

Programming Microsoft
Dynamics™ NAV 2015

Sharpen your skills and increase your productivity
when programming Microsoft Dynamics NAV 2015

David Studebaker

Christopher Studebaker

BIRMINGHAM - MUMBAI

Programming Microsoft Dynamics™ NAV 2015

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1240715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-420-2

www.packtpub.com

Credits

Authors
David Studebaker

Christopher Studebaker

Reviewers
Mark Brummel

Danilo Capuano

Stefano Demiliani

Commissioning Editor
Taron Pereira

Acquisition Editors
Purav Motiwalla

Sam Wood

Content Development Editor
Neeshma Ramakrishnan

Technical Editors
Utkarsha S. Kadam

Mohita Vyas

Copy Editors
Tani Kothari

Kausambhi Majumdar

Alpha Singh

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

Foreword

Like many other enthusiasts in the NAV community, David ran a family business
with his wife, Karen. Their son, Christopher, got his start in NAV by working in the
family business. This is the kind of business that made NAV more successful than
any other product in the ERP mid-market.

For many years, David has been a key influencer on the new versions of Dynamics
NAV and has helped us evolve our developer Help. Based on this work, David wrote
his first book on Dynamics NAV in 2007 about how to develop in "classic" NAV.

In 2009, he wrote his second book to help close the gap between the Classic client
and the new world of the RoleTailored client and RDLC reporting. Overnight, the
book proved to be extremely helpful to the greater community to cross the chasm
from the "old" world to the "new" world.

Since then, David and his coauthor and, son Chris, also a NAV expert, have twice
rewritten and extended these books to include new versions of Dynamics NAV.
Reading the latest book reminds me of how far Dynamics NAV has evolved, both as
a product since the first version came out in 1987 and as a thriving community with
Karen and David as pioneers and later Chris as a key contributor to books like these.

Michael Nielsen

Director of Engineering,
Dynamics NAV at Microsoft

About the Authors

David Studebaker is the Chief Technical Officer and a cofounder of Liberty
Grove Software with his partner, Karen Studebaker. David has had a wide range of
development, consulting, sales and management roles throughout his career. He has
been a partner or owner and manager of several software development businesses
while always maintaining a significant role as a business application developer.

David started programming in 1962. He has been developing in C/AL since
1996. David has been an active participant in each step of computing technology
from the first solid state mainframes to today's technology, from binary assembly
language coding to today's C/AL. David's special achievements include his role as
co-developer of the first production multiprogrammed SPOOLing system in 1967.
He has worked on a diverse set of software applications including manufacturing,
distribution, retail, engineering, and others.

David has a BS in mechanical engineering from Purdue University and an MBA
from the University of Chicago. He has been writing for publications since he was
an undergraduate and has had numerous magazine and reference books published.
Prior to coauthoring this book, David was the author of Programming Microsoft
Dynamics NAV (for the Classic Client), Programming Microsoft Dynamics NAV 2009
(for the Role Tailored Client), and Programming Microsoft Dynamics NAV 2013. He has
been a member of the Association for Computing Machinery since 1963 and was a
founding officer of two local chapters of the ACM.

Acknowledgments

This book would not have been possible without my coauthor (and son), Christopher
Studebaker. I'm very lucky to get to work with such a smart, knowledgeable son,
who is also my good friend.

I especially want to thank my partner in life and at work, Karen Studebaker, for her
unflagging support, patience, love, and encouragement in all ways. The first 50 years
we have been together have been great; I'm looking forward to the next 50.

One of my life's principle treasures has been the enthusiastic support and love of my
children, Christopher and Rebecca, of whom I am very proud. Both are successful,
thoughtful, high quality professionals, and managers. More importantly, they each
place the highest value to their roles as parents and spouses (here, I say "hi" to my
special grandchildren, Cole, Alec, and CeCe, and my terrific in-law children, Elizabeth
and Frederick).

Special thanks are due to Michael Nielsen of Microsoft for his wholehearted support
of this and the previous three Programming NAV books. Many thanks to Mark
Brummel, who knows more about NAV than almost anyone (except maybe Michael)
and generously shares his knowledge. I also wish to thank all the people at Microsoft
and Packt as well as our technical reviewers who assisted us a great deal with their
contributions and advice.

Much of what I know about NAV was gained while working with excellent teams of
associates at Studebaker Technology and Liberty Grove Software. All my life, I have
benefitted from the help of many friends, mentors, and associates. Life would be
very poor without all these kind and generous folks.

May you enjoy using this book even a fraction as much as I enjoyed working on it
with Chris.

Christopher Studebaker is an NAV developer/implementer and has 15 years'
experience in designing, developing, implementing, and selling in the NAV and
SQL Server environments. He has specialized in retail, manufacturing, job shop,
and distribution implementations, mostly in high user count and high data volume
applications. Chris has worked on many NAV implementations with integrations
to external databases and third-party add-on products. Some special applications
include high-volume order entry, pick-to-light systems, procurement analysis, and
web frontends.

Chris acts in a consulting and training role for customers and for peer NAV
professionals. He provides training both in informal and classroom situations, often
developing custom course material to support courses tailored to specific student
group needs. Courses have included various NAV functional and development areas.

Before becoming a certified NAV developer, Chris was a certified environmental
consultant working with manufacturing facilities to meet national and state
regulations. His duties included regulatory reporting, data analysis, project
management, and subcontractor oversight. His accomplishments include obtaining
several safety certifications and managing projects for hazardous material
management and abatement.

Chris is an expert at NAV installation, configuration, and development. He has been
working with SQL in both NAV and other Microsoft applications for over a decade.
He has a bachelor of science degree from Northern Illinois University and has done
graduate work at Denmark Technical University. Chris was the coauthor of the Packt
Publishing book Programming Microsoft Dynamics 2013.

First and foremost, I would like to thank my parents, David and
Karen Studebaker, for giving me the opportunity to start in the NAV
world and allowing me the room to grow on my own. Of course,
I could not have participated in this book if it weren't for my wife,
Beth. Having worked within the NAV community for the past
decade, I have worked with many wonderful people, most notably,
my parents (of course), Betty Cronin, Kathy Nohr, Tommy Madsen,
Susanne Priess, David Podjasek, Joy Bensur , Diane Beck, Chris
Pashby, and Anthony Fairclough. Without them, I would not have
been the NAV professional I am today.

About the Reviewers

Mark Brummel is a freelance all-round Microsoft Dynamics NAV specialist
focused on helping end users of the product.

His passion is evangelizing and documenting the "NAV way". This is a combination
of architectural principles and design best practices formalized in a workshop called
Master Class for Microsoft Dynamics NAV Application Architecture and Design
Patterns. The methodology helps in creating solutions that are easy to upgrade,
recognizable for users, and maintainable outside the ecosystem of their creators. All
three elements apply to the original Navision product that shipped in 1995 and are
extracted, updated, and documented in this methodology.

In 2015, his new book, Learning Dynamics NAV Patterns, will be published, which is a
book about his methodology. He also organizes hands-on workshops together with
a group of MVPs and MCTs all across the globe.

Before starting freelancing in 2006, he started in 1997 as an end user and worked
8 years for NAV partners after that. Designing and maintaining add-on systems was
his specialization. Some of these add-on systems exceed the standard product when
it comes to size and complexity. Coaching colleagues and troubleshooting complex
problems are his passions and part of his day-to-day work.

Many end users of Microsoft Dynamics NAV struggle with questions about how to
upgrade their two-tier solution to a three-tier solution. Mark can help you answer
these questions and plot a roadmap to the future, retaining the investment in
the solution.

When Microsoft introduced the three-tier architecture in 2009, it was meant to be a
major shift for experienced NAV developers and consultants. Mark has trained most
of them in the Netherlands and Belgium.

To be able to share knowledge in an efficient and global way, Mark wrote the book
Dynamics NAV 2009 Application Design and Dynamics NAV 2013 Application Design,
which is often referred to as the NAV Bible. Its content is applicable to newer and
older versions of the product too.

In 2010, he started a think tank called Partner Ready Software together with four
other Dynamics NAV experts. Partner Ready Software brings fresh ideas of designing
applications in NAV and creates awareness about applying design patterns while
creating repeatable solutions.

Mark is an associate in the Liberty Grove Software network, a member of the NAVUG
advisory board, and a cofounder of the Dutch Dynamics Community.

A special project and performance tuning of the Dynamics NAV product on SQL
Server. As a unique specialist, he has done groundbreaking research in improving
the performance of Dynamics NAV on SQL Server.

On the site, http://nav-skills.com/, Mark maintains a blog. This blog contains
a wide range of articles about both Microsoft Dynamics NAV and SQL Server
products. He is also a frequent speaker at Microsoft events and publishes articles
on Pulse for LinkedIn.

Since 2006, Mark has been rewarded by Microsoft with the Most Valuable Professional
award for his contribution to online and offline communities. He has received the
award 10 times.

Mark is a father of four, is married, and lives in a small town in the Netherlands.

Danilo Capuano is a senior software engineer with over 10 years of industry
experience. He lives in Naples, Italy, where he earned a degree in computer science.
He currently works as a consultant for Microsoft Dynamics NAV and Microsoft
Dynamics CRM at a Microsoft Gold Partner company, where he also completed
the MCTS certification.

He is already a reviewer of several books on Microsoft Dynamics NAV.

You can contact him on his home page at http://www.capuanodanilo.com/

You can also contact him via Twitter at @capuanodanilo.

Stefano Demiliani is a Microsoft Certified Solution Developer (MCSD), MCAD,
MCTS on Microsoft Dynamics NAV, MCTS on Sharepoint, MCTS on SQL Server,
and a long-time expert on other Microsoft-related technologies.

He has a master's degree in computer engineering from Politecnico of Turin.

He works as a senior project manager and solution developer for EID (http://
www.eid.it/), a company of the Navlab group (http://www.navlab.it/), one of
the biggest Microsoft Dynamics group in Italy (where he's also the Chief Technical
Officer). His main activity is the architecture and development of enterprise solutions
based on the entire stack of Microsoft technologies (Microsoft Dynamics NAV,
Microsoft Sharepoint, and Azure and .NET applications in general), and he's often
focused on engineering distributed service-based applications.

He works as a full-time NAV consultant (15+ years of international NAV projects),
and he is available for architecture solutions based on Microsoft's ERP and for NAV
database tuning and optimization (performance and locking management). He's the
author of several different Microsoft Certified NAV add-ons.

He has written many articles and blogs on different Microsoft-related topics, and
he's frequently involved in consulting and teaching. He has worked with Packt
Publishing in the past for many Microsoft Dynamics NAV-related books.

You can get more details and keep in touch with him by reaching
http://www.demiliani.com/ or via Twitter (@demiliani).

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

[i]

Table of Contents
Preface xiii
Chapter 1: An Introduction to NAV 2015 1

NAV 2015 – an ERP system 2
Financial Management 4
Manufacturing 4
Supply Chain Management 5
Business Intelligence and reporting 6
Relationship Management 7
Human Resource management 8
Project Management 8

Significant changes in NAV 2015 8
Application changes 9
Client enhancements 9
Development tools 9
Other areas 10

A developer's overview of NAV 2015 10
NAV object types 11
The C/SIDE integrated development environment 11
Object Designer tool icons 12
The C/AL programming language 13
NAV object and system elements 14
NAV functional terminology 18
User interface 19

Hands-on development in NAV 2015 21
The NAV 2015 development exercise scenario 21
Getting started with application design 22
Application tables 22

Designing a simple table 23
Creating a simple table 24

Table of Contents

[ii]

Pages 27
Standard elements of pages 27
List pages 28
Card pages 28
Document pages 29
Journal/Worksheet pages 31

Creating a List page 31
Creating a Card page 35
Creating some sample data 40
Creating a List Report 41
Other NAV object types 49

Codeunits 49
Queries 50
MenuSuites 50
XMLports 50

Development backups and documentation 51
Summary 52
Review questions 52

Chapter 2: Tables 57
An overview of tables 58

Components of a table 59
Naming a table 60
Table numbering 61
Table properties 61
Table triggers 64
Keys 67
SumIndexFields 70
Field Groups 71

Enhancing our sample application 75
Creating and modifying tables 75
Assigning a Table Relation property 80
Assigning an InitValue property 83
Adding a few activity-tracking tables 84
New tables for our WDTU project 85
New list pages for our WDTU project 88
Keys, SumIndexFields, and table relations in our examples 88

Secondary keys and SumIndexFields 88
Table relations 90

Modifying a standard table 92
Version list documentation 93

Table of Contents

[iii]

Types of tables 95
Fully Modifiable tables 95

Master 96
Journal 97
Template 98
Ledger 99
Reference tables 101
Register 103
Posted Document 104
Setup 106
Temporary 107

Content modifiable tables 108
System 108

Read-only tables 109
Virtual 110

Summary 111
Review questions 112

Chapter 3: Data Types and Fields 115
Basic definitions 116
Fields 116

Field properties 117
Field triggers 124
Data structure examples 125
Field numbering 125
Field and Variable naming 126

Data types 127
Fundamental data types 127

Numeric data 128
String data 129
Date/Time data 130

Complex data types 131
Data structure 132
Objects 132
Automation 132
Input/Output 133
DateFormula 133
References and other data types 140

Data type usage 141
FieldClass property options 142

FieldClass – Normal 143
FieldClass – FlowField 143
FieldClass – FlowFilter 146
FlowFields and a FlowFilter for our application 149

Table of Contents

[iv]

Filtering 154
Experimenting with filters 155
Accessing filter controls 162

Development Environment filter access 162
Role Tailored Client filter access 163

Summary 165
Review questions 165

Chapter 4: Pages – The Interactive Interface 169
Page design and structure overview 170

Page design guidelines 171
The NAV 2015 page structure 172

Types of pages 175
Role Center page 175
List page 177
Card page 178
Document page 178

FastTab 179
ListPlus page 180
Worksheet (Journal) page 181
ConfirmationDialog page 181
StandardDialog page 182
NavigatePage 182

Navigate page 344 183
Special pages 183

Request page 184
Departments page 184

Page parts 185
FactBox Area 186

Charts 187
Chart part 187

Page names 188
Page Designer 189

New Page Wizard 190
Page components 194

Page Triggers 195
Page properties 196
Page Preview tool 199
Inheritance 201

WDTU Page Enhancement – part 1 202
Page controls 206

Control types 209
Container controls 209

Table of Contents

[v]

Group controls 209
Field controls 213

Page Part controls 216
Page control triggers 218

Bound and Unbound Pages 219
WDTU Page Enhancement – part 2 219
Page Actions 222

Page Action Types and Subtypes 224
Action Groups 225
Action properties 225
Navigation Pane Button actions 228
Actions Summary 229

Learning more 230
UX (User Experience) Guidelines 230
Creative plagiarism and patterns 230
Experimenting on our own 231
Experimentation 231

Summary 234
Review questions 234

Chapter 5: Queries and Reports 237
Queries 238

Building a simple Query object 239
Query and Query component properties 244

Query properties 244
The DataItem properties 245
Column properties 246

Reports 247
What is a report? 248
Four NAV report designers 249
NAV report types 252

Report types summarized 256
Report naming 256

Report components – overview 257
Report structure 257

Report data overview 258
Report Layout overview 259

Report data flow 260
Report components – detail 263

C/SIDE Report properties 263
SQL Server Report Builder – Report properties 265
Report triggers 267
Request Page Properties 268

Table of Contents

[vi]

Request page triggers 268
DataItem properties 269
DataItem triggers 271

Creating a Report in NAV 2015 272
Learn by experimentation 272
Report building – phase 1 273
Report building – phase 2 276
Report building – phase 3 280

Modifying an existing report with Report Designer or Word 285
Runtime rendering 290
Inheritance 290

Interactive report capabilities 290
Interactive sorting 291
Interactive visible/not visible 292

Request page 293
Add a Request Page option 294

Processing-Only reports 297
Creative report plagiarism and patterns 297

Summary 298
Review questions 298

Chapter 6: Introduction to C/SIDE and C/AL 301
Understanding C/SIDE 302

Object Designer 302
Starting a new object 304
Query Designer 306
XMLport Designer 307
MenuSuite Designer 308
Object Designer Navigation 311
Importing objects 314

Text objects 318
Some useful practices 318
Some C/AL naming conventions 320
Variables 322

C/SIDE programming 327
Non-modifiable functions 328
Modifiable functions 328
Custom functions 330

C/AL syntax 337
Assignment and punctuation 337
Expressions 338

Operators 339
Frequently used C/AL functions 344

The MESSAGE function 344
The ERROR function 345

Table of Contents

[vii]

The CONFIRM function 347
The STRMENU function 348
Record functions 349
FIND functions 352

Conditional statements 356
The BEGIN–END compound statement 356
The IF–THEN–ELSE statement 356

Indenting code 357
Some simple coding modifications 358

Adding field validation to a table 358
Adding code to a report 363
Lay out the new Report Heading 364
Save and test 365
Lookup Related table data 365
Layout the new report body 366

Save and test 368
Handling User-entered report options 368
Defining the Request Page 370

Finishing the processing code 371
Test the completed report 372
Output to Excel 372

Summary 373
Review questions 374

Chapter 7: Intermediate C/AL 377
C/AL Symbol Menu 378
Internal documentation 380
Validation functions 384

TESTFIELD 384
FIELDERROR 385
INIT 386
VALIDATE 387

Date and Time functions 387
TODAY, TIME, and CURRENTDATETIME functions 388
WORKDATE function 388
DATE2DMY function 389
DATE2DWY function 390
DMY2DATE and DWY2DATE functions 390
CALCDATE function 391

Data conversion and formatting functions 392
ROUND 392
FORMAT function 393
EVALUATE function 394

Table of Contents

[viii]

FlowField and SumIndexField functions 395
CALCFIELDS function 396
SETAUTOCALCFIELDS function 397
CALCSUMS function 398

CALCFIELDS and CALCSUMS comparison 398
Flow control 399

REPEAT-UNTIL 399
WHILE-DO 400
FOR-TO or FOR-DOWNTO 400
CASE-ELSE statement 401
WITH-DO statement 403
QUIT, BREAK, EXIT, and SKIP functions 404

QUIT function 404
BREAK function 404
EXIT function 405
SKIP function 405

Input and Output functions 405
NEXT function with FIND or FINDSET 406
INSERT function 406
MODIFY function 407

Rec and xRec 408
DELETE function 408
MODIFYALL function 408
DELETEALL function 409

Filtering 409
SETFILTER function 410
COPYFILTER and COPYFILTERS functions 411
GETFILTER and GETFILTERS functions 411
FILTERGROUP function 412
MARK function 413
CLEARMARKS function 413
MARKEDONLY function 413
RESET function 414

InterObject communication 414
Communication via data 414
Communication through function parameters 414
Communication via object calls 415

Enhancing the WDTU application 416
Modifying Table Fields 417
Add Validation logic 420
Creating the Playlist Subform page 423

Table of Contents

[ix]

Creating a function for our Factbox 431
Creating a Factbox page 435

Summary 439
Review questions 440

Chapter 8: Advanced NAV Development Tools 443
NAV process flow 444

Initial setup and data preparation 446
Transaction entry 446
Testing and posting the Journal batch 447
Utilizing and maintaining the data 447
Data maintenance 448

Role Center pages 448
The Role Center structure 449

The Role Center activities page 453
Cue Groups and Cues 454
Cue source table 455
Cue Group Actions 458

System Part 459
Page Parts 460

Page Parts not visible 460
Page Part Charts 461
Page Parts for user data 463

The Navigation Pane and Action menus 463
Action Designer 465
Create a WDTU Role Center Ribbon 468
The Navigation Pane 476

XMLports 479
XMLport components 480

XMLport properties 481
XMLport triggers 485
XMLport data lines 485
XMLport line properties 486
The Element or Attribute 490
XMLport line triggers 491
XMLport Request Page 493

Web services 493
Exposing a web service 495
Publishing a web service 496
Enabling web services 497
Determining what was published 497
XMLport – a web services integration example for WDTU 500

Summary 507
Review questions 507

Table of Contents

[x]

Chapter 9: Successful Conclusions 511
Creating new C/AL routines 512

Callable functions 513
Codeunit 358 – Date FilterCalc 513
Codeunit 359 – Period Form Management 515
Codeunit 365 – Format Address 516
Codeunit 396 – NoSeriesManagement 518
Function models to review and use 519

Management codeunits 520
Multi-language system 521
Multi-currency system 522
Navigate 523
Debugging in NAV 2015 526

Text Exports of Objects 527
Dialog function debugging techniques 529

Debugging with MESSAGE and CONFIRM 529
Debugging with DIALOG 530
Debugging with text output 530
Debugging with ERROR 531

The NAV 2015 Debugger 531
Activating the Debugger 533
Attaching the Debugger to a Session 534
Creating Break Events 535
The Debugger window 537
Changing code while debugging 539

C/SIDE Test-driven development 539
Other Interfaces 542

Automation Controller 543
Linked Data Sources 544

NAV Application Server (NAS) 544
Client Add-ins 544

Client Add-in construction 545
WDTU Client Add-in 546
Client Add-in comments 561

Customizing Help 562
NAV development projects – general guidance 563

Knowledge is the key 563
Data-focused design 563

Defining the needed data views 564
Designing the data tables 564
Designing the user data access interface 565
Designing the data validation 565
Data design review and revision 565

Table of Contents

[xi]

Designing the posting processes 566
Designing the supporting processes 566
Double-check everything 566

Design for efficiency 567
Disk I/O 567
Locking 568

Updating and upgrading 569
Design for updating 569

Customization project recommendations 570
Testing 571
Deliverables 575
Finishing the project 576

Plan for upgrading 576
Benefits of upgrading 577

Coding considerations 577
Good documentation 578
Low-impact coding 578

Supporting material 579
Summary 580
Review questions 580

Appendix: Review Answers 583
Index 593

[xiii]

Preface
Welcome to the worldwide community of Microsoft Dynamics NAV developers.
This is a collegial environment populated by C/AL developers who readily and
generously share their knowledge. There are formal and informal organizations of
NAV-focused users, developers, and vendor firms scattered around the globe and
active on the Web. Our community continues to grow and prosper, now including
over 110,000 user companies worldwide.

The information in this book will help you to shorten your learning curve of how
to program for the NAV 2015 ERP system using the C/AL language, the C/SIDE
integrated development environment and their capabilities. We hope you enjoy
working with NAV as much as we have.

A brief history of NAV
Each new version of Microsoft Dynamics NAV is the result of inspiration and hard
work along with some good fortune and expert technical investment over the last
thirty years.

The beginning
Three college friends, Jesper Balser, Torben Wind, and Peter Bang, from Denmark
Technical University (DTU) founded their computer software business in 1984
when they were in their early twenties. This business was Personal Computing &
Consulting (PC & C) and its first product was called PC Plus.

Preface

[xiv]

Single user PC Plus
PC Plus was released in 1985 with the primary goal of ease of use. An early employee
said its functional design was inspired by the combination of a manual ledger
journal, an Epson FX 80 printer, and a Canon calculator. Incidentally, Peter Bang is
the grandson of one of the founders of Bang & Olufsen, the manufacturer of home
entertainment systems par excellence.

PC Plus was a PC DOS-based single user system. PC Plus' design features
included these:

• An interface resembling the use of documents and calculators
• Online help
• Good exception handling
• Minimal computer resources required

The PC Plus product was marketed through dealers in Denmark and Norway.

The multi-user Navigator
In 1987, PC & C released a new product, the multi-user Navigator and a new
corporate name, Navision. Navigator was quite a technological leap forward.
It included the following:

• Client/Server technology
• A relational database
• Transaction-based processing
• Version management
• High-speed OLAP capabilities (SIFT technology)
• A screen painter tool
• A programmable report writer

In 1990, Navision was expanding its marketing and dealer recruitment efforts in
Germany, Spain, and the United Kingdom. Also in 1990, V3 of Navigator was released.
Navigator V3 was still a character-based system, albeit a very sophisticated one. If you
get an opportunity to study Navigator V3.x, you would instantly recognize the roots of
today's NAV product. By V3, the product included these features:

• A design based on object-oriented concepts
• Integrated 4GL Table, Form, and Report Design tools (the IDE)
• Structured exception handling

Preface

[xv]

• Built-in resource management
• The original programming language that became C/AL
• Function libraries
• The concept of regional or country-based localization

When Navigator V3.5 was released, it also included support for multiple platforms
and databases. Navigator V3.5 would run on both Unix and Windows NT networks.
It supported the Oracle and Informix databases, as well as the one developed
in-house.

Around this time, several major strategic efforts were initiated. On the technical
side, the decision was made to develop a GUI-based product. The first prototype of
Navision Financials (for Windows) was shown in 1992. At about the same time, a
relationship was established that would take Navision into distribution in the United
States. The initial release in the US in 1995 was V3.5 of the character-based product,
rechristened as Avista for the US distribution.

Navision Financials for Windows
In 1995, Navision Financials V1.0 for Microsoft Windows was released. This
product had many (but not all) of the features of Navigator V3.5. It was designed
for complete look-and-feel compatibility with Windows 95. There was an effort to
provide the ease of use and flexibility of development of Microsoft Access. The new
Navision Financials was very compatible with Microsoft Office and was thus sold as
"being familiar to any Office user". Like any V1.0 product, it was quickly followed by
a much improved V1.1.

In the next few years, Navision continued to be improved and enhanced. Major new
functionalities were added, such as:

• Contact Relation Management (CRM)
• Manufacturing (ERP)
• Advanced Distribution (including Warehouse Management)

Various Microsoft certifications were obtained, providing muscle to the marketing
efforts. Geographic and dealer base expansion continued apace. By 2000, according
to the Navision Annual Report of that year, the product was represented by nearly
1,000 dealers (Navision Solution Centers) in 24 countries and used by 41,000
customers located in 108 countries.

Preface

[xvi]

Growth and mergers
In 2000, Navision Software A/S and its primary Danish competitor, Damgaard A/S,
merged. Product development and new releases continued for the primary products
of both original firms (Navision and Axapta). In 2002, the now much larger Navision
Software, with all its products (Navision, Axapta, and the smaller, older C5, and
XAL) was purchased by Microsoft, becoming part of the Microsoft Business Systems
division along with the previously purchased Great Plains Software business and its
several product lines. All the Navision and Great Plains products received a common
rebranding as the Dynamics product line. Navision was renamed Dynamics NAV.

Continuous enhancement
As early as 2003, research began with the Dynamics NAV development team
planning moves to further enhance NAV and take advantage of various parts of the
Microsoft product line. Goals were defined to increase integration with products
such as Microsoft Office and Microsoft Outlook. Goals were also set to leverage the
functional capabilities of Visual Studio and SQL Server, among others. All the while,
there was a determination not to lose the strength and flexibility of the base product.

NAV 2009 was released in late 2008, NAV 2013 in late 2012, followed by NAV 2015
in late 2014. The biggest hurdles to the new technologies have been cleared. A new
user interface, the Role Tailored Client, was created as part of this renewal. NAV was
tightly integrated with Microsoft's SQL Server and other Microsoft products such as
Office, Outlook, and SharePoint. Development is more integrated with Visual Studio
and more .NET compliant. The product is becoming more open and, at the same time,
more sophisticated supporting features such as Web Services access, Web and tablet
clients, the integration of third-party controls, RDLC, and Word-based reporting,
and so on.

Microsoft continues to invest in, enhance, and advance NAV. More new capabilities
and features are yet to come, continuing to build on the successes of the past. We will
all benefit.

C/AL's Roots
One of the first questions asked by people new to C/AL is often "what other
programming language is it like?" The best response is "Pascal". If the questioner is
not familiar with Pascal, the next best response would be "C" or "C#".

Preface

[xvii]

At the time the three founders of Navision were attending classes at Denmark
Technical University (DTU), Pascal was in wide use as a preferred language not
only in computer courses, but also in other courses where computers were tools and
software had to be written for data analyses. Some of the strengths of Pascal as a tool
in an educational environment also served to make it a good model for Navision's
business applications development.

Perhaps coincidentally (perhaps not) at DTU in this same time period, a Pascal
compiler called Blue Label Pascal was developed by Anders Hejlsberg. That compiler
became the basis for what was Borland's Turbo Pascal, which was the "everyman's
compiler" of the 1980s because of its low price. Anders went with his Pascal compiler
to Borland. While he was there, Turbo Pascal morphed into the Delphi language and
the IDE tool set under his guidance.

Anders later left Borland and joined Microsoft, where he led the C# design team.
Much of the NAV-related development at Microsoft is now being done in C#. So
the Pascal-C/AL-DTU connection has come full circle, only now it appears to be
C#-C/AL. Keeping it in the family, Anders' brother, Thomas Hejlsberg also works
at Microsoft on NAV as a Software Architect. Each in their own way, Anders and
Thomas continue to make significant contributions to Dynamics NAV.

In a discussion about C/AL and C/SIDE, Michael Nielsen of Navision and
Microsoft, who developed the original C/AL compiler, runtime, and IDE, said that
the design criteria were to provide an environment that could be used without the
following:

• Dealing with memory and other resource handling
• Thinking about exception handling and state
• Thinking about database transactions and rollbacks
• Knowing about set operations (SQL)
• Knowing about OLAP (SIFT)

Paraphrasing some of Michael's additional comments, the goals of the language and
IDE design were to do the following:

• Allow the developer to focus on design, not coding, but still allow flexibility
• Provide a syntax based on Pascal, stripped of complexities, especially relating

to memory management
• Provide a limited set of predefined object types, reduce the complexity and

learning curve

Preface

[xviii]

• Implement database versioning for a consistent and reliable view of
the database

• Make the developer and end user more at home by borrowing a large number
of concepts from Office, Windows, Access, and other Microsoft products

Michael is still working as part of the Microsoft team in Denmark on new capabilities
for NAV. This is another example of how, once part of the NAV community, most of
us want to stay part of this community.

What you should know
To get the maximum out of this book as a developer, you should have the
following attributes:

• Be an experienced developer
• Know more than one programming language
• Have IDE experience
• Be knowledgeable about business applications
• Be good at self-directed study

If you have these attributes, this book will help you become productive with C/AL
and NAV much more rapidly.

Even though this book is targeted first at developers, it is also designed to be useful
to executives, consultants, managers, business owners, and others who want to
learn about the development technology and operational capabilities of Dynamics
NAV. If you fit into one of these or similar categories, start by studying Chapter 1, An
Introduction to NAV 2015, for a good overview of NAV and its tools. Then you should
review sections of other chapters as the topics apply to your specific areas of interest.

This book's illustrations are from the W1 Cronus database Dynamics NAV V2015.

What this book covers
Chapter 1, An Introduction to NAV 2015, starts with an overview of NAV as a business
application system. This is followed by an introduction to the seven types of NAV
objects, and the basics of C/AL and C/SIDE. Then we will do some hands-on
work and define Tables, multiple Page types, and a Report. We'll close with a brief
discussion of how backups and documentation are handled in C/SIDE.

Preface

[xix]

Chapter 2, Tables, focuses on the foundation level of NAV data structure: Tables and
their structures. We will cover Properties, Triggers (where C/AL resides), Field
Groups, Table Relations, and SumIndexFields. We'll work our way through the
hands-on creation of several tables in support of our example application. We will
also review the types of tables found in the NAV applications.

Chapter 3, Data Types and Fields, we will learn about fields, the basic building blocks of
the NAV data structure. We review the different Data Types in NAV. We will cover
all the field properties and triggers in detail. We'll also review the three different Field
Classes. We'll conclude with a discussion about the concept of filtering and how it
should be considered in the database structure design.

Chapter 4, Pages – The Interactive Interface, we will review the different types of pages,
their structures (Triggers, Properties) and general usage. We'll build several pages
for our example application using Page Wizard and Page Designer. We will also
study the different types of controls that can be used in the pages. In addition, we'll
review how and where actions are added to the pages.

Chapter 5, Queries and Reports, we will learn about both Queries and Reports, two
methods of extracting data for presentation to users. For Queries, we will study
how they are constructed and some of the ways they are utilized. For Reports, we
will walk through report data flow and the variety of different report types. We will
study the two Report Designers, the C/SIDE Report Designer and the Visual Studio
Report Designer and how a NAV report is constructed using both of these. We'll
learn what aspects of reports use one designer and what aspects use the other. As in
the previous studied objects, we will discuss Properties and Triggers. We will review
how reports can be made interactive and will do some hands-on report creation.

Chapter 6, Introduction to C/SIDE and C/AL, we will learn about general Object
Designer Navigation as well as the individual Designers (Table, Page, Report). We'll
study C/AL code construction, syntax, variable types, expressions, operators, and
functions. We will then take a closer look at some of the more frequently used built-in
functions. The chapter will wrap up with an exercise on adding some C/AL code to a
report objects created in an earlier exercise.

Chapter 7, Intermediate C/AL, we will dig deeper into C/AL development tools and
techniques. We will review some more advanced built-in functions including those
relating to dates and decimal calculations, both critical business application tools.
We'll study the C/AL functions that support process flow control functions,
input/output, and filtering. Then we'll do a review of methods of communication
between objects. Finally, we'll apply some of what we've learned to enhance our
example application.

Preface

[xx]

Chapter 8, Advanced NAV Development Tools, we will review some of the more
important elements of the Role Tailored User Experience, in particular the Role Center
Page construction. We will dig into the components of a Role Center Page and how
to build one. We'll also cover XMLports and Web Services, two of the powerful ways
of connecting NAV applications to the world outside of NAV. To better understand
these, we will not only review their individual component parts, but also go through
the hands-on effort of building an example of each one.

Chapter 9, Successful Conclusions, we will study in detail how NAV functions are
constructed and learn how to construct your own functions. We will learn more
about tools and features built into C/AL and C/SIDE. We will study the new
debugger, review the support for Test-Driven Development, and take a look at the
ability to integrate .NET Client Add-ins. We will integrate a .NET Add-in into our
example applications. Finally, we will review tips to design efficiently, update and
upgrade the system with the goal of helping us to become more productive and high
quality NAV developers.

Appendix, Review Answers, provides you with the answers to the questions given in
each chapter.

What you need for this book
You will need some basic tools including at least the following:

• A license and database that you can use for development experimentation.
The ideal license is a full Developer's license. If your license only contains
the Page, Report, and Table Designer capabilities, you will still be able to do
many of the exercises, but you will not have access to the inner workings of
Pages and Tables and the C/AL code contained therein.

• A copy of the NAV Cronus demo/test database for your development testing
and study. It would be ideal if you also had a copy of a production database
at hand for examination as well. This book's illustrations are from the W1
Cronus database for V2015.

Access to other NAV manuals, training materials, websites, and experienced
associates will obviously be of benefit, but they are not required for the time
with this book to be a good investment.

Preface

[xxi]

Who this book is for
This book is for:

• The business applications software designer/developer who:
 ° Wants to become productive in NAV C/SIDE—C/AL development

as quickly as possible
 ° Understands business applications and the type of software required

to support these applications
 ° Has significant programming experience
 ° Has access to a copy of NAV 2015 including at least the Designer

granules and a standard Cronus demo database
 ° Is willing to do the exercises to get hands-on experience

• The Reseller manager or executive who wants a concise, in depth view of
NAV's development environment and toolset

• The technically knowledgeable manager or executive of a firm using NAV
that is about to embark on a significant NAV enhancement project

• The technically knowledgeable manager or executive of a firm considering
the purchase of NAV as a highly customizable business applications platform

• The experienced business analyst or consultant or advanced student of
applications software development who wants to learn more about NAV
because it is one of the most widely used flexible business application
systems available

The reader of this book:

• Does not need to be an expert in object-oriented programming
• Does not need previous experience with NAV, C/AL or C/SIDE

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[xxii]

A block of code is set as follows:

CalculateNewDate;
"Date Result" := CALCDATE("Date Formula to Test","Reference Date
for Calculation");

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In the
Description column, we will put notes for the fields that need properties set later."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Preface

[xxiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

An Introduction to NAV 2015
"All truths are easy to understand once they are discovered; the point is to
discover them."

 – Galileo Galilei

"Everything really interesting that happens in software projects eventually comes
down to people."

 – James Bach

Microsoft Dynamics NAV has one of the largest installed user bases of any
enterprise resource planning (ERP) system serving over 100,000 companies and
one million plus individual users. The community of supporting organizations,
consultants, implementers, and developers continues to grow and prosper. The
capabilities of the off-the-shelf product increase with every release. The selection
of the add-on products and services expands both in variety and depth.

The release of Microsoft Dynamics NAV 2015 continues its 20 plus year history
of continuous product improvement. It provides more user options for access
and output formatting. For new installations, NAV 2015 includes tools for rapid
implementation. For all installations, it provides enhanced business functionality and
more support for ERP computing in the cloud, including integration with Office 365.
In addition, a new approach to upgrading that comes with NAV 2015 promises to
lower the cost of ownership in the future.

An Introduction to NAV 2015

[2]

Our goal in this chapter is to gain a big picture understanding of NAV 2015. You
will be able to envision how NAV can be used by the managers (or owners) of an
organization to help manage activities and the resources, whether the organization is
for-profit or not-for-profit. You will also be introduced to the technical side of NAV
from a developer's point of view.

In this chapter, we will take a look at NAV 2015, including the following:

• A general overview of NAV 2015
• A technical overview of NAV 2015
• A hands-on introduction to Client/Server Integrated Development

Environment (C/SIDE) development in NAV 2015

NAV 2015 – an ERP system
NAV 2015 is an integrated set of business applications designed to service a wide
variety of business operations. Microsoft Dynamics NAV 2015 is an ERP system.
An ERP system integrates internal and external data across a variety of functional
areas, including manufacturing, accounting, supply chain management, customer
relationships, service operations, human resources management, as well as the
management of other valued resources and activities. By having many related
applications well integrated, a full featured ERP system provides an enter data once,
use many ways information processing toolset.

NAV 2015 ERP addresses many functional areas. Some of them are listed as follows:

• Basic accounting functions (for example, general ledger, accounts payable,
accounts receivable)

• Order processing and inventory (for example, sales orders, purchase orders,
shipping, inventory, receiving)

• Relationship management (for example, vendors, customers, prospects,
employees, contractors)

• Planning (for example MRP, sales forecasting, production forecasting)
• Other critical business areas (for example, manufacturing, warehouse

management, marketing, cash management, fixed assets)

A good ERP system such as NAV 2015 is modular in design, which simplifies
implementation, upgrading, modification, integration with third-party products,
and expansion for different types of clients. All the modules in the system share a
common database and, where appropriate, common data.

Chapter 1

[3]

The groupings of individual NAV 2015 functions based on the department's menu
structure is shown in the following figure. It is supplemented by information from
Microsoft marketing materials and some of the groupings are a bit arbitrary. The
important thing is to understand the overall components that make up the NAV 2015
ERP system.

NAV 2015 has two quite different styles of user interface (UI). One UI, the
Development Environment, targets developers. The other UI style, the RoleTailored
Client, targets end users. In NAV 2015, there are three instances of the RoleTailored
Client – for Windows, for Web interaction, and for tablet use. The example images
in the following module descriptions are from the RoleTailored Client Departments
menu in the Windows Client.

An Introduction to NAV 2015

[4]

Financial Management
Financial Management is the foundation of any ERP system. No matter what the
business is, the money must be kept flowing, and the flow of money must be tracked.
The tools which help to manage the capital resources of the business are part of NAV
2015's Financial Management module. These include all or part of the following
application functions:

• General Ledger: Manages overall finances of the firm
• Cash Management and Banking: Manages inventory of money
• Accounts Receivable: Tracks the incoming revenue
• Accounts Payable: Tracks the outgoing funds
• Analytical Accounting: Analyzes the various flows of funds
• Inventory and Fixed Assets: Manages the inventories of goods and

equipment
• Multi-Currency and Multi-Language: Supports international business

activities

The Financial Management section of the Departments menu looks as follows:

Manufacturing
NAV 2015 Manufacturing is general purpose enough to be appropriate for Make to
Stock (MTS), Make to Order (MTO), Assemble to Order (ATO), as well as various
subsets and combinations of those. Although off-the-shelf NAV is not particularly
suitable for most process manufacturing and some of the very high volume assembly
line operations, there are third-party add-on and add-in enhancements available for
these applications. As with most of the NAV application functions, Manufacturing
can be implemented to be used in a basic mode or as a full featured system.

Chapter 1

[5]

NAV Manufacturing includes the following functions:

• Product Design (BOMs and Routings): Manages the structure of product
components and the flow of manufacturing processes

• Capacity and supply requirements planning: Tracks the intangible and
tangible manufacturing resources

• Production scheduling (infinite and finite): Execution and tracking
quantities and costs, plus tracking the planned use of manufacturing
resources, both on an unconstrained and constrained basis

The Manufacturing section of the Departments menu looks as follows:

Supply Chain Management
Obviously, some of the functions categorized as part of NAV 2015 Supply Chain
Management (SCM), for example sales and purchasing, are actively used in almost
every NAV implementation. The supply chain applications in NAV include all or
parts of the following applications:

• Sales order processing and pricing: Supports the heart of every business
• Purchasing (including requisitions): Includes planning, entering, pricing,

and processing purchase orders
• Inventory Management: Manages inventories of goods and materials
• Warehouse management including receiving and shipping: Manages the

receipt, storage, retrieval, and shipment of material and goods in warehouses

An Introduction to NAV 2015

[6]

Even though we might consider Assembly to be part of Manufacturing, the
standard NAV 2015 Departments menu includes it in the Warehouse section. The
Supply Chain Management section of the Departments menu looks as follows:

As a whole, these functions constitute the base components of a system appropriate
for distribution operations, including those which operate on an Assemble to Order
basis.

Business Intelligence and reporting
Although Microsoft marketing materials identify Business Intelligence (BI) and
reporting as though it were a separate module within NAV, it's difficult to physically
identify it as such. Most of the components used for BI and reporting purposes are
appropriately scattered throughout various application areas. In the words of one
Microsoft document, "Business Intelligence is a strategy, not a product." Functions
within NAV that support a BI strategy include the following:

• Standard Reports: These are distributed ready-to-use by end users
• Account schedules and analysis reports: These are a specialized report

writer for General Ledger data
• Query, XMLport, and Report Designers: These are developer tools to

support the creation of a wide variety of report formats, charts, XML, and
CSV files

• Analysis by dimensions: This is a capability embedded in many of the
other tools

Chapter 1

[7]

• Interfaces into Microsoft Office and Microsoft Office 365 including Excel:
These support the communications of data either into NAV or out of NAV

• RDLC report viewer: This provides the ability to present NAV data in a
variety of textual and graphic formats; includes user interactive capabilities

• Interface capabilities such as DotNet Interoperability and Web Services:
These are the technologies to support interfaces between NAV 2015 and
external software products

Relationship Management
NAV's Relationship Management (RM) functionality is definitely the little sister
(or, if you prefer, little brother) of the fully featured standalone Microsoft Customer
Relationship Management (CRM) system. The big advantage of the NAV RM is
its tight integration with NAV customer and sales data. For those who need the full
Microsoft CRM, prior versions of NAV have had a module connecting it to NAV.
The same connector has been released for NAV 2015.

Also falling under the heading of CRM is the NAV Service Management (SM)
functionality. While the RM component shows up in the menu as part of sales and
marketing, the SM component is identified as an independent function in the menu
structure.

• NAV functions that support RM are as follows:
 ° Marketing campaigns: Plans and manages promotions
 ° Customer activity tracking: Analyzes customer orders
 ° To do lists: Manages what is to be done and tracks what has been

done

• NAV functions that support SM are as follows:

 ° Service contracts: Supports service operations
 ° Labor and part consumption tracking: Tracks the resources

consumed by the service business
 ° Planning and dispatching: Manages service calls

An Introduction to NAV 2015

[8]

Human Resource management
NAV Human Resources (HR) is a very small module, but relates to a critical
component of the business - employees. Basic employee data can be stored and
reported via the master table (in fact, one can use HR to manage data about
individual contractors in addition to employees). A wide variety of individual
employee attributes can be tracked by the use of dimensions fields. NAV functions
that support HR are as follows:

• Employee tracking: Maintains basic employee description data
• Skills inventory: Maintains an inventory of the capabilities of the employees
• Absence tracking: Maintains basic attendance information
• Employee statistics: Tracks government required employee attribute data

such as age, gender, length of service, and so on

Project Management
The NAV project management module consists of the jobs functionality supported
by the resources functionality. Projects can be short or long term. They can be
external (in other words - billable) or internal. This module is often used by third-
parties as the base for vertical market add-ons (such as construction or job-oriented
manufacturing). This application area includes parts or all of the following functions:

• Budgeting and cost tracking: Manages project finances
• Scheduling: Plans project activities
• Resource requirements and usage tracking: Manages people and equipment
• Project accounting: Tracks the results

Significant changes in NAV 2015
NAV 2015 contains added capabilities in a variety of areas including business
functionality, enhanced development tools, a tablet client, more Internet
compatibility, and increased integration to other Microsoft products. For information
on what was new in NAV 2013 R2, review the MSDN notes at:

• http://msdn.microsoft.com/en-us/library/hh173994(v=nav.71).aspx

• http://msdn.microsoft.com/en-us/library/hh174007(v=nav.71).aspx

Some of the mentioned items include Manual Payment Processing, bank
reconciliation enhancement, SEPA Debit and Credit handling, Web Client
Enhancements, new Windows PowerShell capabilities, a new Help Server, and
features to better implement and manage NAV on Windows Azure.

Chapter 1

[9]

Information on the minimum hardware and software requirements to install and
run Microsoft Dynamics NAV 2015 are found in the embedded Developer and IT
Pro Help topic System Requirements for Microsoft Dynamics NAV 2015. Following are
some of the specific areas where NAV 2015 contains significant changes (this list is
representative, not comprehensive).

Application changes
Significant changes to applications include:

• Mandatory indicator fields (required data elements)
• Auto-fill and hidden fields
• Document emailing
• Manage and create report layouts using Microsoft Word 2013, SQL Server

Report Builder (RDLC), or Visual Studio Community Edition
• Simplified payment reconciliation
• Encryption functions
• Report scheduling
• Data exchange framework for easier implementation

Client enhancements
Significant client enhancements include:

• Tablet client for multiple tablet types (iPad, Android, Windows)
• Enhanced web client
• Office 365 integration
• UI elements removal capability
• Simplified user interface option
• Enhanced Role Center Cues including color and image options

Development tools
Significant new development tools include:

• Enhanced commenting capability
• Non-default property values display bold font
• New Client Application Language (C/AL) commands and functions

An Introduction to NAV 2015

[10]

• New Development Environment commands
• New Report functions and status default to local status
• New Page field, action, and control properties
• New Table schema data synchronization options
• Windows PowerShell cmdlets and scripts include comparing and merging

objects, caption management, and upgrading SQL server data when NAV
table schema is changed

Other areas
Other new areas include:

• Major changes in Upgrade concepts and processes
• Deployment enhancements for Add-ins and .NET Framework
• PowerShell cmdlets for Exporting and Importing data selectively
• Licenses are now version specific
• RapidStart Services for implementation

A developer's overview of NAV 2015
From the point of view of a developer, NAV 2015 consists of about 4,000 potentially
customizable off-the-shelf program objects plus the Integrated Development
Environment (the C/SIDE development tools), which allow us to modify existing
objects and create new ones.

The NAV 2015 system is an object-based system made up of the seven different
object types available in NAV. Strictly speaking, NAV is not a full-featured
object-oriented system. A full-featured object-oriented system would allow the
definition and creation of new object types, while NAV only allows the creation
and modification of instances of the seven predefined object types.

Chapter 1

[11]

NAV object types
Let's start with basic definitions of the NAV 2015 object types:

• Table: Tables define the data structure and also contain the data records.
• Page: Pages are the way the data is formatted and displayed appropriately

for each of the client types and user roles.
• Report: Reports provide display of the data to the user in hardcopy format,

either on screen (preview mode) or via a printing device. Report objects can
also update data in processes with or without data display.

• Codeunit: Codeunits are containers for code utilized by other objects. They
are always structured in code segments called functions.

• Query: Queries support extracting data from one or more tables, making
calculations, and outputting in the form of a new data structure. They can
output data directly to charts, Excel, XML, and OData.

• XMLport: XMLports allow the importing and exporting of data to/from
external files. The external file structure can be in XML or other file formats.

• MenuSuite: MenuSuites contain menu entries which refer to other types of
objects. MenuSuites are different from other objects. Menus cannot contain
any code or logic. MenuSuite entries display in the Departments page in the
Navigation Pane in the Windows Client only. In the Web and Tablet clients,
these are used to support Search functions.

The C/SIDE integrated development
environment
NAV 2015 includes an extensive set of software development tools. The
NAV development tools are accessed through C/SIDE which runs within the
Development Environment client. This environment and its complement of tools are
usually collectively referred to as C/SIDE. C/SIDE includes the C/AL compiler. All
NAV programming uses C/AL. No NAV development can be done without using
C/SIDE, but other tools are used to complement C/AL code (such as Visual Studio,
.NET, COM controls, and OCX controls among others).

An Introduction to NAV 2015

[12]

The C/SIDE is referred to as the Object Designer within NAV. It is accessed through
a separate shortcut which is installed as part of a typical full system installation.
When we open the Object Designer, we see the following screen:

Object Designer tool icons
When we open an object in the applicable Designer (Table Designer, Page Designer,
and so on) for that object, we will see a set of tool icons at the top of the screen.
The following table lists those icons and the object types to which they apply.
Occasionally, an icon will appear when it is of no use.

Chapter 1

[13]

The C/AL programming language
The language in which NAV is coded is C/AL. A small sample of C/AL code within
the C/AL Editor is shown next:

C/AL syntax is similar to Pascal syntax. Code readability is always enhanced by
careful programmer attention to structure, logical variable naming, process flow
consistent with that of the code in the base product, and good documentation both
inside and outside of the code.

Good software developer focuses on design before coding and on accomplishing
design goals with a minimum of code. Dynamics NAV facilitates that approach. In
2012, a team made up of Microsoft and NAV community members began the NAV
Design Patterns project. As defined on Wikipedia, "a design pattern is a general
reusable solution to a commonly occurring problem". Links to the NAV Design
Patterns project information are as follows:

• http://blogs.msdn.com/b/nav/archive/2013/08/29/what-is-the-nav-
design-patterns-project.aspx

• https://community.dynamics.com/nav/w/designpatterns/default.
aspx

A primary goal of this project is to document patterns that exist within NAV. In
addition, new best practice patterns have been suggested as ways to solve common
issues we encounter during our customization efforts. Now, when working on
enhancements of NAV, we will be aided by reference to the documentation of
patterns within NAV. This allows us to spend more of our time designing a
good solution using existing, proven functions (the documented patterns), and
spending less time writing and debugging code. A good reference for NAV design
and development using patterns can be found at https://www.packtpub.com/
application-development/microsoft-dynamics-nav-2013-application-
design.

An Introduction to NAV 2015

[14]

To quote from the NAV 2015 Help:

"Reusing code makes developing applications both faster and easier. More
importantly, if you organize your C/AL code as suggested, your applications will
be less prone to errors. By centralizing the code, you will not unintentionally create
inconsistencies by performing the same calculation in many places, for example, in
several triggers that have the same table field as their source expression. If you have
to change the code, you could either forget about some of these triggers or make a
mistake when you modify one of them."

Much of our NAV development work is done by assembling references to previously
defined objects and functions, adding new data structure where necessary. As the
tools for NAV design and development provided by both Microsoft and the NAV
community continue to mature, our development work becomes more oriented to
design and less to coding. The end result is that we are more productive and cost
effective on behalf of our customers. Everyone wins.

NAV object and system elements
Following are some important terms used in NAV:

• License: A data file supplied by Microsoft that allows a specific level of access
to specific object number ranges. NAV licenses are very clever constructs
which allow distribution of a complete system, all objects, modules, and
features (including development) while constraining exactly what is
accessible and how it can be accessed. Each license feature has its price,
usually configured in groups of features. Microsoft partners have access to full
development licenses to provide support and customization services for their
clients. End-user firms can purchase licenses allowing them developer access
to NAV. A Training License can also be generated which contains any desired
set of features and expires after a specified period of time.

Chapter 1

[15]

License limits
The NAV license limits access to the C/AL code within tables, pages,
and codeunits differently than the C/AL code buried within reports or
XMLports. The latter can be accessed with a lower level license (that is,
less expensive). If a customer has license rights to the Report Designer,
which many do, they can access C/AL code within Report and
XMLport objects. But access to C/AL code in a table, page, or codeunit
requires a more expensive license with Developer privileges. As a
result, C/AL code within tables, pages, and codeunits is more secure
than that within report and XMLport objects.
All licenses are now version-specific. From the Microsoft Dynamics
NAV 2015 Licensing Guide: "since the release of Microsoft Dynamics
NAV 2013 R2 CU10, license keys are version-specific. A Microsoft
Dynamics NAV 2015 license key is required to activate Microsoft
Dynamics NAV 2015 software and a Microsoft Dynamics NAV 2015
license key will not activate any other versions of the software."

• Field: An individual data item, defined either in a table or in the working
storage (temporary storage) of an object.

• Record: A group of fields (data items) handled as a unit in many operations.
Table data consists of rows (records) with columns (fields).

• Control: In MSDN, a control is defined as "a component that provides (or
enables) UI capabilities".

• Properties: These are the attributes of the element such as an object, field,
record, or control that define some aspect of its behavior or use. Example of
property attributes include display captions, relationships, size, position, and
whether editable or viewable.

An Introduction to NAV 2015

[16]

• Trigger: Mechanisms that initiate (fire) an action when an event occurs and
is communicated to the application object. A trigger in an object is either
empty, contains code that is executed when the associated event fires the
trigger, or contains only comments (in a few cases, this affects the behavior
of the trigger). Each object type, data field, control, and so on, may have
its own set of predefined triggers. The event trigger name begins with the
word On such as OnInsert, OnOpenPage, or OnNextRecord. NAV triggers
have similarities to those in SQL, but they are not the same (similarly named
triggers may not even serve similar purposes). NAV triggers are locations
within objects where a developer can place comments or C/AL code. When
we view the C/AL code of an object in its Designer, we can see non-trigger
code groups that resemble NAV event-based triggers.

 ° Documentation: It can contain comments only, no executable code.
Every object type except MenuSuite has a single Documentation
section at the beginning of the C/AL code.

 ° Functions: It can be defined by the developer. They are callable
routines which can be accessed by other C/AL code from either
inside or outside the object where the called function resides.
Many functions are provided as part of the standard product. As
developers, we may add our own custom functions as needed.

• Object numbers and field numbers: All objects of the same object type
are assigned a number unique within the object type. All fields within an
object are assigned a number unique within the object (that is, the same field
number may be repeated within many objects whether referring to similar or
different data).

In this book, we will generally use comma notation for these
numbers (fifty thousand is 50,000). In C/AL, no punctuation
is used.

The object numbers from 1 (one) to 50,000 and in the 99,000,000 (99 million)
range are reserved for use by NAV as part of the base product. Objects in
these number ranges can be modified or deleted with a developer's license,
but cannot be created. Field numbers in standard objects often start with
1 (one). Historically, object and field numbers from 50,000 to 99,999 are
generally available to the rest of us for assignment as part of customizations
developed in the field using a normal development license.

Chapter 1

[17]

(At the time of this writing, the Developer Help says that object numbers
below 50,000 can be used, at least for reports, but the authors' testing doesn't
agree.) Field numbers from 90,000 to 99,999 should not be used for new
fields added to standard tables as those numbers are sometimes used in
training materials. Microsoft allocates ranges of object and field numbers
to Independent Software Vendor (ISV) developers for their add-on
enhancements. Some such objects (the 14,000,000 range in North America,
other ranges for other geographic regions) can be accessed, modified, or
deleted, but not created using a normal development license. Others (such as
in the 37,000,000 range) can be executed, but not viewed or modified with a
typical development license.
The following table summarizes object numbering practice:

Object Number range Usage
1 – 9,999 Base-application objects
10,000 – 49,999 Country-specific objects
50,000 – 99,999 Customer-specific objects
100,000 – 98,999,999 Partner-created objects
Above 98,999,999 Microsoft territory

• Work Date: This is a date controlled by the user operator. It is used as
the default date for many transaction entries. The System Date is the date
recognized by Windows. The Work Date, which can be adjusted at any time
by the user, is specific to the workstation and can be set to any point in the
future or the past. This is very convenient for procedures such as ending
sales order entry for one calendar day at the end of the first shift, and then
entering sales orders by the second shift dated to the next calendar day.
There are settings to allow limiting the range of Work Dates allowed.

An Introduction to NAV 2015

[18]

1. The Work Date can be set by clicking on arrowhead drop-down
menu below the Microsoft Dynamics icon and selecting the Set
Work Date... option.

2. Clicking on Set Work Date... in the drop-down options displays the
Set Work Date screen. Or click on the date in the Status Bar at the
bottom of the Role Tailored Client (RTC) window. In either case,
we can enter a new Work Date:

NAV functional terminology
For various application functions, NAV uses terminology more similar to accounting
than to traditional data processing. Some examples are listed as follows:

• Journal: A table of unposted transaction entries, each of which represents an
event, an entity, or an action to be processed. There are General Journals for
general accounting entries, Item Journals for changes to inventory, and so on.

• Ledger: A detailed history of posted transaction entries that have been
processed. For example, General Ledger, Customer Ledger, Vendor Ledger,
Item Ledger, and so on. Some Ledgers have subordinate detail ledgers,
typically providing a greater level of quantity and/or value detail.

Chapter 1

[19]

• Posting: The process by which entries in a Journal are validated, and then
entered into one or more Ledgers.

• Batch: A group of one or more Journal entries posted at the same time.
• Register: An audit trail showing the history, by Entry No. ranges, of posted

Journal Batches.
• Document: A formatted page such as an Invoice, a Purchase Order, or a

Payment Check, typically one page for each primary transaction (a page may
require display scrolling to be fully viewed).

User interface
NAV 2015 UI is designed to be role oriented (also called role tailored). The term role
oriented means tailoring the options available to fit the user's specific job tasks and
responsibilities. If user access is via the Windows client, Web client, or Tablet client,
the Role Tailored Client (RTC) will be employed. If the user access is via SharePoint
or another client, the developer will have more responsibility to make sure the user
experience is role tailored.

The first page that a user will meet is a Role Center Page. The Role Center Page
provides the user with a view of work tasks to be done; it acts as the user's home
page. The home Role Center Page should be tailored to the job duties of each user,
so there will be a variety of Role Center Page formats for any installation.

Someone whose role is focused on Order Entry will likely see a different RTC home
page than the user whose role focuses on Invoicing, even though both user roles are
in what we generally think of as Sales and Receivables. The NAV 2015 RTC allows
a great deal of flexibility for implementers, system administrators, managers, and
individual users to configure and reconfigure screen layouts and the set of functions
that are visible.

An Introduction to NAV 2015

[20]

The following image is the out-of-the-box Role Center for a Sales Order Processor:

The key to properly designing and implementing any system,
especially a role tailored system, is the quality of the User Profile
analysis done as the first step in requirements analysis. User Profiles
identify the day-to-day needs of each user's responsibilities relative
to accomplishing the business' goals. Each user's tasks must be
mapped to individual NAV functions or elements, identifying
how those tasks will be supported by the system. A successful
implementation requires the use of a proven methodology. It is very
important that the upfront work be done and done well. Even the
best programming cannot compensate for a bad definition of goals.

In our exercises, we will assume the upfront work has been well done and we will
concentrate on addressing the requirements defined by our project team.

Chapter 1

[21]

Hands-on development in NAV 2015
One of the best ways to learn a new set of tools, like those that make up a
programming language and environment, is to experiment with them. We're going
to have some fun doing that throughout this book. We're going to experiment where
the cost of errors (otherwise known as learning) is small. Our development work will
be a custom application of NAV 2015 for a relatively simple, but realistic application.

We're going to do our work using the Cronus demo database that is available with
all NAV 2015 distributions and is installed by default when we install the NAV
2015 demo system. The simplest way to install the NAV 2015 demo is to locate
all the components on a single workstation. A 64-bit system running Windows 7
Professional will suffice. Information about additional requirements is available in
the MSDN library (https://msdn.microsoft.com/en-gb/default.aspx) under
the heading System Requirements for Microsoft Dynamics NAV 2015. Other helpful
information on installing NAV 2015 (the demo option is a good choice for our
purposes) and addressing a variety of setup questions is available in the NAV 2015
area of the MSDN library. In fact, all the Help information for NAV 2015 is accessible in
the MSDN library.

The Cronus database contains all the NAV objects and a small, but reasonably
complete set of data populated in most of the system's functional applications areas.
Our exercises will interface very slightly with the Cronus data, but not depend on
any specific data values.

To follow along with all our exercises as a developer, you will need a developer
license for the system with rights allowing the creation of objects in the 50,000 to
50,099 number range. This license should also allow at least read access to all the
objects numbered below 50,000. If you don't have such a license, check with your
Partner or your Microsoft sales representatives to see if they will provide a training
license for your use.

The NAV 2015 development exercise scenario
Our business is a small radio station that features a variety of programs, news,
music, listener call-in, and other program types. Our station call-letters are WDTU.
Our broadcast materials come from several sources and in several formats: vinyl
records, CDs, MP3s, and downloaded digital (usually MP3s). While our station has a
large library, especially of recorded music, sometimes our program hosts (also called
disc jockeys or DJs) want to share material from other sources. For that reason, we
need to be able to easily add items to our play lists (the list of what is to be broadcast)
and also have an easy-to-access method for our DJs to preview MP3 material.

An Introduction to NAV 2015

[22]

Like any business, we have accounting and activity tracking requirements. Our
income is from selling advertisements. We must pay royalties for music played,
fees for purchased materials such as prepared text for news, sports, and weather
information, and service charges for our streaming Internet broadcast service.
As part of our licensed access to the public airwaves, a radio station is required
to broadcast public service programming at no charge. Often that is in the form
of Public Service Announcements (PSAs) such as encouraging traffic safety or
reduction in tobacco use. Like all radio stations, we must plan what is to be broadcast
(create schedules) and track what has been broadcast (such as ads, music, purchased
programming, PSAs) by date and time. We bill our customers for the advertising,
pay our vendors their fees and royalties, and report our public service data to the
appropriate government agency.

Getting started with application design
Our design for our radio station will start with a Radio Show table, a Radio Show
Card page, a Radio Show List page, and a simple Radio Show List Report. Along the
way, we will review the basics of each NAV object type.

When we open the NAV Development Environment for the first time or to work on a
different database, we must define what database should be opened. Navigate to File
| Database | Open..., as shown in the following image:

Application tables
Table objects are the foundation of every NAV application. Tables contain data
structure definitions, as well as properties that describe the behavior of the data,
including data validations and constraints.

Chapter 1

[23]

More business logic is required in complex applications than in simple data type
validation, and NAV allows C/AL code to be put in the table to control insertion,
modification, and deletion of records as well as logic on the field level. When the
bulk of the business logic is coded at the table level, it is easier to develop, debug,
support, modify, and even upgrade. Good design in NAV requires that as much of
the business logic as possible reside in the tables. Having the business logic coded at
the table level doesn't necessarily mean the code is resident in the table. NAV 2015
Help recommends the following guidelines for placing C/AL code:

In general, put the code in codeunits instead of on the object on which
it operates. This promotes a clean design and provides the ability to
reuse the code. It also helps enforce security. For example, typically,
users do not have direct access to tables that contain sensitive data,
such as the General Ledger Entry table, nor do they have permission to
modify objects. If you put the code that operates on the general ledger
in a codeunit, give the codeunit access to the table, and give the user
permission to execute the codeunit, then you will not compromise the
security of the table and the user will be able to access the table.
If you must put the code on an object instead of in a codeunit, then
put the code as close as possible to the object on which it operates. For
example, put code that modifies records in the triggers of the table
fields.

Designing a simple table
Our primary master data table will be the Radio Show table. This table lists our
inventory of shows available to be scheduled.

First, open the NAV Development Environment, click Tools| Object Designer and
select Table. We can view or modify the design of existing master tables in NAV
by highlighting the table (for example, Table 18 - Customer, or Table 27 - Item) and
clicking on Design.

Each master table has a standard field for the primary key (a Code data type field
of 20 characters called No.) and has standard information regarding the entity the
master record represents (for example, Name, Address, City, and so on for the
Customer table and Description, Base Unit of Measure, Unit Cost, and so on,
for the Item table).

An Introduction to NAV 2015

[24]

The Radio Show table will have the following field definitions (we may add
more later):

Field names Definitions
No. 20 character text (code)
Type 10 character text (code)
Name 50 character text
Run Time Duration
Host No. 20 character text (code)
Host Name 50 character text
Average Listeners Integer
Audience Share Decimal
Advertising Revenue Decimal
Royalty Cost Decimal

In the preceding list, three of the fields are defined as Code fields, which are text
fields that limit the alphanumeric characters to upper case values. Code fields are
used throughout NAV for primary key values. They are used to reference or be
referenced by other tables (foreign keys). The No. will be the unique identifier in
our table. We will utilize a set of standard internal NAV functions to assign a user-
defined No. Series range that will auto increment the value on table insertion and
possibly allow for user entry (as long as it is unique in the table) based on a setup
value. Host No. references the standard Resource table and the Type field will
reference a custom table we will create to allow for flexible Type values.

We will have to design and define the reference properties at the field level in
the Table Designer window, as well as compile them, before the validation will
work. At this point, let's just get started with these field definitions and create the
foundation for the Radio Show table.

Creating a simple table
To invoke the table designer, open the NAV 2015 Development Environment and the
database in which we will be doing our development. In the Object Designer, click
Table (in the left column of buttons) and click New (in the bottom row of buttons).
Enter the first field number as 10 (the default is 1), and increment each remaining
field number by 10 (the default is 1). Sometimes it is useful to leave large gaps
(such as jumping from 80 to 200 or 500) when the next set of fields have a particular
purpose not associated with the prior set of fields.

Chapter 1

[25]

NAV 2015 Help says to not leave gaps in field numbers. Based on many years of
experience, the authors disagree. Leaving numbering gaps will allow us to later add
additional fields between the existing fields, if necessary. The result will be data
structures that are (at least initially) easier to read and understand. Once a table is
referenced by other objects or contains any data, the field numbers of the previously
defined fields should not be changed.

In the Description column, we will put notes for the fields that need properties
set later. The following image shows our new table definition in the Table Designer
window:

Now we can close the table definition (navigate to File | Save or Ctrl + S or press
ESC or close the window. The first two options are the explicit methods of saving
our work). We will see a message reminding us to save our changes, as shown in
the following screenshot:

An Introduction to NAV 2015

[26]

Click Yes. We must now assign the object number (use 50000) and a unique name (it
cannot duplicate the same first 30 characters of another table object in the database).
We will name our table Radio Show based on the master record to be stored in
the table.

In the preceding screenshot, note that the Compiled option is automatically checked
and the Synchronize Schema option is set to Now – with validation, which are
the defaults for NAV. Once we press OK and the object is successfully compiled,
it is immediately ready to be executed within the application. If the object we were
working on was not ready to be compiled without error, we could unselect the
Compiled option in the Save As window.

Uncompiled objects will not be considered by C/SIDE when changes
are made to other objects. Until we have compiled an object, it is a work
in progress, not an operable routine. There is a Compiled flag on every
object that gives its compilation status. Even when we have compiled
an object, we have not confirmed that all is well. We may have made
changes that affect other objects which reference the modified object. As
a matter of good work habit, we should recompile all objects before we
end work for the day.

The Synchronize Schema option choice determines how table changes will be
applied to the table data in SQL Server. When the changes are validated, any
changes that could be destructive to existing data will be detected and handled
either according to a previously defined upgrade codeunit or by generating an error
message. The Synchronize Schema option choices are shown in the following image:

Chapter 1

[27]

See the Developer and IT ProHelp section Synchronizing Table Schemas for more details.

Pages
Pages provide views of data or processes designed for on-screen display (or
exposure as web services) and also allow for user data entry into the system. They
act as containers for the action items (menu options).

There are several basic types of display/entry pages in NAV 2015, as listed next:

• List
• Card
• Document
• Journal/Worksheet
• List Plus
• Confirmation dialog
• Standard dialog

There are also page parts (they look and program like a page, but aren't intended
to stand alone) as well as user interfaces that display like pages, but are not Page
objects. The latter user interfaces are generated by various dialog functions. In
addition, there are special Page types, such as Role Center pages and Navigate
pages (for Wizards).

Standard elements of pages
A page consists of Page properties and triggers, controls, and control properties
and triggers. Generally, Data controls are either labels displaying constant text or
graphics, or containers that display data or other controls. Controls can also be
buttons, action items, and page parts. While there are a few instances where we must
include C/AL code within the page or page control triggers, it is good practice to
minimize the amount of code embedded within pages. Any data-related C/AL code
should be located in the table object rather than the page object.

An Introduction to NAV 2015

[28]

List pages
List pages display a simple list of any number of records in a single table. The
Customer List page (with its associated FactBoxes) in the following screenshot
shows a subset of the data for each customer displayed. Often the List pages/forms
do not allow entry or editing of the data. Journal/Worksheet pages look like List
pages, but are intended for data entry. Standard List pages are always displayed
with the navigation pane on the left. The Customer List page is shown in the
following screenshot:

Card pages
Card pages display one record at a time. These are generally used for the entry or
display of individual table records. Examples of frequently accessed Card pages
include Customer Card for customer data, Item Card for inventory items, and G/L
Account Card for General Ledger accounts.

Card pages often have FastTabs (one FastTab consists of a group of controls with
each tab focusing on a different set of related customer data). FastTabs can be
expanded or collapsed dynamically, allowing the data visible at any time to be
controlled by the user. Important data elements can be promoted to be visible
even when a FastTab is collapsed.

Chapter 1

[29]

Card pages for the master records display all the required data entry fields. If a field
is set to ShowMandatory (a control property we will discuss in Chapter 4, Pages), a
red asterisk will display until the field is filled. Typically, Card pages also display
FactBoxes containing summary data about related activity. Thus, Cards can be used
as the primary inquiry point for the masterrecords. The following screenshot is a
sample of a standard Customer Card:

Document pages
A document page looks like a Card page with one tab containing a List page. An
example is the Sales Order page shown in the following screenshot. In this example,
the first tab and the last four tabs are in Card page format showing sales order data
fields that have a single occurrence on the page (in other words, they do not occur in
a repeating column).

An Introduction to NAV 2015

[30]

The second tab from the top is in List page format (all fields are in repeating
columns) showing the sales order line items. Sales order line items may include
product to be shipped, special charges, comments, and other pertinent order details.
The information to the right of the data entry area is related data and computations
(FactBoxes) that have been retrieved and formatted. The top FactBox contains
information about the ordering customer. The bottom FactBox contains information
about the item on the currently highlighted sales line.

Chapter 1

[31]

Journal/Worksheet pages
Journal and Worksheet pages look very much like List pages. They display a list of
records in the body of the page. Many also have a section at the bottom that shows
details about the selected line and/or totals for the displayed data. These pages may
include a Filter pane and perhaps a FactBox. The biggest difference between the
Journal/Worksheet pages and basic List pages is that Journal and Worksheet pages
are designed to be used for data entry (though this may be a matter of personal or
site preference). An example of the Requisition Worksheet page in Purchasing, is
shown in the following screenshot. This Worksheet assists the user in determining
and defining what purchases should be made.

Creating a List page
Now we will create a List page for the table we created earlier. A List page is
the initial page that is displayed when a user accesses any data table. The NAV
Development Environment has Wizards (object generation tools) to help create basic
pages. After our Wizard work is done, we will spend additional time in the Page
design tool to make the layout ready for presentation to users.

An Introduction to NAV 2015

[32]

Our first List page will be the basis for viewing our Radio Show master records.
From Object Designer, click Page, and then click New. The New Page screen will
appear. Enter the name (Radio Show) or table object ID (50000) in the Table field.
This is the table to which the page will be bound. We can add additional tables to
the page object C/AL Global Variables after we close the wizard, as then we will be
working in Page Designer. Choose the option Create a page using a wizard: and
select List as shown in the following image. Click OK.

The next step in the wizard shows the fields available for the List page. We can add
or remove any of the field columns by using the >, <, >>, and << buttons:

Chapter 1

[33]

Add all the fields using >> and click Next >.

The next wizard step shows the Subforms, System FactBoxes, and Charts that are
available to add to our page. (Subforms should properly be named Subpages. Such
a change is being considered). We can add these later in Page Designer as needed.
Click Finish to exit the wizard and enter Page Designer:

An Introduction to NAV 2015

[34]

Click Preview to view the page with the default ribbon. Note that in the Preview
mode, we cannot insert, modify, or delete any of the layout or enter data. The
Preview page is not connected to the database data. We need to compile the page
and run it to manipulate the data. In the following image of a Page Preview, some
fields are out of sight at the right end:

The Preview page is not connected to the database data. We need to compile the
page and run it to manipulate the data. In the following image, some fields are
out of sight at the right end:

Chapter 1

[35]

The availability of some capabilities and icons (such as OneNote) will depend on
what software is installed on our development workstation. Close the preview of the
List page and close the window or press ESC to save. Number the page 50000 and
name the object as Radio Show List, as shown in the following screenshot:

Creating a Card page
Next, let's create a Card page. The wizard process for a Card page is almost the same
as for a List page, with one additional step. In Object Designer, with Pages selected,
click New again. Enter the same table (Radio Show) and make sure the Create a
page using a wizard: option is selected and Card is highlighted, as shown in the
next screenshot:

An Introduction to NAV 2015

[36]

The next step in the Wizard is specific to Card pages, which allows us to create
FastTabs. These are the display tools that allow the user to expand or collapse the
window sections for ease of viewing. For our Radio Show Card, we will divide
our table fields into two sections, General (primary key, description, resource
information, and duration) and Statistics (data about the show), as shown
in the following screenshot:

After defining the FastTab names, we must assign the data fields to the tabs on which
they are to appear. We will populate the tabs based on the FastTab Names fields we
assigned. We can select the fields from the Available Fields list and assign the order
of appearance as we did in the List page wizard. Click the Next > button to proceed.

Chapter 1

[37]

For the General FastTab, select the following fields: No., Type, Name, Run Time,
Host Code, and Host Name, as shown in the following screenshot:

Click the Statistics tab to populate the Statistics FastTab, select Average Listenersx,
Audience Share, Advertising Revenue, and Royalty Cost.

An Introduction to NAV 2015

[38]

The last Card wizard step is to choose from the available Subforms (Subpages),
System FactBoxes, and Charts. If we decide later that we want any of those,
we will add them using Page Designer.

Click Finish to view the generated code in Page Designer.

Chapter 1

[39]

Click the Preview button to show a view-only display of the card page.

Exit out of the Preview and Page Designer. Save the page as ID 50001, and Name as
Radio Show Card. Refer to the following screenshot:

Later on we can add an action to the List page which will link to the Card page for
inserting and editing radio show records and also add the List page to the Role
Center page for our radio station user.

An Introduction to NAV 2015

[40]

Creating some sample data
Even though we haven't added all the bells and whistles to our Radio Show table
and pages, we can still use them to enter sample data. The Radio Show List page
will be the easiest to use for this.

In Object Designer, with Pages selected, highlight Page 50000 – Radio Show List,
and click Run. Then click the New icon on the ribbon. An empty line will open up
where we can enter our sample data. Of course, since our table is very basic at this
point, without any validation functionality, table references, function calls, and so
on, we will have to be creative (and careful) and enter all the individual data fields
accurately and completely on our own.

Enter the data shown in the following table so we can see what the page looks like
when it contains data. Later on, after we add more capabilities to our table and
pages, some fields will be validated, some will be either automatically entered
or available on a lookup basis. But for now, simply key in each field value. If the
data we key in now conflicts with the validations we create later (such as data in
referenced tables), we may have to delete this test data and enter new test data later.

No. Type Description Resource
Code

Resource Name Run Time

RS001 TALK CeCe and Friends CECE CeCe Grace 2 hours
RS002 MUSIC Alec Rocks and Bops ALEC Alec Benito 2 hours
RS003 CALL-IN Ask Cole! COLE Cole Henry 2 hours
RS004 CALL-IN What do you think? CLARK Clark Ernest 1 hour
RS005 MUSIC Quiet Times FAY Fay Mae 3 hours
RS006 NEWS World News GOLDIE Goldie Nickles 1 hour

Chapter 1

[41]

Creating a List Report
Open Object Designer, select Report and click New. Report Dataset Designer is
empty when it displays, so we need to add a Data Source (table) to the first blank
row. Type 50000 or Radio Show into the Data Source column.

To add multiple data fields from the table, we can use Field Menu which is accessed
via the icon on the toolbar or the View | Field Menu option. Field Menu will show
a list of all the fields in the Radio Show table:

Highlight the first six fields on the Field Menu. Then click on the next blank line in
Report Dataset Designer:

An Introduction to NAV 2015

[42]

A confirmation box will appear asking if we want to add the fields selected. Click Yes.

The fields will appear in Report Dataset Designer without having to type them
in manually:

There are two options for RDLC Report Layout development tools: the current
version of Visual Studio 2012 or 2014, or the free SQL Server Report Builder that
matches the installed version of SQL Server. NAV defaults to using Visual Studio.
But if the free SQL Server Report Builder is installed, it can be activated for NAV
2015 by accessing the Options... screen from the Tools menu option.

Chapter 1

[43]

On the Options screen, set Use Report Builder to Yes.

We can also now use the free Community version of Visual Studio,
available at https://www.visualstudio.com/en-us/
downloads/visual-studio-2015-downloads-vs.aspx.
If this link does not work, search the Web for Visual Studio
Community or Community Edition Visual Studio. In this book,
since we will use the free version of Community Visual Studio, we
will not set Use Report Builder to Yes.

Click on View | Layout to proceed to the chosen report layout tool.

An Introduction to NAV 2015

[44]

The RDLC Report Layout tool opens with a blank design surface and no visible
dataset controls. Unlike Page Designer, there is no Report wizard to help with the
layout of a new report. All the report layout design work must start from scratch
with a blank design surface:

To show the dataset available from NAV, click View and select Report Data (the last
item on the list). A new Report Data pane will show on the left of the Visual Studio
layout window:

Chapter 1

[45]

To create our simple list, we will insert a simple table object (a data region with fixed
number of columns but variable number of rows) in the design surface. Right-click
anywhere on the design surface and expand the Insert sub-menu to view the tools
available on the report. Click the Table tool object, then use drag-and-drop to bring a
control from the toolbox to the design surface, as shown in the following screenshot:

The table layout object defaults to three columns with a header row (repeated once)
and a data row (repeated for each row of data retrieved from NAV.

An Introduction to NAV 2015

[46]

Drag and drop each of the six elements in DataSet_Result into columns in the table
object. To add additional columns, right-click the table object header and select Add
Columns (we could also drag-and-drop a field from the dataset to the table). The
caption with the basic format of Field Name Table Name will default into the header row:

Let's do a little cleanup in the header row by making the captions look like they do in
standard NAV reports, by manually typing in the field names.

We will save our work by clicking on File | Save All or clicking on Ctrl + Shift +
S) and then exit from Visual Studio (File | Exit or Alt + F4) Back in NAV Object
Designer, we will exit out of the report or click on File | Save, then respond to two
confirmation boxes. The first one asks if we want to save the report layout from
Visual Studio. This allows us to load the RDLC report layout XML into the NAV
database report object. Click Yes:

Chapter 1

[47]

This is followed by the second confirmation screen. Enter 50000 for the ID, and
Name the report Radio Show List. Click OK to save:

To view the report, make sure the new report object is selected, then click Run at the
bottom of the Object Designer screen:

An Introduction to NAV 2015

[48]

An instance of RTC will open with the Report Request Page showing. This is where
the user can set filters, choose a sort sequence and choose the Print.. options:

Click Preview to display the report on screen. The report will show our simple table
layout with the fixed definition column captions showing exactly as we typed them.

All we've done so far is scratch the surface. But you should have a pretty good
overview of the development process for NAV 2015.

You will be in especially good shape if you've been following
along in your own system, doing a little experimenting along
the way.

Chapter 1

[49]

Other NAV object types
Let's finish up our introductory review of NAV's object types.

Codeunits
A codeunit is a container for chunks of C/AL code to be called from other objects.
These chunks of code are called Functions. Functions can be called from any of the
other NAV object types that can contain C/AL code. Codeunits can also be exposed
(published) as web services. This allows the functions within a published codeunit
to be invoked by external routines.

Codeunits are suited structurally to contain only functions. Even though functions
could be placed in other object types, the other object types have superstructures that
relate to their designed primary use as pages, reports, and so on.

Codeunits act only as a container for C/AL coded functions. They have no auxiliary
functions, no method of direct user interaction, and no pre-defined processing.
Even if we are creating only one or two functions and they are closely related to
the primary activity of a particular object, if these functions are needed from both
inside and outside of the report, the best practice is still to locate those functions in
a Codeunit. For more guidance, see the NAV Design Pattern of the Week – the Hooks
Pattern at http://blogs.msdn.com/b/nav/archive/2014/03/16/nav-design-
pattern-of-the-week-the-hooks-pattern.aspx.

There are several codeunits delivered as part of the standard NAV product which are
actually function libraries. These codeunits consist totally of utility routines, generally
organized on some functional basis (for example, associated with Dimensions or
some aspect of Manufacturing or some aspect of Warehouse management). Many
of these can be found by filtering the Codeunit Names on the strings "Management"
and "Mgt" (the same could be said for some of the Tables with the string "Buffer" in
their name). When we customize a system, we should create our own function library
codeunits to consolidate our customizations and make software maintenance easier.
Some developers create their own libraries of favorite special functions and include a
"function library" codeunit in systems on which they work.

If a Codeunit is structured very simply and can operate in a stand-alone mode, it
is feasible to test it in the same way one would test a Report or a Page. Highlight
the Codeunit and click the Run button. The codeunit will run for a single cycle.
However, most codeunits are more complex and must be tested by a calling routine.

An Introduction to NAV 2015

[50]

Queries
Queries are objects whose purpose is to create extracted sets of data from the NAV
database and do so very efficiently. NAV 2015 Queries translate directly into T-SQL
query statements and run on the server side rather than on the service tier. A Query
can extract data from a single table or multiple tables. In the process of extracting
data, it can do different types of Joins (Inner Join, Outer Join, Cross Join), can filter,
can calculate FlowFields (special NAV calculations which are discussed in detail in
Chapter 3, Data Types and Fields), can sort, and can create sums and averages. Queries
obey the NAV data structure business logic.

The output of a Query can be a CSV file (useful for Excel charts), an XML file (for
charts or external applications), or an Odata file for a web service. Queries can be
published for web service access in similar manner to Pages and Codeunits. The
results of a Query can also be viewed by Pages (as described in Chapter 5, Queries
and Reports) and Cues (as described in the Help Walkthrough: Creating a Cue based
on a Normal Field and a Query), but are especially powerful when output to charts.
With a little creativity, a Query can also be used to feed data to a report via use
of a temporary table to hold the Query results.

MenuSuites
MenuSuites are the objects that are displayed in the navigation menus. They differ
considerably from the other object types we have discussed earlier because they have
a completely different structure and they are maintained differently. MenuSuite
entries do not contain triggers. The only customization that can be done with them is
to add, delete, or edit menu entries which are made up of a small set of properties.

In the RTC, the data in the MenuSuites object is presented in the Departments page.

XMLports
XMLports enable importing and exporting data. XMLports handle both XML
structured data and other external text data formats. XML stands for eXtensible
Markup Language which is the de facto standard for exchanging data between
dissimilar systems. For example, XMLports could be used to communicate
between our NAV ERP system and our accounting firm's financial analysis and tax
preparation system.

XML is designed to be extensible, which means that we can create or extend the
definition as long as we communicate the defined XML format to our correspondents.
There is a standard set of syntax rules to which XML formats must conform. Much
new software uses XML. For example, the new versions of Microsoft Office are quite
XML friendly. All web services communications are in the form of an exchange of
XML structured data.

Chapter 1

[51]

The non-XML text data files handled by XMLports fall into two categories. One is
known as comma separated value or comma delimited files (usually having a .csv file
extension). Of course, the delimiters don't have to be commas. The other category is
fixed format, in which the length and relative position of each field is pre-defined.

XMLports can contain C/AL logic for any type of appropriate data manipulation,
either when importing or exporting. Functions such as editing, validating, combining,
filtering, and so on, can be applied to the data as it passes through an XMLport.

Development backups and documentation
As with any system where we can do development work, careful attention to
documentation and backing up of our work is very important. C/SIDE provides
a variety of techniques for handling each of these tasks.

When we are working within Object Designer, we can back up individual objects
of any type or groups of objects by exporting them. These exported object files can
be imported in total, selectively in groups, or individually, to recover the original
version of one or more objects.

NAV 2015 introduces Windows PowerShell cmdlets that support backing up data to
the NAVData files. Complementary cmdlets support getting information or selectively
retrieving data from previously created NAVData files. Although these tools promise
to be very handy for repetitive development testing, they are challenging (or worse) to
use in an environment of changing table or field definitions.

When objects are exported to text files, we can use a standard text editor to read or
even change them. If, for example, we want to change all the instances of the field
name Customer to Patient, we might export all the objects to text and execute a mass
Find and Replace. Making such code changes in a text copy of an object is subject to
a high probability of error, as we won't have any of the many safety features of the
C/SIDE environment to limit what we can do.

Internal documentation (that is, inside C/SIDE) of object changes can be done in
three areas. First is the Object Version List, a field attached to every object, visible in
the Object Designer screen. Whenever a change (or set of changes) is made in an
object, a notation should be added to the Version List.

The second area for documentation is the Documentation trigger that appears in every
object type except MenuSuites. The Documentation trigger is at the top of the object
and is the recommended location for noting a relatively complete description of any
changes that have been made to the object. Such descriptions should include a brief
description of the purpose of the change as well as technical information.

An Introduction to NAV 2015

[52]

The third area we can place documentation at is inline with modified C/AL code.
Individual comment lines can be created by starting the line with double forward
slashes //. Whole sections of comments (or commented out code) can be created
by starting and ending the section with a pair of curly braces{}. Depending on the
type of object and the nature of the specific changes, we should generally annotate
each change inline wherever the code is touched, so all the changes can be easily
identified by the next developer.

In short, when doing development in NAV C/SIDE, everything applies of what we
have learned earlier about good documentation practices. This holds true whether
the development is new work or modification of existing logic.

Summary
In this chapter, we covered some basic definitions of terms related to NAV and
C/SIDE. We followed it with the introduction of the seven NAV objects types
(Tables, Pages, Reports, Codeunits, Queries, MenuSuites, and XMLports). We
introduced Table, Page, and Report creation through review and hands-on
use beginning a NAV application for the WTDU Radio Show programming
management. Finally, we looked briefly at the tools that we use to integrate with
external entities and discussed how different types of backups and documentation
are handled in C/SIDE. Now that we have covered the basics, we will dive into
the detail of the primary object types in the next few chapters.

In Chapter 2, Tables, we will focus on Tables, the foundation of a NAV system.

