
Pro Entity Framework
Core 2 for ASP.NET

Core MVC

Adam Freeman

Pro Entity Framework Core 2 for ASP.NET Core MVC

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-3434-1 ISBN-13 (electronic): 978-1-4842-3435-8
https://doi.org/10.1007/978-1-4842-3435-8

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484234341. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Library of Congress Control Number: 2018939926

Copyright © 2018 by Adam Freeman

Contents

 ■Part I: Introducing Entity Framework Core 2 �������������������������������������� 1

 ■Chapter 1: Entity Framework Core in Context ��� 3

Understanding Entity Framework Core �� 3

About This Book ��� 4
What Do You Need to Know? �� 4

What Software Do You Need? ��� 4

What If You Don’t Want to Use Windows? ��� 4

What Is the Structure of This Book? ��� 4

Part 1: Introducing Entity Framework Core 2 �� 5

Part 2: Entity Framework Core 2 in Detail ��� 5

Part 3: Advanced Entity Framework Core 2 �� 5

Where Can You Get the Example Code? �� 5

Where Can You Get Corrections for This Book? �� 5

How Can You Contact Me? �� 5

Summary �� 5

 ■Chapter 2: Your First Entity Framework Core Application ������������������������������������� 7

Getting Ready ��� 7
Installing �NET Core �� 8

Installing Visual Studio 2017 �� 8

Creating the Project �� 10
Setting the Scene ��� 10

Creating the Project �� 11

 ■ Contents

vi

Creating the Data Model and Context Classes ��� 14

Creating the Controller and Views �� 15

Configuring Entity Framework Core ��� 19

Configuring the Connection String �� 20

Configuring the Startup Class �� 21

Preparing the Database �� 22

Testing the Application ��� 22

Summary �� 24

 ■Chapter 3: Working with Databases �� 25

Preparing for This Chapter ��� 26

Exploring the Database �� 27

Examining the Database Tables �� 29

Examining the Database Content ��� 31

Understanding SQL ��� 33

Querying Data ��� 33

Storing and Updating Data�� 42

Deleting Data �� 44

Joining Data ��� 45

Preparing the Database �� 45

Performing a Join ��� 47

Summary �� 47

 ■Chapter 4: SportsStore: A Real (Data) Application �� 49

Creating the Project �� 49

Configuring the MVC Framework �� 51

Adding the Model �� 52

Adding a Repository ��� 52

Adding a Controller and View ��� 54

Adding the Finishing Touches ��� 56

Running the Example Application ��� 58

Summary �� 59

 ■ Contents

vii

 ■Chapter 5: SportsStore: Storing Data �� 61

Preparing for this Chapter �� 61

Configuring Entity Framework Core ��� 62

Configuring Entity Framework Core Logging Messages ��� 62

Preparing the Data Model ��� 63

Defining a Primary Key Property �� 63

Creating the Database Context Class ��� 63

Updating the Repository Implementation ��� 64

Preparing the Database �� 65

Configuring the Connection String �� 65

Configuring the Database Provider and Context Class ��� 66

Creating the Database �� 68

Running the Application ��� 69

Avoiding the Query Pitfalls ��� 70

Understanding the IEnumerable<T> Pitfall �� 71

Understanding the Duplicate Query Pitfall �� 73

Common Problems and Solutions �� 78

Problems Creating or Accessing the Database ��� 78

Problems Querying Data ��� 80

Problems Storing Data �� 81

Summary �� 82

 ■Chapter 6: SportsStore: Modifying and Deleting Data ��� 83

Preparing for This Chapter ��� 83

Modifying Objects ��� 85

Updating the Repository ��� 85

Updating the Controller and Creating a View �� 86

Updating Only Changed Properties ��� 91

Performing Bulk Updates �� 92

Deleting Data �� 99

 ■ Contents

viii

Common Problems and Solutions �� 103

Objects Are Not Updated or Deleted ��� 103

The “Reference Not Set to an Instance of an Object” Exception �� 103

The “Instance of Entity Type Cannot be Tracked” Exception��� 104

The “Property Has a Temporary Value” Exception �� 104

Updates Result in Zero Values �� 104

Summary �� 104

 ■Chapter 7: SportsStore: Expanding the Model ��� 105

Preparing for This Chapter ��� 105

Creating a Data Model Relationship ��� 107

Adding a Data Model Class ��� 108

Creating the Relationship ��� 108

Updating the Context and Creating the Repository ��� 109

Creating and Applying a Migration ��� 111

Creating a Controller and View ��� 111

Populating the Database with Categories��� 115

Using a Data Relationship �� 116

Working with Related Data ��� 116

Selecting a Category for a Product ��� 118

Creating and Editing Products with Categories �� 120

Adding Support for Orders�� 122

Creating the Data Model Classes �� 122

Creating the Repository and Preparing the Database��� 123

Creating Controllers and Views��� 125

Storing Order Data �� 131

Common Problems and Solutions �� 133

The “ALTER TABLE conflicted with the FOREIGN KEY” Exception�� 133

The “UPDATE Conflicted with the FOREIGN KEY” Exception ��� 134

The “The Property Expression ‘x => x�<name>’ is Not Valid” Exception ��� 134

The “Type of Navigation Property <name> Does Not Implement
ICollection<OrderLine>” Exception �� 134

 ■ Contents

ix

The “The Property <name> is Not a Navigation Property of Entity Type <name>” Exception ����������� 134

The “Invalid Object Name <name>” Exception �� 134

Objects Are Deleted Instead of Being Updated ��� 135

The Class Name for Related Data Is Displayed in a View ��� 135

Summary �� 135

 ■Chapter 8: SportsStore: Scaling Up ��� 137

Preparing for This Chapter ��� 137

Creating a Seed Data Controller and View �� 137

Scaling Up Data Presentation ��� 142

Adding Support for Pagination �� 142

Adding Search and Ordering Support ��� 148

Applying the Data Presentation Features to Categories ��� 152

Indexing the Database �� 155

Creating and Applying Indexes ��� 157

Common Problems and Solutions �� 159

Queries for Pages Are Too Slow �� 159

Applying the Index Migration Times Out ��� 159

Creating an Index Does Not Improve Performance ��� 160

Summary �� 160

 ■Chapter 9: SportsStore: Customer Features �� 161

Preparing for This Chapter ��� 161

Removing the Timing Statements ��� 161

Adding a View Import�� 162

Modifying the Data Model ��� 162

Adding Product Seed Data �� 163

Preparing the Database �� 166

Displaying Products to the Customer ��� 167

Preparing the Data Model ��� 167

Creating the Store Controller, Views, and Layout �� 169

Testing the Store Display �� 173

 ■ Contents

x

Adding the Shopping Cart �� 174

Enabling Persistent Session Data ��� 174

Creating the Cart Model Class �� 177

Creating the Controller and Views �� 178

Testing the Ordering Process �� 183

Common Problems and Solutions �� 183

Clicking a Page Button Manages the Wrong Data Type �� 183

Clicking a Page Button Has No Effect ��� 184

The “Cannot Insert Explicit Value for Identity Column” Exception �� 184

Session Objects Are Null ��� 184

Session Objects Are Lost or Inconsistently Available�� 184

Summary �� 184

 ■Chapter 10: SportsStore: Creating a RESTful Web Service �������������������������������� 185

Preparing for This Chapter ��� 185

Creating a Web Service �� 186

Creating the Repository �� 186

Creating the API Controller ��� 188

Testing the Web Service ��� 190

Projecting a Result to Exclude Null Navigation Properties ��� 190

Including Related Data in a Web Service Response ��� 192

Querying for Multiple Objects ��� 195

Completing the Web Service �� 198

Updating the Controller ��� 200

Common Problems and Solutions �� 202

Null Property Values When Storing or Updating Objects ��� 202

Slow Web Service Requests ��� 202

The “Cannot Insert Explicit Value for Identity Column” Exception �� 202

Summary �� 202

 ■ Contents

xi

 ■Part II: Entity Framework Core 2 in Detail �������������������������������������� 203

