chapter 4: Data Warehouse Loading Techniques
	Introduction
	Designing patterns to load dimensions of a data warehouse
	Getting ready
	How to do it...
	There's more...

	Loading the data warehouse using the framework
	Getting ready
	How to do it...

	Near real-time and on-demand loads
	Getting ready
	How to do it...
	There's more...

	Using parallelism
	Getting ready
	How to do it...
	There's more...

	Chapter 5: Dealing with Data Quality
	Introduction
	Profiling data with SSIS
	Getting ready
	How to do it...

	Creating a DQS knowledge base
	Getting ready
	How to do it...

	Data cleansing with DQS
	Getting ready
	How to do it...

	Creating a MDS model
	Getting ready
	How to do it...

	Matching with DQS
	Getting ready
	How to do it...

	Using SSIS fuzzy components
	Getting ready
	How to do it...

	Chapter 6: SSIS Performance and Scalability
	Introduction
	Using SQL Server Management Studio to execute an SSIS package
	Getting ready
	How to do it...
	How it works...

	Using T-SQL to execute an SSIS package
	How to do it...
	How it works...

	Using the DTExec command-line utility to execute an SSIS package
	How to do it...
	How it works...
	There's more...

	Scheduling an SSIS package execution
	Getting ready
	How to do it...
	How it works...

	Using the cascading lookup pattern
	How to do it...
	How it works...

	Using the lookup cache
	How to do it...
	How it works...

	Using lookup expressions
	How to do it...
	How it works...

	Determining the maximum number of worker threads in a data flow
	How to do it...
	How it works...

	Using the master package concept
	How to do it...
	How it works...

	Requesting an execution tree in SSDT
	How to do it...
	How it works...

	Monitoring SSIS performance
	Establishing a performance monitor session
	How to do it...
	How it works...

	Configuring a performance monitor data collector set
	How to do it...
	How it works....

	Chapter 7: Unleash the Power of SSIS Script Task and Component
	Introduction
	Using variables in SSIS Script task
	Getting ready
	How to do it...

	Execute complex filesystem operations with the Script task
	Getting ready
	How to do it...

	Reading data profiling XML results with the Script task
	Getting ready
	How to do it...

	Correcting data with the Script component
	Getting ready
	How to do it...

	Validating data using regular expressions in a Script component
	Getting ready
	How to do it...

	Using the Script component as a source
	How to do it...
	How it works...

	Using the Script component as a destination
	Getting ready
	How to do it...
	How it works...

	Chapter 8: SSIS and Advanced Analytics
	Introduction
	Splitting a dataset into a training and test set
	Getting ready
	How to do it...

	Testing the randomness of the split with a SSAS decision trees model
	Getting ready
	How to do it...

	Preparing a Naive Bayes SSAS data mining model
	Getting ready
	How to do it...

	Querying the SSAS data mining model with the data mining query transformation
	Getting ready
	How to do it...

	Creating an R data mining model
	Getting ready
	How to do it...

	Using the R data mining model in SSIS
	Getting ready
	How to do it...

	Text mining with term extraction and term lookup transformations
	Getting ready
	How to do it...

	Chapter 9: On-Premises and Azure Big Data Integration
	Introduction
	Azure Blob storage data management
	Getting ready
	How to do it...

	Installing a Hortonworks cluster
	Getting ready
	How to do it...

	Copying data to an on-premises cluster
	Getting ready
	How to do it...

	Using Hive – creating a database
	Getting ready
	How to do it...
	There's more...

	Transforming the data with Hive
	Getting ready
	How to do it...
	There's more...

	Transferring data between Hadoop and Azure
	Getting ready
	How to do it...

	Leveraging a HDInsight big data cluster
	Getting ready
	How to do it...
	There's more...

	Managing data with Pig Latin
	Getting ready
	How to do it...
	There's more...

	Importing Azure Blob storage data
	Getting ready
	How to do it...
	There's more...
	Azure Data Factory and SSIS

	Chapter 10: Extending SSIS Custom Tasks and Transformations
	Introduction
	Designing a custom task
	Getting ready
	How to do it...
	How it works...

	Designing a custom transformation
	How to do it...
	How it works...

	Managing custom component versions
	Getting ready
	How to do it...
	How it works...

	Chapter 11: Scale Out with SSIS 2017
	Introduction
	SQL Server 2017 download and setup
	Getting ready
	How to do it...
	There's more...

	SQL Server client tools setup
	Getting ready
	How to do it...

	Configuring SSIS for scale out executions
	Getting ready
	How to do it...
	There's more...

	Executing a package using scale out functionality
	Getting ready
	How to do it...

	Index