Review questions
Q 1. An ERP system such as NAV 2015 includes a number of functional areas. Which
of the following are part of NAV 2015? Choose four.

a. Manufacturing
b. Order Processing
c. Planning
d. Computer Aided Design (CAD)
e. General Accounting

Chapter 1

[53]

Q 2. New functionality in NAV 2015 includes (choose three):

a. Tablet client
b. Multi-language
c. Document emailing
d. Spell checker
e. Mandatory fields

Q 3. NAV 2015 development is done in the C/SIDE IDE and Visual Studio.
True or False?

Q 4. Match the following table types and descriptions for NAV.

Table types Description
1 Journals a Audit trail
2 Ledgers b Validation process
3 Register c Invoice
4 Document d Transaction entries
5 Posting e History

Q 5. iPads can be used with NAV 2015 to display the Role Tailored Client.
True or False?

Q 6. Which of the following describe NAV 2015? Choose two.

a. Customizable
b. Includes a Storefront module
c. Object based
d. C# IDE
e. Object oriented

Q 7. What are the seven NAV 2015 object types?

Q 8. All NAV objects except XMLports can contain C/AL code. True or False?

Q 9. NAV 2015 includes support for publishing objects as Web Services.
True or False?

An Introduction to NAV 2015

[54]

Q 10. What is the "home page" for a NAV 2015 user called? Choose one.

a. Role Home
b. Home Center
c. Main Page
d. Role Center

Q 11. Page Previews from the Development environment can be used for data entry
and maintenance. True or False?

Q 12. For what work is Visual Studio used in NAV 2015? Choose one.

a. Report data definition
b. Report layout
c. Role Center design
d. Query processing

Q 13. Codeunits are the only NAV 2015 objects that can contain functions.
True or False?

Q 14. Query output can be used as a Data Item for Reports. True or False?

Q 15. C/AL and C/SIDE are required for NAV 2015 development. True or False?

Q 16. What object number range is available for assignment to customer-specific
objects? Choose two.

a. 20-500
b. 50000 – 60000
c. 150000 – 200000
d. 50000 – 99999
e. 10000 – 100000

Q 17. XMLports can only process XML-formatted data. True or False?

Q 18. The Work Date can only be changed by the System Administrator.
True or False?

Chapter 1

[55]

Q 19. A Design Pattern is which of the following? Choose two.

a. Reusable code
b. Stripes and plaid together
c. A proven way to solve a common problem
d. User Interface guidelines

Q 20. NAV 2015 Reports are often generated automatically through the use of a
wizard. True or False?

[57]

Tables
"Sometimes the questions are complicated and the answers are simple."

 - Dr. Seuss (Theodor Seuss Geisel)

"The loftier the building, the deeper must the foundation be laid."

 – Thomas à Kempis

The foundation of any system is the data structure definition. In NAV, the building
blocks of this foundation are the Tables and the individual data fields that the tables
contain. Once the functional analysis and process definition has been completed, any
new design work must begin with the data structure. For NAV, that means the tables
and their contents.

A NAV table includes much more than just the data fields and keys. A NAV
table definition also includes data validation rules, processing rules, business rules,
and logic to ensure referential integrity. The rules are in the form of properties and
C/AL code.

In this chapter, we will learn about the structure and creation of tables. Details about
fields, the components of tables, will be covered in the following chapter. Our topics
in this chapter include:

• An overview of tables, including Properties, Triggers, Keys, SumIndexFields,
and Field Groups

• Enhancing our scenario application by creating and modifying tables
• Types of tables; that is, Fully Modifiable, Content Modifiable, and

Read-Only tables

Tables

[58]

An overview of tables
There is a distinction between the table (data definition and data container) and
the data (the contents of a table). The table definition describes the identification
information, data structure, validation rules, storage, and retrieval of the data which
is stored in the table (container). The definition is defined by the design and can only
be changed by a developer. The data is the variable content that originates from user
activities. The place where we can see the data explicitly referenced independently
of the table as a definition of structure is in the Permissions setup data. In the next
image, the data is formally referred to as Table Data:

The table is not the data: it is the definition of data contained in the table (stored in
the database as metadata). Even so, we commonly refer to both the data and the table
as if they were one and the same. That is what we will do in this book.

All permanent data must be stored in a table. All tables are defined by the developer
working in the development environment. As much as possible, critical system
design components should be embedded in the tables. Each table should include
the code that controls what happens when records are added, changed, or deleted,
as well as how data is validated when records are added or changed. That includes
functions to maintain the aspects of referential integrity that are not automatically
handled.

Chapter 2

[59]

The table object should also include the functions commonly used to manipulate the
table and its data, whether for database maintenance or in support of business logic.
In those cases where the business logic is either a modification applied to a standard
(out-of-the-box) table or that same logic is also used elsewhere in the system, the
code should be resident in a function library code unit and called from the table.
Table structure as an architectural pattern is being developed and will be published
in the Patterns wiki.

The table designer in C/SIDE provides tools for the definition of the data structure
within the tables. We will explore these capabilities through examples and analysis
of the structure of table objects. We find the approach of embedding control and
business logic within the table object has a number of advantages:

• Clarity of design
• Centralization of rules for data constraints
• More efficient development of logic
• Increased ease of debugging
• Easier upgrading

Components of a table
A table is made up of Fields, Properties, Triggers (some of which may contain C/AL
code), and Keys. Fields also have Properties and Triggers. Keys also have Properties.

A table definition which takes full advantage of these capabilities reduces the
effort required to construct other parts of the application. Good table design can
significantly enhance the application's processing speed, efficiency, and flexibility.

Tables

[60]

A table can have:

• Up to 500 fields
• A defined record size of up to 8,000 bytes (with each field sized at its

maximum)
• Up to 40 different keys

Naming a table
There are standardized naming conventions defined for NAV which we should
follow. Names for tables and other objects should be as descriptive as possible, while
keeping to a reasonable length. This makes our work more self-documenting.

Table names should always be singular. A table containing data about customers
should not be named Customers, but Customer. The table we created for our WDTU
Radio Station NAV enhancement was named Radio Show, even though it will
contain data for all WDTU's radio shows.

In general, we should always name a table such that it is easy to identify the
relationship between the table and the data it contains. For example, two tables
containing the transactions on which a document page is based should normally
be referred to as a Header table (for the main portion of the page) and a Line table
(for the line detail portion of the page). As an example, the tables underlying a Sales
Order page are the Sales Header and the Sales Line tables. The Sales Header table
contains all the data that occurs only once for a Sales Order, while the Sales Line
table contains all the lines for the order.

Additional information on table naming can be found in the old, but still
useful, Terminology Handbook for C/SIDE and C/AL Programming Guide,
which can be found on the Microsoft MSDN site at http://social.
msdn.microsoft.com/Search/en-US?query=Terminology%20
Handbook%20for%20C%2FSIDE&ac=8 and http://social.
msdn.microsoft.com/Search/enUS?query=C%2FAL%20
Programming%20Guide%20&ac=8. These older documents may be
obsolete in some areas. So of course, we should always refer first to
the Developer and IT Pro Help included in NAV that is accessible
from the Development Environment. The NAV 2015 Help is also
on MSDN at http://msdn.microsoft.com/en-us/library/
hh173988(v=nav.80).aspx. Much additional information can be
found in the recently released C/AL Coding Guidelines at https://
community.dynamics.com/nav/w/designpatterns/156.cal-
coding-guidelines, including a How do I video.

Chapter 2

[61]

Table numbering
There are no hard and fast rules for table numbering, except that we must only use
the table object numbers that we are licensed to use. If all we have is the basic Table
Designer rights, we are generally allowed to create tables numbered from 50000 to
50009 (unless our license was defined differently from the typical one). If we need
more table objects, we can purchase licensing for table objects numbered up to
99999. Independent Software Vendors (ISVs) can purchase access to tables in other
number ranges to use for their add-on products.

When creating several related tables, ideally, we should assign them related numbers
in sequential order. We should let common sense be our guide to assigning table
numbers. It requires considerable effort to renumber tables containing data.

Table properties
The first step in studying the internal construction of a table is to open it in Design
mode. This is done as follows:

1. Open the Development Environment window.
2. Click on the Table button in the left column of buttons.
3. Highlight the table to work on (in this case, Table 18 Customer).
4. Click on the Design button at the bottom-right of the screen.

Tables

[62]

We now have the Customer table open in the Table Designer in Design mode. In
Chapter 1, An Introduction to NAV 2015, we reviewed the function of the icons across
the top of the Table Designer, but they are labeled in the following screenshot as a
memory aid:

We can access the properties of a table while viewing the table in Design mode.
Place the cursor on an empty field line (for example, the line below all the fields as
shown in the preceding screenshot), and click on the Properties icon or press Shift +
F4 or use View | Properties. If we access properties while focus is on a field line, we
will see the properties of that field (not the table).

Chapter 2

[63]

This will take us to the Table - Properties display. The following screenshot is the
Table - Properties display for the Customer table in the demonstration Cronus
database:

The table properties are as follows:

• ID: This is the object number of the table.
• Name: This is used for internal identification of the table object and acts as

the default caption when data from this table is displayed.
• Caption: This contains the caption defined for the currently selected

language. The default language for NAV is US English (ENU).
• CaptionML: This defines the MultiLanguage caption for the table. For an

extended discussion on the language capabilities of NAV, refer to the section
MultiLanguage Development in the online Developer and IT Pro Help.

• Description: This property is for optional documentation usage.
• DataPerCompany: This lets us define whether or not the data in this table

is segregated by company (the default), or whether it is common (shared)
across all companies in the database. The generated names of tables within
SQL Server (not within NAV) are affected by this choice.

• Permissions: This allows us to grant users of this table different levels of
access (r=read, i=insert, m=modify, and d=delete) to the table data in other
table objects.

• LookupPageID: This allows us to define which Page is the default for
looking up data in this table.

Tables

[64]

• DrillDownPageID: This allows us to define which Page is the default
for drilling down into the supporting detail for the data that is summarized
in this table.

• DataCaptionFields: This allows us to define specific fields whose contents
will be displayed as part of the caption. For the Customer table, the No. and
the Name will be displayed in the title bar at the top of a page showing a
customer record.

• PasteIsValid: This property (Paste Is Valid) is not active in NAV 2015.
• LinkedObject: This lets us link the table to a SQL Server object. This feature

allows the connection, for data access or maintenance, to a non-NAV system
or an independent NAV system. For example, a LinkedObject could be an
independently hosted and maintained special purpose database, and thus
offload that processing from the main NAV system. When this property
is set to Yes, then LinkedInTransactionProperty becomes available.
LinkedInTransactionProperty should be set to No for any linkage to a
SQL Server object outside the current database. The object being linked to
must have a SQL Server table or view definition that is compatible with the
Microsoft Dynamics NAV table definition.

As developers, we most frequently deal with the ID, Name, LookupPageID,
DrillDownPageID, Caption, CaptionML (for languages other than American
English), DataCaption, and Permissions properties. We rarely deal with the others.

Table triggers
To display the triggers with the table open in Table Designer, click on the
C/AL Code icon or F9 or View | C/AL Code. The first (top) table trigger is the
Documentation trigger. This trigger is somewhat misleadingly named as it only
serves as a location for needed documentation. No C/AL code in a Documentation
trigger is executed. There are no syntax or format rules here, but we should follow
a standard format of some type.

Every change to an object should be briefly documented in the Documentation
trigger. The use of a standard format for such entries makes it easier to create them
as well as to understand them two years later. For example:

CD.02 – 2015-03-16 Change to track when new customer added

 - Added field 50012 "Start Date"

Chapter 2

[65]

The Documentation trigger has the same appearance as the four other triggers in a
table definition, shown in the following screenshot, each of which can contain the
C/AL code:

The code contained in a trigger is executed prior to the event represented by the
trigger. In other words, the code in the OnInsert() trigger is executed before the
record is inserted into the table. This allows the developer a final opportunity to
perform validations and to enforce data consistency such as referential integrity.
We can even abort the intended action if data inconsistencies or conflicts are found.

These triggers are automatically invoked when record processing occurs as the
result of User action. But when table data is changed by C/AL code or by a data
import, the C/AL code or import process determines whether or not the code in
the applicable trigger is executed, as follows:

• OnInsert(): This is executed when a new record is to be inserted in to the
table through the User Interface. (In general, new records are added when
the last field of the primary key is completed and focus leaves that field. See
the DelayedInsert property in Chapter 4, Pages - the Interactive Interface for
an exception).

• OnModify(): This is executed when a record is rewritten after the contents
of any field other than a primary key field have been changed. The change
is determined by comparing xRec (the image of the record prior to being
changed) to Rec (the current record copy). During our development work,
if we need to see what the "before" value of a record or field is, we can
reference the contents of xRec and compare that to the equivalent portion
of Rec. These variables (Rec and xRec) are System-Defined Variables.

• OnDelete(): This is executed before a record is to be deleted from the table.

Tables

[66]

• OnRename(): This is executed when some portion of the primary key of the
record is about to be changed. Changing any part of the primary key is a
Rename action. This maintains a level of referential integrity. Unlike some
systems, NAV allows the primary key of any master record to be changed,
and automatically maintains all the affected foreign key references from
other records.

There is an internal inconsistency in the handling of data integrity by NAV. On
one hand, the OnRename() trigger automatically maintains one level of referential
integrity when any part of the primary key is changed (that is, the record is
"renamed"). This happens in a "black box" process, an internal process that
we cannot see or touch.

However, if we delete a record, NAV doesn't automatically do anything to maintain
referential integrity. For example, child records could be orphaned by a deletion,
left without any parent record. Or if there are references in other records back to the
deleted record, they could be left with no target. In this latest version of NAV, code
has been added to the OnDelete() trigger of many (perhaps all) tables to handle this
aspect of referential integrity. As developers, we are responsible for ensuring this
part of referential integrity in our customizations.

When we write the C/AL code in one object that updates data in another (table)
object, we can control whether or not the applicable table update trigger fires
(executes). For example, if we were adding a record to our Radio Show table
and used the following C/AL code, the OnInsert() trigger would fire:

"RadioShow".INSERT(TRUE);

However, if we use either of the following C/AL code options instead, the
OnInsert() trigger would not fire and none of the logic inside the trigger
would be executed:

"RadioShow".INSERT(FALSE);

or,

"RadioShow".INSERT;

It's always a good habit to write code explicitly so there is no doubt what the
intended action is; in other words, use the explicit true or false.

The automatic "black box" logic enforcing primary key uniqueness will happen
whether or not the OnInsert() trigger is fired.

Chapter 2

[67]

Keys
Table keys are used to identify records, and to speed up filtering and sorting. Having
too few keys may result in painfully slow inquiries and reports. However, each key
incurs a processing cost because the index containing the key must be updated every
time information in a key field changes. Key cost is measured primarily in terms of
increased index maintenance processing. There is also additional cost in terms of
disk storage space (usually not significant) and additional backup/recovery time
(sometimes very important).

When a system is optimized for processing speed, it is critical to analyze the SQL
Server indexes that are active because that is where the updating and retrieval time
are determined. The determination of the proper number and design of keys and
indexes for a table requires a thorough understanding of the types and frequencies
of inquiries, reports, and other processing for that table.

Every NAV table must have at least one key—the primary key. The primary key is
always the first key in the key list. By default, the primary key is made up of the first
field defined in the table. In many of the Reference tables, there is only one field in
the primary key and the only key is the primary key. An example is the Payment
Terms table. Highlight Table 3 Payment Terms, then click on the Design button
to see the Keys window, and click on View | Keys:

The primary key must have a unique value in each table record. We can change the
primary key to be any field, or any combination of fields up to 16 fields totaling up
to 900 bytes, but the uniqueness requirement must be met. It will automatically be
enforced by NAV because NAV will not allow us to add a record in to a table with
a duplicate primary key.

Tables

[68]

When we examine the primary keys in the supplied tables, we see that many of them
consist only of or terminate in a Line No., an Entry No., or another data field whose
contents make the key unique. For example, the G/L Entry table in the following
screenshot uses just the Entry No. as the primary key. It is a NAV standard that the
Entry No. fields contain a value that is unique for each record.

The primary key of the Sales Line table shown in the following screenshot is
made up of several fields, with the Line No. of each record as the terminating primary
key field. In NAV, the Line No. fields are assigned a unique number within the
associated document. Line No. combined with the preceding fields in the primary
key (usually including fields, such as Document Type and Document No, which
relate to the parent Header record) makes each primary key entry unique. The logic
supporting the assignment of the Line No. values is done within explicit C/AL code.
It is not an automatic feature. The No. Series pattern documentation can be found at
https://community.dynamics.com/nav/w/designpatterns/74.no-series.aspx.

All keys except the primary key are secondary keys. There is no required uniqueness
constraint on secondary keys. There is no requirement to have any secondary keys.
If we want a secondary key not to have duplicate values, our C/AL code must check
for duplication before completing the new entry.

Chapter 2

[69]

The maximum number of fields that can be used in any one key is 16 with a maximum
total length of 900 bytes. At the same time, the total number of different fields that can
be used in all the keys combined cannot exceed 16. If the primary key includes three
fields (as in the preceding screenshot), then the secondary keys can use up to 13 other
fields (16 minus 3) in various combinations, plus any or all of the fields in the primary
key. If the primary key has 16 fields, then the secondary keys can only consist of
different groupings and sequences of those 16 fields. The first release of the NAV 2015
C/AL compiler allows up to 20 fields in a key, but the last 4 fields are ignored by SQL
Server. Behind the scenes, each secondary key has the primary key appended to the
backend. A maximum of 40 keys is allowed per table.

Database maintenance performance is faster with fewer fields in
keys, especially the primary key. The same is true when there are
fewer keys. This must be balanced against improved performance in
processes by having the optimum key contents and choices.

A number of SQL Server-specific key-related parameters have been added to
NAV. These key properties can be accessed by highlighting a key in the Keys
form, then clicking on the Properties icon or pressing Shift + F4. We can also
display these properties in the Keys screen by accessing View | Show Column and
selecting the columns we want displayed. The following screenshot shows both
the Show Column choice form and the resulting Keys form with all the available
columns displayed:

Tables

[70]

SumIndexFields
Since the beginning of NAV (formerly Navision), one of its unique capabilities has
been the SumIndexField Technology (SIFT) feature These fields serve as the basis
for FlowFields (automatically accumulating totals) and are unique to NAV. This
feature allows NAV to provide almost instantaneous responses to user inquiries for
summed data, calculated on the fly at runtime, related to the SumIndexFields. The
cost is primarily that of the time required to maintain the SIFT indexes when a table
is updated.

NAV 2015 maintains SIFT totals using SQL Server Indexed Views. An indexed
view is a view that has been preprocessed and stored. NAV 2015 creates one indexed
view for each enabled SIFT key. SIFT keys are enabled and disabled through the
MaintainSIFTIndex property. SQL Server maintains the contents of the view when
any changes are made to the base table, unless the MaintainSIFTIndex property is
set to No.

SumIndexFields are accumulated sums of individual fields (columns) in tables.
When the totals are automatically precalculated, they are easy to use and provide
very high-speed access for inquiries. If users need to know the total of the Amount
values in a Ledger table, the Amount field can be attached as a SumIndexField to
the appropriate keys. In another table such as Customer, FlowFields can be defined
as display fields take the advantage of the SumIndexFields property. This gives the
users a very rapid response for calculating a total Balance amount inquiry based on
detailed Ledger Amounts tied to those keys. We will discuss the various data field
types and FlowFields in more detail in a later chapter.

In a typical ERP system, many thousands, millions, or even hundreds of millions of
records might have to be processed to give such results, taking considerable time. In
NAV, only a few records need to be accessed to provide the requested results. The
processing is fast and the programming is greatly simplified.

SQL Server SIFT values are maintained through the use of SQL Indexed Views. By
use of the Key property MaintainSIFTIndex, we can control whether or not the
SIFT index is maintained dynamically (faster response) or only created when needed
(less ongoing system performance load). The C/AL code is the same whether the
SIFT is maintained dynamically or not. In NAV 2015, SIFT indexes can be built by
SQL Server on-the-fly, but at the cost of having the full SIFT construction happen
at one time rather than incrementally as records are added to the table. To define
permanent SIFT indexes or not is a design choice that must be made carefully.

Chapter 2

[71]

Too many Keys or SIFT fields can negatively affect system performance for two
reasons. The first, which we already discussed, is the index maintenance processing
load. The second is the table locking interference that can occur when multiple
threads are requesting update access to a set of records that update SIFT values.

Conversely, the lack of necessary Keys or SIFT definitions can also cause
performance problems. Having unnecessary data fields in a SIFT key creates many
extra entries, affecting performance. Integer fields usually create an especially large
number of unique SIFT index values and the Option fields create a relatively small
number of index values.

The best design for a SIFT index has the fields which will be used most frequently
in queries positioned on the left-hand side of the index in order of descending
frequency of use. In a nutshell, we should be careful in our design of Keys and
SIFT fields. While a system is in production, applicable SQL Server statistics should
be monitored regularly and appropriate maintenance actions taken. NAV 2015
automatically maintains a count for all SIFT indexes, thus speeding up all COUNT
and AVERAGE FlowField calculations.

The MaintainSQLIndex and MaintainSIFTIndex properties shown in the previous
image allow the developer and/or system administrator to determine whether or not
a particular key or SIFT field will be continuously maintained or will be recreated
only when needed. Indexes that are not maintained, minimize record update time
but require longer processing time to dynamically create the indexes when they
are used. This level of control is useful for managing indexes that are only needed
occasionally. For example, a Key or SIFT index that is used only for monthly reports
can be disabled and no index maintenance processing be done on a day-to-day basis.
If the month end need is for a single report, the particular index will be recreated
automatically when the report is run. If the month end need is for a number of
reports, the system administrator might enable the index, process the reports, then
disable the index again.

Field Groups
When a user starts to enter data in a field where the choices are constrained to
existing data (for example, an Item No., a Salesperson Code, a Unit of Measure code,
a Customer No., and so on), good design dictates that the system will help the user
by displaying the universe of acceptable choices. Put simply, a lookup list of choices
should be displayed.

Tables

[72]

In the Role Tailored Client, the lookup display (a drop-down control) is generated
dynamically when its display is requested by the user's effort to enter data in a field
that references a table through the TableRelation property (which will be discussed
in more detail in the next chapter). The format of the drop-down is a basic list. The
fields that are included in that list and their left-to-right display sequence are either
defined by default, or by an entry in the Field Groups table.

The Field Groups table is part of the NAV table definition much like the list of Keys.
In fact, the Field Groups table is accessed very similarly to the Keys, via View |
Field Groups.

If we look at Field Groups for Table 27 - Item, we see the drop-down information
defined in Field Group, which must be named DropDown (without a hyphen):

Chapter 2

[73]

The drop-down display created by this particular Field Group is shown in the
following screenshot of the Sales Order page, contains fields in the same order
of appearance as in the Field Group definition.

If no Field Group is defined for a table, the system defaults to using the primary key
plus the Description field (or Name field).

Since Field Groups can be modified, they provide another opportunity for tailoring
the user interface. As we saw in the preceding screenshot, the standard structure
for the fields in a Field Group is to have the primary key appear first. The user
can choose any of the displayed fields to be the default filter column, the defacto
lookup field.

As a system option, the drop-down control provides a find-as-you-type capability,
where the set of displayed choices filters and redisplays dynamically as the user
types, character by character. The filter applies to the default filter column. Whatever
field is used for the lookup, the referential field defined in the page determines what
data field contents are copied into the target table. In the preceding image example,
the reference table/field is the Sales Line table/field "No." and the target table/field
is the Item table/field "No.".

As developers, we can change the order of appearance of the fields in the drop-down
display. We can also add or delete fields by changing the contents of the Field Group.
For example, we could add a capability to our page that provides an "alternate
search" capability (where if the match for an Item No. isn't found in the No. field, the
system will look for a match based on another field). In NAV 2015, fields in a field
group no longer must be in a key.

Tables

[74]

Consider this situation: the customer has a system design where the Item No.
contains a hard to remember, sequentially assigned code to uniquely identify
each item. But the Search Description field contains a product description that is
relatively easy for the users to remember. When the user types, the find-as-you-
type feature helps them to focus and find the specific Item No. to be entered for the
order. In order to support this, we simply need to add the Search Description field
to the Field Group for the Item table as the first field in the sequence. The following
screenshot shows that change in the Item Field Group table:

The effect of this change can be seen in the following screenshot which shows the
revised drop-down control. The user has begun entry in the No. field, but the lookup
has focused on the newly added Search Description field. Find-as-you-type has
filtered the displayed items down to just those that match the data string entered so
far (user has entered st; Field Group has filtered to items with Search Description
starting with st).

Chapter 2

[75]

The result of our change allows the user to lookup the items by their Search
Description, rather than by the harder to remember Item No. Obviously,
any field in the Item table could have been used, including our custom fields.

Enhancing our sample application
Now we can take our knowledge of tables and expand our WDTU application. Our
base Radio Show table needs to be added to and modified. We also need to create
and reference additional tables.

Although we want to have a realistic design in our sample application, we will focus
on changes that illustrate the features in the NAV table design which the authors feel
are among the most important. If there are capabilities or functionalities that you feel
are missing, feel free to add them. Adjust the examples as much as you wish to make
them more meaningful to you.

Creating and modifying tables
In Chapter 1, An Introduction to NAV 2015, we created the Radio Show table for the
WDTU application. At that time we used the minimum fields that allowed us to
usefully define a master record. Now, let's set properties on existing data fields, add
more data fields, and create an additional data table to which the Radio Show table
can refer.

Our new data fields are shown in the following layout table:

Field No. Field Name Description
1000 Frequency An Option data type (Hourly, Daily, Weekly,

Monthly) for the frequency of a show; Hourly to
be used for a show segment such as news, sports,
or weather that is scheduled every hour. A space/
blank is used for the first option to allow a valid
blank field value.

1010 PSA Planned
Quantity

A number (stored as an Integer) of Public Service
Announcements to be played per show; this will
be used by playlist generation and posting logic.

1020 Ads Planned
Quantity

A number (stored as an Integer) of advertisements
to be played per show; this will be used by playlist
generation and posting logic.

1030 News Required Is headline news required to be broadcast during
the show (a Boolean)?

Tables

[76]

Field No. Field Name Description
1040 News Duration The duration (stored as a Duration) of the news

program embedded within the show.
1050 Sports Required Is sports news required to be broadcast during the

show (a Boolean)?
1060 Sports Duration The duration (stored as a Duration) of the sports

program embedded within the show.
1070 Weather Required Is weather news required to be broadcast during

the show (a Boolean)?
1080 Weather Duration The duration (stored as a Duration) of the weather

program embedded within the show.
1130 Date Filter A date FlowFilter (stored as a Data Type Date,

Data Class FlowFilter) that will change the
calculations of the flow fields based on the date
filter applied. More on FlowFilters in Chapter 3,
Data Types and Fields.

After we have completed our Radio Show table, it will look like the following image:

Chapter 2

[77]

Next we need to fill the OptionString and Caption properties for the Option field
Frequency. Highlight the Frequency field, then click on the Properties icon or press
Shift + F4. Enter the values for the OptionString property as shown in the next
screenshot; don't forget to include the leading space followed by a comma to get
a space/blank as the first option. Be sure to copy and paste the same information
to the OptionCaption property. The OptionCaptionML property will be filled
in automatically with a copy of that information (since we do not have a second
language installed). Note that the properties that have been changed from the default
are displayed in bold. This new feature makes it much easier for developers to see
what properties have been modified.

Tables

[78]

Next we want to define the reference table we are going to tie to the Type field.
The table will contain a list of the available Radio Show Types such as Music, Talk,
Sports, and so on. We will keep this table very simple, with Code as the unique key
field and Description as the text field. Both fields will be of the default length as
shown in the following layout. Create the new table and save it as Table 50001 with
the name of Radio Show Type.

Field No. Field Name Description Data
Type

Length

10 Code Primary key of data type Code Code 10
20 Description A text field Text 30

Before we can use this table as a reference from the Radio Station table, we need to
create a list page that will be used for both data entry and data selection for the table.
We will use Page Designer, and Page Wizard to create a List page. We should be
able to do this pretty quickly. Click on Pages, click on the New button, enter 50001 in
the Table field (the table field will redisplay the table name), then choose the wizard
to create a page type of List.

Populate the page with all the fields from the Radio Show Type table. Our designed
page should look like the following screenshot:

Chapter 2

[79]

Save the page as number 50002, and exit Page Designer, naming the page Radio
Show Types. Test the page by highlighting it in the Object Designer, then clicking on
the Run button. The new page will be displayed. While the page is open, enter some
data (by clicking on New) such as the examples shown in the following screenshot:

Now we'll return to the Radio Show Type table and set the Table's Properties for
LookupPageID and DrillDownPageID to point to the new page we have just
created. As a reminder, we will use Design to open the table definition, then focus
on the empty line below the description field, and either click on the Properties icon
or press Shift + F4.

Tables

[80]

In the value for each of the two PageID properties, we can either enter the page name
(Radio Show Types) or the page number (50002). Either entry will work, but as you
can see in the following screenshot, the appearance depends on what you enter:

After the table has been saved, the next time we view these two PageID properties,
they look like the following image:

Assigning a Table Relation property
Finally, we open the Radio Show table again by highlighting the table line and
clicking on the Design button. This time highlight the Type field and access its
Properties screen. Highlight the TableRelation property and click on the ellipsis
button (the three dots). We see the Table Relation screen with four columns, as
shown in the following image. The middle two columns are headed Table and Field.
In the top line in the Table column, enter 50001 (the table number) or Radio Show
Type (the table name). In the same line, in the Field column, click on the up-arrow
button and choose Code.

Chapter 2

[81]

We exit the Table Relation screen (by clicking the OK button) and return to the
Type - Properties page that looks like the following image. Save and exit the
modified table.

Tables

[82]

To check that TableRelation is working properly, we could run the Radio Show
table (that is, highlight the table name and click on the Run button). We could also
run the Radio Show List page and have almost exactly the same view of the data.
This is because the Run of a table creates a temporary list page which includes all the
fields in the table: thus, it contains the same data fields as the page we created using
the Page Wizard. In either one, we should highlight the Radio Show Type field and
click on the drop-down arrow to view the list of available entries. The following
image is of our Radio Show List page; you should also try it using the Run function
on the Radio Show table:

If all has gone according to plan, the Radio Show Type field will display a
drop-down arrow (the downward pointing arrowhead button). Whether we
click on that button or press F4, we will invoke the drop-down list for the Radio
Show Type table, as shown before.

Chapter 2

[83]

Assigning an InitValue property
Another property we can define for several of the Radio Show fields is InitValue.
WDTU has a standard policy that news, sports, and weather be broadcast for a few
minutes each at the beginning of every hour in the day. We want the Boolean (Yes/
No) fields for News Required, Sports Required, and Weather Required to default to
Yes. We also want the default time value of the News Duration, Sports Duration, and
Weather Duration to be 2 minutes, 2 minutes, and 1 minute, respectively. That way
the first 5 minutes of every hour can be spent on keeping the listeners informed of
the latest happenings.

Setting the default for a field to a specific value simply requires setting the InitValue
property to the desired value. In the case of the "Required" Boolean fields, that value
is set to Yes. Using the Table Designer, we must Design the Radio Station table, and
access the Properties screen for the News Required field. Repeat this for the Sports
Required and Weather Required fields. After we have filled in the values for the
three fields, exit the Properties screen, exit Table Designer, and save the changes.

In the case of the "Duration" fields, we will set InitValue to 2 minutes each for News
Duration and Sports Duration, and 1 minute for Weather Duration. Duration fields
require both the time span numeric and the time unit of measure (seconds, minutes,
hours, and so forth). Our entries will look like 2 minutes (or 2 minute, both are
acceptable).

Tables

[84]

Adding a few activity-tracking tables
Our WDTU organization is a profitable and productive radio station. We track
historical information about our advertisers, royalties owed, and listenership.
We track the music that is played, the rates we charge for advertisements based
on the time of day, and we provide a public service by broadcasting a variety of
government and other public service announcements.

We aren't going to cover all these features and functions in the following detailed
exercises. However, it's always good to have a complete view of the system on which
we are working, even if we are only working on one or two components. In this case,
the parts of the system not covered in detail in our exercises will be opportunities for
you to extend your studies and practice on your own.

Any system development should start with a Design Document that completely
spells out the goals and the functional design details. Neither system design nor
project management will be covered in this book, but when we begin working on
production projects proper attention to both of these areas will be critical to success.
Use of a proven project management methodology can make a project much more
likely to be on time and within budget.

Based on the requirements our analysts have given us, we need to expand our
application design. We started with a Radio Show table, one reference table
(Radio Show Type), and pages for each of them. We earlier entered some test
data and added a few additional fields to the Radio table (which we will not
add to our pages here).

Now we will add a supplemental table, document (header and line) tables, plus a
ledger (activity history) table relating to Playlist activities. Following that, we will
also create some pages for our new data structures.

Our WDTU application will now include the following tables:

• Radio Show: A master list of all programs broadcast by our station.
• Radio Show Type: A reference list of possible types of radio shows.
• Playlist Header: A single instance of a Radio Show with child data in the

form of Playlist Lines.
• Playlist Line: Each line represents one of a list of items and/or durations per

Radio Show.

• Playlist Item Rate: A list of rates for items played during a show as
determined by our advertising sales staff or the royalty organization we use.

Chapter 2

[85]

• Radio Show Ledger: A detailed history of all the time spent and items
played during the show, with any related royalties owed or advertisement
revenue expected.

• Listenership Ledger: A detailed history of estimated listenership provided
by the ratings organization to which we subscribe.

• Publisher: A reference list of the publishers of content that we use. This will
include music distributors, news wires, sports and weather sources, as well
as WDTU (we use material that we publish).

Remember, one purpose of this example system is for you to follow along in a
hands-on basis in your own system. You may want to try different data structures
and other object features. For example, you could add functionality to track
volunteer activity, perhaps even detailing the type of support the volunteers provide.

For the best learning experience, you should be creating each of these objects in your
development system to learn by experimenting. In the course of these exercises, it
will be good if you make some mistakes and see some new error messages. That's
part of the learning experience. A test system is the best place to learn from mistakes,
at the minimum cost.

New tables for our WDTU project
First, we create a Playlist Header table (Table number 50002), which will contain one
record for each scheduled Radio Show:

Tables

[86]

Then we will create the associated Playlist Line table (Table number 50003). This
table will contain the child records for the Playlist Header table. Each Playlist
Line record represents one scheduled piece of music, advertisement, public service
announcement, or embedded show within the scheduled Radio Show, as defined in
the Playlist Header table. The description for each of the Option fields shows the
information that needs to be entered into the OptionString, OptionCaption, and
OptionCaptionML properties for those fields.

Now we'll create our Playlist Item Rate table. These rates include both what we
charge for ad time and what we must pay in royalties for material we broadcast.

Chapter 2

[87]

A Ledger table contains the detailed history of processed activity records. In this
case, the data is a detailed history of all the Playlist Line records for previously
broadcast shows.

Now we'll create one more Ledger table to retain the data we receive from the
listenership rating service.

Tables

[88]

Finally, the last new table definition for now, our Publisher table, is shown in the
next screenshot:

New list pages for our WDTU project
Each of the new tables we have created should be supported with an appropriately
named List Page. As part of our WDTU project work, we should create the
following pages:

• 50003 Playlist Document
• 50005 Playlist Item Rates
• 50006 Radio Show Ledger
• 50007 Listenership Ledger
• 50008 Publishers

Keys, SumIndexFields, and table relations in
our examples
Thus far, we have created basic table definitions and associated pages for the WDTU
project. The next step is to flesh out those definitions with additional keys, SIFT field
definitions, table relations, and so on. The purpose of these are to make our data
easier and faster to access, to take advantage of the special features of NAV to create
data totals and to facilitate relationships between various data elements.

Secondary keys and SumIndexFields
The Playlist Line table default primary key was the one field Playlist No. In order
for the primary key to be unique for each record, another field is needed. For a Line
table, the additional field is the Line No. field which is incremented via the C/AL
code for each record. So we'll change the key for table 50003 accordingly.

Chapter 2

[89]

We know a lot of reporting will be done based on the data in the Radio Show Ledger.
We also know that we want to report on data by Radio Show and by the Type of
entry (individual song, specific ad, and so on). So we will add secondary keys for
each of these, including the Date field so we can rapidly filter the data by Date. The
reporting that is financial in nature will need totals for the Fee Amount field, so we'll
put that in the SumIndexFields column for our new keys.

We know that to do the necessary Listenership analysis, the Listenership Ledger
needs an additional key combined with SumIndexFields for totaling listener
statistics.

To utilize SumIndexFields we have just defined, we will need to define
corresponding FlowFields in other tables. We will leave that part of the development
effort for the next chapter where we are going to discuss Fields, Flowfields, and
FlowFilters in detail.

Tables

[90]

Table relations
For those tables where we defined fields intended to refer to data in other tables
for lookups and validation, we must define the relationships in the referring tables.
Sometimes these relationships are complicated, dependent on other values within
the record.

In Table 50003, Playlist Line, we have the field No. If the Type field contains
Resource, then the No. field should contain a Resource No. If the Type field contains
Show, then the No. field should contain a Show Code. And, if the Type field contains
Item, the No. field should contain an Item No. The pseudo-code (approximate
syntax) for that logic can be written as:

IF Type = 'Resource' THEN No. := Resource.No.
 ELSE IF Type = 'Show' THEN No. := Radio Show.No.
 ELSE IF Type = 'Item' THEN No. := Item.No.

Fortunately, a tool built into the C/SIDE editor makes it easy for us to build that
complex logic in the TableRelation property. When we click on the TableRelation
property, then click on the ellipsis button (three dots), we get a Table Relation
screen we can use to construct the necessary logic structure:

When we exit the Table Relation screen by clicking on the OK button, the
TableRelation line looks like the following image:

Chapter 2

[91]

Table 50004, Playlist Item Rate, has a similar Table Relation requirement for
the field No. in that table. In this case, the No. field will refer to Vendor No. if
Type = Vendor, or to the Customer No. if Type = Customer.

When we exit the Table Relation screen this time (by clicking on the OK button),
the TableRelation line looks like the following image:

If in the process of making these changes (or some future changes), we realize
that we need to change the Data Type of a field and try to do so, we may get the
following error message:

Tables

[92]

The intent of this message is to keep us from unintentionally deleting or corrupting
data through a change in the table definition. After checking that we really aren't
going to make that mistake, perhaps making a backup of the data about to be
affected, we can override the system's error checking and force the change to be done
by choosing the Synchronize Schema. The Force option in the Save Changes screen
as shown following.

Modifying a standard table
One of the big advantages to the NAV system development environment is the
fact that we are allowed to enhance the tables that are part of the standard product.
Many package software products do not provide this flexibility. Nevertheless, with
privilege comes responsibility. When we modify a standard NAV table, we must do
so carefully.

In our system, we are going to use the standard Item table – Table 27, to store data
about recordings such as music, advertisements, and PSAs which we have available
for broadcast. One of the new fields will be an Option field. Another will refer to the
Publisher table we created earlier. When the modifications to the Item table design
are completed, they will look like the following image:

Chapter 2

[93]

Note that we were careful not to touch any of the standard fields that were already
defined in the Item table. Plus, we numbered all our new fields in the range of 50000
to 99999, making them easy to identify as belonging to a Partner modification.

Version list documentation
In Chapter 1, An Introduction to NAV 2015, we mentioned the importance of good
documentation; one component being the assignment of version numbers to
modifications and enhancements. Frequently, modifications are identified with a
combination letter number code, the letters indicating who did the modification
(such as the NAV Partner initials—or, in this case, the book authors' combined
initials) and a sequential number for the specific modification. Our Partner initials
are CD, so all our modifications will have a version number of CDxx. We will use
the Chapter number of this book for the sequential number, such as:

• CD01 – Chapter 01
• CD02 – Chapter 02
• CD01, 02 – Chapters 01 and 02

Tables

[94]

When applied to the table objects we have created so far, our Version List entries
look like the following for the tables (Table 27 Item not shown):

Similar version numbers should be assigned to the pages and reports that have been
created thus far.

When working on a customer's system, a more general purpose versioning structure
should be used in the same general format as the one used by Microsoft for the
product. Such a structure would be in the format CD8.00.01 (CD company, NAV
version 8, minor version 00 (no Service Pack), build 01). The next release of objects
would then be CD8.00.02. In the Documentation trigger, there should be a sequential
list of changes showing each incremental version followed by a list of all the features
implemented for that version. This approach provides a standardized Version list
externally and the full detail of changes internally. Done properly and combined
with good external documentation describing the reasons and intended outcomes
of each modification, the result is a system that is much easier to maintain.

Chapter 2

[95]

Types of tables
For this discussion, we will divide table types into three categories: Fully Modifiable,
Content Modifiable and Read-Only. As developers, we can change the definition and
the contents of the first category (the Fully Modifiable Tables). We cannot change the
definition of the base fields of the second category (the Content Modifiable Tables),
but we can change the contents and add new fields. The third category (the Read-Only
Tables) can be accessed for information, but neither the definition nor the data within
is modifiable.

Fully Modifiable tables
The following tables are included in the fully modifiable tables category which
includes the following table types:

• Master
• Journal
• Template
• Ledger
• Reference
• Register
• Posted document
• Setup
• Temporary

Patterns have been defined for Master and Setup table types. Other table patterns are
likely to be defined over time.

Tables

[96]

Master
The Master table type contains primary data (such as Customers, Vendors, Items,
Employees, and so on). In any enhancement project, these are the tables that should
be designed first because everything else will be based on these tables. When
working on a modification, necessary changes to Master tables should be defined
first. Master tables always use card pages as their primary user input method. The
Customer table is a Master table. A Customer record is shown in the following
screenshot:

The preceding screenshot shows how the card page segregates the data into
categories on different FastTabs (such as General, Communication, and Invoicing)
and includes primary data fields (for example, No., Name, Address), reference
fields (for example, Salesperson Code, Responsibility Center), and a FlowField
(for example, Balance (LCY)).

Chapter 2

[97]

Journal
The Journal table type contains unposted activity detail—data that other systems
refer to as transactions. Journals are where most repetitive data entry occurs in NAV.
In the standard system, all Journal tables are matched with corresponding Template
tables (one Template table for each Journal table). The standard system includes
journals for Sales, Cash Receipts, General Journal entries, Physical Inventory,
Purchases, Fixed Assets, and Warehouse Activity, among others.

The transactions in a Journal can be segregated into batches for entry, edit review,
and processing purposes. Journal tables always use Worksheet pages as their
primary user input method. The next two screenshots show two Journal Entry
screens. They both use the General Journal table, but each has quite a different
appearance, and are based on different pages and different templates.

Tables

[98]

Comparing the preceding two screenshots, the differences include not only which
fields are visible, but also what logic applies to data entry defaults and validations.

Template
The Template table type operates behind the scenes, providing control information
for a Journal, which operates in the foreground. By using a Template, multiple
instances of a Journal can each be tailored for different purposes. Control
information contained in a Template includes the following:

• The default type of accounts to be updated (for example, Customer, Vendor,
Bank, General Ledger)

• The specific account numbers to be used as defaults, including balancing
accounts

• The transaction numbering series that will be used
• The default encoding to be applied to transactions for the Journal (for

example, Source Code, Reason Code)
• Specific Pages and Reports to be used for data entry and processing of both

edits and posting runs

For example, General Journal Templates allow the General Journal table to be
tailored in order to display fields and perform validations that are specific to
the entry of particular transaction categories such as Cash Receipts, Payments,
Purchases, Sales, and other transaction entry types. Template tables always use
tabular pages for user input. The following screenshot shows a list of the various
General Journal Templates defined in the Cronus International Ltd. demonstration
database:

Chapter 2

[99]

In addition to the Templates, there are Batch tables which allow us to set up any
number of batches of data under each journal template. The Batch, Template, Journal
Line structure provides a great deal of flexibility in data organization and definition
of required fields while utilizing a common underlying table definition (the General
Journal).

Ledger
The Ledger table type contains posted activity detail: the data other systems call
history. NAV data flows from a Journal through a Posting routine into a Ledger. A
significant advantage of NAV Ledger design is the fact that it allows retention of all
detail indefinitely. While there are routines supporting compression of the Ledger
data, if at all feasible we should retain the full historical detail of all activity. This
allows users to have total flexibility for historical comparative or trend data analysis.

Ledger data is considered accounting data in NAV. We are not allowed to directly
enter the data into a Ledger or change the existing data in a Ledger, but must "Post" to
a Ledger. Posting is done by creating Journal Lines, validating the data as necessary,
then posting those journal lines into the appropriate ledgers. Although we can
physically force data into a Ledger with our Developer tools, we should not do so.

Because Ledger data is accounting data, we are not permitted to delete data from
a Ledger table. Corrections are done by posting adjustments or reversing entries.
We can compress or summarize Ledger data (very carefully), eliminating detail, but
we should not change anything that would affect accounting totals for money or
quantities.

Tables

[100]

User views of Ledger data are generally through use of List pages. The following
screenshots show a Customer Ledger Entries list (financially oriented data) and an
Item Ledger Entries list (quantity-oriented data). In each case, the data represents
historical activity detail with accounting significance. There are other data fields
in addition to those shown in the following screenshots. The fields shown here are
representative. The users can utilize page-customization tools (which we will discuss
in Chapter 4, Pages - the Interactive Interface) in order to create personalized page
displays in a wide variety of ways. First, the Customer Ledger Entries list:

Second, the Item Ledger Entries list:

Chapter 2

[101]

The Customer Ledger Entries page displays critical information such as Posting
Date (the effective accounting date), Document Type (the type of transaction),
Customer No., and the Original and Remaining Amount of the transaction. The
record also contains Entry No., which uniquely identifies each record. The Open
entries are those where the transaction amount has not been fully applied, such as an
Invoice amount not fully paid or a Payment amount not fully consumed by Invoices.

The Item Ledger Entries page displays similar information pertinent to inventory
transactions. As previously described, Posting Date, Entry Type, and Item No., as
well as the assigned Location for the Item, control the meaning of each transaction.
Item Ledger Entries are expressed both in Quantity and Amount (Value). Open
entries here are tied to Remaining Quantity, such as material that has been received
but is still available in stock. In other words, the Open entries represent current
inventory. Both the Customer Ledger Entry and Item Ledger Entry tables have
underlying tables that provide additional details for entries affecting values.

Reference tables
The Reference (also called Supplemental) table type contains lists of codes,
descriptions, or other validation data. Reference table examples are postal zone codes,
country codes, currency codes, currency exchange rates, and so on. Reference tables are
often accessed by means of one of the Setup menu options because they must be set
up prior to being used for reference purposes by other tables. In our WDTU example,
tables 50001 Radio Show Type and 50007 Publisher are Reference tables.

The following screenshots show some sample Reference tables for Locations,
Countries, and Payment Terms. Each table contains data elements that are
appropriate for its use as a Reference table, plus, in some cases, fields that control the
effect of referencing a particular entry. These data elements are usually entered as
part of a setup process and then updated over time as appropriate.

Tables

[102]

Location List in the preceding screenshot is a simple validation list of the Locations
for this implementation. Usually, they represent physical sites, but depending on the
implementation, they can also be used simply to segregate types of inventory. For
example, locations could be Refrigerated versus Unrefrigerated, or there could be
locations for Awaiting Inspection, Passed Inspection, and Failed Inspection.

The Countries/Regions list in the preceding screenshot is used as validation data,
defining the acceptable country codes. It also provides control information for the
mailing Address Format (general organization address) and the Contact Address
Format (for an individual contact's address).

The Payment Terms table shown in the following screenshot provides a list of
payment terms codes along with a set of parameters that allows the system to calculate
specific terms. In this set of data, for example, the 1M (8D) code will yield payment
terms of due in 1 month with a discount of 2% applied for payments processed within
8 days of the invoice date. In another instance, 14D payment terms will calculate the
payment as due in 14 days from the date of invoice with no discount available.

Chapter 2

[103]

Register
The Register table type contains a record of the range of transaction ID numbers
for each batch of posted Ledger entries. Register data provides an audit trail of
the physical timing and sequence of postings. This, combined with the full detail
retained in the Ledger, makes NAV a very auditable system because we can see
exactly what activity was done and when it was done.

Tables

[104]

The user views Register through a tabular page, as shown in the previous
screenshot. We see that each Register entry has Creation Date, Source Code, Journal
Batch Name, and the identifying Entry No. range for all the entries in that batch.
Another NAV feature, the Navigate function, which we will discuss in detail in
Chapter 4, Pages - the Interactive Interface, also provides a very useful auditing tool.
The Navigate function allows the user (who may be a developer doing testing) to
highlight a single Ledger entry and find all the other Ledger entries and related
records that resulted from the posting that created that highlighted entry.

Posted Document
The Posted Document type contains the posted copies of the original documents for
a variety of data types such as Sales Invoices, Purchase Invoices, Sales Shipments,
and Purchase Receipts. Posted documents are designed to provide an easy reference
to the historical data in a format similar to what would have stored in paper files. A
Posted Document looks very similar to the original source document. For example,
a Posted Sales Invoice will look very similar to the original Sales Order or Sales
Invoice. The Posted Documents are included in the Navigate function.

The following screenshots show a Sales Order before Posting and the resulting
Posted Sales Invoice document. Both documents are in a header/detail format,
where the information in the header applies to the whole order and the information
in the detail is specific to the individual Order Line. As part of the Sales Order page,
there is information displayed to the right of the actual order. This is designed to
make the user's life easier by providing related information without requiring a
separate lookup action.

Chapter 2

[105]

First, we see the Sales Order document ready to be Posted:

Tables

[106]

The following screenshot is that of the partial shipment Sales Invoice document after
the Invoice has been posted for the shipped goods:

Setup
The Setup table type contains system or functional application control information.
There is one Setup table per functional application area, for example, one for Sales
and Receivables, one for Purchases and Payables, one for General Ledger, one for
Inventory, and so on. Setup tables contain only a single record. Since a Setup table
has only one record, it can have a primary key field which has no value assigned
(this is how all the standard NAV Setup tables are designed). The Singleton (Setup)
table Design Pattern can be found at:

https://community.dynamics.com/nav/w/designpatterns/151.singleton-
table.

Chapter 2

[107]

The Inventory Setup page is shown in the following screenshot:

Temporary
The Temporary table is used within objects to hold temporary data. A Temporary
table does not exist outside the instance of the object where it is defined using a
permanent table as the source of the table definition. The Temporary table has
exactly the same data structure as the permanent table after which it is modeled.

Temporary tables are created empty when the parent object execution initiates, and
they disappear along with their data when the parent object execution terminates
(that is, when the Temporary table variable goes out of scope).

Tables

[108]

Temporary tables are not generally accessible to users except on a display only
basis. They can directly be the target of Reports, Pages, and XML ports. In general,
Temporary tables are intended to be work areas and as such, are containers of data.
The definition of a Temporary table can only be changed by changing the definition
of the permanent table on which it has been modeled. A YouTube video was created
about Temporary Dataset usage in NAV 2013 R2. It is still applicable. It is located at
https://www.youtube.com/watch?v=QHn5oEOJv0Q.

There is a Temporary table technique used by advanced developers
to define a new temporary table format without consuming a (paid
for) licensed table slot. Define the new table in an unlicensed number
range. If the current production license allows for tables 50000 through
50099, assign the new layout to 50500 (for example). That layout can
then be used to define a temporary table in an object. The layout cannot
be used to actually store data in the database, but only to provide a
convenient data format design for some special intermediate process.

Content modifiable tables
There is only one table type included in the Content Modifiable Table category.

System
The System table type contains user-maintainable information that pertains to the
management or administration of the NAV application system. System tables are
created by NAV; we cannot create System tables. However, with full developer
license rights, we can modify System tables to extend their usage. With full system
permissions, we can also change the data in System tables.

An example is the User table, which contains user login information. This
particular System table is often modified to define special user access routing or
processing limitations. Other System tables contain data on report-to-printer routing
assignments, transaction numbers to be assigned, batch job scheduling, and so on.
The following are examples of System tables for which definition and content can be
modified. The first three relate to system security functions.

• User: The table of identified users and their security information
• Permission Set: The table containing a list of all the permission sets in the

database
• Permission: The table defining what individual Permission Sets are allowed

to do, based on object permission assignments

Chapter 2

[109]

• Access Control: The table of the Security roles that are assigned to each
Windows Login

The following tables are used to track a variety of system data or control structures:

• Company: The companies in this database. Most of the NAV data is
automatically segregated by Company.

• Chart: This defines all the chart parts that have been set up for use in
constructing pages.

• Web Service: This lists the pages, queries, and code units that have been
published as web services.

• Profile: This contains a list of all the active profiles and their associated Role
Center pages. A profile is a collection of NAV users who are assigned to the
same Role Center.

• User Personalization: In spite of its name, this table does not contain
information about user personalization that has occurred. Instead, this table
contains the link between the user ID and the Profile ID, the language, the
company, and the debugger controls. (A personalization is a change in the
layout of a page by a user, such as adding or removing fields, page parts,
restructuring menus, resizing columns, and so on. This information is in the
User Metadata table.)

The following tables contain information about various system internals. Their
explanation is outside the scope of this book.

• Send-to Program
• Style Sheet
• User Default Style Sheet
• Record Link
• Object Tracking
• Object Metadata
• Profile Metadata
• User Metadata

Read-only tables
There is only one table type included in the Read-only table category.

Tables

[110]

Virtual
The Virtual table type is computed at runtime by the system. A Virtual table contains
data and is accessed like other tables, but we cannot modify either the definition
or the contents of a Virtual table. We can think of the Virtual tables as system data
presented in the form of a table so it is readily available to C/AL code. Some of these
tables (such as the Database File, File, and Drive tables) provide access to information
about the computing environment. Other Virtual tables (such as the Table Information,
Field, and Session tables) provide information about the internal structure and
operating activities of our database. A good way to learn more about any of these
tables is to create a list or card page bound to the table of interest. Include all the
fields in the page layout, Save the page and Run it. We can then view the field
definition and data contents of the target virtual table.

Some virtual tables (such as Date and Integer) provide tools that can be used in our
application routines. The Date table provides a list of calendar periods (such as days,
weeks, months, quarters, and years) to make it much easier to manage various types
of accounting and managerial data handling. The Integer table provides a list of
integers from -1,000,000,000 to 1,000,000,000. As we explore standard NAV reports,
we will frequently see the Integer table being used to supply a sequential count in
order to facilitate a reporting sequence (often in a limited numeric range such as 1 or
1 to 10).

We cannot see these tables presented in the List of Table objects, but can only access
them as targets for Pages, Reports, or Variables in C/AL code. Knowledge of the
existence, contents, and usage of these Virtual tables is not useful to an end user.
However, as developers, we will regularly use some of the Virtual tables. There is
educational value in studying the structure and contents of these tables, as well as
having the ability to create valuable tools with knowledge of and by accessing of one
or more Virtual tables.

Chapter 2

[111]

The following screenshot shows a list of most of the Virtual and System tables:

Summary
In this chapter, we have focused on the foundation level of NAV data structure:
tables and their internal structure. We have worked our way through the hands-on
creation of a number of tables and their data definitions in support of our WDTU
application. We have briefly discussed Field Groups and how they are used.

We have identified the essential table structure elements including Properties, Object
Numbers, Triggers, Keys, and SumIndexFields. Finally, we have reviewed several
categories of tables found in NAV 2015.

Tables

[112]

In the next chapter, we will dig deeper into the NAV data structure to understand how
fields and their attributes are assembled to make up tables. We will also focus on what
can be done with Triggers. Then we will explore how other object types use tables,
working towards developing a full featured NAV development toolkit.

Review questions
Q.1. Which of the following is a correct description of a table in NAV 2015?
Choose two.

a. A NAV table is the definition of data structure
b. A NAV table includes a built-in data entry page
c. A NAV table can contain C/AL code, but that should be avoided
d. A NAV table should implement many of the business rules of a

system

Q.2. All primary keys should contain only one data field. True or False?

Q.3. With which property is it possible to link a NAV table to a table outside of the
NAV database? Choose one.

a. DatabaseLink
b. ObjectPointer
c. LinkedObject
d. C# Codelet

Q.4. System Tables cannot be modified. True or False?

Q.5. Which of the following are Table triggers? Choose two.

a. OnInsert
b. OnChange
c. OnNewKey
d. OnRename

Q.6. Keys can be enabled or disabled in executable code. True or False?

Q.7. Because Setup Tables only contain one record, they do not need to have a
Primary Key. True or False?

Chapter 2

[113]

Q.8. Table numbers intended to be used for customized table objects should only
range between 5000 and 9999. True or False?

Q.9. Which of the following tables can be modified by Partner developers?
Choose three.

a. Customer
b. Date
c. User
d. Item Ledger Entry

Q.10. The DropDown display on a field lookup in the RTC can be changed by
modifying the table's Field Groups. True or False?

Q.11. Temporary table data can be saved in a special database storage area.
True or False?

Q.12. Which of the following Virtual Tables are commonly used in NAV
development projects? Choose two.

a. Date
b. GPS Location
c. Integer
d. Object Metadata

Q.13. SumIndexFields can be used to calculate totals. True or False?

Q.14. Table Permissions (for access to another table's data) include which of the
following permissions. Choose three.

a. read
b. sort
c. delete
d. modify

Q.15. The TableRelation property allows a field in one table to reference data in
another table. True or False?

Q.16. Tables can be created or deleted dynamically. True or False?

Tables

[114]

Q.17. Only Tables have Triggers, and only Fields have Properties. True or False?

Q.18. Ledger data in NAV can be freely updated through either posting routines or
direct data entry. True or False?

Q.19. SQL Server for NAV supports SIFT by which mechanism? Choose one.

a. SQL SIFT indexes
b. SQL Dynamic Indexes
c. SQL Indexed Views
d. SIFT not supported in SQL

Q.20. Reference Tables and Virtual Tables are simply two different names for the
same type of table. True or False?

[115]

Data Types and Fields
It's the little things that make the big things possible. Only close attention to the
fine details of any operation makes the operation first class.

 - J. Willard Marriott

Always design a thing by considering it in its next larger context - a chair in a
room, a room in a house, a house in an environment, an environment in a city plan.

 - Eliel Saarinen

The design of an application should begin at the simplest level, with the design of
the data elements. The type of data your development tool supports has a significant
effect on our design. Since NAV is designed for financially oriented business
applications, NAV data types are financial and business oriented.

In this chapter, we will cover many of the data types that we use within NAV. For
each data type, we will cover some of the more frequently modified field properties
and how particular properties, such as FieldClass, are used to support application
functionality. FieldClass is a fundamental property that defines whether the contents
of the field are data to be processed or control information to be interpreted. In
particular, we will cover the following topics:

• Basic definitions
• Fields
• Data types
• FieldClass properties
• Filtering

Data Types and Fields

[116]

Basic definitions
First, let's review some basic NAV terminology:

• Data type: This defines the kind of data that can be held in a field, whether
it is a numeric (such as an integer or a decimal), text, table RecordID, time,
date, Boolean, and so forth. The data type defines what constraints can be
placed on the contents of a field, determines the functions in which the data
element can be used (not all data types are supported by all functions), and
defines what the results of certain functions will be.

• Fundamental data type: This is a simple, single-component structure that
consists of a single value at any point in time, for example, a number, a
string, or a Boolean value.

• Complex data type: This is a structure made up of or relating to simple data
types, for example, records, program objects such as Pages or Reports, Binary
Large OBjects (BLOBs), DateFormulas, external files, and indirect reference
variables.

• Data Element: This is an instance of a data type that may be a Constant
or a Variable.

• Constant: This is a data element that is explicitly defined in the code by
a literal value. Constants are not modifiable during execution, only by a
developer using C/SIDE. All the simple data types can be represented by
constants. Examples are "MAIN" (Code or Text), 12.34 (Decimal), and "+01-
312-444-5555" (Text).

• Variable: This is a data element that can have a value assigned to it
dynamically during execution. Except for special cases, a variable will
be a single, unchanging, and specific data type.

Fields
A field is the basic element of data definition in NAV—the atom in the structure of
a system. The elemental definition of a field consists of its number, its description
(name), its data type, and, of course, any properties required for its particular data
type. A field is defined by the values of its properties and the C/AL code contained
in its triggers.

Chapter 3

[117]

Field properties
The specific properties that can be defined for a field depend on the data type.
There are a minimum set of universal properties. We will review these first. Then,
we will review the rest of the more frequently used properties, some that are data
dependent and some that are not. You can check out the remaining properties by
using Developer and IT Pro Help within the Table Designer.

We can access the properties of a field while viewing the table in Design mode by
highlighting the field and then clicking on the Properties icon, or by clicking on
Properties under View, or by pressing Shift + F4. All of the property screenshots in
this section were obtained this way for fields within the standard Customer table.
As we review various field properties, you will learn more if you follow along in
your NAV system using the Object Designer. Explore different properties and the
values they can have. Make good use of NAV 2015's Help functions liberally for
additional information and examples.

The property value that is enclosed within < > (less than and greater than brackets)
is the default value for that property. When we set a property to any other value, < >
should not be present unless they are supposed to be part of the property value (for
example, as part of a text string value). When a property has been changed from its
default value, the NAV 2015 C/AL Editor displays the new property value in bold.

All of the fields, of any data type, have the following properties:

• Field No.: The identifier for the field within the containing table object.
• Name: This is the label by which the C/AL code references the field. A name

can consist of up to 30 characters, including special characters. The name can
be changed by a developer at any time and NAV will automatically ripple
that change throughout the system. If no caption value has been defined, the
name is used as the default caption when data from this field is displayed.
Changing names that are used as literals in C/AL code can cause problems
with some functions, such as web services and GETFILTERS, in which the
reference is based on the field name rather than the field number.

• Caption: This contains the defined caption for the currently selected
language. It will always be one of the defined multilanguage captions.
The default language for a NAV installation is determined by the
combination of a set of built-in rules and the languages available
in the installation.

Data Types and Fields

[118]

• CaptionML: This defines the multilanguage caption for the table. It also
identifies the language in use; for example, ENU for US English (as shown
in the following screenshot).

• Description: This is an optional use property for our internal documentation.
• Data Type: This defines what type of data format applies to this field

(for example, Integer, Date, Code, Text, Decimal, Option, or Boolean).
• Enabled: This determines whether or not the field is activated for user

generated events. The property defaults to <Yes> and is rarely changed.
• AccessByPermission: This determines the permission mask required for a

user to access this field in pages or in the user interface.

The following screenshot shows the properties for the Picture field of the Data
Type BLOB in the Company Information table (this field is often used to store a
company's logo image):

The set of properties shown for a BLOB data type field is the simplest set of field
properties. After the properties that are shared by all of the data types, appear the
BLOB-specific properties scan be seen; these are SubType, Owner, and Compressed.

• SubType: This defines the type of data stored in the BLOB and sets a filter
in the import/export function for the field. The three SubType choices are
Bitmap (for bitmap graphics), Memo (for text data), and User-Defined
(for anything else). User-Defined is the default value.

Chapter 3

[119]

• Owner: This defines the NAV Server user who owns the object in the
BLOB field.

• Compressed: This defines whether the data stored in the BLOB is stored in
a compressed format. If we want to access BLOB data with an external tool
(from outside of NAV), this property must be set to No.

The properties of Code and Text data type fields are quite similar to one another.
This is logical, since both represent types of textual data. The following images are
from the Customer table:

Data Types and Fields

[120]

The following are some properties common to both the Code and Text data types:

• DataLength: This specifies the maximum number of characters the field can
contain. This is 250 characters in a table, if no maximum limit is specified
for a Text field, there is no length limitation for a variable stored only in
memory (working storage). Code fields in memory cannot exceed 1024
characters in length.

• InitValue: This is the value that the system will supply as a default when a
field is initialized.

• AltSearchField: This has been replaced by Field Groups (described in Chapter
2, Tables) in the Role Tailored Client; it was a feature implemented in the old
Classic Client. Presumably, it was left in place for backward compatibility.

• Caption Class: This can be set up by the developer to allow users to
dynamically change the caption for a text box or a check box. Caption Class
defaults to empty. For more information on this, refer to Developer and IT
Pro Help. Used in base NAV in the Dimensions fields.

• Editable: This is set to No when we don't want to allow a field to be edited;
for example, if it is a computed or assigned value field that the user should
not change. Editable defaults to Yes.

• NotBlank, Numeric, CharAllowed, DateFormula, and ValuesAllowed: Each
of these allows us to place constraints on the data that can be entered into the
field by a user. They do not affect data updates driven by the application's
C/AL code.

• SQL Data Type: This applies to the Code fields only. SQL Data Type allows
you to define what data type will be allowed in a particular Code field and
how it will be mapped to a SQL Server data type. This controls the sorting
and display. Options are Varchar, Integer, BigInteger, and Variant.
Varchar is the default and causes all of the data to be treated as a text.
Integer and BigInteger allow only numeric data to be entered. A Variant
can contain any data type from a wide range of NAV data types. In general,
once set, this property should not be changed. These settings should not
affect any data handling that is done in SQL Server external to NAV,
but the conservative approach is not to make changes here.

• TableRelation: This is used to specify a relationship to the data in the
specified target table. The target table field must be in the primary key.
The relationship can be conditional and/or filtered; it can be used for
validation, lookups, and data-change propagation.

Chapter 3

[121]

• ValidateTableRelation: If a TableRelation is specified, set this to Yes
in order to validate the relation when data is entered or changed. (In
other words, confirm that the entered data exists in the target table.) If a
TableRelation is defined, and this property is set to No, the automatic table
referential integrity will not be maintained. Note that application code can be
written that will bypass this validation.

• TestTableRelation: This is a property that has been left over from earlier
versions and no longer has any use or value.

• ExtendedDataType: This property allows the optional designation of
an extended data type that automatically receives special formatting
and validation. Type options include an e-mail address, a URL, a phone
number, a report filter, a progress bar ratio, or a masked entry (as dots).
An Action Icons may also be displayed, when three fields are defined with
ExtendedDataType, as shown in the following screenshot:

Let's take a look at the properties of two more data types, Decimal and Integer,
especially the properties related to numeric content:

• DecimalPlaces: This sets the minimum and maximum number of decimal
places (min:max) for storage and display in a Decimal data item. The default
is 2 (2:2), the minimum is 0, and the maximum is 255.

• BlankNumbers, BlankZero, and SignDisplacement: This can be
used to control the formatting and display of the data field on a page.
BlankNumbers and BlankZero all fields of the chosen values to be displayed
as blank. SignDisplacement allows data positioning to be shifted for
negative values.

• MinValue and MaxValue: When set, these constrain the range of data values
allowed for user entry. The available range depends on the field data type.

Data Types and Fields

[122]

• AutoIncrement: This allows you to define one Integer field in a table to
automatically increment for each entered record. When used, which is not
often, it almost always supports the automatic updating of the filled that
is used as the last field in a primary key, enabling the creation of a unique
key. The use of this feature does not ensure a contiguous number sequence.
Under some circumstances, the use of this feature can lead to table locking
conflicts. When the property is set to Yes, the automatic functionality should
not be overridden in code.

Chapter 3

[123]

The properties for an Option data type are similar to those of other numeric data
types. This is reasonable because an Option is stored as an integer, but there are also
properties that are specific to Option:

• OptionString: This details the text interpretations for each of the stored
integer values that are contained in an Option field.

• OptionCaption and OptionCaptionML: These serve the same captioning
and multilanguage purposes as caption properties do for other data types.

Internally, options are stored as integers, which are tied to each option's position
in the OptionString starting with position 0, 1, 2, and so on. The OptionString and
OptionCaption properties are shown in the following screenshot:

Data Types and Fields

[124]

Field triggers
To see field triggers, let us look at our Table 50000 - Radio Show. Open the table
in the Design mode, highlight the No. field, press F9, and you will see the
following screenshot:

Each field has two triggers, the OnValidate() trigger and the OnLookup() trigger,
which function as follows:

• OnValidate(): The C/AL code in this trigger is executed whenever
an entry is made by the user. Its intended use is to validate that the entry
conforms to the design parameters for the field. It can also be executed under
program control through the use of the VALIDATE function (which we will
discuss later).

• OnLookup(): OnLookup behavior can be triggered by pressing F4 or Shift +
F4 from an ellipsis button or by clicking on the lookup arrow in a field, as
shown in the following screenshot:

• If the field's TableRelation property refers to a table, then the default
behavior is to display a drop-down list to allow the selection of a table entry
to store it in this field. The list will be based on the Field Groups defined
for the table. We may choose to override that behavior by coding different
behavior for a special case. We must be careful because any entry whatsoever
in the body of an OnLookup() trigger, even a comment line, will eliminate the
default behavior of this trigger.

Chapter 3

[125]

Data structure examples
Some good examples of tables in the standard product to review for particular
features are as follows:

• Table 18 – Customer, for a variety of data types and Field Classes. This table
contains some fairly complex examples of C/AL code in the Triggers table. A
wide variety of field property variations can be seen in this table as well.

• Table 14 – Location and Table 91 – User Setup both have good examples
of OnValidate trigger C/AL code, as do all of the primary master tables
(Customer, Vendor, Item, Job, and so on.)

Field numbering
The number of each field within its parent table object is the unique identifier that
NAV uses internally to identify that field. We can easily change a field number
when we initially define a table layout. However, after other objects such as pages,
reports, or code units reference the fields in a table, it becomes difficult to change
the numbers of referenced fields. Deleting a field and reusing its field number for a
different purpose is not a good idea and can easily lead to programming confusion.

We cannot easily safely change the definition, renumber, or delete a
field that has data present in the database. The same can be said for
reducing the defined size of a field to less than the largest size of data
that is already present in that field. However, if we force the change,
the force function will override the system's built-in safeguards. This
action can truncate or delete data.

When we add new fields to standard NAV product tables (those shipped with the
product), the new field numbers must be in the 50,000 to 99,999 number range,
unless we have been explicitly licensed for another number range. Field numbers for
fields in new tables that we create can be anything from 1 to 999,999,999 (in all cases
without the commas).

When a field representing the same data element appears in related tables (for
example, Table 37 – Sales Line and Table 113 – Sales Invoice Line), the same field
number should be assigned to that data element for each of the tables. Not only is
this consistent approach easier for reference and maintenance, but it also supports
the TRANSFERFIELDS function. TRANSFERFIELDS allows you to copy data from one
table's record instance to another table's record instance by doing record-to-record
mapping based on the field numbers.

Data Types and Fields

[126]

If we plan ahead and number the fields logically and consistently from the beginning
of our design work and provide an entry in the Description column for each field,
we will create code that's easier to maintain. It's a good idea to leave frequent gaps in
field number sequences within a table. This allows easier insertion of new fields that
are numerically adjacent to related, previously defined fields. In turn, this makes it
easier for the following developer to understand the modification's data structure.

For additional information, please see Object Numbering Conventions in the Developer
and IT Pro Help in the Development Environment.

Field and Variable naming
In general, the rules for naming fields (data elements in a table) and variables (data
elements within the working storage of an object) are the same, and we will discuss
them on that basis. The Developer and IT Pro Help section's Naming Conventions
describes many recommended best practices for naming within NAV. A lot of
additional information can also be found in the recently released C/AL Coding
Guidelines at https://community.dynamics.com/nav/w/designpatterns/156.
cal-coding-guidelines, which includes a How do I video.

Variables in NAV can either be global (with a scope across the breadth of an object)
or local (with a scope only within a single function). Variable names should be
unique within the sphere of their scope. There must not be any duplication between
global and local names. Even though the same local name can be used in more than
one function within the same object, doing so is not a good idea and will almost
certainly confuse the next developer that follows. Therefore, we should make our
working variable names unique within the object.

Uniqueness includes not duplicating reserved words or system variables. Refer
to the C/AL Reserved Words list in the Developer and IT Pro Help. Avoid using
as a variable name, any word that appears as an UPPER CASE word in either the
Developer and IT Pro Help or any of the published NAV technical documentation.
For example, we shouldn't use the words Page or Image as variable names.

Variable names in NAV are not case sensitive. There is now a 128-character limit on
variable names (but still a 30-character limit on field names in tables). Variable names
can contain all ASCII characters except for control characters (which can contain
ASCII values from 0 to 31 and 255) and the double quotes (ASCII value 34) as well as
some Unicode characters that are used in languages other than English. Characters
outside the standard ASCII set (0-127) may display differently on different systems.

Chapter 3

[127]

Note that the compiler won't tell us that an asterisk (*, ASCII value 42)
or question mark (?, ASCII value 63) cannot be used in a variable name.
However, since both the asterisk and the question mark can be used as
wildcards in many expressions, especially filtering, neither one should
be used in a variable name.

The first character of a variable name must be a letter between A and Z (upper
or lower case) or an underscore (_, ASCII value 95) unless the variable name is
enclosed in double quotes when it is referenced in code (and such names should
be avoided). Alphabets other than the 26-character English alphabet may interpret
the ASCII values to characters other than A to Z and may include more than 26
characters. A variable name's first character can be followed by any combination
of the legal characters.

If we use any characters other than the A-Z alphabets, numerals, and underscore,
we must surround our variable name with double quotes each time we use it in
the C/AL code (for example, Cust List, which contains an embedded space, or No.,
which contains a period).

When we create a variable with a complex data type such as Record, Report,
Codeunit, Page, XMLport, Query, or Testpage, and do not supply a name; the
variable name will be automatically generated according to C/AL Coding
Guidelines by the Development Environment.

See Naming Conventions in the Developer and IT Pro Help for additional guidance
to name C/AL variables.

Data types
We are going to segregate the data types into several groups. We will first look at
Fundamental data types and then at Complex data types.

Fundamental data types
Fundamental data types are the basic components from which the complex data
types are formed. They are grouped into Numeric, String, and Date/Time data types.

Data Types and Fields

[128]

Numeric data
Just like other systems, NAV supports several numeric data types. The specifications
for each NAV data type are defined for NAV, independent of the supporting SQL
Server database rules. However, some data types are stored and handled somewhat
differently from a SQL Server point of view than the way they appear to us as NAV
developers and users. For more details on the SQL Server-specific representations of
various data elements, refer to the Developer and IT Pro Help. Our discussion will
focus on NAV representation and handling for each data type.

The various numeric data types are as follows:

• Integer: This is an integer number ranging from -2,147,483,646 to
+2,147,483,647

• Decimal: This is a decimal number in the range of +/- 999,999,999,999,999.99.
Although it is possible to construct larger numbers, errors such as overflow,
truncation, or loss of precision might occur. In addition, there is no facility
to display or edit larger numbers.

• Option: This is a special instance of an integer, stored as an integer number
ranging from 0 to +2,147,483,647. An option is normally represented in the
body of our C/AL code as an option string. We can compare an option to
an integer in C/AL, rather than using the option string. However, this is
not a good practice because it eliminates the self-documenting aspect of an
option field.
An option string is a set of choices listed in a comma-separated string, one of
which is chosen and stored as the current option. Since the maximum length
of this string is 250 characters, the practical maximum number of choices
for a single option is less than 125 characters. The currently selected choice
within the set of options is stored in the option field as the ordinal position
of that option within the set. For example, selection of an entry from the
option string of red, yellow, and blue would result in the storing of 0 (red), 1
(yellow), and 2 (blue). If red were selected, 0 would be stored in the variable
and if blue were selected, 2 would be stored. Quite often, an option string
starts with a blank to allow an effective choice of "none chosen". An example
of this (blank, Hourly, Daily,…) is as follows:

• Boolean: A Boolean variable is stored as 1 or 0. In a C/AL code, it is
programmatically referred to as True or False, but sometimes, it is referred
in properties as Yes or No. Boolean variables may be displayed as Yes or No
(language dependent), P or blank, or True or False.

Chapter 3

[129]

• BigInteger: 8-byte Integer, as opposed to the 4 bytes of Integer.
BigIntegers are for very big numbers (from -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807).

• Char: This is a numeric code between 0 and 65535 (hexadecimal FFFF) that
represents a single 16-bit Unicode character. Char variables can operate
either as text or numbers. Numeric operations can be done on Char variables.
Char variables can also be defined with individual text character values.
Char variables cannot be defined as permanent variables in a table; they can
only be defined as working storage variables within C/AL objects.

• Byte: This is a single 8-bit ASCII character with a value ranging from
0 to 255. Byte variables can operate either as text or numbers. Numeric
operations can be done on Byte variables. Byte variables can also be defined
with individual text character values. Byte variables cannot be defined as
permanent variables in a table, but only as working storage variables within
C/AL objects.

• Action: This is a variable returned from a PAGE RUNMODAL function or
RUNMODAL (Page) function that specifies what action a user performs on
a page. The possible values are OK, Cancel, LookupOK, LookupCancel, Yes,
No, RunObject, and RunSystem.

• ExecutionMode: This specifies the mode in which a session runs.
The possible values are Debug or Standard.

String data
The following are the data types included in String data:

• Text: This contains any string of alphanumeric characters. In a table, a Text
field can be from 1 to 250 characters long. In working storage within an
object, a Text variable can be any length if no length is defined. If a maximum
length is defined, it must not exceed 1024. NAV 2015 does not require a
length to be specified, but if we define a maximum length, it will be enforced.
When calculating the 'length' of a record for design purposes (relative to the
maximum record length of 8,000 bytes), the full defined field length should
be counted.

• Code: Although the Help says that the length constraints for Code variables
are the same as those for text variables, the C/AL Editor enforces length
limits of 1 to 250 characters. All of the letters are automatically converted to
uppercase when data is entered into a Code variable; any leading or trailing
spaces are removed.

Data Types and Fields

[130]

Date/Time data
The following are the data types included in Date/Time data:

• Date: This contains an integer number, which is interpreted as a date ranging
from January 1, 1754 to December 31, 9999. A 0D (numeral zero, letter D)
represents an undefined date (stored as a SQL Server DateTime field) that is
interpreted as January 1, 1753. According to the Developer and IT Pro Help
that, NAV 2015 supports a Date of 1/1/0000 (presumably as a special case
for backward compatibility, but it is not supported by SQL Server).
A date constant can be written as the letter D preceded by either six digits
in the format MMDDYY or eight digits as MMDDYYYY (where M = month,
D = day, and Y = year). For example, 011915D or 01192015D both represent
January 19, 2015. Later, in DateFormula, we will find D interpreted as day,
but here the trailing D is interpreted as the date (data type) constant. When
the year is expressed as YY rather than YYYY, the century portion (in this
case, 20) is 20 if the two digit year is from 00 to 29, or 19 if the year is from
30 through 99.

NAV also defines a special date called the Closing date, which represents
the point in time between one day and the next. The purpose of a closing
date is to provide a point at the end of a day, after all of the real date- and
time-sensitive activity is recorded—the point when accounting closing entries
can be recorded.

Closing entries are recorded, in effect, at the stroke of midnight between two
dates—this is the date of closing accounting books, and it is designed so that
one can include or exclude, at the user's option, closing entries in various
reports. When sorted by date, the closing date entries will get sorted after all
normal entries for a day. For example, the normal date entry for December
31, 2015 would display as 12/31/15 (depending on the date format masking),
and the closing date entry would display as C12/31/15. All of the C12/31/15
ledger entries would appear after all normal 12/31/15 ledger entries. The
following screenshot shows two 2014 closing date entries mixed with normal
entries from December 2015 and January through April 2015. (This data is
from the Cronus demo. The 2014 Closing entries have an "Opening Entry"
description, which shows that these were the first entries for the demo data
in the respective accounts. This is not a normal set of production data.)

Chapter 3

[131]

• Time: This contains an integer number, which is interpreted on a 24-hour
clock, in milliseconds plus 1, from 00:00:00 to 23:59:59:999. A 0T (numeral
zero, letter T) represents an undefined time and is stored as 1/1/1753
00:00:00.000.

• DateTime: This represents a combined Date and Time, stored in Coordinated
Universal Time (UTC), and it always displays local time (that is, the local
time on our system). DateTime fields do not support NAV Closing dates.
DateTime is helpful for an application that must support multiple time zones
simultaneously. DateTime values can range from January 1, 1754 00:00:00.000
to December 31, 9999 23:59:59.999, but dates earlier than January 1, 1754
cannot be entered (don't test with dates late in 9999 as an intended advance
to the year 10000 won't work). Assigning a date of 0DT will yield
an undefined or blank DateTime.

• Duration: This represents the positive or negative difference between two
DateTime values, in milliseconds, stored as a BigInteger. Durations are
automatically output in the text format as DDD days HH hours MM
minutes SS seconds.

Complex data types
Each complex data type consists of multiple data elements. For ease of reference,
we will categorize them into several groups of similar types.

Data Types and Fields

[132]

Data structure
The following data types are in the data structure group:

• File: This refers to any standard Windows file outside the NAV database.
There is a reasonably complete set of functions to allow to create, delete,
open, close, read, write, and copy (among other things) data files. For
example, we could create our own NAV routines in C/AL to import or
export data from or to a file that had been created by some other application.

With the three-tier architecture of NAV 2015, business logic runs on
the server and not the client. We need to keep this in mind any time
we refer to local external files, because they will be on the server by
default. Use of Universal Naming Convention (UNC) paths can
make this easier to manage.

• Record: This refers to a single data row within a NAV table that consists of
individual fields. Quite often, multiple variable instances of a Record (table)
are defined in working storage to support a validation process, allowing
access to different records within the table at one time in the same function.

Objects
Page, Report, Codeunit, Query, and XMLPort, each represents an object data type.
Object data types are used when there is a need to refer to an object or a function in
another object. Examples:

• Invoking a Report or an XMLPort from a Page or a Report
• Calling a function for data validation or processing is coded as a function

in a Table or a Codeunit

Automation
The following are Automation data types (these are not supported by the NAV Web
client.) OCX and Automation data types are supported in NAV 2015 for backward
compatibility only:

• OCX: This allows the definition of a variable that represents and allows
access to an ActiveX or OCX custom control. Such a control is typically an
external application object that we can invoke from our NAV object.

Chapter 3

[133]

• Automation: This allows us to define a variable that we can access similar to
an OCX. The application must act as an Automation Server and be registered
with the NAV client or server that calls it. For example, we can interface from
NAV into the various Microsoft Office products (Word, Excel, and so on) by
defining them in Automation variables.

• DotNet: This allows us to define a variable for .NET Framework interface
types within an assembly. It supports accessing .NET Framework type
members, including methods, properties, and constructors from C/AL.
These can be members of the global assembly cache or custom assemblies.

Input/Output
The following are the Input/Output data types:

• Dialog: This supports the definition of a simple user interface window
without the use of a Page object. Typically, Dialog windows are used
to communicate processing progress or allow a brief user response to a
go/no-go question, though this latter use could result in bad performance
due to locking. There are other user communication tools as well, but they
do not use a Dialog type data item.

• InStream and Outstream: These allow us to read from and write to external
files, BLOBS, and objects of the Automation and OCX data types.

DateFormula
DateFormula provides for the definition and storage of a simple, but clever, set of
constructs to support the calculation of runtime-sensitive dates. A DateFormula
is stored in a nonlanguage dependent format, thus supporting multilanguage
functionality. A DateFormula is a combination of:

• Numeric multipliers (for example, 1, 2, 3, 4, and so on)
• Alpha time units (all must be in uppercase)

 ° D for a day
 ° W for a week
 ° WD for day of the week, that is, from day 1 to day 7 (either in

the future or in the past, but not today). Monday is day 1 and
Sunday is day 7.

 ° M for calendar month

Data Types and Fields

[134]

 ° Y for year
 ° CM for current month, CY for current year, CW for current week

• Math symbols interpretation
 ° + (plus) as in CM + 10D means the Current Month end plus

10 days (in other words, the tenth of the next month)
 ° – (minus) as in (-WD3) means the date of the previous

Wednesday (which is the 3rd day of the past week).

• Positional notation (D15 means the 15th day of the month and 15D
means 15 days)

Payment Terms for Invoices support full use of DateFormula. All DateFormula
results are expressed as a date based on a reference date. The default reference
date is the system date and not the Work Date.

Here are some sample DateFormulas and their interpretations (displayed dates
are based on the US calendar) with a reference date of July 10, 2015, a Friday:

• CM is the last day of Current Month, 07/31/15
• CM + 10D is the tenth of the next month, 08/10/15
• WD6 is the next sixth day of the week, 07/11/15
• WD5 is the next fifth day of the week, 07/17/15
• CM – M + D is the end of the current month minus one month plus one

day, 07/01/15
• CM – 5M is the end of the current month minus five months, 02/28/15

Let us take the opportunity to use the DateFormula data type to learn a few
NAV development basics. We will do so by experimenting with some hands-on
evaluations of several DateFormula values. We will create a table to calculate
dates using DateFormula and Reference Dates.

To do this, navigate to Tools | Object Designer | Tables. Then, click on the New
button and define the fields shown in the following screenshot. Save it as Table
50009, named Date Formula Test. After we are done with this test, we will save
this table for some later testing.

Chapter 3

[135]

Now, we will add some simple C/AL code to our table so that when we enter or
change either the Reference Date or the DateFormula data, we can calculate a new
result date.

First, access the new table via the Design button. Then, go to the global variables
definition form through the View menu option, the C/AL Globals sub-option,
and finally, choose the Functions tab. Type in our new function name as
CalculateNewDate on the first blank line, as shown in the following screenshot,
and then exit (by means of the Esc key) from this form back to the list of data fields:

From the Table Designer form that displays the list of data fields, either press F9
or click on the C/AL Code icon:

Data Types and Fields

[136]

This will take us to the following screen, where we can see all of the field triggers
plus the trigger for the new function that we just defined. The table triggers will not
be visible, unless we scroll up to show them. Note that our new function was defined
as a LOCAL function. This means that it cannot be accessed from another object unless
we change it to a GLOBAL function.

Since our goal now is to focus on experimenting with the DateFormula, we will not
go into detail and explain the logic of what we are creating. The logic that we're
going to code is as follows:

When an entry is made (new or changed) in either the "Reference
Date" field or in the "Date Formula to Test field", invoke the
CalculateNewDate function to calculate a new "Result Date" value
based on the entered data.

First, you need to create the logic within our new function, CalculateNewDate(), to
evaluate and store a Date Result based on the DateFormula and Reference Date that
you enter into the table.

Chapter 3

[137]

Just copy the C/AL code exactly as shown in the following screenshot, exit, compile,
and save the table:

If you get an error message of any type when you close and save the table, you
probably have not copied the C/AL code exactly as it is shown in the screenshot
(also shown in the following code for ease of copying.)

CalculateNewDate;
"Date Result" := CALCDATE("Date Formula to Test","Reference Date
for Calculation");

This code will cause the CalculateNewDate()function to be called via the OnValidate
trigger when an entry is made in either the Reference Date for Calculation or the Date
Formula to Test fields. The function will place the result in the Date Result field. The
use of an integer value in the redundantly named Primary Key field allows us to enter
any number of records into the table (by manually numbering them 1, 2, 3, and
so forth).

Let's experiment with several different date and date formula combinations. We will
access the table via the Run button. This will cause NAV to generate a default format
page and run it in the Role Tailored Client.