 ■Chapter 11: Working with Entity Framework Core �� 205

Creating the ASP�NET Core MVC Project ��� 206

Creating the Data Model Class ��� 207

Configuring Services and Middleware �� 208

Adding a Controller and View ��� 209

Adding the Bootstrap CSS Framework ��� 210

Configuring the HTTP Port �� 211

Running the Example Application ��� 212

Adding and Configuring Entity Framework Core �� 213

Adding the NuGet Package ��� 213

Creating the Database Context Class ��� 214

Preparing the Entity Class �� 214

Updating the Controller ��� 215

Configuring the Database Provider ��� 216

Configuring Entity Framework Core Logging �� 219

Implementing the Repository Pattern��� 223

Defining the Repository Interface and Implementation Class �� 224

Avoiding the IEnumerable vs IQueryable Pitfall �� 226

Hiding the Data Operations ��� 230

Completing the Example MVC Application�� 232

Completing the Repository ��� 233

Adding the Action Methods ��� 234

Updating and Adding Views �� 235

Summary �� 237

 ■Chapter 12: Performing Data Operations ��� 239

Preparing for This Chapter ��� 240

Starting the Example Application ��� 241

Reading Data �� 242

Reading an Object by Key ��� 242

 ■ Contents

xii

Querying All Objects ��� 246

Querying for Specific Objects ��� 247

Storing New Data ��� 252

Understanding Key Assignment �� 253

Updating Data ��� 254

Updating a Complete Object ��� 254

Querying the Existing Data Before Updating �� 256

Updating in a Single Database Operation ��� 258

Deleting Data �� 262

Summary �� 264

 ■Chapter 13: Understanding Migrations ��� 265

Preparing for This Chapter ��� 266

Understanding Migrations �� 267

Working with the Initial Migration �� 267

Examining the Migration SQL ��� 271

Applying the Migration ��� 272

Seeding the Database and Running the Application ��� 273

Creating Additional Migrations ��� 274

Adding Another Property to the Data Model ��� 276

Managing Migrations ��� 277

Listing Migrations ��� 278

Applying All Migrations ��� 278

Updating to a Specific Migration �� 279

Removing a Migration ��� 280

Resetting the Database �� 281

Working with Multiple Databases ��� 281

Extending the Data Model��� 282

Configuring the Application �� 283

Creating and Applying Migrations ��� 285

 ■ Contents

xiii

Managing Migrations Programmatically �� 286

Creating the Migration Manager Class ��� 286

Creating the Migrations Controller and View �� 289

Configuring the Application �� 291

Running the Migrations Manager ��� 291

Seeding Databases Programmatically ��� 292

Creating a Seeding Tool �� 294

Seeding During Startup �� 296

Summary �� 298

 ■Chapter 14: Creating Data Relationships ��� 299

Preparing for This Chapter ��� 300

Creating a Relationship �� 300

Adding a Navigation Property ��� 301

Creating the Migration �� 302

Querying and Displaying the Related Data ��� 304

Updating the View to Display Related Data �� 308

Preparing the Database �� 310

Creating and Updating Related Data �� 312

Creating a New Supplier When Creating a New Product �� 314

Updating a Supplier when Updating a Product ��� 316

Deleting Related Data ��� 318

Creating a Required Relationship ��� 321

Creating a Foreign Key Property ��� 321

Dropping the Database and Preparing the Seed Data �� 323

Updating and Seeding the Database �� 324

Understanding the Required Relationship Delete Operation �� 325

Querying for Multiple Relationships ��� 327

Updating and Seeding the Database �� 328

Querying the Chain of Navigation Properties �� 329

Summary �� 331

 ■ Contents

xiv

 ■Chapter 15: Working with Relationships Part 1 �� 333

Preparing for This Chapter ��� 333

Directly Accessing Related Data��� 334

Promoting Related Data �� 335

Accessing Related Data Using a Type Parameter ��� 338

Completing a Data Relationship ��� 343

Querying Related Data in a One-to-Many Relationship �� 344

Working with Related Data in a One-to-Many Relationship ��� 353

Updating Related Objects ��� 355

Creating New Related Objects �� 358

Changing Relationships �� 362

Summary �� 369

 ■Chapter 16: Working with Relationship Part 2 �� 371

Preparing for This Chapter ��� 371

Completing a One-to-One Relationship �� 372

Defining the Navigation Property �� 372

Selecting the Dependent Entity Class ��� 373

Creating and Applying the Migration �� 374

Working with One-to-One Relationships �� 375

Querying Related Data in a One-to-One Relationship ��� 375

Creating and Updating Related Objects �� 377

Changing One-to-One Relationships �� 380

Defining Many-to-Many Relationships ��� 389

Creating the Junction Class �� 390

Completing the Many-to-Many Relationship �� 391

Preparing the Application ��� 392

Querying for Many-to-Many Data ��� 394

Managing Many-to-Many Relationships ��� 397

Summary �� 402

 ■ Contents

xv

 ■Chapter 17: Scaffolding an Existing Database �� 403

Preparing for This Chapter ��� 404

Understanding the Example Existing Database �� 404

Connecting to the Database Server �� 405

Creating the Database �� 405

Creating the ASP�NET Core MVC Project ��� 411

Testing the Example Application ��� 415

Scaffolding an Existing Database ��� 416

Performing the Scaffold Process �� 416

Using a Scaffolded Data Model in the ASP�NET Core MVC �� 419

Responding to Database Changes �� 423

Modifying the Database �� 424

Updating the Data Model �� 425

Updating the Context Class��� 426

Updating the Controllers and Views �� 426

Adding Persistent Data Model Features ��� 428

Summary �� 430

 ■Chapter 18: Manually Modeling a Database �� 431

Preparing for This Chapter ��� 432

Creating a Manual Data Model ��� 432

Creating the Context and Entity Classes ��� 433

Creating the Controller and View �� 434

Understanding the Basic Data Model Conventions ��� 436

Overriding the Data Model Conventions ��� 437

Modeling Relationships �� 443

Completing the Data Model �� 449

Using the Manually Created Data Model �� 451

Querying Data in a Manually Created Data Model �� 452

Updating Data in a Manually Created Data Model �� 455

Summary �� 461

 ■ Contents

xvi

 ■Part III: Advanced Entity Framework Core 2 ���������������������������������� 463

 ■Chapter 19: Working with Keys ��� 465

Preparing for This Chapter ��� 466

Creating the Data Model ��� 467

Creating the Controller and Views �� 468

Configuring the Application �� 471

Creating the Database and Testing the Application �� 474

Managing Key Generation �� 475

Understanding the Identity Strategy ��� 475

Understanding the Hi-Lo Key Strategy ��� 476

Working with Natural Keys ��� 479

Ensuring Unique Values for Natural Keys ��� 480

Creating an Alternate Key ��� 482

Using Natural Keys as Primary Keys �� 487

Creating Composite Keys ��� 490

Summary �� 495

 ■Chapter 20: Queries ��� 497

Preparing for This Chapter ��� 498

Managing Change Tracking for Query Results ��� 500

Removing Individual Objects from Change Tracking �� 502

Changing the Default Change Tracking Behavior �� 503

Using a Query Filter �� 505

Overriding a Query Filter��� 509

Querying Using Search Patterns �� 512

Making Asynchronous Queries ��� 515

Explicitly Compiling Queries ��� 518

Avoiding the Client Evaluation Pitfall �� 520

Throwing a Client Evaluation Exception ��� 523

Summary �� 525

 ■ Contents

xvii

 ■Chapter 21: Storing Data ��� 527

Preparing for This Chapter ��� 528

Specifying SQL Data Types ��� 531

Specifying a Maximum Length ��� 533

Updating the Database ��� 534

Validating or Formatting Data Values ��� 536

Avoiding the Backing Field Selective Update Pitfall ��� 539

Hiding Data Values from the MVC Application �� 543

Accessing Shadow Property Values �� 544

Including Shadow Properties in Queries ��� 545

Setting Default Values �� 546

Displaying the Default Value ��� 548

Detecting Concurrent Updates ��� 551

Using Concurrency Tokens �� 552

Using a Row Version to Detect Concurrent Updates ��� 557

Summary �� 562

 ■Chapter 22: Deleting Data �� 563

Preparing for This Chapter ��� 563

Understanding Delete Constraints �� 568

Configuring the Delete Behavior ��� 570

Using the Cascade Delete Behavior ��� 571

Setting Foreign Keys to Null ��� 573

Relying on the Database Server to Change Foreign Keys �� 574

Relying on Entity Framework Core to Update Foreign Keys ��� 576

Taking Control of the Delete Operation ��� 581

Re-creating the Cascade Behavior ��� 581

Re-creating the Set Null Behavior �� 582

Reinstating the Soft-Delete Feature ��� 583

Summary �� 587

 ■ Contents

xviii

 ■Chapter 23: Using Database Server Features �� 589

Preparing for This Chapter ��� 590

Using SQL Directly �� 594

Querying Using SQL �� 594

Calling Stored Procedures or Other Operations �� 607

Using Server-Generated Values �� 611

Using Database Server–Generated Default Values ��� 611

Incorporating Sequential Values ��� 616

Computing Values in the Database ��� 619

Modeling Automatically Generated Values ��� 623

Summary �� 628

 ■Chapter 24: Using Transactions ��� 629

Preparing for This Chapter ��� 630

Understanding the Default Behavior �� 633

Performing Independent Changes �� 634

Disabling Automatic Transactions ��� 636

Using Explicit Transactions ��� 638

Including Other Operations in a Transaction ��� 640

Changing the Transaction Isolation Level ��� 642

Summary �� 645

Index ��� 647

PART I

Introducing Entity
Framework Core 2

The first part of this book is designed to help you understand broadly the foundational ideas of
Entity Framework Core 2 development and to experience in practice what the framework is like
to use in an ASP.NET Core MVC project.

3© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_1

CHAPTER 1

Entity Framework Core in Context

Entity Framework Core—also known as EF Core—is an object-relational mapping (ORM) package produced
by Microsoft that allows .NET Core applications to store data in relational databases.

Understanding Entity Framework Core
Entity Framework Core has one key task: storing.NET objects in a database and retrieving them again later.
Put another way, Entity Framework Core acts as the bridge between an ASP.NET Core MVC application and
a database, as shown in Figure 1-1.

Figure 1-1. Entity Framework Core in context

Storing .NET objects in a database can be a surprisingly complex process. Databases don’t exist in
isolation. They are created and managed by database servers, which are specialized applications focused
solely on the storage and management of data. Database servers provide the persistent storage for most
applications, and the most popular database servers have been under development for decades, resulting in
high-performance and robust software that is packed with features. Database servers support a core set of
common features, but they differentiate themselves with custom additions, and getting the best results from
a database server means taking advantage of them.

There are different types of database server available; the kind that Entity Framework Core works with is
called a relational database server, also known as a relational database management system (RDBMS).
A relational database server manages relational databases, where data is stored as rows in tables, not unlike
a spreadsheet. Relational database servers typically accept commands expressed in the Structured Query
Language (SQL), which allows data operations—such as storing or deleting data—to be expressed. There is a
SQL standard, but database servers use slightly different dialects, especially when it comes to accessing the
nonstandard features.

https://doi.org/10.1007/978-1-4842-3435-8_1

Chapter 1 ■ entity Framework Core in Context

4

 ■ Note i am simplifying here for the sake of brevity. the world of databases is filled with distinctions between
different types of data and different types of databases and database servers, none of which has much bearing
on using aSp.net Core mVC or entity Framework Core.

To store .NET objects in a database, Entity Framework Core has to be able to translate objects into a
form that can be stored in a database table and formulate a SQL command that the database server can
process. To deal with the differences between database servers, Entity Framework Core relies on a database
provider, which is responsible for communicating with the database and formulating the SQL commands.

To retrieve .NET objects from the database, Entity Framework Core has to be able to reverse the process.
It has to be able to create a SQL query that will ask the database server for the data values that represent the
object and use them to populate the properties of a .NET object. To make this process as natural as possible,
Entity Framework Core supports LINQ for querying the database, which makes working with collections of
objects stored in a database similar to working with collections of objects in memory.

About This Book
In this book, I explain how to use Entity Framework Core in ASP.NET Core MVC applications. I show you the
different ways that Entity Framework Core can be added to a project and the pitfalls that await the unwary.
Entity Framework Core is a powerful, tool but it is important to pay attention to the details; otherwise, you
will end up with an application that doesn’t perform well or doesn’t behave as expected.

What Do You Need to Know?
To get the most from this book, you should already be familiar with ASP.NET Core MVC development. You
will struggle if you don’t already know how controllers and actions work and how Razor views behave. If you
are not familiar with ASP.NET Core MVC, then consult https://docs.microsoft.com/en-us/aspnet/core
or my book Pro ASP.NET Core MVC 2, published by Apress.

What Software Do You Need?
To follow the examples in this book, you will need a PC running Windows, the .NET Core SDK, and the latest
version of Visual Studio. With the exception of Windows, all the tools that I use in this book are available
without charge, and I explain how to set up your development environment in Chapter 2.

What If You Don’t Want to Use Windows?
I have relied on Windows and Visual Studio throughout this book because that is what most readers use, and
being able to use LocalDB—the Windows-only developer version of SQL Server—makes the examples more
predictable and reliable. With a little effort, you can run all of the examples in this book on any platform that
.NET Core supports, although you will need to install the full SQL Server product (or use Docker containers).
Contact me at adam@adam-freeman.com if you want to use Linux or macOS, and I will try to help you get started.

What Is the Structure of This Book?
This book is split into three parts, each of which covers a set of related topics.

https://docs.microsoft.com/en-us/aspnet/core
http://dx.doi.org/10.1007/978-1-4842-3435-8_2

Chapter 1 ■ entity Framework Core in Context

5

Part 1: Introducing Entity Framework Core 2
The best way to learn is by doing, and in this part of the book, you get a high-level view of how Entity
Framework Core works and how it integrates with ASP.NET Core MVC. In Chapter 2, you create your first
ASP.NET Core MVC application that uses Entity Framework Core to store data. In Chapter 3, I provide a
primer for working with databases and using SQL so that you can understand how Entity Framework Core
works and follow the examples throughout this book. Chapters 4–10 are given over to the development
of a project called SportsStore, through which I show you a realistic development process, touching on
the most important Entity Framework Core features and explaining where in the book each of them is
described in detail.

Part 2: Entity Framework Core 2 in Detail
In Part 2, I describe the core features of Entity Framework Core that you will use on a day-to-day basis in
your ASP.NET Core MVC projects. I show you how each feature works, explain the role it plays, and describe
alternative techniques when they are available.

Part 3: Advanced Entity Framework Core 2
In Part 3, I describe the advanced features that Entity Framework Core provides. These are the features that
you are unlikely to need often but that are invaluable when the default Entity Framework Core behavior
doesn’t solve your problem.

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/apress/
pro-ef-core-2-for-asp.net-core-mvc. The download is available without charge and contains all of the
classes, views, and other assets required to follow the examples without having to type in all of the code.

Where Can You Get Corrections for This Book?
You can find errata for this book at https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

How Can You Contact Me?
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for this
book to see whether it contains a solution to your problem before contacting me.

Summary
In this chapter, I introduced Entity Framework Core and explained the role it plays and described the
structure and contents of this book. In the next chapter, you will see ASP.NET Core MVC and Entity
Framework Core in action in a simple demonstration of how these two powerful tools can work together.

http://dx.doi.org/10.1007/978-1-4842-3435-8_2
http://dx.doi.org/10.1007/978-1-4842-3435-8_3
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
http://dx.doi.org/10.1007/978-1-4842-3435-8_10
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

7© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_2

CHAPTER 2

Your First Entity Framework
Core Application

The best way to get started with Entity Framework Core is to jump right in and use it. In this chapter, I create
a simple application using Entity Framework Core and ASP.NET Core MVC so you can see how everything
fits together. To keep the example simple, I skip over some of the details that are described in later chapters.

Getting Ready
To prepare for the example in this chapter—and the ones in the chapters that follow—you will need to install
some development tools. There are zero-cost versions of all of the tools required for ASP.NET Core MVC and
Entity Framework Core development, and it is these versions that I use throughout this book.

UPDATES TO THIS BOOK

Microsoft has an active development schedule for .NET Core, ASP.NET Core MVC, and Entity Framework
Core, which means that there may be new releases available by the time you read this book. It doesn’t
seem fair to expect you to buy a new book every few months, especially since most changes are
relatively minor.

Instead, I will post free updates to the GitHub repository for this book (https://github.com/apress/
pro-ef-core-2-for-asp.net-core-mvc) for breaking changes caused by minor releases.

This kind of update is an experiment for me (and for Apress), and I don’t yet know what form those
updates may take—not least because I don’t know what the future major releases of ASP.NET Core MVC
or Entity Framework Core will contain—but the goal is to extend the life of this book by supplementing
the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how
long I will produce them before folding them into a new edition of this book. Please keep an open mind
and check the repository for this book when new ASP.NET Core MVC versions are released. If you have
ideas about how the updates could be improved, then e-mail me at adam@adam-freeman.com and let
me know.

https://doi.org/10.1007/978-1-4842-3435-8_2
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

8

Installing .NET Core
The .NET Core Software Development Kit (SDK) includes the runtime and development tools needed
to build and run .NET projects. To install the .NET Core SDK on Windows, download the installer from
https://www.microsoft.com/net/download/thank-you/dotnet-sdk-2.1.4-windows-x64-installer.
This URL is for the 64-bit .NET Core SDK version 2.1.4, which is the version that I use throughout this book
and which you should install to ensure that you get the expected results from the examples. (Microsoft also
publishes a runtime-only installer, but this does not contain the tools that are required for this book.)