Data Types and Fields

[138]

Enter a Primary Key value of 1 (one). In Reference Date for Calculation, enter either
an upper or lower case T for Today and the system date. The same date will appear
in the Date Result field because at this point, no Date Formula has been entered.
Now, enter 1D (number 1 followed by uppercase or lowercase D (C/SIDE will make
it uppercase) in the Date Formula to Test field. We will see that the Date Result
field contents are changed to be one day beyond the date in the Reference Date for
Calculation field.

Now, for another test entry, start with a 2 in the Primary Key field. Again, enter the
letter T (for Today) in the Reference Date for Calculation field, and enter the letter W
(for Week) in the Date Formula to Test field. We will get an error message telling us
that our formulas should include a number. Make the system happy and enter 1W. We
will now see a date in the Date Result field that is one week beyond our system date.

Set the system's Work Date to a date in the middle of a month (remember, we
discussed setting the Work Date in Chapter 1). Start another line with the number
3 as the Primary Key, followed by a W (for Work Date) in the Reference Date for
Calculation field. Enter cm (or CM or cM or Cm, it doesn't matter) in the Date Formula
to Test field. Our result date will be the last day of our Work Date month. Now,
enter another line using the Work Date, but enter a formula of –cm (the same as
before but with a minus sign). This time, our result date will be the first day of
our Work Date month. Note that the DateFormula logic handles month end dates
correctly, including a leap year. Try starting with a date in the middle of February
2016 to confirm this. The following screen shows the Date Formula Test window:

Chapter 3

[139]

Now, enter another line with a new Primary Key. Skip over the Reference Date
for Calculation field and just enter 1D in the Date Formula to Test field. So, what
happens when you do this? We get an error message stating that You cannot base
a date calculation on an undefined date. In other words, NAV cannot make the
requested calculation without a Reference Date. Before we put this function into
production, we want our code to check for a Reference Date before calculating. We
could default an empty date to the System Date or the Work Date and avoid this
particular error.

The preceding and following screenshots show different sample calculations. Build
on these and then experiment. We can create a variety of different algebraic date
formulae and get some very interesting results. One NAV user has due dates on
Invoices for the tenth of the next month. Invoices are dated at various times during
the month than they are actually printed. By using the DateFormula of CM + 10D,
the due date is always automatically calculated to be the tenth of the next month:

Don't forget to test with WD (weekday), Q (quarter), and Y (year) as well as D (day),
W (week), and M (month). For our code to be language independent, we should
enter the date formulae with < > delimiters around them (for example, <1D+1W>).
NAV will translate the formula into the correct language codes using the installed
language layer.

Although our focus for the work we just completed was the Date Formula data type,
we've accomplished a lot more than simply learning about that one data type:

• We created a new table just for the purpose of experimenting with a C/AL
feature that we might use. This is a technique that comes in handy when we
are learning a new feature or trying to decide how it works or how we might
use it.

Data Types and Fields

[140]

• We put some critical OnValidate logic in the table. When data is entered
in one area, the entry is validated and, if valid, the defined processing is
done instantly.

• We created a common routine as a new LOCAL function. This function is
then called from all the places to which it applies.

• We did our entire test with a table object and a default tabular page that is
automatically generated when we Run a table. We didn't have to create a
supporting structure to do our testing. Of course, when we design a change
to a complicated existing structure, we will have a more complicated testing
scenario. One of our goals will always be to simplify our testing scenarios,
both to minimize the setup effort and to keep our test narrowly focused
on the specific issue.

• Finally, and most specifically, we saw how NAV tools make a variety
of relative date calculations easy. These are very useful in business
applications, many aspects of which are date centered.

References and other data types
The following data types are used for advanced functionality in NAV, sometimes
supporting an interface with an external object:

• RecordID: This contains the object number and primary key of a table.
• RecordRef: This identifies a row in a table, a record. RecordRef can be

used to obtain information about the table, the record, the fields in the
record, and the currently active filters on the table.

• FieldRef: This identifies a field in a table; thus, it allows access to the
contents of that field.

• KeyRef: This identifies a key in a table and the fields in that key.

Since the specific record, field, and key references are assigned
at runtime, RecordRef, FieldRef, and KeyRef are used to support
logic which can run on tables that are not specified at design
time. This means that one routine built on these data types can be
created to perform a common function for a variety of different
tables and table formats.

• Variant: This defines variables that are typically used to interface with
Automation and OCX objects. Variant variables can contain data of various
C/AL data types to pass them to an Automation or OCX object as well as
external Automation data types that cannot be mapped to C/AL data types.

Chapter 3

[141]

• TableFilter: For variables which can only be used for setting security filters
from the Permissions table.

• Transaction Type: This has optional values of UpdateNoLocks, Update,
Snapshot, Browse, and Report that define SQL Server behavior for a NAV
Report or XMLport transaction from the beginning of the transaction.

• BLOB: This can contain either specially formatted text, a graphic in the form
of a bitmap, or other developer-defined binary data up to 2 GB in size. The
term Binary Large Object (BLOB). BLOBs can only be included in tables and
not used to define working storage Variables. Refer to Developer and IT Pro
Help for additional information.

• BigText: This can contain large chunks of text up to 2 GB in size. BigText
variables can only be defined in the working storage within an object, but
they cannot be included in tables. BigText variables cannot be directly
displayed or seen in the debugger. There is a group of special functions that
can be used to handle BigText data. Refer to Developer and IT Pro Help for
additional information.

To handle text strings in a single data element that are greater
than 250 characters in length, use a combination of BLOB and
BigText variables.

• GUID: This is used to assign a unique identifying number to any database
object. Globally Unique Identifier (GUID), a 16-byte binary data type that
is used for unique global identification of records, objects, and so on. GUID
is generated by an algorithm developed by Microsoft.

• TestPage: This is used to store a test page, which is a logical representation
of a page that does not display a user interface. Test pages are used for NAV
application testing, using the automated testing facility that is part of NAV.

Data type usage
About forty percent of the data types can be used to define the data that is either
stored in tables or in working storage data definitions (that is, in a Global or Local
data definition within an object). Two data types, BLOB and TableFilter, can only be
used to define table-stored data, but not working storage data. About sixty percent
of the data types can only be used for working storage data definitions.

Data Types and Fields

[142]

The following list shows which data types can be used for table (persisted) data
fields and which ones can be used for working storage (variable) data:

FieldClass property options
Almost all data fields have a FieldClass property. FieldClass has as much effect on
the content and usage of a data field as the data type; in some instances, it has more
effect. In the next chapter, we'll cover most of the field properties, but we'll discuss
the FieldClass property options now.

Chapter 3

[143]

FieldClass – Normal
When the FieldClass is Normal, the field will contain the type of application data
that's typically stored in a table—the contents we would expect based on the data
type and various properties.

FieldClass – FlowField
FlowFields must be dynamically calculated. FlowFields are virtual fields that are
stored as metadata; they do not contain data in the conventional sense. A FlowField
contains the definition of how to calculate (at runtime) the data that the field
represents and a place to store the result of that calculation. Generally, the Editable
property for a FlowField is set to No..

Depending on the CalcFormula method, this could be a value, a reference lookup,
or a Boolean. When the CalcFormula method is Sum, the FieldClass connects
a data field to a previously defined SumIndexField in the table defined in the
CalcFormula. The FlowField processing speed will be significantly affected by
the key configuration of the table being processed. While we must be careful not
to define extra keys, having the right keys defined will have a major effect on
system performance and thus, on user satisfaction.

A FlowField value is always 0, blank, or false, unless it has been calculated. If a
FlowField is displayed directly on a page, it is calculated automatically when the
page is rendered. FlowFields are also automatically calculated when they are the
subject of predefined filters as part of the properties of a data item in an object.
(This will be explained in more detail in the chapters covering Reports and XMLports.)
In all other cases, a FlowField must be forced to calculate using the C/AL RecordName.
CALCFIELDS(FlowField1, [FlowField2],...) function or by the use of the
SETAUTOCALCFIELDS function. This is also true if the underlying data is changed
after the initial display of a page (that is, the FlowField must be recalculated to
take a data change into account).

Because a FlowField does not contain actual data, it cannot be used
as a field in a key. In other words, we cannot include a FlowField as
part of a key. In addition, we cannot define a FlowField that is based
on another FlowField, except in special circumstances.

Data Types and Fields

[144]

When a field has its FieldClass set to FlowField, another directly associated property
becomes available—CalcFormula. (Conversely, the AltSearchField, AutoIncrement,
and TestTableRelation properties disappear from view when FieldClass is set to
FlowField). The CalcFormula method is the place where we can define the formula
for calculating the FlowField. On the CalcFormula property line, there is an ellipsis
button. Clicking on that button will bring up the following screen:

Click on the drop-down button to show the seven FlowField methods:

Chapter 3

[145]

The seven FlowFields are described in the following table:

FlowField
Method

Field data
type

Calculated value as it applies to the specified set of data
within a specific column (field) in a table

Sum Decimal The sum total

Average Decimal The average value (the sum divided by the row count)

Exist Boolean Yes or No / True or False - does an entry exist?

Count Integer The number of entries that exist

Min Any The smallest value of any entry

Max Any The largest value of any entry

Lookup Any The value of the specified entry

The Reverse Sign control allows us to change the displayed sign of the result for
FlowField types Sum and Average only; the underlying data is not changed. If a
Reverse Sign is used with the FlowField type Exists, it changes the effective function
to does not Exist.

Table and Field allow us to define the Table and the Field within that table to which
our Calculation Formula will apply. When we make the entries in our Calculation
Formula screen, no validation checking is done by the compiler to check whether we
have chosen an eligible table and field combination. This checking doesn't occur until
runtime. Therefore, when we create a new FlowField, we should test it as soon as we
have defined it.

The last, but by no means the least significant component of the FlowField calculation
formula is the Table Filter. When we click on the ellipsis in the table filter field,
the window shown in the following screenshot will appear:

Data Types and Fields

[146]

When we click on the Field column, we will be invited to select a field from the table
that was entered into the Table field earlier. The Type field choice will determine
the type of filter. The Value field will have the filter rules defined on this line,
which must be consistent with the Type choices described in the following table:

Filter
type Value Filtering action OnlyMax-

Limit
Values-
Filter

Const A constant which will be
defined in the Value field

This uses the constant to
filter for equally valued
entries

Filter A filter that will be spelled
out as a literal in the Value
field

This applies the filter
expression from the
Value field

Field A field from the table
within which the
FlowField exists

This uses the contents of
the specified field to filter
equally valued entries

False False

If the specified field
is a FlowFilter and
the OnlyMaxLimit
parameter is True, then
the FlowFilter range will
be applied on the basis of
only having a MaxLimit,
that is, having no bottom
limit. This is useful for the
date filters for the Balance
Sheet data. (Refer to
Balance at Date field in the
G/L Account table for an
example)

True False

This causes the contents
of the specified field to be
interpreted as a filter (See
Balance at Date field in the
G/L Account table for an
example)

True or
False

True

FieldClass – FlowFilter
FlowFilters control the calculation of FlowFields in the table (when the FlowFilters
are included in the CalcFormula). FlowFilters do not contain permanent data, but
instead, they contain filters on a per-user basis, with the information stored in that
user's instance of the code that is being executed.

Chapter 3

[147]

A FlowFilter field allows a filter to be entered at a parent record level by the user
(for example, G/L Account) and applied (through the use of FlowField formulas, for
example) to constrain what child data (for example, G/L Entry records) is selected.

A FlowFilter allows us to provide flexible data selection functions to the users.
The user does not need to have a full understanding of the data structure to apply
filtering in intuitive ways to both the primary data table and the subordinate
data. Based on our C/AL code design, FlowFilters can be used to apply filtering
on multiple tables that are subordinate to a parent table. Of course, it is our
responsibility as developers to make good use of this tool. As with many C/AL
capabilities, a good way to learn more is by studying the standard code designed by
the Microsoft developers of NAV and then experimenting.

A number of good examples on the use of FlowFilters can be found in the Customer
(Table 18) and Item (Table 27) tables. In the Customer table, some of the FlowFields
using FlowFilters are Balance, Balance (LCY), Net Change, Net Change (LCY),
Sales (LCY), and Profit (LCY) where LCY stands for local currency. The Sales (LCY)
FlowField FlowFilter usage is shown in the following screenshot:

Data Types and Fields

[148]

Similarly constructed FlowFields using FlowFilters in the Item table include
Inventory, Net Invoiced Qty., Net Change, Purchases (Qty.), as well
as other fields.

Throughout the standard code, there are FlowFilters in most of the master
table definitions; there are the Date Filters and Global Dimension Filters (global
dimensions are user-defined codes that facilitate the segregation of accounting data
by groupings such as divisions, departments, projects, customer type, and so on).
Other FlowFilters that are widely used in the standard code related to Inventory
activity such as Location Filter, Lot No. Filter, Serial No. Filter, and Bin Filter.

The following pair of images shows two fields from the Customer table, both with a
Data Type of Date. On the left side of the screenshot is the Last Date Modified field
(FieldClass of Normal) and on the right side of the screenshot is the Date Filter field
(FieldClass of FlowFilter). It's easy to see that the properties of the two fields are very
similar, except for the properties that differ because one is a Normal field and the
other is a FlowFilter field.

Chapter 3

[149]

FlowFields and a FlowFilter for our
application
In our application, we have decided to have several FlowFields and a FlowFilter
in Table 50000 – Radio Show. The reason for having these fields is to provide instant
analysis for individual shows based on the detailed data stored in subordinate
tables. In Chapter 2, we showed Table 50000 with fields 100 through 130 and 1090
but didn't provide any information about how the fields should be constructed.
Let's go through the construction process now. Here's how the fields 100 through
130 and 1090 should look when we open Table 50000 in the Table Designer. If you
didn't add these fields during the Chapter 2 exercise, do that now.

These five fields will be used for statistical analysis for each Radio Show, as follows:

• Field 100 – Average Listeners: The average number of listeners that are
reported by the ratings agency

• Field 110 – Audience Share: The percentage of one station's total estimated
listening audience per time slot

• Field 120 – Advertising Revenue: The sum total of the advertising revenue
generated by the show

• Field 130 – Royalty Cost: The sum total of the royalties incurred by the
show for playing copyrighted material

• Field 1090 – Date Filter: A filter to restrict the data calculated for the
preceding four fields

To begin with, we will set the calculation properties for the first FlowField,
Average Listeners.

1. If Table 50000 isn't already open in the Table Designer, then open it by
navigating to Tools | Object Designer and select the Table button on the
left as the object type. Find table 50000, Radio Show, select it, and then
click on Design.

Data Types and Fields

[150]

2. Scroll down to field 100, select it, and click on the properties icon at the top
of the screen, or press Shift + F4. Highlight the FieldClass property, click
on the drop-down arrow and select FlowField. A new property called
CalcFormula will appear, directly underneath the FieldClass property. An
Assist Edit ellipsis button will appear. Click on it and the Calculation
Formula form will appear as follows:

3. Select Average from the Method dropdown, leave the Reverse Sign field
unchecked, and type Listenership Ledger or 50006 into the Table field.
We can either type Listener Count or click the Lookup arrow button
to select the Listener Count field from the table. Lastly, we need to define
a filter to allow the Radio Show statistics to be reviewed, based on a user-
definable date range. Click on the Assist Edit ellipsis button on the Table
Filter field, and the following Table Filter screen will appear:

4. Click on the Lookup arrow in the Field column and select Date from the
Listenership Ledger – Field List.

5. In the Type column, click on the drop-down arrow. You will see three
choices for defining what type of filter to apply: CONST, FILTER, FIELD.
In this case, we need to apply a field filter, so choose FIELD.

Chapter 3

[151]

6. The last part of the Table Filter definition is the Value column. Click on the
Lookup arrow in the Value column and choose Date Filter from the Radio
Show – Field List. This will cause the Date Filter field value in the Radio
Show record to be applied to the values in the Date field in the Listenership
Ledger, to control what data to use for the FlowField Average calculation.

7. Click on OK and our Calculation Formula screen should look like this:

8. Click on OK and the CalcFormula property will fill in with the
following text:

9. Since this is a text field, we can enter the syntax manually, but it's much
easier and less error prone to use the Calculation Formula screen.

10. Set the Editable property to No.
11. For Field 110 – Audience Share, repeat the procedure that we just went

through, but for Field, select Audience Share from the Listenership
Ledger – Field List. Our result should look like the following screenshot:

Data Types and Fields

[152]

12. For the fields 120, Advertising Revenue, and 130, Royalty Cost, the
FlowField calculation is a sum with multiple fields that have filters applied
to them. For each field, the first step will be to set the FieldClass property
to FlowField, then click on the Assist Edit button in the CalcFormula
property to call up the Calculation Formula screen.

13. For Advertising Revenue, make the Method as Sum and for Table,
enter Radio Show Ledger or the table number, 50005, and then set Field
to Fee Amount.

14. Click on the Assist Edit button for the table filter. Fill in the first row with
the Field as Date, the Type as FIELD, and the Value with Date Filter.
Fill in the second row with Field set to DataFormat, Type to FILTER, and
Advertisement in the Value column (since we are filtering for a single value,
we could have also used CONST for the Type value). The FlowField will now
add up all the Fee Amount values that have a Format option selected as
Advertisement and fall within the range of the date filter applied from
the Radio Show table.

Advertisement is an available value for the DataFormat field (Data Type
Option). In the Radio Show Ledger, we typed a value that was not an
Option value such as Commercial, an error would have displayed
showing us what the available Option choices were.

Chapter 3

[153]

We can use this feature as a development aid when we don't remember
what the option values are. We can enter a known incorrect value (such
as 'xxx'), press F11 to compile, and find out all the correct Option values.

15. Click on OK on the Table Filter form, and OK again on the Calculation
Formula form.

16. Start Royalty Cost the same way (Method is Sum) all the way through the
Table (table 50005) and Field choices in the Calculation Formula form. Click
on the Assist Edit button for the table filter. Just as before, fill in the first row
with the Field as Date, the Type as FIELD, and the Value with Date Filter.

17. Fill in the second row set Field to Format and Type to FILTER. In the Value
column, enter Vinyl|CD|MP3. This means that we will filter for all records
where the field Format contains a value equal to Vinyl OR CD OR MP3 (the
Pipe symbol is translated to the Boolean "OR"). As a result, this FlowField
will sum up all the Fee Amount values that have a Format option selected
as Vinyl, CD, or MP3 and a date that satisfies the Date Filter specified in the
Radio Show table.

18. The last field that we will define in this exercise is the Date Filter field. We
have already been referencing this Radio Show table field as a source of a
user-defined date selection to help analyze the data from the listenership,
payable, and revenue data, but we have not yet defined the field. This one
is much easier than the FlowFields as no calculation formula is required.

Data Types and Fields

[154]

19. Select the properties for the Date Filter field and set the FieldClass property
to FlowFilter, as shown here:

20. Close the Date Filter - Properties window and exit Table Designer, compiling
the Radio Show table as we do so. If we do not previously exit and compile
our table modifications through this exercise, we will get an error message
beginning with "The schema synchronization may result in deleted data. The
following destructive changes were detected:" This is followed by a list of all
the fields in which we made changes that could affect previously stored data.
In this case, that is a list of all the fields that were changed from Normal to
either FlowField or FlowFilter. This is because a Normal field can store normal
data, but the other two field types do not do this. Since we have no data in any
of the changed fields, we should choose the Synchronize Schema option of
Force to override the error message and complete the save-and-compile step.
Ideally, we should also update the Version List field of the table object
to indicate that we've made additional changes to this table.

Filtering
Filtering is one of the most powerful tools within NAV. Filtering is the application
of defined limits on the data that is to be considered in a process. When we apply
a filter to a Normal data field, we will only view or process records where the
filtered data field satisfies the limits defined by the filter. When we apply a filter
to a FlowField, the calculated value for that field will only consider data that satisfies
the limits defined by the filter. Filter structures can be applied in at least three
different ways, depending on the design of the process.

Chapter 3

[155]

The first way is for the developer to fully define the filter structure and the value
of the filter. This can be done in a report designed to show information on only a
selected group of customers, such as those with an unpaid balance. The Customer
table would be filtered to report only customers who have an outstanding balance
greater than zero.

The second way is for the developer to define the filter structure, but allow the user
to fill in the specific value to be applied. This approach would be appropriate in an
accounting report that was to be tied to specific accounting periods. The user would
be allowed to define the periods to be considered for each report run.

The third way is the ad hoc definition of a filter structure and value by the user. This
approach is often used for general analysis of ledger data where the developer wants
to give the user total flexibility in how they slice and dice the available data.

It is common to use a combination of the different filtering types. For example, the
report just mentioned lists only customers with an open Balance (via a developer-
defined filter) could also allow the user to define additional filter criteria. If the
user wants to see only Euro currency customers, they would filter on the Customer
Currency Code field.

Filters are an integral part of the implementation of both FlowFields and FlowFilters.
These flexible, powerful tools allow the NAV designer to create pages, reports, and
other processes that can be used under a wide variety of circumstances. In most
competitive systems, standard user inquiries and processes are quite specific. The
NAV C/AL toolset allows us to have relatively generic user inquiries and processes; it
then allows the user to apply filtering to generate results that fit their specific needs.

The user sees FlowFilters filtering referred to as Limit Totals onscreen. Application of
filters and ranges may give varying results depending on Windows settings or the SQL
Server collation setup. A good set of examples of filtering options and syntax can be
found in Developer and IT Pro Help in the section titled Entering Criteria in Filters.

Experimenting with filters
Now, it's time for some experimenting with filters. We want to accomplish a couple
of things through our experimentation. First, get more comfortable with how filters
are entered, and second, see the effects of different types of filter structures and
combinations. If we had a database with a large volume of data, we could also test
the speed of filtering on fields in keys and fields not in keys. However, the amount of
data in the basic Cronus database is small, so any speed differences will be difficult
to see in these tests.

Data Types and Fields

[156]

We could experiment on any report that allows filtering. A good report for this
experimentation is the Customer/Item List. This reports which Customer purchased
what items. The Customer/Item List can be accessed on the Role Tailored Client
Departments menu by navigating to Sales & Marketing | Sales | Reports |
Customer | Customer/Item Sales.

When we initially run Customer/Item Sales, we will see just three data fields listed
for the entry of filters on the Customer table, as shown in the following screenshot:

There are also two data fields listed for the entry of filters on the Item Ledger
Entry table, as shown in the following screenshot (which has the Item Ledger Entry
FastTab that can be expanded by clicking on it so we can see its predefined filter
entry options):

Chapter 3

[157]

For both the Customer and Item Ledger Entry, these are the fields that should be
emphasized as per the developer of this report. If we run the report without entering
any filter constraints at all, using the standard Cronus data, the first page of the
report will resemble the following:

Data Types and Fields

[158]

If we want to print information only for customers whose names begin with the
letter A, our filter will be very simple, similar to the following screenshot:

The resulting report will be similar to the following screenshot and show only the
data for the two customers on file whose names begin with the letter A:

Chapter 3

[159]

If we want to expand the customer fields to which we can apply filters, we can access
the full list of other fields in the customer table. We can either click on the drop-
down symbol next to a filter field that is not already in use or click on the Add Filter
button to add a new filter field with a drop-down list access. If the number of fields
available for filtering is longer than what the initial list display allows, the bottom
entry in the list is Additional Columns. If we click on that, we might end up with a
display like the following. Note that the lists are in alphabetical order, based on the
field names. If the list of available fields is too long to display in the second column,
that column can be scrolled up and down.

Data Types and Fields

[160]

From these lists, we can choose one or more fields and then enter filters on those
fields. If we choose Territory Code, for example, then the Request Page would look
similar to the following screenshot. And, if we clicked on the lookup arrow in the
Filter column, a screen would pop up, allowing us to choose from the data items in
the related table—in this case, Territories:

This particular Request Page has FastTabs for each of the two primary tables in the
report. Click on the Item Ledger Entry FastTab to filter the Item-related data. If we
filter on the Item No. for item numbers that contain the letter W, the report will be
similar to the following screenshot:

Downloading the example code.
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 3

[161]

If we want to see all of the items containing either the letter W or the letter S, our
filter would be *W* | *S*. If we made the filter W | S, then we would get only
entries that are exactly equal to W or S because we didn't use any wildcards.

You should go back over the various types of filters that we discussed and try each
one and try them in combination. Get creative! Try some things that you're not
sure may work and see what happens. Explore a variety of reports or list pages in
the system by applying filters to see the results of your experiments. A good page
on which to apply filters is the Customer List (Sales & Marketing menu | Sales |
Customers). This filtering experimentation process is safe (you can't hurt anything
or anyone) and a great learning experience.

Data Types and Fields

[162]

Accessing filter controls
NAV 2015 has two very different approaches to set up filtering—one for the
Development Environment and the other for the Role Tailored Client. Since
we develop in the former, we will briefly cover filtering there. As we target our
development for use in the Role Tailored Client, we need to be totally comfortable
with filtering there; that is the interface for our users.

Development Environment filter access
There are four buttons at the top of the screen that relate to filtering; there is
another one to choose the active key (that is, current sort sequence). Depending
on the system configuration (OS and setup), they will look similar to those in the
following screenshot:

From left to right, they are:

• Field Filter (F7): To highlight a field, press F7 (or select View | Field Filter),
and the data in that field will display as being ready for us to define a filter
on that data field. We can freely edit the filter before clicking on OK.

• Table Filter (Ctrl + F7): Press the Ctrl key and F7 simultaneously (or select
View | Table Filter). We will get a screen that allows us to choose fields
in the left column and enter related filters in the right column. Each filter is
the same as would have been created by using the Field Filter option. The
multiple filters for the individual fields are ANDed together (that is, they all
apply simultaneously). If we invoke the Table Filter form when any Field
Filters are already applied, they will be displayed in the form.

• Flow Filter (Shift + F7): Since we cannot view any data containing FlowFields
in the Development Environment, using the Flow Filter in the Development
Environment is not useful.

• Show All (Shift + Ctrl + F7): This will remove all Field Filters, but it will
not remove any Flow Filters.

• Sort (Shift + F8): This allows us to choose key that is active on a displayed
data list.

When we are viewing a set of data (such as a list of objects) and want to check
whether any filters are in effect, we should check the bottom of the screen for the
word FILTER.

Chapter 3

[163]

Role Tailored Client filter access
The method of accessing fields to use in filtering in the Role Tailored Client (RTC)
is quite different from that in the Development Environment.

When a page such as the Customer List is opened, the filter section at the top of
the page looks like the following screenshot. On the upper-right corner is a place to
enter single-field filters. This is the Type to filter (also referred to as Quick), which
is essentially equivalent to the Field Filter in the Development Environment. The
fields available for filtering are the same as the visible columns showing in the List.

If we click on the chevron circle button in the upper-right corner to expand the
Filter Pane, the result will look similar to the following screenshot. This filter
display includes an additional filtering capability, Show Results, that allows
entry of filters of the Limit Totals to type:

If we go to the Filter Pane header line (where the Page's Menu Caption is Customers
in this page) and click on the drop-down symbol, we will see a set of selection
options (the filter menu), similar to that in the following screenshot. The Advanced
filter provides for the entry of multiple Field Filters (essentially the same as the
Development Environment Table Filter). The Limit Totals filter provides for the
entry of FlowFilter constraints.

Data Types and Fields

[164]

This is one of two places in which we can clear filters of all types (we can also enter
Ctrl + Shift + A as indicated in the filter menu). The Save View As… option allows
the user to save the filtered view, name it, and add it to an Activity Group in the
Navigation pane. The following image shows a series of Saved Views on Sales
Orders (most of them are out of the box). The Euro Orders entry is a Saved View
created by a user.

If we click on Limit Totals (or press Ctrl + Shift + F3), the Limit Totals to: portion
of the Filter pane will be displayed. When we click on the drop-down arrow, we
will get a list of all the FlowFields to which we can apply one or more Limit totals
(FlowFilters).

Depending on the specific page and functional area, Flowfield filtering can be
used to segregate data on Dimension fields. For example, in the page shown in the
preceding screenshot, we can filter data regarding a single Department or Project
(both of which are Dimension fields), a range of Departments or Projects, or a range
of Customer Ship-to locations.

Chapter 3

[165]

Summary
In this chapter, we focused on the basic building blocks of the NAV data structure:
fields and their attributes. We reviewed the types of data fields, properties, and trigger
elements for each type of field. We walked through a number of examples to illustrate
most of these elements though we had postponed the exploration of triggers until
later, when we had more knowledge of C/AL. We covered Data Type and FieldClass,
properties which determine what kind of data can be stored in a field.

We reviewed and experimented with the date calculation tool that gives C/AL
an edge in business applications. We discussed filtering, how filtering is considered
as we design our database structure, and how the users will access data. Finally,
more of our NAV Radio Show application was constructed.

In the next chapter, we will look at the many different types of Pages in more
detail. We'll put some of that knowledge to use to further expand our example
NAV application.

Review questions
Q.1. The maximum length for a C/AL field or variable name is 250 characters.
True or False?

Q.2. The Table Relation property defines the reference of a data field to a table.
The related table data field must be: (choose one)

a. In any key in the related table
b. Defined in the related table but not in a key
c. In the Primary Key in the related table
d. The first field in the primary key in the related table

Q.3. How many of the following Field Data Types support storing application
data such as names and amounts 1, 2, 3 or 4?

a. FlowFilter
b. Editable
c. Normal
d. FlowField

Data Types and Fields

[166]

Q.4. The ExtendedDataType property supports designation of all but one of the
following data types, displaying an appropriate action icon. (Choose the one that
is not supported.)

a. Email address
b. Website URL
c. GPS location
d. Telephone number
e. Masked entry

Q.5. Choose one of the following that is not a FlowField Method.

a. Median
b. Count
c. Max
d. Exist
e. Average

Q.6. It is important to have a consistent, well-planned approach to field numbers,
especially if the application will use the TransferFields function. True or False?

Q.7. Field Filters and Limit totals cannot be used at the same time. True or False?

Q.8. Which property is used to support the multi-language feature of NAV?
(choose one)

a. Name
b. CaptionML
c. Caption
d. LanguageRef

Q.9. Which of the following are Field Triggers? (Choose two)

a. OnEntry
b. OnValidate
c. OnDeletion
d. OnLookup

Chapter 3

[167]

Q.10. Which of the following are complex data types? (Choose three)

a. Records
b. Strings of text
c. DateFormula
d. DateTime data
e. Objects

Q.11. Every table must have a Primary Key. A Primary Key entry can be defined as
unique or duplicates allowed, based on a table property. True or False?

Q.12. Text and Code variables can be of any length.

a. In a memory variable (working storage)? True or False?
b. In a table field? True or False?

Q.13. FlowField results are not stored in the NAV table data. True or False?

Q.14. The following two filters are equivalent. True or False?

a. (*W50?|I?5|D*)
b. (I?5) OR (D*) OR (*W50?)

Q.15. Limit totals apply to FlowFilters. True or False?

Q.16. All Data Types can be used to define data in tables and working storage. True
or False?

Q.17. DateFormula alpha time units include which of the following? (Choose two.)

a. C for century
b. W for week
c. H for holiday
d. CM for current month

Q.18. FlowFilter data is stored in the database. True or False?

Q.19. Option data is stored as alpha data strings. True or False?

Data Types and Fields

[168]

Q.20. Which of the following are numeric data types in NAV 2015? (Choose two.)

a. Decimal
b. Option
c. Hexadecimal
d. BLOB

Q.21. Which of the following acts as wildcards in NAV 2015? (Choose two.)

a. Decimal Point (.)
b. Question Mark (?)
c. Asterisk (*)
d. Hash Mark (#)

[169]

Pages – The Interactive
Interface

"The best journey is the one with the fewest steps. Shorten the distance between the
user and their goal."
 – Author Unknown

"It takes less time to do a thing right than to explain why you did it wrong."
 – H.W. Longfellow

Pages are NAV 2015's object type for interactively presenting information. The page
rendering routines that paint the page on the target display handle much of the data
presentation detail. This allows a variety of clients to be created by Microsoft, such
as Web browser resident clients, Windows RTC clients, and new tablet clients (iPad,
Android, Windows). Independent Software Vendors (ISVs) have created mobile
clients and even clients targeted to devices other than video displays.

One of the benefits of Page technology is the focus on the user experience rather
than the underlying data structure. As always, the designer/developer has the
responsibility of using the tools to their best effect. Another advantage of NAV 2015
pages is the flexibility they provide the user for personalization, allowing him/her
to tailor what is displayed and how it is organized.

Pages – The Interactive Interface

[170]

In this chapter, we will explore the various types of pages offered by NAV 2015. We
will review many options for formatting, data accessing, and tailoring the pages. We
will also learn about the Page Designer tools and the inner structures of the pages.
Topics we will cover include:

• Page design and structure overview
• Types of Pages
• Page Designer
• Page components
• Page controls
• Page actions
• WDTU Page enhancement exercises

Page design and structure overview
Pages serve the purpose of input, output, and control. They are views of data or
process information designed for on-screen display only. They are also user data
entry vehicles.

Pages are made up of various combinations of controls, properties, actions, triggers,
and C/AL code.

• Controls provide the user with ways to view, enter, and edit data, choose
options or commands, initiate actions, and view status

• Properties are attributes or characteristics of an object that define its state,
appearance, or value

• Actions are menu items (which may be icons)
• Triggers are predefined functions that are executed when certain actions or

events occur

The internal structure of a page maps to an XML structure, some of which is readily
visible in the Page Designer display while the rest is in the background.

Chapter 4

[171]

Page design guidelines
C/SIDE allows us to create pages with a number of different look and feel attributes.
The standard NAV application only uses a few of the possibilities, and closely
follows a set of Graphical User Interface (GUI) guidelines that provide consistency
throughout the system. These guidelines are described in an interactive document
named Microsoft Dynamics NAV 2015 User Experience Guidelines (UX Guide
for short). Obtain a copy of this guide from the MSDN Library (https://msdn.
microsoft.com/en-us/library/jj651618(v=nav.80).aspx) and study it.

Good design practice dictates that enhancements integrate seamlessly with the
existing software unless there is an overwhelming justification for being different.
When we add new pages or change the existing pages, the changes should have
the same look and feel as the original pages unless the new functionality requires
significant differences. This consistency not only makes the user's life easier, it also
makes support, maintenance, and training more efficient.

There will be instances where we will need to create a significantly different page
layout in order to address a special requirement. Maybe we need to use industry
specific symbols, or we need to create a screen layout for a special display device.
Perhaps we are going to create a special dashboard display to report on the status
of work queues. Even when we are going to be different, we should continue to be
guided by the environment and context in which our new work will operate.

Pages – The Interactive Interface

[172]

The NAV 2015 page structure
Let's take a look at what makes up a typical page in the NAV 2015 Role Tailored
Client. The page in the following screenshot includes a List page at its core (the
content area).

Following is a brief description of all these options:

• Travel Buttons: They serve the same purpose as in the Explorers, that is to
move backward or forward through the previously displayed pages.

• Title Bar: This displays Page Caption and product identification.
• Address Bar: This is also referred to as the Address Box and it displays the

navigation path that led to the current display. It defaults to the following
format, which is sometimes referred to as the breadcrumb path:

Chapter 4

[173]

If we click on one of the right-facing arrowheads in the Address Bar, the child
menu options will be displayed in a drop-down list (as can be seen in the
following screenshot). The same list of options subordinate to Sales Orders
is displayed both in the drop-down menu from the address bar, and in the
detailed list of options in the navigation pane.

If we click in the blank space in the Address Bar to the right of the
breadcrumbs, the path display will change to a traditional path format,
as shown next:

Pages – The Interactive Interface

[174]

• Global Command Bar: This provides access to a general set of menu
options, which varies slightly based on what is in the content area. The left-
most menu in the Command Bar is accessed by clicking on the drop-down
arrow at the left end of the Global Command Bar. It provides access (as
shown in the next screenshot) to some basic application information and
administration functions.

• FilterPane: This is where the user controls the filtering to be applied to the
page display.

• Ribbon: This contains shortcut icons to actions. These same commands will
be duplicated in other menu locations, but are in the Ribbon for quick and
easy access. The Ribbon can be collapsed (made not visible) or expanded
(made visible) under user control.

• Search Field: This allows the users to find pages, reports, or views based
on the object's name (full or partial). Search finds only those objects that
are accessible from the Navigation Pane.

• Navigation Pane: This contains menu options based on the active Role
Center (which is tied to the user's login). It also contains activity buttons, at a
minimum the Home and Departments buttons. The Departments button and
its menu items are generated based on the contents of the NAV MenuSuite.

• Status Bar: This shows the name of the active company, the work date,
and the current user ID. If we double-click on the company name, we can
change the companies. If we double-click on the work date, we can change
the work date.

Chapter 4

[175]

• Content Area: This is the focus of the page. It may be a Role Center, a List
page, or a Departments menu list.

• FactBox Pane: This can appear on the right side of certain page types (Card,
List, ListPlus, Document, Navigate, or Worksheet). A FactBox can only
display a CardPart, ListPart, System Part, or a limited set of predefined
charts. Fact Boxes can provide no-click and one-click access to related
information about the data in focus in the Content Area.

Types of pages
Let's review the types of pages available for use in an application. Then we will
create several examples for our WDTU Radio Station system.

Each time we work on an application design, we need to carefully consider which
page type is best to use for the functionality we are creating. Types of pages available
include RoleCenter, List, Card, ListPart, CardPart, ListPlus, Document, Worksheet,
Navigate, ConfirmationDialog, and StandardDialog. Pages can be created and
modified by the developer and can be personalized by the administrator, super user,
or user.

Role Center page
A user's assigned Role Center page is their home page in NAV, the page where they
land when first logging into NAV 2015. The purpose of a Role Center page is to
provide a task-oriented home base which focuses on the tasks that the user typically
needs in order to do his/her job on a day to day basis. All the user's common tasks
should be no more than one or two clicks away.

The standard NAV 2015 distribution includes twenty-three predefined Role
Center pages, including generic roles such as Bookkeeper, Sales Manager, and
Production Planner. Some of the provided Role Centers are richly featured and have
been heavily tailored by Microsoft as illustrations of what is possible. On the other
hand, some of the provided Role Centers are only skeletons, acting essentially as
place holders.

It is critical to understand that the provided Role Center pages
are intended to be templates, not final deliverables.

Pages – The Interactive Interface

[176]

Role Centers that are specific to the customer's organization structure and user
role profiles should be created for every NAV implementation. We should take
advantage of the guidance for the design and creation of Role Center pages that is
part of the Microsoft MSDN documentation (such as https://msdn.microsoft.
com/en-us/library/jj128066(v=nav.80).aspx and its See Also references) or
is in various blogs. Even though this material is brief, it provides much useful
information.

Central to each Role Center page is the Activities area. The Activities area provides
the user with a visual overview of their primary tasks. Central to the Activities
part are the Cues. Each blue Cue icon represents a filtered list of documents in a
particular status, indicating the amount of work to be handled by the user. The grey
Cue icons display a calculated value.

The following screenshot shows a Role Center page for the user role profile of Sales
Order Processor:

Chapter 4

[177]

List page
List pages are the first pages accessed when choosing any menu option to access
data. This includes all the entries under the Home Button on the Navigation Pane. A
List page displays a list of records (rows), one line per record, with each displayed
data field in a column.

When a List page is initially selected, it is not editable. When we double-click
an entry in a List, either an editable Card page or an editable List page entry is
displayed. Examples of this latter behavior are the Reference table pages such as
Post Codes, Territories, and Languages. A List page can also be used to show a list
of master records to allow the user to visually scan through the list of records, or to
easily choose a record on which to focus.

List pages may optionally include FactBoxes. Some NAV 2015 List pages, such as
Customer Ledger Entries (Page 25), allow editing of some fields (for example, Invoice
Due Dates) and not of others.

The following screenshot shows a typical list page—the Item List, Page 31:

Pages – The Interactive Interface

[178]

Card page
Card pages display and allow updating of a single record at a time. They are used
for master tables and setup data. Complex cards can contain multiple FastTabs and
FactBoxes, as well as display data from subordinate tables. An example of Card page
image for the Customer Card – Page 21 follows, with the General FastTab expanded
and the other FastTabs collapsed:

Document page
Document (task) pages have at least two FastTabs in a header/detail format. The
FastTab at the top contains the header fields in a card style format, followed by a
FastTab containing multiple records in a list style format (a ListPart page). Examples
are Sales Orders, Sales Invoices, Purchase Orders, Purchase Invoices, and Production
Orders. The Document page type is appropriate whenever we have a parent record
tied to a subordinate child records in a one-to-many relationship. A Document page
may also have FactBoxes. An example of Sales Order Document page follows (Sales
Order – Page 42):

Chapter 4

[179]

FastTab
FastTabs, as shown in the preceding Customer Card and Sales Order screenshots,
are collapsible/expandable replacements for traditional left-to-right forms tabs. They
are often used to segregate data by subject area on a Card page or a Document page.
In this Sales Order image, the General and Lines FastTabs are expanded and the
remaining FastTabs are collapsed. Individually important fields can be Promoted so
they display on the FastTab header when the tab is collapsed, allowing the user to
see this data with minimal effort. Examples appear on all the Sales Order's collapsed
FastTabs. Promoted field displays disappear from the FastTab header when the
FastTab is expanded.

Pages – The Interactive Interface

[180]

ListPlus page
A ListPlus page is similar in layout to a Document page, as it will have at least one
FastTab with fields in a card type format and one FastTab in a list page format.
Unlike a Document page that can only have a single list style subpage, a ListPlus
page may have more than one FastTab with card format fields and one or more
FastTabs with a list page format. The card format portion of a ListPlus page often
contains control information determining what data is displayed in the associated
list, such as in Page 113 – Budget, shown in the following image:

A ListPlus page may also have FactBoxes. Other examples of ListPlus pages are Page
155 – Customer Sales and Page 157 – Item Availability by Periods.

Chapter 4

[181]

Worksheet (Journal) page
Worksheet pages are widely used in NAV to enter transactions. The Worksheet
page format consists of a list page style section showing multiple record lines in the
content area, followed by a section containing either additional detail fields for the
line in focus or containing totals. All the Journals in NAV use Worksheet pages. Data
is usually entered into a Journal/Worksheet by keyboard entry, but in some cases via
a batch process.

The following screenshot shows a Worksheet page, Sales Journal – Page 253:

ConfirmationDialog page
This is a simple display page embedded in a process. It is used to allow a user to
control the flow of a process. Following is a sample ConfirmationDialog page:

Pages – The Interactive Interface

[182]

StandardDialog page
The StandardDialog page is also a simple page format to allow the user to control
a process, such as Copy Tax Setup (Page 476). The StandardDialog page allows the
entry of control data such as that shown in the following screenshot:

NavigatePage
The primary use of the NavigatePage page type in NAV 2015 is as the basis for
Wizard pages. All the instances of Wizard pages in NAV 2015 are in the Marketing
functionality area of the system. Some Wizard page examples are pages: 5077 –
Create Interaction, 5097 – Create To-do, 5126 – Create Opportunity, 5129 – Update
Opportunity, and 5146 – Assign Opportunity. A Wizard page consists of multiple
user data entry screens linked together to provide a series of steps necessary to
complete a task.

Two screens from a Wizard page (Page 5126 – Create Opportunity) are shown in the
following screenshots:

Chapter 4

[183]

Navigate page 344
The Navigate function has been a very powerful, unique feature of NAV since the
1990s. Somewhat confusingly, in NAV 2015 the Navigate function is implemented
using the ListPlus page type, not the NavigatePage page type which was used in the
earlier NAV releases.

The Navigate page (Page 344) allows the user (who may be a developer operating
in user mode) to view a summary of the number and type of posted entries having
the same document number and posting date as a related entry or as a user-entered
value. The user can drill down to examine the individual entries. Navigate is a
terrific tool for tracking down related posted entries. It can be productively used by
a user, an auditor, or even by a developer. A sample Navigate page is shown in the
following screenshot:

Special pages
There are two special purpose page types. One is a component of other objects, and
the second is automatically generated.

Pages – The Interactive Interface

[184]

Request page
A Request page is a simple page that allows the user to enter information to control the
execution of a Report or XMLport object. Request pages can have multiple FastTabs,
but can only be created as part of a Report or XMLPort object. All Request page
designs will be similar to the following image for the Item Price List (Report 715)
Request page:

Departments page
The Departments page is a one-of-a-kind, system-generated page. We don't directly
create a Departments page because it is automatically generated from the entries in
the MenuSuite object. When we create new objects and add appropriate entries to the
MenuSuite, we provide the material needed to update the Departments menu/page.
The look and feel of the Departments page cannot be changed (though individual
entries can be added, changed, moved, or deleted).

Chapter 4

[185]

The Departments page acts as a site map to the NAV system for the user. When we
add new objects to the MenuSuite (thus to the Departments menu), NAV UX design
guidelines encourage the entry of duplicate links within whichever sections the user
might consider looking for that page (we will later discuss the Search function which
makes this task even easier). An example of a Departments page is shown in the
following screenshot:

Page parts
Several of the page types we have reviewed thus far contain multiple panes with
each pane including special purpose parts. Let's look at some of the component page
parts available to the developer.

Some page parts compute the displayed data on the fly, taking
advantage of Flow Fields which may require considerable system
resources to process the FlowField calculations. As developers, we
need to be careful about causing performance problems through
overuse of such displays.

Pages – The Interactive Interface

[186]

FactBox Area
The FactBox Area can be defined on the right side of certain page types including
Card, List, List Plus, Document, and Worksheet. A FactBox Area can contain
Page parts (CardPart or ListPart), Chart parts, and System parts (Outlook, Notes,
MyNotes, or Record Links). A variety of standard CardParts, ListParts, and Charts
are available which can be used in FactBoxes. System parts cannot be modified. All
the others can be enhanced from the standard instances, or new ones may be created
from scratch.

CardParts and ListParts
CardParts are used for FactBoxes that don't require a list. They display fields or
perhaps a picture control. (NAV 2015 Help contains an example of including a
DotNet add-in within a FactBox to display a chart) An example of the Customer
Statistics FactBox (Page 9082 – Customer Statistics Factbox) is shown in the
following screenshot:

ListParts are used for FactBoxes that require a list. A list is defined as columns of
repeated data. No more than two or three columns should appear in a FactBox list.
A screenshot of the three-column My Items FactBox ListPart - Page 9152 follows:

Chapter 4

[187]

Charts
In NAV 2015, there are two standard ways of including charts in our pages. The first
one, Chart parts, is a carry-over from NAV 2009. The second one, the Chart Control
Add-in, was new in NAV 2013.

Chart part
A Chart part displays list data in graphic form. It is a default optional component
of all FactBox Areas; it is not a Page Type. If a FactBox exists, it has a Chart part
option available. Chart parts are populated by choosing one of the available charts
stored in the Chart table (Table 2000000078). Some charts require range parameters
while others do not (they default to a defined data range). Most of the supplied
charts are two-dimensional, but a sampling of three-dimensional, dynamic charts
is included. A MSDN NAV Team blog provides an extensive description of chart
construction and a utility for creating new charts (http://blogs.msdn.com/b/nav/
archive/2011/06/03/chart-generator-tool-for-rtc-cgtrtc.aspx). There
is also a YouTube video on the topic, available at https://www.youtube.com/
watch?v=RwOv3dLdXAw&x-yt-cl=85114404&x-yt-ts=1422579428. Though both of
these were created for the previous releases of NAV, they are useful for NAV 2015 as
well. A sample standard chart is shown in the following screenshot:

Pages – The Interactive Interface

[188]

Chart Control Add-in
The NAV 2015 distribution includes a charting capability that is based on a Control
Add-in (created with .NET code written outside of C/SIDE and integrated into
NAV). An example is the Trailing Sales Orders chart in a Factbox Page part (Page
760) that appears in the Order Processor Role Center (Page 9006). Following is a
screenshot of that chart:

The Cash Flow Chart Example in the NAV 2015 Developer and IT Pro Help describes
how to create charts using the Chart Control Add-in.

Page names
Card pages are named similarly as the table with which they are associated, plus the
word Card. Examples include Customer table and Customer Card, Item table and
Item Card, and Vendor table and Vendor Card.

List pages are named similarly as the table with which they are associated. List pages
which are simple noneditable lists have the word list associated with the table name.
Examples are Customer List, Item List, and Vendor List. For each of these, the table
also has an associated card page. Where the table has no associated card page, the list
pages are named after the tables, but in the plural format. Examples include Customer
Ledger Entry table and Customer Ledger Entries page, Check Ledger Entry table and
Check Ledger Entries page, Country/Region table and Countries/Regions page, and
Production Forecast Name table and Production Forecast Names page.

The single-record Setup tables that are used for application control information
throughout NAV are named after their functional area, plus the word Setup. The
associated Card page should also be (and generally is) named similarly to the
table. For example, General Ledger Setup table and General Ledger Setup page,
Manufacturing Setup table and Manufacturing Setup page, and so on.

Chapter 4

[189]

Journal entry (worksheet) pages are given names tied to their purpose, plus the word
Journal. In the standard product, several Journal pages for different purposes are
associated with the same table. For example, the Sales Journal, Cash Receipts Journal,
Purchases Journal, and Payments Journal, all use the General Journal Line table as
their SourceTable (they are different pages all tied to the same table).

If there is a Header and Line table associated with a data category such as Sales
Orders, the related page and subpage ideally should be named to describe the
relationship between the tables and the pages. However, in some cases, it's better to
tie the page names directly to the function they perform rather than the underlying
tables. An example is the two pages making up the display called by the Sales Order
menu entry—the Sales Order page is tied to the Sales Header table, and the Sales
Order Subform page is tied to the Sales Line table. The same tables are involved for
the Sales Invoice page and Sales Invoice Subform page.

The use of the word Subform rather than Subpage, as in Sales Invoice
Subform, is a left-over term from the previous versions of NAV which
had forms rather than pages.

Sometimes, while naming pages, we will have a conflict between naming pages
based on the associated tables and naming them based on the use of the data. For
example, the menu entry Contacts invokes a main page/subpage named Contact
Card and Contact Card Subform. The respective tables are the Contact table and the
Contact Profile Answer table. The context usage should take precedence in the page
naming as was done here.

Page Designer
The Page Designer is accessed from within the Development Environment through
Tools | Object Designer | Page. It can be opened either for creation of a new page
by using the New button or for editing an existing page by highlighting the target
object, then clicking the Design button.

Pages – The Interactive Interface

[190]

New Page Wizard
When we click on the New button, or F3, or Edit | New, we bring up the New Page
Wizard.

We can proceed to the Page Designer with the PageType property set to Card and
no SourceTable defined by clicking on OK with Create blank page selected, and not
entering a Table Name or Number. Or we could enter a Table Name or Number,
select Create a page using a wizard, and select a Page Type. That will take us to
the Page Wizard with the PageType property set to our choice and the SourceTable
assigned to the table we entered. There is almost always less effort to use the Wizard
to create at least a rough version of a page design, then modify the generated object
structure and code to get the ultimate desired result.

To use the Page Wizard, first we enter the name or number of the table to which
we want our page to be bound. Then we choose what PageType we want to create
– Card, List, RoleCenter, CardPart, ListPart, Document, Worksheet, ListPlus,
ConfirmationDialog, StandardDialog, or NavigatePage. The subsequent steps the Page
Wizard will take us through depend on the PageType chosen. The following chart
shows which options are available for each Page Type through use of the Wizard:

Page Type Fast Tabs Fields to
Display FactBoxes Page Designer

RoleCenter - - - P

Card P P P P

List - P P P

Document P P P P

ListPlus P P P P

Chapter 4

[191]

Page Type Fast Tabs Fields to
Display FactBoxes Page Designer

Worksheet - P P P

ConfirmationDialog P P - P

StandardDialog - - - P

NavigatePage P P P P

CardPart - P - P

ListPart - P - P

To see what the Page Wizard looks like, we'll step through an example definition of
a Card page based on our Table 50000 – Radio Show (this example is only done to
illustrate the Page Wizard process – we aren't creating a page that we'll keep for our
Radio Show application).

Invoke the Page Designer Wizard by clicking on the New button with the Page
button highlighted. Enter 50000 in the Table field, select the Create a page using a
wizard: option, select Card, and click on the OK button. The next screen allows us to
define FastTabs. It displays a default first FastTab titled General. For our example,
we'll add two more FastTabs, Tab 1 and Tab 2.

Pages – The Interactive Interface

[192]

We click Next and proceed to the screen to assign fields from our bound table to
each of the individual tabs. The single arrow buttons move one field either onto or
off of the selected tab. The double arrow buttons move all the fields in the chosen
direction. In the following screenshot, five fields have been selected and assigned
to the General tab:

We can move fields back and forth between the chosen and available sets, as well as
reposition them in the Field Order until we are satisfied with the result. If we realize
that we should have defined our tabs differently, we can click on the Back button
and return to the FastTab definition screen to revise the tab assignments.

After all the desired fields have been assigned to the appropriate tab in the desired
order, we will click Next and move on to the screen that allows us to assign
FactBoxes to the Page. Many different page components are made available
by the Wizard for assignment as FactBoxes.

Chapter 4

[193]

As we will see in the next screenshot, many of the choices are not appropriate for use
in most pages. We can only select previously created page parts for FactBoxes. This
leads to an important concept.

Even though we can add component parts later, it's good
practice to plan our page design layout ahead of time and
construct the component parts first (start with just place holder
page parts now and modify them later to be fully functional).

If we had not yet defined the FactBoxes for our current page design, we could pick
other similar page components and then make the appropriate code replacement
later in the Page Designer.

Pages – The Interactive Interface

[194]

Once we have done all the assignment work that is feasible within the Page
Wizard, we will click Finish. The Page Wizard will generate the object structure and
C/AL code for our defined page and present the results to us in the Page Designer,
as shown in the following screenshot:

We realize now that it would have been more efficient to have planned ahead and
created our custom FactBox page parts before we used the Wizard to create our card
page. The alternative we used was to simply add a couple of FactBox page parts as
place holders which we could replace later. That gave us the structure we wanted
and compensated for our lack of planning. We could wait and just add the FactBoxes
later, but we wouldn't be taking advantage of the help the Wizard can provide.

Page components
All pages are made up of certain common components. The basic elements of a page
object are the page triggers, page properties, controls, control triggers, and control
properties.

Chapter 4

[195]

Page Triggers
The following screenshot shows the page triggers. The Help section Page and Action
Triggers provides good general guidance to the event which causes each page
trigger to fire. Note that the OnQueryClosePage trigger isn't related to any Query
object action.

In general, according to best practices, we should minimize the C/AL code placed
in Page triggers, putting the code in a Table or Field trigger or calling a Codeunit
Library function instead. However, many standard pages include a modest amount
of code supporting page specific filter or display functions. When we develop a
new page, it's always a good idea to look for similar pages in the standard product
and be guided by how those pages operate internally. Sometimes special display
requirements result in complex code being required within a page. It is important
that the code in a page be there for only managing the data display and not for data
modification.

Pages – The Interactive Interface

[196]

Page properties
We will now look at the properties of the Radio Show List page we created earlier.
The list of available page properties is the same for all page types. The values of
these properties vary considerably from one page to another, even more from one
page type to another. The following screenshot shows the Page - Properties screen
of our Radio Show List page (Page 50000). This screen is accessed by opening Page
50000 in the Page Designer, highlighting the first empty line in the Controls list, and
Clicking on the Properties icon (or Shift + F4 or View | Properties).

Chapter 4

[197]

We can see that many of these properties are still in their default condition (they are
not highlighted in bold). Following are the properties with which we are most likely
to be concerned:

• ID: This is the unique object number of the page.
• Name: This is the unique name by which this page is referenced in

C/AL code.
• Caption and CaptionML: This refers to the page name to be displayed,

depending on the language option in use.
• Editable: This determines whether or not the controls in the page can be

edited (assuming the table's Editable properties are also set to Yes). If this
property is set to Yes, the page allows the individual the control to determine
the appropriate Editable property value.

• Description: This is for internal documentation only.
• Permissions: This is used to instruct the system to allow the users of this

page to have certain levels of access (r=read, i=insert, m=modify, d=delete)
to the TableData in the specified table objects. For example, users of Page 499
(Available - Sales Lines) are allowed to only read or modify (Permissions for
Sales Line = rm) the data in the Sales Line table.

Whenever defining special permissions, be sure to test with an end-user
license. In fact, it's always important to test with an end user license.

• PageType: This specifies how this page will be displayed, using one of
the available ten page types (RoleCenter, Card, List, ListPlus, Worksheet,
ConfirmationDialog, StandardDialog, NavigatePage, CardPart, and ListPart).

• CardPageID: This is the ID of the Card page that should be launched when
the user double-clicks on an entry in the list. This is only used on List pages.

• RefreshOnActivate: When set to Yes, This causes the page to refresh when
the page is activated. This property is unsupported by the Web Client.

• PromotedActionCategoriesML: This allows the language to be changed
for Promoted Action Categories from the default English (ENU) to another
language, or to extend the number of Promoted Action Categories from the
standard three options (New, Process, and Reports) to seven more categories.
See the Help section How to: Define Promoted Action Categories Captions for the
Ribbon.

Pages – The Interactive Interface

[198]

• SourceTable: This is the name of the table to which the page is bound.
• SourceTableView: This can be utilized to automatically apply defined filters

and/or open the page with a key other than the Primary Key.
• ShowFilter: This is set to No to have the Filter pane default to not visible.

The user can still make the Filter pane visible.
• DelayedInsert: This delays the insertion of a new record until the user

moves focus away from the new line being entered. If this value is no, then
a new record will automatically be inserted into the table as soon as the
primary key fields have been completed. This property is generally set to
Yes when AutoSplitKey (see the second last point of this list) is set to Yes.
It allows complex new data records to be entered with all the necessary
fields completed.

• MultipleNewLines: When set to Yes, This supposedly allows the insertion of
multiple new lines between existing records. However, it is set to No in the
standard Order forms from Microsoft. This indicates that this property is no
long active in NAV 2015.

• SaveValues: If set to Yes, This causes user-specific entered control values to
be retained and redisplayed when the page is invoked another time.

• AutoSplitKey: This allows for the automatic assignment of a primary
key, provided the last field in the primary key is an integer (there are rare
exceptions to this, but we won't worry about them in this book). This feature
enables each new entry to be assigned a key so it will remain sequenced in
the table following the record appearing above it. Note that AutoSplitKey
and DelayedInsert are generally used jointly. On a new entry at the end of
a list of entries, the trailing integer portion of the primary key, often named
Line No., is automatically incremented by 10,000 (the increment value cannot
be changed). When a new entry is inserted between two previously existing
entries, their current key-terminating integer values are summed and divided
by two (hence the term AutoSplitKey) with the resultant value being used
for the new entry key terminating integer value. Since 10,000 (the automatic
increment) can only be divided by two and rounded to a non-zero integer
result 13 times, only 13 new automatically numbered entries can be inserted
between two previously recorded entries by the AutoSplitKey function.

Chapter 4

[199]

• SourceTableTemporary: This allows use of a temporary table as the
SourceTable for the page. This can be very useful where there is a need to
display data based on the structure of a table, but not using the table data as
it persists in the database. Examples of such an application are Page 634—
Chart of Accounts Overview and Page 6510—Item Tracking Lines. Note that
the temporary instance of the source table is empty when the page opens up,
so our code must populate the temporary table in memory.

Page Preview tool
The Page Designer in NAV 2015 has a Page Preview tool which is very helpful in
defining our control placement and action menu layout.

If we click on the Preview button while we have a page open in the Page Designer,
a preview of that page's layout will display. The controls and actions are not active
in the preview (this is display only), but we can display all the ribbon tabs and their
controls.

Pages – The Interactive Interface

[200]

The Preview screen is interactively linked to the Page Designer and its subordinate
Action Designer. When we click on a control line in the Page Designer or an
Action line in the Action Designer, the Page Preview highlights the generated
object. Or when we click on a control or action displayed in the previewed page,
the corresponding line in the Page Designer or Action Designer is highlighted. An
example of a highlighted control is shown in the following partial page screenshot:

Chapter 4

[201]

In the following screenshot, an action is highlighted in the Preview page:

Inheritance
One of the attributes of an object oriented system is the inheritance of properties.
While NAV is object-based rather than object-oriented, the properties that affect data
validation are inherited. Properties such as decimal formatting are also inherited.
If a property is explicitly defined in the table, it cannot be less restrictively defined
elsewhere.

Controls that are bound to a table field will inherit the settings of the properties
that are common to both the field definition and the control definition. This basic
concept applies to inheritance of data properties – beginning from fields in tables
to pages and reports, and then from pages and reports to controls within the
pages and reports. Inherited property settings that involve data validation cannot
be overridden, but all others can be changed. This is another example of why it
is generally best to define the properties in the table, for consistency and ease of
maintenance, rather than defining them for each instance of use in a page or a report.

Pages – The Interactive Interface

[202]

WDTU Page Enhancement – part 1
Before we move on to learn about controls and actions, let's do some basic
enhancement work on our WDTU Radio Show application. Back in Chapter 1, An
Introduction to NAV 2015, we created several minimal pages, then later added new
fields to our Radio Show master table (Table 50000). We'll now enhance the Radio
Show List and Card to include those added fields.

Because our previous page development work resulted in simple pages, we have
the opportunity to decide whether we want to start with the New Page Wizard and
replace our original pages or use the Page Designer to modify the original pages. If
we had done any significant work on these pages previously in the Page Designer,
the choice to go right to the Page Designer would be easy. Let's do a quick evaluation
to help us make our decision. First, let's take a look at the existing Radio Show List
page, as can be seen in the following screenshot:

We want to compare the list of fields that exist in the source table (Radio Show –
50000) to what is already in the page. If there are only a couple of fields missing,
it will be more efficient to do our work in the Page Designer. The quickest way to
inspect the fields of the source table is to use the About This Page Help information
available from the drop-down at the left end of the Global Command Bar:

Chapter 4

[203]

When we click About This Page (or Ctrl + Alt + F1), the following screen displays:

When we scroll down the list of fields in Table 50000 (which are displayed
alphabetically, not by field number or in order of placement in the page), we see that
there are quite a few fields in the table that aren't in our page. This makes it easy to
conclude that we should use the Page Wizard to create the new version of our Page
50000 – Radio Show List.

Pages – The Interactive Interface

[204]

Although the Wizard allows us to choose and sequence fields in our new list form,
for the sake of simplicity, we will just insert all the fields at once in the order in
which they appear in the table. In other words, we will choose the >> button to
include all the fields. Then, because we know that the Date Filter field is only for
filter control of related tables and will not contain visible data, we will remove that
field. Our Wizard screen will look like the following screenshot:

Finish the Page, Saving it as Page 50000, Radio Show List, overwriting the old
version. If we wanted to be very safe, before making any changes, we would have
done an Export of the original version of Page 50000 as a .fob file (using File |
Exprort).

Next we want to also create a new layout for the Radio Show Card. We'll make the
same choice for the same reasons, to use the Page Wizard to create a new version of
the card page. When we review the data fields, we decide that we should have three
FastTabs: General, Requirements, and Statistics. As before, the Date Filter field
should not be on the page. After we have generated, compiled, and saved our new
Radio Show Card, it looks like the following screenshot:

Chapter 4

[205]

Our final step at this point is to connect the Radio Show Card to the Radio Show
List page so that when the user double-clicks on a list entry, the Card page will be
invoked show the list selected entry. This is a simple matter of opening our new Page
50000 in the Page Designer, highlighting the first empty line in the Controls list, and
Clicking on the Properties icon (or Shift + F4 or View | Properties).

Pages – The Interactive Interface

[206]

In the list of page properties displayed, we will find CardPageID. Fill in that
property with either the name (Radio Show Card) or Object ID number (50001) of
the target card, save and compile, and run. We should see a ribbon as shown in the
following screenshot with both Edit and Edit List showing:

Clicking on Edit will bring up the Radio Show Card. Clicking on Edit List will make
the line in the list editable in place. If we don't want the user to be able to edit within
the list, we could change the List page property Editable to No and the Edit List
option will not be available, as shown in the following image:

Page controls
Controls on pages serve a variety of purposes. Some controls display information
on pages. This can be data from the database, static material, pictures, or the results
of a C/AL expression. Container controls can contain other controls. Group controls
make it easy for the developer to handle a set of contained controls as a group.
A FastTabs control also makes it easy for the user to consider a set of controls as
a group. The user can make all the controls on a FastTab visible or invisible by
expanding or collapsing the FastTab.

Chapter 4

[207]

The user also has the option to show or not to show a particular FastTab as a part of
the page customizing capability. The Help sections Pages Overview and How to: Create
a Page provide good background guidance on the organization of controls within
page types for NAV 2015.

The following screenshot from the Page Designer shows all the data controls on the
Fixed Asset Card (Page 5600). The first column, Expanded, is a + or – indicating
whether the section is expanded or not. Type and SubType define how this control is
interpreted by the Role-Tailored Client. SourceExpr defines the value of the control.
Name is the internal reference name of the control. Caption is what will appear on the
screen. The default values for Name and Caption originate from the table definition.

Pages – The Interactive Interface

[208]

The page's control structure can be seen in the indented format shown in the
preceding image. The Container controls define the primary parts of the page
structure. The next level of structure is the Group control level. In this page, those
are the General, Posting, and Maintenance groups (each of which represents a
FastTab). Indented under each Group control are Field controls.

The Fixed Asset Card page, complete with the action ribbon, displays as the
following screenshot:

The Group – FastTab correlation here is obvious. The Lines – FastTab connection is
less obvious. It comes from the line where Type equals Part, SubType equals Page,
and Name equals DepreciationBook. This control line embeds a page part as though
it were defined as another Group. The Part – Page line has the same indentation level
as the Group entries, thus is displayed at the same level as the Groups.

Chapter 4

[209]

Control types
There are four primary types of page controls are Container, Group, Field, and
Part. Container, Group, and Field controls are used to define the content area of
the pages. Part controls are used to define FactBoxes and embedded subpages. When
designing pages that may be used by different client types (such as the Web Client),
we need to be aware that some controls operate differently or are not supported in
all the different clients.

Container controls
Container controls can be one of three subtypes: ContentArea, FactBoxArea,
or RoleCenterArea. Container controls define the root-level primary structures
within a page. All page types start with a Container control. The RoleCenterArea
Container control can only be used on a RoleCenter page type. A page can only have
one instance of each Container subtype.

Group controls
Group controls provide the second level of structure within a page. Group controls
are the home for fields. Almost every page has at least one Group control. The
following screenshot, from Page 5600 – Fixed Asset Card (with all the Group
controls collapsed), shows two Container controls and three Group controls. Also
showing is a page Part control which displays a PagePart as a FastTab.

Pages – The Interactive Interface

[210]

The properties of a Group control are shown in the following image:

Several of the Group control properties are particularly significant because of their
effect on all the fields within the group.

• Visible: TRUE or FALSE, defaulting to TRUE. The Visible property can be
assigned a Boolean expression, which can be evaluated during processing.
This allows for dynamically changing the visibility of a group of fields
during processing based on some variable condition (dynamic processing
must occur in either the OnInit, OnOpenPage, or OnAfterGetCurrRecord
trigger and the variable must have its IncludeInDataSet property set to Yes).

• Enabled: TRUE or FALSE, defaulting to TRUE. The Enabled property can be
assigned a Boolean expression to allow dynamically changing the enabling of
a group of fields.

• Editable: TRUE or FALSE, defaulting to TRUE. The Editable property can be
assigned a Boolean expression to allow dynamically changing the editability
of a group of fields.

• GroupType: It will be one of the five choices—Group, Repeater, CueGroup,
FixedLayout, or GridLayout. The GroupType property is visible on the
Page Designer screen in the column headed SubType (see the earlier Page
Designer screenshot).

 ° Group is used in Card type pages as the general structure for fields,
which are then displayed in the sequence in which they appear in the
Page Designer group.

Chapter 4

[211]

 ° Repeater is used in List type pages as the structure within which
fields are defined and then displayed as repeated rows.

 ° CueGroup is used for Role Center pages as the structure for the
actions that are the primary focus of a user's work day. CueGroups
are found in page parts, typically having the word Activities in their
name and included in RoleCenter page definitions. The following
screenshot shows two CueGroups defined in the Page Designer:

These CueGroups are displayed in the RTC as follows:

Pages – The Interactive Interface

[212]

 ° FixedLayout is used at the bottom of List pages, following a Repeater
group. The FixedLayout group typically contains totals or additional
line-related detail fields. Many Journal pages, such as Page 39 –
General Journal, Page 40 – Item Journal, and Page 201 – Job Journal
have FixedLayout groups. The Item Journal FixedLayout group
only shows Item Description (which is also available in a Repeater
column), but could easily display other fields as well. A FixedLayout
group can also display a lookup or calculated value like many of the
Statistics pages (for example, Page 151 – Customer Statistics and
Page 152 – Vendor Statistics).

 ° GridLayout provides additional formatting capabilities to layout the
fields row by row, column by column, spanning rows or columns and
hiding or showing captions. Page 970 is one example of GridLayout
use. To learn more about GridLayout use, search Help for Gridlayout.

• IndentationColumnName and IndentationControls: These allow a group
to be defined in which fields will be indented, as shown in the following
screenshot of the Chart of Accounts page. Examples of pages that utilize the
indentation properties include Page 16 – Chart of Accounts and Page 18 –
G/L Account List.

Chapter 4

[213]

• FreezeColumnID: This freezes the identified column and all the columns
to its left, so they remain in a fixed position while the columns to the right
can be scrolled horizontally. This is similar to freezing a pane in an Excel
worksheet. Users can also freeze columns as part of personalization.

• ShowAsTree: This works together with the indentation property.
ShowAsTree allows an indentation set of rows to be expanded or collapsed
dynamically by the user for easier viewing. Examples are Page 583 – XBRL
Taxonomy Lines, Page 634 – Chart of Accounts Overview, and Page 5522 –
Order Planning.

Field controls
All field controls appear in the same format in the Page Designer. The SubType
column is empty and the SourceExpr column contains the data expression that will
be displayed.

All the field control properties are listed for each field, but individual properties only
apply to the data type for which they make sense. For example, the DecimalPlaces
property only applies to fields where the data type is decimal. Following is a split
screenshot of the properties for field controls:

Pages – The Interactive Interface

[214]

We'll review those field control properties that are more frequently used or are more
significant in terms of effect:

• Visible, Enabled, and Editable: These have the same functionality as the
identically named group controls, but only apply to individual fields. If
the group control is set to FALSE, either statically (in the control definition
within the page) or dynamically by an expression evaluated during
processing, the Group control's FALSE condition will take precedence over
the equivalent Field control setting. Precedence applies in the same way at
the next, higher levels of identically named properties at the Page level, and
then at the Table level. For example, if a data field is set to Non-Editable in
the table, that setting will take precedence over (override) other settings in a
page, control group, or control.

• HideValue: This allows the value of a field to be optionally displayed or
hidden, based on an expression that evaluates to TRUE or FALSE.

• Caption and CaptionML: These define the caption that will be displayed
for this field (in English or the current system language if not English).

• ShowCaption: Set to Yes or No, this determines whether or not the caption
is displayed.

• MultiLine: This must be set to TRUE if the field is to display multiple lines
of text.

• OptionCaption and OptionCaptionML: These set the text string options that
are displayed to the user. The captions that are set as page field properties
will override those defined in the equivalent table field property. The default
captions are those defined in the table.

• DecimalPlaces: This applies to decimal fields only. If the number of decimal
places defined in the page is smaller than that defined in the table, the
display is rounded accordingly. If the field definition is the smaller number,
it controls the display.

• Width: This allows the setting of a specific field display width – the number
of characters that can be included. It is especially useful for Control SubType
of GridLayout.

• ShowMandatory: This shows a red asterisk in the field display to indicate
a required (mandatory) data field. ShowManadatory can be based on an
expression that evaluates to TRUE or FALSE. This property does not enforce
any validation of the field. Validation is left to the developer.

• QuickEntry: This allows the field to optionally receive focus or be skipped,
based on an expression that evaluates to TRUE or FALSE.

• AccessByPermission: This determines the permission mask required for a
user to view or access this field.

Chapter 4

[215]

• Importance: This controls the display of a field. This property only applies to
individual (nonrepeating) fields located within a FastTab. Importance can be
set to Standard (the default), Promoted, or Additional:

• Standard: This is the normal display. Implementations of the rendering
routines for different targets may utilize this differently.

• Promoted: If the property is set to Promoted and the page is on a collapsed
FastTab, then the field contents will be displayed on the FastTab line. If the
FastTab is expanded, the field will display normally.

• Additional: If the property is set to Additional and the FastTab is collapsed,
there is no effect on the display. If the FastTab is expanded, then the user
can determine whether or not the field is displayed by clicking on the Show
More Fields or Show Fewer Fields display control in the lower-right corner
of the FastTab.

• RowSpan and ColumnSpan: These are used in conjunction with GridLayout
controls as layout parameters.

• ControlAddIn: When the field represents a control add-in, this contains the
name and public token key of the control add-in.

• ExtendedDatatype: This allows a text field to be categorized as a special data
type. The default value is None. If ExtendedDatatype is selected, it can be
any one of the following:

 ° Phone No.
 ° URL
 ° E-Mail
 ° Filter: Used on reports.
 ° Ratio: For a processing progress bar display.
 ° Masked: This fills the field with bold dots in order to mask the actual

entry. The number of masking characters displayed is independent
of the actual field contents. The contents of a masked field cannot be
copied. If ExtendedDatatype is Phone No., URL, or E-Mail, an active
icon is displayed on the page following the text field providing access
to call the phone number, access the URL in a browser, or invoke the
email client. Setting ExtendedDatatype will also define the validation
that will automatically be applied to the field.

• Image: This allows the display of an image on a Cue for a Field control in a
CueGroup control. It only applies to a Cue control field of an integer data
type. If no image is wanted, choose the value of None.

Pages – The Interactive Interface

[216]

Page Part controls
Page Parts are used for FactBoxes and SubPages. Many of the properties of Page
Parts are similar to the properties of other NAV components and operate essentially
the same way in a Page Part as they operate elsewhere. Those properties include ID,
Name, Visible, Enabled, Editable, Caption, CaptionML, ToolTip, ToolTipML, and
Description.

Following is a list of the other properties which are specific to Page Part controls :

• SubPageView: This defines the table view that applies to the named subpage
(see WhseMovLines Part in Page 7315 – Warehouse Movement).

• SubPageLink: This defines the field(s) that links to the subpage and the link
(based on a constant, a filter, or another field). Also in Page 7315.

• ProviderID: This contains the ID of another Page Part control within the
current page. This enables us to link a subordinate part to a controlling
parent part. For example, Page 42 – Sales Order uses this property to update
the Sales Line FactBox by defining a ProviderID link from the FactBox to the
SalesLines FastTab. Other pages with similar links include Page 41 - Sales
Quote and Pages 43, 44, 50, 507, and 5768. In the following screenshot, we see
the SalesLines PagePart (Control ID 58) linked to by the SalesLine Factbox.via
the ProviderID value of 58:

Chapter 4

[217]

• PartType: This defines the type of part to be displayed in a FactBox. There
are three options. Each option also requires another related property to be
defined:

PartType Option Required property
Page PagePartID
System SystemPartID
Chart ChartPartID

Pages – The Interactive Interface

[218]

• PagePartID: This must contain the page object ID of a FactBox part, if the
PartTypeOption is set to Page.

• SystemPartID: This must contain the name of a predefined system part if
the PartTypeOption is set to System. Available choices are Outlook, Notes,
MyNotes, and RecordLinks.

• ChartPartID: This must contain a chart ID if the PartTypeOption is set to
Chart. The Chart ID is a link to the selected entry in the Chart table (Table
number 2000000078).

• UpdatePropagation: This allows updating the parent page from the child
(subordinate) page. A value of Subpage updates the subpage only. A value of
Both will cause the parent page to be updated and refreshed at the same time
as the subpage.

The NAV 2015 Chart Control Add-in provides significant additional
charting capability. Information can be found in the Help section
Displaying Charts Using the Chart Control Add-in.

Page control triggers
The following screenshot shows Page Control triggers. There are five triggers for
each Field control. Container, Group, and Part controls do not have associated
triggers.

The guideline for the use of these triggers is the same as the one for Page triggers—if
there is a choice, don't put C/AL code in a Control trigger. Not only will this make
our code easier to upgrade in the future, but it will also make it easier to debug and
easier for the developer following us to decipher our changes.

Chapter 4

[219]

Bound and Unbound Pages
Pages can be created as bound (associated with a specific table), or unbound (not
specifically associated with any table). Typically, a Card or List page will be bound,
but Role Center pages will be unbound. Other instances of unbound pages are rare.
Unbound pages may be used for communicating status information or initiating a
process. Examples of unbound pages are Page 476 - Copy Tax Setup and Page 1040 –
Copy Job (both of which have a PageType property of StandardDialog).

WDTU Page Enhancement – part 2
Now that we have additional understanding of page structures, let's do a little more
enhancing of our WDTU application pages. We've decided that it would be useful
to keep track of specific listener contacts, a fan list. First we need to create a table of
Fan information which we will save as Table 50010 – Radio Show Fan and which will
look like the following screenshot:

Pages – The Interactive Interface

[220]

We want to be able to review the Fan list as we scan the Radio Show List. This
requires adding a FactBox area to Page 50000. In turn, that requires a Page Part
which will be displayed in the FactBox. The logical sequence is to create the Page
Part first, then add the FactBox to Page 50000. Since we just want a simple ListPart
with three columns, we can use the Page Wizard to create our Page Part which we
will save as Page 50080 – Radio Show Fan ListPart, including just the Name, E-mail,
and Last Contacted fields.

Next we will use the Page Designer to add a FactBox area to Page 50000, populate
the FactBox area with our PagePart – Page 50080, and set the properties for the Page
Part to link to the highlighted record in the Radio Show List page.

Chapter 4

[221]

If we Run Table 50010 and insert a few test records first, and then run Page 50000,
we should see something similar to the following screenshot:

Before finishing this part of our enhancement effort, we will create a List page that
we can use to view and maintain the data in Table 50010 in the future (assign it as
Page 50009 – Radio Fan List).

One other enhancement we can do now is to promote some fields in the Radio
Show Card so they can be seen when the FastTabs are collapsed. All we have to do
is choose the fields we want to promote, then change the page control property of
Importance to Promoted. If we choose the fields No., Type, Description, and Avg.
Listener Share and promote these, our card with collapsed FastTabs will look
similar to the following screenshot (we don't have any Listener Share data yet):

Pages – The Interactive Interface

[222]

Page Actions
Actions are the menu items of NAV 2015. Action menus can be found in several
locations. The primary location is the Ribbon appearing at the top of most pages.
Other locations for actions are the Navigation Pane, Role Center Cue Groups,
and the Action menu on FactBox page parts.

The Action Designer, where actions are defined, is accessed from the Page Designer
form, by clicking View and selecting Page Actions or Control Actions (Control
Actions can only be used for Role Center Cue Group actions and for NavigatePage
wizard actions). When we click Page Actions (or Ctrl + Alt + F4) for the Fixed Asset
page (Page 5600), we will see a list of Ribbon actions in the following screenshot as
they appear in the Action Designer.

Chapter 4

[223]

The associated Ribbon tabs for the preceding Page Action list are shown in the
following images. First, the Home tab:

Second, the Actions tab:

Third, the Navigate tab:

Finally, the Reports tab:

There are two default Ribbon tabs created for every Ribbon: Home and Actions.
Which actions appear by default is dependent on the PageType.

Actions defined by the developer appear on a Ribbon tab and tab submenu section
based on a combination of the location of the action in the Page Actions structure and
the property settings of the individual action. There are a lot of possibilities, so it is
important to follow some basic guidelines. These are:

• Maintain the look and feel of the standard product wherever feasible and
appropriate

• On the Home tab, put the actions that are expected to be used the most

Pages – The Interactive Interface

[224]

• Be consistent in organizing actions from tab to tab and page to page
• Provide the user with a complete set of action tools, but don't provide so

many options that it's hard to figure out which one to use

Page Action Types and Subtypes
Page Action entries can have one of four Types: ActionContainer, ActionGroup,
Action, or Separator. At this time, Separators don't seem to have any effect in the
rendered pages. A Page Action Type uses an indented hierarchical structure like
shown in the following table:

Action Types Description
ActionContainer Primary Action grouping
ActionGroup Secondary Action grouping
Action Action
Action Group Secondary groups can be set up within an Action list for

dropdown menus of Actions (a tertiary level)
Action The indentation indicates this is part of a dropdown menu
Separator
Action Action
Separator
Action Group Back to the Secondary grouping level
ActionContainer Back to the Primary grouping level

An ActionContainer action line type can have one of six SubType values as shown in
the following image. The SubTypes of HomeItems and ActivityButtons only apply to
RoleCenter pages.

Chapter 4

[225]

• Actions in a Reports SubType will appear on the Ribbon Reports tab, Actions
in a RelatedInformation SubType will appear on the on the Ribbon Navigate
tab

• Actions in an ActionItems SubType will appear on the Ribbon Actions tab
• Actions in a NewDocumentItems SubType will appear on the Ribbon in a

New Documents submenu section on the Actions tab

Action Groups
Action Groups provide a submenu grouping of actions within the assigned tab. In
the following screenshot, the Page Preview is highlighting the submenu Main Asset
which is the Caption for the associated ActionGroup. In the RelatedInformation
ActionContainer, we can see the other ActionGroups, Fixed Asset, Insurance, and
History, matching the submenu groups on the ribbon's Navigate tab.

Action properties
Following are the ActionContainer properties:

• ID: The automatically assigned unique object number of the action
• Name and Caption: Displayed in the Action Designer
• CaptionML: The action name displayed, depending on the language option

in use
• Description: For internal documentation

Following are the ActionGroup properties:

• ID: The automatically assigned unique object number of the action.
• Name and Caption: Displayed in the Action Designer.

Pages – The Interactive Interface

[226]

• Visible and Enabled: TRUE or FALSE, defaulting to TRUE. The Visible
property can be assigned a Boolean expression, which can be evaluated
during processing.

• CaptionML: The action name displayed, depending on the language option
in use.

• Description: For internal documentation.
• Image: Can be used to assign an icon to be displayed. The icon source is the

Activity Button Icon Library, which can be viewed in detail in the Developer
and IT Pro Help.

Next is a screenshot of the Properties for an action from Page 5600 – Fixed Asset Card:

Chapter 4

[227]

Following is an explanation of the Action properties displayed in the preceding
image:

• ID: The automatically assigned unique object number of the action.
• Name and Caption: Displayed in the Action Designer.
• CaptionML: The action name displayed, depending on the language option

in use.
• Visible and Enabled: TRUE or FALSE, defaulting to TRUE. The Visible

property can be assigned a Boolean expression, which can be evaluated
during processing.

• RunPageMode: Can be View (no modification), Edit (the default), or Create
(New).

• ToolTip and ToolTipML: For helpful display to the user.
• Description: For internal documentation.
• Image: Can be used to assign an icon to be displayed. The icon source is the

Action Icon Library, which can be viewed in detail in the Developer and IT
Pro Help.

• Promoted: If Yes, show this action on the ribbon Home tab.
• PromotedCategory: If Promoted is Yes, defines the Category on the Home

tab in which to display this action.
• PromotedIsBig: If Promoted is Yes, indicates if the icon is to be large (Yes) or

small (No – the default).
• Ellipsis: If Yes, displays an ellipsis after the Caption.
• ShortCutKey: Provides a shortcut key combination for this action.
• RunObject: Defines what object to run to accomplish the action.
• RunPageView: Sets the table view for the page being run.
• RunPageLink: Defines the field link for the object being run.
• RunPageOnRec: Defines a linkage for the run object to the current record.
• InFooterBar: Places the action icon in the page footer bar. This only works on

pages with the PageType of NavigatePage.

Pages – The Interactive Interface

[228]

To summarize a common design choice, individual Ribbon actions can be promoted
to the Home ribbon tab based on two settings. First, set the Promoted property to Yes.
Second, set the PromotedCategory property to define the category on the Home tab
where the action is to be displayed. This promotion results in the action appearing
twice in the ribbon, once where defined in the action structure hierarchy and once
on the Home tab. See the preceding screenshot for example settings assigning
Depreciation Books action to the Process category in addition to appearing in the
Fixed Assets category on the Navigation tab.

Navigation Pane Button actions
In the Navigation Pane on the left side of the Role Tailored Client display, there
is a Home Button where actions can be assigned as part of the Role Center page
definition. The Navigation Pane definition is part of the Role Center. When
defining the actions in a Role Center page, we can include a group of actions in an
ActionContainer group with the SubType of HomeItems. These actions will be
displayed in the Home Button menu on the Navigation Pane.

Additional Navigation Pane buttons can also be easily defined in a Role Center page
action list. First, define an ActionContainer with the SubType of ActivityButtons.
Each ActionGroup defined within this ActionContainer will define a new
Navigation Pane Activity button. The next screenshot is a combination showing
a) the RTC for the Sales Order Processor Role Center on the left, focused on the
Navigation Pane, and b) the Action Designer contents that define the Home and
Posted Documents buttons showing on the right.

The actions that appear on the right, which aren't visible in the Navigation Pane on
the left, are in submenus indicated by the small outline arrowheads to the far left of
several entries including Sales Orders and Sales Quotes. NAV will automatically do
some of this grouping for us based on the pages referenced by the actions, including
Cue Group Actions.

Chapter 4

[229]

Actions Summary
The primary location where each user's job role-based actions should appear is the
Navigation Pane. The Role Center action list provides detailed action menus for
the Home button and any appropriate additional Navigation Pane button. Detailed
page/task specific actions should be located in the Ribbon at the top of each page.

As mentioned earlier, a key design criterion for the NAV Role Tailored Client is for
a user to have access to the actions they need to get their job done; in other words,
tailor the system to the individual users' roles. Our job as developers is to take full
advantage of all these options, to make life easier for the user. In general, it's better to
go overboard in providing access to useful capabilities, than to make the user search
for the right tool or use several steps in order to get to it. The challenge is to not
clutter up the first-level display with too many things, but still have the important
user tools no more than one click away.

Pages – The Interactive Interface

[230]

Learning more
Descriptions follow of several excellent ways to learn more about pages.

UX (User Experience) Guidelines
The User Experience Design Guidelines documents developed by Microsoft are
available for download from various Internet locations. The Microsoft Dynamics
NAV 2015 User Experience Guidelines is available from the MSDN at https://
msdn.microsoft.com/en-us/library/jj128065(v=nav.80).aspx. These UX (User
Experience) Guidelines serve both as a summary tutorial to the construction of pages
and as recommendations for good design practices.

Creative plagiarism and patterns
When we want to create new functionality, the first task is obviously to create
functional specifications. Once those are in hand, we should look for guidelines
to follow. Some sources which are readily available are:

• The NAV Design Patterns Wiki (https://community.dynamics.com/
nav/w/designpatterns/default.aspx)

• C/AL Coding Guidelines as used internally by Microsoft in the development
of NAV application functionality (https://community.dynamics.com/
nav/w/designpatterns/156.cal-coding-guidelines.aspx)

• Blogs and other materials available in the Microsoft Dynamics NAV
Community (https://community.dynamics.com/nav/default.aspx)

• The NAV system itself is always good to start with an existing pattern or
object that has capabilities similar to our requirements and study the existing
logic and the code. In many lines of work, the term plagiarism is a nasty
term. But when it comes to modifying an existing system, plagiarism is a
very effective research and design tool. This approach allows us to build
on the hard work of the many skilled and knowledgeable people who have
contributed to the NAV product. In addition, this is working software, and it
eliminates at least some of the errors we would make if starting from scratch.