Run the installer and, once the install process is complete, open a new PowerShell window or command
prompt and run the command shown in Listing 2-1 to check that .NET Core is working.

Listing 2-1. Testing .NET Core

dotnet --version

The output from this command will display the version of the latest version of the .NET Core runtime
that is installed. If you have installed only the version specified earlier, this will be 2.1.4.

Installing Visual Studio 2017
Visual Studio is the traditional development environment for ASP.NET Core and Entity Framework Core
projects. Download the installer from https://www.visualstudio.com/vs. There are different editions of
Visual Studio 2017 available, but the free Community edition is sufficient for the examples in this book. Run
the installer and ensure that the .NET Core Cross-Platform Development workload is selected, as shown in
Figure 2-1.

Figure 2-1. Selecting the Visual Studio packages

https://www.microsoft.com/net/download/thank-you/dotnet-sdk-2.1.4-windows-x64-installer
https://www.visualstudio.com/vs

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

9

This workload includes the LocalDB version of SQL Server that I use throughout this book, along with
the Visual Studio features required for ASP.NET Core MVC and Entity Framework Core development. Click
the Install button to begin the process of downloading and installing the Visual Studio features.

Adding the Visual Studio Extensions
Two Visual Studio extensions are essential for working on ASP.NET Core MVC projects. The first is called
Razor Language Service, and it provides IntelliSense support for tag helpers when editing Razor views. The
second is called Project File Tools, and it provides automatic completion for editing .csproj files, which
simplifies the process of adding NuGet packages to projects. (You may find that these extensions are already
installed since Microsoft changes the ones that are added by default from time to time.)

Select Extensions and Updates from the Visual Studio Tools menu, select the Online section, and use
the search box to locate the extensions. Click the Download button, as shown in Figure 2-2, to download the
extension files.

Figure 2-2. Downloading Visual Studio extensions

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

10

Click the Close button to dismiss the list of extensions and then close Visual Studio, which will trigger
the installation process for the extensions you downloaded. You will be prompted to accept the changes that
will be made and the license terms, as shown in Figure 2-3. Click the Modify button to install the extensions.
Once the process has completed, you can start Visual Studio and begin development.

Creating the Project
To get started with Entity Framework Core, I will show how to create a simple data-entry application that
stores its data in a database. I am going to go through the process quickly, without going into too much
detail, just to give you a sense of how ASP.NET Core MVC and Entity Framework Core can work together. But
don’t worry: everything that I do in this chapter is explained in depth in later chapters.

Setting the Scene
Imagine that a friend has decided to host a New Year’s Eve party and that she has asked me to create a web
app that allows her invitees to electronically RSVP. She has asked for these four key features:

•	 A home page that shows information about the party

•	 A form that can be used to RSVP

•	 Validation for the RSVP form, which will display a thank-you page

•	 A summary page that shows who is coming to the party

This is the same data-entry app that I created in my Pro ASP.NET MVC Core 2 book, and the difference
for this book is that I am going to store the responses in a database using Entity Framework Core.

Figure 2-3. Installing Visual Studio extensions

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

11

Creating the Project
To create the project, start Visual Studio and select New ➤ Project from the File menu. Select the ASP.NET
Core Web Application project template, set the Name field to PartyInvites, and click the Browse button to
select a convenient location to store the project, as shown in Figure 2-4.

 ■ Tip You can download this project from the GitHub repository for this book, https://github.com/apress/
pro-ef-core-2-for-asp.net-core-mvc.

Figure 2-4. Creating the example project

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

12

Click the OK button to continue the project setup. Ensure that .NET Core and ASP.NET Core 2.0 are
selected at the top of the window and click the Empty template, as shown in Figure 2-5. Visual Studio
includes templates that set up ASP.NET Core MVC and Entity Framework Core in a project, but the result
hides some useful details.

Click the OK button and Visual Studio will create the PartyInvites project with a basic configuration that
sets up ASP.NET Core but doesn’t configure the MVC framework or Entity Framework Core.

Adding the Bootstrap CSS Framework
I use the Bootstrap CSS framework throughout this book to style the HTML elements. To add Bootstrap to
the project, right-click the PartyInvites item in the Solution Explorer, select Add ➤ New Item from the pop-
up menu, and use the JSON File template (found in the ASP.NET Core ➤ Web ➤ General category) to create
a file called .bowerrc with the content shown in Listing 2-2. (It is important to pay attention to this file name:
it starts with a period, contains the letter r twice and has no file extension).

Listing 2-2. The Contents of the .bowerrc File in the PartyInvites Folder

{
 "directory": "wwwroot/lib"
}

Figure 2-5. Configuring the ASP.NET Core project

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

13

Use the JSON File template again to create a file called bower.json and add the content shown in
Listing 2-3.

Listing 2-3. The Contents of the bower.json File in the PartyInvites Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0"
 }
}

When you save the changes to the file, Visual Studio will download the new version of the Bootstrap
package and install it in the wwwroot/lib folder.

Configuring the HTTP Port
Changing the port that will be used by ASP.NET Core to receive requests will make the examples easier to
follow. Edit the launchSettings.json file in the Properties folder and change the URLs as shown in
Listing 2-4.

Listing 2-4. Changing the HTTP Ports in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "PartyInvites": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000/"
 }
 }
}

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

14

The URLs in this file are used to configure the application when it is started using IIS Express and when
it is run from the command line. All of the examples in this book are run from the command line so that
logging messages can easily be seen.

Creating the Data Model and Context Classes
When you are creating an application that uses both ASP.NET Core MVC and Entity Framework Core, the
data model becomes especially important. To create the data model class for the example application, I
added a Models folder to the project, created within it a file called GuestResponse.cs, and added the code
shown in Listing 2-5.

Listing 2-5. The Contents of the GuestResponse.cs File in the Models Folder

namespace PartyInvites.Models {

 public class GuestResponse {

 public long Id { get; set; }

 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
 }
}

Entity Framework Core is able to store instances of regular C# classes, just as long as they have a
property whose value uniquely identifies each object, known as the primary key property. In the case of the
GuestResponse class, the Id property is the primary key property.

Entity Framework Core features are provided by a database context class, which identifies the data
model classes to Entity Framework Core and is used to access the data in the database. To create the context
class, I added a file called DataContext.cs to the Models folder and added the code shown in Listing 2-6.

Listing 2-6. The Contents of the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace PartyInvites.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> options)
 : base(options) { }

 public DbSet<GuestResponse> Responses { get; set; }
 }
}

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

15

When you create a database context class, it is important that you include a constructor that receives
a configuration object and passes it to the constructor of the base class. For each data model class that you
want to access, the context class defines a property that returns a DbSet<T> object, and it is through this
object that data is stored and retrieved. I defined a property that returns a DbSet<GuestResponse> object so I
can store and retrieve GuestResponse objects.

Creating the Controller and Views
To provide the application with a controller, I created the Controllers folder and added to it a file called
HomeController.cs with the code shown in Listing 2-7.

Listing 2-7. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) => context = ctx;

 public IActionResult Index() => View();

 public IActionResult Respond() => View();

 [HttpPost]
 public IActionResult Respond(GuestResponse response) {
 context.Responses.Add(response);
 context.SaveChanges();
 return RedirectToAction(nameof(Thanks),
 new { Name = response.Name, WillAttend = response.WillAttend });
 }

 public IActionResult Thanks(GuestResponse response) => View(response);

 public IActionResult ListResponses() =>
 View(context.Responses.OrderByDescending(r => r.WillAttend));
 }
}

The controller receives a DataContext object as a constructor parameter and uses it to access the data
managed by Entity Framework Core. The DbSet<GuestResponse> object returned by the database context
class’s Responses property implements the IEnumerable<GuestResponse> interface and will automatically
query the database for the stored GuestResponse objects when it is enumerated.

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

16

The DbSet<GuestResponse> object is also used to store objects. The Add method is used to give Entity
Framework Core an object that you want to store, and the SaveChanges method performs the update.

 ■ Tip In more complex projects, I recommend using the repository pattern to access the Entity Framework
Core features, as explained in Chapter 10. For the simple project in this chapter, the controller is working
directly with the database context class.

I created the Views/Home folder and added to it a file called _Layout.cshtml with the content shown in
Listing 2-8. This layout will provide the common layout for all of the other views in this chapter and includes
a link element that includes the Bootstrap CSS file.

Listing 2-8. The Contents of the _Layout.cshtml File in the Views/Home Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Party Invites</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 @RenderBody()
</body>
</html>

To use the layout by default in the application’s view, I added a file called _ViewStart.cshtml in the
Views folder with the content shown in Listing 2-9.

Listing 2-9. The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

To create the view that will provide a landing page, I added a file called Index.cshtml in the Views/Home
folder with the content shown in Listing 2-10.

Listing 2-10. The Contents of the Index.cshtml File in the Views/Home Folder

<div class="text-center m-4">
 <h3>We're going to have an exciting party!</h3>
 <h4>And you are invited</h4>
 RSVP Now
</div>

http://dx.doi.org/10.1007/978-1-4842-3435-8_10

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

17

To receive details of a response from a user, I added a file called Respond.cshtml to the Views/Home
folder with the contents shown in Listing 2-11.

Listing 2-11. The Contents of the Respond.cshtml File in the Views/Home Folder

@model GuestResponse

<div class="bg-primary p-2 text-white text-center">
 <h2>RSVP</h2>
</div>

<form asp-action="Respond" method="post" class="m-4">
 <div class="form-group">
 <label>Your Name</label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label>Your Email</label>
 <input asp-for="Email" class="form-control" />
 </div>
 <div class="form-group">
 <label>Your Phone Number</label>
 <input asp-for="Phone" class="form-control" />
 </div>
 <div class="form-group">
 <label>Will You Attend?</label>
 <select asp-for="WillAttend" class="form-control">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </div>

 <div class="text-center">
 <button type="submit" class="btn btn-primary">Submit RSVP</button>
 </div>
</form>

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

18

To confirm the responses provided by users, I added a file called Thanks.cshtml to the Views/Home
folder with the content shown in Listing 2-12.

Listing 2-12. The Contents of the Thanks.cshtml File in the Views/Home Folder

@model GuestResponse

<div class="text-center mt-3">
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 <div>
 It's great that you're coming. The drinks are already in the fridge!
 </div>
 } else {
 <div>
 Sorry to hear that you can't make it, but thanks for letting us know.
 </div>
 }
 Click <a asp-action="ListResponses">here to see who is coming.
</div>

To create the final view, I added a file called ListResponses.cshtml to the Views/Home folder with the
content shown in Listing 2-13, which lists all of the responses that the application has received.

Listing 2-13. The Contents of the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<GuestResponse>

<h3 class="bg-primary p-2 text-white text-center">Here is the list of people who have
responded</h3>

<div class="container-fluid">
 <div class="row p-1">
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Email</div>
 <div class="col font-weight-bold">Phone</div>
 <div class="col font-weight-bold">Attending</div>
 </div>
 @foreach (GuestResponse r in Model) {
 <div class="row p-1">
 <div class="col">@r.Name</div>
 <div class="col">@r.Email</div>
 <div class="col">@r.Phone</div>
 <div class="col">@(r.WillAttend == true ? "Yes" : "No")</div>
 </div>
 }
</div>

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

19

To complete the configuration for the application’s views, I added a file called _ViewImports.cshtml in
the Views folder, with the content shown in Listing 2-14.

Listing 2-14. The Contents of the _ViewImports.cshtml File in the Views Folder

@using PartyInvites.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

These statements allow the classes in the Models namespace to be used without qualification in views
and activate the tag helpers feature, which I have relied on in the views to configure some of the HTML
elements.

Configuring Entity Framework Core
When Visual Studio creates a new ASP.NET Core project, it adds almost all of the NuGet packages required
for ASP.NET Core MVC and Entity Framework Core development. One further addition is required to add
support for the command-line tools that Entity Framework Core uses to prepare databases to store data.
Right-click the PartyInvites item in the Solution Explorer, select Edit PartyInvites.csproj from the pop-
up menu, and add the element shown in Listing 2-15.

Listing 2-15. Adding a Package in the PartyInvites.csproj File in the PartyInvites Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.5" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.1" />
 </ItemGroup>

</Project>

Packages that provide command-line tools must be added using a DotNetCliToolReference element.
Visual Studio provides tools for managing NuGet packages but isn’t able to add this kind of package. When
you save the file, Visual Studio will download the package and add to the project.

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

20

Configuring the Connection String
When you use a database, you must provide a connection string, which tells Entity Framework Core how to
connect to the database and often includes additional information such as authentication credentials.
Right-click the PartyInvites item in the Solution Explorer, select Add ➤ New Item from the pop-up menu, and
select the ASP.NET Configuration File item template; make sure that the Name field is set to appsettings.json,
as shown in Figure 2-6.

Click the Add button to create the file and change the connection string as shown in Listing 2-16.

Listing 2-16. Defining the Connection String in the appsettings.json File in the PartyInvites Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=PartyInvites"
 }
}

This connection string tells Entity Framework Core to use a database called PartyInvites using
LocalDB, which was installed along with Visual Studio.

Figure 2-6. Creating an application configuration file

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

21

Configuring the Startup Class
The next step is to configure the application to set up ASP.NET Core MVC and Entity Framework Core by
adding the statements shown in Listing 2-17 to the Startup class.

Listing 2-17. Configuring the Application in the Startup.cs File in the PartyInvites Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using PartyInvites.Models;

namespace PartyInvites {

 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The changes load the settings in the appsettings.json file and use them to configure the database
context class so that it will be used by Entity Framework Core and available as a service through the
dependency injection feature, which allows other parts of the application to easily obtain a context object
and access the Entity Framework Core features.

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

22

Preparing the Database
Entity Framework Core has to create and configure a database so that it can be used to store GuestResponse
objects. This is done by creating a migration. Entity Framework Core inspects the application’s data model
and figures out how it can be stored in a relational database. The result—the migration—contains a set of
instructions that the database provider class translates into SQL commands that tell the database server to
create the database that Entity Framework Core needs. I explain how migrations work in detail in Chapter 12.

Migrations are created and applied using command-line tools. Open a new PowerShell window or
command prompt, navigate to the PartyInvites project folder (the folder that contains the bower.json and
Startup.cs files), and run the command shown in Listing 2-18.

Listing 2-18. Creating a New Migration

dotnet ef migrations add Initial

To apply the migration and create the database, run the command shown in Listing 2-19 in the
PartyInvites folder.

Listing 2-19. Applying a Migration

dotnet ef database update

Testing the Application
To start the application, run the command shown in Listing 2-20 in the PartyInvites project folder.
Although you can start applications using Visual Studio, many of the examples in this book depend on
logging messages generated by the application, and these are more easily seen when the application is
started from the command line; this is the approach that I take in all of the chapters that follow.

Listing 2-20. Starting the Application

dotnet run

http://dx.doi.org/10.1007/978-1-4842-3435-8_12

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

23

Once the application has started, open a new browser window and navigate to http://localhost:5000
to see the content shown in Figure 2-7.

Click the RSVP Now button, fill out the form, and click the Submit RSVP button. You will see the
response shown in Figure 2-8.

Figure 2-8. Creating a response

Figure 2-7. Running the example application

CHAPTEr 2 ■ Your FIrST ENTITY FrAMEwork CorE APPlICATIoN

24

Click the link to see the list of responses. You will see content similar to that shown in Figure 2-9, which
shows additional responses I created.

The GuestResponse objects that are created by the MVC model binder from the values in the HTTP
POST requests are stored in the database. When you request the list of responses, the database is queried for
the data, and Entity Framework Core uses the results to create a sequence of GuestResponse objects that are
used to generate the list.

Summary
In this chapter, I created a new ASP.NET Core project and used it to create a simple data entry application
that stores its data in a LocalDB database using Entity Framework Core. You saw how easy it is to add Entity
Framework Core to an MVC application and how few changes are required to store data persistently, at least
for a simple application. In the next chapter, I provide an overview of the tools that Visual Studio provides for
working with databases and use them to explain the most important SQL commands that Entity Framework
Core relies on.

Figure 2-9. Displaying a list of responses

25© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_3

CHAPTER 3

Working with Databases

Using Entity Framework Core makes using databases easier, but it doesn’t free the developer from
understanding how they work and how actions performed by the application are translated into SQL
commands, especially when unexpected results occur. In this chapter, I show you the tools that Visual
Studio provides for examining databases and show you how to execute different kinds of SQL commands.
You don’t need to be an expert in SQL to use Entity Framework Core, but having an understanding of the
basics can be helpful when you don’t get the outcome you intended.

CHOOSING A DATABASE SERVER AND PROVIDER PACKAGE

It is hard to go wrong when choosing a database server because all of the available options are good
products. It doesn’t matter whether you prefer commercial products or want open source or whether
you want to run your own servers or use the cloud.

If you already have a database server, perhaps because of a corporate purchasing standard or
site-licensing deal, then that’s the one to use. Entity Framework Core smooths out the differences
between database servers, and it doesn’t really matter which one you use. It certainly isn’t worth
fighting against your company’s technology standards unless you have very specific requirements.