When designing modifications for NAV, studying how the existing objects
work and interact is often the fastest way to create new working models. We
should allocate some time both for studying material in the NAV Design
Patterns Wiki and for exploring the NAV Cronus demo system.

Chapter 4

[231]

Search through the Cronus demonstration system (or an available production
system) in order to find one or more pages that have the feature we want to
emulate (or a similar feature). If there are both complex and simple instances
of pages that contain this feature, we should concentrate our research on the
simple instance first. Make a test copy of the page. Read the code. Use the
Page Preview feature. Run the page. Make a minor modification. Preview
again; run it again. Continue this until our ability to predict the results of
changes eliminates surprises or confusion.

Experimenting on our own
If you have followed along with the exercises so far in this book, it's time for you to
do some experimenting on your own. No matter how much information someone
else describes, there is no substitute for a personal, hands-on experience. You will
combine things in a new way from what was described here. You will either discover
a new capability that you would not have learned otherwise, or you will have an
interesting problem to solve. Either way, the result will lead to significantly gaining
more knowledge about pages in NAV 2015.

Don't forget to make liberal use of the Help information while you are
experimenting. A majority of the available detailed NAV documentation is in the
help files that are built into the product. Some of the help material is a bit sparse,
but it is being updated on a frequent basis. In fact, if you find something missing
or something that you think is incorrect, please use the Documentation Feedback
function built into the NAV help system. The product team responsible for Help pay
close attention to the feedback they receive and use it to improve the product. Thus,
we all benefit from your feedback.

Experimentation
Start with the blank slate approach, because that allows you to focus on specific
features and functions. Since we've already gone through the mechanical procedures
of creating new pages of the card and list types and using the Page Designer to add
controls and modify control properties, we won't detail those steps here. But as you
move the focus for experimentation from one feature to another, you may want to
review what was covered in this chapter.

Pages – The Interactive Interface

[232]

Let's walk through some examples of experiments you could do now, then you can
build on as you get more adventuresome. Each of the objects you create at this point
should be assigned into an object number range that you are reserving for testing.

1. Create a new Table 50050 (try using 50009 if your license won't allow 50050).
Do this by opening Table 50004 in the Table Designer, then saving it as 50050
with the name Playlist Item Rate Test.

2. Enter a few test records into Table 50050, Playlist Item Rate. This can be done
by highlighting the table, then clicking on Run.

3. Create a list page for Table 50050 with at least three or four fields.
4. Change the Visible property of a field, by setting it to False.
5. Save and run the page.
6. Confirm that the page looks as what was expected. Go into Edit mode on the

page. See if the field is still invisible.
7. Use the page Customization feature (from the Dropdown icon on the upper-

left corner of the page) in order to add the invisible field, and also remove
a field that was previously visible. Exit Customization. View the page in
various modes (such as View, Edit, and New).

8. Go back into the Page Designer and design the page again.
9. One or two at a time, experiment with setting the Editable, Caption,

ToolTip, and other control properties.
10. Don't just focus on text fields. Experiment with other data types as well.

Create a text field that's 200 characters long. Try out the MultiLine property.
11. After you get comfortable with the effect of changing individual properties,

try changing multiple properties to see how they interact.

When you feel you have thoroughly explored individual field properties in a list, try
similar tests in a card page. You will find that some of the properties have one effect
in a list, while they may have a different (or no) effect in the context of a card (or
vice-versa). Test enough to find out. If you have some "Aha!" experiences, it means
that you are really learning.

Chapter 4

[233]

The next logical step is to begin experimenting with the group level controls. Add
one or two to the test page, then begin setting the properties for that control, again
experimenting with only one or two at a time, in order to understand very specifically
what each one does. Do some experimenting to find out which properties at the group
level override the properties at the field level, and which do not override.

Once you've done group controls, do part controls. Build some FactBoxes using a
variety of the different components that are available. Use the System components
and some Chart Parts as well. There is a wealth of pre-built parts that come with the
system. Even if the parts that are supplied aren't exactly right for the application,
they can often be used as a model for the construction of custom parts. Remember
that using a model can significantly reduce both the design and the debugging work
when doing custom development.

After you feel you have a grasp of the different types of controls in the context of
cards and lists, consider checking out some of the other page types. Some of those
won't require too much in the way of new concepts. Examples of these are the
ListPlus, List Parts, Card Parts, and, to a lesser extent, even Document pages.

You may now decide to learn by studying samples of the page objects that are part
of the standard product. You could start by copying an object, such as Page 22 –
Customer List to another object number in your testing range, then begin to analyze
how it is put together and how it operates. Again, you should tweak various controls
and control properties in order to see how that affects the page. Remember, you
should be working on a copy, not the original! Plus, it's a good idea to back up
your work one way or another before making additional changes. An easy way to
backup individual objects is to highlight the object, then export it into a .fob file
(File | Export). The restore is the reverse: that is import the .fob file.

Another excellent learning option is to choose one of the Patterns that has a
relationship with the area about which you want more knowledge. If, for example,
you are going to create an application that has a new type of document (such as a
Radio Program Schedule), you should study the Document Pattern. You might also
want to study the Create Data from Templates Pattern. At this point, it has become
obvious that there are a variety of sources and approaches to supplement the material
in this text.

Pages – The Interactive Interface

[234]

Summary
You should now be relatively comfortable in the navigation of NAV and with the use
of the Object Designer. You should be able to use the Page Wizard as an advanced
beginner. If you have taken full advantage of the various opportunities to create
tables and pages, both with our guidance and experimentally on your own, you are
beginning to become a NAV Developer.

We have reviewed different types of pages and worked with some of them. We
have reviewed all of the controls that can be used in pages and have worked with
several of them. We also lightly reviewed page and control triggers. We've had a
good introduction to the Page Designer and significant insight into the structure of
some types of pages. With the knowledge gained, we have expanded our WDTU
application system, enhancing our pages for data maintenance and inquiry.

In the next chapter, we will learn to find our way around the NAV Query and Report
Designers. We will dig into the various triggers and controls that make up reports.
We will also do some Query and Report creation work to better understand what
makes them tick and what we can do within the constraints of the Query and Report
Designer tools.

Review questions
Q.1. Once a Page has been developed using the Page Wizard, the developer has very
little flexibility in the layout of the Page. True or False?

Q.2. Different actions appear on the Role Center screen in several places. Choose two:

a. Address Bar
b. Ribbon
c. Filter Pane
d. Navigation Pane
e. Command Bar

Q.3. A user can choose their Role Center when they login. True or False?

Q.4. An Action can only appear in one place - in the Ribbon or in the Navigator Pane.
True or False?

Q.5. When developing a new page, choose the two Page Part types that are available:

a. Chart part
b. Map part

Chapter 4

[235]

c. Social part
d. System part

Q.6. All page design and development is done within the C/SIDE Page Designer.
True or False?

Q.7. Document pages are for word processing. True or False?

Q.8. Two Activity Buttons are always present in the Navigation Pane. Which two?

a. Posted Documents
b. Departments
c. Financial Management
d. Home

Q.9. The Filter Pane includes the "Show results – Where" and "Limit totals to"
options. True or False?

Q.10. The C/AL code placed in pages should only be used for controlling display
characteristics, not for modifying data. True or False?

Q.11. Inheritance is the passing of property definition defaults from one level of
object to another. If a field property is explicitly defined in a table, it cannot be less
restrictively defined for that field displayed on a page. True or False?

Q.12.Which of the following are true about the control property Importance?
Choose two.

a. Applies only to Card and CardPart pages
b. Can affect FastTab displays
c. Has three possible values: Standard, Promoted, and Additional
d. Applies to Decimal fields only

Q.13 FactBoxes are delivered as part of the standard product. They cannot be
modified nor can new FactBoxes be created. True or False?

Q.14. RTC Navigation Pane entries always invoke which one of the following
page types?

a. Card
b. Document
c. List
d. Journal/Worksheet

Pages – The Interactive Interface

[236]

Q.15. The Page Preview tool can be used as a drag and drop page layout design tool.
True or False?

Q.16. Some field control properties can be changed dynamically (as the object
executes). Which ones? Choose three.

a. Visible
b. HideValue
c. Editable
d. Multiline
e. DecimalPlaces

Q.17. Which property is normally used in combination with the AutoSplitKey
property? Choose one.

a. SaveValues
b. SplitIncrement
c. DelayedInput
d. MultipleNewLines

Q.18. Ribbon tabs and menu sections are predefined in NAV and cannot be changed
by the developer. True or False?

Q.19. Inheritance between tables and pages operates two ways – tables can inherit
attributes from pages and pages can inherit from tables. True or False?

Q.20. For the purpose of testing, pages can be run directly from the Development
Environment. True or False?

[237]

Queries and Reports
To design is to communicate clearly by whatever means you can control or master.

 – Milton Glaser

Complexity is the problem. Ease of use is the solution. Productivity is the result.

 – Unknown

In NAV 2015, Reports and Queries are two ways to extract and output data for
the purpose of presentation to a user (Reports can also modify data). Each of
these objects uses tools and processes that are NAV based for the data extraction
(XMLports, which also can extract and modify data, will be covered in a later
chapter). In this chapter, we will focus on understanding the strengths of each of
these tools and when and how they might be used. We will cover the NAV side
of both Queries and Reports in detail to describe how to obtain the data we need
to present to our users. We will cover output formatting and consumption of
that data in less detail. There are currently no wizards available for either Query
building or Report building; therefore, all the work must be done step by step, using
programming tools and our skills as designers/developers. The topics we will cover
include the following:

• Queries and Reports
• Report components – overview
• Report data flow
• Report components – detail
• Creating and modifying Reports

Queries and Reports

[238]

Queries
Reports have always been available in NAV as a data retrieval tool. Reports have
been used to process and/or manipulate the data (through the Insert, Modify, or
Delete functions) with the option of presenting the data in a formatted, printable
format. Prior to NAV 2013, data selection could only be done using C/AL code
or DataItem properties to filter individual tables as datasets (retrieved from the
database with simple T-SQL statements generated by the C/AL compiler), and
to perform loops to find the data required for the purpose.

The Query object, new in NAV 2013, was created with performance in mind.
Instead of multiple calls to SQL to retrieve multiple datasets to then be manipulated
in C/AL, Queries allow us to utilize familiar NAV tools to create advanced
T-SQL queries.

A NAV developer can utilize the new Query object as a source of data both in NAV
and externally. Some external uses include the following:

• As a web service that is cloud compatible
• As a web service source for XML or Odata. Odata is different from XML in

that it contains the field definitions and styles along with the data itself
• Feeding data to external reporting tools such as Excel, SharePoint, and SSRS

Internally, NAV Queries can be used as follows:

• A direct data source for Charts
• Providers of data to which Cues (displayed in Role Centers) are bound. See

the Help article titled Walkthrough: Creating a Cue Based on a Normal Field and
a Query

• As a dataset variable in C/AL to be accessed by other object types (Reports,
Pages, Codeunits, and so on). See http://msdn.microsoft.com/en-us/
library/hh167210(v=nav.70).aspx for guidance on using the READ
function to consume data from a Query object.

Query objects are more limited than the stored procedures of SQL. Queries are more
similar to SQL View. Some compromises in the design of the Query functionality
were made for better performance. Data manipulation is not supported in Queries.
Variables, subqueries, and dynamic elements (such as building a query based on
selective criteria) are not allowed within a Query object.

Chapter 5

[239]

The closest SQL Server objects that Queries resemble are SQL Views. One of the new
features that allows for NAV to generate advanced T-SQL statements is the use of
SQL Joins. These include the following Join methods:

• Inner: The query compares each row of table A with each row of table B to
find all the pairs of rows that satisfy the Join criteria

• Full Outer: It does not require each record in the two Joined tables to have a
matching record, so that all records from both table A and table B will appear
at least once

• Left Outer Join: Every record from table A will appear at least once, even if a
matching record from table B is not found

• Right Outer Join: Every record from table B will appear at least once, even if
a matching record from Table A is not found

• Cross Join: It returns the Cartesian product of the sets of rows from tables
A and B (the Cartesian product is a set made up of rows that include the
columns of each row in table A along with the columns of each row in table B
for a number of rows; in other words, it includes the columns of the rows in
table A plus those in table B)

Union (joins all records from tables A and B without the Join criteria)
is not available at this time.

Building a simple Query object
Sometimes, it is necessary to quickly retrieve detailed information from one or more
ledgers that may contain hundreds of thousands to many millions of records. The
Query object is the perfect tool for such a data selection as it is totally scalable and
can retrieve the selected fields from multiple tables at once. The following example
(using Cronus data) will show the aggregated quantity per bin of the lot-tracked
items in stock. This query could be presented to a user by means of either a report or
a page.

Queries and Reports

[240]

First, it is necessary to know what inventory is in stock and contains a lot number.
This is accomplished using the Item Ledger Entry table. However, the Item Ledger
Entry record does not contain any bin information. This information is stored in the
Warehouse Ledger Entry table. The Location Code, Item No., and Lot No. are used
to match the Item Ledger Entry and Warehouse Ledger Entry records to make sure
the correct items are selected. In order to determine which bins are designated as
pick bins, the Bin Type records that are marked as Pick = True need to be matched
with the bins in Warehouse Ledger Entry. Lastly, Quantity of each Warehouse Entry
record needs to be summed according to Location Code, Zone Code, Bin Code, Item
No., and Lot No. in order to show the total number of items available in each bin.

The first step is to define the primary DataItem in the Data Source column. The
first DataItem is the Item Ledger Entry table. We can either type in the table
name or the table number (32). Query may select from multiple tables (as we do in
this example). All DataItems except the first must be indented. Each successively
indented DataItem must have a link defined to a lesser-indented DataItem (because
Union joins are not supported).

After defining the first DataItem, we focus on the first blank line, and Type will
default to Column. Column is a field from the DataItem table that will be output as
an available field from the Query dataset. The other Type option is Filter, which
allows us to use a source column as a filter and does not output this column in the
dataset. Use the Lookup arrow or the Field menu to add the two following fields
under Item Ledger Entry: Item No. and Lot No..

Chapter 5

[241]

The next DataItem that we need is the Warehouse Entry table. We must join it to
the Item Ledger Entry by filling in the DataItemLink property. Link the Location
Code, Item No., and Lot No. fields between the two tables, as shown in the
following image:

The following steps will define the rest of the DataItems, Columns, and Filters for
this query.

1. Select Entry No., Location Code, Zone Code, Bin Code, and Quantity as
Columns under Warehouse Entry DataItem.

2. Add the Bin table as the next DataItem.
3. Set DataItem Link between Bin and Warehouse Entry as the Bin table Code

field linked to the Bin Code field for the Warehouse Entry table.
4. Add the Bin Type table as the last DataItem for this query. Create a

DataItem Link between the Bin Type table Code field and the Bin table
Bin Type Code field.

5. Set the DataItem Filter as Pick = CONST(Yes) to only show the quantities
for bins that are enabled for picking.

Queries and Reports

[242]

6. For the dataset returned by Query, we only want the total quantity per
combination of Location, Zone, Bin, Item, and Lot. For Column - Quantity
in Warehouse Entry DataItem, set the Method Type column to Totals. The
Method will default to Sum, and the columns above Quantity will be marked
with Group By checked. This shows the grouping criteria for the aggregation
of the Quantity field:

Once DataItems and Columns have been selected, Query can be compiled and saved
in the same manner as Tables and Pages are compiled and saved. Number and name
the Query object as shown following. Query can be tested simply by highlighting it
in Object Designer and clicking on Run:

This query can be utilized internally in NAV 2015 as an indirect data source in a Page
or a Report object. Although DataItems in Pages and Reports can only be database
tables, we can define Query as a variable and then, use the Query dataset result to
populate a temporary Sourcetable. In a page, we define the SourceTableTemporary
property to Yes and then, load the table via the C/AL code located in the
OnOpenPage trigger, or in a report that we might utilize as a virtual table, such as
the Integer table, to step through the Query result.

Chapter 5

[243]

In our example, we use the Warehouse Entry table to define our temporary table
because it contains all the fields of the Query dataset. In the Page Properties, we set
the SourceTableTemporary to Yes (if we neglect marking this table as temporary,
we are quite likely to corrupt the Warehouse Entry table). In the OnOpenPage
trigger, the Query object (LotAvail) is filtered and opened. As long as the Query
object has a dataset line available for output, the Query column values can be
placed in the temporary record variable and be available for display, as shown in
the following image. Because this code is located in the OnOpenPage trigger, the
temporary table is empty when this code is executed. If the code were invoked from
another trigger, the statement Rec.DELETEALL would be needed at the beginning in
order to clear out any previously loaded data from the table:

As the Query dataset is read, the temporary record dataset will be displayed on the
page as follows:

Queries and Reports

[244]

When Query is used to supply data to Report, Integer DataItem is defined to
control stepping through the Query results. Before the report read loop begins,
Query is filtered and invoked so that it begins processing. As long as the Query
object continues to deliver records, Integer DataItem will continue looping. At
the end of the Query output, the report will proceed to its OnPostDataItem trigger
processing, just as though it had completed processing a table rather than a Query-
created dataset. This approach is a faster alternative to a design that would use
several FlowFields, particularly if those FlowFields were only used in one or two
periodic reports.

A similar approach to using a Query object to supply data to a report is described
in Mark Brummel's Blog Tip #45 at https://markbrummel.wordpress.
com/2015/03/24/tip-45-nav2015-report-temporary-property/

Query and Query component properties
There are several Query properties that we should review.

Query properties
The properties of a Query object can be accessed by highlighting the first empty line
and clicking on the Properties icon (or clicking Shift + F4 or View | Properties). The
Properties of the Query that we created earlier look like the following:

Chapter 5

[245]

We'll review three of these properties:

• OrderBy: Provides the capability to define a sort, data column by column,
and ascending or descending, giving the same result as if a key were defined
for the Query result, but without the requirement for a key.

• TopNumberOfRows: Allows the specification of the number of data rows
that will be presented by the Query object. A blank or 0 value shows all rows.
Specifying a limit can make the Query object execution complete much faster.
This property can also be set dynamically from the C/AL code.

• ReadState: Controls the state (committed or not) of data that is included and
the type of lock that is placed on the data read.

The DataItem properties
Query Line can be one of three types: DataItem, Column, and Filter. Each has its
own property set. The Query DataItem properties can be accessed by highlighting
a DataItem line and clicking on the Properties icon (or clicking Shift + F4 or View |
Properties).

Again, we'll review a selected subset of these properties.

• Indentation: Indicates the relative position of this line within the Query
object's data hierarchy. The position in the hierarchy combined with the
purpose of the line (data, lookup, or total) determines the sequence of
processing within the Query object.

Queries and Reports

[246]

• DataItemLinkType: Can only be used for the subordinate DataItem relative
to its parent DataItem; in other words, it only applies to a Query object that
has multiple DataItems. There are three value options:

 ° Use Default Values if No Match: Includes the parent DataItem row,
even when there is no matching row in the subordinate DataItem

 ° Exclude Row if No Match: Skips the parent DataItem row if there is
no matching row in the subordinate DataItem

 ° SQL Advanced Options: Enables another property, the SQLJoinType
property

• SQLJoinType: Allows the specification of one of the five different SQL
Join Types (Inner, Left Outer, Right Outer, Full Outer, or Cross Join). More
information is available in the Help sections titled SQLJoinType Property
and SQL Advanced Options for Data Item Link Types.

• DataItemTableFilter: Provides the ability to define filters to be applied to the
DataItem.

Column properties
The following image shows a Column Property screen showing the Quantity Column
for our simple Query object (the MethodType and Method properties are used here):

Chapter 5

[247]

The properties specific to Query Column controls are as follows:

• MethodType: Controls the interpretation of the following Method property.
This can be Undefined/None, Date, or Totals.

• Method: Is dependent on the value of the MethodType property:
 ° If MethodType = Date, then Method assumes that Column accesses

a date value. The value of Method can be Day, Month, or Year and
the Query result for Column will be the extracted day, month, or year
from the source date data.

 ° If MethodType = Totals, then Method can be Sum, Count, Avg,
Min, or Max. The result in Column will be based on the appropriate
computation. See the Help section for Method Property for more
information

• ReverseSign: Reverses the sign of the Column value for numeric data
• ColumnFilter: Allows the application of a filter to limit the rows in the Query

result. Filtering here is similar to, but more complicated than, the filtering rules
that apply to DataItemTableFilter. Static ColumnFilters can be dynamically
overridden and can also be combined with DataItemTableFilters. See the Help
section for ColumnFilter Property for more detailed information.

Reports
Some consider the standard library of reports provided in the NAV product
distribution from Microsoft to be relatively simple in design and limited in its
features. Others feel that the provided reports satisfy most needs because they are
simple but flexible. Their basic structure is easy to use. They are made much more
powerful and flexible by taking advantage of NAV's filtering and SIFT capabilities.
There is no doubt that the existing library can be used as a foundation for many
of the special reports that customers require to match their own specific business
management needs.

The fact remains that NAV's standard reports are basic. In order to obtain more
complex or more sophisticated reports, we must use the features that are part of the
product or feed processed data to external reporting tools. Through creative use of
these features, many different types of complex report logic may be implemented.

Queries and Reports

[248]

First, we will review different types of reports and the components that make up
the reports. We'll look in detail at the triggers, properties, and controls that make up
NAV report data processing. SQL Server Report Builder is installed by default when
the NAV system is installed. We will work with this tool for our report layout work.
However, for those who are experienced with Visual Studio Report Designer, it also
integrates into NAV 2015 and can be used instead.

We'll create some reports with our Report Designer tools. We'll modify a report
or two using Report Designer. We'll examine the data flow of a standard report
and the concept of reports used for processing only (with no printed or displayed
output). Further, we'll take a look at the Microsoft Word 2013 Report Layout design
capability, which is new in NAV 2015.

What is a report?
A report is a vehicle for organizing, processing, and displaying data in a format
suitable for outputting to the user. Reports may be displayed on-screen in the
Preview mode, output to a file in the Word or PDF format (or, when appropriately
designed, output in the CSV or XML format), e-mailed to a user (or other consumer
of the information), or printed to hardcopy the old-fashioned way. All the report
screenshots in this book were taken from Preview mode reports.

Once generated, the data contents of a report are static. When a NAV 2015 Report
is output in the Preview mode, the report can have interactive capabilities. These
capabilities only affect the presentation of the data; they do not change the actual
data contents included in the report dataset. Interactive capabilities include dynamic
sorting, visible/hidden options, and detail/summary expand/collapse functions. All
specifications of the data selection criteria for a report must be done at the beginning
of the report run, before the report view is generated. NAV 2015 also allows a
dynamic functionality for drill down into the underlying data, drill through to a
page, and even drill through into another report.

In NAV, report objects can be classified as Processing Only (such as report 795
Adjust Cost – Item Entries) by setting the correct report property (that is, by setting
the ProcessingOnly property to Yes). A ProcessingOnly report will not display
data to the user but will simply process and update data in the tables. Report objects
are convenient to use for processing because the report's automatic read-process-
write loop and the built-in Request page reduce the coding that would otherwise be
required. A report can add, change, or delete data in tables, irrespective of whether
the report is ProcessingOnly or a typical report that generates output for viewing.

Chapter 5

[249]

In general, reports are associated with one or more tables. A report can be created
without being externally associated with any table, but this is an exception. Even if a
report is associated with a particular table, it can freely access and display data from
other referenced tables.

Four NAV report designers
Any NAV 2015 report design project uses at least two Report Designer tools. The first
is Report Designer that is part of the C/SIDE development environment. The second
is the developer's choice of Visual Studio Report Designer or SQL Server Report
Builder or Microsoft Word 2013. Refer to Microsoft Dynamics NAV Development
Environment Requirements for information about the choice of tools for handling
RDLC report layouts for NAV 2015. SQL Server Report Builder is installed by default
during a NAV system install. There is also a free version of Visual Studio available at
https://msdn.microsoft.com/en-us/visual-studio-community-vs.aspx

For our work, we are going to use a combination of C/SIDE Report Designer
(C/SIDE RD) and SQL Server Report Builder (SSRB). Access to SQL Server Report
Builder is enabled by going to Tools | Options and setting Use Report Builder to
Yes, as shown in the following screenshot:

Queries and Reports

[250]

The new option, using Microsoft Word 2013, is aimed at supporting quick, simple
changes in format with the goal of allowing customers to be more self-sufficient
while requiring less technical expertise. Because our focus is on becoming qualified
NAV Developers, we will leave the discussion of layout formatting with Word
for later.

The report development process for a NAV 2015 report begins with
the data definition in C/SIDE RD. All the data structures, working
data elements, data flows, and C/AL logic are defined there. We must
start in C/SIDE RD to create or modify report objects. Once all of the
elements of the dataset definition and Request page are in place, the
development work proceeds to SSRB or VS RD or Word where the
display layout work is done (including any desired dynamic options).

When a report is developed, SSRB and VS RD each build a definition of the report
layout in the XML-structured Report Definition Language Client-side (RDLC). If
Word is used to build a NAV 2015 Report layout, the result is a custom XML part,
which is used to map the data into a report at run time. When we exit the layout
design tool, the latest copy of the RDLC code is stored in the current C/SIDE Report
object. When we exit C/SIDE Report Designer and save our Report object, C/SIDE
RD saves the combined set of report definition information, C/SIDE and RDLC, in
the database.

If we export a report object in the text format, we will be able to see the two separate
sets of report definition. XML-structured RDLC is quite obvious (beginning with the
heading RDLDATA).

Chapter 5

[251]

For an experienced NAV Classic Client report developer who is moving to Role
Tailored Client projects, it is initially a challenge to learn exactly which tasks are
done using which report development tool and to learn the intricacies of the SQL
Server or Visual Studio report designer layout tools. The biggest challenge is the fact
that there are no wizards to help with the NAV 2015 report layout. All our report
development must be done manually, one field or format at a time. If we would like
Microsoft to invest in report layout wizards for future releases, we should tell them.

We can submit suggestions on any Dynamics NAV-related topic
through Microsoft Connect at http://connect.microsoft.
com/directory/.

NAV allows us to create reports of many types with different look and feel attributes.
The consistency of the report look and feel does not have the same level of design
importance as it has for pages. There may be Patterns developed that relate to
reports, so before starting a new report format, it is best to check whether there is an
applicable Pattern.

Queries and Reports

[252]

Good design practice dictates that enhancements should integrate seamlessly in
both process and appearance unless there is an overwhelming justification for
being different. There are still many opportunities for reporting creativity. The tools
available within NAV for accessing and manipulating data for reports are very
powerful. Of course, there is always the option to output report results to other
processing/presentation tools such as Excel or third-party products.

NAV report types
The standard NAV application uses only a few of the possible report styles, most of
which are in a relatively basic format. The following are the types of reports included
in NAV 2015:

• List: A formatted list of data. A standard list is the Inventory - List report
(Report 701)

• Document: Is formatted along the lines of a pre-printed form, where a page
(or several pages) contains a header, details, and footer section with dynamic
content. Examples are Customer Invoice, Packing List (even though it's called
a list, it's a document report), Purchase Order, and Accounts Payable Check

Chapter 5

[253]

The following screenshot shows a Customer Sales-Invoice document
report preview:

Queries and Reports

[254]

The List and Document report types are defined on the basis of their layouts. The next
three report types are defined on the basis of their usage rather than their layout.

• Transaction: Provides a list of ledger entries for a particular Master table.
For example, a Transaction list of the Item Ledger entries for all of the items
matching a particular criterion, or a list of General Ledger entries for some
specific accounts, as shown in the following screenshot:

Chapter 5

[255]

• Test: These reports are printed from the Journal tables prior to posting the
transactions. Test reports are used to pre-validate data before posting. The
following is a Test report for a General Journal – Sales batch.

• Posting: Reports are printed as an audit trail as part of a "Post and Print"
process. Posting report printing is controlled by the user's choice of either a
Posting Only option or a Post and Print option. The Posting portions of both
options work in a similar manner. Post and Print runs a report that is selected
in the application setup (in the applicable Templates page in columns that are
hidden by default). The default setup uses the same report that one would
use as a Transaction (history) report (like G/L Register shown earlier). This
type of posting audit trail report, which is often needed by accountants, can
be regenerated completely and accurately at any time.

Queries and Reports

[256]

Report types summarized
The following list describes the different basic types of reports available in
NAV 2015.

Type Description
List Used to list volumes of similar data in a tabular format, such as Sales

Order Lines, a list of Customers, or a list of General Ledger Entries.
Document Used in "record-per-page header" + "line item detail" situations, such as

Sales Invoice, Purchase Order, Manufacturing Work Order, or Customer
Statement.

Transaction Generally presents a list of transactions in a nested list format, such
as a list of General Ledger Entries grouped by GL Account, Physical
Inventory Journal Entries grouped by Item, or Salesperson To-Do List by
Salesperson.

Test Prints in a list format as a prevalidation test and data review, prior to a
Journal Posting run. A Test Report option can be found on any Journal
page such as General Journal, Item Journal, or Jobs Journal. Test reports
show errors that must be corrected prior to posting.

Posting Prints in a list format as a record of which data transactions were posted
into permanent status (that is, moved from a journal to a ledger). A
posting report can be archived at the time of original generation or
regenerated as an audit trail of posting activity.

Processing
Only

Only processes data; does not generate a report output. Has the
ProcessingOnly report property set to Yes.

Many reports in the standard system don't fit neatly within the preceding categories
but are variations or combinations. Of course, this is also true of many custom reports.

Report naming
Simple reports are often named the same as the table with which they are primarily
associated, plus a word or two describing the basic purpose of the report. Common
key report purpose names include the words Journal, Register, List, Test, and
Statistics. Some examples are as follows: General Journal–Test, G/L Register,
and Customer – Order Detail.

When there are conflicts between naming that is based on the associated tables and
naming that is based on the use of the data, the usage context should take precedence
in naming reports, just as it does with pages. One absolute requirement for names is
that they must be unique; no duplicate names are allowed for a single object type.

Chapter 5

[257]

Report components – overview
What we generally refer to as the report or report object created with SSRB or VS RD
is technically referred to as RDLC Report. RDLC Report includes the information
describing the logic to be followed when processing the data (the data model), the
dataset structure that is generated by C/SIDE, and the output layout designed with
SQL Server Report Builder (or Visual Studio). RDLC Reports are stored in the NAV
database. Word report XML layouts are also stored in the NAV database. NAV 2015
allows multiple RDLC and Word formats for a single report. We will use the term
"report" irrespective of whether we mean the output, the description, or the object.

Reports share some attributes with pages including aspects of the designer, features
of various controls, some of the triggers, and even some of the properties. Where
those parallels exist, we should take notice of them. Where there is consistency in
the NAV toolset, it makes it easier to learn and to use.

Report structure
The overall structure of NAV RDLC Report consists of the following elements:

• Report properties
• Report triggers
• Request page

 ° Request page properties
 ° Request page triggers
 ° Request page controls

• Request page control triggers
• DataItems

 ° DataItem properties
 ° DataItem triggers
 ° Data columns

• Data column properties
• SSRB (RDLC) layout

 ° SSRB (RDLC) controls
• SSRB (RDLC) control properties

Queries and Reports

[258]

• Word layout

 ° Word layout template
 ° Word controls

• Word control properties

Report data overview
Report components such as Report Properties and Triggers, Request Page Properties
and Triggers, and DataItems and their Properties and Triggers define the data flow
and overall logic for processing the data. Another set of components, Data Fields and
Working Storage, are defined as subordinate to DataItems (or Request Page). These
are all designed in C/SIDE Report Dataset Designer (C/SIDE RD).

Data Fields are defined in this book as the fields contained in
DataItems (application tables). Working Storage (also referred to
as Working Data or variables) fields are defined in this book as the
data elements that are defined within a report (or other object) for
use in that object. The contents of Working Storage data elements are
not permanently stored in the database. All of these are collectively
referred to in NAV Help as columns.

These components define the data elements that are made available to SQL Server
Report Builder (SSRB) as a dataset to be used in the layout and delivery of results
to the user. In addition, Labels (text literals) for display can be defined separately
from any DataItem and included in the dataset passed to SSRB. Labels must be
Common Language Specification (CLS)-compliant names (that means labels can
contain only alpha and decimal and underscore characters and must not begin
with an underscore). If the report is to be used in a multilanguage environment,
the CaptionML label must be properly defined to support the alternate languages.

SSRB cannot access any data elements that have not been defined
within C/SIDE RD. Each data element passed to SSRB in the
dataset, whether Data Field or Working Data, must be associated
with DataItem (except for Labels).

Chapter 5

[259]

The Report Request Page is displayed when a report is invoked. Its purpose is to
allow users to enter information to control the report. Control information entered
through Request Page may include filters, control dates, other parameters, and
specifications as well as formatting or processing options to use for this report run.
Request Page appears once at the beginning of a report at run time. The following is
a sample Request Page, the one associated with Customer - List (Report 101):

Report Layout overview
The Report Layout is designed in SSRB using data elements defined in Dataset
DataItems by C/SIDE RD and then, made available to SSRB. Report Layout includes
Page Header, Body, and Page Footer.

In most cases, the body of the report is based on an RDLC Table layout control
defined in SSRB. The SSRB Table control is a data grid used for layout purposes and
is not the same as a data table stored in the NAV database. The terminology can be
confusing. When the NAV Help files regarding reports refer to a table, we have to
read very carefully to determine which meaning for "table" is intended. Further, in
this book, references to SSRB also apply in general to Visual Studio Report Designer.

Within the Report body, there can be none, one, or more Detail rows. There can
also be Header and Footer rows. The Detail rows are the definition of the primary,
repeating data display. A report layout may also include one or more Group rows,
used to group and total data that is displayed in the Detail rows.

Queries and Reports

[260]

All of the report formatting is controlled in Report Layout. The Font, field
positioning, visibility options (including the expand/collapse sections), dynamic
sorting, and graphics are all defined as part of Report Layout. The same is true for
pagination control, headings and footers, some totaling, column-width control, font,
color, and many other display details.

Of course, if the display target changes dramatically, for example, from a desktop
workstation display to a browser on a phone, the appearance of Report Layout
will change dramatically as well. One of the advantages of the NAV reporting
layout toolset is to support the required flexibility. Since we must expect significant
variability in our users' output devices (desktop video, browser, or tablet), we should
design and test any report (or other User Interface) modifications or additions to
make sure they are compatible with the various categores of output devices.

Report data flow
One of the principal advantages of the NAV report is its built-in data flow structure.
At the beginning of any report, we define DataItems (the tables) that the report will
process. We can create a processing-only report that has no data items (if no looping-
through database data is required), but this situation often calls for a code unit to be
used. In a report, NAV automatically creates a data flow process for each DataItem,
or table reference. This automatically created data flow provides specific triggers and
processing events for each data item:

• Preceding DataItem
• After reading each record of DataItem
• Following the end of DataItem

The underlying "black-box" report logic (the part that we can't see or affect)
automatically loops through the named tables, reading and processing one record at
a time. Therefore, any time, we need a process that steps through a set of data one
record at a time, it is often easier to use a report object.

The reference to a database table in a report is referred to as DataItem. The report
data flow structure allows us to nest data items (to create a hierarchical grandparent,
parent, and child structure). If DataItem2 is nested within DataItem1 and is related
to DataItem1, then for each record in DataItem1, all the related records in DataItem2
will be processed.

Chapter 5

[261]

The following example uses tables from our WDTU system. The design is for a
report to list all the scheduled instances of a Radio Show playlist grouped by Radio
Show, in turn grouped by Show Type. Thus, Radio Show Type is the primary table
(DataItem1). For each Radio Show Type, we want to list all Radio Shows of this
type (DataItem2). Further, for each Radio Show, we want to list all the scheduled
instances of the show recorded in Playlist Header (DataItem3).

Open Object Designer, select the Report object type, and click the New button. On
the Report Dataset Designer screen, we first enter the table name Radio Show Type
(or table number 50001), as we can see in the following screenshot. The DataItem
Name, to which the C/AL code will refer, is DataItem1 in our example here. Then,
we enter the second table, Radio Show, which is automatically indented relative to
the data item above (the "superior" or parent data item). This indicates the nesting of
the processing of the indented (child) data item within the processing of the superior
data item.

For our example, we have renamed DataItems to better illustrate the report data
flow. The normal behavior would be for Name in the right column to default to the
table name shown in the left column (for example, Name for Radio Show would
be <Radio Show> by default). This default DataItem Name would only need to be
changed if the same table appeared twice within the DataItem list. If there were a
second instance of Radio Show for example, we could simply name it RadioShow2
(but it would be much better to give it a name describing its purpose in context).

For each record in the parent dataitem, the indented dataitem will be fully processed,
depending on the filters and the defined relationships between the superior and the
indented tables. In other words, the visible indentation is only part of the necessary
parent-child definition.

For our example, we enter a third table, Playlist Header, and our example name of
DataItem3:

Queries and Reports

[262]

The following chart shows the data flow for this DataItem structure. The chart boxes
are intended to show the nesting that results from the indenting of DataItems in
the preceding screenshot. Radio Show DataItem is indented under Radio Show
Type DataItem. This means that for every processed Radio Show Type record, all
of the selected Radio Show records will be processed. That same logic applies to the
Playlist Header records and Radio Show records (that is, for each Radio Show record
processed, all selected Playlist records are processed):

The blocks visually illustrate how the data item nesting controls the data flow. As we
can see, the full range of processing for DataItem2 occurs for each DataItem1 record.
In turn, the full range of processing for DataItem3 occurs for each DataItem2 record.

In the NAV 2015 Role Tailored Client, report processing occurs in two separate
steps, the first tied primarily to what has been designed in C/SIDE RD, the second
tied to what has been designed in the SSRB. The data processing represented in the
preceding image all occurs in the first step, yielding a complete dataset containing
all the data that is to be rendered for the output.

Once the dataset is processed for display by the RDLC code created by the SSRB,
if the output is to be displayed in NAV Client for Windows, the results are handed
off to Microsoft Report Viewer. Microsoft Report Viewer provides the NAV 2015
reporting capabilities such as various types of graphics; interactive sorting and
expand/collapse sections; output to PDF, Word, and Excel; and other advanced
features. Other clients are served by rendering tools that address each client's
capabilities and limitations.

Chapter 5

[263]

Report components – detail
Earlier, we reviewed a list of the components of a Report object. Now, we're going
to review detailed information about each of these components. Our goal here is to
understand how the pieces of the report puzzle fit together.

C/SIDE Report properties
The C/SIDE RD Report Properties are shown in the following screenshot. Some of
these properties have essentially the same purpose as similarly named properties in
pages and other objects:

The properties in the preceding image are defined as follows:

• ID: The unique report object number.
• Name: The name by which this report is referred to within the C/AL code.
• Caption: The name that is displayed for this report; Caption defaults to

Name.
• CaptionML: The Caption translation for a defined alternative language.
• Description: For internal documentation.

Queries and Reports

[264]

• UseRequestPage: Yes or No, controlling whether or not the report will begin
with Request Page for the user parameters to be entered.

• UseSystemPrinter: Determines whether the default printer for the report
should be the defined system printer, or whether NAV should check for a
setup-defined User/Report printer definition. More on User/Report printer
setup can be found in the NAV application help.

• EnableExternalImages: If Yes, this allows links to external (non-embedded)
images on the report. Such images can be outside the NAV database.

• EnableHyperLinks: If Yes, this allows links to other URLs, including other
reports or to pages.

• EnableExternalAssemblies: If Yes, this allows the use of external custom
functions as part of the report.

• ProcessingOnly: Set to Yes when the report object is being used only to
process data and no reporting output is to be generated. If this property is set
to Yes, then it overrides any other property selections that would apply in a
report-generating situation.

• ShowPrintStatus: If this property is set to Yes and the ProcessingOnly
property is set to No, then a Report Progress window, including a Cancel
button, is displayed. When ProcessingOnly is set to Yes, if we want a Report
Progress Window, we must create our own dialog box.

• TransactionType: This can be in one of the four basic options: Browse,
Snapshot, UpdateNoLocks, and Update. These control the record locking
behavior to be applied in this report. The default is UpdateNoLocks. This
property is generally only used by advanced developers.

• Permissions: This provides report-specific setting of permissions, which are
the rights to access data, subdivided into Read, Insert, Modify, and Delete.
This allows the developer to define report and processing permissions that
override the user-by-user permissions security setup.

• PaperSourceFirstPage, PaperSourceDefaultPage, and PaperSourceLastPage:
All allow the choice of the paper source tray based on information in the
fin.stx file (fin.stx is an installation file that contains the active language
messages and reserved words in addition to some system control parameters
that are defined by Microsoft and are not modifiable by anyone else).

• PreviewMode: Specifies the choice of the default Normal or PrintLayout,
causing the report to open up in either the interactive view allowing
manipulation or in a fixed format on a printer.

Chapter 5

[265]

• DefaultLayout: Specifies whether the report will use either the Word or the
RDLC layout.

• WordMergeDataItem: Defines the table on which the outside processing
loop will occur for a Word layout (equivalent to the effect of the first
DataItem on an RDLC layout).

SQL Server Report Builder – Report
properties
The SSRB Properties Window is docked by default on the right-hand side of the
screen (as with most SSRB windows, it can be redocked, hidden, or float).

By highlighting various report elements (individual cells, rows, columns, and so
on), we can choose which set of properties we want to access, those of the whole
Report, Body, Tablix, or individual Text Boxes. Once we have chosen the desired set
of properties, we can access these properties in one of two ways. The obvious way
is through the window that opens up when we choose which control properties to
display. The following screenshot shows the properties of Text Box with the Font
properties highlighted and expanded.

Queries and Reports

[266]

The Font properties are the properties most often accessed to change the appearance of
a report layout, although a variety of other field formatting properties are also utilized:

Another way to access property details is to highlight the element of interest, right
click and select the Properties option for that element. This opens up a control-
specific Properties window, which includes a menu of choices of property categories
to access. In the following image, Text Box Properties were opened and the Font
properties accessed for display:

Chapter 5

[267]

Some may feel it's easier to find and change all the properties options here. This
applies to Report-level properties controlling macro elements, such as Paper
Orientation, as well as to control-level properties controlling micro elements such
as font size. Report-level properties also include the facility to include expressions
that affect the behavior or controls. The expression shown in the following image
is generated by NAV to support C/SIDE field formatting properties such as Blank
When Zero:

Report triggers
The following screenshot shows the C/SIDE RD Report triggers available in a report:

Report Trigger can be explained as follows:

• Documentation(): Documentation is technically not a trigger, since it can
hold no executable code. It will contain whatever documentation we care to
put in there. There are no format restrictions.

• OnInitReport(): Executes once when the report is opened.
• OnPreReport(): Executes once after Request Page completes. All the

DataItem processing follows this trigger.
• OnPostReport(): If the report is completed normally, this trigger executes

once at the end of all of the other report processing. All the DataItem
processing precedes this trigger.

Queries and Reports

[268]

Request Page Properties
The Request Page properties are a subset of the Page properties that are covered in
detail in Chapter 4, Pages – The Interactive Interface. Usually, most of these properties
are not changed simply because the extra capability is not needed. An exception is
the SaveValues property, which, when set to Yes, causes the entered values to be
retained and redisplayed when the page is invoked another time. A screenshot of
the Request Page properties follows:

Request page triggers
Request Pages have a full complement of triggers, thus allowing for complex
pre-report processing logic. Because of their comparatively simplistic nature,
Request Pages seldom need to take advantage of these trigger capabilities.

Chapter 5

[269]

DataItem properties
The following screenshot shows the properties of DataItem:

Queries and Reports

[270]

The following are descriptions of frequently used DataItems properties:

• Indentation: This shows the position of the referenced DataItem in the
hierarchical structure of the report. A value of 0 (zero) indicates that this
DataItem is at the top of the hierarchy. Any other value indicates that the
subject DataItem is subordinate to (that is nested within) the preceding
DataItem.

• DataItemTable: This is the name of the NAV table assigned to this DataItem.
• DataItemTableView: This is the definition of the fixed limits to be applied to

the DataItem (the key, ascending or descending sequence, and that filters that
can be applied to this field).

If we don't define a key, then the users can choose a key to control the
data sequence to be used during processing. If we do define a key in
the DataItem properties and in the ReqFiltgerFields property, we do
not specify any Filter Field names to be displayed; this DataItem will
not have FastTab displayed as part of Request Page. This will stop the
user from filtering this DataItem, unless we provide the capability in
the C/AL code.

• DataItemLinkReference: This names the parent DataItem to which this
DataItem is linked.

• DataItemLink: This identifies the field-to-field linkage between this
DataItem and its parent DataItem. This linkage acts as a filter because only
those records in this table will be processed that have a value that matches
with the linked field in the parent data item. If no field linkage filter is
defined, all the records in the child table will be processed for each record
processed in its parent table.

• ReqFilterFields: This property allows us to choose certain fields to be named
in Report Request Page, to make it easier for the user to access them as filter
fields. As long as Report Request Page is activated for DataItem, the user
can choose any available field in the table for filtering, irrespective of what
is specified here.

• CalcFields: This names FlowFields that are to be calculated for each record
processed. Because FlowFields do not contain data, they have to be calculated
to be used. When FlowField is displayed on a page, NAV automatically does
the calculation. When FlowField is to be used in a report, we must instigate
the calculation. This can either be done here in this property or explicitly
within the C/AL code.

Chapter 5

[271]

• MaxIteration: This can be used to limit the number of iterations that the
report will make through this DataItem. For example, we would set this to 7
for processing with the virtual Date table to process one week's data.

• PrintOnlyIfDetail: This should only be used if this DataItem has a child
DataItem, that is, DataItem indented/nested below it. If PrintOnlyIfDetail is
Yes, then controls associated with this DataItem will only print when data is
processed for the child DataItem.

• Temporary: Specifies that a temporary table is supplying the dataset to
populate the columns for this DataItem.

DataItem triggers
Each DataItem has the following triggers available:

DataItem triggers are where most of the flow logic is placed for a report. Developer-
defined functions may be freely added, but generally, they will be called from within
these three triggers.

• OnPreDataItem() is the logical place for any preprocessing to take place
that can't be handled in Report or DataItem properties or in the two report
preprocessing triggers

• OnAfterGetRecord() is the data "read + process loop". The code placed here
has full access to the data of each record, one record at a time. This trigger
is repetitively processed until the logical end of table is reached for this
DataItem. This is where we would typically access data in related tables.
This trigger is represented on our report Data Flow diagram as any one
of the boxes labeled DataItem Processing Loop.

• OnPostDataItem() executes after all the records in this DataItem are
processed, unless the report is terminated by means of a User Cancel
or by execution of a C/AL BREAK or QUIT function, or by an error.

Queries and Reports

[272]

Creating a Report in NAV 2015
Because our NAV report layouts will all be developed in SSRB or Visual Studio,
our familiarity with NAV C/SIDE will only get us part way to having NAV report
development expertise. We've covered most of the basics for the C/SIDE part of
NAV report development. Now, we need to dig into the RDLC part. If you are
already an SSRB or Visual Studio reporting expert, you will not spend much time
on this part of the book. If you know little or nothing about either of these tools,
you will need to experiment and practice.

Learn by experimentation
One of the most important learning tools available is experimentation. Report
development is one area where experimentation will be extremely valuable. We
need to know which report layouts, control settings, and field formats work well
and which do not. The best way to find out is by experimentation.

Create a variety of test reports, beginning with the very simple and getting
progressively more complex. Document what you learn as you make discoveries.
You will end up with your own personal Report Development Help documentation.
Once we've created a number of simple reports from scratch, we should modify the
test copies of some of the standard reports that are part of the NAV system.

We must always make sure that we are working on test copies, not the originals!

Some reports will be relatively easy to understand, others that are very complex
will be difficult to understand. The more we test, the better we will be able to
determine which standard NAV report designs can be borrowed for our work
and where we will be better off starting from scratch. Of course, we should always
check to see whether there is a Pattern that is applicable to the situation on which
we are working.

Chapter 5

[273]

Report building – phase 1
Our goal is to create a report for our WDTU data that will give us a list of all the
scheduled radio show instances organized within Radio Show organized by Radio
Show Type, as shown in the following screenshot:

The easy way to create the preceding report data structure definition is simply type
the letter D in the Data Type column, tab to the Data Source column, enter the target
table number (in this case 50001, then 50000, and then 50002) in the Data Source
column, drop to the next line, and do it again. Then, save the new report skeleton as
Report 50001, Shows by Type.

Before we go any further, let's make sure that we've got some test data in our tables.
To enter data, we can either use the pages that we built earlier or, if those aren't done
yet, we can just Run the tables and enter some sample data. The specifics of our test
data aren't critical.

Queries and Reports

[274]

We simply need a reasonable distribution of data so that our report test will be
meaningful. The following is an example minimal set of data:

Since the C/SIDE part of our report design is relatively simple, we can do it as part
of our Phase 1 effort. It's simple because as we aren't building any processing logic,
we don't have any complex relationships to address. We just want to create a nice,
neat, nested list of data.

Our next step is to define the data fields that we want available for processing and
output by SSRB. By clicking on the Include Caption column, we can cause the
Caption value for each field to be available for use in SSRB. At this point, we should
do that for all the data fields. If some are not needed in our layout design, we can
later return to this screen and remove the check marks, where unnecessary. Please
note that the Name column value will end up as the SSRB dataset field name; to
make sure that it is easy to understand, describe what the data is and its source.

Chapter 5

[275]

Each of the subordinate nested DataItems must be properly linked to its parent
DataItem. Playlist Header DataItem is joined to Radio Show DataItem by the
Playlist Header Radio Show No. field and the Radio Show "No." field. Radio Show
DataItem is joined to Radio Show Type DataItem by the Radio Show "Type" field and
the Radio Show Type "Code" field. The Radio Show portion of the dataset returned is
limited by setting PrintOnlyIfDetail to Yes. This will skip the Radio Show record so
that it will not be sent to SSRB (if no Playlist Header records are associated with this
Radio Show).

Queries and Reports

[276]

The other data that we can pass from C/SIDE RD to SSRB are the labels. Labels will
be used later as captions in the report and are enabled for multilanguage support.
Let's create a title label to hand over the fence to SQL Server Report Builder. Go to
the View menu, choose Labels to open Report Label Designer. Enter the following
label definition:

Now that we have our C/SIDE dataset definition completed, we should save and
compile our work before doing anything else. Then, before we begin our SSRB work,
it's a good idea to check that we don't have any hidden errors that will get in our
way later. The easiest way to do that is just to Run what we have now. What we
expect to see is a basic Request Page display allowing us to run an report with no
layout defined.

Report building – phase 2
As mentioned earlier, there are several choices of tools to use for NAV report layout
development. The specific screen appearance depends somewhat on which tool is
being used.

To begin our report development work in SQL Server Report Builder, we must have
our C/SIDE dataset definition open in the Design mode. Then, go to View | Layout
to open SQL Server Report Builder. If we have previously done SSRB development
work on this report and saved it, that work will be displayed in SSRB ready for our
next effort. In this case, since we are just starting, we will see the following:

Chapter 5

[277]

At the top of the screen is a tab labeled Insert. When we click on this tab, the ribbon
shown in the next image will be displayed:

Before we start on our sample report SSRB work here, study some
of the information on report design in NAV Developer and IT Pro
Help. In particular, you should review Walkthrough: Designing a
Customer List Report and Walkthrough: Designing a Report from Multiple
Tables. These walkthrough scripts will provide additional helpful
information.

Queries and Reports

[278]

Since we're going to have a page header, let's start by adding that to our layout.
Right-click on the Header icon, and then, click on Add Header. Note that if we want
Report Header to appear on each page, we must use the SetData and GetData
functions in association with the hidden text boxes (see the Help article titled How to
Print Report Header Information on Multiple Pages).

Next, we will add some fields to Page Header. First, we will expand two of the
categories in the Report Data panel, which is on the left side of our layout screen. The
two categories that we want to expand are Parameters, which contains the Captions
that we checked plus any defined Labels, and DataSets, which contains the data
elements passed from our C/SIDE RD.

Chapter 5

[279]

When we expand the DataSet result, we can see the importance of our data field
Names being self-documenting. Having done so makes it much easier to remember
what we defined in our DataSet and with which DataItems they are associated. This
habit will be particularly important when we have multiple fields with the same
name from different DataItems (such as Code or Description or Amount).

DataSet represents a record format in which all defined fields are present for all
DataItems. This is a classic "flat file" format where the hierarchical data structure
has been "flattened" out to make it easier to pass from one environment (NAV) to
another (in this case, SQL Server Report Builder).

Now, we will add the report title that we defined as a label earlier in C/SIDE RD. Drag
the Report Title field over to the Page Header workspace and position it where we
want it to be. Now, expand the Built-in Fields Section in the Report Data panel. We
will add some of these fields, such as User ID, Execution Time, and Page Number to
our Page Header. We will position these fields wherever we think appropriate.

At this point in time, it would be a good idea to save our work and test to see what
we have so far:

1. Click on the top-left round graphic icon or the disc icon (or Ctrl + S) to save
the design as RDLC.

2. Click on the round graphic icon and then the Exit Report Builder button or
the X box at the top-left of the screen (or Alt + F4) to return to C/SIDE RD.

3. Exit Report Dataset Designer.
4. Respond Yes to the The layout of report id 50001 has changed…Do you

want to load the changes? Question.
5. Then, we'll see a familiar window asking us Do you want to save Report

50001 Shows by Type? Save and compile the report.

Now, Run the report. The Preview output should look something like the following:

Not particularly impressive, but not bad if this is our first try at creating a NAV 2015
report (By the way, the User name of ARTHUR\DAVE in the lower right corner of
the image is because the authors are running tests on a computer named Arthur with
a login of Dave.).

Queries and Reports

[280]

The wrapped report fields show us that we need to make those text boxes wider.
This would be a good point to do some experimenting with positioning or adding
other heading information such as "Page" in front of the page number. When we
highlight a field, the properties of that field are displayed and are available for
modification, in the Properties window. A few simple changes and our Report
Heading could look like the following:

We could even experiment with various properties of the heading fields, choosing
different fonts, the boldface, different colors, etc. Because we only have a small
number of simple fields to display (and could recreate our report if we have to do
so), this is a good time to learn more about some of the report appearance capabilities
that SSRB provides.

Report building – phase 3
Finally, we are ready to layout the data display portion of our Radio Shows by
Type report. The first step of this phase is to layout the fields of our controlling
DataItem data in such a way that we can properly group the data of the subordinate
DataItems.

Once again, Design the report and View | Layout so that the SSRB report layout
screen is displayed with the Insert ribbon visible. We are now done with Page
Heading, and from here on, all our work will be done in the body of the report
design surface.

Click on the List icon in the Insert ribbon and drop a List control into the body of
the report design surface. Position the control at the top left of the layout body. Since
we're going to define six layout lines to hold the necessary data and header controls,
we may want to expand the List control and work area (although this can be done
later, as needed).

1. Click in the List control so that a shaded area appears on the top and the left
of the control.

2. Right-click in the shaded area and select Tablix Properties.
3. Right-click on the dropdown arrow in the Dataset Name box to set the

Dataset name value to DataSet_Result. This causes the List control to
reference our incoming NAV data.

Chapter 5

[281]

4. Click OK to save the new Tablix property setting.
5. Right-click again in the List control's shaded area and select Row Group and

then Group Properties:

6. In the Group Properties screen, select the General tab, in the Group
expressions area, click on Add, and then in Group on:, select [Code-
RadioShowType], because we want our data output grouped by the
Type of Radio Show:

7. Click OK to return to the report layout design surface. Click on the Table
control icon, choose Insert Table, and click in the List control to place the
new Table. This will be the container for our Radio Show Type DataItem
fields.

Queries and Reports

[282]

The empty control will start with two rows and three columns. Since we're only
going to display two data fields (Code and Description), we only need two columns.
Highlight the rightmost column (click in the body so that a shaded area appears on
the left and the top of the control, then click in the shaded area above the column),
right-click (in this shaded area), and chose the Delete Columns option.

Because this section of our report acts as a heading to subordinate sections, we will
delete the Data row from the Table control and replace it with a second Header row.
Once again, click in the shaded area to highlight the Data row, select the Delete
Rows option, respond OK to the confirmation message, highlight the Header row,
and insert a second Header row. We now have two rows and two columns of Text
boxes (cells) ready for our data.

From the Parameters data list in the Report Data panel, grab the Code_
RadioShowTypeCaption and drop it into the top left table cell. Drag the
Description_RadioShowTypeCaption and drop it into the top right table cell.
Stretch out the cells so the data is likely to fit without wrapping.

Our next step is to place some data fields in the Table control. Click in the lower left
cell of the Table control. A field list icon will be displayed. Click on the icon, and we
will see all the fields in Dataset_Result.

Select Code_RadioShowType for the bottom left cell and Description_
RadioShowType for the bottom right cell.

We are at another good point to save and check our work. If you are one of those
people who like to do as much as possible from the keyboard, use Ctrl + S (to save
RDLC), Alt + F4 (to exit SSRB), Esc (to exit C/SIDE RD), Enter (to load the changed
RDLC), Enter (to save and compile), and then Alt + R to Run the report. You'll
probably have to use your mouse to respond to Request Page.

Chapter 5

[283]

Don't worry about the vertical and horizontal layout of our output. We can fix the
layout later. We should get as many instances of the Radio Show type printed from
our test data as we have Types of entries selected from the Playlist Header table
(based on any filters that we applied).

Assuming that our output looks pretty much as we expected (a simple list of Show
Types with column headings), we can move on to the next layer of definition. This
time we will define how the Radio Show data fields will be shown, including the
fact that this set of data is grouped as subordinate to the Type field.

Insert another Table control in to the report design surface inside the list control.
Position this control below the last Table control in a position that will show its
relation to the Type data records. Usually, this will involve indenting.

Click on the control to cause the shaded outer area to display. Highlight the Header
row and delete it. Highlight the Data row, right-click on it, and choose Insert Row –
Inside Group (Above or Below doesn't matter this time). Now, to confirm that our
List control is associated with the DataSet Result, do the following:

1. Right-click in the List control, so that a shaded area appears to the top and
the left of the control.

2. Right-click in the shaded area and select Tablix Properties.
3. The Dataset name box should contain the value DataSet_Result.
4. Click OK to save the Tablix property setting.

In the bottom row of our second Table control, cause the field list icon to display,
and then choose a field for each of the three cells (No., Show_Description, and Run_
Time). In the top row, we could choose Parameter captions as we did earlier, but
perhaps, we want captions that are different to those that came across from C/SIDE
RD. We could have used Labels here if we had defined them in C/SIDE RD. Or,
we can just do the simple thing, type in the column headings we want (Show No.,
Name, and Run Time), overwriting the default headings (doing this will not yield
multilanguage compliant captions). Highlight the middle column (Name) and stretch
it out so that a long name will display on one line rather than wrapping. Now, once
again, it's time to save and test.

Our third (and final) set of data for this report will hold data from Playlist Header
DataItem. Right-click in the grey area of the top row of the second Table control.
Select Row Group | Group Properties. In the Group Properties screen, select the
General tab, in the Group expressions area, click on Add, and then in Group on:,
select [Code-RadioShow], because we want the next set of data output grouped by
Radio Show Code. When we return to the layout screen, we will see that the grey
area next to the rows for this table will have changed from the data icon to a group
brace icon that includes both of what were previously marked as data rows.

Queries and Reports

[284]

Right-click on the grey area for the bottom row, and choose Insert Row | Inside
Group – Below. Repeat so that there are now two empty rows at the bottom of
the second table area. Fill the rightmost two columns of these two rows. In the
top of these two rows, insert captions from the Parameters list for PostingDate
and StartTime. In the bottom row, use the field lists to insert data elements for
PostingDate and StartTime. The final layout should look similar to the following:

Finally, we save our RDLC code (Ctrl + S), exit SSRB (Alt + F4), exit CSIDE RD (Esc,
Enter), and save and compile (Enter). Let's Run our report and see what we've got.
While this report is not beautiful, it is serviceable, particularly for the first try. One
improvement that we should make before we show it to very many people is to
make its formatting more attractive.

A couple of very simple changes would be to make the heading rows bold (to stand
out) and format the date and time fields, so they would show properly (not showing
as SQL DateTime fields). Some easy ways to do this in the layout screen is as follows:

1. Click in a table so that the grey outline displays. Highlight the heading row.
Click on the bold icon in the top ribbon. The text for the row should now
show bolded.

2. Right-click in the cell for the date field. Choose Textbox Properties. From the
list of property categories, choose Number and then Date and the preferred
Date format. Do essentially the same thing for the time field.

Chapter 5

[285]

After some minor formatting, the result should look similar to the
following image:

Modifying an existing report with Report Designer
or Word
The basic process that we must follow to modify an existing report is the same
whether the report is one of the standard reports that comes with NAV 2015 or a
custom report that we are enhancing in some way. An important discipline to follow
in all cases where we are modifying a report that has been in production is NOT to
work on the original, but on a copy. In fact, if this is a standard report that we are
customizing, we should leave the original copy alone and do all our work on a copy.
Not only is this safer because we will eliminate the possibility of creating problems
in the original version, but it will make upgrading easier later on. Even when
working on a new custom report, it is good practice to save intermediate copies with
another object number for backup. This allows for returning to a previous working
step should the next development step not go as planned.

While it is certainly possible in NAV 2015 to add a new layout to an existing dataset
without disturbing the original material, the potential for a mistake creating a
production problem is such that best practice dictates working on a copy, and
not the original.

Queries and Reports

[286]

Just like report construction, report modification requires the use of two toolsets.
Any modification that is done to the processing logic or the definition of the
data available for report output must be done using C/SIDE Report Designer.
Modification to the layout of a report can be done using SQL Server Report Builder
(SSRB – just like we've been doing), or using Visual Studio Report Designer (VS
RD) or, when a Word layout is available, using Microsoft Word 2013. Each report
can have either or both an RDLC and a Word layout, but for those reports unlikely to
need modification by a nonprogrammer, a Word layout would not be very useful.

All NAV 2015 report layouts can be modified by a developer using SSRB or VS RD
because all standard reports are developed with RDLC layouts. A small number
of standard reports also have Word layouts available in the initial distribution of
NAV 2015. These are Reports 1304, 1305, 1306, and 1307. It is quite likely that future
releases of NAV will have additional report layouts available in the Word format. In
the meantime, if we want other reports, standard or custom, to have the Word layout
options available, we will have to create them ourselves. The primary advantage
of having Word layout options for reports is to allow modifications of the layouts
by a trained user/developer using only Word. Because the modifications must still
conform to good (and correct) report layout practices, appropriate training, careful
work, and considerable common sense are needed to make such modifications, even
though the tool is Microsoft Word.

If we decided that we want to have a Word version of the layout for our report 50001
– Shows by Type, the process would be along the following lines. First, we would
create a Word layout in the form of a Word document. We can either start in Word
and then import the resulting template document into our report, or start in C/SIDE
Report Designer and then create a blank Word document where we will build our
Word format. This is done by opening Report Designer as before and then clicking
on Tools | Word Layout | New. This will immediately create an empty Word layout
inside our report object.

Chapter 5

[287]

The next step is to export this Word layout so that we can work on it in Word 2013.
Exporting is done in the same place as creating the new layout, this time by clicking
on Tools | Word Layout | Export. After saving the exported Word document, we
proceed to Word and open it. We must have the Developer tab enabled on the Word
command ribbon. After opening the Word layout document, click on the Developer
tab and then the XML Mapping Pane icon. As we might expect, this will open up the
XML Mapping, which will show the XML data structure available from the report.

Queries and Reports

[288]

When we expand the XML groups, we can see the same type of data list that we saw
earlier in SQL Server Report Builder (or would have seen had we used Visual Studio
Report Designer). From this point, we can use standard Word capabilities combined
with our report Caption, Label, and DataSet fields to create a report layout.

Additional information on report layout capabilities and management are
available in both the system Help and online in YouTube videos. Refer to the Help
article on Designing Report Layouts (accessed from the Microsoft Dynamics
NAV Development Environment). For applicable YouTube videos, search using
combinations of keywords such as "How do I?," NAV, Word, Report, etc. An add-on
tool for creating NAV Report Word layouts, Jet Express for Word, is also available.

When our work on the report layout is complete, we save the Word document in the
normal fashion. At this point, we return to C/SIDE RD and click on Tools | Word
Layout | Import to import the Word layout template that we have just created/
modified. The new layout can be tested from Role Tailored Client. First, we have to
add the layout to the list of available Custom Report Layouts. From Role Tailored
Client, we use the Search box in the upper-right corner, search for Layout, and select
Custom Report Layouts. The following screen will be displayed:

Chapter 5

[289]

Following the guidance provided in the Help article titled Managing Report
Layouts (accessed from Microsoft Dynamics NAV Client), we can maintain
a list of available custom report layouts and add our new layout to the list.

Finally, we can do our testing by choosing a report layout and running the report
from the Report Layout Selection screen. This screen is also accessed by searching for
Layout and selecting Report Layout Selection. We can choose either a standard (built-
in) layout (RDLC or Word) or Custom Layout. The choices stored in the NAV database
and can be specific to individual companies and database tenants. This screen as well
as the Custom Report Layouts screen can be accessed through RTC so that users with
appropriate permissions can maintain and assign applicable report layouts:

Queries and Reports

[290]

Runtime rendering
When NAV outputs a report (to screen, to hardcopy, or to PDF), NAV will render
using the printer driver for the currently assigned printer. If we change the target
printer for a report, the output results may change depending on the attributes
of the drivers.

When we preview a report, by default, it will be displayed in an interactive preview
mode. This mode will allow us to access all of the dynamic functions designed into
the report, functions such as sorting and toggling for expand/collapse display, and
drilling into the report. However, it may not look like the hardcopy that we get if we
print it. If we click on the Print Layout button (circled in the following screenshot),
then the printer layout version of the report will be displayed:

In most cases, the display on screen in the Preview – Print Layout mode will
accurately represent how the report will appear when actually printed. In some cases
though, NAV's output generation on screen differs considerably from the hardcopy
version. This appears to occur most likely when the selected printer is some type of
special-purpose printer (for example, a barcode label printer).

Inheritance
Inheritance operates for data displayed through report controls just as it does for page
controls, but it is obviously limited to print-applicable properties. Properties, such as
decimal formatting, are inherited, but as we saw with our date and time fields, not all
formatting is inherited. Remember that if the property is explicitly defined in the table,
it cannot be less restrictively defined elsewhere. This is one of the reasons why it's so
important to focus on table design as the foundation of the system.

Interactive report capabilities
NAV 2015 reports can have interactive features enabled. Of course, these features
are only available when the report is displayed in the preview mode; once the report
is "printed" whether to a PDF, Word, Excel, or an output device, the interactive
capabilities are no longer present.

Chapter 5

[291]

Interactive sorting
Among the useful interactive reporting features are interactive sorting and data
expand/collapse. Two standard reports that are examples of the interactive sort
feature are Customer – Top 10 List (Report 111) and Customer – Summary Aging
(Report 105). We'll take a look at Report 111 to see how NAV does it.

Since we're going to open Report in Designer, there is a possibility that through an
unlucky combination of keystrokes, we could accidentally change this production
report; therefore, the first thing that we want to do is make a copy for our inspection.
Open Report 111 in C/Side Report Designer and then Save As Report object 50111
with a different name, such as Customer – Top 10 List Test. Once this is done, we
can safely do almost anything that we want to Report 50111 because we can simply
delete the object when we are done with it.

First, let's Run Report 50111 (or 111, they will look the same). At the top of four
of the report columns, we will see an up/down arrowhead icon representing an
interactive sort control as highlighted in the following image:

Queries and Reports

[292]

Now, open test report 50111 in C/SIDE RD and then View | Layout for SSRB
review. Highlight the BalanceLCY_CustomerCaption textbox, as shown in the
following image. Show the properties; choose the Interactive Sorting tab. As we
can see here, interactive sort options are set for this column, to sort the details by
the value of BalanceLCY_Customer. If we look at the properties of the other three
columns that have interactive sorting enabled, we see similar setups:

Interactive visible/not visible
As an experiment, we'll add a toggle to the rightmost column of our test report 50111
to make it visible or not visible at the user's option. In most cases, this feature would
not be controlled by the user but by a parameter such as one tied to the user's login.
We can set the Visibility ToggleItem property to the variable that we want to use as
a toggle for the visibility control of the data that will be visible/hidden. This time we
choose the Customer No. column and set the Balance column to initially be visible
when the report is first run.

Chapter 5

[293]

Save RDLC, exit SSRB, exit C/SIDE RD, save, compile, and Run the modified report.
We will see an image like the top image in the following figure. If we click on the plus
sign icon located above the No. column caption, plus will change to minus, and the
rightmost column will be hidden, as shown in the partial image on the bottom of the
following figure. If we click on minus, the Balance (LCY) column will again be visible:

Request page
Request Page is a page that is executed at the beginning of a report. Its presence
or absence is under developer control. Request Page looks similar to the following
screenshot based on one of the standard system reports, the Customer – Order
Detail report, Report 108:

Queries and Reports

[294]

There are three FastTabs in this page. The Customer and Sales Order Line FastTabs
are tied to the data tables associated with this report. These FastTabs allow the
user to define both data filters and Flow Filters to control the report processing.
The Options FastTab exists because the software developer wanted to allow some
additional user options for this report.

Add a Request Page option
Because we have defined the default sort sequences (DataItemTableView),
except for the first DataItem, and we have not defined any Requested Filters
(ReqFilterFields), the default Request Page for our report has only one DataItem
FastTab. Because we have not defined any processing options that would require
user input before the report is generated, we have no Options FastTab.

Our goal now is to allow the user to optionally input text to be printed at the top of
the report. This could be a secondary report heading, instructions on interpreting
the report, or some other communications to the report reader.

1. Open Report 50001 in C/SIDE Report Designer.
2. Access the C/AL Globals screen via View | C/AL Globals.
3. Add a global variable named UserComment with DataType of Text. We will

not define Length; this will allow the user to enter a comment of any length.

4. Add this variable as a data Column to be passed to SSRB. The Column must
be subordinate to a DataItem. We do not need a caption, as we will not label
this field in the report layout.

Chapter 5

[295]

5. Access Request Options Page Designer via View | Request Page.
6. Enter three lines – a Container, Group, and Field with SourceExpr of

UserComment.
7. Exit Page Designer.

8. Access SQL Server Report Builder via View | Layout.

9. Add Text Box to the Layout design surface just below the Report Title,
stretching the box out as far as the report layout allows.

10. Expand DataSet_Result in the Report Data panel.
11. Drag the User Comment field to the new text box.

12. Save RDLC, exit SSRB, save, compile, and exit C/SIDE RD.
13. Run Report 50001.

Queries and Reports

[296]

In the Request page, users can enter their comments, as shown in the following
screenshot:

The report heading then shows the comment in whatever font, color, or other display
attribute that the developer defined.

Because we did not specify the maximum length on our UserComment field, we can
type in as much information as we want. Try it – type in a whole paragraph for a test.

Chapter 5

[297]

Processing-Only reports
One of the report properties that we reviewed earlier was ProcessingOnly. If this
property is set to Yes, then the report object will not output a dataset for display or
printing, but will simply do the processing of the data that we program it to do. The
beauty of this capability is that we can use the built-in processing loop of the NAV
report object along with its sorting and filtering capabilities to create a variety of data
updating routines with a minimum of programming. The use of report objects also
gives us access to the Request Page to allow user input and guidance for the run. We
could create the same functionality by using codeunit objects and by programming
all of the loops, the filtering, the user-interface Request Page, and so on ourselves.
However, with ProcessingOnly Report, NAV gives us a lot of help and makes it
possible to create some powerful routines with minimal effort.

At the beginning of the run of a ProcessingOnly report, there is very little user
interface variation compared to a "normal" printing report. The ProcessingOnly
Request Page looks much as it would for a printing report, except that the Print and
Preview choices are not available. Everything else looks the same. Of course, we
have the big difference of no visible output at the end of processing.

Creative report plagiarism and patterns
Just as we discussed in the chapter on pages, when we want to create a new report
of a certain type that we haven't done recently (or at all), it's a good idea to find
another report that is similar in all important aspects, and study it. We should also
check whether there is a NAV Pattern defined for an applicable category of report.
At the minimum, in both of these investigations, we will learn how the developers
of NAV solved a data flow or totaling or filtering challenge. In the best case scenario,
we will find a model that we can follow closely, respectfully plagiarizing (copying) a
working solution, thus saving ourselves much time and effort.

Often, it is useful to look at two or three of the standard NAV reports for similar
functions to see how they are constructed. There is no sense in reinventing the design
for a report of a particular type, when someone else has already invented a version
of it. Not only this, but they have also provided us with the plans and given us the
ability to examine the C/AL code as well as the complete structure of the existing
report object.

When it comes to modifying a system such as NAV, plagiarism is a very effective
research and design tool. In the case of reports, our search for a model may be
based on any of the several key elements. We might be looking for a particular data
flow approach and find that the NAV developers used the Integer table for some
DataItems (as many reports do).

Queries and Reports

[298]

We may need a way to provide some creative filtering similar to what is done in an
area of the standard product. We might want to provide user options to print either
details or a couple of different levels of totaling, with a layout that looks good no
matter which choice the user makes. We might be dealing with all three of these design
needs in the same report. In such a scenario, it is likely that we will be using multiple
NAV reports as our models, one for this feature, another for that feature, and so forth.

If we have a complicated, application-specific report to create, we may not be able to
directly model our report on a model that already exists. However, often, we can still
find ideas in standard reports that we can apply to our new design. We will almost
always be better off using a model rather than inventing a totally new approach.

If our design concept is too big a leap from what has been done previously, we should
consider what we might change so that we can build on the strengths of C/AL and
existing NAV routines. Creating entirely new approaches may be very satisfying
(when it works), but too often, the extra costs exceed the incremental benefits.

For more NAV reporting information and ideas, please refer to Claus Lundstrom's
blog: http://www.mibuso.com/blogs/clausl.

Summary
In this chapter, we focused on the structural and layout aspects of NAV Report
objects. We studied the primary structural components, data, and format, along with
Request Page. We also experimented with some of the tools and modestly expanded
our WDTU application.

In the next chapter, we are going to begin exploring the key tools that pull the pieces
of the C/SIDE development environment, and the C/AL programming language.

Review questions
Q.1. The following are defined in C/SIDE Report Designer. Choose three.

a. DataItems
b. Field display editing
c. Request Page
d. Database updating

Chapter 5

[299]

Q.2. Reports can be set to the ProcessingOnly status dynamically by the C/AL code.
True or False?

Q.3. Reports are fixed displays of data extracted from the system, designed only for
hardcopy output. True or False?

Q.4. NAV Report data flow includes a structure that provides for "child" DataItems
to be fully processed for each record processed in the "parent" DataItem. What is
the visible indication that this structure exists in a report Dataset Designer form?
Choose one.

a. Nesting
b. Indentation
c. Linking

Q.5. Queries can be designed to directly feed SQL Server Report Builder.
True or False?

Q.6. Union Joins are available using a special setup parameter. True or False?

Q.7. A report that only does processing and generates no printed output can be
defined. True or False?

Q.8. The following are properties of Queries. Choose two.

a. TopNumberOfRows
b. FormatAs
c. OrderBy
d. FilterReq

Q.9. NAV 2015 has four Report Designers. Reports can be created using any one of
these by itself. True or False?

Q.10. NAV 2015 Queries can directly OData and CSV files and are Cloud compatible.
True or False?

Q.11. The following are NAV 2015 Report Types. Choose three.

a. List
b. Document
c. Invoice
d. Posting

Queries and Reports

[300]

Q.12. Queries cannot have multiple DataItems on the same indentation level.
True or False?

Q.13. Report formatting in Word has all the capabilities of report formatting in SQL
Server Report Builder. True or False?

Q.14. NAV 2015 reports can be run for testing directly from SQL Server Report
Builder with Alt + R. True or False?

Q.15. Group properties are used to control the display of data in a Parent – Child
relationship in the SQL Server Report Builder layouts. True or False?

Q.16. Queries are used to support what items? Choose two.

a. Charts
b. Pages
c. Cues
d. Data Sorting

Q.17. Most reports can be initially created using Report Wizard. True or False?

Q.18. Interactive capabilities available after a report display include what?
Choose two.

a. Font definition
b. Data Show/Hide
c. Sorting by columns
d. Data filtering

Q.19. DataItem parent-child relationships defined in C/Side Report Designer must
also be considered in SQL Server Report Builder in order to have the data display
properly in the parent-child format. True or False?

Q.20. Users can create Word report layouts based on an existing dataset and put
them into production without having access to a Developer's license. True or False?

[301]

Introduction to C/SIDE
and C/AL

"Language shapes the way we think, and determines what we can think about."

 – Benjamin Lee Whorf

"Quality means doing it right when no one is looking."

 – Henry Ford

So far we have reviewed the basic objects of NAV 2015: tables, data fields, pages,
queries, and reports. For each of these, we also reviewed the different triggers in
various areas – triggers whose purpose is to be containers for C/AL code. When
triggers are "fired" (invoked), the C/AL code within is executed.

In this chapter, we're going to start learning the C/AL programming language.
Many of the things you may already know from your experience of programming
in other languages. Some of the basic C/AL syntax and function definitions can be
found in the embedded NAV 2015 Help (as well as in the MSDN Library sections
for Microsoft Dynamics NAV).

As with most of the programming languages, we have considerable flexibility for
defining our own model for our code structure. However, when we insert new code
within an existing code, it's always a good idea to utilize the model and follow the
structure that exists in the original code. When we feel compelled to improve on the
model of the existing code, we should do so in small increments and we must take
into account the effect of our changes on upgradability.

Introduction to C/SIDE and C/AL

[302]

The goal of this chapter is to help us productively use the C/SIDE development
environment and be comfortable in C/AL. We'll focus on the tools and processes
that we will use most often. We will also review concepts that we can apply in more
complex tasks down the road. This chapter's topics include:

• C/SIDE Object Designers and their navigation
• C/AL Syntax, Operators, and Built-in functions
• C/AL Naming conventions
• Input/Output functions
• Creating custom functions
• Basic Process Flow structures

Understanding C/SIDE
With a few exceptions, all the development for NAV 2015 applications takes place
within the C/SIDE environment. Exceptions include the use of SQL Server Report
Builder (or Visual Studio) for reporting (as we saw in Chapter 5, Queries and Reports),
plus work we might do in a .NET language to create compatible add-ins. While it is
possible to do development using a text editor, it is only appropriate for special cases
of modifications to existing objects by an advanced developer.

As an Integrated Development Environment, C/SIDE provides us with a reasonably
full set of tools for our C/AL development work. While C/SIDE is not nearly as fully
featured as Microsoft's Visual Studio, it is not intended to be a general purpose "one
size fits all" development toolkit. Most importantly, C/SIDE and C/AL are designed
for NAV compatible business applications software development with many features
and functions specifically designed for business applications work.

C/SIDE includes a smart editor (it knows C/AL, though sometimes not as much as
we would like), the one and only C/AL compiler, integration with the application
database, and tools to export and import objects both in compiled format and as
formatted text files.

We'll explore each of these C/SIDE areas in turn, starting with Object Designer.

Object Designer
All the NAV object development work starts from within the Microsoft Dynamics
Development Environment in the C/SIDE Object Designer. After we have invoked
the Development Environment and connected to a NAV database, Object Designer
is accessed by selecting Tools | Object Designer or by pressing Shift + F12 keys, as
shown in the following screenshot:

Chapter 6

[303]

The type of object on which we're going to work is chosen by clicking on one
of the buttons on the left side of the Object Designer screen, as shown in the
following image:

The choices match the seven object types: Table, Page, Report, Codeunit, Query,
XMLport, and MenuSuite. When we click on one of these, the Object Designer
screen display is filtered to show only that object type. There is also an All button,
which allows objects of all types to be displayed on the screen.

Introduction to C/SIDE and C/AL

[304]

No matter which object type has been chosen, the same four buttons appear at the
bottom of the screen: New, Design, Run, and Help. But, depending on which object
type is chosen, the effect of selecting one of these options changes. When we select
Design, we open the object that is currently highlighted, in a Designer specifically
tailored to work on that object type. When we select Run, we are requesting the
execution of the currently highlighted object. The results, of course, will depend on
the internal design of that particular object. When we select Help, the C/SIDE Help
screen will display, positioned at the general Object Designer Help.

Starting a new object
When we select New, the screen we see will depend on what type of object has
focus (the seven available object types ot Table, Page, Report, Codeunit, Query,
XMLport and MenuSuite were introduced in Chapter 1, An Introduction to NAV 2015).
In each case, we have the opportunity to create a new object in the Designer used
for that object type.

Accessing the Table Designer
The Table Designer screen for starting a new table is shown in the following
screenshot:

The Table Designer screen invites us to begin defining data fields. All the associated
C/AL code will be embedded in the underlying triggers and developer-defined
functions.

Accessing the Page Designer
For Page Designer, the first screen for a new page allows us to choose between the
Wizard (for assistance) or the Page Designer (to work on our own).

Chapter 6

[305]

If we use the Wizard, it will walk us through defining FastTabs (collapsible/
expandable groups of fields) and assigning fields to those tabs, as we saw in Chapter
4, Pages – the User's Interactive Interface. When we finish with the Wizard, we will be
dropped into the Page Designer screen with our page well on the way to completion.

If we choose not to use the Wizard and want to begin designing our page totally on
our own, we will select the Create blank page option. The empty Page Designer
screen will display. We will do all control and field definition on our own. In either
case, the C/AL code we create will be placed in triggers for the Page or its controls.

Accessing the Report Dataset Designer
For a New Report, the following Report Dataset Designer screen is initially
displayed:

Introduction to C/SIDE and C/AL

[306]

Since NAV 2015 does not have a Report Wizard, we begin Report development by
defining the primary DataItem for our report and continuing from there as we did in
Chapter 5, Queries and Reports. All C/AL code in a Report is tied to the Report triggers
and controls.

Accessing the Codeunit Designer
When we access the Codeunit Designer using the New button, a Codeunit structure
is opened with C/AL Editor active as shown in the following screenshot:

Codeunits have no superstructure or surrounding framework around the single
code OnRun trigger. Codeunits are primarily a shell in which we can place our own
functions and code so that it can be called from other objects.

Query Designer
For a New Query, the following screen is displayed:

Much like a new Report, we begin Query development by defining the primary
DataItem for our query and continuing from there as we did in Chapter 5, Queries
and Reports. All C/AL code in a query is tied to the OnBeforeOpen trigger of the
query (this code is often used to apply filters to the Query DataItems using the
SETFILTER function).

Chapter 6

[307]

XMLport Designer
XMLports are objects for defining and processing text-based data structures,
including those which are defined in XML format. XMLports are used to import and
export both the XML formatted files and the text files (particularly variations of the
.CSV format), but can handle many other text file formats in both delimited and fixed
formats. XML is a set of somewhat standardized data formatting rules for dissimilar
applications to exchange data. XML-structured files have become an essential
component of business data systems.

There is no Wizard for XMLports. When we click New, we proceed directly to the
XMLport Designer screen.

Once we become comfortable using C/SIDE and C/AL, we will learn more about
XMLports for XML formatted data and other text file formats. XMLports can be run
directly from menu entries as well as from within other objects. XMLport objects can
also be passed as parameters to web services in a Codeunit function, thus supporting
the easy passing of bulk information, such as a list of customers or inventory items.

Introduction to C/SIDE and C/AL

[308]

MenuSuite Designer
MenuSuites are used to define the menus that are available from the Departments
button in the Navigation pane and which also appear on the Departments page in the
NAV Windows client. The initial MenuSuite Designer screen that comes up when
we ask for a new MenuSuite, asks what MenuSuite Design Level we are preparing
to create. The following screenshot shows all 15 available Design Level values:

When one of the design levels has been used (created as a MenuSuite option), it will
not appear in the list the next time New is selected for the MenuSuite Designer.
MenuSuites can only exist at the 15 levels shown in the preceding image, and only
one instance of each level is supported. Once we have chosen a level to create,
NAV shifts to the MenuSuite Designer mode. The following screenshot shows the
navigation pane in Designer mode after selection of Create | Dept - Company:

Chapter 6

[309]

To add, change, or delete menu entries in the Navigation Pane Designer, highlight
and right-click the entry. That will display the following window. The action options
visible in this MenuSuite Designer window are dependent on the entry which is
highlighted and, sometimes, on the immediate previous action taken.

Introduction to C/SIDE and C/AL

[310]

Descriptions of each of these menu maintenance action options follows:

• Create Item… (Insert): Allows the creation of a new menu action entry (Item),
utilizing the same window format for Creation that is displayed when the
entry Properties option is chosen

• Insert Items…(Shift + Insert): Allows the insertion of a new instance of a
menu action entry, choosing from a list of all the existing entries

• Create Group (Ctrl + Insert): Allows the creation of a new group under which
menu action entries can be organized

• Delete (Delete): For deleting either an individual entry or a whole group
• Rename (F2): To rename either an entry or a group
• Move Up (Ctrl + Shift + Up) and Move Down (Ctrl + Shift + Down): Allows

moving an entry or group up or down one position in the menu structure
• Cut (Ctrl + X), Copy (Ctrl + C), and Paste (Ctrl + V): Provides the normal cut,

copy, and paste functions for both entries and groups
• Properties (Alt + Enter): Displays the applicable property screen

A Group Properties screen only contains Caption and CaptionML along with the
Department Page checkmark field. The Item Properties screen looks as shown in
the following screenshot:

The Object Type field can be any of Report, Codeunit, XMLport, Page, or Query. The
Department field can be Lists, Tasks, Reports and Analysis, Documents, History,
or Administration, all of which are groups in the Departments menu.

There are a number of basic differences between the MenuSuite Designer and the
other object designers including a very limited property set. One major difference is
the fact that no C/AL code can be embedded within a MenuSuite entry.

Chapter 6

[311]

To exit the Navigation Pane Designer, we press the Esc key with focus on the
Navigation Pane or right-click on the Navigation Pane Designer heading and select
the Close Navigation Pane Designer option as shown in the following image:

We will then be asked if we want to save our changes. We should answer Yes or No
or Cancel, depending on what result we want.

Object Designer Navigation
In many places in the various designers within the Object Designer, there are
standard NAV keyboard shortcuts available. For example:

• F3 to create a new empty entry.
• F4 to delete the highlighted entry.
• F5 to access C/AL Symbol Menu, which shows us a symbol table for the

object on which we are working. This isn't just any old symbol table; this
is a programmer's assistant. More on this later in this chapter.

• F9 to access the underlying C/AL code.
• F11 to do an on-the-fly compile (very useful for error checking as we go).
• Shift + F4 to access properties.
• Ctrl + X, Ctrl + C, and Ctrl + V in normal Windows mode for deletion (or

cut), copy, and paste, respectively.