If you don’t already have a database server, then there are plenty of good options available. Microsoft
SQL Server is the database server that I use most often because it has a wide range of pricing schemes,
including zero-cost options for developers and small projects and hosted versions available on Azure. I use
the zero-configuration developer version of SQL Server—known as LocalDB—for the examples in this book.

(I receive no reward of any kind for recommending SQL Server or any of the products I use or mention
in books. It is important to use the software I specify to follow the examples, but that doesn’t restrict
your choices in any way for real projects.)

If you prefer open source, then MySQL is an excellent choice, albeit one that is managed by Oracle,
which has a mixed open source track record. MariaDB is a fork of the MySQL project that doesn’t
involve Oracle but that aims to maintain compatibility. There are many providers that offer MySQL or its
derivatives as hosted/cloud services, including Amazon Web Services and Microsoft Azure.

Once you have chosen your database server, you can then select the database provider for use with
Entity Framework Core. Microsoft maintains a list of providers for the most popular databases at
https://docs.microsoft.com/en-us/ef/core/providers. Most provider packages are free to use,
but there are some commercial products available, too. If you want to use the Oracle database server
(the commercial product, not MySQL), then you will need to license a third-party provider since Oracle
has yet to produce its own package.

http://agilemanifesto.org/
https://docs.microsoft.com/en-us/ef/core/providers

ChApTEr 3 ■ WOrkIng WITh DATABASES

26

Preparing for This Chapter
In this chapter, I continue using the PartyInvites project created in Chapter 2. To prepare for this chapter,
open a new PowerShell window or command prompt, navigate to the PartyInvites project folder (the one
that contains the bower.json file) and run the commands shown in Listing 3-1. These commands delete and
re-create the database used by the application, which will help ensure that you get the expected results for
the examples in this chapter.

Listing 3-1. Resetting the Example Application Database

dotnet ef database drop --force
dotnet ef database update

Add the configuration statements shown in Listing 3-2 to the appsettings.json file. These statements
disable logging messages for all .NET packages except Entity Framework Core, which will make it easier to
follow the examples.

Listing 3-2. Configuring Logging Messages in the appsettings.json File in the PartyInvites Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=PartyInvites"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

This logging configuration will let you see the messages produced by Entity Framework Core that reveal
the SQL commands that are sent to the database and prevent them from being lost in a stream of other
messages.

Start the application by executing the dotnet run command in the project folder and use a browser
window to navigate to http://localhost:5000. Click the RSVP Now button and create four RSVP responses
using the values shown in Table 3-1.

Table 3-1. The Data Values Required for the Example Application

Name Email Phone WillAttend

Alice Jones alice@example.com 555-123-5678 Yes

Peter Davies peter@example.com 555-456-7890 Yes

Dora Francis dora@example.com 555-456-1234 Yes

Bob Smith bob@example.com 555-123-1234 No

When you have added the responses, navigate to http://localhost:5000/home/listresponses and
you will see the list shown in Figure 3-1.

http://dx.doi.org/10.1007/978-1-4842-3435-8_2

ChApTEr 3 ■ WOrkIng WITh DATABASES

27

Exploring the Database
Visual Studio includes a set of tools that allow you to explore the databases you work with. Select Connect
to Database from the Visual Studio Tools menu, and you will be presented with the dialog box shown in
Figure 3-2, which lets you select the type of database server you want to connect to.

Figure 3-1. Adding data to the example application

Figure 3-2. Selecting the database server type

In this book, I use LocalDB for all the examples. LocalDB is a version of Microsoft SQL Server that was
installed as part of the Visual Studio workload in Chapter 2 and is designed to be used by developers. It
implements all the key SQL Server features, but it requires no configuration and isn’t licensed for production
systems. Select Microsoft SQL Server from the list of options presented by Visual Studio and click the
Continue button.

http://dx.doi.org/10.1007/978-1-4842-3435-8_2

ChApTEr 3 ■ WOrkIng WITh DATABASES

28

The next dialog box lets you specify the details of the database server and database you want to work
with, as shown in Figure 3-3. Enter (localdb)\MSSQLLocalDB into the Server Name field and select
PartyInvites for the “Select or Enter a Database Name” field, as shown in Figure 3-3.

Figure 3-3. Selecting the database server and database

ChApTEr 3 ■ WOrkIng WITh DATABASES

29

 ■ Tip The string required to connect to LocalDB can cause confusion. The first part is localdb surrounded
by parentheses. Then there is a single \ character, followed by MS_SQL_LocalDB but without the underscores:
(localdb)\MSSQLLocalDB. An additional \ character is required when you specify connection strings in the
appsetting.json file because the backward slash has special meaning and must be escaped: (localdb)\\
MSSQLLocalDB.

Click the OK button and Visual Studio will connect to the database server and display the details
in the Server Explorer window (select View ➤ Server Explorer if the window doesn’t open). In the Data
Connections section of the display, you will see an entry for the PartyInvites, which you can expand to see
details of the database, as shown in Figure 3-4.

Figure 3-4. The database entry in the Server Explorer window

Examining the Database Tables
If you expand the Tables item, you will see two entries. The __EFMigrationsHistory table is used to keep
track of the migrations that have been applied to the database to keep it synchronized with the application’s
data model. I explain how migrations work in detail in Chapter 13, and this table isn’t of interest for this
chapter. The Responses table is used to store the application’s GuestResponse objects. Expand this table in
the Server Explorer and you can see the table columns, as shown in Figure 3-5.

http://dx.doi.org/10.1007/978-1-4842-3435-8_13

ChApTEr 3 ■ WOrkIng WITh DATABASES

30

You can see how Entity Framework Core has used details from the application to create the table
that will store GuestResponse objects. The name of the table is taken from the property in the database
context class, and the names of the columns correspond to the properties defined by the GuestResponse
class. These decisions are conventions that Entity Framework Core follows by default, and I explain how
to override them in Part 2.

The data types used by .NET have to be translated into data types that are supported by the database
server. Entity Framework Core works out what database types should be used when it creates the database,
and you can examine its decisions by right-clicking the Responses item in the Server Explorer window and
selecting Open Table Definition from the pop-up menu. Visual Studio will open a new editor pane that
contains details of the table structure, as shown in Figure 3-6.

Figure 3-5. The structure of the Responses table in the database

ChApTEr 3 ■ WOrkIng WITh DATABASES

31

You can see the SQL data type that has been selected to represent the value of each GuestResponse
property. Entity Framework Core relies on the database provider to select the best SQL data types, and
there can be differences in the types selected for different database servers. For SQL Server, you can see
that the Id property will be stored as a SQL bigint, corresponding to a .NET long; the WillAttend property
will be stored as a bit, corresponding for a .NET nullable bool; and the other properties will be stored as
nvarchar(MAX), which corresponds to the .NET string.

 ■ Tip For most projects, the data types that Entity Framework Core selects will be perfectly acceptable, but
you can use the features described in Chapter 21 to specify different types.

Examining the Database Content
Right-click the table in the Server Explorer window and select Show Table Data from the pop-up menu to see
the data in the table. Visual Studio will query the database and display the results, as shown in Figure 3-7.

Figure 3-6. Exploring structure of a database table

http://dx.doi.org/10.1007/978-1-4842-3435-8_21

ChApTEr 3 ■ WOrkIng WITh DATABASES

32

The grid that Visual Studio uses to display the data is editable, which means you can update the existing
data values and add new rows to the table without needing to use SQL directly.

Add a new response by using the values shown in Table 3-2 to fill out the fields in the bottom row of the
grid and then press the Tab key. You won’t be able to enter a value for the Id column, but the database server
will assign a value for you when the data is added to the database.

Figure 3-7. Displaying the data in a database table

Table 3-2. The Data Values for Adding a Row to the Database Table

Email Name Phone WillAttend

jane@example.com Jane Marshall 555-123-1212 True

When you press the Tab button, Visual Studio will add the new data to the database. You can see the
new data in the application by navigating to http://localhost:5000/home/listresponses, as shown in
Figure 3-8.

ChApTEr 3 ■ WOrkIng WITh DATABASES

33

Understanding SQL
It can often be useful to understand how Entity Framework Core translates your application’s actions into
commands for the database server. You don’t have to be an expert in SQL to use Entity Framework Core, but
it helps to know the basics so you can tell when you are not getting the results you expect. In the sections that
follow, I describe the basic SQL commands and explain how they are used by Entity Framework Core.

Querying Data
The fundamental SQL feature is the query, which retrieves data from the database. If you navigate to
http://localhost:5000/home/listresponses and examine the logging messages generated by the
application, you will be able to see the SQL command that Entity Framework Core used to get the data from
the database, shown here:

...
SELECT [r].[Id], [r].[Email], [r].[Name], [r].[Phone], [r].[WillAttend]
FROM [Responses] AS [r]
ORDER BY [r].[WillAttend] DESC
...

If you are familiar with LINQ, you will have a sense of what this SQL command does just by reading it,
but it is worth exploring a little further to understand what Entity Framework Core is doing.

Manually Querying the Database
You can query the database directly using the Visual Studio Server Explorer window by right-clicking the
table and selecting New Query from the pop-up menu. When working with SQL Server, I prefer to use a
different Visual Studio feature by selecting New Query from the Tools ➤ SQL Server menu. When you see
the Connect dialog window shown in Figure 3-9, enter (localdb)\MSSQLLocalDB in the Server Name field,
leave the Database Name field as <default>, and click the Connect button.

Figure 3-8. New data displayed by the application

ChApTEr 3 ■ WOrkIng WITh DATABASES

34

 ■ Tip Once you have connected to a database, the connection settings are saved in the History table of the
Connect dialog window and can be used to connect in the future without having to reenter the details.

Click the Connect button, and Visual Studio will connect to the database server and open a new editor
pane, into which you can enter SQL commands. Enter the commands shown in Listing 3-3 into the new
editor.

Listing 3-3. A Basic SQL Query

USE PartyInvites

SELECT * FROM Responses

Click the green arrow in the top-left corner of the editor pane or right-click the window and select
Execute from the pop-up menu to execute the commands. Visual Studio will send the SQL to the database
server and display the results, as shown in Figure 3-10.

Figure 3-9. Connecting to the database

ChApTEr 3 ■ WOrkIng WITh DATABASES

35

Since this is the first SQL command you have executed directly, I will break down each part of it and
explain what it means. Here is the first part:

...
USE PartyInvites
...

This command selects the PartyInvites database. A database server can manage many databases,
and it is important to select the database that you want to work with. (You can select the database when
you create the connection or use the drop-down list at the top of the query window, but I prefer to make the
selection explicitly.)

The second part of the SQL from Listing 3-3 is the actual query, shown here:

...
SELECT * FROM Responses
...

 The SELECT keyword denotes a SQL query. The FROM keyword specifies the database table whose data
is required. The asterisk specifies that the query should return values for all the columns in the table. Put
together, this query tells the database server “give me all of the columns from the Responses table.” This
query produces the results shown in Table 3-3.

Figure 3-10. Querying the database

ChApTEr 3 ■ WOrkIng WITh DATABASES

36

Filtering Data
A query will return all the rows in a table by default. That is perfectly reasonable for applications that store
small amounts of data, such as the example project, but in most real projects you will want to query for a
subset of the data. The WHERE keyword is used to select specific rows from a database table. Enter the SQL
shown in Listing 3-4 into the Visual Studio query window to see how this works.

STRUCTURED QUERY LANGUAGE CONVENTIONS

You will notice that I use uppercase characters for the SQL keywords in this chapter. This is not required,
but it is common practice to do so, and it can help make complex SQL easier to read. The world of SQL
is as full of conventions and preferences—just like C# development—and you will inevitably encounter
database administrators and developers who insist on a certain style. Database servers are adept at
parsing SQL, and my advice is to adopt a style that you and your team find easy to read, even if that
means writing commands that tends toward the C# coding conventions rather than those associated
with SQL.

Listing 3-4. Querying for Selected Rows

USE PartyInvites

SELECT * FROM Responses
WHERE WillAttend = 1

The WHERE keyword is followed by an expression that will match the rows that should be included in
the results. In this case, I have specified that rows that have a WillAttend value of 1 should be included in
the results and other rows should be excluded. Execute this command, and you will see just the matching
responses, as shown in Table 3-4.

Table 3-3. The Results from the Basic Query

Id Email Name Phone WillAttend

1 alice@example.com Alice Jones 555-123-5678 1

2 bob@example.com Bob Smith 555-123-1234 0

3 peter@example.com Peter Davies 555-456-7890 1

4 dora@example.com Dora Francis 555-456-1234 1

5 jane@example.com Jane Marshall 555-123-1212 1

ChApTEr 3 ■ WOrkIng WITh DATABASES

37

Table 3-4. Results from Using the WHERE Keyword

Id Email Name Phone WillAttend

1 alice@example.com Alice Jones 555-123-5678 1

3 peter@example.com Peter Davies 555-456-7890 1

4 dora@example.com Dora Francis 555-456-1234 1

5 jane@example.com Jane Marshall 555-123-1212 1

Selecting and Ordering Columns
The asterisk (the * character) in the query asks for all the columns for the rows that are included in the
results. You won’t always need all of the columns, and you may want to specify the order in which the
columns are presented in the results. A SQL query can be selective about the columns that are included in
the results, as shown in Listing 3-5.

Listing 3-5. Selecting and Ordering Columns

USE PartyInvites
SELECT Id, Name, Email FROM Responses
WHERE WillAttend = 'true'

In this query, I have specified that I only want values for the Id, Name, and Email columns. When you
execute the query, you will see the results shown in Table 3-5, and values from the other columns are
excluded. Notice that the results are presented in the order in which I specified the columns.

Table 3-5. Results Selecting Columns

Id Name Email

1 Alice Jones alice@example.com

3 Peter Davies peter@example.com

4 Dora Francis dora@example.com

5 Jane Marshall jane@example.com

Ordering Rows
The order in which the matching rows are returned in the results can be specified using the ORDER BY
keywords. In Listing 3-6, I have used ORDER BY to tell the database server that I want the results ordered by
the value of the Email column.

Listing 3-6. Ordering Results

USE PartyInvites

SELECT Id, Name, Email FROM Responses
WHERE WillAttend = 'true'
ORDER BY Email

ChApTEr 3 ■ WOrkIng WITh DATABASES

38

When you execute the query, the results will be ordered by the value of the Email column, as shown
in Table 3-6.

Table 3-6. Results Ordering Rows

Id Name Email

1 Alice Jones alice@example.com

4 Dora Francis dora@example.com

5 Jane Marshall jane@example.com

3 Peter Davies peter@example.com

Examining the Entity Framework Core Query
There are lots of SQL query features, but the ones shown in the previous sections are enough to get a sense of
the data that is being requested from the database. There are some slight differences in the queries that Entity
Framework Core produces that are worth explaining. In Listing 3-7, I have changed the LINQ query used in the
ListResponses action method of the Home controller to be more selective about the data it requests.

Listing 3-7. Changing the LINQ Query in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) => context = ctx;

 public IActionResult Index() => View();

 public IActionResult Respond() => View();

 [HttpPost]
 public IActionResult Respond(GuestResponse response) {
 context.Responses.Add(response);
 context.SaveChanges();
 return RedirectToAction(nameof(Thanks),
 new { Name = response.Name, WillAttend = response.WillAttend });
 }

 public IActionResult Thanks(GuestResponse response) => View(response);

ChApTEr 3 ■ WOrkIng WITh DATABASES

39

 public IActionResult ListResponses() =>
 View(context.Responses
 .Where(r => r.WillAttend == true)
 .OrderBy(r => r.Email));
 }
}

Start the application using dotnet run in the project folder and navigate to http://localhost:5000/
home/listresponses. The HTML displayed to the user will contain only responses from those attending the
party, ordered by their e-mail addresses, as shown in Figure 3-11.

Figure 3-11. Using a more selective query in the example application

If you examine the logging messages generated by the application, you will see the SQL that Entity
Framework Core produced from the LINQ query.

...
SELECT [r].[Id], [r].[Email], [r].[Name], [r].[Phone], [r].[WillAttend]
FROM [Responses] AS [r]
WHERE [r].[WillAttend] = 1
ORDER BY [r].[Email]
...

You can see that the structure of the query follows the same pattern as the one that I built in the
previous sections. The use of square brackets (the [and] characters) allows column names to contain
special characters, such as spaces. This isn’t required for the data model in the example application, but
Entity Framework Core does it anyway.

The AS keyword is used to create a temporary alias. Entity Framework Core uses the AS keyword to refer
to the Responses table using r. This is something that doesn’t have benefit in a simple query but that can be
helpful in more complex queries that combine data from multiple tables.

ChApTEr 3 ■ WOrkIng WITh DATABASES

40

Understanding Query Parameters
There is one further difference that you might see when examining the queries that are created by Entity
Framework Core. To demonstrate, I have changed the query used by the ListResponses action method, as
shown in Listing 3-8.