We can cut, copy, and paste C/AL code, even functions, relatively
freely within an object, from object to object, or to a text-friendly tool
(for example, Word or Excel) much as if we were using a text editor.
The source and target objects don't need to be of the same type.

Introduction to C/SIDE and C/AL

[312]

When we are in a list of items that cannot be modified, for example, C/AL Symbol
Menu, we can focus on a column, key a letter, and jump to the next field in the
column starting with that letter. This works in a number of places where search is not
supported, so it acts as a very limited search substitute, applying only to an entry's
first letter.

The easiest way to copy a complete object to create a new version is
as follows:
Open the object in Design mode. Click the File | Save As object, assign
a new object number, and change the object name (no duplicate object
names are allowed). A quick (mouseless) way to do a Save As is pressing
Alt + F , then the A key – continuously holding down the Alt key while
pressing first F and then A.
Don't ever delete an object or a field numbered in a range where the
license doesn't allow creation of an object. If there isn't a compiled
(.fob) back-up copy of the deleted object available for import, the
deleted objects will be irretrivably lost.
If we must use an object or field number in the NAV reserved number
range for a different purpose other than the standard system assignment
(not a good idea), we must make the change in place. Don't try a delete
followed by add; it won't work.

Exporting objects
Object Export from the Object Designer can be accessed for backup or distribution
purposes via File | Export. Choosing this option, after highlighting the objects to be
exported, brings up a standard Windows file-dialog screen with the file type options
of .fob (NAV object) or .txt, as shown in the following screenshot:

Chapter 6

[313]

The safer, more general purpose format for exporting is as a compiled object, created
with a file extension of .fob. But someone with a developer's license can export an
object as a text file with a file extension of .txt. An exported text file is the only way
to use a tool such as a text editor to do before and after comparisons of objects, or to
search all parts of our objects for the occurrences of strings (such as finding all the
places a variable name is used). An object text file can be used with a source-control
tool such as Microsoft Visual Studio Online (https://www.visualstudio.com/
en-us/products/what-is-visual-studio-online-vs.aspx), Microsoft Team
Foundation, or ifacto ReVision for NAV (http://www.ifacto.be/en/revision).

A compiled object can be shipped to another system as a patch to be installed with
little fear that it will be corrupted midstream. The system administrator at the other
system has to simply import the new object following directions from the developer.
Exported compiled objects also make excellent fractional backups. Before changing or
importing any working production objects, it's always a good idea to export a copy
of the "before" object images into a .fob file. These should be labeled so that they can
easily be retrieved. If we want to check what objects are included in a fob, we can
open the file in a text editor – the objects contained will be listed at the beginning.
Any number of objects can be exported into a single .fob file. We can later selectively
import any one or several of the individual objects from that group .fob.

Introduction to C/SIDE and C/AL

[314]

Importing objects
Object Import is accessed through File | Import in the Object Designer. The
import process is more complicated than the export process because there are more
decisions to be made. When we import a compiled version of an object, the Object
Designer allows decisions about importing and provides some information to help
us make those decisions.

When we import a text version of an object, the new version is brought in immediately,
regardless of what it overwrites and regardless of whether or not the incoming object
can actually be compiled. The object imported from a text file is not compiled until
we do so in a separate action. By importing a text-formatted object, we could actually
replace a perfectly good production object with something useless.

Warning: Never import a text object until there is a current
backup of all the objects that might be replaced.
Never send text objects to an end user for installation in their
system.

When we import a compiled object from a .fob file, we will get one of two decision
message screens, depending on what the Object Designer Import finds when it
checks the existing objects. If there are no existing objects that the import logic
identifies as matching and modified, then we will see the following dialog:

Even though you have the option to proceed without checking further, the safest
thing to do is always open Import Worksheet, in this case by clicking on the No
button. Examine the information displayed before proceeding with the import.

Chapter 6

[315]

If the .fob file we are importing is found to have objects that could be in conflict
with existing objects that have been previously modified, then we will see the
following on our screen:

Of course, we can always click Cancel and simply exit the operation. Normally, we
will click OK to open Import Worksheet and examine the contents.

While all the information presented is useful at one time or another, usually we can
focus on just a few fields. The basic question, on an object-by-object basis, is "Do I
want to replace the old version of this object with this new one?"

Introduction to C/SIDE and C/AL

[316]

At the bottom of the preceding screenshot, we can see the comparison of the Existing
object and the New object information. Use this information to decide whether or
not to take an action of Create, Replace, or Skip. More information on using Import
Worksheet and the meaning of various warnings and actions can be found in the
NAV Developer and IT Pro Help under Import Worksheet.

Although Import also allows us to merge the incoming and existing table versions,
only very sophisticated developers should attempt to use this feature. The rest of
us should always choose the Import Action Replace or Skip (or Create, if it is a
new object).

When a .fob import completes, the system tells us the result.

Import Table object changes
When an existing table is changed as a result of a fob import, the new table definition
is compared against the existing schema defined in the SQL Server database. The
following message will be displayed (new in NAV 2015):

Chapter 6

[317]

The options available for the Synchronize Schema choice are shown in the following
screenshot:

If we choose the first option, we will receive another stern warning message allowing
us one last opportunity to cancel the import. If we tell the system to proceed, it will
do so and, at the end of its processing, inform us of the results. More information on
this process is available in the Help Synchronizing Table Schemas.

Warning: Using the Force option may result in a corrupted database
where the data structure is out of synch with the application
software. This may not be recoverable except by restoring a
backup. Using the Force option is especially risky in a production
environment.

Introduction to C/SIDE and C/AL

[318]

Text objects
A text version of an object is useful for a few specific development tasks. C/AL code
or expressions can be placed in a number of different nooks and crannies of objects.
In addition, sometimes object behavior is controlled by Properties. As a result, it's not
always easy to figure out just how an existing object is accomplishing its tasks.

An object exported to text has all its code and properties flattened out where we
can use our favorite text editor to search and view. Text copies of two versions of
an object can easily be compared in a text editor. Text objects can be stored and
managed in a source code library. In addition, a few tasks, such as renumbering
an object, can be done more easily in the text copy than within C/SIDE.

Some useful practices
We should liberally make backups of objects on which we are working. Always
make a backup of an object before changing it. Make intermediate backups regularly
during the development. This allows recovery back to the last working copy.

If our project involves several developers, we may want to utilize a source control
system that tracks versioning and has a check-out, check-in facility for objects. Larger
projects should take advantage of the test functionality that's now part of C/AL
(see Testing the Application in Help).

Compile frequently. We find errors more easily this way. Not all errors will
be discovered just by compiling. Thorough and frequent testing is always a
requirement.

When we are developing pages or reports, we should do test runs (or previews) of
the objects relatively frequently. Whenever we reach a stage where we have made a
number of changes and again have a working copy, we should save it before making
more changes.

Never design a modification that places data or changes it directly in a Ledger
table without going through the standard Posting routines. It's sometimes tempting
to do so, but that's a sure path to unhappiness. If creating a new Ledger for our
application, design the process with a Journal table and a Posting process consistent
with the NAV standard flow.

Follow the NAV standard approach for handling Registers, Posted
Document tables, and other tables normally updated during Posting.
Check out what Patterns have been defined to see what applies.

Chapter 6

[319]

If at all possible, try to avoid importing modifications into a production system when
there are users logged-in to the system. If a logged-in user has an active object that is
being modified, they may continue working with the old version until they exit and
re-enter. Production use of the obsolete object version may possibly cause confusion
or even the corruption of data.

Always test modifications in a reasonably current copy of the production system.
Do the final testing by using real data (or at least realistic data) and a copy of the
customer's production license. As a rule, we should never develop or test in the live
production system. Always work in a copy. Otherwise, the price of a mistake, even a
simple typo, can be enormous.

If we wish to check that changes to a production system are compatible with the rest
of the system, we should import the changes into our test copy of the system and
then recompile all of the objects in the system. We may uncover serious problems
left by a previous developer with bad habits, so be prepared.

Changing data definitions
The integration of the development environment with the application database is
particularly handy when we are making changes to an application that is already in
production use. C/SIDE is good for not letting us make changes that are inconsistent
with the existing data. For example, let's presume we have a text field that is defined
as 30 characters long and there is already data in that field in the database, one
instance of which is longer than 20 characters. If we attempt to change the definition
of that field to 20 characters long, we will get a warning message when we try to save
and compile the table object. We should not force the change until we adjust either
the data in the database or we adjust the change so that it is compatible with all the
existing data.

Saving and compiling
Whenever we exit the Designer for an object in which we have made a change, NAV
wants to save and compile the object on which we were working. We will see a
dialog similar to the following screenshot:

Introduction to C/SIDE and C/AL

[320]

We have to be careful not to be working on two copies of the same object at once as
we may lose the first set of changes when the second copy is saved. If we want to
save the changed material under a new object number while retaining the original
object, we must Cancel this Save Changes and instead use the File | Save As option
to rename and renumber the new copy.

If the object under development is at one of those in-between stages where it won't
compile, we can deselect the Compiled checkbox and save it by clicking on the Save
button without compiling it.

We should not complete a development session without getting
an error-free compilation. Even if making big changes, make
them in small increments.

On occasion, we may make changes that we think will affect other objects. In
that case, from the Object Designer screen, we can select a group of objects to be
compiled by Marking them. Marking an object is done by putting focus on the object
and pressing the Ctrl + F1 keys. The marked object is then identified with a bullet in
the left screen column for that object's row. After marking each of the objects to be
compiled, use the View | Marked Only function to select just the marked objects.

We can then compile the Marked objects as a group. Select all the entries (using
Ctrl + A keys is one way to do this), press F11, and respond Yes to the question Do
you want to compile the selected objects? Once the compilation of all the selected
objects is completed, we will get an Error List window indicating which objects had
compilation errors of what types.

After we respond to that message, only the objects with errors will remain marked.
The Marked Only filter will still be on, so that just those objects that need attention
will be shown on the screen. In fact, anytime we do a group compilation of objects,
those with errors will be marked so that we can use the Marked Only filter to select
the objects needing attention.

Some C/AL naming conventions
In previous chapters, we discussed naming conventions for tables, pages, and
reports. In general, the naming guidelines for NAV objects and C/AL encourage
consistency, common sense, and readibility. Use meaningful names. These make the
system more intuitive to the users and more self-documenting.

Chapter 6

[321]

When we name variables, we must try to keep the names as self-documenting as
possible. We should differentiate between similar, but different, variable meanings
such as Cost (cost from the vendor) and Amount (selling price to the customer).
Embedded spaces, periods, or other special characters should be avoided (even
though we find some violations of this in the base product). If we want to use special
characters for the benefit of the user, we should put them in the caption, not in the
name. If possible, we should stick to letters and numbers in our variable names. We
should always avoid Hungarian naming styles; keep names simple and descriptive.

There are a number of reasons to keep variable names simple. Other software
products with which we may interface may have limitations on variable names.
Some special characters have special meanings to other software or in another
human language. In NAV, ? and * are wildcards and must be avoided in variable
names. $ has special meaning in other software. SQL Server adds its own special
characters to NAV names and the resultant combinations can get quite confusing
(not just to us but to the software). The same can be said for the names constructed
by the internal RDLC generator, which replaces spaces and periods with
underscores.

When we are defining multiple instances of a table, we should either differentiate
clearly by name (for example, Item and NewItem) or by a descriptive suffix (for
example, Item, ItemForVarient, ItemForLocation). In the very common situation
where a name is a compound combination of words, begin each abbreviated word
with a capital letter (for example, NewCustBalDue).

Avoid creating variable names that are common words and might be reserved (for
example, Page, Column, Number, and Integer). C/SIDE will sometimes not warn us
that we have done so and we may find our logic and the automatic logic working at
very mysterious cross purposes.

Do not start variables with the prefix "x", which is used in some automatically
created variables (such as xRec). We should make sure that we clearly differentiate
between working storage variable names and the field names originating in tables.
Sometimes C/SIDE will allow us to have a global name, local name, and/or record
variable name, all with the same literal name. If we do this, we are practically
guaranteeing a variable misidentification bug where the compiler uses a different
variable than what we intended to be referenced.

When defining a temporary table, preface the name logically, for example with
Temp. In general, use meaningful names that help in identifying the type and
purpose of the item being named. When naming a new function, we should be
reasonably descriptive. Don't name two functions located in different objects
with the same name. It will be too easy to get confused later.

In short, be careful, be consistent, be clear, and use common sense.

Introduction to C/SIDE and C/AL

[322]

Variables
As we've gone through examples showing various aspects of C/SIDE and C/AL,
we've seen and referred to variables in a number of situations. Some of the following
is obvious, but for clarity's sake we'll summarize here.

In Chapter 3, Data Types and Fields, we reviewed various data types for variables
defined within objects (referred to in Chapter 3, Data Types and Fields as working
storage data). Working Storage consists of all the variables that are defined for use
within an object, but whose contents disappear when the object closes. Working
Storage data types discussed in Chapter 3, Data Types and Fields, are those that can be
defined in either the C/AL Global Variables or C/AL Local Variables tabs. Variables
can also be defined in several other places in a NAV object.

C/AL Globals
Global variables are defined on the C/AL Globals form, in the Variables tab.

Global Text Constants are defined on the Text Constants tab section of the C/AL
Globals form. The primary purpose of the Text Constants area is to allow easier
translation of messages from one language to another. By putting all message text
in this one place in each object, a standardized process can be defined for language
translation. There is a good explanation in NAV Developer and IT Pro Help on How
to: Add a Text Constant to a Codeunit. The information applies generally.

Global Functions are defined on the Functions tab of the C/AL Globals form.
The following screenshot shows the C/AL Globals form:

C/AL Locals
Local identifiers only exist defined within the range of a trigger. This is true whether
the trigger is a developer-defined function or one of the default system triggers
or standard application-supplied functions. In NAV 2015, when a new function is
defined, it is set as a local function by default. This means that if we want the new
function to be accessible from other objects, we must set the Local property of the
function to No.

Chapter 6

[323]

Function local identifiers
Function local identifiers are defined on one or another of the tabs on the C/AL
Locals form that we use for defining a function.

Parameters and Return Value are defined on their respective tabs.

The Variables and Text Constants tabs for C/AL Locals are exactly similar in use to
the C/AL Globals tabs of the same names. The tabs of the C/AL Locals form can be
seen in the following screenshot:

Other local identifiers
Trigger local variables (variables that are local to the scope of a trigger) are also
defined on one or another of the tabs on the C/AL Locals form. The difference
between trigger Local Variables and those for a function is that only the Variables
and Text Constants tabs exist for trigger Local Variables. The use of the Variables
and Text Constants tabs are exactly the same for triggers as for functions. Whether
we are working within a trigger or a defined function, we can access the local
variables through the menu option View | C/AL Locals.

Special working storage variables
Some working storage variables have additional attributes to be considered.

Temporary tables
Temporary tables were discussed in Chapter 2, Tables. Let's take a quick look at how
one is defined. Defining a Global Temporary table begins just like any other Global
Variable definition of the Record data type. With an object open in the Designer,
follow these steps:

1. Select View | C/AL Globals.
2. Enter a variable name, data type of Record.
3. Choose the table whose definition is to be replicated for this temporary table

as the Subtype.
4. With focus on the new Record variable, click on the Properties icon (or press

the Shift + F4 keys).
5. Set the Temporary property to Yes.

Introduction to C/SIDE and C/AL

[324]

That's it. We've defined a temporary table similar to the one in the following image:

We can use a temporary table just as though it were a permanent table with some
specific differences:

• The table contains only the data we add to it during this instance of the object
in which it resides.

• We cannot change any aspect of the definition of the table, except by
changing the permanent table (which was its template) using the Table
Designer, then recompiling the object containing the associated
temporary table.

• Processing for a temporary table is done wholly in the client system in a user
specific instance of the business logic. It is, therefore, inherently single user.

• A properly utilized temporary table reduces network traffic and eliminates
any locking issues for that table. It is often much faster than processing
the same data in a permanent, database-resident table because both data
transmission and physical storage I/O are significantly reduced.

Chapter 6

[325]

In some cases, it's a good idea to copy database table data into a
temporary table for repetitive processing within an object. This can give
us a significant speed advantage for a particular task by updating data
in the temporary table, then copying it back out to the database table at
the end of processing.
When using temporary tables, we need to be very careful that
references from C/AL code in the temporary table (such as data
validations) don't inappropriately modify permanent data elsewhere
in the database. We also must remember that if we forget to properly
mark the table as temporary, we will likely corrupt production data
with our processing.

Arrays
Arrays of up to 10 dimensions containing up to a total of 1,000,000 elements in a
single variable can be created in a NAV object. Defining an array is done simply by
setting the Dimensions property of a variable to something other than the default
<Undefined>. An example is shown in the following screenshot:

The semicolon separates the dimensions of the array. The numbers indicate the
maximum number of elements of each of the dimensions. This example is a two-
dimensional array which has three rows of 99 elements each. An array variable like
TotalCountArray is referred to in C/AL as follows:

• The 15th entry in the first row is TotalCountArray[1,15]
• The last entry in the last row is TotalCountArray[3,99]

Introduction to C/SIDE and C/AL

[326]

An array of a complex data type such as a record may behave differently than a
single instance of the data type, especially when passed as a parameter to a function.
In such a case, we must make sure the code is especially thoroughly tested so that
we aren't surprised by unexpected results. NAV 2013 added the capability to also
use arrays from the .NET Framework. See the Help titled Using Arrays for more
information.

Initialization
When an object is initiated, the variables in that object are automatically initialized.
Booleans are set to False. Numeric variables are set to zero. Text and code data
types are set to the empty string. Dates are set to 0D (the undefined date) and Times
are set to 0T (the undefined time). The individual components of complex variables
are appropriately initialized. The system also automatically initializes all the system-
defined variables.

Of course, once the object is active, through our code and property settings we can
do whatever additional initialization we wish. If we wish to initialize variables at
intermediate points during processing, we can use any of the several approaches.
First we reset a Record variable (for example, the TempRadioShowLedger temporary
table defined in the preceding example) with the RESET function, and then initialize
with the INIT function in statements in the form:

TempRadioShowLedger.RESET;
TempRadioShowLedger.INIT;

The RESET makes sure that all previously set filters on this table are cleared. The
INIT makes sure that all the fields, except those in the Primary Key, are set either
to their InitValue property value or to their data type default value. Primary Key
fields must be explicitly set by C/AL code.

For all types of data, including complex data types, we can initialize fields with the
CLEAR or CLEARALL function in a statement in the following form:

CLEAR(TotalArray[1,1]);
CLEAR(TotalArray);
CLEAR("Shipment Code");

The first example would clear a single element of the array, the first element in the
first row. Because this variable is an Integer data type, the element would be set to
Integer zero when cleared. The second example would clear the entire array. In the
third example, a variable defined as a Code data type would simply be set to an
empty string.

Chapter 6

[327]

System-defined variables
NAV also provides us with some variables automatically, such as Rec, xRec,
CurrPage, CurrReport, and CurrXMLport. Which variables are provided is
dependent on the object in which we are operating. Descriptions of some of
these can be found in the Help titled System-Defined Variables.

C/SIDE programming
Many of the things that we do during development in C/SIDE might not be called
programming by some people because it doesn't involve writing C/AL code
statements. But so long as these activities contribute to the definition of the object
and affect the processing that occurs, we'll include them in our broad definition of
C/SIDE programming.

These activities include setting properties at the object and Data Item levels, creating
Request pages in Reports, defining Controls and their properties, defining Report
data structures and their properties, creating Source Expressions, defining Functions,
and, of course, writing C/AL statements in all the places where we can put C/AL.
We are going to primarily focus on C/SIDE programming as it relates to tables,
reports, and codeunits.

We will touch on C/SIDE programming for pages and XMLports. In the case of RTC
reports, C/AL statements can reside only in the components that are developed
within the C/SIDE RD and not the RDLC created by the SSRB.

Because no coding can be done within MenuSuites, we will omit
those objects from the programming part of our discussions.

NAV objects are generally consistent in structure. Most have some properties and
triggers. Pages and Reports have controls, though the tools that define the controls
in each are specific to the individual object type. Reports have a built-in DataItem
looping logic. XMLports also have DataItem looping logic but structured differently
from reports (for example, Reports can have multiple DataItems at the 0 level and
XMLports can only have one Node at the 0 level). All the object types that we are
considering can contain C/AL code in one or more places. All of these can contain
function definitions which can be called either internally or externally (if not marked
as Local). Remember, good design practice says that any functions designed as
"library" or reusable functions that are called from a variety of objects should be
placed in a Codeunit (or, in some circumstances, in the primary table).

Introduction to C/SIDE and C/AL

[328]

Don't forget that our fundamental coding work should focus on
tables and function libraries as much as possible, as these are the
foundation of the NAV system.

Non-modifiable functions
A function is a defined set of logic that performs a specific task. Similar to many
other programming languages, C/AL includes a set of pre-written functions that
are available to us to perform a wide variety of different tasks. The underlying logic
for some of these functions is hidden and not modifiable. These non-modifiable
functions are supplied as part of the C/AL programming language. Following are
some simple examples:

• DATE2DMY: Supply a date and, depending on a calling parameter, this will
return the integer value of the day, the month, or the year of that date

• STRPOS: Supply a string variable and a string constant; the function will
return the position of the first instance of that constant within the variable,
or a zero if the constant is not present in the string contained in the variable

• GET: Supply a value and a table, and the function will read the record in
the table with a Primary Key equal to the supplied value, if a matching
record exists

• INSERT: Adds a record to a table
• MESSAGE: Supply a string and optional variables; this function will display

a message to the operator

Such functions are the heart of the C/SIDE-C/AL tools. There are over 100 of
them. On the whole, they are designed around the essential purpose of an NAV
system: business and financial applications data processing. These functions are
not modifiable; they operate according to their predefined rules. For development
purposes, they act as basic language components.

Modifiable functions
In addition to the prewritten "language component" functions, there are a large
number of pre-written "application component" functions as well. The difference
between the two types is that the code implementing the latter is visible and
modifiable, though we should be extremely cautious about making such modifications.

Chapter 6

[329]

An example of an application component function might be one to handle the task of
processing a Customer Shipping Address to eliminate empty lines and standardize
the layout based on user-defined setup parameters. Such a function would logically
be placed in a Codeunit and thus made available to any routine that needs this
capability.

In fact, this function exists. It is called SalesHeaderShipTo and is located in the
Format Address Codeunit. In the following table, we can explore the Codeunits for
some functions we might find useful to use or from which to borrow logic. This is
not an all-inclusive list, as there are many functions in other Codeunits which we
may find useful in a future development project, either to be used directly or as
templates for designing our own similar function. Many library Codeunits have
the words Management or Mgt. in their name.

Object number Name
1 ApplicationManagement
356 DateComprMgt
358 DateFilter-Calc
359 PeriodFormManagement
365 Format Address
397 Mail
5052 AttachmentManagement
5054 WordManagement
6224 XML DOM Management

The pre-written application functions have generally been provided to address the
needs of the NAV developers working at Microsoft. But we can use them too. Our
challenge will be to find out that they exist and to understand how they work. There
is very little documentation of these "application component" functions.

One significant aspect of these application functions is the fact that they are written
in C/AL and their construction is totally exposed. In theory, they can be modified,
though that is not advisable. If we decide to change one of these functions, we
should make sure our change is compatible with all the existing uses of that function.

Introduction to C/SIDE and C/AL

[330]

A useful "trick" to find all the calls of a function is to add a dummy
calling parameter to the function (temporarily) and then compile
all objects in a copy of the application system. Errors will be
displayed for all objects that call the changed function (we mustn't
forget to remove the dummy calling parameter and recompile
when we're done testing). This technique not only works for
Microsoft created functions, but also for functions created as part
of a customization or add-on.

Rather than changing an existing function, it is much better to clone the existing
function into our own library codeunit, creating a new version, and making any
modifications to the new version while leaving the original untouched.

Custom functions
We can also create our own custom functions to meet any need. The most common
reason to create a new function is to provide a single, standardized instance of logic
to perform a specific task. When we need to use the same logic in more than one
place, we should consider creating a callable function.

We should also create a new function when we're modifying standard NAV
processes. Whenever more than three or four lines of code are needed for the
modification, we should consider creating the modification as a function. If
we do that, the modification to the standard process can be limited to a call to
the new function. It's usually not a good idea to embed a new function into an
existing standard function. It's better to clone the existing function and make the
modifications in-line in our copy.

Although using a function for inserting new code into the flow is a great concept,
occasionally it may be difficult to implement in practice. For example, if we want
to revise the way the existing logic works, sometimes it's confusing to implement
the change through just a call and an external (to the mainline process) function. In
such a case, we may just settle for creating an in-line modification and doing a good
job of commenting the modification. This is most reasonable which this code is only
required in one place and does not also need to be referenced elsewhere.

If a new function will be used in several objects, it should be housed in our library
codeunit. If it is only for use in a single object, then the new function can be resident
in that object. This latter option also has the advantage of allowing the new function
direct access to the global variables within the object being modified, if necessary.

Chapter 6

[331]

Create a function
Let's take a quick look at how a function can be created. We're going to add a new
codeunit to our C/AL application, Codeunit 50000. Since this is where we will put
any callable functions that we need for our WDTU application, we will simply call
it Radio Show Management. In that Codeunit, we're going to create a function to
calculate a new date based on a given date. If that seems familiar, it's the same thing
we did in Chapter 3, Data Types and Fields, to illustrate how a DateFormula data type
works. This time, our focus is going to be on the creation of a function.

Our first step is to copy Table 50009, which we created for testing, and then save it as
table 50008. As a reminder, we do that by opening Table 50009 in the Table Designer,
then selecting File | Save As, changing the object number to 50008 and Name to
Date Formula Test-2 (see the following screenshot), and then exiting and compiling.

Once that's done, change the Version List to show that this table has been modified.
We used CD and 03 for the original Chapter 3, Data Types and Fields, table Version.
Now we'll add, 06 to make the new table Version read CD 03,06.

We will create our new Codeunit by simply clicking on the Codeunit button at the
left of the Object Designer screen, then clicking on the New button and choosing
File | Save As, and entering the Object ID of 50000 and Name as Radio Show
Management.

Now comes the important part—designing and coding our new function. When we
had the function operating as a local function inside the table where it was called,
we didn't worry about passing the data back and forth. We simply used the data
fields that were already present in the table and treated them as global variables
(which they were). Now that our function will be external to the object from which
it's called, we have to pass the data values back and forth. Here's the basic calling
structure of our function:

Output := Function (Input Parameter1, Input Parameter2)

Introduction to C/SIDE and C/AL

[332]

In other words, we need to feed two values into our new callable function and accept
a return value back on completion of the function's processing.

Our first step is to click View | C/AL Globals, and then the Functions tab. Enter
the name of the new function following the guidelines for good names (such as
CalculateNewDate). Then keeping the function name in focus (highlighted), display
the Properties of the function by either clicking the Properties icon, pressing Shift +
F4 or via View | Properties.

Set the Local property to Yes so that we will be able to call the function from other
objects. Click on the Locals button. This will allow us to define all the variables that
will be local to the new function. The first tab on the Locals screen is Parameters, our
input variables.

In keeping with good naming practices, we will define two input parameters, as
shown in the following screenshot:

Chapter 6

[333]

Re; Var column in the leftmost column of the Parameters tab form
If we checkmark the Var column, the parameter is passed by reference
to the original calling routine's copy of that variable. If the parameter is
passed by reference, when the called function changes the value of an
input parameter, it directly changes the original variable value in the
calling object.
Since we've specified the input parameter passing here with the Var
column unchecked, changes in the value of that input parameter will
be passed by value. That makes the parameter local to this function
and any changes to its value will not directly affect the variable in the
calling routine.
Checking the Var column on one or more parameters is a way to
effectively have multiple results passed back to the calling routine.
Parameter passing with the Var column checked (passing by reference)
is also faster than passing by value, especially when passing complex
data types (for example, records).

Select the Return Value tab and define our output variable as shown in the
following screenshot:

A/The name is not required for Return Value if the return terminates processing
with an EXIT([ReturnValue]) instruction. Choose the Date option for Return
Type. Exit by using the Esc key and the results will be saved.

Introduction to C/SIDE and C/AL

[334]

One way to view the effect of what we have just defined is to view C/AL Symbol
Menu. From the Codeunit Designer screen, with our new Codeunit 50000 in view
and our cursor placed in the code area for our new function, we click View | C/AL
Symbol Menu (or just press F5) and see the following image:

We see in the C/AL Editor that our CalculateNewDate function has been defined
with two parameters and a result. Now press Esc or select OK, move the cursor to
the OnRun trigger code area and again press F5 to view C/AL Symbol Menu. We
don't see the two parameters and result variables.

Why? Because Parameters and Return Value are local variables, which only exist
in the context of the function and are not visible outside the function. We'll make
more use of the C/AL Symbol Menu a little later, because it is a very valuable C/AL
development tool. But right now we need to finish our new function and integrate it
with our test Table 50008.

Move the cursor back to the code area for our new function. Click on the menu
item Window | Object Designer | Table button, then click Table 50008 | Design,
and press F9. That will take us to the C/AL Code screen for Table 50008. Highlight
and cut the code line from the local CalculateNewDate function. Admittedly, this
will not be a particularly efficient process this time, but hopefully it will make the
connection between the two instances of functions easier to envision. Using the
Window menu, move back to our Codeunit function and paste the line of code
we just cut from Table 50008. We should see the following image:

Chapter 6

[335]

Edit the line of code just pasted into the codeunit so the variable names match those
shown in our function trigger above. This will result in the following image:

Press F11 to check if we have a clean compile. If we get an error, we must do the
traditional programmer thing. Find it, fix it, and recompile. Repeat until we get a
clean compile. Then exit and Save our modified Codeunit 50000.

Finally, we will return to our test Table 50008 to complete the changes necessary
to use the external function rather than the internal function. We have two obvious
choices for doing this. One is to replace the internal formula in our existing function
with a call to our external function. This approach results in fewer object changes.

The other choice is to replace each of our internal function calls with a call to the
external function. This approach may be more efficient at run time because when we
need the external function, we invoke it in one step rather than two. We will walk
through the first option here and then you should try the second option on your own.

Which is best? It depends on our criteria. Such a decision comes down to a matter
of identifying the best criteria on which to judge the design options, then applying
those criteria. Remember, whenever feasible, simple is best.

Introduction to C/SIDE and C/AL

[336]

For the first approach (calling our new Codeunit resident function), we must add
our new Radio Show Management codeunit 50000 to table 50008 as a variable.
After Designing the table, View | Globals, click on the Functions tab, highlight the
CalculateNewDate function, click on the Locals button, and click on the Variables
tab. Add the Local variable as shown in the following screenshot (it's good practice
to define variables as local unless global access is required):

The two lines of code that called the internal function CalculateNewDate must be
changed to call the external function. The syntax for that call is:

Global/LocalVariable := Global/LocalObjectName.FunctionName(Parameter1
,Parameter2,…).

Based on that, the new line of code should be:

"Date Result" := RadioShowMgt.CalculateNewDate("Date Formula to
Test","Reference Date for Calculation");

If all has gone well, we should be able to save and compile this modified table. When
that step works successfully, we can Run the table and experiment with different
Reference Dates and Date Formulas, just as we did back in Chapter 3, Data Types and
Fields. We should get the same results for the same entries as we saw before.

When you try out the other approach of replacing each of the calls to the internal
function by directly calling the external function, you will want to:

• Either define the Radio Show Management codeunit as a Global variable
or as a Local variable for each of the triggers where you are calling the
external function

Chapter 6

[337]

• Go to the View | Globals | Functions tab and delete the now unused
internal CalculateNewDate function

We should now have a better understanding of the basics of constructing both
internal and external functions and some of the optional design features available to
us for building functions.

C/AL syntax
C/AL syntax is relatively simple and straightforward. The basic structure of most
C/AL statements is essentially similar to what we learned with other programming
languages. C/AL is modeled on Pascal and tends to use many of the same special
characters and syntax practices.

Assignment and punctuation
Assignment is represented with a colon followed by an equal sign, the combination
being treated as a single symbol. The evaluated value of the expression, to the right
of the assignment symbol, is assigned to the variable on the left-side.

"Phone No." := '312-555-1212';

All statements are terminated with a semi-colon. Multiple statements can be placed
on a single program line, but that makes the code hard for others to read.

Fully qualified data fields are prefaced with the name of the record variable of
which they are a part (see the preceding code line as an example where the record
variable is named ClientRec). The same structure applies to fully qualified function
references; the function name is prefaced with the name of the object in which they
are defined.

Single quotes are used to surround string literals (see the phone number string in the
preceding code line).

Double quotes are used to surround an identifier (for example, a variable or a
function name) that contains any character other than numerals or upper and lower
case letters. For example, the Phone No. field name in the preceding code line is
constructed as "Phone No." because it contains a space and a period. Other examples
would be "Post Code"(contains a space), "E-Mail" (contains a dash), and "No."
(contains a period).

Introduction to C/SIDE and C/AL

[338]

Parentheses are used much the same as in other languages, to indicate sets of
expressions to be interpreted according to their parenthetical groupings. The
expressions are interpreted in sequence - first the innermost parenthetical group,
then the next level, and so forth. The expression (A / (B + (C * (D + E)))) would be
evaluated as follows:

• Summing D + E into Result1
• Multiplying Result1 times C yielding Result2
• Adding Result2 to B yielding Result3
• Dividing A by Result3

Brackets [] are used to indicate the presence of subscripts for indexing of array
variables. A text string can be treated as an array of characters and we can use
subscripts with the string name to access individual character positions within
the string (but not beyond the terminating character of the string). For example,
Address[1] represents the leftmost character in the Address text variable contents.

Brackets are also used for IN (In range) expressions, such as

Boolean := SearchValue IN[SearchTarget]

In this case, SearchValue and SearchTarget are text variables.

Statements can be continued on multiple lines without any special punctuation,
though we can't split a variable or literal across two lines. Since the C/AL code
editor limits lines to 132 characters long, this capability is often used. The following
example shows two instances that are interpreted exactly in the same manner by
the compiler:

ClientRec."Phone No." := '312' + '-' + '555' + '-' + '1212';
ClientRec."Phone No." := '312' + '-' + '555' + '-' + '1212';

Expressions
Expressions in C/AL are made up of four elements: constants, variables, operators,
and functions. We could include a fifth element, expressions, because an expression
may include a subordinate expression within it. As we become more experienced
in coding C/AL, we find that the capability of nesting expressions can be both a
blessing and a curse, depending on the specific use and "readability" of the result.

Chapter 6

[339]

We can create complex statements that will conditionally perform important control
actions and operate in much the same way as a person would think about the
task. We can also create complex statements that are very difficult for a person to
understand. These are tough to debug and sometimes almost impossible to deal with
in a modification.

One of our responsibilities is to learn to tell the difference so we can write code that
makes sense in operation, and is also easy to read and understand.

According to NAV Developer and IT Pro Help, a C/AL Expression is a group
of characters (data values, variables, arrays, operators, and functions) that can be
evaluated with the result having an associated data type. Following are two code
statements that accomplish the same result in slightly different ways. They each
assign a literal string to a text data field. In the first one, the right side is a literal data
value. In the second, the right side of the := assignment symbol is an expression.

ClientRec."Phone No." := '312-555-1212';
ClientRec."Phone No." := '312' + '-' + '555' + '-' + '1212';

Operators
Now we'll review the C/AL operators grouped by category. Depending on the
data types we are using with a particular operator, we may need to know the type
conversion rules defining the allowed combinations of operator and data types for
an expression. The NAV Developer and IT Pro Help provides good information
on type conversion rules. Search for the phrase Type Conversion.

Before we review the operators that can be categorized, let's discuss some operators
that don't fit well in any of the categories. These include the following:

Introduction to C/SIDE and C/AL

[340]

Following are the explanations regarding the uses of this set of symbols:

• The symbol represented by a single dot or period doesn't have a given name
in the NAV documentation, so we'll call it the Member symbol or Dot operator
(as it is referred to in the MSDN Visual Basic Developer documentation).
It indicates that a field is a member of a table (TableName.FieldName), or
that a control is a member of a page (PageName.ControlName) or report
(ReportName.ControlName), or that a function is a member of an object
(Objectname.FunctionName).

• Parentheses () and Brackets [] could be considered operators based on the
effect their use has on the results of an expression. We discussed their use
in the context of parenthetical grouping and indexing using brackets, as
well as with the IN function, earlier. Parentheses are also used to enclose the
parameters in a function call:
Objectname.FunctionName(Param1,Param2,Param3);

• The Scope operator is a two character sequence consisting of two colons in
a row "::" . The Scope operator is used to allow the C/AL code to refer to a
specific Option value using the text descriptive value rather than the integer
value that is actually stored in the database. For example, in our C/AL
database Radio Show table, we have an Option field defined that is called
Frequency with Option string values of (blank), Hourly, Daily, Weekly, and
Monthly. Those values would be stored as integers 0, 1, 2, 3 or 4, but we can
use the strings to refer to them in code, which makes our code more self-
documenting. The Scope operator allows us to refer to Frequency::Hourly
(rather than 1) and Frequency::Monthly (rather than 4). These constructs
are translated by the compiler to 1 and 4, respectively. If we want to type
fewer characters when entering code, we could enter just enough of the
Option string value to be unique, letting the compiler automatically fill in
the rest when we next save, compile, close, and reopen the object. In similar
fashion, we can refer to objects in the format [Object Type::"Object
Name"] to be translated to the object number. For example:

PAGE.RUN(PAGE::"Bin List"); is equivalent to PAGE.RUN(7303);

• The Range operator is a two character sequence .., that is two dots in a
row. This operator is very widely used in NAV, not only in the C/AL code
(including CASE statements and IN expressions), but also in filters entered by
the users. The English lower case alphabet can be represented by the range
a..z; the set of single digit numbers by the range -9..9 (that is, minus 9 dot
dot 9); and all the entries starting with the letter "a" (lower case) by a..a*.
Don't underestimate the power of the range operator. For more information
on filtering syntax, refer to the NAV Developer and IT Pro Help section
Entering Criteria in Filters.

Chapter 6

[341]

Arithmetic operators and functions
The Arithmetic operators include the following:

As we can see in the Data Types column, these operators can be used on various
data types. Numeric includes Integer, Decimal, Boolean, and Character data types.
Text and Code are both String data.

Following are sample statements using DIV and MOD, where BigNumber is an integer
containing 200:

DIVIntegerValue := BigNumber DIV 60;

The contents of DIVIntegerValue after executing the preceding statement would
be 3.

MODIntegerValue := BigNumber MOD 60;

The contents of MODIntegerValue after executing the preceding statement would
be 20.

The syntax for these DIV and MOD statements is:

IntegerQuotient := IntegerDividend DIV IntegerDivisor;
IntegerModulus := IntegerDividend MOD IntegerDivisor;

Introduction to C/SIDE and C/AL

[342]

Boolean operators
Boolean operators only operate on expressions that can be evaluated as Boolean.
They are as follows:

The result of an expression based on a Boolean operator will also be Boolean.

Relational operators and functions
The Relational operators are listed in the next screenshot. Each of these is used in an
expression of the format:

Expression RelationalOperator Expression

For example: (Variable1 + 97) > ((Variable2 * 14.5) / 57.332)

We will spend a little extra time on the IN operator, because this can be very handy
and is not documented elsewhere. The term Valueset in the Evaluation column for
IN refers to a list of defined values. It would be reasonable to define a Valueset as a
container of a defined set of individual values, expressions, or other Valuesets. Some
examples of IN as used in the standard NAV product code are as follows:

GLEntry."Posting Date" IN [0D,WORKDATE]

Description[I+2] IN ['0'..'9']

"Gen. Posting Type" IN ["Gen. Posting Type"::Purchase,
 "Gen. Posting Type"::Sale]

Chapter 6

[343]

SearchString IN ['','=><']

No[i] IN ['5'..'9']

"FA Posting Date" IN [01010001D..12312008D]

Here is another example of what IN used in an expression might look like:

TestString IN ['a'..'d','j','q','l'..'p'];

If the value of TestString were a or m, then this expression would evaluate to TRUE.
If the value of TestString were z, then this expression would evaluate to FALSE.
Note that the Data Type of the search value must be the same as the Data Type of the
Valueset.

Precedence of operators
When expressions are evaluated by the C/AL compiler, the parsing routines use a
predefined precedence hierarchy to determine what operators to evaluate first, what
to evaluate second, and so forth. That precedence hierarchy is provided in the NAV
Developer and IT Pro Help section C/AL Operators – Operator Hierarchy, but for
convenience, the information is repeated here, in the following table:

For complex expressions, we should always freely use parentheses to make sure the
expressions are evaluated the way we intend.

Introduction to C/SIDE and C/AL

[344]

Frequently used C/AL functions
It's time to learn some more of the standard functions provided by C/SIDE. We will
focus on some frequently used functions: MESSAGE, ERROR, CONFIRM, and STRMENU.

There is a group of functions in C/AL called Dialog functions. The purpose of
these functions is to allow for communications (that is, dialog) between the system
and the user. In addition, the Dialog functions can be useful for quick and simple
testing / debugging. In order to make it easier for us to proceed with our next level
of C/AL development work, we're going to take time now to learn about those four
dialog functions. None of these functions will operate if the C/AL code is running
on the NAV Application Server as it has no GUI available. To handle such situation
in previous versions of NAV, the Dialog function statements had to be conditioned
with the GUIALLOWED function to check whether or not the code is running in a GUI
allowed environment. If the code was being used in a Web Service or NAS, it would
not be GUIALLOWED. However in NAV 2015, NAS and Web Services simply ignore
the Dialogue functions.

In each of these functions, data values can be inserted through use of a substitution
string. The substitution string is the % (percent sign) character followed by the
number 1 through 10, located within a message text string. That could look like
the following (assuming the local currency was defined as USD):

MESSAGE('A message + a data element to display = %1', "OrderAmount");

If the OrderAmount value was $100.53, the output from the preceding would be:
A message + a data element to display = $100.53

We can have up to ten substitution strings in one dialog function. The use of
substitution strings and their associated display values is optional. We can use any
one of the Dialog functions to display a completely predefined text message with
nothing variable. Use of a Text Constant (accessed through View | C/AL Globals in
the Text Constants tab) for the message is recommended as it makes maintenance
and multilanguage enabling easier.

The MESSAGE function
The MESSAGE function is easy to use for the display of transient data and can
be placed almost anywhere in our C/AL code. All it requires of the user is
acknowledgement that the message has been read. The disadvantage of messages
is that they are not displayed until either the object completes its run or pauses for
some other external action. Plus, if we inadvertently create a situation that generates
hundreds or thousands of messages, there is no graceful way to terminate their
display once they begin displaying.

Chapter 6

[345]

It's common to use MESSAGE as the elementary trace tool. We can program the
display of messages to occur only under particular circumstances and use them
to view either the flow of processing (by outputting simple identifyng codes from
different points in our logic) or to view the contents of particular data elements
through multiple processing cycles.

MESSAGE has the following syntax: MESSAGE (String [, Value1] , ...]), where
there are as many ValueX entries as there are %X substitution strings (up to ten).

Here is a sample debugging message:

MESSAGE('Loop %1, Item No. %2',LoopCounter,"Item No.");

The display would look similar to the following image (when the counter was 14 and
the Item No. was BX0925):

When MESSAGE is used for debugging, make sure all the messages
are removed before releasing the object to production.

The ERROR function
When an ERROR function is invoked, the execution of the current process terminates,
the message is immediately displayed, and the database returns to the status it had
following the last (implicit or explicit) COMMIT function as though the process calling
the ERROR function had not run at all.

Introduction to C/SIDE and C/AL

[346]

We can use the ERROR function in combination with the MESSAGE
function to assist in repetitive testing. The MESSAGE functions can be
placed in code to show what is happening with an ERROR function
placed just prior to where the process would normally complete.
Because the ERROR function rolls back all database changes, this
technique allows us to run through multiple tests against the same
data without any time-consuming backup and restoration of our test
data. The enhanced Testing functionality built into NAV 2015 can
accomplish the same things in a much more sophisticated fashion, but
sometimes there's room for a temporary, simple approach.

An ERROR function call is formatted almost exactly like a MESSAGE call. ERROR has
the syntax ERROR (String [, Value1] ,...]) where there are as many ValueX
entries as there are %X substitution strings (up to ten). If the preceding MESSAGE was
an ERROR function instead, the code line would be:

ERROR('Loop %1, Item No. %2',LoopCounter,"Item No.");

The display would look as shown in the following screenshot:

The big X in a bold red circle tells us that this is an ERROR message, but some users
might not immediately realize that. We can increase the ease of ERROR message
recognition by including the word ERROR in our message, as seen in the following
screenshot:

Chapter 6

[347]

Even in the best of circumstances, it is difficult for a system to communicate clearly
with the users. Sometimes our tools, in their effort to be flexible, make it too easy
for developers to take the easy way out and communicate poorly or not at all.
For example, an ERROR statement of the form ERROR(' ') will terminate the run
and roll back all data processing without even displaying any message at all. An
important part of our job as developers is to ensure that our systems communicate
clearly and completely.

The CONFIRM function
The third dialog function is the CONFIRM function. A CONFIRM function call causes
processing to stop until the user responds to the dialog. In CONFIRM, we would
include a question in our text because the function provides Yes and No button
options. The application logic can then be conditioned on the user's response.

We can also use CONFIRM as a simple debugging tool to control the path
the processing will take. Display the status of data or processing flow and
then allow the operator to make a choice (Yes or No) that will influence
what happens next. Execution of a CONFIRM function will also cause any
pending MESSAGE outputs to be displayed before the CONFIRM function
displays. Combined with MESSAGE and ERROR, creative use of CONFIRM
can add to our elementary debugging/diagnostic toolkit.

CONFIRM has the following syntax:

BooleanValue := CONFIRM(String [, Default] [, Value1] ,...)

When we do not specify a value for Default, the system will choose FALSE (which
displays as No). We should almost always choose that option as a Default that
will do no damage if accepted inadvertently by an inattentive user. The Default
choice is FALSE, which is often the safest choice (but TRUE may be specified by the
programmer). There are as many ValueX entries as there are %X substitution strings
(up to ten).

If we just code OK := CONFIRM(String), the Default choice will be False. Note that
True and False appear onscreen as the active language equivalent of Yes and No (a
feature that is consistent throughout NAV for C/AL Boolean values displayed from
NAV code but not for RDLC report controls displayed by the report viewer see NAV
Developer and IT Pro Helps How to: Change the Printed Values of Boolean Variables).

Introduction to C/SIDE and C/AL

[348]

A CONFIRM function call with similar content as the preceding examples might look
as shown in the following for the code and the display:

Answer := CONFIRM('Loop %1, Item No. %2\OK to continue?',TRUE,LoopCoun
ter,"Item No.");

In typical usage, the CONFIRM function is part of, or is referred to, by a conditional
statement that uses the Boolean value returned by the CONFIRM function.

An additional feature for on-screen dialogs is the use of the backslash (\) which
forces a new line in the displayed message. This works throughout NAV screen
display functions. Following are examples in Text Constants Text063 and Text064
in Table 36 – Sales Header:

To display a backslash on-screen, we must put two of them in our message text
string, \\.

The STRMENU function
The fourth dialog function is the STRMENU function. A STRMENU function call also
causes processing to pause while the user responds to the dialog. The advantage of
the STRMENU function is the ability to provide several choices, rather than just two
(Yes or No). A common use is to provide an option menu in response to the user
pressing a command button.

STRMENU has the following syntax:

IntegerValue := STRMENU(StringVariable of Options separated by commas
[, OptionDefault][, Instruction])

Chapter 6

[349]

Here IntegerValue will contain the user's selection and OptionDefault is an
integer representing which option will be selected by default when the menu
displays. If we do not provide an OptionDefault, the first option listed will be
used as the default. Instruction is a text string which will display above the list
of options. If the user responds Cancel or presses the Esc key, the value returned
by the function is 0.

Use of the STRMENU function eliminates the need to use a Page object when asking
the user to select from a limited set of options. The STRMENU can also be utilized from
within a report or Codeunit when calling a Page would restrict processing choices.

If we phrase our instruction as a question rather than simply an explanation, then we
can use STRMENU as a multiple choice inquiry to the user.

Here is an example of STRMENU with the instruction phrased as a question:

OptionNo := STRMENU('Blue,Plaid,Yellow,Hot Pink,Orange,Unknown',6,
 'Which of these is not like the others?');

Setting the default to 6 caused the sixth option (Unknown) to be the active selection
when the menu is displayed.

Record functions
Now we will review some of the functions that we commonly use in Record
processing.

Introduction to C/SIDE and C/AL

[350]

The SETCURRENTKEY function
The syntax for SETCURRENTKEY is:

[BooleanValue :=] Record.SETCURRENTKEY(FieldName1,[FieldName2], ...)

The BooleanValue is optional. If we do not specify it and no matching key is found,
a runtime error will occur.

Because NAV 2015 is based on the SQL Server database, SETCURRENTKEY simply
determines the order in which the data will be presented for processing. The actual
choice of the index to be used for the query is made by the SQL Server Query
Analyzer. For this reason, it is very important that the data and resources available to
the SQL Server Query Analyzer are well maintained. This includes maintaining the
statistics that are used by the Query Analyzer, as well as making sure that efficient
index options have been defined. Even though SQL Server picks the actual index, the
developer's choice of the appropriate SETCURRENTKEY parameter can have a major
affect on performance.

The indexes that are defined in SQL Server do not have to be the same as those
defined in the C/AL table definition (for example, we can add additional indixes
in SQL Server and not in C/AL, we can disable indixes in SQL Server but leave the
matching keys enabled in C/AL, and so on). Any maintenance of the SQL Server
indixes should be done through the NAV Table Designer using the NAV keys and
properties, not directly in SQL Server. Even though the system may operate without
problem, any mismatch between the application system and the underlying database
system makes maintenance and upgrades more difficult and error prone. NAV
defined keys are no longer required to support SIFT indexes because SQL Server
can dynamically create the required indixes. However, depending on dynamic
indixes for larger data sets can lead to bad performance. Good design is still our
responsibility as developers.

The SETRANGE function
The SETRANGE function provides the ability to set a simple range filter on a field.
SETRANGE syntax is as follows:

Record.SETRANGE(FieldName [,From-Value] [,To-Value]);

Chapter 6

[351]

Prior to applying its range filter, the SETRANGE function removes any filters that were
previously set for the defined field (filtering functions are defined in more detail in
the next Chapter). If SETRANGE is executed with only one value, that one value will
act as both the From and To values. If SETRANGE is executed without any From or To
values, it will clear the filters on the field. This is a common use of SETRANGE. Some
examples of the SETRANGE function in code are as follows:

• Clear the filters on Item.No.:
Item.SETRANGE("No.");

• Filter to get only Items with a No. from 1300 through 1400:
Item.SETRANGE("No.",'1300','1400');

• Or with the variable values from LowVal through HiVal:
Item.SETRANGE("No.",LowVal,HiVal);

In order to be effective in a Query, SETRANGE must be called before the OPEN,
SAVEASXML, and SAVEASCSV functions.

The SETFILTER function
SETFILTER is similar to, but much more flexible than, the SETRANGE function because
it supports the application of any of the supported NAV filter functions to table
fields. SETFILTER syntax is as follows:

Record.SETFILTER(FieldName, FilterExpression [Value],...);

The FilterExpression consists of a string (Text or Code) in standard NAV
filter format including any of the operators < > * & | = in any legal combination.
Replacement fields (%1, %2, …, %9) are used to represent the Values that will
be inserted into FilterExpression by the compiler to create an operating filter
formatted as though it were entered from the keyboard. Just as with SETRANGE, prior
to applying its filter, the SETFILTER function clears any filters that were previously
set for the defined field.

• Filter to get only Items with a No. from 1300 through 1400:
Item.SETFILTER("No.",'%1..%2','1300','1400');

• Or with any of the variable values of LowVal, MedVal, or HiVal:
Item.SETFILTER"No.",'%1|%2|%3',LowVal,MedVal,HiVal);

In order to be effective in a Query, SETFILTER must be called before the OPEN,
SAVEASXML, and SAVEASCSV functions.

Introduction to C/SIDE and C/AL

[352]

GET function
The GET function is the basic data retrieval function in C/AL. GET retrieves a single
record, based on the Primary Key only. It has the following syntax:

[BooleanValue :=] Record.GET ([KeyFieldValue1] [,KeyFieldValue2]
,...)

The parameter for the GET function is the Primary Key value (or all the values, if the
Primary Key consists of more than one field).

Assigning the GET function result to a BooleanValue is optional. If the GET function
is not successful (no record found) and the statement is not part of an IF statement,
the process will terminate with a runtime error. Typically, therefore, the GET function
is encased in an IF statement structured as shown in the following:

IF Customer.GET(NewCustNo) THEN ...

GET data retrieval is not constrained by filters except for security
filters (see Help How to: Set Security Filters). If there is a matching
record in the table, GET will retrieve it.

FIND functions
The FIND family of functions is the general purpose data retrieval function in C/AL.
It is much more flexible than GET, therefore more widely used. GET has the advantage
of being faster as it operates only on an unfiltered direct access via the Primary Key,
looking for a single uniquely keyed entry. There are two forms of FIND in C/AL, one
a remnant from a previous database structure and the other designed specifically to
work efficiently with SQL Server. Both are supported and we will find both in the
standard code.

The older version of the FIND function has the following syntax:

[BooleanValue :=] RecordName.FIND ([Which]).

The newer SQL Server specific members of the FIND family have slightly different
syntax, as we shall see shortly.

Just as with the GET function, assigning the FIND function result to a Boolean value
is optional. But in almost all the cases, FIND is embedded in a condition that controls
subsequent processing appropriately. Either way, it is important to structure our
code to handle the instance where FIND is not successful.

Chapter 6

[353]

Following are several important ways in which FIND differs from GET:

• FIND operates under the limits of whatever filters are applied on the
subject field.

• FIND presents the data in the sequence of the key which is currently selected
by default or by C/AL code.

• When FIND is used, the index used for the data reading is controlled by the
SQL Server Query Analyzer.

• Different variations of the FIND function are designed specifically for use in
different situations. This allows coding to be optimized for better SQL Server
performance. All the FIND functions are described further in the Help section
C/AL Database Functions and Performance on SQL Server.

Following are the various forms of FIND:

• FIND('-'): Finds the first record in a table that satisfies the defined filter and
current key.

• FINDFIRST: Finds the first record in a table that satisfies the defined filter
and defined key choice. Conceptually equivalent to FIND(' -') for a single
record read but better for SQL Server when a filter or range is applied.

• FIND('+'): Finds the last record in a table that satisfies the defined filter
and defined key choice. Often not an efficient option for SQL Server bcause
it causes SQL Server to read a set of records when many times only a single
record is needed. The exception is when a table is to be processed in reverse
order. Then it is appropriate to use FIND(' +') with SQL Server.

• FINDLAST: Finds the last record in a table that satisfies the defined filter and
current key. Conceptually equivalent to FIND(' +') but often much better
for SQL Server as it reads a single record, not a set of records.

• FINDSET: The efficient way to read a set of records from SQL Server for
sequential processing within a specified filter and range. FINDSET allows
defining the standard size of the read record cache as a setup parameter, but
normally defaults to reading 50 records (table rows) for the first server call.
The syntax includes two optional parameters:

FINDSET([ForUpdate][, UpdateKey]);

The first parameter controls whether or not the read is in preparation for
an update and the second parameter is TRUE when the first parameter is
TRUE and the update is of key fields. FINDSET clears any FlowFields in the
record read.

Introduction to C/SIDE and C/AL

[354]

FIND ([Which]) options and the SQL Server alternates
Let's review the options of the FIND function using the following syntax:

[BooleanValue :=] RecordName.FIND ([Which])

The [Which] parameter allows the specification of which record is searched for
relative to the defined key values. The defined key values are the set of values
currently in the fields of the active key in the memory-resident record of table
RecordName.

The following table lists the Which parameter options and prerequisites

The following table lists the FIND options that are specific to SQL Server:

For all FIND options, the results always respect applied filters.

Chapter 6

[355]

The FIND('-') function is sometimes used as the first step of reading a set of data,
such as reading all the sales invoices for a single customer. In such a case, the NEXT
function is used to trigger all subsequent data reads after the sequence is initiated
with a FIND('-'). Generally FINDSET should be used rather than FIND(' -'),
however FINDSET only works for reading forward, not in reverse. Or use FINDFIRST
if only the first record in the specified range is of interest.

One form of the typical C/SIDE database read loop is as follows:

IF MyData.FIND('-') THEN
 REPEAT
 Processing logic here
UNTIL MyData.NEXT = 0;

The same processing logic using the FINDSET function is as follows:

IF MyData.FINDSET THEN
 REPEAT
 Processing logic here
UNTIL MyData.NEXT = 0;

We will discuss the REPEAT–UNTIL control structure in more detail in the next
chapter. Essentially, it does what it says: "repeat the following logic until the defined
condition is true". For the FIND–NEXT read loop, the NEXT function provides both the
definition of how the read loop will advance through the table and when the loop is
to exit.

When DataTable.NEXT = 0, it means there are no more records to be read. We have
reached the end of the available data, based on the filters and other conditions that
apply to our reading process.

The specific syntax of the NEXT function is DataTable.NEXT(Step). DataTable is the
name of the table being read. Step defines the number of records NAV will move
forward (or backward) per read. The default Step is 1, meaning NAV moves ahead
one record at a time, reading every record. A Step of 0 works the same as a Step of
1. If the Step is set to 2, NAV will move ahead two records at a time and the process
will only be presented with every other record.

Step can also be negative, in which case NAV moves backwards through the table.
This would allow us to do a FIND('+') for the end of the table, then a NEXT(-1) to
read backwards through the data. This is very useful if, for example, we need to read
a table sorted ascending by date and want to access the most recent entries first.

Introduction to C/SIDE and C/AL

[356]

Conditional statements
Conditional statements are the heart of process flow structure and control.

The BEGIN–END compound statement
In C/AL, there are instances where the syntax only allows for use of a single statement.
But a design may require the execution of several (or many) code statements.

C/AL provides at least two ways to address this need. One method is to have the
single statement call a function that contains multiple statements.

However, inline coding is often more efficient to run and to understand. So C/AL
provides a syntax structure to define a Compound Statement or Block of code. A
compound statement containing any number of statements can be used in place of a
single code statement.

A compound statement is enclosed by the reserved words BEGIN and END. The
compound statement structure looks like this:

BEGIN
 <Statement 1>;
 <Statement 2>;
 ..
 <Statement n>;
END

The C/AL code contained within a BEGIN – END block should be indented two
characters, as shown in the preceding code, to make it obvious that it is a block of code.

The IF–THEN–ELSE statement
IF is the basic conditional statement of most programming languages. It operates
in C/AL similarly to how it works in other languages. The basic structure is: IF a
conditional expression is true, THEN execute Statement-1 ELSE (if condition not
true) execute Statement-2. The ELSE portion is optional. The syntax is:

IF <Condition> THEN <Statement-1> [ELSE <Statement-2>]

Note that the statements within the IF do not have terminating semicolons unless
they are contained in a BEGIN – END framework. IF statements can be nested so that
conditionals are dependent on the evaluation of other conditionals. Obviously, one
needs to be careful with such constructs, because it is easy to end up with convoluted
code structures that are difficult to debug and difficult for the developer following
us to understand. In the next chapter, we will review the CASE statement which can
make some complicated conditionals much easier to format and to understand.

Chapter 6

[357]

As we work with the NAV C/AL code, we will see that often <Condition> is really
an expression built around a standard C/AL function. This approach is frequently
used when the standard syntax for the function is "Boolean value, function
expression". Some examples are as follows:

• IF Customer.FIND('+') THEN... ELSE...

• IF CONFIRM(' OK to update?' ,TRUE) THEN... ELSE...

• IF TempData.INSERT THEN... ELSE...

• IF Customer.CALCFIELDS(Balance,Balance(LCY)) THEN...

Indenting code
Since we have just discussed the BEGIN–END compound statements and IF conditional
statements, which also are compound (that is, containing multiple expressions), this
seems a good time to discuss indenting code.

In C/AL, the standard practice for indenting subordinate, contained, or continued
lines is relatively simple. Always indent such lines by two characters except where
there are left and right parentheses to be aligned.

To indent a block of code by two characters at a time, select it and
click on the Tab key. To remove the indentation one character at a
time, select the code and click on Shift + Tab.

In the following examples, the parentheses are not required in all the instances, but
they don't cause any problems and can make the code easier to read:

IF (A <> B) THEN
 A := A + Count1
ELSE
 B := B + Count2;
Or:
IF (A <> B) THEN
 A := A + Count1;
Or:
IF (A <> B)THEN
BEGIN
 A := A + Count1;
 B := A + Count2;
 IF (C > (A * B)) THEN
 C := A * B;
END
ELSE
 B := B + Count2;

Introduction to C/SIDE and C/AL

[358]

Some simple coding modifications
Now we're going to add some C/AL code to objects we've created for our WDTU
application.

Adding field validation to a table
In Chapter 4, Pages – the User's Interactive Interface, we created Table 50010 – Radio
Show Fan. We've decided that we want to be able to use this list for promotional
activities such as having drawings for concert tickets. Of course we want to send
the tickets to the winners at their mailing addresses. We didn't originally include
those fields in our table design, so must add them now. To keep our design
consistent with the standard product, we will model those fields after the equivalent
ones in Table 18 – Customer. Our updated Table 50010 will look as shown in the
following screenshot:

Part of modeling our Table 50010 – Radio Show Fan fields on those in Table
18 – Customer is faithfully copying the applicable properties. For example,
the TableRelation property for the Post Code field in Table 18 contains the
following, which we should include for the Post Code in Table 50010:

IF (Country/Region Code=CONST()) "Post Code" ELSE IF (Country/Region
Code = FILTER(<>' ') "Post Code" WHERE (Country/Region Code = FIELD
(Country/Region Code))

When a Radio Show Fan record is added or the Post Code field is changed, we
would like to update the appropriate address information. Let's start with some code
in a Validation trigger of our table.

Chapter 6

[359]

Since we modeled the address fields for our Fan record on the standard Customer
table, let's look at the Customer table to see how Post Code validation is handled
there. We can access the code through the Table Designer via Object Designer |
Table | select Table 18 - Customer | Design | select Field 91 - Post Code | F9. We
would see the following:

Looking at this C/AL code, we can see that the OnValidate trigger contains a call to
a function in another object identified as PostCode. To find out what object PostCode
actually is, we need to look in C/AL Globals (which we have sometimes referred to
in this book as part of Working Storage).

We see that PostCode is a reference to the Record (that is, table) Post Code. This is
sort of like a treasure hunt at a birthday party. Now we follow that clue to the next
stop, the Post Code table and the ValidatePostCode function that is used in the
Customer Post Code validation trigger. To learn as much as we can about how this
function works, how we should call it, and what information is available from the
Post Code table (table 225), we will look at several things:

• The Post Code table field list
• The C/AL code for the function in which we are interested
• The list of functions available in the Post Code table
• The calling and return parameters for the ValidatePostCode function

Introduction to C/SIDE and C/AL

[360]

Following are the screenshots for all these areas.

First, the field list in Table 225—Post Code:

Next, the C/AL code for the ValidatePostCode function:

Now, the list of callable functions available within the Post Code table (this isn't critical
information but helps us better understand the whole picture of the structure):

Chapter 6

[361]

Next, a look at the calling Parameters for the ValidatePostCode function:

Finally, the Return Value for the ValidatePostCode function:

Doing some analysis of what we have dissected, we can see that the
ValidatePostCode function call uses five calling Parameters. There is no Return
Value. The function avoids the need for a Return Value by passing four of the
Parameters by Reference (not by Value) as we can tell by the checkmark in the
Var column. The function code updates the parameters that reference the data
elements in the calling object. This interpretation is reinforced by studying the
ValidatePostCode function C/AL code as well.

We conclude that we can just copy the code from the Post Code OnValidate trigger
in the Customer table into the equivalent trigger in our Fan table. This will give
us the Post Code maintenance we want. The result looks as shown the following
screenshot (the variable CurrFieldNo is a System-Defined Variable leftover from
previous versions retained for compatibility reasons):

Introduction to C/SIDE and C/AL

[362]

If we press F11 at this point, we will get an error message indicating that the variable
PostCode has not been defined.

Obviously, we need to attend to this. The answer is shown in the next screenshot in
the form of the PostCode Global Variable definition:

After we save this change (by simply moving focus from the new line of code to
another line on the form or closing the form), press F11 again. We should get no
reaction other than a brief cursor blink when the object is compiled.

Because we haven't created a page for maintenance of Table 50010, we will test our
work by Running the table. All we need to do is move to the Post Code field, click
on it, and choose an entry from the displayed list of codes. The result should be the
population of the Post Code field, the Country/Region Code field, and the City
field. If we fill in the new data fields for some Fan records, our Radio Show Fan table
would look like the following screenshot:

Chapter 6

[363]

We've accomplished our goal. The way we've done it may seem disappointing. It
didn't feel like we really designed a solution or wrote any code. What we did was
find where in NAV the same problem was already solved, figured out how that
solution worked, cloned it into our object, and we were done.

Each time we start this approach, first we should look at the defined Patterns
(https://community.dynamics.com/nav/w/designpatterns/105.nav-design-
patterns-repository.aspx) to see if any Patterns fit our situation. The benefit of
starting with a Pattern is that the general structural definition has been defined for
how this function should be done within NAV. Whether you find a matching Pattern
or not, the next step is to find and study the applicable C/AL code within NAV.

Obviously, this approach doesn't work every time. But every time it does work is
a small triumph of efficiency. This helps us to keep the structure of our solution
consistent with the standard product, reuse existing code constructs, and minimize
the debugging effort and chances of production problems. In addition, our
modifications are more likely to work even if the standard base application
function changes in a future version.

Adding code to a report
Most reports require some embedded logic to process user selected Options,
calculate values, or access data in related tables. To illustrate some possibilities,
we will extend our WDTU application to add a new report.

To support promotions giving away posters, concert tickets, and so on, we must
further enhance the Radio Show Fan table and create a new report to generate
mailing information from it. Our first step is to create a New report in the C/SIDE
Report Designer, then define the data fields we want to include for mailings
(including a Global variable of CountryName), and then Save and Compile the
result as Report 50002 – Fan Promotion List.

Introduction to C/SIDE and C/AL

[364]

Lay out the new Report Heading
Next, we will begin the design of the report layout in the SQL Server Report Builder
(SSRB). From the C/SIDE RD, we click on View | Layout to open SSRB, ready to
begin work on our layout. We'll begin by defining a report header.

Right-click in the layout work area (in the middle of the screen display), click on
Insert, and then select Page Header. On the left-side of the menu, ReportData
is displayed. Click on Datasets to display DataSetResult. Depending on what
information we want to appear in the header, we might use fields from various parts
of ReportData. If we had defined a Label to use for our Report Header, we could
have done a drag-and-drop from the Label in the Parameters list. However, in our
example, we dragged in a Text Box from the menu ribbon, which we placed in the
upper left corner of the layout work area. We then typed a report name into that text
box. Most of the other header fields were brought in from the Report Data Built-in
Fields section. We used the Execution Time, Page Number, and User ID fields. We
added another Text Box for the word Page in front of the Page Number.

Entering text data directly into the SSRB layout for heading labels (as we did here
with the Report Header and Page label) is only appropriate for beginners or for
reports that are for very short term use. Good report design practice requires that
such values are defined in the C/SIDE RD, where multilanguage is supported and
where such fields should be maintained. In C/SIDE RD, these values can be entered
and maintained in the Report Label Designer accessed via View | Labels.

In the process of working on this sample report, we might want a different layout,
to use Labels or add other features. Feel free to experiment and design your header
to suit your own preferences. You will learn by the results of your experiments.

Chapter 6

[365]

Save and test
At this point, it's time to save and test what we've done so far. Exit from the Report
Builder. Save the report layout changes, exit the C/SIDE RD, and save and compile
the report object.

This first test is very simple (assuming it works). Run Report 50002. The Report
Request Page will appear in the RoleTailored client. Click Preview to see the Report
display onscreen. The layout shown in the preceding screenshot will result in the
report page seen in the following screenshot (or something similar):

Lookup Related table data
Once we have a successful test of the report (heading only), we'll move on to laying
out the body of the report. As we think through the data we want to include in a
mailing address (Name, Address, Address 2, City, County (State), Country Name,
Post Code), we realize that our table data includes Country Code, not Country
Name. So we will look up the Country Name from the Country/Region table
(Table 9). Let's take care of that now.

First we'll add a couple of Global Variables to our report. One of them will allow us
to access the Country/Region table and the other will act as a holding place for the
Country Name data we get from that table.

Introduction to C/SIDE and C/AL

[366]

Each time we read a Radio Show Fan record, we'll look up the country name for that
fan and store it in CountryName.

Now we can add the CountryName variable to the list of data elements attached to
DataItem Radio Show Fan so it will be included in the data passed to the Report
Builder and, when the report is run, to the Report Viewer.

While what we've done will probably work most of the time, how could it be
made better? For one thing, shouldn't we handle the situation where there is no
Country/Region Code in the fan record? And do we really need to move the
country name to a Global variable instead of simply reporting it directly from
the Country/Region record?

Both of these issues could be handled better. Look up the GET function in the Help
to see what should be done in terms of error handling. And, after we work through
the report as we're doing it here, enhance it by eliminating use of the CountryName
Global variable. For now, let's just move on to completing an initial version of our
report by creating the rest of our report layout in the SSRB.

Layout the new report body
Open the report layout in the SSRB. From the Ribbon, we'll grab a Table and drag
it into the layout work area for the report body. The Table starts with only three
columns. After positioning the Table to the top-left of the body, we will add four
more columns to accommodate the seven data fields we want to include for each
mailing address.

Chapter 6

[367]

We will drag a data field from the DataSet_Result into each of the Data Row Text
Boxes (the bottom row). In the top row, captions will appear. Where we want the
displayed captions to be different than what fills in automatically, we'll either type
in what we want (not very sophisticated) or delete the default captions and drag in
captions from the Parameters list.

Among our caption options are the CountryLabel and StateLabel we see in the
preceding and following images. These are the result of defining Labels in the
C/SIDE RD Report Label Designer.

Introduction to C/SIDE and C/AL

[368]

Save and test
After we lay out, Save and Exit, Update, and Save and Compile, it's time to do
another test Run of our report in process. If we simply Preview without doing any
filtering, we should see all of our test data address information (complete with
Country Name).

Handling User-entered report options
Part of our report design includes allowing the user to choose fans based on some
simple demographic data based on age and gender. We'll need to add two more
fields to our Radio Show Fan table definition, one for Gender and the other for Birth
Date, from which we can calculate the fan's age.

Chapter 6

[369]

This back and forth process of updating first one object, then a different
one, then yet another, is typical of the NAV development process much
of the time. Exceptions are those cases where either the task is so simple
that we think of everything the first time through or the cases where
we create a completely documented, full featured design before any
development starts (but nobody thinks of everything, there are always
changes – our challenge is to keep the changes under control).
An advantage to the more flexible approach we are following is that
it allows us to view (and share with others) intermediate versions of
the application as it is developed. Design issues can be addressed as
they come up and overlooked features can be considered mid-stream.
Two downsides are the very real possibility of scope creep (the project
growing uncontrollably) and poorly organized code. Scope creep can be
controlled by good project management. If the first pass through results
in poorly organized code, then a thoughtful refactoring is appropriate,
cleaning up the code while retaining the design.

Introduction to C/SIDE and C/AL

[370]

In order for the user to choose which Fan demographics will be used to filter the
Fan data for a particular promotion, we will have to create a Request Page for
entry of the desired criteria. This, in turn, requires the definition of a set of Global
Variables in our Report object to support the Request Page data entry fields and
as working variables for the age calculation and Fan selection. We've decided that
if a Fan fits any of the individual criteria, we will include them. This makes our
logic simpler. Our final Global Variable list in Report 50002 looks as shown in
the following screenshot:

Defining the Request Page
Now, let's define the Request Page. Click View | Request Page and make the entries
necessary to describe the page contents.

Chapter 6

[371]

Finishing the processing code
Next, we will create the C/AL code to calculate a Fan's age (in years) based on
his/her Birth Date and the current WORKDATE. The logic is simple: subtract the
Birth Date from the WORKDATE. This gives a number of days. So we divide by 365
(not worrying about Leap Years) and round down to integer years (if someone is 25
years, 10 months and 2 days, we will just consider them 25). In the following code,
we did the division as though the result were a decimal field. But because our math
is integer, we could have used the simpler expression:

FanAge := ((WORKDATE - "Birth Date") DIV 365);

Finally, we'll write the code to check each Fan record data against our selection criteria,
determining if we want to include that fan in our output data (SelectThisFan set to
True). This code will select each fans who fits any of the checked criteria; there is no
combination logic here. Following is our commented C/AL code for Report 50002:

After this version of the report is successfully tested, enhance it. Make the report
support choosing any of the options (as it is now) or, at user option, choose a
combination of age range plus gender. Hint: add additional checkboxes to allow the
user to control which set of logic will be applied. We should also change the code to
use the CASE statements (rather than IF statements). CASE statements often provide
an easier to understand view of the logic.

Introduction to C/SIDE and C/AL

[372]

Test the completed report
After we Save and Compile our report, we'll Run it again. Now we get an expanded
Request Option Page. After we've check-marked a couple of the selection criteria.

Now Preview our report. Using the sample data previously illustrated, our report
output shows two records, one selected on the basis of Gender and the other on Age.

Output to Excel
An easy way to get the data to a mailing list is now to output it to Excel, where we
can easily manipulate it into a variety of formats without further programming.

Chapter 6

[373]

Here's what that output looks like in Excel:

At this point we have a report that runs and is useful. It can be enhanced to support
more complex selection criteria. As usual, there are a number of different ways to
accomplish essentially the same result. Some of those paths would be significantly
different for the developer, but nearly invisible to the user. Some might not even
matter to the next developer who has to work on this report. What is important at
this point is that the result works reliably, provides the desired output, operates with
reasonable speed, and does not cost too much to create or maintain. If all these goals
are met, most of the other differences are usually not very important.

Summary
"Furniture or gold can be taken away from you, but knowledge and a new language
can easily be taken from one place to the other, and nobody can take them away
from you."
 David Schwarzer

In this chapter, we covered Object Designer navigation, along with navigation of
the individual Designers (Table, Page, Report, and so on). We covered a number
of C/AL language areas including functions and how they may be used, variables
of various types (both development and system), basic C/AL syntax, expressions,
and operators. Some of the essential C/AL functions that we covered included user
dialogs, SETRANGE filtering, GET, variations of FIND, BEGIN-END for code structures,
plus IF-THEN for basic process flow control.

Introduction to C/SIDE and C/AL

[374]

Finally, we got some hands-on experience by adding validation code to a table and
creating a new report that included the embedded C/AL code and a Request Page.
In the next chapter, we will expand our exploration and practice in the use of
C/AL. We will learn about additional C/AL functions, flow control structures,
input/output functions, and filtering.

Review questions
Q.1. All NAV objects can contain C/AL code. True or False?

Q.2. What object type has a Wizard to "jump start" development?

a. Page
b. XMLport
c. Table
d. Report

Q.3. All C/AL Assignment statements include the symbol := . True or False?

Q.4. One setting defines how parameters are passed to functions, whether a
parameter is passed by reference or by value. Choose that one setting's identity.

a. DataType
b. Subtype
c. Var
d. Value

Q.5. If an object type has a Wizard, we must start with the Wizard before proceeding
to the object Designer form. True or False?

Q.6. C/AL code cannot be inserted into the RDLC generated by the SQL Server
Report Builder (or Visual Studio Report Designer). True or False?

Q.7. When a table definition is changed, the "Force" option should always be used
when saving the changes. True or False?

Q.8. Object numbers and names are so flexible that we can (and should) choose our
own approach to numbering and naming. True or False?

Chapter 6

[375]

Q.9. In what formats can objects be exported? Choose two.

a. fob
b. .txt
c. .NET
d. .XML
e. .gif

Q.10. BEGIN – END are always required in IF statements. True or False?

Q.11. Which object export format should be used to transmit updates to client sites?
Choose one.

a. .fob
b. .txt
c. .NET

Q.12. All NAV development work starts from the Object Designer. True or False?

Q.13. Modifiable functions include which of the following? Choose two.

a. Application Management
b. DATE2MDY
c. Mail
d. STRLEN

Q.14. Report heading text can either be typed in manually or brought into SSRB via
Label Parameters. True or False?

Q.15. Whenever possible, the controlling logic for managing data should be resident
within the tables. True or False?

Q.16. Filter Wildcards include which three of the following:
a. ?
b. ::
c. *
d. ^
e. @

Introduction to C/SIDE and C/AL

[376]

Q.17. The choice of the proper version of the FIND statement can make a significant
difference in processing speed. True or False?

Q.18. When we are working in the Object Designer, changing C/AL code, the Object
Designer automatically backs up our work every few minutes so we don't have to do
so. True or False?

Q.19. When an ERROR statement is executed, the user is given the choice to
terminate processing, causing rollback, or to ignore the error and continue
processing. True or False?

Q.20. Arithmetic Operators and Functions include which of the following?
Choose two.

a. *
b. >
c. =
d. /

Chapter 7

[377]

Intermediate C/AL
"A designer is an emerging synthesis of artist, inventor, mechanic, objective
economist and evolutionary strategist."
 – R. Buckminster Fuller

"Beauty of style and harmony and grace and good rhythm depend on simplicity."

 – Plato

In the previous chapter, we learned enough C/AL to create a basic, operational
set of code. In this chapter, we will learn about more C/AL functions and pick up
a few more good habits along the way. If you are getting started as a professional
NAV Developer, C/SIDE's built-in C/AL functions represent a significant portion
of the knowledge that you will need on a day-to-day basis. If you are a manager or
consultant needing to know what NAV can do for your business or your customer,
an understanding of these functions will help you too.

Our goal is to competently manage I/O, create moderately complex program logic
structures, and understand data filtering and sorting as handled in NAV and C/AL.
Since the functions and features in C/AL are designed for business and financial
applications, we can do a surprising amount of ERP work in NAV with a relatively
small number of language constructs.

Keep in mind that anything discussed in this chapter relates only indirectly to those
portions of NAV objects which contain no C/AL (for example, MenuSuites, SQL
Server Report Builder (SSRB), and Visual Studio Report Designer (VSRD) report
layouts). This chapter's goals are to:

• Review some C/AL development basics
• Learn about a variety of useful (and widely used) C/AL functions

Intermediate C/AL

[378]

• Better understand filtering
• Apply some of what we've learned to expand our WDTU applicationSome

C/AL development tools

All internal NAV logic development is done in C/AL and all C/AL development is
done in C/SIDE. Some user interface design is done by means of the SSRB/VSRD.
And it is possible to have integrated .NET objects for a variety of purposes.

C/AL Symbol Menu
As an Integrated Development Environment (IDE), C/SIDE contains a number of
tools designed to make our C/AL development effort easier. One of these is the C/
AL Symbol Menu. When we are in one of the Object Designers where C/AL code is
supported, C/AL Symbol Menu can be accessed via either the menu option View |
C/AL Symbol Menu or by pressing F5.

The three-column display has variables and object categories in the left column. If
the entry in the left column is an object or a variable of function type, then the center
column contains subcategories for the highlighted left-column entry. The right column
contains the set of functions that are a part of the highlighted center-column entry. In
a few cases (such as BLOB fields), additional information is displayed in the columns
further to the right. These columns are accessed through the arrows displayed just
below the rightmost display column, as shown in the following screenshot:

Chapter 7

[379]

The C/AL Symbol Menu is a very useful multi-purpose tool for the developer. We
can use it as a quick reference to see what C/AL functions are available to us, see
the syntax of those functions, access Help on those functions, and view what other
systems would refer to as the Symbol Table. We can also use the C/AL Symbol
Menu as a source of variable names or function structures to paste into our code.

Use of the C/AL Symbol Menu for reference purposes is not only very helpful when
we are a novice C/AL developer but also after we become experienced developers.
It is a guide to the inventory of available code tools with some very handy built-in
programming aids.

The C/AL Symbol Menu displays the highlighted function's syntax at the bottom left
of the screen. It also provides quick access to Developer and IT Pro Help to further
study the highlighted function and its syntax. Pressing F1 may bring up the general
Developer and IT Pro Help rather than a specific entry (or it may bring up an entry
only somewhat related to the focus location.

The second use of the C/AL Symbol Menu is as a symbol table. The symbol table
for our object is visible in the left column of the C/AL Symbol Menu display. The
displayed symbol set (that is, variable set) is context sensitive. It will include all
system-defined symbols, all our Global symbols, and the Local symbols from the
function that had focus at the time we accessed the C/AL Symbol Menu. Though it
would be useful, there is no way within the Symbol Menu to see all Local variables
in one view. The Local symbols will be at the top of the list, but we have to know the
name of the first Global symbol to determine the scope of a particular variable (that
is, if an entry appears in the symbol list before the first Global, it is a Local variable,
otherwise it's Global).

The third use for the C/AL Symbol Menu is as a code template with a paste function
option available. This function will be enabled if we have accessed C/AL Symbol
Menu from C/AL Editor. Paste is initiated by pressing either the Apply button or the
OK button, or highlighting and double-clicking. In each of these cases, the element
with focus will be pasted into our code. Apply will leave the Symbol Menu open
and OK will close it (double-clicking on the element has the same effect as clicking
on OK).

Intermediate C/AL

[380]

If the element with focus is a simple variable, then that variable will be pasted into
our code. If the element is a function whose syntax appears at the lower left of the
screen, the result of the paste action (that is, Apply or OK or double-click) depends
on whether Paste Arguments (just below the leftmost column) is checked or not. If
the Paste Arguments checkbox is not selected, then only the function itself will be
pasted into our code. If the Paste Arguments checkbox is selected (as shown in the
preceding screenshot), then the complete syntax string, as shown, will be pasted
into our code. This can be a very convenient way to create a template to help us
enter the correct parameters with the correct syntactical structure and punctuation
more quickly.

When we are in the C/AL Symbol Menu, we can focus on a column, click on a letter,
and jump to the next column field in sequence that starts with that letter. This acts as
a limited Search substitute, like an assisted browse.

Internal documentation
When we are creating or modifying software, we should always document what
we have done. It is often difficult for developers to spend much time (or, money) on
documentation because many don't enjoy doing it and the benefits are uncertain. A
reasonable goal is to provide enough documentation so that a knowledgeable person
following us can understand what we have done as well as the reasons why.

If we choose good variable names, the C/AL code will tend to be self-documenting.
If we lay out our code neatly, use indentation consistently, and localize logical
elements in functions, then the flow of our code should be easy to read. We should
also include comments which describe the functional reason for the change. This will
help the next person in this code to not only be able to follow the logic of the code,
but to understand the business reasons for it as well.

In case of a brand-new function, a simple statement of purpose is often all that
is necessary. In case of a modification, it is extremely useful to have comments
providing a functional definition of what the change is intended to accomplish, as
well as a description of what has been changed. If there is external documentation of
the change, including a design specification, the comments in the code should refer
to this external documentation.

In any case, the primary focus should be on the functional reason for the change, not
just the technical reason. Any good programmer can study the code and understand
what was changed, but without the documentation describing why the change was
made, the task of the next person to maintain or upgrade that code will be made
much more difficult.

Chapter 7

[381]

In the following example, the documentation is for a brand-new report. The
comments are in the Documentation section, where there are no format rules, except
for those we impose. This is a new report, which we created in Chapter 6, Introduction
to C/SIDE and C/AL. The comment is coded to indicate the organization making the
change (in this case CD) and a sequence number for this change. In this case, we
are using a two digit number (06) for the change, plus the version number of the
change, 00; hence, we start with CD.06.00, followed by the date of the change. Some
organizations also include an identifier for the developer in the Documentation
section comments.

We can make up our own standard format that will identify the source and date
of the work, but we should have a standard and use it. When we add a new data
element to an existing table, the Description property should receive the same
modification identifier that we would place in the code comments.

When we make a subsequent change to an object, we should document that change
in the Documentation trigger and also in the code, as described earlier.

Intermediate C/AL

[382]

Inline comments can be made in two ways. The most visible way is to use a //
character sequence (two forward slashes). The text that follows the slashes on that
line will be treated as a comment by the compiler; it will be ignored. If the comment
spans multiple physical lines, each line of the comment must also be preceded by
two forward slashes.

In the following image we have used // to place comments inline to identify a change:

Here we have made the modification version number 01, resulting in a change
version code of CD.07.01. In the following code, modifications are highlighted by
bracketing the additional code with comment lines containing the modification
identifier, and start and end text indicators. Published standards do not include
the dashed lines shown here, but doing something that makes comments stand out
makes it easier to spot modifications when we are visually scanning the code.

A second way to place a comment within the code is to surround the comment with
a matched pair of braces { }. Because braces are less visible than the slashes, we
should use // when our comment is relatively short. If we decide to use { }, it's a
good idea to insert a // comment at least at the beginning and end of the material
inside the braces, to make the comments more visible. Some experienced developers
recommend using // on all removed code lines, to make the deletions easier to spot
later. Evolving standards recommend against any use of the braces for commenting
out code.

For example:

{//CD.07.02 start deletion -------------
//CD.07.02 Replace validation with a call to an external function
...miscellaneous C/AL validation code
//CD.07.02 end deletion ------------- }

Chapter 7

[383]

When we delete code that is part of the original Microsoft distribution, we should
leave the original statements in place but commented out, so the old code is
inoperative (an exception to this may apply if a source code control system is in
use which tracks all the changes). The same concept applies when we change the
existing code; leave the original code in place, but commented out, with the new
version being inserted as shown in the following screenshot. This approach does not
necessarily apply to code that we ourselves created originally.

Comment Selection and Uncomment Selection options have been added to the Edit
menu option list in NAV 2015. When we are commenting or uncommenting large
chunks of code, these can be useful. See the Help C/AL Comments.

When we make changes such as these, we don't want to forget to also update the
object version numbers located in the Version List field on the Object Designer
screen. It's also a good idea to take advantage of one of the previously mentioned
source code management tools to track modifications.

From our previous experience, we know that the format of the internal
documentation is not what's critical. What is critical is that the documentation exists,
is consistent in format, and accurately describes the changes that have occurred.
The internal documentation should be a complement to external documentation
which defines the original functional requirements, validation specifications, and
recommended operating procedures.

Yet another approach, one that is especially suitable for modifications that exceed
a small number of lines of code or which will be called from multiple places, is to
create a new function for the modification, name the function so that its purpose is
obvious, then call the function from the point of use. In this case, that function might
be named something like CheckDatePrizeLastWon and would contain the C/AL
code shown earlier, specifically IF (WORKDATE - "Last Prize Date") < 30 THEN
CurrReport.SKIP. In this case, the function would only have one line of code (not
a good example), we would pass in the Last Prize Date value and the function
would return a Boolean value telling us whether or not the individual was eligible
for a new prize.

Intermediate C/AL

[384]

Validation functions
C/AL includes a number of utility functions designed to facilitate data validation or
initialization. Some of these functions are:

• TESTFIELD

• FIELDERROR

• INIT

• VALIDATE

TESTFIELD
The TESTFIELD function is widely used in standard NAV code. With TESTFIELD, we
can test a variable value and generate an error message in a single statement if the
test fails. The syntax is:

Record.TESTFIELD (Field, [Value])

If a Value is specified and the field does not contain that value, the process
terminates with an error condition and the error message is issued.

If no Value is specified, the field contents are checked for values of zero or blank. If
the field is zero or blank, then that an error message is issued.

The advantage of TESTFIELD is the ease of use and consistency in the code and the
message displayed. The disadvantage is that the error message is not as informative
as we might provide as a careful developer.

The following screenshot of TESTFIELD usage is from Table 18 – Customer. This
code checks to make sure that the Sales Order field Status is equal to the option
value Open before allowing the value of the field "Sell-to Customer No." to
be entered.

TESTFIELD(State,Status::Open);

An example of the error message generated when attempting to change the "Sell-
to Customer No." when Status is not equal to the option value Open, is as follows:

Chapter 7

[385]

FIELDERROR
Another function very similar to the TESTFIELD function is FIELDERROR. But where
TESTFIELD performs a test and terminates with either an error or an OK result,
FIELDERROR presumes that the test was already performed and the field failed the
test. FIELDERROR is designed to display an error message, then terminate the process.
This approach is followed in much of the NAV logic, especially in the Posting
Codeunits (for example, Codeunits 12, 80, 90). The syntax is as follows:

TableName.FIELDERROR(FieldName[,OptionalMsgText]);

If we include our own message text by defining a Text Constant in the C/AL Globals
| Text Constants tab (so the code can be multilingual), we will have:

Text001 must be greater than Start Time

Then we can reference the Text Constant in code:

IF Rec."End Time" <= "Start Time" THEN
 Rec.FIELDERROR("End Time",Text001);

The result is an error message from FIELDERROR like that shown in the
following screenshot:

Intermediate C/AL

[386]

An error message that simply identifies the data field, but does not reference a
message text, looks like the following screenshot, with the record key information
displayed:

Because the error message begins with the name of the field, we need to be careful
that our Text Constant is structured to make the resulting error message easy to read.

If we don't include our own message text, the default message comes in two flavors.
The first instance is the case where the referenced field is not empty. Then the error
message presumes that the error is due to a wrong value, as shown in the previous
image. In the case where the referenced data field is empty, the error message logic
presumes the field should not be empty, as shown in the following image:

INIT
The INIT function initializes a record in preparation for its use, typically in the
course of building a record entry to insert in a table. The syntax is:

Record.INIT;

All the data fields in the record are initialized as follows:

• Fields which have a defined InitValue property are initialized to the
specified value.

Chapter 7

[387]

• Fields which do not have a defined InitValue are initialized to the default
value for their data type.

• Primary key fields and timestamps are not automatically initialized. If they
contain values, those will remain. If new values are desired, they must be
assigned in code.

VALIDATE
The syntax of the VALIDATE function is as follows:

Record.VALIDATE (Field [, Value])

VALIDATE will fire the OnValidate trigger of Record.Field. If we have specified a
Value, that Value is assigned to the field and the field validations are invoked.

If we don't specify a Value, then the field validations are invoked using the field
value that already exists in the field. This function allows us to easily centralize our
code design around the table, which is one of NAV's strengths.

For example, if we were to code changing Item."Base Unit of Measure" to
another unit of measure, the code should make sure the change is valid. We should
get an error if the new unit of measure has any quantity other than 1 (because that is
a requirement of the Base Unit of Measurement field). Making the unit of measure
change with a simple assignment statement would not catch a quantity error.

Following are the two forms of using VALIDATE which give the same end result:

• Item.VALIDATE("Base Unit of Measure",'Box');

• Item."Base Unit of Measure" := 'Box';

Item.VALIDATE("Base Unit of Measure");

Date and Time functions
NAV provides a considerable number of Date and Time functions. We will cover
those in the following list. They are are more commonly used, especially in the
context of accounting date sensitive activity.

• TODAY, TIME, and CURRENTDATETIME functions
• WORKDATE functions
• DATE2DMY, DATE2DWY, DMY2DATE, DWY2DATE, and CALCDATE functions

Intermediate C/AL

[388]

TODAY, TIME, and CURRENTDATETIME
functions
TODAY retrieves the current system date as set in the operating system. TIME
retrieves the current system time as set in the operating system. CURRENTDATETIME
retrieves the current date and time in the DATETIME format, which is stored in UTC
international time (formerly referenced as GMT or Greenwich Mean Time) and then
displayed in local time. If we are using the Windows client, this uses the time in
the NAV Client. If the system operates in multiple time zones at one time, search
Microsoft Dynamics NAV Help on time zone for several references on how
to deal with multiple time zones.

The syntax for each of these is as follows:

DateField := TODAY;
TimeField := TIME;
DateTimeField := CURRENTDATETIME;

These are often used for date- and time-stamping transactions or for filling in default
values in fields of the appropriate data type. For data entry purposes, the current
system date can be entered by simply typing the letter T or the word TODAY in the
date entry field (this is not a case-sensitive entry). NAV will automatically convert
this entry to the current system date.

The undefined date in NAV 2015 is represented by the earliest valid DATETIME
in SQL Server, which is January 1, 1753 00:00:00:000. The undefined date in NAV
is represented as 0D (zero D, as in Days), with subsequent dates handled through
December 31, 9999. A date outside this range will result in a run-time error.

The Microsoft Dynamics NAV undefined time (0T) is represented by the same value
as an undefined date (0D). If a two digit year is entered or stored, and has a value of
30 to 99, it is assumed to be in the 1900s. If the two digit date is in the range of 00 to
29, then it is treated as a 2000s date.

WORKDATE function
Many standard NAV routines default dates to Work Date rather than to the system
date. When a user logs into the system, the Work Date is initially set equal to the
System Date. But at any time, the operator can set the Work Date to any date by
accessing the Application Menu, clicking on Set Work Date…, and then entering
the new Work Date.

Chapter 7

[389]

The user can also click on the Work Date displayed in the status bar at the bottom of
the RTC. The following screenshot shows the Set Work Date screen:

For data entry purposes, the current Work Date can be entered by the operator by
simply typing the letter w or W, or the word WORKDATE, in the date entry field. NAV
will automatically convert that entry to the current Work Date.

The syntax for getting the current WorkDate value from within the C/AL code is
as follows:

DateField := WORKDATE;

The syntax for setting the WorkDate to a new date from within the C/AL code is
as follows:

WORKDATE(newdate);

DATE2DMY function
DATE2DMY allows us to extract the sections of a date (Day of the month, Month, and
Year) from a Date field. The syntax is as follows:

IntegerVariable := DATE2DMY (DateField, ExtractionChoice)

Intermediate C/AL

[390]

The IntegerVariable and DateField fields are just what their names imply. The
ExtractionChoice parameter allows us to choose which value (Day, Month, or
Year) will be assigned to the IntegerVariable. The following table provides the
DATE2DMY extraction choices:

DATE2DMY extraction choice Integer value result
1 2 digit day (1 – 31)
2 2 digit month (1 – 12)
3 4 digit year

DATE2DWY function
DATE2DWY allows us to extract the sections of a date (Day of the week, Week of the
year, and Year) from a Date field in exactly the same fashion as DATE2DMY. The
ExtractionChoice parameter allows us to choose which value (Day, Week, or Year)
will be assigned to the IntegerVariable, as shown in the following table:

DATE2DWY extraction choice Integer value result
1 2 digit day (1 – 7 for Monday

– Sunday)
2 2 digit week (1 – 53)
3 4 digit year

DMY2DATE and DWY2DATE functions
DMY2DATE allows us to create a date from integer values (or defaults) representing
the day of the month, month of the year, and the four-digit year. If an optional
parameter (MonthValue or YearValue) is not specified, the corresponding value
from the System Date is used. The syntax is as follows:

DateVariable := DMY2DATE (DayValue [, MonthValue] [, YearValue])

The only way to have the function use the Work Date values for Month and Year is
to extract those values and then use them explicitly. An example is as follows:

DateVariable := DMY2DATE(22,DATE2MDY(WORKDATE,2),DATE2MDY(WORKDATE,3))

This example also illustrates how expressions can be built up of
nested expressions and functions. We have WORKDATE within
DATE2MDY within DMY2DATE.

Chapter 7

[391]

DWY2DATE operates similarly to DMY2DATE; allowing us to create a date from integer
values representing the day of the week (from 1 to 7 representing Monday to
Sunday), week of the year (from 1 to 53) followed by the four-digit year. The syntax
is as follows:

DateVariable := DWY2DATE (DayValue [, WeekValue] [, YearValue])

An interesting result can occur for week 53 because it can span two years. By default,
such a week is assigned to the year in which it has four or more days. In that case,
the year of the result will vary depending on the day of the week in the parameters
(in other words, the year of the result may be one year greater than the year specified
in the parameters). This is a perfect example of why thorough testing of our code is
always appropriate.

CALCDATE function
CALCDATE allows us to calculate a date value assigned to a Date data type variable.
The calculation is based on a Date Expression applied to a Base Date (Reference
Date). If we don't specify a BaseDateValue, the current system date is used as the
default date. We can specify the BaseDateValue either in the form of a variable of
data type Date or as a Date constant.

The syntax for CALCDATE is as follows:

DateVariable := CALCDATE (DateExpression [, BaseDateValue])

There are a number of ways in which we can build a DateExpression. The rules for
the CALCDATE function DateExpression are similar to the rules for DateFormula
described in Chapter 3, Data Types and Fields.

If there is a CW, CM, CP, CQ, or CY (Current Week, Current Month, Current Period,
Current Quarter, or Current Year) parameter in an expression, then the result will
be evaluated based on the BaseDateValue. If we have more than one of these in our
expression, the results are unpredictable. Any such expression should be thoroughly
tested before releasing to the users.

If our Date Expression is stored in a DateFormula variable (or a Text or Code
variable with the DateFormula property set to Yes), then the Date Expression
will be language independent. Also, if we create our own Date Expression in the
form of a string constant within our inline C/AL code, surrounding the constant
with < > delimiters as part of the string, it will make the constant language
independent. Otherwise, the Date Expression constant will be language dependent.

Intermediate C/AL

[392]

Regardless of how we have constructed our DateExpression, it is important to test it
carefully and thoroughly before moving on. Incorrect syntax will result in a runtime
error. One easy way to test is by using a Report whose sole task is to evaluate our
expression and display the result. If we want to try different Base Dates, we can
use the Request Page, accept the Base Date as input, then calculate and display the
DateVariable in the OnValidate trigger.

Some sample CALCDATE expression evaluations are as follows:

• ('<CM>',031016D) will yield 03/31/2016; that is, the last day of the Current
Month for the date 3/10/2016

• ('<-WD2>',031216D) will yield 03/08/2016; that is, the WeekDay #2
(the previous Tuesday) before the date 3/12/2016

• ('<CM+1D>',BaseDate), where BaseDate equals 03/10/16, will yield
04/01/2016; that is, the last day of the month of the Base Date plus one
day (the first day of the month following the Base Date)

Data conversion and formatting functions
Some data type conversions are handled in the normal process flow by NAV without
any particular attention on part of the Developer (for example, Code to Text, Char
to Text). Some data type conversions can only be handled through C/AL functions.
Formatting is included because it can also include a data type conversion. Rounding
does not do a data type conversion, but does result in a change in format
(the number of decimal places).

• ROUND function
• FORMAT function
• EVALUATE function

ROUND
The ROUND function allows us to control the rounding precision for a decimal
expression. The syntax for the ROUND function is as follows:

DecimalResult := ROUND (Number [, Precision] [, Direction])

Here, Number is what is being rounded, Precision spells out the number of digits of
decimal precision, and Direction indicates whether to round up, round down, or
round to the nearest number. Some examples of Precision values are as follows:

Chapter 7

[393]

Precision value Rounding effect
100 To a multiple of 100
1 To an integer format
.01 To two decimal places (the US default)
0.01 Same as for .01
.0001 To four decimal places

If no Precision value is specified, the Rounding default is controlled by a value set
in General Ledger Setup in the Appln. Rounding Precision field on the Application
tab. If no value is specified, Rounding will default to two decimal places. If the
precision value is (for example) .04 rather than .01, the rounding will be done to
multiples of 4 at the number of decimal places specified.

The options available for the Direction value are shown in the following table:

Direction value
(a text value)

Rounding effect

'=' Round to the nearest
(mathematically
correct and the default)

'>' Round up
'<' Round down

Refer to the following statement:

DecimalValue := ROUND (1234.56789,0.001,'<')

This would result in a DecimalValue containing 1234.567. However, refer now to
the following statements:

DecimalValue := ROUND (1234.56789,0.001,'=')
DecimalValue := ROUND (1234.56789,0.001,'>')

These would each result in a DecimalValue containing 1234.568.

FORMAT function
The FORMAT function converts of an expression of any data type (for example,
integer, decimal, date, option, time, Boolean) into a formatted string. The syntax
is as follows:

StringField := FORMAT(ExpressionToFormat [, OutputLength]
 [, FormatString or FormatNumber])

Intermediate C/AL

[394]

The formatted output of ExpressionToFormat will be assigned to the output
StringField. The optional parameters control the conversion according to a
complex set of rules. These rules can be found in the Developer and IT Pro Help
file for the FORMAT function and FORMAT Property. Whenever possible, we should
always apply FORMAT in its simplest form. The best way to determine the likely
results of a FORMAT expression is to test it through a range of the values to be
formatted. We should make sure that we include the extremes of the range of
possible values in our testing.

The optional OutputLength parameter can be zero (which is the default), a positive
integer, or a negative integer. The typical OutputLength value is either zero, in
which case the defined format is fully applied, or it is a figure designed to control
the maximum character length and padding of the formatted string result.

The last optional parameter has two mutually exclusive sets of choices. One set,
represented by integer FormatNumber, allows the choice of a particular predefined
(standard) format, of which there are four to nine choices depending on the
ExpressionToFormat data type. The format parameter of number 9 is used for
XMLport data exporting. Use of the optional number 9 parameter will convert
C/SIDE format data types into XML standard data types. The other set of choices
allows us to build our own format expression.

The Developer and IT Pro Help information for the FORMAT property provides
a relatively complete description of the available tools from which we can build
our own format expression. The FORMAT property Help also provides a complete
list of the predefined format choices as well as a good list of example formats and
formatted data results.

Note that a FORMAT function which cannot be executed will result in a run-time
error that will terminate execution of the process. Thus, to avoid production
crashes, we will want to place high importance on thoroughly testing any code
where FORMAT is used.

EVALUATE function
The EVALUATE function is essentially the reverse of the FORMAT function, allowing
conversion of a string value into the defined data type. The syntax of the EVALUATE
function is as follows:

[BooleanVariable :=] EVALUATE (ResultVariable,
 StringToBeConverted [, 9]

Chapter 7

[395]

The handling of a run-time error can be done by specifying the BooleanVariable
or including EVALUATE in an expression to deal with an error (such as an
IF statement). The ResultVariable data type will determine which data
conversion the EVALUATE function will attempt. The format of the data in
StringToBeConverted must be compatible with the data type of ResultVariable
otherwise a run-time error will occur.

The optional parameter, number 9, only is used for XMLport data exporting. Using
the optional number 9 parameter will convert the C/SIDE format data types into
XML standard data types. This deals with the fact that several equivalent C/SIDE-
XML data types are represented differently at the base system level (that is, "under
the covers"). The C/SIDE data types for an Evaluate result can include decimal,
Boolean, datetime, date, time, integer, and duration.

FlowField and SumIndexField functions
In Chapter 3, Data Types and Fields, we discussed SumIndexFields and FlowFields in
the context of table, field, and key definition. To recap briefly, SumIndexFields are
defined in the screen where table keys are defined. They allow very rapid calculation
of values in filtered data. In most ERP and accounting software systems, the
calculation of group totals, periodic totals, and such, require reading of all the data to
be totaled.

SIFT allows a NAV system to respond almost instantly with totals in any area
where the SumIndexField was defined and is maintained. In fact, use of SIFT
totals combined with NAV's retention of detailed data supports totally flexible ad
hoc queries in similar form to: "What were our sales for red widgets between the
dates of November 15th and December 24th?" And the answer is returned almost
instantly! SumIndexFields are the basis of FlowFields which have a Method of
Sum or Average; such a FlowField must refer to a data element that is defined as a
SumIndexField.

When we access a record that has a SumIndexField defined, there is no visible
evidence of the data sum that the SumIndexField represents. When we access a
record that contains FlowFields, the FlowFields are empty virtual data elements
until they are calculated. When a FlowField is displayed on a page or report, it is
automatically calculated by NAV; the developer doesn't need to do so. But in any
other scenario, the developer is responsible for calculating FlowFields (using the
CALCFIELDS function).

Intermediate C/AL

[396]

FlowFields are one of the key areas where NAV systems are subject to significant
processing bottlenecks. Even with the improved NAV 2015 design, it is still critical
that the Table Keys used for SumIndexField definition are designed with efficient
processing in mind. Sometimes, as part of a performance-tuning effort, it's necessary
to revise existing keys or add new keys to improve FlowField performance.

Although we can manage indexes in SQL Server independent of
the NAV key definition, having two different definitions of keys
for a table may make our system more difficult to support. This
is because the SQL Server resident changes aren't always readily
visible to the NAV developer.

In addition to being careful about the SIFT-key structure design, it is also
important not to define any SumIndexFields that are not necessary. Each additional
SumIndexField adds additional processing requirements and thus adds to the
processing load of the system.

Including SumIndexFields in a List page display is almost always
a bad idea, because each SumIndexField instance will be calculated
as it is displayed. Applicable functions include CALCFIELDS,
CALCSUMS, and SETAUTOCALCFIELDS.

CALCFIELDS function
The syntax for CALCFIELDS is as follows:

[BooleanField :=] Record.CALCFIELDS (FlowField1 [, FlowField2] ,…)

Executing the CALCFIELDS function will cause all the specified FlowFields to be
calculated. Specification of the BooleanField allows us to handle any run-time error
that may occur. Any runtime errors for CALCFIELDS usually result from a coding
error or a change in a table key structure.

The FlowField calculation takes into account the filters (including FlowFilters) that
are currently applied to the Record (we need to be careful not to overlook this).
After the CALCFIELDS execution, the included FlowFields can be used similarly
to any other data fields. CALCFIELDS must be executed for each cycle through the
subject table.

Whenever the contents of a BLOB field are to be used, CALCFIELDS is used to load the
contents of the BLOB field from the database into memory.

Chapter 7

[397]

When the following conditions are true, CALCFIELDS uses dynamically maintained
SIFT data:

• The NAV key contains the fields used in the filters defined for the FlowField
• The SumIndexFields on the operative key contain the fields provided as

parameters for calculation
• The MaintainSIFTIndex property on the key is set to Yes (this is the

default setting)

If all these conditions are not true and a CALCFIELDS is invoked, we will not get
a run-time error as in the previous NAV version, but SQL Server will calculate the
requested total(s) the hard way, by reading all the necessary records. This could
be very slow and inefficient, and should not be used for frequently processed
routines or large data sets. On the other hand, if the table does not contain a lot
of data or if the SIFT data will not be used very often, it may be better to have the
MaintainSIFTIndex property set to No.

SETAUTOCALCFIELDS function
The syntax for SETAUTOCALCFIELDS is as follows:

[BooleanField :=] Record.SETAUTOCALCFIELDS
 (FlowField1 [, FlowField2] [, FlowField3]…)

When SETAUTOCALCFIELDS is inserted in to the code in front of the record retrieval,
the specified FlowFields are automatically calculated as the record is read. This
is more efficient than performing a CALCFIELDS on the FlowFields after the record
has been read.

If we want to end the automatic FlowField calculation on a record, call the function
without any parameters:

[BooleanField :=] Record.SETAUTOCALCFIELDS()

Automatic FlowField calculation equivalent to SETAUTOCALCFIELDS is automatically
set on for the system record variables Rec and xRec.

Intermediate C/AL

[398]

CALCSUMS function
The CALCSUMS function is conceptually similar to CALCFIELDS for the calculation
of Sums only. But CALCFIELDS operates on FlowFields and CALCSUMS operates
directly on the record where the SumIndexFields are defined for the keys. This
difference means that we must specify the proper key plus any filters to apply when
using CALCSUMS (the applicable key and filters to apply are already defined in the
properties for the FlowFields).

The syntax for CALCSUMS is as follows:

[BooleanField :=] Record.CALCSUMS (SumIndexField1
 [,SumIndexField2] ,…)

Prior to such a statement, to maximize the probability of good performance, we
should specify a key that has SumIndexFields defined. Before executing the
CALCSUMS function, we also need to specify any filters that we want to apply to the
Record from which the sums are to be calculated. The SumIndexField calculations
take into account the filters that are currently applied to the Record.

Executing the CALCSUMS function will cause the specified SumIndexField totals to be
calculated. Specification of the BooleanField allows us to handle any runtime errors
that may occur. Runtime errors for CALCSUMS usually result from a coding error
or a change in a table key structure. If possible, CALCSUMS uses the defined SIFT.
Otherwise, SQL Server creates a temporary SIFT on the fly.

Before the execution of CALCSUMS, SumIndexFields contain only the data from
the individual record that was read. After the CALCSUMS execution, the included
SumIndexFields contain the totals that were calculated by the CALCSUMS function
(these totals are only in memory, not in the database). These totals can then be used
the same as data in any field, but if we want to access the individual record's original
data for that field, we must either save a copy of the record before executing the
CALCSUMS or we must reread the record. The CALCSUMS must be executed for each
read cycle through the subject table.

CALCFIELDS and CALCSUMS comparison
In the Sales Header record, there are FlowFields defined for Amount and "Amount
Including VAT". These FlowFields are all based on Sums of entries in the Sales Line
table. The CalcFormula for Amount is Sum("Sales Line".Amount WHERE (Document
Type=FIELD(Document Type),Document No.=FIELD(No.))). Remember, Amount
must be a SumIndexField assigned to a Sales Line key that contains the fields on
which we will filter (in this case by Document Type and Document No.). To calculate
a TotalOrderAmount value while referencing the Sales Header table, the code can
be as simple as:

Chapter 7

[399]

"Sales Header".CALCFIELDS (Amount);
TotalOrderAmount := "Sales Header".Amount;

To calculate the same value from code directly referencing the Sales Line table, the
required code would be similar to the following (assuming a Sales Header record has
already been read):

"Sales Line".SETRANGE("Document Type","Sales Header"."Document Type");
"Sales Line".SETRANGE("Document No.","Sales Header"."No.");
"Sales Line".CALCSUMS(Amount);
TotalOrderAmount := "Sales Line".Amount;

Flow control
Process flow control functions are the functions that execute the decision making and
resultant logic branches in executable code. IF–THEN-ELSE, discussed in Chapter 6,
Introduction to C/SIDE and C/AL, is also a member of this class of functions. Here we
will discuss the following:

• REPEAT-UNTIL

• WHILE-DO

• FOR-TO and FOR-DOWNTO
• CASE-ELSE

• WITH-DO

• QUIT, BREAK, EXIT, and SKIP

REPEAT-UNTIL
REPEAT–UNTIL allows us to create a repetitive code loop which REPEATs a block
of code UNTIL a specific conditional expression evaluates to TRUE. In that sense,
REPEAT–UNTIL defines a block of code, operating somewhat like the BEGIN–END
compound statement structure which we covered in Chapter 6, Introduction to
C/SIDE and C/AL. REPEAT tells the system to keep reprocessing the block of code,
while UNTIL serves as the exit doorman, checking if the conditions for ending the
processing are true. Because the exit condition is not evaluated until the end of
the loop, a REPEAT–UNTIL structure will always process at least once through the
contained code.

REPEAT–UNTIL is very important in NAV because it is often part of the data input
cycle along with the FIND-NEXT structure, which will be covered shortly.

Intermediate C/AL

[400]

Here is an example of the REPEAT–UNTIL structure to process and sum data in the
10-element array CustSales:

LoopCount := 0;
REPEAT
 LoopCount := LoopCount + 1;
 TotCustSales := TotCustSales + CustSales[LoopCount];
UNTIL LoopCount = 10;

WHILE-DO
A WHILE–DO control structure allows us to create a repetitive code loop which will
DO (execute) a block of code WHILE a specific conditional expression evaluates to
TRUE. WHILE–DO is different from REPEAT–UNTIL, both because it may need a BEGIN–
END structure to define the block of code to be executed repetitively (REPEAT–UNTIL
does not) and it has different timing for the evaluation of the exit condition.

The syntax of the WHILE–DO control structure is as follows:

WHILE <Condition> DO <Statement>

Condition can be any Boolean expression which evaluates to TRUE or FALSE.
Statement can be simple or the most complex compound BEGIN–END statement.
Most WHILE–DO loops will be based on a BEGIN–END block of code. Condition will
be evaluated at the beginning of the loop. When it evaluates to FALSE, the loop will
terminate. Thus, a WHILE–DO loop can be exited without processing.

A WHILE-DO structure to process data in the 10-element array CustSales is as follows:

LoopCount := 0;
WHILE LoopCount < 10
DO BEGIN
 LoopCount := LoopCount + 1;
 TotCustSales := TotCustSales + CustSales[LoopCount];
END;

In NAV, REPEAT-UNTIL is much more frequently used than WHILE-DO.

FOR-TO or FOR-DOWNTO
The syntax for a FOR-TO or FOR-DOWNTO control statement is as follows:

FOR <Control Variable> := <Start Number> TO <End Number> DO
<Statement>

Chapter 7

[401]

or

FOR <Control Variable> := <Start Number> DOWNTO <End Number> DO
<Statement>

A FOR control structure is used when we wish to execute a block of code a specific
number of times.

The Control Variable is an Integer variable. Start Number is the beginning
count for the FOR loop and End Number is the final count for the loop. If we wrote
the statement: FOR LoopCount := 5 TO 7 DO [block of code] then [block of
code] would be executed 3 times.

FOR-TO increments the Control Variable. FOR-DOWNTO decrements the Control
Variable.

We must be careful not to manipulate the Control Variable in the middle of our
loop. Doing so will likely yield unpredictable results.

CASE-ELSE statement
The CASE–ELSE statement is a conditional expression very similar to IF–THEN–ELSE,
except that it allows for more than two choices of outcomes for the evaluation of the
controlling expression. The syntax of the CASE-ELSE statement is as follows:

CASE <ExpressionToBeEvaluated> OF
 <Value Set 1> : <Action Statement 1>;
 <Value Set 2> : <Action Statement 2>;
 <Value Set 3> : <Action Statement 3>;
 ...
 ...
 <Value Set n> : <Action Statement n>;
 [ELSE <Action Statement n + 1>;
END;

The ExpressionToBeEvaluated must not be a record. The data type of the Value
Set must be capable of being automatically converted to the data type of the
ExpressionToBeEvaluated. Each Value Set must be an expression, a set of values,
or a range of values. The following example illustrates a typical instance of a CASE-
ELSE statement:

 CASE Customer."Salesperson Code" OF
 '2','5','9': Customer."Territory Code" := 'EAST';
 '16'..'20': Customer."Territory Code" := 'WEST';
 'N': Customer."Territory Code" := 'NORTH';

Intermediate C/AL

[402]

 '27'..'38': Customer."Territory Code" := 'SOUTH';
 ELSE Customer."Territory Code" := 'FOREIGN';
 END;

In the preceding example, we see several alternatives for the Value Set. The first line
(EAST) Value Set contains the list of values. If Salesperson Code is equal to '2',
'5', or '9', the value EAST will be assigned to Customer."Territory Code". The
second line (WEST) Value Set is a range, any value from '16' through '20'. The
third line (NORTH) Value Set is just a single value ('N'). If we look through standard
NAV code, we will see that a single value is the most frequently used CASE structure
in NAV. In the fourth line of our example (SOUTH), the Value Set is again a range
('27'..'38'). If nothing in any Value Set matches ExpressionToBeEvaluated, the
ELSE clause will be executed.

An example of an IF-THEN-ELSE statement equivalent to the preceding CASE-ELSE
statement is as follows:

 IF Customer."Salesperson Code" IN ['2','5','9'] THEN
 Customer."Territory Code" := 'EAST'
 ELSE IF Customer."Salesperson Code" IN ['16'..'20'] THEN
 Customer."Territory Code" := 'WEST'
 ELSE IF Customer."Salesperson Code" = 'N' THEN
 Customer."Territory Code" := 'NORTH'
 ELSE IF Customer."Salesperson Code" IN ['27'..'38'] THEN
 Customer."Territory Code" := 'SOUTH'
 ELSE Customer."Territory Code" := 'FOREIGN';

The following is a slightly less intuitive example of the CASE–ELSE statement. In this
instance, ExpressionToBeEvaluated is a simple TRUE and the Value Set statements
are all conditional expressions. The first line containing a Value Set expression that
evaluates to TRUE will be the line whose Action Statement is executed. The rules of
execution and flow in this instance are same as in the previous example.

 CASE TRUE OF Salesline.Quantity < 0:
 BEGIN
 CLEAR(Salesline."Line Discount %");
 CredTot := CredTot - Salesline.Quantity;
 END;
 Salesline.Quantity > QtyBreak[1]:
 Salesline."Line Discount %" := DiscLevel[1];
 Salesline.Quantity > QtyBreak[2]:
 Salesline."Line Discount %" := DiscLevel[2];
 Salesline.Quantity > QtyBreak[3]:
 Salesline."Line Discount %" := DiscLevel[3];
 Salesline.Quantity > QtyBreak[4]:

Chapter 7

[403]

 Salesline."Line Discount %" := DiscLevel[4];
 ELSE
 CLEAR(Salesline."Line Discount %");
 END;

WITH-DO statement
When we are writing code referring to fields within a record, the most specific syntax
for field references is the fully qualified reference [RecordName.FieldName]. When
referring to the field City in the record Customer, use the reference Customer.City.

In many C/AL instances, the record name qualifier is implicit, because the compiler
assumes a default record qualifier based on the code context. This happens
automatically for variables within a page bounded to a table. The bound table
becomes the implicit record qualifier for fields referenced in the Page object. In a
Table object, the table is the implicit record qualifier for fields referenced in the C/
AL in that object. In Report and XMLport objects, the Data Item record is the implicit
record qualifier for the fields referenced within the triggers of that Data Item such as
OnAfterGetRecord and OnAfterImportRecord.

In all other C/AL code, the only way to have an implicit record qualifier is to use the
WITH-DO statement. WITH-DO is widely used in the base product in Codeunits and
processing Reports. The WITH-DO syntax is:

WITH <RecordQualifier> DO <Statement>

Typically, the DO portion of this statement will be followed by a BEGIN-END code
block, allowing for a compound statement. The scope of the WITH-DO statement is
terminated by the end of the DO statement.

When we execute a WITH-DO statement, RecordQualifier becomes the implicit
record qualifier used by the compiler until the end of that statement or until that
qualifier is overridden by a nested WITH-DO statement. Where fully qualified, syntax
would requires the following form:

Customer.Address := '189 Maple Avenue';
Customer.City := 'Chicago';

The WITH-DO syntax takes advantage of the implicit record qualification making the
code easier to write, and hopefully easier to read. For example:

WITH Customer DO
BEGIN
 Address := '189 Maple Avenue';
 City := 'Chicago';
END;

Intermediate C/AL

[404]

Best practice says that WITH-DO statements should only be used in functions within a
Codeunit or a Report.

WITH-DO statements nested one within another are legal code, but are not used in
standard NAV. They are also not recommended because they can easily confuse
the developer, resulting in bugs. The same comments apply to nesting a WITH-DO
statement within a function where there is an automatic implicit record qualifier,
such as in a table, Report, or XMLport.

Of course, wherever the references to record variables other than the implicit one occur
within the scope of a WITH-DO statement, we must include the specific qualifiers. This
is particularly important when there are variables with the same name (for example,
City) in multiple tables that might be referenced in the same set of C/AL logic.

Some developers maintain that it is always better to use fully qualified variable
names to reduce the possibility of inadvertent reference errors. This approach also
eliminates any possible misinterpretation of variable references by a maintenance
developer who works on this code later.

QUIT, BREAK, EXIT, and SKIP functions
This group of C/AL functions also control process flow. Each acts to interrupt flow
in different places and with different results. To get a full appreciation for how these
functions are used, we need to review them in the correct place in code in NAV 2015.

QUIT function
The QUIT function is the ultimate processing interrupt for Report or XMLport
objects. When a QUIT is executed, processing immediately terminates even for the
OnPostObject triggers. No database changes are committed. QUIT is often used in
reports to terminate processing when the report logic determines that no useful output
will be generated by further processing.

The syntax of the QUIT function is as follows:

CurrReport.QUIT;
CurrXMLport.QUIT;

BREAK function
The BREAK function terminates the DataItem in which it occurs. BREAK can only be
used in Data Item triggers in Reports and XMLports. It can be used to terminate the
sequence of processing one DataItem segment of a report while allowing subsequent
DataItem processing to continue.

Chapter 7

[405]

The BREAK syntax is one of the following:

CurrReport.BREAK;
CurrXMLport.BREAK;

EXIT function
EXIT is used to end the processing within a C/AL trigger. EXIT works the same
whether it is executed within a loop or not. It can be used to end the processing of
the trigger or to pass a return value from a local function. A return value cannot be
used for system defined triggers or local functions that don't have a return value
defined. If EXIT is used without a return value, a default return value of zero is
returned. The syntax for EXIT is:

EXIT([<ReturnValue>])

SKIP function
When executed, the SKIP function will skip the remainder of the processing in the
current record cycle of the current trigger. Unlike BREAK, it does not terminate the
DataItem processing completely. It can be used only in the OnAfterGetRecord
trigger of a Report or XMLport object. In reports, when the results of processing
in the OnAfterGetRecord trigger are determined not to be useful for the output,
the SKIP function is used to terminate that single iteration of the trigger without
interfering with any subsequent processing.

The SKIP syntax is one of the following:

CurrReport.SKIP;
CurrXMLport.SKIP;

Input and Output functions
In the previous chapter, we learned about the basics of the FIND function. We learned
about FIND('-') to read from the beginning of a selected set of records, FINDSET to
read a selected set of records, and FIND('+') to begin reading at the far end of the
selected set of records. Now we will review additional functions that are generally
used with the FIND functions in typical production code. While we are designing
code which uses the MODIFY and DELETE record functions, we need to consider
possible interactions with other users on the system. There might be someone else
modifying and deleting records in the same table which our application is updating.

Intermediate C/AL

[406]

We may want to use the LOCKTABLE function to briefly gain total control of the
data, while updating the data. We can find more information on LOCKTABLE in the
online C/AL Reference Guide Help. The SQL Server database supports Record
Level Locking. There are a number of factors that we should consider when
coding data locking in our processes. It is worthwhile reading all of the C/AL
Reference Guide material found by a Search on LOCKTABLE, particularly Locking
in Microsoft SQL Server.

NEXT function with FIND or FINDSET
The syntax defined for the NEXT function is:

IntegerValue := Record.NEXT (ReadStepSize)

The full assignment statement format is rarely used to set an IntegerValue. In
addition, there is no documentation for the usage of a non-zero IntegerValue.
When IntegerValue goes to zero, it means that a NEXT record was not found. In
early versions of NAV 2015, the Help text for NEXT does not properly explain the
use of or value setting for IntegerValue.

If the ReadStepSize value is negative, the table will be read in reverse; if
ReadStepSize is positive (the default), then the table will be read forward. The size
of the value in ReadStepSize controls which records should be read. For example, if
ReadStepSize is 2 or -2, then every second record will be read. If ReadStepSize is
10 or -10, then every tenth record will be read. The default value is 1, in which case
every record will be read and the read direction will be forward.

In a typical data read loop, the first read is a FIND or FINDSET function followed by
a REPEAT-UNTIL loop. The exit condition is the expression UNTIL Record.NEXT = 0;.
The C/AL for FINDSET and FIND('-') are structured alike.

The full C/AL syntax for this typical loop looks like the following:

IF CustRec.FIND('-') THEN
REPEAT
 Block of C/AL logic
UNTIL CustRec.NEXT = 0;

INSERT function
The purpose of the INSERT function is to add new records to a table. The syntax for
the INSERT function is as follows:

[BooleanValue :=] Record.INSERT ([TriggerControlBoolean])

Chapter 7

[407]

If BooleanValue is not used and the INSERT function fails (for example, if the
insertion would result in a duplicate Primary Key), the process will terminate
with an error. Generally, we should handle a detected error in code by using the
BooleanValue and supplying our own error handling logic rather than allowing a
default termination.

The TriggerControlBoolean value controls whether or not the table's OnInsert
trigger fires when the INSERT occurs. The default value is FALSE. If we let the default
FALSE control, we run the risk of not performing error checking that the table's
designer assumed would be run when a new record was added.

When we are reading a table and we also need to INSERT records
into that same table, the INSERT should be done to a separate
instance of the table. We can use either a global or local variable
for that second instance. If we INSERT into the same table we are
reading, we run the risk of reading the new records as part of our
processing (likely a very confusing action). We also run the risk of
changing the sequence of our processing unexpectedly due to the
introduction of new records into our data set. While the database
access methods are continually improved by Microsoft and this
warning may be overcautious, it is better to be safe than sorry.

MODIFY function
The purpose of the MODIFY function is to modify (update) the existing data records.
The syntax for MODIFY is:

[BooleanValue :=] Record.MODIFY ([TriggerControlBoolean])

If BooleanValue is not used and MODIFY fails (for example, if another process
changes the record after it was read by this process), then the process will
terminate with an error statement. The code should either handle a detected error
or gracefully terminate the process. The TriggerControlBoolean value controls
whether or not the table's OnModify trigger fires when this MODIFY occurs. The
default value is FALSE, which would not perform any OnModify processing. MODIFY
cannot be used to cause a change in a Primary Key field. In that case, the RENAME
function must be used.

There is system based checking to make sure that a MODIFY is done using the
current version of the data record by making sure that another process hasn't
modified and committed the record after it was read by this process. Our logic
should refresh the record using the GET function, then change any values, and
then call the MODIFY function.

Intermediate C/AL

[408]

Rec and xRec
In Table and Page objects, the system automatically provides us with the system
variables Rec and xRec. Until a record has been updated by MODIFY, Rec represents
the current record data in process and xRec represents the record data before it was
modified. By comparing field values in Rec and xRec, we can determine if changes
have been made to the record in the current process cycle. Rec and xRec records
have all the same fields in the same structure as the table to which they relate.

DELETE function
The purpose of the DELETE function is to delete existing data records. The syntax for
DELETE is as follows:

[BooleanValue :=] Record.DELETE ([TriggerControlBoolean])

When DELETE fails and the BooleanValue is not used, the process will terminate
with an error statement. Our code should handle any detected error or terminate the
process, as appropriate.

The TriggerControlBoolean value is TRUE or FALSE, and it controls whether or not
the table's OnDelete trigger fires when this DELETE occurs. The default value is FALSE.
If we let the default FALSE value in place, we run the risk of not performing error
checking that the table's designer assumed would be run when a record was deleted.

In NAV 2015, there is improved checking to make sure a DELETE is using the current
version of the record, which making sure another process hasn't modified and
committed the record after it was read by this process. Therefore, before the DELETE
function is called, the program should refresh the record using the GET function.

MODIFYALL function
MODIFYALL is the high-volume version of the MODIFY function. If we have a group of
records for which we wish to modify one field in all of them to the same new value,
we should use MODIFYALL. MODIFYALL is controlled by the filters that apply at the
time of invoking. The other choice for doing a mass modification would be to have
a FIND–NEXT loop in which we modify each record, one at a time. The advantage of
MODIFYALL is that it allows the developer and the system to optimize the code for the
volume update. Any system optimization will be a function of the SQL statements
are generated by the C/AL compiler.

The syntax for MODIFYALL is as follows:

Record.MODIFYALL (FieldToBeModified,NewValue
 [,TriggerControlBoolean])

Chapter 7

[409]

The TriggerControlBoolean value, a TRUE or FALSE entry, controls whether or
not the table's OnModify trigger fires when this MODIFY occurs. The default value is
FALSE which would result in the field OnValidate trigger not being executed. In a
typical situation, a filter or a series of filters would be applied to a table followed by
the MODIFYALL function. A simple example where we are going to reassign all the
Territory Codes for a particular Salesperson to NORTH, is as follows:

Customer.RESET;
Customer.SETRANGE("Salesperson Code",'DAS');
Customer.MODIFYALL("Territory Code",'NORTH',TRUE);

DELETEALL function
DELETEALL is the high volume version of the DELETE function. If we have a group of
records that we wish to delete, use DELETEALL. The other choice would be a FIND-
NEXT loop in which we delete each record one at a time. The advantage of DELETEALL
is that it allows the developer and the system to optimize the code for the volume
deletion. Any system optimization will be a function of what SQL statements are
generated by the C/AL compiler.

The syntax for DELETEALL is as follows:

Record.DELETEALL ([,TriggerControlBoolean])

The TriggerControlBoolean value, a TRUE or FALSE entry, controls whether or
not the table's OnDelete trigger fires when this DELETE occurs. The default value
is FALSE. If the TriggerControlBoolean value is TRUE, then the OnDelete trigger
will fire for each record deleted. In that case, there is little or no speed advantage for
DELETEALL versus the use of a FIND-DELETE-NEXT loop.

In a typical situation, a filter or a series of filters would be applied to a table followed
by the DELETEALL function, similar to the preceding example. Like MODIFYALL,
DELETEALL respects the filters that have been set and does not do any referential
integrity error checking.

Filtering
Few other systems have filtering implemented as comprehensively as NAV, nor do
they have it tied so neatly to the detailed retention of historical data. The result of
NAV's features is that even the most basic implementation of NAV includes very
powerful data analysis capabilities available to the end user.

Intermediate C/AL

[410]

As developers, we should appreciate the fact that we cannot anticipate every need of
any user, let alone anticipate all the needs of all the users. We know we should give
the users as much freedom as possible to allow them to selectively extract and review
data from their system. Wherever feasible, users should be given the opportunity
to apply their own filters so that they can determine the optimum selection of data
for their particular situation. On the other hand, freedom, here as everywhere, is a
double-edged sword. With the freedom to decide just how to segment one's data,
comes the responsibility for figuring out what constitutes a good segmentation to
address the problem at hand.

As experienced application software designers and developers, presumably we have
considerable insight into good ways to analyze and present the data. On that basis,
it may be appropriate for us to provide some predefined selections. In some cases,
constraints of the data structure allow only a limited set of options to make sense.
In such a case, we should provide specific accesses to data (through pages and/or
reports). But we should allow more sophisticated users to access and manipulate
the data flexibly on their own.

When applying filters by using any of the options, be very conscious of the table
key that will be active when the filter takes effect. In a table containing a lot of data,
filtering on a field that is not very high in (near the front of) the currently active key
may result in poor (or very poor) response time for the users. In the same context,
in a system suffering from a poor response time during processing, we should first
investigate the relationships of active keys to applied filters, as well as how the keys
are maintained. This may require SQL Server expertise in addition to NAV 2015
expertise.

Both SETCURRENTKEY and SETRANGE functions are important in the context of data
filtering. These were reviewed in Chapter 6, Introduction to C/SIDE and C/AL, so we
won't review them again here.

SETFILTER function
SETFILTER allows us to define and apply any Filter expression that could be created
manually, including various combinations of ranges, C/AL operators, and even wild
cards. SETFILTER syntax is as follows:

Record.SETFILTER (Field, FilterString [, FilterValue1], . . .]);

SETFILTER can also be applied to Query objects with similar syntax:

Query.SETFILTER (ColumnName, FilterString
 [, FilterValue1], . . .]);

Chapter 7

[411]

FilterString can be a literal such as '1000..20000' or 'A*|B*|C*', but this
is not good practice. Optionally, we can use variable tokens in the form of %1,
%2, %3, and so forth, representing variables (but not operators) FilterValue1,
FilterValue2, and so forth to be substituted in the filter string at runtime. This
construct allows us to create filters whose data values can be defined dynamically
at runtime. A new SETFILTER replaces any previous filtering in the same
filtergroup (this will be discussed in more detail shortly) on that field or column
prior to setting the new filter.

A pair of SETFILTER examples follow:

Customer.SETFILTER("Salesperson Code",'KKS'|'RAM'|'CDS');
Customer.SETFILTER("Salesperson Code",'%1|%2|%3',SPC1,SPC2,SPC3);

If SPC1 equals 'KKS', SPC2 equals 'RAM', and SPC3 equals 'CDS', these two
examples would have the same result. Obviously, the second option allows flexibility
not provided by the first option because the variables could be assigned other values.

COPYFILTER and COPYFILTERS functions
These functions allow copying the filters of a single field or all the filters on a record
(table) and applying those filters to another record. The syntaxes follow:

FromRecord.COPYFILTER(FromField, ToRecord.ToField)

The From and To fields must be of the same data type. The From and To tables do
not have to be the same.

ToRecord.COPYFILTERS(FromRecord)

Note that the COPYFILTER field based function begins with the FromRecord variable
while that of the COPYFILTERS record based function begins with the ToRecord
variable. ToRecord and From Record must be different instances of the same table.

GETFILTER and GETFILTERS functions
These functions allow us to retrieve the filters on a single field or all the filters on a
record (table), and assign the result to a text variable. The syntaxes are as follows:

• ResultString := FilteredRecord.GETFILTER(FilteredField)

• ResultString := FilteredRecord.GETFILTERS

Intermediate C/AL

[412]

Similar functions exist for Query Objects. Those syntaxes are:

• ResultString := FilteredQuery.GETFILTER(FilteredColumn)

• ResultString := FilteredQuery.GETFILTERS

The text contents of the ResultString will contain an identifier for each filtered field
and the currently applied value of the filter. GETFILTERS is often used to retrieve the
filters on a table and print them as part of a report heading. The ResultString will
look similar to the following: Customer:.No.: 10000..999999, Balance: >0

FILTERGROUP function
The FILTERGROUP function can change or retrieve the filtergroup that is applied
to a table. A filtergroup contains a set of filters that have been applied to the table
previously by SETFILTER or SETRANGE functions or as table properties defined in
an object. The FILTERGROUP syntax is:

[CurrentGroupInteger] := Record.FILTERGROUP ([NewGroupInteger])

Using just the Record.FILTERGROUP([NewFilterGroupInteger]) portion sets the
active Filter Group.

Filtergroups can also be used to filter Query Data Items. All the currently defined
filtergroups are active and apply in combination (they are logically ANDed, that is,
they result in a logical intersection of the sets). The only way to eliminate the effect
of a filtergroup is to remove the filters in a group.

The default filtergroup for NAV is 0 (zero). Users have access to the filters in this
filtergroup. Other filtergroups, numbered up to 6, have assigned NAV uses. We
should not redefine the use of any of these filtergroups but use higher numbers for
any custom filtergroups in our code.

See the Developer and IT Pro Help for FILTERGROUP function and Understanding
Query Filters for more information.

One use of a filtergroup would be to assign a filter which the user cannot see is
present or change. Our code could change the filtergroup, set a special filter, and
then return the active filtergroup to its original state. An example:

Rec.FILTERGROUP(42);
Rec.SETFILTER(Customer."Salesperson Code",MySalespersonID);
Rec.FILTERGROUP(0);

This could be used to apply special application-specific permissions to a particular
system function, such as filtering out access to customers by a salesperson so that
each salesperson can only examine data for his/her own customers.

Chapter 7

[413]

MARK function
A mark on a record is an indicator that disappears when the current session ends
and which is only visible to the process that is setting the mark. The MARK function
sets the mark. The syntax is as follows:

[BooleanValue :=] Record.MARK ([SetMarkBoolean])

If the optional BooleanValue and assignment operator (:=) are present, the MARK
function will give us the current Mark status (TRUE or FALSE) of the Record. If
the optional SetMarkBoolean parameter is present, the Record will be Marked
(or unmarked) according to that value (TRUE or FALSE). The default value for
SetMarkBoolean is FALSE. The MARK functions should be used carefully and
only when a simpler solution is not readily available. Marking records can cause
significant performance problems on large data sets.

CLEARMARKS function
CLEARMARKS clears all the marks from the specified record (that is, from the particular
instance of the table in this instance of the object). The syntax is as follows:

Record.CLEARMARKS

MARKEDONLY function
MARKEDONLY is a special filtering function that can apply a mark-based filter.

The syntax for MARKEDONLY is as follows:

[BooleanValue :=] Record.MARKEDONLY
 ([SeeMarkedRecordsOnlyBoolean])

If the optional BooleanValue parameter is defined, it will be assigned a value TRUE
or FALSE to tell us whether or not the special MARKEDONLY filter is active. Omitting
the BooleanValue parameter, MARKEDONLY will set the special filter depending on the
value of SeeMarkedRecordsOnlyBoolean. If that value is TRUE, it will filter to show
only marked records; if that value is FALSE, it will remove the marked filter and
show all records. The default value for SeeMarkedRecordsOnlyBoolean is FALSE.

Though it may not seem logical, there is no option to see only the unmarked records.

For additional information, refer to Mark Brummel's blog at https://markbrummel.
wordpress.com/2014/03/07/tip-36-using-mark-and-markedonly-in-the-
role-tailored-client/.

https://markbrummel.wordpress.com/2014/03/07/tip-36-using-mark-and-markedonly-in-the-role-tailored-client/
https://markbrummel.wordpress.com/2014/03/07/tip-36-using-mark-and-markedonly-in-the-role-tailored-client/
https://markbrummel.wordpress.com/2014/03/07/tip-36-using-mark-and-markedonly-in-the-role-tailored-client/

Intermediate C/AL

[414]

RESET function
This function allows us to RESET (that is, clear) all filters that are currently applied
to a record. RESET also sets the current key back to the Primary Key, removes any
marks, and clears all internal variables in the current instance of the record. Filters in
FILTERGROUP 1 are not reset. The syntax is as follows:

FilteredRecord.RESET;

InterObject communication
There are several ways for communicating between objects during NAV processing.

Communication via data
The most widely used and simplest communication method is through data tables.
For example, the table No. Series is the central control for all document numbers.
Each object that assigns numbers to a document (for example, Order, Invoice,
Shipment, and so on) uses Codeunit 396, NoSeriesManagement, to access the No.
Series table for the next number to use, and then updates the No. Series table so that
the next object needing to assign a number to the same type of document will have
the updated information.

Communication through function parameters
When an object calls a function in another object, information is generally passed
through the calling and return parameters. The calling and return parameter
specifications were defined when the function was originally developed. The generic
syntax for a function call is as follows:

[ReturnValue :=] FunctionName ([Parameter1] [,Parameter2] ,…)

The rules for including or omitting the various optional fields are specific to the
local variables defined for each individual function. As developers, when we design
the function, we define the rules and thereby determine just how communications
with the function will be handled. It is obviously important to define complete and
consistent parameter passing rules, prior to beginning a development project.

Chapter 7

[415]

Communication via object calls
Sometimes we need to create an object which in turn calls other objects. We may
simply want to allow the user to be able to run a series of processes and reports
but only enter the controlling parameters once. Our user interface object will be
responsible for invoking the subordinate objects after having communicated setup
and filter parameters.

There is a significant set of standard functions designed for various modes
and circumstances of invoking other objects. Examples of these functions are
SETTABLEVIEW, SETRECORD, and GETRECORD (there are others as well). There are also
instances where we will need to build our own data passing function.

In order to properly manage these relatively complex processes, we need to be
familiar with the various versions of RUN and RUNMODAL functions. We will also need
to understand the meaning and effect of a single instance or multiple instances of an
object. Briefly, key differences between invoking a page or report object from within
another object via RUN versus RUNMODAL are as follows:

• RUN will clear the instance of the invoked object every time the object
completes, which means that all of the internal variables are initialized.
This clearing behavior does not apply to a codeunit object; state will be
maintained across multiple calls to RUN.

• RUNMODAL does not clear the instance of the invoked object, so internal global
variables are not reinitialized each time the object is called. The object can be
reinitialized by using CLEAR(Object).

• RUNMODAL does not allow any other object to be active in the same user
session while it is running, whereas RUN allows another object instance to run
in parallel with the RUN initiated object instance.

Covering these topics in more detail is too advanced for this book, but once you
have mastered the material covered here, you should study the information in the
Developer and IT Pro Help relative to this topic. There is also a Pattern on this topic
defined at:

https://community.dynamics.com/nav/w/designpatterns/108.posting-
routine-select-behaviour.

https://community.dynamics.com/nav/w/designpatterns/108.posting-routine-select-behaviour
https://community.dynamics.com/nav/w/designpatterns/108.posting-routine-select-behaviour

Intermediate C/AL

[416]

Enhancing the WDTU application
Now that we have some more tools with which to work, let's enhance our WDTU
application. This time our goal is to implement functionality to allow the Program
Manager to plan the Playlist schedules for Radio Shows. The process, from the user's
point of view, will be essentially as follows:

• Call up the Playlist document page which displays Header, Details, and
Factbox workspaces.

• Enter the Playlist Header, using the Radio Show table data.
• Enter Playlist Lines, using the Resource table DJ data, the Radio Show table

for News, Weather, or Sports shows, and the Item table for Music, PSAs, and
Advertisements.

• The Factbox will display the Required program element fields from Radio
Show/Playlist Header. These will include News (Yes or No), Weather (Yes
or No), Sports (Yes or No), Number of required PSAs, and Advertisements.

• The Factbox will also track each of the five possible required elements.

Since this development effort is an exercise to learn more about developing NAV
applications, we also have some specific NAV C/AL components we want to use
so we can learn more about them. Among those are the following:

• Create a CASE statement as well as a multipart IF statement for contrast
• Add code to the OnValidate trigger of fields in a table
• Implement a lookup into a related table to access the needed data
• Cause FlowFields to be processed for display
• Implement a FactBox (to display Radio Show requirements for News, Sports,

Weather, PSAs, and Ads)
• Create a new function, passing a parameter in and getting results passed

back

As with any application enhancement, there will be a number of auxiliary tasks
we'll have to accomplish to get the job done. These include adding some new
fields to one or more tables. Not surprisingly, adding new data fields often leads to
adding the new fields to one or more pages for maintenance or display. We'll have
to create some test data in order to test our modifications. It's not unusual in the
course of an enhancement to also find that other changes are needed to support
the new functionality.

Chapter 7

[417]

Modifying Table Fields
Because we want the NAV tables to be the core of the design and to host as much
of the processing as makes sense, we will start our enhancement work with table
modifications.

The first table modification is to add the data fields to the Playlist Header to support
the definition and tracking of various program segment requirements. In the Radio
Show table, each show has requirements defined for specific numbers of PSAs and
Advertisements, and for the presence of News, Sports, and Weather spots. The
Playlist Header needs this requirements information stored along with the associated
counts for this show instance for PSAs and Ads. We are going to obtain the News,
Sports, and Weather line counts by means of a function call.

Intermediate C/AL

[418]

Since the Playlist Line includes an Option field which identifies the PSA and
Advertisement records, we use a FlowField to calculate the counts for each of those
line types. We construct the FlowField definition starting in the Properties form of
the field.

When we click on the CalcFormula line ellipsis, the Calculation Formula screen
appears, as shown in the following screenshot:

In this case, the Method we want to use is Count. Then, when we click on the Table
Filter ellipsis, we will have the opportunity to enter the components defining the
filters that should be applied to the Playlist Line to isolate the records that we want
to count.

Chapter 7

[419]

When we complete the Table Filter definition and click on the OK button, we will
return to the Calculation Formula screen with the Table Filter field filled in (if we
just click on Esc, the data we entered will not be saved).

Again, click on the OK button to return to the Properties screen.

Go through the same sequence for the Ad Count field.

Intermediate C/AL

[420]

The only change we now want to make to the Playlist Line table now is to be sure
the Duration field is not editable. We do this so that the Start Time and End Time
scheduling defines Duration rather than the other way around. Making the Duration
field non-editable is done by simply setting the field's Editable property to No, as
shown in the following screenshot:

Add Validation logic
We need Validation logic for both our Playlist tables, Header and Line.

Playlist Header Validations
The Playlist Header data fields are:

• No.: The ID number for this instance of a radio show; user defined
• Radio Show No.: Chosen from the Radio Show table
• Description: Displayed via a FlowField from the Radio Show table
• Posting Date: This show's scheduled broadcast date
• Start Time: This show's scheduled broadcast start time
• End Time: This show's scheduled broadcast end time
• Duration: The length of the show; displayed via a FlowField from the Radio

Show table

Chapter 7

[421]

• PSAs Required and Ads Required: How many PSAs and Ads are planned
during the show; copied from the Radio Show table, but editable by the user

• News Required, Sports Required, and Weather Required: Whether or not
each of these program segments are required during the show; copied from
the Radio Show table, but editable by the user

When the user chooses the Radio Show to be scheduled, we want the five different
feature requirements fields in the Playlist Header to be filled in.

Even though the Radio Show No. was entered in the data field, our validation
code needs to read the Radio Show record (here, defined as the Global variable
RadioShow). Once we have read the Radio Show record, we can assign all five
show feature requirements fields from the Radio Show record into the Playlist
Header record.

Intermediate C/AL

[422]

Then, because two fields in the Playlist Header record are Lookup FlowFields, we
need to Update the page after the entry of the Radio Show No. value The Update
is done via a CurrPage.UPDATE command, as shown in the following image:

The next Validation we need is to calculate the show's End Time as soon as the Start
Time has been entered. The calculation is simple—add the length of the show to the
Start Time. Because we have defined the Duration field in the Playlist Header to
be a Lookup reference to the source field in the Radio Show record, to calculate with
that field would require using a CALCFIELDS function first, so, instead, we'll obtain
the show length from the Radio Show record.

Now we see that we have one of those situations we sometimes encounter when
developing a modification. It might have been better to have the Playlist Header
Duration field as a Normal data field rather than a FlowField. If this is the only
place where we will use Duration from the Playlist Header for calculation or
assignment, then the current design is fine. Otherwise, perhaps we should change
the Duration field to be a Normal field and assign Run Time from Radio Show to it
at the same time the several requirements fields are assigned. At this point though,
for the purposes of our WDTU scenario, we will stick with what we already have.

Chapter 7

[423]

Creating the Playlist Subform page
In Chapter 2, Tables, a homework assignment was to create Page 50003 Playlist
Document. We should have used the Page Wizard to create that page, giving us
something like this following screenshot:

Another necessary part of a Document page is the Subform (someday to be known as
a Subpage) page. Our Subform page can be created using the Page Wizard to create
a ListPart based on Table 50003 Playlist Line. After we Finish the Wizard, we'll
save and compile the page as 50004 Playlist Subform. The result will look like the
following image:

Intermediate C/AL

[424]

To make the Document work the way we are used to having NAV Document forms
work, we need to set some properties for this new page. See the bolded properties
circled in the following image:

We have set the DelayedInsert, MultipleNewLines, and AutoSplitKey properties
to Yes. These settings will allow the Playlist Lines to not be saved until the primary
key fields are all entered (DelayedInsert), will support simple sequential entry of
data lines (MultipleNewLines), and will support the easy insertion of new entries
between two existing lines (AutoSplitKey).

Chapter 7

[425]

Finally, we need to connect our new Playlist Subform Listpart Page 50004 to the
Playlist Document Page 50003 to give us a basic, complete Document page. All we
need to do to accomplish that is add a new Part line to Page 50003 with as is shown
in the following:

Entering the PagePartID in the Part line properties (as shown in the following image)
will populate the Name and Caption fields (as shown in the preceding image).

Intermediate C/AL

[426]

Note that the highlighted property, UpdatePropagation, in the preceding image.
This property can be set to either SubPart (the default) or Both. This controls how
the parent and child page are updated when a change is made to the data displayed
by the child page (the SubPart). If the property value is SubPart, only the child
page information display is updated. If the property value is Both, both the child
and parent page displays are updated. This is useful when data in the SubPage is
updated and the change affects data displayed in the parent page.

The last step in this phase of our development is to set the Page Part property
SubPageLink to automatically filter the contents of the Subform page to only be the
lines that are children of the parent record showing in the card-like portion of the
Document page (at the top) of the page).

Chapter 7

[427]

Playlist Line Validations
The Playlist Line data fields are:

• Playlist No.: The automatically assigned link to the No. field in the parent
Playlist record (the automatic assignment is based on the Playlist Subform
page properties, which we'll take care of when working on the Playlist pages)

• Line No.: An automatically assigned number (based on page properties); the
rightmost field in the Playlist Line primary key

• Type: A user selected option defining if this entry is a Resource (such as an
announcer), a Show (such as a News show), or an Item (such as a recording
to play on the air)

• No.: The ID number of the selected entry in its parent table
• DataFormat: Information from the Item table for a show or recording
• Description: Assigned from the parent table, but can be edited by the user
• Duration, Start Time, and End Time: Information about a show or recording

indicating its length and its position within the schedule of this Radio Show

The source of contents of the No., DataFormat, Description, and time related fields
of the record depend on the Type field. If the Type is Resource, the fields are filled in
from the Resource table; for Item, from the Item table; and for Show, from the Radio
Show table. To support this, our OnValidate code looks at the Type entry and uses a
CASE statement to choose which set of actions to take.

Intermediate C/AL

[428]

First, we will build the basic CASE statement, as shown in the following image, and
compile it. That way we make sure we've got all the components of the structure in
place and only need to fill in the logic for each of the option choices.

Next we must add a Global Variable for each of the tables from which we are going
to pull data: Resource, Item, and Radio Show. That done, using the C/AL Symbol
Menu makes it much easier to find the correct field names for each of the variables
we want to select to assign to the Playlist Line record fields.

Chapter 7

[429]

Once the C/AL Symbol Menu is displayed, we first select the source object or
variable in the left column. In this case, that's the Resource table. Then select the
subcategory in the middle column. We want a list of the fields in the Resource table,
so we select FieldName. Then, in the third column, a list of Resource FieldNames is
displayed. We select Name to assign to the Playlist Line Description field. When we
double-click on the desired FieldName, it will be inserted at the point of focus in the
C/AL Editor.

Intermediate C/AL

[430]

When we are all done constructing the CASE Statement, it should look like the
following screenshot:

The last set of OnValidate code we need to add is to calculate End Time from
the supplied Start Time and Duration (or Start Time from the End Time
and Duration).

Chapter 7

[431]

Obviously, the design could be expanded to have the Duration value be user editable
along with an appropriate change in the C/AL logic. After our initial work on the
Playlist functionality is completed, making that change would be a good exercise for
you as would be the addition of "housekeeping" commands to clear out fields that
are not used by the assigned record Type (such as clearing the DataFormat field for a
Show record).

Creating a function for our Factbox
For this application, we want our FactBox to display information relating to the
specific Radio Show we are scheduling. The information to be displayed includes
the five show segment requirements and the status of fulfillment (counts) of those
requirements by the data entered to date. The requirements come from Playlist
Header fields: PSAs Required, Ads Required, News Required, Sports Required, and
Weather Required. The counts come from summing up data in the Playline Line
records for a show. We can use the Playlist Header fields PSA Count and Ad Count
for those two counts. These counts can be obtained through the FlowField property
definitions we defined earlier for these two fields.

For the other three counts, we must read through the Playlist Lines and total up each
of the counts. To accomplish that, we'll create a Function which we can call from
the FactBox page. Since our new function is local to the Playlist Header and Playlist
Lines tables, we will define the function in the Playlist Header (table 50002).

The first step in defining the function is to enter its name in to the Functions tab of
the Globals screen for the object. Open the object, Table 50002, by clicking Table |
Design, then View | C/AL Globals, and then click the Functions tab. Enter the name
of the new function, access its Properties (through the Properties icon or Shift + F4)
and set the Local property to No so the function can be called from the Factbox Page.

Intermediate C/AL

[432]

Then, after clicking on the Locals button and viewing the Parameters tab, we can
enter the parameters we want to pass to the function. In this case, we want the
parameter to be passed by value, not by reference, so we do not check the Var
checkbox on the Parameter line. For more information about parameter passing, look
at Help sections C/AL Function Calls and How to: Add a Function to a Codeunit, as well
as the Create a Function section in Chapter 6, Introduction to C/SIDE and C/AL. The
name of the Parameter is local to the function.

Since we want a single function that will serve to count Playlist Lines that are News,
Weather, or Sports, the parameter we pass in will be an Option code of News,
Weather, or Sports. The Option Subtype sequence must be the same as those in the
field Type in the table Playlist Lines, otherwise we will have Options mismatching.

Chapter 7

[433]

The return value we want back from this function is an Integer count. Again, the
variable name is local.

The logic of our counting process is described in the following pseudocode:

1. Filter the Playlist Line table for the Radio Show we are scheduling and for
the segment entries (Playlist Line) that represent shows.

2. Look up the Radio Show record for each of those records.
3. Using the data from the Radio Show record, look up the Radio Show

Type code.
4. In the Radio Show Type record, use the News, Weather, and Sports fields

to determine which Playlist Line counter should be incremented.

Based on this logic, we must have Local Variables defined for the three tables
Playlist Line, Radio Show and Radio Show Type. The following image shows
those Local Variables:

Intermediate C/AL

[434]

Translating our pseudocode into executable C/AL, our function looks like
the following:

In the process of writing this code, we notice another design flaw. We defined the
type of Radio Show with a code which allows users to enter their choice of text
strings. We just wrote some code that depends on the contents of that text string
being specific values. A better design would have been to have the critical field be
an Option data type so we could depend on the choices are members of a predefined
set. However, the Code field is our Primary Key field and we probably shouldn't
use an Option field as the Primary Key. We will continue with our example with the
design as is, but you should consider how to improve it. Making that improvement
would be excellent practice with C/AL.

Chapter 7

[435]

Creating a Factbox page
All the hard work is now done. We just have to define a Factbox page and add it to
the Playlist page. We can create a Factbox page using the New Page Wizard to define
a CardPart.

Our Factbox will contain the fields from the Playlist Header that relate to two of the
five required show segments, the PSA Count and Ad Count fields.

Intermediate C/AL

[436]

Once we exit the Page Wizard into the Page Designer, we will have a page layout
that looks like the following image:

At this point we need to put in place the logic to take advantage of the
NWSRequired function that we created earlier. That function is designed to return
the count of the segment type identified in the calling parameter. Since a line on a
page can be an expression, we can simply code the function calls right on the page
lines, with an appropriate caption defined, as we can see in the following image. The
only other task has been to define a Global variable, NWSCategory, which is defined
as an Option with the choices of News, Weather, and Sports. This variable is used
for the calling parameter. We intersperse the Count lines for a consistent appearance
on the Page.

We save the new FactBox page as Page 50010, named Playlist FactBox.

Chapter 7

[437]

One final development step is required. We must connect the new FactBox CardPart
to the Playlist Document. All that is required is to define the FactBox Area and add
our FactBox as an element in that area.

Properties for the Playlist Subform Pagepart are as shown in the following
screenshot:

Intermediate C/AL

[438]

Properties for the FactBox Pagepart are as shown in the following image:

Multiple FactBoxes can be part of a primary page. If we look at Page 21 – Customer
Card, we will see a FactBox Area with eight FactBoxes, of which two are System
Parts.

The end result of our development effort is shown when we Run Page 50000 –
Playlist with some sample test data (which we entered by Running the various
tables).

Chapter 7

[439]

Summary
In this chapter, we have covered a number of practical tools and topics regarding
C/AL coding and development. We started with reviewing methods and then we
dived into a long list of functions that we will need on a frequent basis.

We have covered a variety of selected data-centric functions, including some for
computation and validation, some for data conversion, and others for date handling.
Next we reviewed functions that affect the flow of logic and the flow of data,
including FlowFields and SIFT, Processing Flow Control, Input and Output, and
Filtering. Finally, we put a number of these to work in an enhancement for our
WDTU application.

In the next chapter, we will move from the details of the functions to the broader
view of C/AL development integration into the standard NAV code, and debugging
techniques.

Intermediate C/AL

[440]

Review questions
Q1. Which three of the following are valid date related NAV functions?

a. DATE2DWY

b. CALCDATE

c. DMY2DATE

d. DATE2NUM

Q2. RESET is used to clear the current sort key setting from a record. True or False?

Q3. Which functions can be used to cause FlowFields to be calculated? Choose two.

a. CALCSUMS

b. CALCFIELDS

c. SETAUTOCALCFIELDS

d. SUMFLOWFIELD

Q4. Which of the following functions should be used within a report
OnAfterGetRecord trigger to end processing just for a single iteration of the trigger?
Choose one.

a. EXIT
b. BREAK
c. QUIT
d. SKIP

Q5. The WORKDATE value can be set to a different value from the System Date.
True or False?

Q6. Only one FactBox is allowed on a page. True or False?

Q7. Braces {} are used as a special form of a repeating CASE statement. True or False?

Q8. Which of the following is not a valid C/AL flow control combination?
Choose one.

a. REPEAT-UNTIL
b. DO-UNTIL
c. CASE-ELSE
d. IF-THEN

Q9. A FILTERGROUP function should not be used in custom code. True or False?

Chapter 7

[441]

Q10. The REPEAT-UNTIL looping structure is most often used to control data
reading processes. True or False?

Q11. Which of the following formats of MODIFY will cause the table's OnModify
trigger to fire? Choose one.

a. MODIFY
b. MODIFY(TRUE)
c. MODIFY(RUN)
d. MODIFY(READY)

Q12. MARKing a group of records creates a special index, therefore MARKing is
especially efficient. True or False?

Q13. A CASE statement structure should never be used in place of a nested IF
statement structure. True or False?

Q14. An Average FlowField requires which one of the following?

a. A record key
b. SQL Server database
c. An Integer variable
d. A Decimal variable

Q15. The TESTFIELD function can be used to assign new values to a variable.
True or False?

Q16. The VALIDATE function can be used to assign new values to a variable.
True or False?

Q17. The C/AL Symbol Menu can be used for several of the following purposes.
Choose two.

a. Find applicable functions
b. Test coded functions
c. Use entries as a template for function syntax and arguments
d. Translate text constants into a support language

Q18. Documentation cannot be integrated into in-line C/AL code. True or False?

Q19. If MAINTAINSIFTINDEX is set to NO and CALCFIELDS is invoked, the
process will terminate with an error. True or False?

Q20. SETRANGE is often used to clear all filtering from a single field. True or False?

Chapter 8

[443]

Advanced NAV
Development Tools

"Beauty is more important in computing than anywhere else in technology because
software is so complicated. Beauty is the ultimate defense against complexity."
 – David Gelernter

"Often when you think you're at the end of something, you're at the beginning of
something else."
 – Fred Rogers

Because NAV is extremely flexible and suitable for addressing many problem types,
there are a lot of choices for advanced NAV topics. We'll try to cover those which
will be most helpful in the effort of putting together a complete implementation.

First, we will review the overall structure of NAV as an application software system,
aiming for a basic understanding of the process flow of the system along with some
of the utility functions built into the standard product. Before designing modifications
for NAV, it is important to have a good understanding of the structural "style" of the
software, so that our enhancements are designed for a better fit.

Second, we will review some special components of the NAV system that allow us
to accomplish more at less cost. These resources include features such as XMLPorts
and Web Services that we can build on, and which help us to use standard interface
structures to connect with the world outside of NAV system. Fortunately, NAV has
a good supply of such features.

Advanced NAV Development Tools

[444]

NAV process flow
Primary data such as sales orders, purchase orders, production orders, and financial
transactions flow through the NAV system as follows:

• Initial Setup: The Essential Master data, reference data, and control and
setup data is entered. Most of this preparation is done when the system
(or a new application) is prepared for production use.

• Transaction Entry: The transactions are entered into Documents and then
transferred as part of a Posting sequence into a Journal table, or data may
be entered directly into a Journal table. Data is preliminarily validated
as it is entered with master and auxiliary data tables being referenced as
appropriate. Entry can be via manual keying, an automated transaction
generation process, or an import function that brings in transaction data
from another system.

• Validate: This provides for additional data validation processing of a set of
one or more transactions, often in batches, prior to submitting it to Posting.

• Post: This posts a Journal Batch, which includes completing transaction data
validation, adding entries to one or more Ledgers, and perhaps also updating
a register and document history.

• Utilize: Access the data via Pages, Queries, and/or Reports including those
that feed Web Services and other consumers of data. At this point, total
flexibility exists. Whatever tools are appropriate for users' needs should be
used, whether internal to NAV or external (external tools are often referred
to as Business Intelligence (BI) tools). NAV's built-in capabilities for data
manipulation, extraction, and presentation should not be overlooked.

• Maintenance: The continued maintenance of all NAV data as appropriate.

Chapter 8

[445]

The preceding image provides a simplified picture of the flow of application data
through a NAV system. Many of the transaction types have additional reporting,
multiple ledgers to update, and even auxiliary processing. But this represents the
basic data flow in NAV whenever a Journal and a Ledger table are involved.

When we enhance an existing NAV functional area (such as Jobs or Service
Management), we may need to enhance related process flow elements by adding
new fields to journals, ledgers, posted documents, and so on. It's always a good idea
to add new fields rather than change the use of standard fields. It makes debugging,
maintenance, and upgrading all easier.

When we create a new functional area, we will likely want to replicate the standard
NAV process flow in some form for the new application's data. For example, for
our WDTU application, we handle the entry of Playlists in the same fashion as a
Journal is entered. A day's Playlists would be similar to a Journal Batch in another
application. When a day's shows have been broadcast, the Playlist will be posted
into the Radio Show Ledger as a permanent record of the broadcasts.

Advanced NAV Development Tools

[446]

Initial setup and data preparation
Data must be maintained as new Master data becomes available, as various system
operating parameters change, and so on. The standard approach for NAV data entry
allows records to be entered that have just enough information to define the primary
key fields, but not necessarily enough to support processing. This allows a great deal
of flexibility in the timing and responsibility for entry and completeness of new data.
This approach applies to both setup data entry and ongoing production transaction
data entry.

This system design philosophy allows initial and incomplete data entry by one
person, with validation and completion to be handled later by someone else. This
works because often data comes into an organization on a piecemeal basis.

For example, a sales person might initialize a new customer entry with name,
address, and phone number, entering just that data to which they have easy access.
At this point, there is not enough information recorded to process orders for this new
customer. At a later time, someone in the accounting department can set up posting
groups, payment terms, and other control data that should not be controlled by the
sales department. With this additional data, the new customer record is ready for
production use.

The NAV data entry approach allows the system to be updated on an incremental
basis as the data arrives, providing an operational flexibility that many systems lack.
The other side of this flexibility is added responsibility for the users to ensure that
partially updated information is completed on a timely fashion. For the customer
who can't deal with that responsibility, it may be necessary to create special
procedures or even system customizations which enforce the necessary discipline.

Transaction entry
Transactions are entered into a Journal table. Data is preliminarily validated as it is
entered; master and auxiliary data tables are referenced as appropriate. Validations
are based on the evaluation of the individual transaction data plus the related
Master records and associated reference tables (for example, lookups being satisfied,
application or system setup parameter constraints being met, and so on).

Chapter 8

[447]

Testing and posting the Journal batch
Any additional validations that need to be done to ensure the integrity and
completeness of the transaction data prior to being Posted, are done either in pre-
Post routines or directly in the course of the Posting processes. The actual Posting
of a Journal batch occurs when the transaction data has been completely validated.
Depending on the specific application, when Journal transactions don't pass muster
during this final validation stage, either the individual transaction is bypassed while
acceptable transactions are Posted, or the entire Journal Batch is rejected until the
identified problem is resolved.

The Posting process adds entries to one or more Ledgers, and sometimes to a
document history table. When a Journal Entry is Posted to a Ledger, it becomes a
part of the permanent accounting record. Most data cannot be changed or deleted
once it resides in a Ledger.

Register tables may also be updated during Posting, recording the ID number
ranges of ledger entries posted, when posted, and in what batches. This adds
to the transparency of the NAV application system for audits and analysis.

In general, NAV follows the standard accounting practice of requiring Ledger
revisions to be made by Posting reversing entries, rather than by deletion of
problem entries. The overall result is that NAV is a very auditable system, a key
requirement for a variety of government, legal, and certification requirements
for information systems.

Utilizing and maintaining the data
The data in a NAV system can be accessed via Pages, Queries, and/or Reports,
providing total flexibility. Whatever tools are available to the developer or the user,
which are appropriate, should be used. There are some very good tools in NAV for
data manipulation, extraction, and presentation. Among other things, these include
the SIFT/Flowfield functionality, the pervasive filtering capability (including the
ability to apply filters to subordinate data structures), and the Navigate function.
NAV includes the ability to create page parts for graphing, with a wide variety of
predefined chart page parts included as part of the standard distribution. We can
also create our own chart parts using tools that were delivered with the system or
available from Web blogs.

Advanced NAV Development Tools

[448]

The NAV database design approach could be referred to as a "rational
normalization". NAV isn't constrained by a rigid normalized data structure, where
every data element appears only once. The NAV data structure is normalized so long
as that principle doesn't get in the way of processing speed. Where processing speed
or ease of use for the user is improved by duplicating data across tables, NAV does
so. In addition, the duplication of master file data into transactions allows for one-
time modification of that data when appropriate (such as a ship-to address in a Sales
Order). That data duplication also often greatly simplifies data access for analysis.

Data maintenance
As with any database-oriented application software, ongoing maintenance of
Master data, reference data, and setup and control data is required. In NAV,
maintenance of data uses many of the same data preparation tools as were
initially used to set up the system.

Role Center pages
One of the key features of NAV 2015 is the Role Tailored user experience centered on
Role Centers tied to user work roles. The Role Tailored approach provides a single
point of entry and access into the system for each user through their assigned Role
Center. The user's Role Center acts as their home page. Each Role Center focuses
on the tasks needed to support its users' jobs throughout the day. Primary tasks
are front and center, while the Action Ribbon and Departments Menu provide easy
access to other functions only a click or two away.

The standard NAV 2015 distribution from Microsoft includes 23 different Role
Center pages, identified for user roles such as Bookkeeper, Sales Manager, Shop
Supervisor, Purchasing Agent, and so on (Page 9011 is identified as a Foundation
rather than as a Role Center or RC). Some localized NAV distributions may have
additional Role Center pages included. It is critical to realize that the Role Centers
supplied out of the box are not generally intended to be used directly out of the box.
Only a portion of the 23 supplied Role Center pages have been fully configured.
Three of those are:

• 9004 – Bookkeeper
• 9005 – Sales Manager
• 9006 – Order Processor

Chapter 8

[449]

The 23 Role Center pages should be used as templates for custom Role Centers
tailored to the specific work role requirements of the individual customer
implementation.

One of the very critical tasks of implementing a new system is to analyze the work
flow and responsibilities of the system's intended users and configure Role Centers
to fit the users. In some cases, the supplied Role Centers can be used with minimal
tailoring. Sometimes, it will be necessary to create complete new Role Centers. Even
then, we will often be able to start with a copy of an existing Role Center Page, which
we will modify as required. In any case, it is important to understand the structure of
the Role Center Page and how it is built.

The Role Center structure
The following screenshot shows Page 9006 – Order Processor Role Center:

Advanced NAV Development Tools

[450]

The components of the Role Center highlighted in the preceding image are:

1. Action Ribbon.
2. Navigation Pane.
3. Activity Pane.
4. Cue Group Actions (in Cue Groups).
5. Cues (in Cue Groups).
6. Page Parts.
7. System Part.

A general representation of the structure of a Role Center Page is shown in the
following outline:

Chapter 8

[451]

We need to understand the construction of a Role Center Page so that we are
prepared to modify an existing Role Center or create a new one. First, we'll take a
look at Page 9006 – Order Processor Role Center in the Page Designer.

The Role Center page layout should look familiar, because it's very similar in
structure to the pages we've designed previously. What's specific to a Role Center
page? There is a Container control of SubType RoleCenterArea. This is required for
a Role Center page. There are two Group Controls, which represent the two columns
(left and right) of the Role Center page display. Each group contains several parts,
which show up individually in the Role Center display.

Advanced NAV Development Tools

[452]

Role Center page properties are accessed by highlighting the first blank line on the
Page Designer form (the line below all the defined controls), then clicking on the
Properties icon, or we could right-click and choose the Properties option, or click
on View | Properties or press Shift + F4. Note that PageType is RolieCenter,
and there is no Source Table. The page properties not shown in this image are all
default values:

Chapter 8

[453]

The Role Center activities page
Since the Group Control has no underlying code or settings, we'll take a quick look
at the first Part Control's Properties. The PagePartId property is Page SO Processor
Activities.

Advanced NAV Development Tools

[454]

Cue Groups and Cues
Now we'll focus on Page 9060 – SO Processor Activities. Designing that page, we see
the layout shown in the next screenshot. Comparing the controls we see here to those
of the Role Center, we can see this Page Part is the source of the Activities section
of the Role Center Page. There are three CueGroup Controls – For Release, Sales
Orders Released Not Shipped, and Returns. In each CueGroup, there are Field
Controls for the individual Cues.

An individual Cue is displayed as an iconic shortcut to a filtered list through a
FlowField, or to a Query or other data source through a Normal field. The stack
of papers in the Cue icon resulting from a filtered value represents an idea of the
number of records in that list. The actual number of entries is also displayed next
to the icon (see the Sales Orders - Open example in the following screenshot). The
purpose of this type of Cue is to provide a focus and single click access to a specific
user task. The set of these Cues is intended to represent the full set of primary
activities for a user, based on their work Role:

NAV 2015 provides another Cue format, like the Average Days Delayed Cue in the
preceding image, which is based on a calculated value stored in a Normal field.

Chapter 8

[455]

Cue source table
In the Properties of the SO Processor Activities page, we see this is a PageType of
CardPart tied to SourceTable Sales Cue.

Next, we want to Design the referenced table, Sales Cue, to see how it is constructed.

Advanced NAV Development Tools

[456]

As we see in the preceding image, there is a simply structured table, with an
integer field for each of the action Cues and a decimal field for the information
Cue, all of which were displayed in the Role Center we are analyzing. There is
also a key field, two fields identified as Date Filters, and a field identified as a
Responsibility Center Filter.

When we display the properties of one of these integer fields, Sales Orders - Open,
we find it is a FlowField providing a Count of the Sales Orders with a Status
of Open.

If we inspect each of the other integer fields in this table, we will find a similar
FlowField setup. Each is defined to fit the specific Cue to which it's tied. If we think
about what the Cues show (a count) and how FlowFields work (a calculation based
on a range of data records), we can see this is a simple, direct method of providing
the information necessary to support the Cue displays. Clicking on the action Cue
(the count) then opens up the list of records being counted. The information Cue
is tied to a decimal field which is computed by means of a function (shown in the
following image) in the Cue table which is invoked from the Role Center page when
the Cue is displayed:

Chapter 8

[457]

The following screenshot shows the list of Cue tables. Each of the Cue tables contains
a series of FlowFields and other fields that support a set of Cues. Some Cue tables
service more than one of the Role Center pages:

Advanced NAV Development Tools

[458]

Cue Group Actions
Another set of Role Center page components to analyze are Cue Group Actions.
While the Cues are the primary tasks that are presented to the user, the Cue Group
Actions are a related secondary set of tasks displayed to the right of the Cues.

Cue Group Actions are defined in the Role Center in essentially the same way as
Actions are defined in other page types. As the name implies, Cue Group Actions
are associated with a Control with the SubType CueGroup. If we right-click on the
CueGroup Control, one of the options available is Control Actions (as shown in the
following screenshot):

When we choose Control Actions, the Action Designer form will be displayed
showing the two CueGroup actions in the For Release CueGroup in the
SO Processor Role Center page. If we open Properties, we will see the "New"
functionality is accomplished by setting the RunPageMode property to Create.

Chapter 8

[459]

System Part
Now that we have covered the components of the Activities portion of the Role
Center page, let's take a look at the other components.

Returning to Page 9006 in Page Designer, we examine Properties of the System
Part Control. This Page Part is the one that incorporates a view of the user's Notes
data into the Role Center. Looking at this control's properties, we see a PartType of
System and a SystemPartID of MyNotes (which displays as My Notifications).

Advanced NAV Development Tools

[460]

Page Parts
Let's look at the second Group in Page 9006, the Group that defines the right hand
column appearing in the Role Center page. There are five Page Parts and a System
Part defined.

Page Parts not visible
If we look again at the display of the Role Center page generated by this layout, we
will see a chart (Trailing Sales Orders), followed by two ListParts (My Items and
Report InBox), and in turn followed by the System Part (My Notifications). The
two Page Parts, My Job Queue and Connect Online, do not appear. These two Page
Parts have been defined by the developer with the Visible property equal to FALSE,
which causes them not to display unless the Role Center Page is customized by the
user (or an administrator or developer) and the part added to the visible part list.

Chapter 8

[461]

Page Part Charts
The first Page Part in the second Group provides for a Chart to display using
the Chart Control Add-in included in NAV 2015. The Chart Control Add-in is
documented in the Developer and IT Pro Help in Displaying Charts Using the Chart
Control Add-in. In the Page 9006, the Page Part Trailing Sales Orders Chart invokes
Page 760 of the same name. Looking at Page 760 in the Page Designer, we see the
following layout:

Advanced NAV Development Tools

[462]

The properties of the Field named Business Chart look like the following:

Note that the property ControlAddIn contains the necessary information to access
the Chart Control Add-in. This property provides access to the screen, shown in the
following screenshot, where the Client Add-ins are listed that are available for use
in our NAV system. An Add-in is a Microsoft .NET Framework assembly (a module
external to NAV but registered with the system) that lets us add customer functionality
to a NAV Windows Client. The Client Add-in screen shown next displays after
clicking on the lookup arrow at the right end of the ControlAddIn property:

Chapter 8

[463]

Page Parts for user data
Three of the Page Parts in Role Center Page 9006 provide data that is specific to the
individual user. They track "My" data, information important to the user who is
logged in. If we Design any one of the pages, we can open the page properties to
find out what table the page is tied to. Then viewing any of those tables in the Table
Designer, we will see that a highly ranked field is User ID. An example is the My
Item table:

The User ID allows the data to be filtered to present user specific information to each
user. In some cases, this data can be updated directly in the Role Center Page Part;
for example, in My Customers and My Items. In other cases, such as My Job Queue,
the data is updated elsewhere and is only viewed in the Role Center Page Part. If
our users needed to track other information in a similar manner, such as My Service
Contracts, we could readily plagiarize the approach used in the standard Page Parts.

The Navigation Pane and Action menus
The last major Role Center Page components we're going to review are the
Navigation Pane and the Action Ribbon. Even though there are two major parts of
the Role Center Page that provide access to action choices, they both are defined in
Action Designer section of Page Designer.

The display of Action Controls in a Role Center page is dependent on a combination
of the definition of the controls in the Action Designer, certain properties of the
page, and configuration/personalization of the page. Many of the default Role
Centers provided with the product are configured as examples of possibilities of
what can be done. Even if one of the default Role Centers seems to fit our customer's
requirements exactly, we should create a copy of that Role Center page as another
page object and reconfigure it. That way we can document how that page was set up
and make any necessary tweaks.

We're going to start with Role Center Page 9006, because it is used as the default Role
Center and is used in many other examples. Copy Page 9006 into Page 50020 – WDTU
Role Center using the sequence Object Designer | Page | Design | File |Save As… ,
with a new page object ID of 50020 and object Name of WDTU Role Center.

Advanced NAV Development Tools

[464]

Once we have the new page saved, in order to use this page as a Role Center we
must create a Profile for the page. This is done within the Role Tailored Client
(RTC) and is typically a System Administrator task. Invoke the RTC and click on
the Departments menu button in the Navigator Pane. Then click on Administrator:
Application Setup | Role Tailored Client | Lists: Profiles. Click on the New icon
and create a new profile like the following one:

For the purpose of easy access to this Role Center for testing, we could also
checkmark the Default Role Center box. Then, when we invoke the RTC, our test
Role Center will be the one that displays (if no other profile is assigned to this user).
Another approach to testing is to assign our User ID to use this Profile.

When we are doing development work on a Role Center, we can run the Role
Center as a page from the C/SIDE Object Designer in the same way as other pages.
However, the Role Center page will launch as a task page on top of whatever Role
Center is configured for the active user. The Navigation Pane of the Role Center
being modified will not be active and can't be tested with this approach. In order to
test all the aspects of the Role Center page, we must launch it as the assigned Role
Center for the active user.

A major area where action choices are presented in a Role Center (and also in other
page types) is in the ribbon. The ribbon for the standard Page 9006 – Order Processor
Role Center, as delivered from Microsoft, looks like the following:

Chapter 8

[465]

After we have created our Role Center copy, the ribbon for Page 50020 – Order
Processor RC WDTU looks like the following:

When we compare the available actions in the two ribbon images, we see most of the
same actions, but displayed quite a bit differently. Two of the report actions available
in the standard ribbon don't show up in the Page 50020 ribbon, but if we take a look
at the report tab on the ribbon, we'll see that they are available there.

If we made the same kind of analysis of some of the other default Role Centers, we
would find similar results. When the page is copied to another object number, the
appearance of the ribbon changes, losing detail. As it turns out, many of the default
Role Centers have been manually configured by Microsoft as part of the effort to
show good examples of Role Center ribbon design. Thus, we should start with a
fresh copy of our Role Centers when designing for our customer, so that we know
what tailoring has been done and are in control of the design.

Action Designer
The actions for a page are defined and maintained in Action Designer. Action
Designer is accessed from within the Page Designer. Open our new Page 50020 -
WDTU Role Center in the Page Designer, then either press Ctrl + Alt + F4 or View |
Page Actions to open the Action Designer to view the current set of actions defined
for this page.

Advanced NAV Development Tools

[466]

For our newly created Page 50020, cloned from Page 9006, the Action Designer
contents look like the following:

Chapter 8

[467]

The actions enclosed in rectangles are the ones that are assigned to the ribbon.
Whether or not they are actually displayed, how they are displayed, and where they
are displayed are all controlled by a combination of the following factors:

• The structure of the controls within the action list
• The properties of the individual actions
• The customizations/personalizations that have been applied by the

developer, administrator, or the user

The first column of each action control is the Type. In hierarchical order, the action
control entries can be ActionContainer, Action Group, Action, or Separator. The
specific SubType of each ActionContainer entry determines the area, Ribbon, or
Navigation Pane, in which the subordinate groups of actions will appear.

If the SubType is HomeItems or ActivityButtons (Page Control SubTypes that can
only be used in Role Center pages), the indented subordinate actions will appear in
the Navigation Pane. All the other SubTypes (NewDocumentItems, ActionItems,
and Reports) will cause their subordinate actions to appear in the Role Center
Ribbon. These three SubTypes are not limited to use in Role Center pages. The
SubType RelatedInformation is not intended for use in Role Center pages, but
only in other page types.

An ActionGroup control provides a grouping of actions, which will appear as a
category in the Ribbon. This is one way of defining a category to display in the
ribbon. For actions to appear within the category on the ribbon, those Action
controls must follow the ActionGroup and be indented. If an ActionGroup is
indented within a parent ActionGroup, it will generate a drop-down list of actions.

Advanced NAV Development Tools

[468]

The other type of action control is the Separator. In the NAV 2015 Action Ribbon,
the separator controls don't appear to do anything.

If we compare the control entries in the preceding Action Designer screenshot to the
action icons that display in the screenshot of the unmodified Page 50020 ribbon, we
see the following:

• The action control entries of the NewDocumentItems and ActionItems
ActionContainers appear on the Actions tab of the ribbon. ActionItems is
intended for task related functions while NewDocumentItems is intended for
those actions that cause a new document to be opened.

• All the control entries in the NewDocumentItems ActionContainer appear
in the New Document Category in the Action Ribbon.

• The control entries in the ActionItems ActionContainer appear in the
General Category of the ribbon.

• One action, Refresh, is a default action that is automatically generated and
assigned to the Page Category.

• All the control entries in the Reports ActionContainer are in the General
Category on the Reports tab of the Action Ribbon.

Create a WDTU Role Center Ribbon
If we were creating a Role Center to be used in a real production environment, we
are likely to be defining a new Activities Page, new Cues, a new or modified Cue
table, new FactBoxes, and so on. But since our primary purpose here is learning,
we're going to take the shortcut of piggybacking on the existing role center and
simply add our WDTU actions to the foundation of that existing role center.

There are several steps to be taken to define our WDTU Role Center Ribbon. The
same end result, from the user's point of view, can be achieved using different
approaches. We can also perform the development steps in different sequences. For
the WDTU ribbon work, we will use the Developer tools.

The steps we need to do for our WDTU actions are:

• Define one or more new ribbon categories for the WDTU actions
• Create the WDTU action controls in the Action Designer
• Assign the WDTU action controls to the appropriate ribbon categories
• Finalize any look and feel items

Chapter 8

[469]

Because some of the original Order Processor Role Center ribbon layout
disappeared when we cloned Page 9006 to Page 50020, we will also want to
recreate that layout. For this part of our ribbon definition effort, because we
want to learn more ways to accomplish implementation goals, we will use the
Configuration/Personalization tools.

The steps needed to replicate the Page 9006 ribbon layout are:

• Define the needed ribbon categories
• Assign the action controls to the appropriate categories
• Finalize any look and feel items

The normal sequence of defining an Action Ribbon is to complete the work that
utilizes development tools, then proceed with the work that can be done by an
implementer or system administrator (or even an authorized user). So we will work
on the WDTU portion of the Action Ribbon first, and then follow with the work of
replicating the original layout.

Let's add the following functions to the WDTU portion of the Action Ribbon:

• Radio Show List page
• Playlist page
• Radio Show Types page
• Playlist Item Rates page
• Item List (filtered for Playlist Items) page
• Record Labels page

We'll put the first two items in a category named WDTU Operations and the other
four items in a category named WDTU Data Maintenance.

Advanced NAV Development Tools

[470]

Promoted Actions Categories
There are at least two ways available to set up the categories. One involves assigning
values to the Page Property PromotedActionCategoriesML (which appears to be
originally intended to support NAV's MultiLanguage capabilities rather than Ribbon
layout customization, simply because it is using a ML property).

To enter the PromotedActionCategoriesML data shown in the preceding screenshot,
first we click on the ellipsis on the property and enter the desired headings, as shown
in the following image:

Chapter 8

[471]

There are 10 PromotedActionCategoriesML slots available. The first three are
assigned by default categories of New, Process, and Report, but can be renamed
(the default names are retained in this example). The category slots must be
referred to by their default names (New, Process, Report, Category4, Category5,
…, Category10) when referred to in code. In the standard product, the CategoryN
names are used in a number of pages. Category4 up through as high as Category7
are used in Pages 88 Job Card, 950 Time Sheet, 5900 Service Order, 1027 Job WIP
Cockpit, 8629 Config. Wizard, and 9500 Debugger.

To add an action, access the Page – Action Designer screen, go to the bottom of
the list of existing actions, add a line of Type Action, and then open the Properties
screen for that line. Click on the RunObject property Value field and select the object
to be run, in this case it is Page Radio Show List. Next, define the target ribbon
menu category, caption, icon display size, and icon to represent this menu option.

Individual actions are assigned to appear in a specific category through the action's
properties. Promoted is set to Yes and the PromotedCategory is (in this case) set to
Category4 which has been assigned to display as WDTU Operations. Note that the
Image property was also assigned; as a general rule, an image should be assigned for
all action controls to indicate functionality to the user.

Advanced NAV Development Tools

[472]

Let's do the same thing for one of our WDTU Maintenance actions, the Radio Show
Types page. We'll set Promoted to Yes, the PromotedCategory to Category5, the
Caption to Radio Show Types, and the Image to Entry. The Ribbon resulting from
the two actions being Promoted and assigned looks like the following image. Using
this method of defining and assigning Categories causes a new Home tab to be
added to the ribbon.

Action Groups
Another way of defining Categories and assigning actions to them is through the
use of ActionGroups. This approach seems quite a bit simpler. We need to make the
proper ActionGroup entries in the Action Designer with the appropriate Action
entries indented under them, as shown in the following image. We should also
choose appropriate images and decide which entries should be promoted so that
they stand out.

Chapter 8

[473]

To get all our actions on the Actions tab, we must remove the Category references
from the properties. The resulting Ribbon looks like the following image. Note that
this time the WDTU categories and actions appear on the Actions tab and there are
no entries on the Home tab:

Configuration/Personalization
The procedures and interface tools we use to do Configuration are also used by users
to do Personalization. Both terms refer to revising the display contents and format of
a Role Center as it appears to one or more users. As it says in the Help Walkthrough:
Configuring the Order Processor Role Center:

The difference between configuration and personalization is that
Configuring a Role Center changes the user interface for all the users who
have that profile, whereas Personalizing a Role Center only changes the
user interface for a single user.

We could replace the WDTU Category assignments we just made using
ActionGroups by defining Categories and assigning actions using Configuration. The
result would look exactly the same to our users. But instead, let's use Configuration
to quickly restore the layout of the actions that were in Role Center Page 9006. We
can run page 9006 to see what that layout is (or reference the earlier snapshot of the
Page 9006 ribbon).

A couple of important points:

• Configuration is tied to a specific profile. Other profiles using the same Role
Center page do not see the same Configuration layout.

• Configuration can only be done by the Owner of a Profile. When we created
our WDTU Test Profile, we did not assign an owner so that will have to be
done now.

• Profile setup can be accessed in the RTC in Departments | Administration |
Application Setup | Role Tailored Client | Profiles. This can also be found
by entering the word Profile in the RTC Search box. The Owner ID for a
Profile can be updated there by an Administrator with sufficient Permissions.

Advanced NAV Development Tools

[474]

A Role Center ribbon is configured by opening the Role Tailored Client in
Configuration mode with the focus on the Profile we want to configure.
Personalization doesn't require this step. This is done from the DOS Command
prompt using a command line essentially similar to:

"C:\Program Files (x86)\Microsoft Dynamics NAV\80\
RoleTailored Client\Microsoft.Dynamics.Nav.Client.exe"
 -configure -profile:"WDTU Test"

For additional information, refer to the Developer Help (either resident or in MSDN)
How to: Open the Microsoft Dynamics NAV Windows Client in Configuration Mode.

In NAV 2015, there is an option field called the UI Elements Removal
Tool in the NAV Server Administration tool. Depending on the setting,
the system administrator can limit the accessible User Interface (UI)
elements to be either only those on objects available in the license or
to which the user has access permission. For more information on this
feature, see the Help How to Specify When UI Elements are Removed.

Once the Role Center displays, click on the arrowhead to the right of the Microsoft
Dynamics icon (1 in the following screenshot image), then on Customize option
(2 in the following image), followed by the Customize Ribbon option (3 in the
following image).

Chapter 8

[475]

This will take us to the following screen:

As we can see, using the Customize Ribbon screen we can Create Groups (referred
to as Categories elsewhere), add new actions to those available on the ribbon,
remove actions (that is, make them not visible), reorganize ribbon entries, and even
create new tabs or rename existing items. In sum, everything that we've done so
far to customize the Role Center Ribbon can be done through this screen. The big
difference is that Customization (a general term encompassing both Configuration
and Personalization) is specific to a single profile, while the other modifications will
apply to all the profiles.

Advanced NAV Development Tools

[476]

As part of our Personalizing, we might use the Create Tab, Move Up, and Move
Down options to rearrange the actions on the ribbon, moving the WDTU actions to
their own ribbon tab. When we are done configuring the ribbon for the WDTU Test
Profile, the WDTU portion might look like the following image:

The Navigation Pane
The Navigation Pane is the menu list that makes up the leftmost column on a Role
Center. A Navigation Pane can have two or more buttons. The required two buttons
are Home and Departments.

The Navigation Home Button
The basic contents of the Home button for a Role Center are defined in the Action
Designer in the ActionContainer of SubType HomeItems.

Chapter 8

[477]

In addition to the action controls defined in the Action Designer, the Navigation
Pane Home menu list includes all the Cue entries that appear in the Activities Pane
of the Role Center. We can see the combined sets of action options in the following
screenshot. Note that there are a number of indented (nested) options within groups
such as Sales Orders, Sales Quotes, and Sales Credit Memos. These groups have been
set up using the same type of Configuration tools that we just used for the ribbon:

We can access the Configuration/Personalization tools either through the arrow next
to the drop down arrowhead to the left of the ribbon (as shown earlier) or through
the very tiny icon at the bottom right of the Navigation Pane (highlighted by an
arrow in the preceding image).

Advanced NAV Development Tools

[478]

The Navigation Departments Button
The other required Navigation Pane button, the Departments button, has its menu
entries generated based on the contents of the MenuSuite object. If we click on the
Departments button, a screen like the following will be displayed:

Other Navigation Buttons
Other Navigation Pane buttons can be defined and populated by means of
ActionGroup entries with the ActionContainer ActivityButtons in the Action
Designer, as shown in the following screenshot:

Navigation Pane buttons can also be added, renamed, repopulated, and made
not visible through the Customize Navigation Pane… option in the page
Customization submenu.

Chapter 8

[479]

XMLports
XML is eXtensible Markup Language, a structured text format developed to
describe data to be shared by dissimilar systems. XML has become a default standard
for communications between systems. To make handling XML-formatted data
simpler and more error resistant, NAV provides XMLports, a data import/export
object. In addition to processing XML-formatted data, XMLports can also handle a
wide variety of other text file formats (including CSV files, generic flat files, and so
on). XML formatted data is text based, with each piece of information structured
in one of two basic formats, Elements or Attributes. An Element is the overall
logical unit of information while an Attribute is a property of an Element. They are
formatted as follows:

• <Tag>element value</Tag> (an Element format)

• <Tag AttribName = "attribute data value"> (an Attribute format)

Elements can be nested, but must not overlap. Element and Attribute names are case-
sensitive. Names cannot start with a number, punctuation character, or the letters
"xml" (or XML, and such). Also, they cannot contain spaces.

An Attribute value must always be enclosed in single or double quotation marks.
Some references suggest that Elements should be used for data and Attributes
for metadata. Complex data structures are built up of combinations of these two
formats.

For example:

<Table Name='Sample XML format'>
 <Record>
 <DataItem1>12345</DataItem1>
 <DataItem2>23456</DataItem2>
 </Record>
 <Record>
 <DataItem1>987</DataItem1>
 </Record>
 <Record>
 <DataItem1>22233</DataItem1>
 <DataItem2>7766</DataItem2>
 </Record>
</Table>

Advanced NAV Development Tools

[480]

In this case, we have a set of data identified as a Table with an attribute of Name
equal to 'Sample XML format', which contains three Records, each Record
containing data in one or two fields named DataItem1 and DataItem2. The data
is in a clearly structured text format so it can be read and processed by any system
prepared to read this particular XML format. If the field tags are well designed, the
data is easily interpretable by humans as well. The key to successful exchange of
data using XML is the sharing and common interpretation of the format between the
transmitter and the recipient.

XML is a standard format in the sense that the data structure options are clearly
defined. But it is very flexible in the sense that the identifying tag names in < >
brackets and the related data structures that can be defined and handled are totally
open-ended. The specific structure and the labels are whatever the communicating
parties decide they should be. The "rules" of XML only determine how the basic
syntax shall operate.

XML data structures can be as simple as a flat file consisting of a set of identically
formatted records or as complex as a sales order structure with headers containing
a variety of data items, combined with associated detail lines containing their
own variety of data items. An XML data structure can be as complicated as the
application requires.

XML standards are maintained by the W3C whose web site is http://www.w3.org/.
There are many other useful web sites for basic XML information.

XMLport components
Although in theory XMLports can operate in both an import and an export mode, in
practice, individual XMLport objects tend to be dedicated to either import or export.
This allows the internal logic to be simpler. XMLports utilize a process of looping
through and processing data similar to that of Report objects.

http://www.w3.org/

Chapter 8

[481]

The components of XMLports are:

XMLport properties
XMLport properties are shown in the following screenshot of the Properties of the
XMLport object 9170:

Advanced NAV Development Tools

[482]

Descriptions of the individual properties follow:

• ID: The unique XMLport object number.
• Name: The name by which this XMLport is referred to within the

C/AL code.
• Caption: The name that is displayed for the XMLport; it defaults to the

contents of the Name property.
• CaptionML: The Caption translation for a defined alternative language.
• Direction: This defines whether this XMLport can only Import, Export, or

<Both>; the default is <Both>.
• DefaultFieldsValidation: This defines the default value (Yes or No) for

the FieldValidate property for individual XMLport data fields. The default
for this field is Yes, which would in turn set the default for individual field
FieldValidate properties to Yes.

• Encoding (or TextEncoding): This defines the character encoding option to
be used – UTF-8 (ASCII compatible), UTF-16 (not ASCII compatible), or ISO-
8859-2 (for certain European languages written in Latin characters). UTF-16
is the default. This is inserted into the heading of the XML document.
The TextEncoding option is only available if the Format property is Fixed
Text or Variable Text. In this case, a character coding option of MS-DOS is
available and is the default.

• XMLVersionNo: This defines to which version of XML the document
conforms, Version 1.0 or 1.1. The default is Version 1.0. This is inserted
into the heading of the XML document.

• Format/Evaluate: This can be C/SIDE Format/Evaluate (the default) or
XML Format Evaluate. This property defines whether the external text
data is (for imports) or will be (for exports) XML data types or C/SIDE data
types. Default processing for all fields in each case will be appropriate to the
defined data type. If the external data does not fit in either of these categories,
then the XML data fields must be processed through a temporary table. First,
a temporary table is defined with a suitable number and size text data fields.
Second, the external data is read into those text data fields. Finally, data
conversion logic converts the data to C/AL compatible data types which
can be stored in the NAV database. Very limited additional information
on this is available in the online Help in Temporary Property (XMLports).

Chapter 8

[483]

• UseDefaultNamespace and DefaultNamespace: These properties are
provided to support compatibility with other systems that require the XML
document to be in a specific namespace, such as use of a web service as a
reference within Visual Studio. UseDefaultNamespace defaults to No. A
default namespace in the form of URN (Uniform Resource Name or, in
this case, a Namespace Identifier) concluding with the object number of the
XMLport is supplied for the DefaultNamespace property. This property is
only active if the Format property is XML.

• InlineSchema: This property defaults to No. An inline schema allows
the XML schema document (an XSD) to be embedded within the XML
document. This can be used by setting the property to Yes when exporting an
XML document, which will add the schema to that exported document. This
property is only active if the Format property is XML.

• UseLax: This property defaults to No. Some systems may add information
to the XML document, which is not defined in the XSD schema used by the
XMLport. When this property is set to Yes, that extraneous material will be
ignored, rather than resulting in an error. This property is only active if the
Format property is XML.

• Format: This property has the options of XML, Variable Text, or Fixed Text.
It defaults to XML. This property controls the import/export data format
that the XMLport will process. Choosing XML means that the processing will
only deal with a properly formatted XML file. Choosing Variable Text means
that the processing will only deal with a file formatted with delimiters set
up as defined in the FieldDelimiter, FieldSeparator, RecordSeparator, and
TableSeparator properties (such as CSV files). Choosing Fixed Text means
that each individual element and attribute must have its Width property
set to a value greater than 0 (zero) and the data to be processed must be
formatted accordingly. If enabled, these four fields can also be changed
programmatically from within the C/AL code.

• FileName: This can be filled with the predefined path and name of a specific
external text data file to be either the source (for Import) or target (for
Export) for the run of the XMLport, or this property can be set dynamically.
Only one file at a time can be opened, but the file in use can be changed
during the execution of the XMLport (not often done).

Advanced NAV Development Tools

[484]

• FieldDelimiter: This applies to the Variable Text format external files only. It
defaults to <">—double quote, the standard for so-called "comma-delimited"
text files. This property supplies the string that will be used as the starting
delimiter for each data field in the text file. If this is an Import, then the
XMLport will look for this string, and then use the following string as data
until the next FieldDelimiter string is found, terminating the data string. If
this is an Export, the XMLport will insert this string at the beginning and end
of each data field contents string.

• FieldSeparator: This applies to the VariableText format external files only.
Defaults to <,>—a comma, the standard for so-called "comma delimited"
text files. This property supplies the string that will be used as the delimiter
between each data field in the text file (looked for on Imports and inserted
on Exports). See the Help for this property for more information.

• RecordSeparator: This applies to the VariableText or FixedText format
external files only. This defines the string that will be used as the delimiter at
the end of each data record in the text file. If this is an Import, the XMLport
will look for this string to mark the end of each data record. If this is an
Export, the XMLport will append this string at the end of each data record
output. The default is <<NewLine>>, which represents any combination of
CR (carriage return—ASCII value 13) and LF (line feed—ASCII value 10)
characters. See the Help for this property for more information.

• TableSeparator: This applies to the VariableText or FixedText format
external files only. This defines the string that will be used as the delimiter
at the end of each Data Item (for example, each text file). The default
is <<NewLine><NewLine>>. See the Help for this property for more
information.

• UseRequestForm: This determines whether a Request Page should be
displayed to allow the user choice of Sort Sequence, entry of filters, and other
requested control information. The options are Yes and No. The default is
<Yes>. An XMLport Request Page has only the OK and Cancel options.

• TransactionType: This property identifies the XMLport processing Server
Transaction Type as Browse, Snapshot, UpdateNoLocks, or Update. This is
an advanced and seldom-used property. For more information, we can refer
to the Help files and SQL Server documentation.

• Permissions: This property provides report-specific setting of permissions,
which are rights to access data, subdivided into Read, Insert, Modify, and
Delete. This allows the developer to define permissions that override the
user-by-user permissions security setup.

Chapter 8

[485]

XMLport triggers
The XMLport has a very limited set of triggers, which are listed next:

• Documentation() is for documentation comment
• OnInitXMLport() is executed once when the XMLport is loaded before the

table views and filters have been set
• OnPreXMLport() is executed once after the table views and filters have been

set. Those can be reset here
• OnPostXMLport() is executed once after all the data is processed, if the

XMLport completes normally

XMLport data lines
An XMLport can contain any number of data lines. The data lines are laid out in a
strict hierarchical structure, with the elements and attributes mapping exactly, one
for one, in the order of the data fields in the external text file, the XML document.

XMLports should not be run directly from a Navigation Pane action command (due
to conflicts with NAV UX standards), but can be run either from ribbon actions on
a Role Center or other page, or by means of an object containing the necessary C/
AL code. When running from another object (as opposed to running from an action
menu entry), the C/AL code calls the XMLport to stream data either to or from an
appropriately formatted file (XML document or other text format). This calling code
is typically written in a Codeunit, but can be placed in any object that can contain the
C/AL code.

The following example code executes an exporting XMLport and saves the resulting
file from the NAV service tier to the client machine:

XMLfile.CREATE(TEMPORARYPATH + 'RadioShowExport.xml');
XMLfile.CREATEOUTSTREAM(OutStreamObj);
XMLPORT.EXPORT(50000,OutStreamObj);
FromFileName := XMLfile.NAME;
ToFileName := 'RadioShowExport.xml';
XMLfile.CLOSE;

//Need to call DOWNLOAD to move the xml file
//from the service tier to the client machine
DOWNLOAD(FromFileName,'Downloading File...','C:','Xml file(*.xml)|*.
xml',ToFileName);

Advanced NAV Development Tools

[486]

//Make sure to clean up the temporary file from the
//service tier
ERASE(FromFileName);

Two text variables (the "from" file name and "to" file name), a file variable, and an
OutStream object variable are required to support the preceding code. The data
variables are defined as shown in the following screenshot:

XMLport line properties
The XMLport line properties which are active on a line depend on the contents of
the SourceType property. The first four properties listed are common to all three
SourceType values (Text, Table, and Field) and the other properties specific to each
are listed below the screenshots showing all the properties for each SourceType.

• Indentation: This indicates at what subordinate level in the hierarchy of the
XMLport this entry exists. Indentation 0 is the primary level, parent to all
higher numbered levels. Indentation 1 is a child of indentation 0, indentation 2
is a child of 1, and so forth. Only one Indentation 0 is allowed in an XMLport,
so often we will want to define the Level 0 line to be a simple text element
line. This allows the definition of multiple Tables at Indentation level 1.

• NodeName: This defines the Node Name that will be used in the XML
document to identify the data associated with this position in the XML
document. No spaces are allowed in a NodeName; we can use underscores,
dashes, and periods but no other special characters.

Chapter 8

[487]

• NodeType: This defines if this data item is an Element or an Attribute.
• SourceType: This defines the type of data this field corresponds to in the

NAV database. The choices are Text, Table, and Field. Text means that the
value in the SourceField property will act as a Global variable and, typically
must be dealt with by embedded C/AL code. Table means that the value
in the SourceField property will refer to a NAV table. Field means that the
value in the SourceField property will refer to a NAV field within the parent
table previously defined as an element.

SourceType as Text
The following screenshot shows the properties for SourceType as Text:

The description of the Text-specific properties is as follows:

• TextType: This defines the NAV Data Type as Text or BigText. Text is
the default.

• VariableName: This contains the name of the Global variable, which can be
referenced by the C/AL code.

The Width, MinOccurs, and MaxOccurs properties are discussed later in this
chapter.

Advanced NAV Development Tools

[488]

SourceType as Table
The following screenshot shows the properties for SourceType as Table:

The descriptions of the table-specific properties are as follows:

• SourceTable: This defines the NAV table being referenced.
• VariableName: This defines the name to be used in the C/AL code for the

NAV table. This is the functional equivalent to definition of a Global variable.
• SourceTableView: This enables the developer to define a view by choosing a

key and sort order or by applying filters on the table.
• ReqFilterHeading and ReqFilterHeadingML: These fields allow the

definition of the name of the Request Page filter definition tab that applies to
this table.

Chapter 8

[489]

• CalcFields: This lists the FlowFields in the table that are to be automatically
calculated.

• ReqFilterFields: This lists the fields that will initially display on the Request
page filter definition tab.

• LinkTable: This allows the linking of a field in a higher-level item to a key
field in a lower-level item. If, for example, we were exporting all the Purchase
Orders for a Vendor, we might Link the Buy-From Vendor No. in a Purchase
Header to the No. in a Vendor record. The LinkTable in this case would be
Vendor and LinkField would be No.; therefore LinkTable and LinkFields
work together. Use of the LinkTable and LinkFields operates the same as
applying a filter on the higher-level table data so that only records relating to
the defined lower-level table and field are processed. See the Help for more
detail.

• LinkTableForceInsert: This can be set to force the insertion of the linked
table data and execution of the related OnAfterInitRecord() trigger. This
property is tied to the LinkTable and LinkFields properties. It also applies
to Import.

• LinkFields: This defines the fields involved in a table + field linkage.
• Temporary: This defaults to No. If this property is set to Yes, it allows the

creation of a Temporary table in working storage. Data imported into this
table can then be evaluated, edited, and manipulated before being written
out to the database. This Temporary table has the same capabilities and
limitations as a Temporary table defined as a Global variable.

• AutoSave: If set to Yes (the default), an imported record will be
automatically saved to the table. Either AutoUpdate or AutoReplace must
also be set to Yes.

• AutoUpdate: If a record exists in the table with a matching primary key, all
the data fields are initialized, and then all the data from the incoming record
is copied into the table record.

• AutoReplace: If a record exists in the table with a matching primary key, the
populated data fields in the incoming record are copied into the table record;
all the other fields in the target record are left undisturbed. This provides a
means to update a table by importing records with a limited number of data
fields filled in.

The Width, MinOccurs, and MaxOccurs properties are discussed later in this
chapter.

Advanced NAV Development Tools

[490]

SourceType as Field
The following screenshot shows the properties for SourceType as Field:

The description of the Field-specific properties is as follows:

• SourceField: This defines the data field being referenced. It may be a field in
any defined table.

• FieldValidate: This applies to Import only. If this property is Yes, then
whenever the field is imported into the database, the OnValidate() trigger of
the field will be executed.

• AutoCalcField: This applies to Export and FlowField Data fields only. If this
property is set to Yes, the field will be calculated before it is retrieved from
the database. Otherwise, a FlowField would export as an empty field.

The details of the Width, MinOccurs, and MaxOccurs properties follow in the
next section.

The Element or Attribute
An Element data item may appear many times but an Attribute data item may
only appear at most once; the occurrence control properties differ based on the
NodeType.

NodeType of Element
The Element-specific properties are as follows:

Chapter 8

[491]

• Width: When the XMLport Format property is Fixed Text, then this field is
used to define the fixed width of this element's field.

• MinOccurs: This defines the minimum number of times this data item can
occur in the XML document. This property can be Zero or Once (the default).

• MaxOccurs: This defines the maximum number of times this data item
can occur in the XML document. This property can be Once or Unbounded.
Unbounded (the default) means any number of times.

NodeType of Attribute
The Attribute-specific property is as follows:

• Occurrence: This is either Required (the default) or Optional, depending on
the text file being imported

XMLport line triggers
The XMLport line triggers are shown in the following screenshot for the three line
Source types: Profiles (Text), Profile (Table), and ID (Field):

Advanced NAV Development Tools

[492]

As we can see in the preceding screenshot, there are different XMLport triggers
depending on whether DataType is Text, Table, or Field.

DataType as Text
The triggers for DataType as Text are:

• Export::onBeforePassVariable(), for Export only: This trigger is typically
used for manipulation of the text variable.

• Import::OnAfterAssignVariable(), for Import only: This trigger gives us
access to the imported value in text format.

DataType as Table
The triggers for DataType as Table are as follows:

• Import::OnAfterInsertRecord(), for Import only: This trigger is typically
used when the data is being imported into Temporary tables. This is where
we would put the C/AL code to build and insert records for the permanent
database table(s).

• Import::OnBeforeModifyRecord(), for Import only: This trigger is for use
when AutoSave is Yes, to update the imported data before saving it.

• Import::OnAfterModifyRecord(), for Import only: This trigger is for use
when AutoSave is Yes, to update the data after updating.

• Export::OnPreXMLItem(), for Export only: This trigger is typically used for
setting filters and initializing before finding and processing the first database
record.

• Export::OnAfterGetRecord(), for Export only: This trigger allows access to
the data after the record is retrieved from the NAV database. It is typically
used to allow manipulation of table fields being exported.

• Import::OnAfterInitRecord(), for Import only: This trigger is typically
used to check whether or not a record should be processed further or to
manipulate the data.

• Import::OnBeforeInsertRecord(), for Import only: This is another place
where we can manipulate data before it is inserted into the target table. This
trigger is executed after the OnAfterInitRecord() trigger.

Chapter 8

[493]

DataType as Field
The triggers for DataType as Field are as follows:

• Import::OnAfterAssignField(), for Import only: This trigger provides access
to the imported data value for evaluation or manipulation before outputting
to the database.

• Export::OnBeforePassField(), for Export only: This trigger provides access to
the data field value just before the data is exported.

XMLport Request Page
XMLports can also have a Request Page to allow the user to enter Option control
information and filter the data being processed. Default filter fields that will appear
on the Request Page are defined in the Properties form for the table XMLport Line.

Any desired options that are to be available to the user as part of the Request Page
must be defined in the Request Options Page Designer. This Designer is accessed
from the XMLport Designer through View | Request Page. The definition of the
contents and layout of the Request Options Page is done in essentially the same way
as other pages are done. As with any other filter setup screen, the user has complete
control of what fields are used for filtering and what filters are applied.

Web services
Web services are an industry standard software interface that allows software
applications to interoperate using standard interface specifications along with
standard communications services and protocols. When NAV publishes some web
services, these functions can be accessed and utilized by properly programmed
software residing anywhere on the Web. This software does not need to be
directly compatible with C/SIDE or even .NET; it just needs to obey web services
conventions and have security access to the NAV Web Services.

Some benefits of NAV Web Services are:

• Very simple to publish (that is, to expose a web service to a consuming
program outside of NAV)

• Provides managed access to NAV data while respecting and enforcing NAV
rules, logic, and design that already exists

• Uses Windows Authentication and respects NAV data constraints

Advanced NAV Development Tools

[494]

• Supports SSL—Secure Socket Layer

• Supports both the SOAP interface (cannot access Query objects) and the
OData interface (cannot access Codeunit objects)

Disadvantages of NAV Web Services include:

• Allowing access to a system from the Web requires a much higher level of
security

• The NAV objects that are published generally need to be designed (or at least
customized) to properly interface with this very different user interface

• Access from the Web complicates the system administrator's job of managing
loads on the system

There are several factors that should be considered in judging the appropriateness of
an application being considered for web services integration. Some of these are:

• What is the degree to which the functionality of the standard RTC interface
is needed? A web services application should not try to replicate what would
normally be done with a full client, but should be used for limited, focused
functionality.

• What is the amount of data to be exchanged? Generally, web services are
used remotely. Even if it is used locally, there are additional levels of security
handshaking and inter-system communications required. These involve
additional processing overhead. Web services should be used for low data
volume applications.

• How public is the user set? For security reasons, the user set for direct
connection to our NAV system should generally be limited to known users,
not the general public. Web services should not be used to provide Internet
exposure to the customer's NAV system, but rather for intranet access.

Because web services are intended for use by low-intensity users, there are separate
license options available with lower costs per user than the full client license. This
can make the cost of providing web services-based access quite reasonable, especially
if by doing so, we increase the ability of our customer to provide a better service to
their customers and to realize increased profits.

Chapter 8

[495]

Exposing a web service
Three types of NAV objects can be published as Web Services: Pages, Queries, and
Codeunits. The essential purposes are:

• Pages provide access to the associated primary table. Use Card Pages for
table access unless there is a specific reason for using another page type.

• Codeunits provide access to the functions contained within each Codeunit.
• Queries provide rapid, efficient access to data in a format that is especially

compatible with a variety of other Microsoft products as well as products
from other vendors.

An XMLPort can be exposed indirectly as a Codeunit parameter. This provides
a very structured way of exposing NAV data through a Web Service. (See AJ
Kauffmann's blog series on XMLPorts in Web Services at http://kauffmann.nl/
index.php/2011/01/15/how-to-use-xmlports-in-web-services-1/). There is an
example later in this chapter.

When a Page has no special constraints, either via properties or permissions, there
will normally be eleven methods available. They are:

• Create: Create a single record (similar to a NAV INSERT).
• CreateMultiple: Create a set of records (passed argument must be an

array).
• Read: Read a single record (similar to a NAV GET).
• ReadMultiple: Read a filtered set of records, paged. Page size is a parameter.
• Update: Update a single record (similar to a NAV MODIFY).
• UpdateMultiple: Update a set of records (passed argument must be an

array).
• Delete: Delete a single record.
• IsUpdated: Check if the record has been updated since it was read.
• ReadBiyRecID: Read a record based on the record ID.
• GetReciIDFromKey: Get a record ID based on the record key.
• Delete_<PagePartName> (PagePartRecordKey): Delete a single record that

is exposed by a page part of Type Page such as the Sales Order Subform
Page Part of the Sales Order page.

http://kauffmann.nl/index.php/2011/01/15/how-to-use-xmlports-in-web-services-1/
http://kauffmann.nl/index.php/2011/01/15/how-to-use-xmlports-in-web-services-1/

Advanced NAV Development Tools

[496]

Whatever constraints have been set in the page that we have published will be
inherited by the associated web services. For example, if we publish a page that has
the Editable property set to No, then only the Read, ReadMultiple, and IsUpdated
methods will be available as web services. The other five methods will have been
suppressed by virtue of the Editable = No property.

A codeunit that has been published as a web service has its functions made available
to for access. A query published as a web service provides access to a service
metadata (EDMX) document or an AtomPub Document. To learn more about
using queries published as web services, refer to the information published in the
Developer and IT Pro Help in the system or in MSDN.

Publishing a web service
Publishing a web service is one of the easiest things we will ever do in NAV. But, as
stated earlier, that doesn't mean we will be able to simply publish existing objects
without creating versions specifically tailored for use with Web Services. However,
for the moment, let's just go through the basic publishing process.

The point of access is the Departments menu through Navigation Pane |
Departments | Administration | IT Administration | General | Web Services.
The Web Services page displays as shown in the following screenshot.

The first column allows us to specify whether the object is a Page, Codeunit, or
Query. That is followed by the Object ID and then the Service Name. Finally, the
Published flag must be checked. At that point, the web services for that object have
been published.

Chapter 8

[497]

Enabling web services
Prior to using web services, we must enable them from the NAV Administration
application. In NAV Administration, we can see the checkboxes for enabling. We
can enable either SOAP Services, OData Services, or both, as shown in the following
screenshot:

Determining what was published
Once an object has been published, we may want to see exactly what is available as
a web service. Since web services are intended to be accessed from the Web, in the
address bar of our browser, we will enter the following (all as one string):

http://<Server>:<WebServicePort>/<ServerInstance>/WS/
<CompanyName>/services

Example URL addresses are:

http://localhost:7047/DynamicsNAV/WS/Services
http://Arthur:7047/DynamicsNAV/WS/CRONUS International Ltd/Services

The company name is optional and case-sensitive.

Advanced NAV Development Tools

[498]

When the correct address string is entered, our browser will display a screen similar
to the following image. This image is in an XML format of a data structure called
WSDL, Web Services Description Language:

In this case, we can see that we have two NAV SOAP Services available: Codeunit/
Radio_Show_Management and Page/Radio_Show_Card.

To see the methods (that is, NAV functions) that have been exposed as web services
by publishing these two objects, we can enter other similar URLs in our browser
address bar. To see the web services exposed by our codeunit, we change the URL
used earlier to replace the word Services with Codeunit/Radio_Show_Management.
We must also include the company name in the URL that lists the methods WSDL.

To see the OData services, change the URL to the following form:

http://<Server>:<WebServicePort>/<ServerInstance>/OData

From that entry in our browser, we get information about what's available as
OData. OData is structured like XML, but it provides the full metadata (structural
definition) of the associated data in the same file as the data. This allows OData to be
consumed without the requirement of a lot of back and forth technical pre-planning
communications.

Chapter 8

[499]

The actual consumption (meaning "use of") of a web service is also fairly simple,
but that process occurs outside of NAV in any of a wide variety of off-the-shelf or
custom applications, not part of this book's focus. Examples are readily available in
Help, the MSDN library, the NAV forums, and elsewhere.

 Tools that can be used to consume NAV Web Services include, among others,
Microsoft InfoPath, Microsoft Excel, Microsoft Sharepoint, applications written in
C#, other .NET languages, open source PHP, and a myriad of other application
development tools. Remember, web services are a standard interface for dissimilar
systems.

As with any other enhancement to the system functionality, serious thought needs
to be given to the design of what data is to be exchanged and what functions within
NAV 2015 should be invoked for the application to work properly. In many cases,
we will want to provide some simple routines to perform standard NAV processing
or validation tasks without exposing the full complexity of NAV internals as web
services.

Advanced NAV Development Tools

[500]

Perhaps we want to provide just two or three functions from a Codeunit that
contains many additional functions. Or we want to expose a function that is
contained within a Report object. In each of these instances and others, it will be
necessary to create a basic library of C/AL functions, perhaps in a codeunit that can
be published as web services (generally recognized as a best practice).

Use of web services carries with it issues that must be dealt with
in any production environment. In addition to delivering the
required application functionality, there are security, access, and
communications issues that need to be addressed. It is recommended
that a NAV Web Service not be directly exposed to external users,
but NAV data be secured by limiting access through the use of
custom, functionally limited, external software interfaces. While
beyond the scope of this text, proper attention to data security is
critical to the implementation of a good quality solution.

XMLport – a web services integration example
for WDTU
WDTU subscribes to a service that compiles listenership data. That data is provided
to subscribers in the form of XML files. The agency that provides the service has
agreed to push that XML data directly to a web service exposed by our NAV 2015
system. This approach will allow WDTU to have access to the latest listenership data
as soon as it is released by the agency.

WDTU must provide access to the XMLport that fits the incoming XML file format.
The handshaking response expected by the agency computer from our web service
is a fixed XML file with one element (Station ID) and an attribute of the said
element (Frequency).

The first step is to build our XMLport. We access the XMLport designer through
Object Designer | XMLport button | New button. Define the new XMLport lines as
shown in the following screenshot:

Chapter 8

[501]

After we have the lines entered, we will click on Alt + F | Save As…. Fill in the
Save As screen, as shown in the next image, and click OK to save and compile the
XMLport without exiting the XMLport Designer:

Highlight the blank line at the bottom of the XMLport Designer screen and click
Shift + F4 (or the Properties icon, or right-click then click Properties) to display the
XMLport properties screen.

Set the Format/Evaluate property to XML Format/Evaluate. This allows Visual
Studio to automatically understand the data types (integer, decimal, and so
on) involved. Set UseDefaultNamespace to Yes, and DefaultNamespace to
urn:Microsoft-dynamics-nav/xmlports/x50000 (which is the default format) or
urn:Microsoft-dynamics-nav/xmlports/RatingsImport.

Advanced NAV Development Tools

[502]

Even though we are using the XMLport as an import only object, make sure the
Direction property stays at <Both>. When the value is set to either Import or
Export, it is not possible to use the XMLport as a Var (by reference) parameter in the
codeunit function which we will expose as a web service.

Following is the XMLport 50000 Properties screen with these changes in place:

After we close the Properties screen for the XMLport, we can highlight the Root
Element line and display its properties. Set the property MaxOccurs to Once, as
shown in the following image:

Chapter 8

[503]

Close Root Properties, highlight RatingsData Table Element, and access its Properties
screen. Set MinOccurs to Zero and make sure MaxOccurs remains at the default
value of <Unbounded> as shown in the following screenshot. Once this is done, close
the RatingsData – Properties screen. Because our XMLport matches the incoming
data format from the listenership ratings agency, no C/AL code is necessary in this
XMLport. Exit XMLport Designer and save and compile XMLport 50000.

Advanced NAV Development Tools

[504]

Now that we have our XMLport constructed, it's time to build the codeunit that will
be published as a web service. Go to the Object Designer | Codeunit button | New
button. Then click on the menu option View | C/AL Globals | Functions tab. Enter
the new Function name of ImportRatings and click on the Locals button.

In the C/AL Locals screen, enter the single parameter RatingsXML, Type XMLport,
and a SubType of Ratings Import. Make sure the Var column on the left is
checked. The C/AL Locals screen should then look like the following screenshot:

Now click on the Return Value tab and set Return Type to Text and Length to 250.
Exit the C/AL Locals and C/AL Globals screens, returning to the Codeunit C/AL
Editor screen. Finally, we will highlight our new Function in the Functions tab, and
set the Local property to No so that we can access this function from Web Services.

Chapter 8

[505]

Before proceeding any further, let's save our work. Just as in XMLport Designer,
we can save our work without exiting the Designer by clicking on File | Save As… ,
then entering the designer object number (50001) and name (Ratings Webservice).

We only need two lines of C/AL code in the codeunit. The first line's task is to
import the XML utilizing the XMLport parameter to cause the XMLport to process.
The second line of code's purpose is to send the required text response back to the
external system, with the response formatted as XML data. That code looks like the
following image in C/AL Editor:

Exit Codeunit 50001, compile and save it. Now we want to publish the codeunit that
we have just created.

Open the Role Tailored Client, navigate to Departments/Administration/IT
Administration/General/Web Services (or just search for Web Services using the
Search box) and invoke the Web Services page. Fill in Object Type of Codeunit,
Object ID of 50001, Service Name of WDTU Ratings, and check Published.

Advanced NAV Development Tools

[506]

Now, to test what we've done, we need to open a browser and enter a URL in the
following format:

http://<Server>:<SOAPWebServicePort>/<ServerInstance>/WS/
<CompanyName>/services

For example, more specifically:

http://localhost:7047/DynamicsNAV70/WS/CRONUS International Ltd/
Codeunit/WDTU_Ratings

Or, for testing purposes, we could just click on the Web icon on the right hand end
of our new entry in the web services screen (as shown in the preceding image). The
result in our browser screen should look like the following screenshot, showing that
we can connect with our web service and that our XMLport contains all the fields for
the data that we plan to import:

Chapter 8

[507]

Summary
In this chapter, we reviewed some of the more advanced NAV 2015 tools and
techniques. By now, we should have a strong admiration for the power and
flexibility of NAV 2015. Many of these subject areas require more study and hands-
on practice by you. We spent a lot of time on Role Center construction because that
is the heart of the Role Tailored Experience. Much of what you learn about Role
Center design and construction can be applied across the board in role tailoring
other components. We went through XMLports and Web Services, then showed
how the two capabilities can be combined to provide a simple, but powerful method
of interfacing with external systems. By now, you should be almost ready to begin
your own development project. In the next chapter, we will cover the debugger,
extensibility (adding non-C/AL controls to pages), and additional topics.

Review questions
Q.1. Users cannot delete or modify database data through Web Services.
True or False?

Q.2. The Action items for the Departments button come from what source?
Choose one.

a. Action Menu entries
b. Cue Group definitions
c. MenuSuite objects
d. Navigation Pane objects

Q.3. Software external to NAV that accesses NAV Web Services must be dot NET
compatible. True or False?

Q.4. Action Ribbons can be modified in which of the following ways. Choose three.

a. C/Side changes in the Action Designer
b. Dynamic C/AL code Configuration
c. Implementer/Administrator Configuration
d. User Personalization
e. Application of a profile template

Advanced NAV Development Tools

[508]

Q.5. XMLports cannot contain C/AL code. All data manipulation must occur outside
of the XMLport object. True or False?

Q.6. The default PromotedActionCategoriesML includes which two of the following?

a. Page
b. Report
c. Standard
d. New

Q.7. Web services are an industry standard interface defined by the World Wide Web
Consortium. True or False?

Q.8. Role Centers can have several components. Choose two.

a. Activity Pane
b. Browser Part
c. Cues
d. Report Review Pane

Q.9. Web Services are a good tool for publishing NAV to be used as a public retail
sales system on the web. True or False?

Q.10. An action can appear in multiple places in a Role Center, for example, in the
Home button of the Navigation Pane, in the Action Ribbon, and in a Cue Group.
True or False?

Q.11. Which of the following object types can be published as Web Services?
Choose two.

a. Reports
b. Queries
c. XMLPorts
d. Pages

Q.12. A Cue may be a shortcut to a filtered list supported by a field in a Cue table.
True or False?

Q.13. New System Parts can be created by a NAV developer using C/SIDE tools.
True or False?

Chapter 8

[509]

Q.14. All new implementations should create new Role Centers based on the results
of detailed analysis of the intended users' work roles, only using the standard Role
Centers as templates. True or false?

Q.15. All Web Service data interfaces require the use of XML data files.
True or false?

Q.16. Role Center Cues can be tied to FlowFields, Normal fields, or Queries.
True or false?

Q.17. Actions in a ribbon are Promoted so they can be displayed in color.
True or false?

Q.18. Role Center components include which of the following? Choose two.

a. Cues
b. Microsoft Office parts
c. Web Services
d. Page parts

Q.19. Once a Role Center layout has been defined by the Developer, it cannot
be changed by the users. True or false?

Q.20. In the Role Tailored Client, XMLports can only be used to process XML
formatted files and cannot process other text file formats. True or false?

[511]

Successful Conclusions
"The most powerful designs are always the result of a continuous process of
simplification and refinement."

 – Kevin Mullet

"All the good ideas never lie under one hat."

 – Dale Turner

Each new version of NAV includes new features and capabilities. NAV 2015 is no
exception. It is our responsibility to understand how to apply these new features, to
use them intelligently in our designs, and to develop with both their strengths and
limitations in mind. The new features in NAV 2015 include new ways to debug our
work and new ways to deliver information to our users. Our goal in the end is not
only to provide workmanlike results but, if possible, to delight our users with the
quality of the experience and the ease of use of our products.

In this chapter, we will:

• Review NAV objects that contain functions we can use directly or as
templates in our solutions

• Review some of the primary NAV C/SIDE tools that help us debug
our solutions

• Learn about the way we can enhance our solutions using external controls
integrated into NAV

• Discuss design, development, and delivery issues that should be addressed
in our projects.

Successful Conclusions

[512]

Creating new C/AL routines
Now that we have a good overall picture of how we enable users to access the tools
that we have created, we are ready to start creating our own NAV C/AL routines.
It is important that we learn our way around the NAV C/AL code in the standard
product first. You may recall the advice in a previous chapter that the new code we
create should be visually and logically compatible with what already exists. If we
think of our new code as a guest being hosted by the original system, we will be
doing what any thoughtful guest does – fitting smoothly into the host's environment.

An equally important aspect of becoming familiar with the existing code is to
increase the likelihood we can take advantage of the features and components of
the standard product to address some of our application requirements. There are
at least two types of existing NAV C/AL code, of which we should make use
whenever appropriate.

One group is the callable functions that are used liberally throughout NAV. Once
we know about these, we can use them in our logic whenever they fit. There is no
documentation for most of these functions, so we must either learn about them here
or by doing our homework, studying the NAV code. The second group includes the
many code snippets we can copy when we face a problem similar to something the
NAV developers have already addressed.

The code snippets differ from the callable functions in two ways. First, they are not
structured as coherent and callable entities. Second, they are likely to serve as models
- code that must be modified to fit the situation (for example, changing variable
names, adding or removing constraints, and so on).

In addition to the directly usable C/AL code, we should also make liberal use of the
NAV Design Patterns Repository located at: https://community.dynamics.com/
nav/w/designpatterns/105.nav-design-patterns-repository.aspx

NAV Design Patterns provide common definitions of how certain types of functions
are implemented in NAV. Pattern examples include:

• Copy Document
• Create Data from Templates
• No. Series
• Single-Record (Setup) Table
• Master Data

There are many others and new pattern definitions are added often.

Chapter 9

[513]

Callable functions
Most of the callable functions in NAV are designed to handle a very specific set of
data or conditions and have no general-purpose use (for example, the routines for
updating Check Ledger entries during a posting process are likely to apply only to
that specific function). If we are making modifications to a particular application area
within NAV, we may find functions that we can utilize, either as is or as models for
our new functions.

There are quite a few functions within NAV that are relatively general purpose. They
either act on data that is common in many different situations (such as dates) or they
perform processing tasks that are common to many situations (such as providing
access to an external file). We will review a few such functions in detail, then list
a number of others worth studying. If nothing else, these functions are useful as
guides for "here is how NAV does it". The various parameters in these explanations
are named to assist with our learning and not named the same as in the NAV code
(though all structures, data types, and other technical specs match the NAV code).

If we are going to use one of these functions, we must take care to clearly understand
how it operates. In each case, we should study the function and test with it before
assuming that we understand how it works. There is little or no documentation for
most of these functions, so understanding their proper use is totally up to us. If we
need a customization, that must be done by making a copy of the target function and
then modifying the copy.

Codeunit 358 – Date FilterCalc
This codeunit is a good example of how a well designed and well written code has
long term utility. If we look at the Object Designer information for this codeunit, we
will see that it originated in NAV (Navision) V3.00 in 2001. That doesn't mean it is
out of date; it means that it was well thought out and complete.

Codeunit 358 contains two functions we can use in our code to create filters based
on the Accounting Period Calendar. The first is CreateFiscalYearFilter. If we are
calling this from an object that has Codeunit 358 defined as a Global variable named
DateFilterCalc, our call would use the following syntax:

DateFilterCalc,CreateFiscalYearFilter
 (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate
(date), and NextStep (integer).

Successful Conclusions

[514]

The second such function is CreateAccountingPeriodFilter that has the
following syntax:

DateFilterCalc.CreateAccountingPeriodFilter
 (Filter,Name,BaseDate,NextStep)

The calling parameters are Filter (text, length 30), Name (text, length 30), BaseDate
(date), and NextStep (integer).

In the following code screenshot from Page 151 – Customer Statistics, we can see
how NAV calls these functions. Page 152 – Vendor Statistics, Page 223 – Resource
Statistics, and a number of other Master table statistics forms also use this set
of functions:

In the next code screenshot, NAV uses the filters stored in the CustDateFilter array
to constrain the calculation of a series of FlowFields for the Customer Statistics page:

When one of these functions is called, the Filter and Name parameters are updated
within the function, so we can use them as return parameters, allowing the function
to return a workable filter and a name for that filter. The filter is calculated from the
BaseDate and NextStep we supply.

The returned filter is supplied back in the format of a range filter string,
'startdate..enddate' (for example, 01/01/16..12/31/16). If we call
CreateFiscalYear, the Filter will be for the range of a fiscal year, as defined by
the system's Accounting Period table. If we call CreateAccountingPeriodFilter,
the Filter will be for the range of a fiscal period, as defined by the same table.

Chapter 9

[515]

The dates of the Period or Year filter returned are tied to the BaseDate parameter,
which can be any legal date. The NextStep parameter tells which period or year to
use, depending on which function is called. A NextStep = 0 says use the period or
year containing the BaseDate, NextStep = 1 says use the next period or year into
the future, and NextStep = -2 says use the period or year before last (go back two
periods or years).

The Name value returned is also derived from the Accounting Period table. If the
call is to CreateAccountingPeriodFilter, then Name will contain the appropriate
Accounting Period Name. If the call is to CreateFiscalYearFilter, then Name will
contain 'Fiscal Year yyyy', where yyyy will be the four-digit numeric year.

Codeunit 359 – Period Form Management
This codeunit contains three functions that can be used for date handling. They are
FindDate, NextDate, and CreatePeriodFormat.

• FindDate function

 ° Calling Parameters (SearchString (text, length 3), Calendar (Date
table), PeriodType (Option, integer))

 ° Returns DateFound Boolean

FindDate(SearchString,CalendarRec,PeriodType)

This function is often used in pages to assist with the date calculation. The purpose
of this function is to find a date in the virtual Date table based on the parameters
passed in. The search starts with an initial record in the Calendar table. If we pass in
a record that has already been initialized by positioning the table at a date, then that
will be the base date, otherwise the Work Date will be used.

PeriodType is an Option field with the option value choices of day, week, month,
quarter, year, and accounting period. For ease of coding, we could call the function
with the integer equivalent (0, 1, 2, 3, 4, 5) or set up our own equivalent Option
variable. In general, it's a much better practice to set up an Option variable because
the Option strings make the code self-documenting.

Successful Conclusions

[516]

SearchString allows us to pass in a logical control string containing =, >, <, <=, >=,
and so on. FindDate will find the first date starting with the initialized Calendar
date that satisfies the SearchString logic instruction and fits the PeriodType
defined. For example, if the PeriodType is day and the date 01/25/16 is used along
with the SearchString of >, then the date 01/26/16 will be returned in Calendar.

• NextDate function

 ° Calling Parameters (NextStep (integer), Calendar (Date table),
PeriodType (Option, integer))

 ° Returns Integer:
IntegerVariable := NextDate(NextStep,CalendarRec,PeriodType)

NextDate will find the next date record in the Calendar table that satisfies the calling
parameters. The Calendar and PeriodType calling parameters for FindDate have
the same definition as they do for the FindDate function. However, for this function
to be really useful, Calendar must be initialized before calling NextDate—otherwise,
the function will calculate the appropriate next date from day 0. The NextStep
parameter allows us to define the number of periods of PeriodType to move, so
as to obtain the desired next date. For example, if we start with a Calendar table
positioned on 01/25/16, PeriodType of quarter (that is 3), and NextStep of 2, then
NextDate will move forward two quarters and return with Calendar focused on
Quarter 7/1/16 to 9/30/16.

• CreatePeriodFormat function
 ° Calling Parameters (PeriodType (Option, integer), Date (date))
 ° Returns Text, length 10

FormattedDate := CreatePeriodFormat(PeriodType,DateData)

CreatePeriodFormat allows us to supply a date and specify which of its format
options we want via PeriodType. The function's return value is a ten-character
formatted text value; for example, mm/dd/yy, ww/yyyy, mon/yyyy, qtr/yyyy,
or yyyy.

Codeunit 365 – Format Address
The functions in the Format Address codeunit do the obvious, they format addresses
in a variety of situations. The address data in any master record (Customer,
Vendor, Sales Order Sell-to, Sales Order Ship-to, Employee, and so on) may contain
embedded blank lines. For example, the Address 2 line may be empty. When we
print out the address information on a document or report, it will look better if there
are no blank lines. These functions take care of such tasks.

Chapter 9

[517]

In addition, NAV provides setup options for multiple formats of City – Post Code –
County – Country combinations. The Format Address functions format addresses
according to what was chosen in the setup or was been defined in the Countries/
Regions page for different postal areas.

There are over 60 data-specific functions in the Format Address codeunit. Each data-
specific function allows us to pass a record parameter for the record containing the
raw address data (such as a Customer record, a Vendor Record, a Sales Order, and so
on) plus a parameter of a one-dimensional Text array with 8 elements of length up to
90 characters. Each function extracts the address data from its specific master record
format and stores it in the array. The function then passes that data to a general-
purpose function, which does the actual work of re-sequencing according to the
various setup rules and compressing the data by removing blank lines.

The following are examples of function call format for the functions for Company and
the Sales Ship-to addresses. In each case, AddressArray is Text, Length 90, and
one-dimensional with 8 elements.

"Format Address".Company(AddressArray,CompanyRec);
"Format Address".SalesHeaderShipTo(AddressArray,SalesHeaderRec);

The function's processed result is returned in the AddressArray parameter.

In addition to the data-specific functions in the Format Address codeunit, we can
also directly utilize the more general-purpose functions contained there. If we add
a new address structure as part of an enhancement, we may want to create our own
data-specific address formatting function in our custom codeunit. But we should
design our function to call the general purpose functions that already exist (and are
already debugged).

The primary general-purpose address formatting function (the one we are most
likely to call directly) is FormatAddr. This is the function that does most of the work
in this codeunit. The syntax for the FormatAddr function is as follows:

FormatAddr(AddressArray,Name,Name2,ContactName,Address1,Address2,
 City,PostCode,County,CountryCode)

The calling parameters of AddressArray, Name, Name2, and ContactName are all Text,
length 90. Address1, Address2, City, and County are all Text, length 50. PostCode
and CountryCode are data type Code, length 20 and length 10, respectively.

Our data is passed into the function in the individual Address fields. The results are
passed back in the AddressArray parameter for us to use.

Successful Conclusions

[518]

There are two other functions in the Format Address codeunit that are often
called directly. They are FormatPostCodeCity and GeneratePostCodeCity.
The FormatPostCodeCity function serves the purpose of finding the applicable
setup rule for PostCode + City + County + Country formatting. It then calls the
GeneratePostCodeCity function, which does the actual formatting.

Accompanying the defined NAV Patterns (on the same website as the Patterns),
there is a section entitled "Recipes – The NAV C/AL Cookbook". One of those
recipes, "Address Integration", applies to the preceding section on address
formatting and provides a presentation on this topic at https://community.
dynamics.com/nav/w/designpatterns/234.address-integration.aspx.

Codeunit 396 – NoSeriesManagement
Throughout NAV, master records (for example Customer, Vendor, Item, and so on)
and activity documents (Sales Order, Purchase Order, Warehouse Transfer Orders,
and so on) are controlled by the unique identification number assigned to each one.
This unique identification number is assigned through a call to a function within the
NoSeriesManagement codeunit. That function is InitSeries. The calling format for
InitSeries is as follows:

NoSeriesManagement.InitSeries(WhichNumberSeriesToUse,
LastDataRecNumberSeriesCode, SeriesDateToApply, NumberToUse,
NumberSeriesUsed)

The parameter WhichNumberSeriesToUse is generally defined on a Numbers Tab in
the Setup record for the applicable application area. LastDataRecNumberSeriesCode
tells the function what Number Series was used for the previous record in this table.
The SeriesDateToApply parameter allows the function to assign ID numbers in
a date-dependent fashion. NumberToUse and the NumberSeriesUsed are return
parameters.

The following screenshot shows an example for Table 18 – Customer:

Chapter 9

[519]

The next screenshot shows a second example for Table 36 – Sales Header. In this
case, the call to NoSeresMgt has been placed in a local function:

With the exception of GetNextNo (used in assigning unique identifying numbers
to each of a series of transactions) and possibly TestManual (used to test if
manual numbering is allowed), we are not likely to use other functions in the
NoSeriesManagement codeunit. The other functions are principally used either by
the InitSeries function or other NAV routines whose job it is to maintain Number
Series control information and data.

There is also a NAV Pattern defined describing the use of number series in NAV. It is
titled "No. Series".

Function models to review and use
It is very helpful when we're creating new code to have a model that works which
we can study (or clone). This is especially true in NAV where there is little or no
development "how to" documentation available for many of the different functions
we would like to use. One of the more challenging aspects of learning to develop in
the NAV environment is learning how to handle issues in the "NAV way". Learning
the "NAV way" is very beneficial because then our code works better, is easier to
maintain, and is easier to upgrade. There is no better place to learn the strengths and
subtle features of the product than to study the code written by the developers who
are part of the inner circle of NAV creation.

If there is a choice, don't add custom functions to the standard NAV
Codeunits. Well segregated customizations in clearly identified custom
objects make both maintenance and upgrades easier. When we build
functions modeled on NAV functions, the new code should be in a
customer licensed codeunit.

Successful Conclusions

[520]

A list of objects follows which contain functions we may find useful for use in our
code or as models. We find these useful for studying how "it's" done in NAV ("it"
obviously varies depending on the function's purpose).

• Codeunit 1 – Application Management: A library of utility functions widely
used in the system

• Codeunits 11, 12, 13, 21, 22, 23, 80, 81, 82, 90, 91, 92 – the Posting sequences
for Sales, Purchases, General Ledger, Item Ledger; these control the posting
of journal data into the various ledgers

• Codeunit 228 – Test Report-Print: Functions for printing Test Reports for user
review prior to Posting data

• Codeunit 229 – Print Documents: Functions for printing Document
formatted reports.

• Codeunits 397, 400 – Mail: Functions for interfacing with Outlook and
SMTP mail

• Codeunit 408 – Dimension Management: Don't write your own; use these
• Codeunit 419 – 3-tier File Management: Functions including BLOB tasks,

file uploading, and downloading
• Codeunits 802 – Online Map interfacing
• Codeunit 5054 – Word Management: Interfaces to Microsoft Word
• Codeunit 5063 – Archive Management: Storing copies of processed documents
• Codeunits 5300 thru 5313 – More Outlook interfacing
• Codeunits 5813 thru 5819 – Undo functions
• Codeunit 6224 – XML DOM Management for XML structure handling
• Table 330 – Currency Exchange Rate: Contains some of the key currency

conversion functions
• Table 370 – Excel Buffer: Excel interfacing
• Page 344 – Navigate: Home of the unique and powerful Navigate feature

Management codeunits
There are over 150 codeunits with the word "Management" or "Mgt" as part of their
description name (filter the codeunits using *Management*|*Mgt*). Each of these
codeunits contains functions in which the purpose is the management of some
specific aspect of NAV data. Many are very specific to a narrow range of data. Some
are more general, because they contain functions we can reuse in another application
area (for example, Codeunit 396 – NoSeriesManagement).

Chapter 9

[521]

When we are working on an enhancement in a particular functional area, it is
extremely important to check the Management codeunits utilized in that area. We
may be able to use some existing standard functions directly. This will have the
benefit of reducing the code we have to create and debug. Of course, when a new
version is released, we will have to check to see if the functions on which we relied
have changed in a way that affects our code.

If we can't use the existing material as is, we may find functions we can use as
models for tasks in the area of our enhancement. And, even if that is not true, by
researching and studying the existing code, we will learn more about how data is
structured and processes flow in the standard NAV system.

Multi-language system
The NAV system is designed as a multi-language system, meaning it can interface
with users in many languages. The base product is distributed with American
English as the primary language, but each local version comes with one or more
other languages ready for use. Since the system can be set up to operate from a single
database displaying user interfaces in several different languages, NAV is particularly
suitable for firms operating from a central system, serving users in multiple countries.
NAV is used by businesses all over the world, operating in dozens of different
languages. It is important to note that when the application language is changed, it
has no effect on the data in the database. The data is not multi-language unless we
provide that functionality by means of our own enhancements or data structure.
There is a NAV Pattern, known as Multilanguage Application Data, which describes
how data and UI elements can be multilanguage enabled.

The basic elements that support the multi-language feature include:

• Multi-language Captioning properties (for example, CaptionML) supporting
definitions of alternative language captions for all fields, action labels, titles,
and so on

• Application Management codeunit logic that allows language choice at login
• fin.stx files supplied by NAV, which are language specific and contain

texts used by C/SIDE for various menus such as File, Edit, View, Tools, and
so on (fin.stx cannot be modified except by Microsoft)

• The Text Constants property ConstantValueML supporting definition of
alternative language messages

Successful Conclusions

[522]

Before embarking on an effort to create multi-language enabled modifications,
review all the available documentation on the topic (search Help on the word
language). It's wise to do some small scale testing to ensure we understand what
is required, and that our approach will work (such testing is required for any
significant enhancement).

Multi-currency system
NAV was one of the first ERP systems to fully implement a multi-currency system.
Transactions can start in one currency and finish in another. For example, we can
create the order in US dollars and accept payment for the invoice in Euros. For this
reason, where there are money values, they are generally stored in the local currency
(referenced as LCY) as defined in the setup. There is a set of currency conversion
tools built into the applications and there are standard (by practice) code structures
to support and utilize these tools. Two examples of code segments from the Sales
Line table illustrating handling of money fields follow:

In both cases, there's a function call to ROUND and use of the currency specific
Currency. Amount Rounding Precision control value.

As we can see, before creating any modification that has money fields, we must
familiarize ourselves with the NAV currency conversion feature, the code that
supports it, and the related setups. A good place to start is the C/AL code in Table 37
– Sales Line, Table 39 – Purchase Line, and Table 330 – Currency Exchange Rate.

Chapter 9

[523]

Navigate
Navigate is an under-appreciated tool for both the user and for the developer. Our
focus here is on its value to the developer. Navigate (Page 344) finds and displays the
counts and types of all the associated entries for a particular posting transaction. The
term "associated", in this case, is defined as those entries having the same Document
Number and Posting Date. This is a handy tool for the developer as it can show the
results of posting activity and provide the tools to drill into the detail of all those
results. If we add new transactions and Ledgers as part of an enhancement, our
Navigate function should cover them too.

Navigate can be called from the Navigate action, which appears in a number of places
in the Departments Tasks menu and Role Center ribbons. From anywhere within
NAV, the easiest way to find Navigate is to type the word into the Search box (see the
following image):

If we invoke the Navigate page using the menu action item, we must enter Posting
Date and Document Number for the entries we wish to find. Alternately, we can
enter Business Contact Type (Vendor or Customer), Business Contact No. (Vendor
No. or Customer No.), and optionally, External Document No. There are occasions
when this option is useful, but the Posting Date + Document No. option is more
frequently useful.

Successful Conclusions

[524]

Instead of seeking out a Navigate page and entering the critical data fields, it is much
easier to call Navigate from a Navigate action on a page showing data. In this case,
we just highlight a record and click on Navigate to search for all the related entries.
In the following example, Posted Invoice is highlighted:

After clicking the Navigate action, the page will pop up, filled in like the
following screenshot:

Chapter 9

[525]

Had we accessed the Navigate page through one of the menu entries we found via
Search (Ctrl + F3), we would have filled in the Document No. and Posting Date
fields and clicked on Find. As we can see here, the Navigate page shows a list of
related, posted entries (one of which will include the entry we highlighted when
we invoked the Navigate function). If we highlight one of the lines in the Related
Entries list and then click on the Show Related Entries icon at the top of the page,
we will see an appropriately formatted display of the chosen entries.

If we highlight the G/L Entry table entries and click on Show, we will see a result
like the following screenshot. Note that all G/L Entry are displayed for same Posting
Date and Document No., matching those specified at the top of the Navigate page:

Modifying for Navigate
If our modification creates a new table that will contain posted data and the records
contain both Document No. and Posting Date fields, we can include this new table
in the Navigate function.

Successful Conclusions

[526]

The C/AL Code for Posting Date + Document No. Navigate functionality is found
in the FindRecords and FindExtRecords functions of Page 344 – Navigate. The
following screenshot shows the segment of the Navigate CASE statement code for
the Check Ledger Entry table:

The code checks READPERMISSION. If that permission is enabled for this table, then
the appropriate filtering is applied. Next, there is a call to the InsertIntoDocEntry
function, which fills the temporary table that is displayed in the Navigate page. If we
wish to add a new table to the Navigate function, we must replicate this functionality
for our new table.

In addition, we must add the code that will call up the appropriate page to display
the records that Navigate finds. This code should be inserted in the ShowRecords
function trigger of the Navigate page, modeling on the applicable section of code
in this function (that is, choose the code set that best fits our new tables). Making
a change like this, when appropriate, will not only provide a powerful tool for our
users, but also provide a powerful tool for us as developers.

Debugging in NAV 2015
In general, the processes and tools we use for debugging can serve multiple
purposes. The most immediate purpose is always that of identifying the causes of
errors and then resolving those errors. There are two categories of production errors
(which may also occur during development) and NAV 2015's Debugger module is
very well suited to addressing both of these. The NAV debugger smoothly integrates
developing in the Development Environment and testing in the Role Tailored Client.

The first category is the type that causes an error condition which terminates
processing. In this case, the immediate goal is to find the cause and fix it as quickly as
possible. The new debugger is an excellent tool for this purpose. The second category
is the type that, while running to completion successfully, gives erroneous results.

Chapter 9

[527]

We often find that debugging techniques can be used to help us better understand
how NAV processes work. We may be working on the design of (or determination
of the need for) a modification or we may simply want to learn more about how
a particular function is used or outcome is accomplished in the standard NAV
routines. It would be more appropriate to refer to these efforts as analysis or self-
education, rather than debugging, even though the processes we use to dissect the
code and view what it's doing are very similar. In the course of these efforts, less
sophisticated approaches are sometimes useful in understanding what's going on.
We'll quickly review some of these alternate approaches before studying use of the
NAV 2015 Debugger.

Text Exports of Objects
Using a developer license, we are allowed to export objects into text files, where we
can use a text editor to examine or even manipulate the result. Let us take a look at
an object that has been exported into text and imported into your favorite text editor.
We will use one of the tables that is part of our WDTU development, the Playlist
Item Rate table, 50004 as shown in the following screenshot:

Successful Conclusions

[528]

The general structure of all the exported objects is similar, with just those differences
that we would expect for the different objects. This particular table contains no
C/AL-coded logic, as those statements would be visible in the text listing. We can
see by looking at this table object that we could easily search for instances of the
string Code throughout the text export of the entire system, but it would be more
difficult to look for references to Playlist Item Rates because it is only referenced by
page ID, Page50005. While we can find the instances of Code with our text editor, it
would be quite difficult to differentiate those instances that relate to the Playlist Item
Rate table from those in any other table. This includes those that have nothing to do
with our WDTU system enhancement, as well as those simply defined in an object as
Global Variables.

If we are determined to use a text editor to find all instances of "Playlist Item
Rate"."Rate Amount", we can do the following:

• Rename the field in question to something unique. C/SIDE will rename all
the references to this field to this new name.

• Export all the sources to text followed by using our text editor (or even
Microsoft Word) to find the new, unique name.

• Either return the field in the database to the original name or work in a
temporary copy of the database, which we will then discard. Otherwise, we
will have quite a mess.

One task that needs to be done occasionally is to renumber an object or to change
an internal object reference that refers to a no longer existing element. The C/SIDE
editor may not let us do that easily or, in some cases, not at all. In such a case, the
best answer may be to export the object into text, make the change there, and then
import it back in as modified. Be careful. When we import a text object, C/SIDE
does not check to see if the incoming object is valid. C/SIDE makes that check when
we import a compiled fob object. If we must do object renumbering, we should use
the functionality built into Mergetool (available at http://www.mergetool.com/
default.html). Many years ago, Mergetool was the recommended Upgrade support
tool for Navision and once again it's the best answer.

There are occasions when it is very helpful to simply view an object "flattened out"
in text format. In a report or XMLport where we may have combinations of logic and
properties, the only way to see everything at once is in text format. We can use any
text editor we like, Notepad or Word, or one of the visual programming editors; the
exported object is just text. We need to cope with the fact that when we export a large
number of objects in one pass, they all end up in the same text file. This makes the
exported file relatively difficult to use. The solution is to split that file into individual
text files, named logically, one for each NAV object. There are several freeware tools
to do just that, available from the NAV forums on the Internet.

Chapter 9

[529]

Two excellent NAV forums are http://www.mibuso.com/ and
http://dynamicsuser.net/

Dialog function debugging techniques
Sometimes the simpler methods are more productive than the more sophisticated
tools, because we can set up and test quickly, resolve the issue (or answer a
question), and move on. All the simpler methods involve using one of the C/AL
DIALOG functions such as MESSAGE, CONFIRM, DIALOG, or ERROR. All of these have the
advantage of working well in the RTC environment. However, we should remember
that none of these techniques conform to Testing Best Practices in the Testing the
Application Help. These should only be used when a quick, one-time approach is
needed or when recommended testing practices won't easily provide the information
needed and one of these techniques will do so.

Debugging with MESSAGE and CONFIRM
The simplest debug method is to insert the MESSAGE statements at key points in our
logic. It is very simple and, if structured properly, provides us a simple "trace" of the
code logic path. We can number our messages to differentiate them and display any
data (in small amounts) as part of a message such as the one shown following.

MESSAGE('This is Test 4 for %1',Customer."No.");

A big disadvantage is that the MESSAGE statements do not display until processing
either terminates or is interrupted for user interaction. If we force a user interaction
at some point, then our accumulated messages will appear prior to the interaction.
The simplest way to force user interaction is to issue a CONFIRM message in the
format as follows:

IF CONFIRM ('Test 1',TRUE) THEN;

If we want to do a simple trace but want every message to be displayed as it is
generated (that is, have the tracking process move at a very measured pace), we
could use the CONFIRM statements for all the messages. The operator must then
respond to each one before our program will move on, but sometimes that is
what we want. However, if we make the mistake of creating the situation where
hundreds of messages are generated, the operator will have to respond to each one
individually in what could be a very time consuming and inefficient process.

Successful Conclusions

[530]

Debugging with DIALOG
Another tool that is useful for progress tracking is the DIALOG function. DIALOG
is usually set up to display a window with a small number of variable values. As
processing progresses, the values are displayed in real time. Some ways we might
use this are listed next:

• Simply tracking progress of processing through a volume of data. This is the
same reason we would provide a DIALOG display for the benefit of the user.
The act of displaying slows down the processing somewhat, so we may want
to update the DIALOG display occasionally, not on every record.

• Displaying indicators when processing reaches certain stages. This can be
used as a very basic trace with the indicators showing the path taken so we
may gauge the relative speed of progress through several steps.

• We might have a six-step process to analyze. We could define six tracking
variables and display all of them in DIALOG. We would initialize each variable
with values dependent on what we are tracking, such as A1, B2000, C300000,
and so on. At each process step, update and display the current state of one
or all the variables. This can be a very helpful guide for how our process is
operating. To slow things down, we could put a SLEEP(100) or SLEEP(500)
after the DIALOG statement (the number is milliseconds of delay).

Debugging with text output
We can build a very handy debugging tool by outputting the values of critical
variables or other informative indicators of progress to either an external text file or
to a table created for this purpose. We need to either do this in single user mode or
make it multiuser by including the USER ID on every entry.

This technique allows us to run a considerable volume of test data through the
system, tracking some important elements while collecting data on the variable
values, progress through various sections of code, and so on. We can even
timestamp our output records so that we can use this method to look for
processing speed problems.

Following the test run, we can analyze the results of our test more quickly than if
we were using displayed information. We can focus on just the items that appear
most informative and ignore the rest. This type of debugging is fairly easy to set up
and to refine, as we identify the variables or code segments of most interest. We can
combine the approach of using text output to track activity with the ERROR statement
approach (described following). To do so, we output to an external text file, and
then close it before invoking the ERROR statement, so that its contents are retained
following the termination of the test run.

Chapter 9

[531]

Debugging with ERROR
One of the challenges of testing is maintaining repeatability. Quite often, we need
to test several times using the same data, but the test changes the data. If we have a
small database, we can always back up the database and start with a fresh copy each
time. But that can be inefficient and, if the database is large. If we are using the built-
in NAV Test functions, we can roll back any database changes so the tests are totally
repeatable. Another alternative is to conclude our test with an ERROR function to test
and retest with exactly the same data.

The ERROR function forces a run-time error status, which means that the database
is not updated (it is rolled back to the status at the beginning of the process). This
works well when our debugging information is provided by using the Debugger or
by use of any of the DIALOG functions just mentioned prior to the execution of the
ERROR function. If we are using MESSAGE to generate debugging information, we
could execute CONFIRM immediately prior to the ERROR statement and be assured that
all the messages are displayed. Obviously, this method won't work well when our
testing validation is dependent on checking results using Navigate or our test is a
multi-step process such as order entry, review, and posting. In this latter case, only
use of the built-in Test functions (creating Test Runner Codeunits, and such) will be
adequate. But in some situations, use of the ERROR function is a very handy technique
for repeating a test with minimal effort.

When testing just the posting of an item, it often works well to place the test-
concluding ERROR function just before the point in the applicable Posting codeunit
where the process would otherwise be completed successfully. In order for the
Rollback function to be effective, we must make sure that there aren't any COMMIT
statements included in the range of the code being tested.

The NAV 2015 Debugger
As defined in the Help Debugging (which should be studied), debugging is the
process of finding and correcting errors. NAV 2015 has a powerful built-in debugger.
The user interface for the NAV 2015 Debugger is written in C/AL. The Debugger
objects can be identified by filtering in the Object Designer, All objects, on *Debug*.
Reviewing the structure of the Debugger objects in C/SIDE may help better
understand its inner workings.

The new Debugger can be activated in multiple different ways including from within
the Development Environment, from within the RTC, from a command line, and
by means of a C/AL function. The latter two options attach to a session at the same
time as they activate. The best choice for activation method depends on the specific
situation and the debugging technique being utilized by the developer.

Successful Conclusions

[532]

Only a user who has SUPER permissions for all companies is allowed to activate the
debugger. The user permissions setup should have an empty Company field as we
can see in the circled space in the following image:

Chapter 9

[533]

Activating the Debugger
Activating the Debugger from the Development Environment is a simple matter
of clicking on Tools | Debugger | Debug Sessions… (or Shift + Ctrl + F11). The
initial page that displays when the Debugger is activated will look like the following
screenshot (typically with each session having a different User ID). Multiple sessions
can be debugged in parallel:

If we activate the Debugger by means of any method that does not specify a session,
this same screen will appear. The Debugger can also be activated from within the
RTC as follows:

1. Enter Sessions in the Search box.
2. Select the link displayed (Administration/IT Administration/General).
3. In the General section, click on Sessions.

We can also get to this same point by clicking on the Departments button in the
Navigation pane, then IT Administration | General, followed by Sessions in the
Tasks section.

However we activate it, the Debugger runs as a separate independent session, which
can be attached to an operating session. The Help Activating the Debugger describes
activating the Debugger to debug a Web Service. The Help Configuring NAS
Services has information about using the Debugger with a NAS Service.

Successful Conclusions

[534]

Attaching the Debugger to a Session
From the Edit – Session list screen, we have two options for attaching the
Debugger session to a session. One way is to highlight a Session and then click
on the Debug icon:

The other way is to click on the Debug Next icon, then initiate a new Session. The
Debugger will be attached to the new Session:

When we click on Debug Next, an empty View – Debugger page will open, awaiting
the event that will cause a break in processing and the subsequent display of Code
detail, Watched variables, and the Call Stack.

Chapter 9

[535]

Creating Break Events
Once the Debugger is activated and attached to a session, some break event must
occur to cause the debug trace and associated data display to begin. Break events
include (but are not limited to) the following occurences:

• An error occurs that would cause object execution to be terminated
• A previously set Breakpoint is reached during processing
• The record is read when Break on Record Changes Break Rule is active
• The Break icon in the Running Code group is clicked in the ribbon of the

View – Debugger page
• A Breakpoint Condition, which has been set in the Breakpoints group in the

ribbon of the View – Debugger page, is satisfied during processing

Successful Conclusions

[536]

Of the preceding events, the two most common methods of starting up a debug trace
are the first two, an error or reaching a previously set breakpoint. If, for example, an
error condition is discovered in an operating object, the debugging process can be
initiated by:

1. Activating the debugger.
2. Attaching the debugger session to the session where the error will occur.
3. Running the process where the error occurs.

When the error occurs, the page parts (Code, Watches, and Call Stack) in the debug
window will be populated and we can proceed to investigate variable values, review
code, and so forth.

Breakpoints are stopping points in an object which have been set by the developer.
Breakpoints can be set in a variety of ways including in the Development
Environment, in the View – Debugger Code page, and in the Edit – Debugger
Breakpoint List.

While the latter two locations for setting breakpoints may be very useful while we
are in the middle of a debugging session, those breakpoints only display while the
Debugger is active. Once we exit the debugging session, those breakpoints that were
set in the Debugger will disappear from view, while the breakpoints that were set
from within the applicable C/SIDE Designer will remain visible and available for
use until removed.

The result may be somewhat confusing because when we can only see all of the
breakpoints when we are in the Debugger. If we try to set a breakpoint in the
Development Environment and a breakpoint has already been set on that line of
code while in the Debugger, we will get an error message:

For this reason, it may be better practice to set all our planned testing breakpoints in
the Development Environment. When we set breakpoints within the Debugger, we
should clear them before ending our test session. Otherwise we may later run into
breakpoints we didn't remember existed and which we can't see in the Designers.

Chapter 9

[537]

Active breakpoints are represented in code by a filled in circle. Disabled breakpoints
are represented by an empty circle. Examples are shown in the following code:

When viewing the C/AL code in a Designer, breakpoints can be set, disabled, or
removed by pressing the F9 key. When viewing the C/AL code in the Code window
of the Debugger, breakpoints can only be set or removed by pressing the F9 key or
clicking on the Toggle icon. Other Debugger breakpoint controls are shown in the
following image.

The Debugger window
The following screenshot shows the debugger window:

The ribbon actions in the Debugger window are as follows:

• Step Into: Designed to trace into a function.
• Step Over: Designed to execute a function without stopping, and then break.
• Step Out: Designed to complete the current function without stopping, and

then break.
• Continue: Continue until the next break.
• Break: Break at the next statement.
• Stop: Stop the current activity but leave the debugging session active.
• Toggle: Set or clear a breakpoint at the current line.
• Set/Clear Condition: Set or clear a conditional (based on C/AL expression)

breakpoint at the current line.

Successful Conclusions

[538]

• Disable All: Disables all checkpoints in the attached session.
• Break Rules: Displays the following screen:

 ° Break On Error default is on
 ° If Break On Record Changes is on when a debug session is attached

to an operating session, the debugging will start immediately
 ° Skip Codeunit 1 default is on, allowing all the Codeunit 1 processing

to normally be processed without tracing

• Breakpoints displays a list of the active breakpoints and provides action
options to enable, disable, or delete breakpoints individually or in total.

• Variables displays the Debugger Variable List where we can examine the
status of all variables that are in scope. Additional variables can be added to
the Watch list here.

• Last Error displays the last error message shown by the session
being debugged.

Chapter 9

[539]

Variables can be removed from the Watch list in the Debugger Watches page part.

There are quite a number of valuable Help sections on use of the Debugger including
the following (and many others):

• Debugging
• Debugger Keyboard Shortcuts
• Breakpoints (this one is especially good)
• Closing the Debugger
• How to: Add Variables to the Watches FactBox
• How to: Debug a Background Session
• How to: Manage Breakpoints from the Development Environment
• How to: Set Conditional Breakpoints
• Walkthrough: Debugging the Microsoft Dynamics NAV Windows Client

Changing code while debugging
While a debugger session is active, we can open the object being debugged in an
appropriate Designer, change the object, save, and recompile it. The revised object
will immediately be available to other sessions on the system. However, the version
of the object that is being executed and in view in the debugger is the old version of
the object, not the changed one. Furthermore, if we refresh the view of the code in
the Debugger Code window, the new version will be displayed while the old version
continues to be executed, leaving potential for significant confusion. Therefore, it's
best not to change an object and continue to debug it without starting a new session.

C/SIDE Test-driven development
NAV 2015 includes the enhanced C/AL Testability feature set designed to support
C/AL test-driven development. Test-driven development is an approach where the
application tests are defined prior to the development of the application code. In an
ideal situation, the code supporting application tests is written prior to, or at least at
the same time as, the code implementing the target application function written.

Advantages of test-driven development include:

• Design testing processes in conjunction with functional design
• Find bugs early
• Prevent bugs reaching production
• Enable regression testing, preventing changes introducing bugs into

previously validated routines

Successful Conclusions

[540]

The C/AL Testability feature provides test specific types of Codeunits—Test
Codeunits and Test Running Codeunits. Test Codeunits contain Test methods, UI
handlers, and the C/AL code to support Test methods including the AssertError
function. Test Runner Codeunits are used to invoke Test Codeunits, for test execution
management, automation, and integration. Test Runner Codeunits have two special
triggers, each of which run in separate transactions, so that the test execution state
and results can be tracked. The TestRunner trigger descriptions follow:

• OnBeforeTestRun is called before each test. It allows defining, via a Boolean,
to determine whether or not the test should be executed.

• OnAfterTestRun is called when each test completes and the test results are
available. This allows the test results to be logged, or otherwise processed via
the C/AL code.

Among the ultimate goals of the C/AL Testability feature are:

• The ability to run suites of application tests both in automated mode and in
regression tests:

 ° Automated means that a defined series of tests could be run and the
results recorded, all without user intervention

 ° Regression testing means that the test can be run repeatedly as part
of a new testing pass to make sure that features previously tested are
still in working order

• The ability to design tests in an "atomic" way, matching the granularity
of the application code. In this way, the test functions can be focused and
simplified. This allows for relatively easy construction of a suite of tests and,
in some cases, reuse of test codeunits (or at least reuse of the structure of
previously created Test Codeunits).

• The ability to develop and run the Test and Test Runner Codeunits within
the familiar C/SIDE environment. The code for developing these testing
codeunits is C/AL.

The TestIsolation property of TestRunner Codeunits allow tests to be run, then all
database changes are rolled back so that no changes are Committed. After a test
series in this mode, the database after the test is the same as it was before the test.

Once the testing Codeunits have been developed, the actual testing process should
be simple and fast in order to run and evaluate the results.

Chapter 9

[541]

Both positive and negative testing are supported. Positive testing looks for a specific
result, a correct answer. Negative testing checks that errors are presented when
expected, especially when data or parameters are out of range. The testing structure
is designed to support the logging of the test results, both failures and success, to
tables for review, reporting, and analysis.

A function property defines functions within Test Codeunits to be either Test,
TestHandler, or Normal. Another function property, TestMethodType, allows the
definition of a variety of Test Function types to be defined. The TestMethodType
property options include the following which are designed to handle User Interface
events without the need for a user to intervene:

• MessageHandler: Handles the MESSAGE statement
• ConfirmHandler: Handles the CONFIRM dialogs
• StrMenuHandler: Handles the STRMENU menu dialogs
• PageHandler: Handles Pages that are not run modally
• ModalPageHandler: Handles Pages that are run modally
• ReportHandler: Handles Reports
• RequestPagetHandler: Handles the Request Page of a specific Report

C/SIDE Test Driven Development approach should proceed along the
following lines:

• Define an application function specification
• Define the application technical specification
• Define the testing technical specification including both Positive and

Negative tests
• Develop Test and Test Running codeunits (frequently only one or a few Test

Running codeunits will be required)
• Develop Application objects
• As soon as feasible, begin running Application object tests by means of

the Test Running codeunits, and logging test results for historical and
analytical purposes

• Continue the development—testing cycle, and updating the tests and the
application as appropriate throughout the process

• At the end of the successful completion of development and testing, retain
all the Test and TestRunning codeunits for use in regression testing the next
time the application must be modified or upgraded

Successful Conclusions

[542]

On PartnerSource, there is a full set of 7,000 to 9,000 regression tests available that
were written by Microsoft for NAV 2013 using the NAV Testability tools. These are
the tests that the NAV product developers used to validate their work. The number
of tests that applies to a specific situation depends on the local version and specific
features involved. At the time of writing this, the tools for NAV 2015 have not been
released by Microsoft. To access the download for the NAV 2013 tools, search on
testability and download Application Test Toolset for Microsoft Dynamics NAV
2013. Make sure your license is updated too.

Even if we can't use the older version of the tests for full regression
testing, we can use them as models for creating regression tests for our
own customizations.

Included in the supplement are the regression tests and various tools for managing
and executing tests built on top of the testability features released for Microsoft
Dynamics NAV. Also included is a coverage tool and guidance documentation for
creating our own tests and integrating those with the Microsoft provided tests. This
allows us to do full regression testing for large modifications and ISV solutions.

Other Interfaces
Some NAV systems must communicate with other software or even with hardware.
Sometimes that communication is Inside-Out (that is, initiated by NAV), and
sometimes it is Outside-In (that is, initiated by the outside connection). It's not unusual
for system-to-system communications to be a two-way street, a meeting of peers. To
supply, receive, or exchange information with other systems (hardware or software),
we need at least a basic understanding of the interface tools that are part of NAV.

Because of NAV's unique data structures and the critical business logic
embedded therein, it is very risky for an external system to access NAV
data directly via SQL Server without using C/AL based routines as an
intermediary.

NAV has a number of methods of interfacing with the world outside its database.
We will review those very briefly here. To learn more about these, we should begin
by reviewing the applicable material in the online Developer and IT Pro Help
material plus any documentation available with the software distribution. We should
also study sample code, especially that in the standard system as represented by the
Cronus Demonstration Database. And, of course, we should take advantage of any
other resources available including the NAV-oriented Internet forums and blogs.

Chapter 9

[543]

Automation Controller
One option for NAV interfacing is by connection to COM Automation servers. A
key group of Automation servers are the Microsoft Office products. Automation
components can be instantiated, accessed, and manipulated from within NAV
objects using the C/AL code. Data can be transferred back and forth between the
NAV database and COM Automation components.

Only non-visual controls are supported via this interface (that doesn't mean we
couldn't figure out a work-around, just that they aren't supported by Microsoft).
The Client Add-in feature, discussed later in this chapter, provides visual interface
capability through another integration approach.

We cannot use an Automation Controller defined COM component as a control
on a NAV Page object. Only client side automation objects are supported. This is
because the NAV server tier operates in 64-bit mode and many COM objects are not
compatible with 64-bit operating systems. Instead of server side automation objects,
use Microsoft .NET interoperability functionality (for more information, search Help
on interoperability).

Some common uses of Automation Controller interfaces are to:

• Populate Word template documents to create more attractive
communications with customers, vendors, and prospects (for example, past
due notices, purchase orders, promotional letters, and so on)

• Move data to Excel spreadsheets for manipulation (for example, last year's
sales data to create this year's projections)

• Move data to and from Excel spreadsheets for manipulation (for example,
last year's financial results out and next year's budgets back in)

• Use Excel's graphing capabilities to enhance management reports
• Access to and use of ActiveX Data Objects (ADO) Library objects to support

access to and from external databases and their associated systems

It will also be helpful to review the information on this topic in the following
Help sections:

• COM Overview
• Best Practices for Using Automation With the Microsoft Dynamics NAV

Windows Client
• Automation Data Type
• Using COM Technologies in Microsoft Dynamics NAV

Successful Conclusions

[544]

Linked Data Sources
The two table properties, LinkedObject and LinkedInTransaction, are available
for NAV tables. Use of these properties in the prescribed fashion allows data access,
including views, in linked server data sources such as Excel, Access, other instances
of SQL Server, and even an Oracle database. For additional information, see the Help
sections Using Linked Objects and Accessing Objects in Other Databases or on
Linked Servers. This is one way to integrate NAV with external applications in a
way that is seamless for the users.

NAV Application Server (NAS)
Microsoft Dynamics NAV Application Server (NAS) is a middle-tier server
component that executes business logic without a user interface or user interaction.
In NAV 2015, NAS is one of the client services that runs in the Microsoft Dynamics
NAV Server.

NAS is essentially an automated user client. Because NAS is effectively a non-UI
version of the standard NAV client module, it can access all of NAV's business rules.

Error messages that are generated by a NAS process are logged in the Event Viewer.

NAS operates essentially the same as any other NAV Windows client. If setup to
run the JobQueue, it processes requests in the queue one at a time, in the same
manner as the GUI client. Therefore, as developers, we need to limit the number of
concurrent calls to a NAS instance as the queue should remain short to allow timely
communications between interfaces. In NAV 2015, multiple background sessions can
be started from client sessions. This provides opportunities for NAV automation for
the creative designer/developer.

Client Add-ins
The NAV 2015 Client Add-in API (also known as Client Extensibility) provides
the capability to extend the Role Tailored Client for Windows, Web, or Tablet
through the integration of external, non-NAV controls. The Client Add-in API uses
.NET interfaces as the binding mechanism between a control add-in and the NAV
framework. Different interfaces and base classes are available to use, or a custom
interface can be created. Controls can be designed to raise events that call on the
OnControlAddin trigger on the page field control that hosts the add-in. They can
also add events and methods that can be called from within C/AL.

Chapter 9

[545]

Contrary to the limitations on other integration options, Client Add-ins can be
graphical and appear on the RTC display as part of, or mingled with, native NAV
controls. Following are a few simple examples of how Client Add-ins might be used
to extend RTC UI behavior:

• A NAV text control that looks normal but offers a special behavior. When the
user double-clicks on it, the field's contents would display in a popup screen
accompanied by other related information or even a graphical display.

• A dashboard made up of several dials or gauges showing the percentage of
chosen resources relative to target limits or goals. The dials are defined to
support click and drill into the underlying NAV detail data.

• An integrated sales call mapping function displays customer locations on
a map and creating a sequenced call list with pertinent sales data from the
NAV database.

• Interactive visualization of a workflow or flow of goods in a process,
showing the number of entries at each stage, supporting filtering to
display selected sets of entries.

• Entry and storage of a written document signature on a touch screen.

Client Add-in construction
Some Client Add-ins will be created, packaged, and distributed by ISV Partners who
specialize in an application area. When enhancing a system for a customer's specific
application, we may decide to create a special purpose add-in.

As with any API, there is a defined approach that we must use to create a Client
Add-in to interface with the NAV Windows RTC. So long as the code within the add-
in is a well-behaved .NET code, we have a great deal of flexibility in the structure of
the code within the add-in. The control can be one we create, a standard WinForms
control, or one that we've acquired from a third party.

Once we have the .NET control we're going to use for our application, we need to
build the add-in structure which envelopes the control. The most logical toolsets
for building add-ins are the current versions of Visual Studio or one of the free
downloadable tools such as Visual Studio Express for C#. When building an add-in,
we must make sure that we are using a compatible version of .NET framework. The
Developer and IT Pro Help in NAV 2015 contain many Help sections covering a
wide variety of topics relating to Client Add-ins. Here's a partial list:

• Binding a Windows Client Control Add-in to the Database
• Client Extensibility API Overview
• Developing Windows Client Control Add-ins

Successful Conclusions

[546]

• Exposing Events and Calling the Respective C/AL Triggers from a Windows Client
Control Add-in

• Exposing Methods and Properties in a Windows Client Control Add-in
• Extending the Windows Client Using Control Add-ins
• How to: Create a Window Client Control Add-in
• How to: Determine the Public Key Token of the Windows Client Control Add-in
• How to: Install a Windows Client Control Add-in Assembly
• How to: Register a Windows Client Control Add-in
• Installing and Configuring Windows Client Control Add-ins on Pages
• Walkthrough: Creating and Using a Window Client Control Add-in
• Windows Client Control Add-in Overview

WDTU Client Add-in
Let's create a Client Add-in for WDTU. We want to add an MP3 player to the Playlist
page to allow the user to preview songs on the Playlist. The following screenshot
shows what it will look like when we're done (our MP3 player FactBox is circled):

Chapter 9

[547]

To accomplish this, we will create a Visual Studio 2012 or higher .NET assembly
(.dll) utilizing the Windows Media Player.

To start, we are going to open Visual Studio 2013 and create a New Project. For
a template, select Visual C# - Windows Class Library. Make sure the .NET
Framework selected is 4.5 or higher. Name the solution WDTUplayer, and place in
a directory we can access later (we'll use C:\Temp\). Check the Create directory for
solution option.

Successful Conclusions

[548]

In order to access the .dll in NAV, we need to create a Strong Key Name (SNK).
To do this in Visual Studio, go to the menu for Project and select WDTUPlayer
Properties.

Select the Signing option on the left:

Then Checkmark the Sign the Assembly option:

Chapter 9

[549]

Select <New…> from the dropdown for the box Choose a strong name key file,
and fill in a file name such as WDTUplayer.snk. Creating the SNK before adding
any controls or other objects to the project allows the additional elements to inherit
the SNK.

Go to the Project menu option and select Add New Item (Ctrl + Shift + A) and select
Windows Form. The new Windows Form object will be added to our Form design
layout screen. Right-click on the form and select Properties (or View | Properties).
Review the form properties and set the ones defined in the following table:

Property Value
AutoScaleMode None
AutoSize True
FormBorderStyle None
Locked True
Padding 0,0,0,0
MaximizeBox False

Successful Conclusions

[550]

Property Value
MaximumSize 0,0
MinimizeBox False
MinimumSize 0,0
Size 276,47
Text WDTU MP3 Player

Next, we need to make the Windows Media Player (a COM object) available in the
Toolbox. Windows Media Player must be installed on our machine (it typically already
is). Click on View | Toolbox (or Ctrl + W, X) and scroll to the General group:

Chapter 9

[551]

Right-click on General and select the Choose Items option. In the Choose Toolbox
Items form, select the COM Components tab and scroll down to Windows Media
Player. Check the box and click OK:

The Windows Media Player control will now be available in the Toolbox |
General tab.

Successful Conclusions

[552]

Select the Windows Media Player control and drop it into the form that we
added earlier. Right-click on the Windows Media Player control and then
click on Properties. Uncheck Auto Start and check Stretch to Fit:

Close the Windows Media Player Properties window, click on View | Properties
Window (or Ctrl + W, P), and set properties as shown in the following table:

PROPERTY VALUE
Name WDTU_MP3_Player
Anchor Top, Bottom, Left, Right
fullScreen False
Location 0,0
Margin 0,0,0,0
Locked True

Chapter 9

[553]

PROPERTY VALUE
Size 275, 45
stretchToFit False
windowlessVideo False

In the Quick Launch box at the top right of the screen, type in Add Reference to
search for that function (in the following image, only "add ref" was typed before the
Project – Add Reference link was displayed):

Click on Project – Add Reference to display the following screen:

Successful Conclusions

[554]

Click on the Browse button. Find Microsoft.Dynamics.Framework.UI.Extensiblity,
usually found in C:\Program Files (x86)\Microsoft Dynamics NAV\70\
RoleTailored Client\, as shown in the following image:

Then add it as a Reference, and click OK:

Chapter 9

[555]

To get to the code behind the Form1.cs, in the Solution Designer window, right-
click to select View Code or double-click on the form image in the main window.
Once we are viewing the code, we should make it look like the following:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Threading.Tasks;
using System.Text;
using System.Windows.Forms;

namespace WDTUplayer
{
 public partial class Form1 : Form
 {
 //string to put value from NAV into
 string MoviePath;

 public Form1()
 {
 //Make sure not a null string –
 //will error if not initalized
 MoviePath = "";
 InitializeComponent();
 }

 //Function called from Class to set URL path string
 public void SetMoviePath(string pMoviePath)
 {
 MoviePath = pMoviePath;
 }

 //Default function for NAVMediaPlayer control on form
 //where the URL can be dynamically set from NAV
 private void WDTU_MP3_Player_Enter(object sender,
 EventArgs e)
 {
 WDTU_MP3_Player.settings.autoStart = false;
 WDTU_MP3_Player.URL = MoviePath;
 }

 }
}

Successful Conclusions

[556]

In the Class1.cs object, the code needs to be created as follows:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.Dynamics.Framework.UI.Extensibility;
using Microsoft.Dynamics.Framework.UI.Extensibility.WinForms;
using System.Windows.Forms;
using System.Drawing;

namespace WDTUplayer
{
 [ControlAddInExport("Cronus.DynamicsNAV.WDTU_MP3")]
 [Description("WDTU MP3 Player")]

 public class WDTU : StringControlAddInBase
 {
 //Create form instance to pass value from NAV
 WDTUPlayer.Form1 WMPForm = new WDTUPlayer.Form1();

 //Initialize the form
 protected override Control CreateControl()
 {
 WMPForm.TopLevel = false;
 WMPForm.Visible = true;
 return WMPForm;
 }

 // This is the function that receives from NAV (set)
 // and sends back to NAV (get) the string value from
 // the SourceExp property on the NAV page field with
 // the ControlAddIn assigned to it
 public override string Value
 {
 get
 {
 return base.Value;
 }
 set
 {
 base.Value = value;

Chapter 9

[557]

 WMPForm.SetMoviePath(base.Value);
 //Function in form
 }

 }
 }
}

Note the statement defining public override string Value. This is the override
of the Value property in the Class1.cs object that retrieves the value passed
from NAV (set) and passes the value from the .NET assembly back to NAV (get).
Because we defined the WMPForm variable as the Form object, we can pass the
value retrieved from NAV (the field value linked in the CardPart page we will create
to hold our Client Add-in).

Save all the objects and go to the Build menu and select Build WDTUPlayer. Locate
and copy the following files from our Visual Studio Project folder:

• WDTUplayer.dll

• Interop.WMPLib.dll

• AxInterop.WMPLib.dll

Client Add-ins are each placed in their own directory within the directory
C:\Program Files (x86)\Microsoft Dynamics NAV\80\RoleTailored Client\
Add-ins (this is the default location).

We'll create directory WDTU_mp3 in that location and place our three files there.
Depending on the development computer's setup, additional files may also have
to be copied to the WDTU_mp3 directory.

Successful Conclusions

[558]

From Start Menu | All Programs | Visual Studio 2013 | Visual Studio Tools,
run Developer Command Prompt for VS2013. When the Visual Studio Command
Prompt screen displays, enter the following:

sn -T "C:\Temp\WDTUplayer\WDTUplayer\bin\Debug\WDTUplayer.dll"

Public key token in this image is 4fd8f2011abd9509 (yours is likely to be different).

Exit the Visual Studio Command screen and open the NAV 2015 Development
Environment. Click on the Object Designer button Tables, find Table 2000000069 -
Client Add-in, then Run the table. Enter the control add-in name, public key token,
a version (you decide which version), and a description.

Chapter 9

[559]

Now that our client add-in is registered in NAV, we will create a CardPart to display
a control containing our new Media Player Add-in control (which links the .NET
.dll element to a field in NAV).

Click on Page | New in the Development Environment, enter Item for the table,
Create a page using a wizard: and CardPart for the page type:

On the next tab, only select a single field, MP3 Location. This is the value we wish to
pass to the .NET assembly:

Successful Conclusions

[560]

Click Finish and save the Page as 50011 - WDTU MP3 Player. Click on the field
MP3 Location and view the properties. Scroll down to ControlAddIn and perform a
lookup to select Cronus.DynamicsNAV.WDTU_MP3. The public key token will also
be populated. Set the ShowCaption property to No.

Save and close the page. Design Page 50003 - Playlist. Open the properties of the
subform control for the Playlist Subform and copy the control ID.

We need to assign this to the WDTU MP3 Player CardPart to link the CardPart to the
SubForm lines. In the Page Designer for Playlist page, add the CardPart as a FactBox
under the PlaylistFactbox.

Chapter 9

[561]

Display the properties for this new Page Part control and fill in the properties as
shown in the following screenshot:

Now we will test our work. Of course, in order to test, we have to have test data
set up to match what we've designed in our software. We must have Items that
represent MP3 files and which contain the location of those MP3 files. Plus, the MP3
files must exist in the defined location. We should set up at least a couple of test
items and associated MP3 files so we can enjoy the results of our work.

Once we have a minimal amount of test data set up, Run the Playlist page (50003).
If all is well, the WDTU MP3 player should play the MP3 from the defined file
location for each item in the playlist subpage. If it doesn't work, then this will be
an opportunity to experiment some more with the NAV 2015 Debugger.

Client Add-in comments
In order to take advantage of the Client Add-in capabilities, we need to develop
some minimal Visual Studio development skills and probably some .NET
programming skills. Care will have to be taken when designing add-ins that their
User Interface style complements, rather than clashes with, the UI standards of the
NAV RTC.

Successful Conclusions

[562]

Client Add-ins are a major extension of the Dynamics NAV system. This feature
allows ISVs to create and sell libraries of new controls and new control-based
micro-applications. It allows vertically focused Partners to create versions of NAV that
are much more tailored to their specific industries. This feature allows the integration
of third-party products, software, and hardware, at an entirely new level.

The Client Add-in feature is very powerful. If we learn to use it, we will have another
flexible tool in our kit and our users will benefit.

Customizing Help
NAV 2015 comes with a Help Server component. When installing NAV 2015, we
need to make sure that we are also installing the NAV Help Server on a Web server
system to which all clients have access. Review the following Developer and IT Pro
Help entries along with other entries that relate to modifying and maintaining
Help data:

• Configuring Microsoft Dynamics NAV Help Server
• Microsoft Dynamics NAV Help Server
• Adding Help to Your Microsoft Dynamics NAV Tablet Client
• Upgrading You Existing Help Content

All the NAV Help files are now HTML files, accessible for whatever type of
changes are appropriate for the installed system. That includes adding information
to existing helps, having multiple language Helps, adding new Helps associated
with customized or tailored applications, and whatever changes will make the
software work better for the customer.

The process for developing customized Help is similar in many ways to developing
customizations to the application software. The top-level style of new material
should be essentially similar to the original product material. If the customizations
are too different from the base material, it will create operational challenges for the
users as well as training and support challenges for the Partner.

Help customizations should be designed to make it as easy as possible to port
them to new versions of the product when upgrading occurs. Similar to software
development, whenever possible, Help revisions should be done on a copy of the
original Help topic, leaving the original unchanged. For example, if the Customer
Card is modified, make the Help changes in a copy of the Customer Card Help.

Chapter 9

[563]

NAV development projects – general
guidance
Now that we understand the basic workings of the NAV C/SIDE development
environment and C/AL, we'll review the process of software design for NAV
enhancements and modifications.

When we start a new project, the goals and constraints for the project must be
defined. The degree to which we meet these will determine our successes. Following
are some examples:

• What are the functional requirements and what flexibility exists within these?
• What are the user interface standards?
• What are the coding standards?
• What are the calendar and financial budgets?
• What existing capabilities within NAV will be used?

Knowledge is the key
Designing for NAV requires more forethought and knowledge of the operating details
of the application than was needed with traditional models of ERP systems. As we
have seen, NAV has unique data structure tools (SIFT and FlowFields), quite a number
of NAV-specific functions that make it easier to program business applications, and a
software data structure (journal, ledger, and so on) which is inherently an accounting
data structure. The learning curve to become expert in the way NAV works is not easy.
NAV has a unique structure and the primary documentation from Microsoft is limited
to the embedded Help (which improves with every release of the product). The NAV
books published by PACKT Publishing are of great help as are the NAV Development
Team blogs, the blogs from various NAV experts around the world, and the NAV
forums that were mentioned earlier.

Data-focused design
Any new application design must begin with certain basic analysis and design tasks.
That is just as applicable whether our design is for new functionality to be integrated
into NAV or for an enhancement/expansion of existing NAV capabilities.

Successful Conclusions

[564]

First, determine what underlying data is required. What will it take to construct
the information the users need to see? What level of detail and in what structural
format must the data be stored so that it may be quickly and completely retrieved?
Once we have defined the inputs that are required, we must identify the sources
of this material. Some may be input manually, some may be forwarded from other
systems, some may be derived from historical accumulations of data, and some may
be derived from combinations of all these, and more. In any case, every component
of the information needed must have a clearly defined point of origin, schedule of
arrival, and format.

Defining the needed data views
Define how the data should be presented. How does it need to be "sliced and diced"?
What levels of detail and summary? What sequences and segmentations? What visual
formats? What media will be used? Will the users be local or remote? Ultimately, many
other issues also need to be considered in the full design, including user interface
specifications, data and access security, accounting standards and controls, and so
on. Because there are a wide variety of tools available to extract and manipulate
NAV data, we can start relatively simply and expand as appropriate later. The most
important thing is to ensure that we have all the critical data elements identified and
then captured.

Designing the data tables
Data table definition includes the data fields, the keys to control the sequence of
data access and to ensure rapid processing, frequently used totals (which are likely
to be set up as SumIndex Fields), references to lookup tables for allowed values,
and relationships to other primary data tables. We not only need to do a good job
of designing the primary tables, but also all those supporting tables containing the
"lookup" and "setup" data. When integrating a customization, we must consider the
effects of the new components on the existing processing as well as how the existing
processing ties into our new work. These connections are often the finishing touch
that makes the new functionality operate in a truly seamlessly integrated fashion
with the original system.

Chapter 9

[565]

Designing the user data access interface
Design the pages and reports to be used to display or interrogate the data. Define
what keys are to be used or are available to the users (though the SQL Server database
supports sorting data without predefined NAV C/AL keys). Define what fields
will be allowed to be visible, what are the totaling fields, how the totaling will be
accomplished (for example, FlowFields or on-the-fly processing), and what dynamic
display options will be available. Define what type of filtering will be needed. Some
filtering needs may be beyond the ability of the built-in filtering function and may
require auxiliary code functions. Determine whether external data analysis tools
will be needed and will therefore need to be interfaced. Design considerations at this
stage often result in returning to the previous data structure definition stage to add
additional data fields, keys, SIFT fields, or references to other tables.

Designing the data validation
Define exactly how the data must be validated before it is accepted upon entry into
a table. There are likely to be multiple levels of validation. There will be a minimum
level, which defines the minimum set of information required before a new record
is accepted.

Subsequent levels of validation may exist for particular subsets of data, which are in
turn tied to specific optional uses of the table. For example, in the base NAV system,
if the manufacturing functionality is not being used, the manufacturing-related fields
in the Item Master table do not need to be filled in. But if they are filled in, they must
satisfy certain validation criteria.

As mentioned earlier, the sum total of all the validations that are applied to data
when it is entered into a table may not be sufficient to completely validate the data.
Depending on the use of the data, there may be additional validations performed
during processing, reporting, or inquiries.

Data design review and revision
Perform these three steps: table design, user access, and data validation for the
permanent data (Masters and Ledgers) and then for the transactions (Journals). Once
all the supporting tables and references have been defined for the permanent data
tables, there are not likely to be many new definitions required for the Journal tables.
If any significant new supporting tables or new table relationships are identified
during the design of Journal tables, we should go back and re-examine the earlier
definitions. Why? Because there is a high likelihood that this new requirement
should have been defined for the permanent data and was overlooked.

Successful Conclusions

[566]

Designing the posting processes
First define the final data validations, then define and design all the ledger and
auxiliary tables (for example, Registers, Posted Document tables, and so on). At this
point, we are determining what the permanent content of the Posted data will be. If
we identify any new supporting table or table reference requirements at this point,
we should go back to the first step to make sure that this requirement didn't need to
be in the design definition.

Whatever variations in data are permitted to be Posted must be acceptable in the
final, permanent instance of the data. Any information or relationships that are
necessary in the final Posted data must be ensured to be present before Posting is
allowed to proceed.

Part of the Posting design is to determine whether data records will be accepted
or rejected individually or in complete batches. If the latter, we must define what
constitutes a Batch; if the former, it is likely that the makeup of a Posting Batch will
be flexible.

Designing the supporting processes
Design the processes necessary to validate, process, extract, and format data for the
desired output. In earlier steps, these processes can be defined as "black boxes" with
specified inputs and required outputs, but without overdue regard for the details
of the internal processes. This allows us to work on the several preceding definition
and design steps without being sidetracked into the inner workings of the output
related processes.

These processes are the cogs and gears of the functional application. They are
necessary, but often not pretty. By leaving design of these processes in the application
design as late as possible, we increase the likelihood that we will be able to create
common routines and standardize how similar tasks are handled across a variety of
parent processes. At this point, we may identify opportunities or requirements for
improvement in material defined in one of the previous design steps. In that case, we
should return to that step relative to the newly identified issue. In turn, we should also
review the effect of such changes for each subsequent step's area of focus.

Double-check everything
Do one last review of all the defined reference, setup, and other control tables to
make sure that the primary tables and all defined processes have all the information
available when needed. This is a final design quality control step.

Chapter 9

[567]

It is important to realize that returning to a previous step to address a previously
unidentified issue is not a failure of the process, it is a success. An appropriate quote
used in one form or another by construction people the world over is Measure twice,
cut once. It is much cheaper and more efficient (and less painful) to find and fix
design issues during the design phase rather than after the system is in testing or,
worse yet, in production.

Design for efficiency
Whenever we are designing a new modification, we not only need to design to
address the defined needs, but also to provide a solution that processes efficiently.
An inefficient solution carries unnecessary ongoing costs. Many of the things that
we can do to design an efficient solution are relatively simple. Some of the areas
to address include:

• Properly configure system and workstation software (often overlooked)
• Make sure networks can handle the expected load (and more)
• Have enough server memory to avoid using virtual memory (that is, disk)
• Most of all, do everything reasonable to minimize disk I/O

Disk I/O
The slowest thing in any computer system is the disk I/O. Disk I/O almost
always takes more time than any other system processing activity. When we begin
concentrating our design efforts on efficiency, focus first on minimizing disk I/O.

The most critical elements are the design of the keys, the number of keys, the
design of the SIFT fields, the number of SIFT fields, the design of the filters, and the
frequency of accesses of data (especially FlowFields). If our system is going to have
five or ten users processing a few thousand order lines per day, and if our system is
not heavily modified, we probably won't have much trouble. But if we are installing
a system with one or more of the following attributes, any of which can have a
significant effect on the amount of disk I/O, we will need to be very careful with our
design and implementation:

• Large concurrent user count
• High transaction volumes, especially in data being Posted
• Large stored data volumes, especially that resulting from customizations or

setup option choices
• Significant modifications
• Very complex business rules

Successful Conclusions

[568]

Locking
One important aspect of the design of an integrated system such as NAV, that is
often overlooked until it rears its ugly head after the system goes into production,
is the issue of "Locking". Locking occurs when one process has control of a data
element, record, or group of records (in other words, part or all of a table) for the
purpose of updating the data within the range of the locked data and, at the same
time, another process requests the use of some portion of that data but finds it to be
locked by the first process.

In the worst case, which is a "deadlock", there is a design flaw; each process has data
locked that the other process needs and neither process can proceed. As developers
or implementers, one of our jobs is to minimize the locking problems and eliminate
any deadlocks.

Locking interference between processes in an asynchronous processing environment
is inevitable. There are always going to be points in the system where one process
instance locks out another one momentarily. The secret to success is to minimize
the frequency of these and the time length of each lock. Locking becomes a
problem when the locks are held too long and the other locked-out processes are
unreasonably delayed.

One might ask What is an unreasonable delay? For most of the part, a delay becomes
unreasonable when the users can tell that it's happening. If the users see stopped
processes or experience counter-intuitive processing time lengths (that is, a process
that seems like it should take 10 seconds actually takes two minutes), then the delays
will seem unreasonable. Of course, the ultimate unreasonable delay is the one that
does not allow the required work to get done in the available time.

The obvious question is how to avoid locking problems. The best solution is to
simply speed up the processing. This will reduce the number of lock conflicts that
arise. Important recommendations for speed include the following:

• Restrict the number of active keys, especially on the SQL Server
• Restrict the number of active SIFT fields, eliminating them when feasible
• Carefully review the keys, not necessarily using the "factory default" options
• Make sure that all the disk access code is SQL Server optimized

Chapter 9

[569]

Following are some additional steps that can be taken to minimize locking problems:

• Always process tables in the same relative order
• When a common set of tables will be accessed and updated, lock a "standard"

master table first (for example, when working on Orders, always lock the
Order Header table first)

• Shift long-running processes to off-hours or even separate databases

In special cases, the following techniques can be used (if done very, very carefully):

• Process data in small quantities (for example, process 10 records or one
order, then COMMIT, which releases the lock). This approach should be
very cautiously.

• In long process loops, process a SLEEP command in combination with an
appropriate COMMIT command to allow other processes to gain control (see
the preceding caution).

Refer to the documentation with the system distribution and in the NAV forums.

Updating and upgrading
One must differentiate between "updating" a system and "upgrading" a system. In
general, most of the NAV development work we will do is modifying individual
NAV systems to provide tailored functions for end-user firms. Some of these
modifications will be created by developers as part of an initial system configuration
and implementation before the NAV system is in production use. Other such
modifications will be targeted at a system that is in day to day production, to bring
the system up to date with changes in business process or external requirements.
We'll refer to these system changes as "Updating".

"Upgrading" is when we implement a new version of the base C/AL application
code distributed by Microsoft and port all the previously existing modifications into
that new version. First we'll discuss updating, and then we'll discuss upgrading.

Design for updating
Any time we are updating a production system by applying modifications to it,
a considerable amount of care is required. Many of the disciplines that should
be followed in such an instance are the same for a NAV system as for any other
production application system. But some disciplines are specific to NAV and the
C/SIDE environment.

Successful Conclusions

[570]

Increasing the importance of designing for ease of updating is Microsoft's process of
providing NAV updates on a frequent basis so that systems can be kept more up to
date with fixes and minor feature enhancements. Keeping up with these Microsoft
provided updates is especially important for multi-tenant systems running in the
cloud (that is, systems serving multiple unrelated customers with the software and
databases being resident on Internet based server systems). Fortunately, in support
of the pressure to apply updates more frequently, Microsoft has also provided a set
of tools to help us. Many of these tools are based on Windows Powershell scripts,
also referred to as cmdlets. For additional information, refer to the Help topics on
Deployment and Upgrading.

Customization project recommendations
Even though there are new tools to help us update our NAV systems, we should
still follow good practices in our modification designs and the processes of applying
updates. Some of these recommendations may seem obvious. That would be a
measure of our personal store of experience and our own common sense. Even so,
it is surprising the number of projects that go sour because one (or many) of the
following are not considered in the process of developing modifications:

• One modification at a time
• Design thoroughly before coding
• Design the testing in parallel with the modification
• Use the C/AL Testability feature extensively
• Multi-stage testing:

 ° Cronus for individual objects
 ° Special test database for functional tests
 ° Copy of production database for final testing as appropriate
 ° Setups and implementation

• Testing full features:
 ° User interface tests
 ° System load tests
 ° User Training

• Document and deliver in a predefined, organized manner
• Follow up, wrap up, and move on

Chapter 9

[571]

One change at a time
It is important to make changes to objects in a very well organized and tightly
controlled manner. In most situations, only one developer at a time will make
changes to an object. If an object needs to be changed for multiple purposes, the first
set of changes should be fully tested (at least through development testing stage)
before the object is released to be modified for a second purpose.

If the project is so large and complex or deadlines are so tight that this "one
modification at a time" approach is not feasible, we should consider using a software
development version control system. Because most version control systems don't
interface smoothly with C/SIDE, some significant effort will be required. One
notable exception is the iFacto ReVision Source Code Control system, specifically
designed to work with Dynamics NAV (see http://www.ifacto.be/en/
solutions/revision).

Similarly, we should only be working on one functional change at a time. As
developers, we might be working on changes in two different systems in parallel,
but we shouldn't be working on multiple changes in a single system simultaneously.
It's challenging enough to keep all the aspects of a single modification to a system
under control without having incomplete pieces of several tasks all floating around
in the same system.

If multiple changes need to be made simultaneously to a single system, one
approach is to assign multiple developers, each with their own components to
address. Another approach is for each developer to work on their own copy of the
development database, with a project librarian assigned to resolve overlapping
updates. We should learn from the past. In mainframe development environments,
having multiple developers working on the same system at the same time was
common. Coordination issues were addressed as a standard part of the project
management process. Applicable techniques are well-documented in professional
literature. Similar solutions still apply.

Testing
As we all know, there is no substitute for complete and thorough testing. Fortunately,
NAV provides some very useful tools, such as those previously discussed earlier in
this chapter in the sections C/SIDE Test-driven development and Debugging in NAV
2015, to help us to be more efficient than we might be in some other environment. In
addition to the built-in testing tools, there are also some testing techniques that are
NAV-specific.

Successful Conclusions

[572]

Database testing approaches
If modifications are not tied to previous modifications and specific customer data,
then we may be able to use the Cronus database as a test platform. This works well
when our target is a database that is not heavily modified in the area on which we
are currently working. As the Cronus database is small, we will not get lost in large
data volumes. Most of the master tables in Cronus are populated, so we don't have
to create and populate this information. Setups are done and generally contain
reasonably generic information.

If we are operating with an unmodified version of Cronus, we have the advantage
that our test is not affected by other pre-existing modifications. The disadvantage,
of course, is that we are not testing in a wholly realistic situation. Because the data
volume in Cronus is so small, we are not likely to detect a potential performance
problem.

Even when our modification is targeted at a highly modified system where those
other modifications will affect what we are doing, it's often useful to test a version
of our modification initially in Cronus. This may allow us to determine if our
change has internal integrity before we move on to testing in the context of the fully
modified copy of the production system.

If the target database for our modifications is an active customer database, then
there is no substitute for doing complete and final testing in a copy of the production
database using a copy of the customer's license. This way, we will be testing
the compatibility of our work with the production setup, the full set of existing
modifications, and of course, live data content and volumes. The only way to get
a good feeling for possible performance issues is to test in a recent copy of the
production database.

Final testing should always be done using the customer's license.

Testing in production
While it is always a good idea to thoroughly test before adding our changes to the
production system, sometimes we can safely do our testing inside the production
environment. If the modifications consist of functions that do not change any data
and can be tested without affecting any ongoing production activity, it may be
feasible to test within the production system.

Chapter 9

[573]

Examples of modifications that could be tested in the live production system can
range from a simple inquiry page or a new analysis report or export of data that
is to be processed outside the system to a completely new subsystem that does
not change any existing data. There are also situations where the only changes to
the existing system are the addition of fields to existing tables. In such a case, we
may be able to test just a part of the modification outside the production, and then
implement the table changes to complete the rest of the testing in the context of
the production system.

Finally, we can use the Testing functions to control tests so that any changes to the
database are rolled back at the conclusion of the testing. This approach allows for
testing inside a production database with less fear of corrupting live data.

Using a testing database
From a testing point of view, the most realistic testing environment is a current copy
of the actual production database. There are often apparently good excuses about
why it is just too difficult to test using a copy of the actual production database.

Don't give in to excuses—use a testing copy of the production
database!

Remember, when we implement our modifications, they are going to receive the "test
by fire" in the environment of production. We need to do everything within reason to
assure success. Let's review some of the potential problems involved in testing with a
copy of the production database and how to cope with them:

• It's too big—this is not a good argument relative to disk space. Disk space
is so inexpensive that we can almost always afford plenty of disk space
for testing. We should also make every possible useful intermediate stage
backup. Staying organized and making lots of backups may be time
consuming, but done well and done correctly, it is less expensive to restore
from a backup than recovering from being disorganized or having to redo
a major testing process. This is one of the many places where appropriate
use of the C/AL Testability tools can be very helpful by allowing various
approaches to repetitive testing.

• It's too big—this is a meaningful argument if we are doing file processing of
some of the larger files (for example, Item Ledger, Value Entry, and so on).
But NAV's filtering capabilities are so strong that we should relatively easy
to carve out manageable size test data groups with which to work.

Successful Conclusions

[574]

• There's no data that's useful—this might be true. But it would be just as true
for a test database unless it were created expressly for this set of tests. By
definition, whatever data is in a copy of the production database is what we
will encounter when we eventually implement the enhancements on which
we are working. If we build useful test data within the context of a copy of
the production database, our tests will be much more realistic and, therefore,
of better quality. In addition, the act of building workable test data will help
to define what will be needed to set up the production system to utilize the
new enhancements.

• Production data will get in the way—may be true. If this is especially true,
then perhaps the database must be preprocessed in some way to begin
testing, or testing must begin with some other database such as Cronus or a
special testing-only mockup. As stated earlier, all the issues that exist in the
production database must be dealt with when we put the enhancements into
production. Therefore, we should test in that environment. Overcoming such
challenges will prepare us to do a better job at the critical time of going live
with the newly modified objects.

• We need to test repeatedly from the same baseline. or We must do regression
testing—both are good points, but don't have much to do with the type of
database we're using for the testing. Both the cases are addressed by properly
managing the setup of our test data and keeping incremental backups of
our pre-test and post-test data at every step of the way. SQL Server tools
can assist in this effort. In addition, the C/AL Testability Tools are explicitly
designed to support regression testing.

Remember, doing the testing job well is much less expensive than implementing a
buggy modification and repairing the problems during production.

Testing techniques
As experienced developers, we will already be familiar with good testing
practices. Even so, it never hurts to be reminded about some of the more critical
habits to maintain.

Any modification greater than trivial should be tested in one way or another by
at least two people. The people assigned should not be a part of the team who
created the design or code of the modification. It would be best if one of the testers
is an experienced user because users seem to have a knack (for obvious reasons)
of understanding how the modification operates compared to how the rest of the
system acts in the course of day-to-day work. This helps us to obtain meaningful
feedback on the user interface before going into production.

Chapter 9

[575]

One of the testing goals is to supply unexpected data and make sure that the
modification can deal with it properly. Unfortunately, those who were involved in
creating the design will have a very difficult time being creative in supplying the
unexpected. Users often enter data that the designer or programmer didn't expect.
For that reason, testing by experienced users is beneficial.

The C/AL Testability Tools provide features to support testing how system functions
deal with problem data. If possible, it would be good to have the users' help to define
test data, and then use the Testability Tools to ensure that the modifications properly
handle the data.

After we cover the mainstream issues (whatever it is that the modification is
intended to accomplish), we need to make sure that our testing covers all boundary
conditions. Boundary conditions are the data items that are exactly equal to the
maximum, minimum, or other range limit. More specifically, boundaries are the
points at which input data values change from valid to invalid. Boundary condition
checking in the code is where programmer logic often goes astray. Testing at these
points is very effective for uncovering data-related errors.

Deliverables
Create useful documentation and keep good records of testing processes and results.
Testing scripts, both human-oriented and C/AL Testability Tool-based, should be
retained for future reference. Document the purpose of the modifications from a
business point of view. Add a brief, but complete, technical explanation of what
must be done from a functional design and coding point of view to accomplish the
business purpose. Record briefly the testing that was done. The scope of the record
keeping should be directly proportional to the business value of the modification
being made and the potential cost of not having good records. All such investments
are a form of insurance and preventative medicine. We hope they won't be needed
but we have to allow for the possibility that they may be needed.

More complex modifications will be delivered and installed by experienced
implementers, maybe even by the developers themselves. Small NAV modifications
may be transmitted electronically to the customer site for installation by a skilled
super-user. Whenever this is done, all the proper and normal actions must occur,
including those actions regarding backup before importing changes, user instruction
(preferably written) on what to expect from the change, and written instruction on how
to correctly apply the change. There must also be a plan and a clearly defined process
for restoring the system to its state prior to the change, in case the modification doesn't
work correctly. As responsible developers, whenever we supply objects for installation
by others, we must make sure that we always supply .fob format files (compiled
objects), not text objects. This is because the import process for text objects simply does
not have the same safeguards as the import process for compiled objects.

Successful Conclusions

[576]

Finishing the project
Bring projects to conclusion, don't let them drag on through inaction and
inattention—open issues get forgotten and then don't get addressed. Get it done,
wrap it up, and then review what went well and what didn't go well, both for
remediation and for application to future projects.

Set up ongoing support services as appropriate, and then move on to the next
project. With the flexibility of the Role Tailored Client allowing page layout changes
by both super users (configuration) and users (personalization), the challenge of user
support has increased. The person offering support can no longer expect to know
what display the user is viewing today.

Consequently, support services will almost certainly require the capability for
the support person to view the user's display. Without that, it will be much more
difficult, time consuming, and frustrating for the two way support personnel – user
communication to take place. If it doesn't already exist, this capability will have to
be added to the Partner's support organization tool set and practices. There may be
communications and security issues that need to be addressed at both the support
service and the user site.

Plan for upgrading
The ability to upgrade a customized system is a very important feature of NAV.
Most other complex business application systems are very difficult to customize at
the database-structure and process-flow levels. NAV readily offers this capability.
This is a significant difference between NAV and the competitive products in
the market.

Complementing the ability to be customized is the ability to upgrade a customized
NAV system. While not a trivial task, at least it is possible with NAV. In many other
systems, the only reasonable path to an upgrade is often to discard the old version
and re-implement with the new version, recreating all customizations. Not only is
NAV unusually accommodating to being upgraded, but with each new version of
the system, Microsoft has enhanced the power and flexibility of the tools it provides
to help us do upgrades. In the Microsoft Dynamics NAV 2015 Development Shell,
among other useful cmdlets, there is Merge-NAVApplicationObject cmdlet.
Refer to the Developer and IT Pro Help files for details on starting and using a
Development Shell session (hint: use the Search box to find information on the
Development Shell).

Chapter 9

[577]

We may say, Why should a developer care about upgrades? There are at least two good
reasons we should care about upgrades. First, because our design and coding of our
modifications can have a considerable impact on the amount of effort required to
upgrade a system. Second, because as skilled developers doing NAV customizations,
we might well be asked to be involved in an upgrade project. Since the ability
to upgrade is important and because we are likely to be involved in one way or
another, we will review a number of factors that relate to upgrades.

Benefits of upgrading
Just so we are on common ground about why upgrading is important to both the
client and the NAV Partner, following is a brief list of some of the benefits that an
upgrade can give:

• Easier support of a more current version
• Access to new features and capabilities
• Continued access to fixes and regulatory updates
• Improvements in speed, security, reliability, and user interface
• Assured continuation of support availability
• Compatibility with necessary infrastructure changes, such as new operating

system versions
• An opportunity to do any necessary training, data cleaning, and process

improvement
• An opportunity to resolve old problems, to do postponed "housekeeping",

and create a known system reference point

This list is not complete and not every benefit will be realized in any one situation.

Coding considerations
The most challenging and most important part of an upgrade is porting the code
and data modifications from the older version of a system to the new version. When
the new version has major design or data structure changes in an area that we have
customized, it is quite possible that our modification structure will have to be re-
designed and perhaps even be recoded from scratch.

On the other hand, often the changes in the new product version of NAV don't affect
much existing code, at least in terms of the base logic. If our modifications are done
properly, it's often not difficult to port custom code from the older version into the
new version. By applying what some refer to as "low-impact coding" techniques, we
can make the upgrade job easier and thereby less costly.

Successful Conclusions

[578]

Good documentation
In the earlier chapters, we discussed some documentation practices that are good to
follow when making C/AL modifications. Here is a brief list of practices that should
be followed:

• Identify every project with its own unique project tag
• Use the project tag in all documentation relating to the modification
• Include a brief but complete description of the functional purpose of the

modification in a related Documentation() trigger
• Include a description of the modifications to each object in the

Documentation() trigger of that object, including changes to properties,
Global and Local variables, functions, and so on

• Add the project tag to the version code of all modified objects
• As much as possible, make all code self-documenting, using meaningful

names for all data elements and functions, and breaking code segments into
logical functions so that process flow is self-evident

• Bracket all C/AL code changes with inline comments so that they can be
easily identified

• Retain all replaced code within comments, using // or { }
• Identify all new table fields with the project tag

Low-impact coding
We have already discussed most of these practices in other chapters, but we will
review them here in the context of coding to make it easier to upgrade. We won't be
able to follow each of the following listed options, but we will have to choose the
degree to which we can implement low-impact code and which options to choose:

• Separate and isolate new code
• Create functions for significant amounts of new code that can be accessed

using single code line function calls
• Either add independent Codeunits as repositories of modification functions or,

if that is overkill, place the modification functions within the modified objects
• Add new data fields; don't change the usage of existing fields
• When the functionality is new, add new tables rather than modifying

existing tables

Chapter 9

[579]

• For minor changes, modify the existing pages, otherwise copy and change
the clone pages

• Copy, then modify the copies of reports and XMLports, rather than
modifying the original versions in place

• Don't change field names in objects, just change captions and labels
as necessary

In any modification, we will have conflicting priorities regarding doing today's job
in the easiest and least expensive way versus doing the best we can do to plan for
future maintenance, enhancements, updates, and upgrades. The right decision is
never a black and white choice, but must be guided by subjective guidelines as to
which choice is really in the customer's best interest.

Supporting material
With every NAV system distribution there have been some reference guides.
These are minimal in NAV 2015. There are previously published guides available,
but sometimes we have to search for them. Some were distributed with previous
versions of the product but not with the latest version. Some are posted at various
locations on PartnerSource or another Microsoft websites. Some may be available
on one of the forums or from a blog.

Be a regular visitor to websites for more information and advice on C/AL, NAV,
and other related topics. The websites dynamicsuser.net and http://www.mibuso.
com/ are especially comprehensive and well attended. Other smaller or more
specialized sites also exist. Some of those available at the time of writing this
book are:

• Microsoft Dynamics NAV Team Blog: http://blogs.msdn.com/b/nav/
• Mark Brummel's Blog: http://nav-skills.com/blog/
• Clausl's Dynamics NAV Blog: http://www.mibuso.com/blogs/clausl
• Waldo's Blog: http://www.waldo.be/
• Vjekoslav Babic's Blog: http://vjeko.com/
• Alain Krikilion's Blog: http://mibuso.com/blogs/kriki/
• Soren Klemmensen's Blog: http://www.klemmensen.ca/

Successful Conclusions

[580]

There are a number of other good blogs available. Look for them and review them
regularly. The good ideas posted by the members of the NAV community in their
blogs and on the NAV forums are generously shared freely and often.

Finally, there are a number of books focusing on various aspects of Dynamics
NAV published by PACKT Publishing (https://www.packtpub.com/). Even the
books that are about older versions of NAV have a lot of good information about
developing with the NAV tools and applying NAV's functionality in a wide variety
of application environments.

Summary
We have covered many topics in this book with the goal of helping you to become
productive in C/AL development with Dynamics NAV 2015. Hopefully, you've
found your time spent with us to be a good investment. From this point on, your
assignments are to continue exploring and learning, enjoy working with NAV,
C/SIDE, and C/AL, and to treat others as you would have them treat you.

"We live in a world in which we need to share responsibility. It's easy to say "It's
not my child, not my community, not my world, not my problem." There are those
who see the need and respond. Those people my heroes."

 – Fred Rogers

Review questions
Q.1. Which one of the following provides access to several libraries of functions for
various purposes widely used throughout the NAV system?

a. Codeunit 412—Common Dialog Management
b. Codeunit 408—Dimension Management
c. Codeunit 396—NoSeriesManagement
d. Codeunit 1—Application Management

Q.2. The Help files for NAV cannot be customized by Partner or ISV developers.
True or False?

Chapter 9

[581]

Q.3. Which of the following are good coding practices? Choose three.

a. Careful naming
b. Good documentation
c. Liberal use of wildcards
d. Design for ease of upgrading

Q.4. Custom C/AL code is not allowed to call functions that exist in the base
Microsoft created NAV objects. True or False?

Q.5. NAV's multi-language capability allows for an installation to have multiple
languages active at any one time. True or False?

Q.6. Designing to minimize disk I/O in NAV is not important because SQL Server
takes care of everything. True or False?

Q.7. Which of the following defines the Client Add-in feature? Choose one.

a. The ability to add a new client of your own design to NAV 2015
b. A tool to provide for extending the Role Tailored Client User

Interface behavior
c. A special calculator feature for the RTC client
d. A new method for mapping Customers to Contacts

Q.8. When planning a new NAV development project, it is good to focus the design
on the data structure, required data accesses, validation, and maintenance. True or
False?

Q.9. The Navigate feature can be used for which of the following? Choose three.

a. Auditing by a professional accountant
b. User analysis of data processing
c. Reversing posting errors
d. Debugging

Q.10. NAV 2015 modifications should always be delivered to customers in the form
of text files. True or False?

Successful Conclusions

[582]

Q.11. Both source code changes and setting Debugger Breaks can only be done in the
C/AL Editor. True or False?

Q.12. You can enhance the Navigate function to include new tables that have been
added to the system as part of an enhancement. True or False?

Q.13. The C/SIDE Testing tools allow the implementation of regression tests.
True or False?

Q.14. Client Add-ins must be written in what language? Choose one.

a. C#
b. VB.NET
c. A suitable .NET language
d. C/AL.NET

Q.15. The NAV 2015 Debugger allows the value of Watched Variables to be changed
in the middle of a debugging session. True or False?

Q.16. The NAV 2015 Debugger runs as a separate session. True or False?

Q.17. The C/SIDE Testing tools support which of the following? Choose four.

a. Positive testing
b. Negative testing
c. Automated testing
d. C# test viewing
e. TestIsolation (roll-back) testing

Q.18. NAV 2015 includes a flexible multi-currency feature which allows transactions
to begin in one currency and conclude in a different currency. True or False?

Q.19. NAV does not support linked SQL Server databases. True or False?

Q.20. Simple debugging can be done without use of the Debugger. True or False?

Appendix

[583]

Review Answers

Chapter 1, An Introduction to NAV 2015
Q.1. a, b, c, e

Q.2. a, c, e

Q.3. True

Q.4. a-4, b-5, c-1, d-3, e-2

Q.5. True

Q.6. a, d

Q.7. Table, Page, Report, Codeunit, Query, XMLPort, MenuSuite

Q.8. False

Q.9. True

Q.10. d

Q.11. False

Q.12. b

Q.13. False

Q.14. True, but through use of a temporary table

Q.15. True

Q.16. b, d

Review Answers

[584]

Q.17. False

Q.18. False

Q.19. a, c

Q.20. False

Chapter 2, Tables
Q.1. a, d

Q.2. False

Q.3. c

Q.4. False

Q.5. a, d

Q.6. False

Q.7. False

Q.8. False – 50000 – 99999

Q.9. a, c, d

Q.10. True

Q.11. False

Q.12. a, c

Q.13. True

Q.14. a, c, d

Q.15. True

Q.16. False – except with a very advanced technical method

Q.17. False

Q.18. False

Q.19.c

Q.20. False

Appendix

[585]

Chapter 3, Data Types and Fields
Q.1. False

Q.2. c

Q.3. 1 – c

Q.4. c

Q.5. a

Q.6. True

Q.7. False

Q.8. b

Q.9. b, d

Q.10. a, c, e

Q.11. False

Q.12.

a. False

b. False

Q.13. True

Q.14. True

Q.15. True

Q.16. False

Q.17. b, d

Q.18. False

Q.19. False

Q.20. a, b

Q.21. b, c

Review Answers

[586]

Chapter 4, Pages – The Interactive
Interface
Q1. False

Q2. b, d

Q3. False

Q4. False

Q5. a, d

Q6. False

Q7. False

Q8. b, d

Q9. True

Q10. True

Q11. True

Q12. b, c

Q13. False

Q14. c

Q15. False

Q16. a, b, c

Q17. c

Q18. False

Q19. False

Q20. True

Appendix

[587]

Chapter 5, Queries and Reports
Q1. a, c, d

Q2. False

Q3. False

Q4. b

Q5. False

Q6. False

Q7. True

Q8. a, c

Q9. False

Q10. False

Q11. a, b, c

Q12. True

Q13. False

Q14. False

Q15. True

Q16. a, c

Q17. False

Q18. b, c

Q19. True

Q20. True

Review Answers

[588]

Chapter 6, Introduction to C/SIDE and
C/AL
Q1. False

Q2. a

Q3. True

Q4. c

Q5. False

Q6. True

Q7. False

Q8. False

Q9. a, b

Q10. False

Q11. a

Q12. True

Q13. a, c

Q14. True

Q15. True

Q16. True

Q17. False

Q18. a, c, e

Q19. False

Q20. a, d

Appendix

[589]

Chapter 7, Intermediate C/AL
Q1. a, b, c

Q2. True

Q3. b, c

Q4. d

Q5. True

Q6. False

Q7. False

Q8. b

Q9. False

Q10. True

Q11. b

Q12. False

Q13.False

Q14. d

Q15. False

Q16. True

Q17.a, c

Q18. False

Q19. False

Q20. True

Review Answers

[590]

Chapter 8, Advanced NAV Development
Tools
Q1. False

Q2. c

Q3. False

Q4. a, c, d

Q5. False

Q6. b, d

Q7. True

Q8. a, c

Q9. False

Q10. True

Q11. b, d

Q12. True

Q13. False

Q14. True

Q15. False

Q16. True

Q17. False

Q18. a, d

Q19. False

Q20. False

Appendix

[591]

Chapter 9, Successful Conclusions
Q1. d

Q2. False

Q3. a, b, d

Q4. False

Q5. True

Q6. False

Q7. b

Q8. True

Q9. a, b, d

Q10. False

Q11. True

Q12. True

Q13. True

Q14. c

Q15. False

Q16. True

Q17. a, b, c, e

Q18. True

Q19. False

Q20. True

[593]

Index
A
Action Icons 121
application tables

about 23
simple table, creating 24-26
simple table, designing 23, 24

Assemble to Order (ATO) 4
Automation data types

about 132
Automation Server 133
DotNet 133
OCX 132

B
Binary Large OBjects (BLOBs) 116
blank slate approach 231
Block of code 356
bound pages 219
BREAK function 404
Business Intelligence (BI) 6

C
CALCDATE function 391
CALCFIELDS function

about 396
versus CALCSUMS function 398

CalcFormula method 143
C/AL code

about 358
adding, to report 363
field validation, adding to table 358-363
Lookup Related table data 365, 366
new report heading, layouting 364

report body, laying out 366, 367
saving 365
testing 365

CALCSUMS function
about 398
versus CALCFIELDS function 398

C/AL Database Functions and Performance
on SQL Server 353

C/AL Editor 13
C/AL functions

about 344
CONFIRM function 347, 348
ERROR function 345, 346
FIND function 352, 353
functions, frequently used 344
GET function 352
MESSAGE function 344, 345
record functions 349
SETCURRENTKEY function 350
SETFILTER function 351
SETRANGE function 351
STRMENU function 348, 349
validation functions 384-387

callable functions
about 513
codeunit 358 (Date Filter-Calc) 513
codeunit 359 (Period Form

 Management) 515, 516
codeunit 365 (Format Address) 516, 517
codeunit 396 (NoSeriesManagement) 518
Date Filter-Calc 514
function models, reviewing 519, 520

C/AL Locals
about 322
function local identifiers 323
 trigger local variables 323

[594]

C/AL routines
callable functions 513
creating 512
management codeunits 520

C/AL Symbol Menu 378-380
C/AL syntax

about 337
assignment 337, 338
code, indenting 357
expressions 338, 339
punctuation 337, 338

card pages
about 28
creating 35-39

CASE-ELSE statement 401, 402
changes, NAV 2015

about 8, 9
application changes 9
client enhancements 9
development tools 9, 10
other areas 10

charts
about 187
Chart Control Add-in 188
chart part 187
URL 187

CLEARMARKS function 413
Client Add-ins

about 544
comments 561, 562
constructing 545
using 545
WDTU Client Add-in 546-561

Client/Server Integrated Development
 Environment (C/SIDE) 2

cmdlets 570
Codeunit Designer

accessing 306
coding considerations, system upgradation

about 577
good documentation 578
low-impact coding 578, 579

Common Language Specification (CLS) 258
complex data types

about 116
automation 132, 133
BigText 141

Binary Large Object (BLOB) 141
data structure 132
DateFormula 133-140
Date/Time data 131
FieldRef 140
Globally Unique Identifier (GUID) 141
Input/Output data types 133
KeyRef 140
objects 132
RecordID 140
RecordRef 140
references 140
TableFilter 141
TestPage 141
Transaction Type 141
Variant 140

components, reports
C/SIDE Report properties 263, 264
Data item properties 269, 270
DataItem triggers 271
report triggers 267
Request Page properties 268
Request Page triggers 268
Visual Studio Report properties 265-267

compound statement 356
conditional statements

about 356
BEGIN-END compound statement 356
IF-THEN-ELSE statement 356, 357

ConfirmationDialog page 181
CONFIRM function

about 347, 348
used, for debugging 529

constant 116
content modifiable tables

about 108
System table 108, 109

COPYFILTER function 411
creative report plagiarism and patterns 297
C/SIDE

about 302
Object Designer 302
text objects 318

C/SIDE integrated development
environment 11, 12

[595]

C/SIDE programming
about 327
custom functions 330
custom functions, creating 331-337
modifiable functions 329
non-modifiable functions 328

C/SIDE Report Dataset Designer
 (C/SIDE RD) 258

C/SIDE Test-driven development
about 539-541
advantages 539
automated mode 540
regression testing 540

Cues
URL 176

CURRENTDATETIME function
about 388
syntax 388

Customer Relationship
Management (CRM) 7

custom functions
about 330
creating 331-334

D
data conversion functions, NAV 2015

EVALUATE function 395
FORMAT function 393, 394
ROUND function 392, 393

data-focused design
about 564
data tables, defining 564
data validation, defining 565
required data views, defining 564
reviewing 565
revising 565
user data access interface, defining 565

DataItem 260
data types

about 116, 127
complex data types 131
File 132
fundamental data types 127
Record 132
usage 141

DATE2DMY function 390

DATE2DWY function 390
date and time functions, NAV 2015

about 387
CALCDATE 391, 392
CURRENTDATETIME 388
DATE2DMY 390
DATE2DWY 390
DMY2DATE 390, 391
TODAY 388
WORKDATE 388, 389

Date/Time data types
Date 130
DateTime 131
Duration 131
Time 131

deadlock 568
debugging, NAV 2015

about 526
DIALOG functions, techniques 529
NAV 2015 Debugger 531
objects, exporting into text files 527, 528

DELETEALL function 409
DELETE function 408
design, for system updation

about 570
customization project,

recommendations 570, 571
deliverables 575
project, final steps 576
testing 571

developer's overview, NAV 2015
about 10
C/AL programming language 13
C/SIDE Integrated Development

Environment 11
functional terminology 18
Object Designer tool icons 12
object types 11
terms 14
user interface 19, 20

development projects
about 563
data-focused design 563
double-check option, using 567
knowledge source 563
posting processes, defining 566
supporting processes, defining 566

[596]

DIALOG functions
about 529
CONFIRM 529
debugging, with text output 530
DIALOG 530
ERROR 531
MESSAGE 529
used, for debugging 530

DMY2DATE function 390
Document page

about 178
FastTab 179

DWY2DATE function 390, 391

E
efficient solution, designing

disk I/O 567
locking aspect 568
steps 567

enterprise resource planning (ERP) 1
ERROR function

about 345, 346
used, for debugging 531

EVALUATE function 395
EXIT function 405
expressions, C/AL syntax

about 338
operators 339, 340

eXtensible Markup Language (XML) 50
ExtractionChoice parameter 390

F
Factbox

function, creating 431-434
FactBox Area, page part

about 186
CardParts 186
ListParts 186
page, creating 435-438

FastTabs 36
FieldClass property, options

about 142
FlowField 143-146
FlowField, using 149-154
FlowFilter 146-148

FlowFilter, using 149-154
Normal 143

FIELDERROR function 385, 386
field properties

about 117-123
AccessByPermission 118
caption 117
CaptionML 118
Data Type 118
description 118
Enabled 118
Field No 117
name 117

fields
about 15, 116
data structure examples 125
naming 126, 127
numbering 125, 126
properties 117-123
triggers 124
variable, naming 126, 127

field triggers
about 124
OnLookup() 124
OnValidate() 124

filter controls
accessing 162
Development Environment filter access 162
Role Tailored Client filter access 163, 164

FILTERGROUP function 412
filtering

about 154, 155, 410
experimenting with 155-161
filter controls, accessing 162

filtering, functions
CLEARMARKS 413
COPYFILTER 411
COPYFILTERS 411
FILTERGROUP 412
GETFILTER 411
GETFILTERS 411
MARK 413
MARKEDONLY 413
RESET 414
SETFILTER 410

FIND functions 352, 353

[597]

FIND options
SQL Server specific 354, 355

FINDSET function 406
fin.stx file 264
FlowField and SumIndexField functions

about 395
CALCFIELDS 396
CALCSUMS 398
SETAUTOCALCFIELDS 397

FOR-DOWNTO control 401
FORMAT function 393, 394
FOR-TO control 400
fully modifiable tables

about 95
Journal table 97, 98
Ledger table 99, 101
Master table 96
Posted Document type 104, 105
Reference tables (Supplemental) 101, 102
Register table 103, 104
Setup table 106
Template table 98, 99
Temporary table 107, 108

functional terminology, NAV 2015
batch 19
document 19
Journal 18
Ledger 18
posting 19
register 19

function local identifiers 323
fundamental data types

about 116, 127
Date/Time data 130
numeric data 128
String data 129

G
General Ledger Entry table 23
GETFILTER function 411
GETFILTERS function 411
GET function 352
Globally Unique Identifier (GUID) 141

Global symbols 379
Graphical User Interface (GUI) 171

H
Help Activating the Debugger 533
Help Configuring NAS Services 533
Help Server component

customizing 562
Human Resources (HR) management

about 8
functions 8

I
Independent Software Vendor (ISV) 17, 169
INIT function 386, 387
input and output functions

about 405
DELETE 408
DELETEALL 409
FIND 406
INSERT 407
MODIFY 407
MODIFYALL 408
NEXT 406

Input/Output data types
about 133
Dialog 133
InStream and Outstream 133

INSERT function 407
interactive report, capabilities

about 290
Interactive Sorting 291, 292
Interactive visible/not visible 292

interfaces
about 542
Automation Controller 543
Linked Data Sources 544

internal documentation 380-383
interobject communication

about 414
via data 414
via function parameters 414
via object calls 415

[598]

L
license 14
list pages

about 28, 177
creating 31-35

ListPlus page 180
local currency (LCY) 147
local identifiers 322
locking aspect 568

M
Make to Order (MTO) 4
Make to Stock (MTS) 4
management codeunits 520
MARKEDONLY function 413
MARK function 413
MenuSuite Designer 308-311
Mergetool

URL 528
MESSAGE function

about 344, 345
used, for debugging 529

Method Property 247
MODIFYALL function 408
MODIFY function

about 407
Rec variable 408
xRec variable 408

multi-currency system 522
multi-language system 521, 522

N
NAV 2015

about 1-3, 443
application design 22
application tables 22
Business Intelligence (BI) 6
C/AL 301
Card page, creating 35-39
C/SIDE 301
data conversion functions 392, 395
date and time functions 387-391
debugging 526
developer overview 52

developing 21
development backups 51
development exercise scenario 21, 22
development projects 563
documentation 51
ERP system 2
filtering functions 410-413
financial management 4
FlowField and SumIndexField

functions 395-399
formatting functions 392-394
functional areas 2
Help Server component, customizing 562
Human Resources (HR) management 8
input and output functions 405-409
license limits 15
list page, creating 32-35
List Report, creating 41-48
manufacturing 4, 5
object types 49
pages 27, 169
pages, structure 172
process flow 444
process flow control functions 399-405
project management 8
queries 237
references, URL 579
Relationship Management (RM) 7
reporting 6
reports 237-239
reports, creating 272
report designers 249
report types 252
sample data, creating 40
significant changes 8
Supply Chain Management (SCM) 5, 6
system elements 14
tables 57
URL 518

NAV 2015 Debugger
about 531
activating 533
attaching, to session 534
Break events, creating 535-537
code modification, while debugging 539
window 537-539

[599]

NAV 2015 Manufacturing
about 4
capacity and supply requirements

planning 5
Product Design (BOMs and Routings) 5
production scheduling

(infinite and finite) 5
NAV Application Server (NAS) 544
NAV data entry

keyboard shortcuts 311
Navigate

about 523-525
modifying for 525, 526

Navigation Pane, Role Center page
about 463-477
Action Designer 465-468
Departments button 478
Home Button 476, 477
other buttons 478
WDTU Role Center Ribbon,

creating 468, 469
NAV processing

interobject communication 414, 415
NAV report

designers 249-251
types 253-255
URL 298

NAV terminology
complex data type 116
constant 116
data element 116
data type 116
fundamental data type 116
variable 116

negative testing 541
New list pages, WDTU project

keys 88
secondary keys 88, 89
SumIndexFields 88, 89
table relations 88-91

NEXT function 406
non-modifiable functions, examples

DATE2DMY 328
GET 328
INSERT 328
MESSAGE 328
STRPOS 328

numeric data types
action 129
BigInteger 129
Boolean 128
Byte 129
Char 129
decimal 128
executionMode 129
integer 128
option 128

O
Object Designer, C/SIDE

about 12, 302-304
Codeunit Designer, accessing 306
MenuSuite Designer 308-311
navigation 311, 312
new object, starting 304
objects, exporting 312, 313
objects, importing 314-317
Page Designer, accessing 304, 305
Query Designer 306
Report Dataset Designer, accessing 306
Table Designer, accessing 304
tool icons 12
XMLport Designer 307

objects
exporting 312, 313
importing 314-317
Table object changes, importing 316, 317

object types, NAV 2015
about 11
codeunit 11, 49
MenuSuite 11, 50
page 11
queries 50
query 11
report 11
table 11
XMLport 11, 50

operators
about 339, 340
Arithmetic operators 341
Boolean operators 342
precedence 343

[600]

Range operator 340
Relational operators 342, 343
Scope operator 340

P
page actions

about 222, 223
groups 225
Navigation Pane Button actions 228
properties 225-228
summary 229
types 224, 225

page components
about 194
inheritance 201
Page Preview tool 199-201
page properties 196-198
page triggers 195

page controls
about 206-208
bound pages 219
unbound pages 219

page controls, types
about 209
container controls 209
field controls 209-215
group controls 209-213

Page Designer
about 189
accessing 304
New Page Wizard 190-194

Page Parts, controls
about 216-218
page control triggers 218

Page Parts, Role Center page
about 460
charts 461, 462
for user data 463
not visible 460

pages
about 27, 170
Card pages 28
components 194
controls 206
design, guidelines 171
document page 29

journal/worksheet pages 31
list pages 28
names 188, 189
NAV 2015 page structure 172-175
page part controls 216
parts 185
properties 196-198
standard elements 27
structure 170, 172
types 175

page structure
Content Area 175
FactBox Pane 175
FilterPane 174
Global Command Bar 174
Navigation Pane 174
Ribbon 174
Search Field 174
Status Bar 174

pages, types
Card page 178
ConfirmationDialog page 181
Document page 178
list page 177
ListPlus page 180
NavigatePage 182
Role Center page 175, 176
Special pages 183
StandardDialog page 182
Worksheet (Journal) page 181

plagiarism 230, 231
plan, system upgradation

about 576
benefits 577

Playlist Header
data fields 420

Playlist Line
data fields 427-431

Playlist Subform page
creating 423-426

positive testing 541
process flow control functions

about 399
BREAK 404
CASE-ELSE 401, 402
EXIT 405
FOR-DOWNTO 401

[601]

FOR-TO 400
QUIT 404
REPEAT-UNTIL 399
SKIP 405
WHILE-DO 400
WITH-DO 403, 404

process flow, NAV 2015
about 444, 445
data, maintaining 447, 448
data preparation 446
data, utilizing 447
initial setup 444-446
Journal batch, posting 447
Journal batch, testing 447
maintenance 444
post 444
transaction entry 444-446
utilize 444
validate 444

processing C/AL code
completed report, testing 372
finishing 371
outputting, to Excel 372, 373

Processing-Only reports 297
project management

budgeting 8
cost tracking 8
project accounting 8
resource requirements 8
scheduling 8
usage tracking 8

Public Service Announcements (PSAs) 22

Q
queries

about 238
object, building 239-244
properties 244
using 238

query component properties
about 244
column properties 246, 247
DataItem properties 245, 246
query properties 244, 245

Query Designer 306

Query object
using, URL 244

QUIT function 404

R
RDLC Report

about 257
elements 257
structure 257

read-only table
about 109
Virtual table 110

record 15
Rec variable 408
Relationship Management (RM) 7
REPEAT-UNTIL control 399
report body

laying out 367
Request Page, defining 370
saving 368
testing 368
user entered report options,

handling 368-370
report data

flow 260-262
overview 258

Report Dataset Designer
accessing 305

Report Definition Language Client-side
(RDLC) 250

Report Designer
used, for modifying existing report 285-289

report designers, NAV
about 249-252
Report Designer 249
Visual Studio Report Designer or SQL

Server Report Builder 249
Report Layout 259, 260
reports

about 247, 248
components 257, 263
creating, in NAV 2015 272
creative report plagiarism and

patterns 297, 298
existing report, modifying with Report

Designer 288, 289

[602]

existing report, modifying with
Word 288, 289

interactive report, capabilities 290
naming 256
ProcessingOnly reports 297
Request Page 293, 294
Request Page option, adding 294-296
structure 257

reports, building
existing report, modifying with Report

Designer 285-287
existing report, modifying

with Word 285-287
inheritance 290
phase 1 273-276
phase 2 276-280
phase 3 280-285
runtime rendering 290

report types, NAV
about 252
document 252, 256
list 252, 256
posting 255, 256
test 255, 256
transaction 254-256

Request Page
about 293, 294
option, adding 294-296

RESET function 414
ReVision

URL 313
Role Center page

about 175, 176, 448
Action Menus 463
Navigation Pane 463
Page Parts 460
structure 449
System Part 459
URL 176

Role Center, structure
about 449-451
activities page 453
Cue Group Actions 458
Cue Groups 454
Cues 454
Cue source table 455-457

role oriented 19
Role Tailored Client (RTC) 18
ROUND function 393

S
sample application

activity-tracking tables, adding 84, 85
enhancing 75
InitValue property, assigning 83
Standard table, modifying 92, 93
Table Relation Property, assigning 80-82
tables, creating 75-80
tables, modifying 75-80
version list documentation 93, 94
WDTU project, New list pages 88
WDTU project, new tables 85-88

Server Report Builder (SSRB) 249
Service Management (SM) 7
Special pages

about 183
Departments page 184

SQL Joins methods
Cross Join 239
Full Outer 239
Inner 239
Left Outer Join 239
Right Outer Join 239

SQLJoinType Property 246
SQL Server Report Builder (SSRB) 258, 377
StandardDialog page 182
statistical analysis fields, Radio Show

Advertising Revenue (Field 120) 149
Audience Share (Field 110) 149
Average Listeners (Field 100) 149
Date Filter (Field 1090) 149
Royalty Cost (Field 130) 149

storage variables
about 323
arrays 325
initialization 326
system-defined variables 327
temporary tables 323, 324

String data types
Code 129
Text 129

[603]

STRMENU function 349
Strong Key Name (SNK) 548
SumIndex Fields 564
Supply Chain Management (SCM)

about 5
Inventory Management 5
purchasing 5
sales order processing and pricing 5
warehouse management 5

Symbol table 379
system, upgrading

about 569
coding considerations 577
plan 576
supporting materials 579

T
table definition 58
Table Designer

accessing 304
table fields

modifying 417-419
tables

about 58, 59
components 59
Field Groups 71-75
field validation, adding 358-363
keys 67-69
naming 60
numbering 61
properties 61-66
SumIndexField Technology (SIFT) 70, 71
types 95

tables, types
content modifiable tables 108
fully modifiable tables 95
read-only table 109

temporary tables, storage variables 323
testability 542
TESTFIELD function

about 384
advantages 384

testing
about 571
database approaches 572

in production 572, 573
potential problems 573, 574
techniques 574, 575

testing database
using 573, 574

TestIsolation property 540
text objects, C/SIDE

about 318
C/AL naming conventions 320, 321
compiling 319, 320
data definitions, changing 319
practices 318, 319
saving 319, 320

TIME function
syntax 388

TODAY function
syntax 388

trigger
about 16
documentation 16
functions 16
local variables 323

U
UI Elements Removal Tool 474
unbound pages 219
Uniform Resource Name (URN) 483
Universal Naming Convention (UNC) 132
User Interface (UI) 474

V
VALIDATE function 387
validation functions, C/AL

about 384
FIELDERROR 385, 386
INIT 386, 387
TESTFIELD 384
VALIDATE 387

validation logic
adding, to WDTU application 420-422

variables, C/SIDE
about 322
C/AL Globals 322
C/AL Locals 322
storage variables, working 323, 324

[604]

Visual Studio
URL 43

Visual Studio Report Designer
 (VSRD) 286, 377

W
W3C

URL 480
WDTU application, enhancing

about 416
FactBox page, creating 435-438
function, creating for Factbox 431-434
Playlist Subform page, creating 423-426
table fields, modifying 417-419
validation logic, adding 420-422

WDTU page enhancement 202-206, 219-221
WDTU Role Center Ribbon

Action Groups 472, 473
configuration/personalization 473-475
creating 468, 469
Promoted Actions Categories 470-472

web services
about 493
benefits 493, 494
enabling 497
exposing 495, 496
methods 495
published object, determining 497-499
publishing 496
WDTU integration, example 500-506

Which parameter option 354
WHILE-DO control 400
wildcards 127
WITH-DO statement 403, 404
WORKDATE function 388, 389
Working Storage 258
Worksheet (Journal) page 181

X
XMLport components

attribute 490
data lines 485
Element data 490
line properties 486
line triggers 491, 492
properties 481-484
Request Page 493
triggers 485

XMLport Designer 307
XMLport line properties

about 486
SourceType as Field 490
SourceType as Table 488, 489
SourceType as Text 487

XMLport line triggers
about 491, 492
DataType as Field 493
DataType as Table 492
DataType as Text 492

XMLports
about 479, 480
Attribute-specific property 491
components 480
Element-specific properties 490
URL 495

xRec variable 408

Thank you for buying
Programming Microsoft Dynamics™

NAV 2015

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Dynamics NAV 2009
Programming Cookbook
ISBN: 978-1-84968-094-3 Paperback: 356 pages

Over 110 simple but incredibly effective recipes for
taking control of Microsoft Dynamics NAV 2009

1. Write NAV programs to do everything from
finding data in a table to integration with an
instant messenger client.

2. Develop your own .NET code to perform tasks
that NAV cannot handle on its own.

3. Work with SQL Server to create better
integration between NAV and other systems.

4. Learn to use the new features of the NAV 2009
Role Tailored Client.

Implementing Microsoft
Dynamics NAV 2013
ISBN: 978-1-84968-602-0 Paperback: 554 pages

Discover all you need to know to implement
Dynamics NAV 2013, from gathering the
requirements to deployment

1. Successfully handle your first Dynamics NAV
2013 implementation.

2. Explore the new features that will help you
provide more value to your customers.

3. Full of illustrations and diagrams with clear
step-by-step instructions and real-world tips
extracted from years of experience.

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics NAV 2013
Application Design
ISBN: 978-1-78217-036-5 Paperback: 504 pages

Customize and extend your vertical applications with
Microsoft Dynamics NAV 2013

1. Set up your application for a number of vertical
industries and scenarios.

2. Get acquainted with Dynamics NAV's data
model and transaction schema with the help
of highly efficient design patterns.

3. Consists of two completely designed and
explained vertical solutions, including
application objects.

Microsoft Dynamics AX 2012 R2
Services
ISBN: 978-1-78217-672-5 Paperback: 264 pages

Harness the power of Microsoft Dynamics AX 2012
R2 to create and use your own services effectively

1. Learn about the Dynamics AX 2012 service
architecture.

2. Create your own services using wizards
or X++ code.

3. Deploy your services in a variety of ways using
High Availability.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to NAV 2015
	NAV 2015 – An ERP system
	Financial Management
	Manufacturing
	Supply Chain Management
	Business Intelligence and reporting
	Relationship Management
	Human Resource management
	Project management

	Significant changes for NAV 2015
	Application changes
	Client enhancements
	Development tools
	Other areas

	A developer's overview of NAV 2015
	NAV object types
	The C/SIDE Integrated Development Environment
	Object Designer tool icons
	C/AL programming language
	NAV object and system elements
	NAV functional terminology
	User Interface

	Developing hands-on in NAV 2015
	NAV 2015 development exercise scenario
	Getting started with application design
	Application tables
	Designing a simple table
	Creating a simple table

	Pages
	Standard elements of pages
	List pages
	Card pages
	Document pages
	Journal/Worksheet pages

	Creating a List page
	Creating a Card page
	Creating some sample data
	Creating a List Report
	Other NAV object types
	Codeunits
	Queries
	MenuSuites
	XMLports

	Development backups and documentation

	Summary
	Review questions

	Chapter 2: Tables
	An overview of tables
	The components of a table
	Naming a table
	Table numbering
	Table properties
	Table triggers
	Keys
	SumIndexFields
	Field Groups

	Enhancing our sample application
	Creating and modifying tables
	Assigning a Table Relation property
	Assigning an InitValue property
	Adding a few activity-tracking tables
	New tables for our WDTU project
	New List Pages for our WDTU project
	Keys, SumIndexFields and table relations in our examples
	Secondary keys and SumIndexFields
	Table relations

	Modifying a standard table
	Version list documentation

	Types of tables
	Fully Modifiable Tables
	Master
	Journal
	Template
	Ledger
	Reference tables
	Register
	Posted Document
	Setup
	Temporary

	Content modifiable tables
	System

	Read-only Tables
	Virtual

	Summary
	Review questions

	Chapter 3: Data Types and Fields
	Basic definitions
	Fields
	Field properties
	Field triggers
	Data structure examples
	Field numbering
	Field and Variable naming

	Data types
	Fundamental data types
	Numeric data
	String data
	Date/Time data

	Complex data types
	Data structure
	Objects
	Automation
	Input/Output
	DateFormula
	References and other data types

	Data type usage

	FieldClass property options
	FieldClass – Normal
	FieldClass – FlowField
	FieldClass – FlowFilter
	FlowFields and a FlowFilter for our application

	Filtering
	Experimenting with filters
	Accessing filter controls
	Development Environment filter access
	Role Tailored Client filter access

	Summary
	Review questions

	Chapter 4: Pages – the Interactive Interface
	Page design and structure overview
	Page design guidelines
	The NAV 2015 page structure

	Types of pages
	Role Center page
	List page
	Card page
	Document page
	FastTab

	ListPlus page
	Worksheet (Journal) page
	ConfirmationDialog page
	StandardDialog page
	NavigatePage
	Navigate page 344

	Special pages
	Request page
	The Departments page

	Page parts
	FactBox Area

	Charts
	Chart part

	Page names

	Page Designer
	New Page Wizard

	Page components
	Page Triggers
	Page properties
	Page Preview tool
	Inheritance

	WDTU Page Enhancement – part 1
	Page Controls
	Control types
	Container controls
	Group controls
	Field controls

	Page Part controls
	Page Control triggers

	Bound and Unbound Pages

	WDTU Page Enhancement – part 2
	Page Actions
	Page Action Types and Subtypes
	Action Groups
	Action properties
	Navigation Pane Button actions
	Actions Summary

	Learning more
	UX (User Experience) Guidelines
	Creative plagiarism and Patterns
	Experimenting on our own
	Experimentation

	Summary
	Review questions

	Chapter 5: Queries and Reports
	Queries
	Building a simple Query object
	Query and Query component properties
	Query properties
	The DataItem properties
	Column properties

	Reports
	What is a report?
	Four NAV report designers
	NAV report types
	Report types summarized
	Report naming

	Report components – Overview
	Report structure
	Report data overview
	Report Layout overview

	Report data flow
	Report components – Detailed
	C/SIDE Report properties
	SQL Server Report Builder – Report properties
	Report triggers
	Request Page Properties
	Request page triggers
	DataItem properties
	DataItem triggers

	Creating a Report in NAV 2015
	Learn by experimentation
	Report building – Phase 1
	Report building – Phase 2
	Report building – Phase 3
	Modifying an existing report with Report Designer or Word
	Runtime rendering
	Inheritance

	Interactive report capabilities
	Interactive sorting
	Interactive visible/not visible

	Request page
	Add a Request Page option

	Processing-Only reports
	Creative report plagiarism and patterns

	Summary
	Review questions

	Chapter 6: Introduction to C/SIDE and C/AL
	Understanding C/SIDE
	Object Designer
	Starting a new object
	Query Designer
	XMLport Designer
	MenuSuite Designer
	Object Designer Navigation
	Importing objects

	Text objects
	Some useful practices
	Some C/AL naming conventions
	Variables

	C/SIDE programming
	Non-modifiable functions
	Modifiable functions
	Custom functions

	C/AL syntax
	Assignment and Punctuation
	Expressions
	Operators

	Frequently used C/AL functions
	MESSAGE function
	The ERROR function
	The CONFIRM function
	The STRMENU function
	Record functions
	FIND functions

	Conditional statements
	The BEGIN–END compound statement
	The IF–THEN–ELSE statement

	Indenting code

	Some simple coding modifications
	Adding field validation to a table
	Adding code to a report
	Lay out the new Report Heading
	Save and test
	Look up Related table data
	Lay out the new report Body
	Save and test
	Handling User entered report options
	Defining the Request Page

	Finishing the processing code
	Test the completed report
	Output to Excel

	Summary
	Review questions

	Chapter 7: Intermediate C/AL
	C/AL Symbol Menu
	Internal documentation

	Validation functions
	TESTFIELD
	FIELDERROR
	INIT
	VALIDATE

	Date and Time functions
	TODAY, TIME, and CURRENTDATETIME functions
	The WORKDATE function
	DATE2DMY function
	DATE2DWY function
	DMY2DATE and DWY2DATE functions
	CALCDATE function

	Data conversion and formatting functions
	ROUND
	FORMAT function
	EVALUATE function

	FlowField and SumIndexField functions
	CALCFIELDS function
	SETAUTOCALCFIELDS function
	CALCSUMS function
	CALCFIELDS and CALCSUMS comparison

	Flow control
	REPEAT-UNTIL
	WHILE-DO
	FOR-TO or FOR-DOWNTO
	CASE-ELSE statement
	WITH-DO statement
	QUIT, BREAK, EXIT, and SKIP functions
	QUIT function
	BREAK function
	EXIT function
	SKIP function

	Input and Output functions
	NEXT function with FIND or FINDSET
	INSERT function
	MODIFY function
	Rec and xRec

	The DELETE function
	The MODIFYALL function
	The DELETEALL function

	Filtering
	The SETFILTER function
	COPYFILTER and COPYFILTERS functions
	GETFILTER and GETFILTERS functions
	The FILTERGROUP function
	MARK function
	CLEARMARKS function
	MARKEDONLY function
	RESET function

	InterObject communication
	Communication via data
	Communication through function parameters
	Communication via object calls

	Enhancing the WDTU application
	Modify Table Fields
	Add Validation logic
	Creating the Playlist Subform page
	Creating a function for our Factbox
	Creating a Factbox page

	Summary
	Review questions

	Chapter 8: Advanced NAV Development Tools
	NAV process flow
	Initial setup and data preparation
	Transaction entry
	Testing and posting the Journal batch
	Utilizing and maintaining the data
	Data maintenance

	Role Center pages
	The Role Center structure
	The Role Center activities page
	Cue Groups and Cues
	Cue source table
	Cue Group Actions

	System Part
	Page Parts
	Page Parts not visible
	Page Part Charts
	Page Parts for user data

	The Navigation Pane and Action menus
	Action Designer
	Create a WDTU Role Center Ribbon
	The Navigation Pane

	XMLports
	XMLport components
	XMLport properties
	XMLport triggers
	XMLport data lines
	XMLport line properties
	The Element or Attribute
	XMLport line triggers
	XMLport Request Page

	Web services
	Exposing a web service
	Publishing a Web Service
	Enabling web services
	Determining what was published
	XMLport – a web services integration example for WDTU

	Summary
	Review questions

	Chapter 9: Successful Conclusions
	Creating new C/AL routines
	Callable functions
	Codeunit 358 – Date FilterCalc
	Codeunit 359 – Period Form Management
	Codeunit 365 – Format Address
	Codeunit 396 – NoSeriesManagement
	Function models to review and use

	Management codeunits

	Multi-language system
	Multi-currency system
	Navigate
	Debugging in NAV 2015
	Text Exports of Objects
	Dialog function debugging techniques
	Debugging with MESSAGE and CONFIRM
	Debugging with DIALOG
	Debugging with text output
	Debugging with ERROR

	The NAV 2015 Debugger
	Activating the Debugger
	Attaching the Debugger to a Session
	Creating Break Events
	The Debugger window
	Changing code while debugging

	C/SIDE Test-driven development
	Other Interfaces
	Automation Controller
	Linked Data Sources

	NAV Application Server (NAS)
	Client Add-ins
	Client Add-in construction
	WDTU Client Add-in
	Client Add-in comments

	Customizing Help
	NAV development projects – general guidance
	Knowledge is key
	Data-focused design
	Defining the needed data views
	Designing the data tables
	Designing the user data access interface
	Designing the data validation
	Data design review and revision

	Designing the Posting processes
	Designing the supporting processes
	Double-check everything

	Design for efficiency
	Disk I/O
	Locking

	Updating and upgrading
	Design for updating
	Customization project recommendations
	Testing
	Deliverables
	Finishing the project

	Plan for upgrading
	Benefits of upgrading

	Coding considerations
	Good documentation
	Low-impact coding

	Supporting material
	Summary
	Review questions

	Appendix: Review answers
	Index