Listing 3-8. Changing the LINQ Query in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) => context = ctx;

 public IActionResult Index() => View();

 public IActionResult Respond() => View();

 [HttpPost]
 public IActionResult Respond(GuestResponse response) {
 context.Responses.Add(response);
 context.SaveChanges();
 return RedirectToAction(nameof(Thanks),
 new { Name = response.Name, WillAttend = response.WillAttend });
 }

 public IActionResult Thanks(GuestResponse response) => View(response);

 public IActionResult ListResponses(string searchTerm = "555-123-5678") =>
 View(context.Responses
 .Where(r => r.Phone == searchTerm)
 .OrderBy(r => r.Email));
 }
}

The LINQ query uses the Where method to select GuestResponse objects whose Phone value matches a
search parameter. If you start the application, navigate to http://localhost:5000/home/listresponses,
and examine the logging messages generated by the application, you will see how this has been translated
into SQL.

...
SELECT [r].[Id], [r].[Email], [r].[Name], [r].[Phone], [r].[WillAttend]
FROM [Responses] AS [r]
WHERE [r].[Phone] = @__searchTerm_0
ORDER BY [r].[Email]
...

ChApTEr 3 ■ WOrkIng WITh DATABASES

41

The @ character is used to denote a parameter in a SQL query. Parameters are used when Entity
Framework Core is dealing with variables, and they allow the database server to recognize similar queries
and improve performance by processing them the same way. Parameters also provide protection against
SQL injection attacks, where a user enters a data value that can be interpreted as part of the SQL command.

Using parameters is a good idea—especially since Entity Framework Core doesn’t know whether the
source of the data value can be trusted—but it does make it more difficult to understand what SQL is being
sent to the database because the parameter value isn’t displayed in the logging messages by default. This
isn’t a problem most of the time because it is the structure of the query that is of interest, but in Listing 3-9,
I have changed the configuration of the example application so that Entity Framework Core will include
parameter values in the logging messages it generates.

 ■ Caution Don’t leave this option enabled in production because sensitive data will end up in the
application’s log files.

Listing 3-9. Enabling Parameter Value Logging in the Startup.cs File in the PartyInvites Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using PartyInvites.Models;

namespace PartyInvites {

 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options => {
 options.EnableSensitiveDataLogging(true);
 options.UseSqlServer(conString);
 });
 }

ChApTEr 3 ■ WOrkIng WITh DATABASES

42

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Using the EnableSensitiveDataLogging method tells Entity Framework Core to include the
parameter values in its logging messages. Restart the application using dotnet and navigate to http://
localhost:5000/home/listresponses. In the logging messages generated by the application, Entity
Framework Core will include parameter values in the message displayed immediately before the query.

...
Executed DbCommand (58ms) [Parameters=[@__searchTerm_0='555-123-5678' (Size = 4000)],
 CommandType='Text', CommandTimeout='30']
SELECT [r].[Id], [r].[Email], [r].[Name], [r].[Phone], [r].[WillAttend]
FROM [Responses] AS [r]
WHERE [r].[Phone] = @__searchTerm_0
ORDER BY [r].[Email]
...

Storing and Updating Data
In most applications, queries are the most common type of command, but storing new data and updating
existing data are important, too. The INSERT command is used to insert a new row of data into a table, and
the SQL command shown in Listing 3-10 adds a new row to the Responses table.

Listing 3-10. Inserting Data into a Table

USE PartyInvites

INSERT INTO Responses(Name, Email, Phone, WillAttend)
VALUES ('Joe Dobbs', 'joe@example.com', '555-888-1234', 1)

The INSERT INTO keywords are followed by a list of the columns for which you want to provide values.
Then the VALUES keyword is used, followed by the values that are to be stored in the database, expressed in
the same order as the list of columns. The command in the listing adds a new row with values for the Name,
Email, Phone, and WillAttend columns. No value is required for the Id column, which Entity Framework
Core configures so that the database server will generate a value when the rest of the columns are stored.

 ■ Tip notice that strings are demarked with single quotes (the ' character) in SQL, rather than the double
quotes (the "character) used by C#.

When you execute the command in Listing 3-10, you will see the following message:

...
(1 row(s) affected)
...

ChApTEr 3 ■ WOrkIng WITh DATABASES

43

Table 3-7. The Values for Creating a Response

Name Email Phone WillAttend

Anna Roth anna@example.com 555-204-7692 False

The database server responds to commands that modify the database by indicating how many
rows were changed. To see the INSERT command used by Entity Framework Core, navigate to http://
localhost:5000, click the RSVP Now button, and create a response using the values in Table 3-7.

If you examine the logging messages generated by the application when it stores the new data in
the database, you will see that the same basic style of INSERT command has been used but with a few
differences.

...
Executed DbCommand (3ms) [Parameters=[@p0='anna@example.com' (Size = 4000),
 @p1='Anna Roth' (Size = 4000), @p2='555-204-7692' (Size = 4000),
 @p3=False' (Nullable = true)], CommandType='Text', CommandTimeout='30']

SET NOCOUNT ON;

INSERT INTO [Responses] ([Email], [Name], [Phone], [WillAttend])
VALUES (@p0, @p1, @p2, @p3);
...

The SET NOCOUNT ON command disables reporting on the number of rows that are affected by
a command. It has little effect on simple commands like the one in this chapter, but it can improve
performance for more complex operations. You can see that the INSERT command used by Entity Framework
Core is similar to the one from Listing 3-10 but with parameterized values.

Immediately after the INSERT, Entity Framework Core sends another command to the database server.

...
SELECT [Id]
FROM [Responses]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

Entity Framework Core uses this command to check the number of rows that have been affected by the
INSERT command and to determine the value unique value that the database server has assigned to the Id
column. Knowing the Id value is important for subsequent operations performed on the new stored data,
and Entity Framework Core performs this query even though there are no such operations in the example
application.

Updating Existing Data
The UPDATE command is used to modify data that has been previously stored in the database and can be
used to select modify multiple rows in a single operation. The command shown in Listing 3-11 modifies the
rows in the Responses table whose WillAttend value is 1 and changes their phone number. (This isn’t an
especially useful change in its own right, but it does demonstrate the basic structure of an UPDATE.)

ChApTEr 3 ■ WOrkIng WITh DATABASES

44

Listing 3-11. Updating Existing Data

USE PartyInvites

UPDATE Responses
SET Phone='404-204-1234'
WHERE WillAttend = 1

The UPDATE keyword is followed by the name of the table, and the SET keyword is used to specify the
columns and values to be changed. The WHERE keyword is followed by an expression that selects the rows to
be modified. When you execute this command, the database server will respond with the number of rows
that have been affected.

...
(5 row(s) affected)
...

Execute the command shown in Listing 3-12 to query for all the rows in the Responses table.

Listing 3-12. Querying for All Rows

USE PartyInvites

SELECT * FROM Responses

Table 3-8 shows the results of this query and highlights the effect of the update performed in Listing 3-11.

Table 3-8. The Effect of Updating Existing Data

Id Email Name Phone WillAttend

1 alice@example.com Alice Jones 404-204-1234 1

2 bob@example.com Bob Smith 555-123-1234 0

3 peter@example.com Peter Davies 404-204-1234 1

4 dora@example.com Dora Francis 404-204-1234 1

5 jane@example.com Jane Marshall 404-204-1234 1

6 joe@example.com Joe Dobbs 404-204-1234 1

7 anna@example.com Anna Roth 555-204-7692 0

Deleting Data
The last command is the one that removes data from the database: the DELETE command. This command
must be used carefully because it has a WHERE clause that allows a single command to select many rows for
deletion, and it is easy to accidentally remove more data from the database than intended. The command
shown in Listing 3-13 removes all of the rows from the Responses table that have a WillAttend value of zero.

ChApTEr 3 ■ WOrkIng WITh DATABASES

45

Listing 3-13. Deleting Data

USE PartyInvites

DELETE FROM Responses
WHERE WillAttend = 0

Execute this command and then repeat the query from Listing 3-12 to confirm that the declined
invitations have been removed from the database. There is no support in the example application for
deleting data, but you will see this type of command used in later chapters, including as part of the
SportsStore application that I start building in the next chapter.

Joining Data
Databases can contain relationships between tables, which Entity Framework Core uses to keep track of
relationships between objects. This feature is built on the INSERT and UPDATE commands described earlier
in this chapter but depends on a more complex type of query, known as a join, which incorporates data from
multiple tables. Joins can be confusing; you don’t need to understand them to work with Entity Framework
Core, but having a basic knowledge can be useful.

 ■ Note Don’t worry if you don’t follow this section immediately. It will make more sense once you have read
Chapter 14, which includes the Entity Framework Core feature that uses joins and which is described in depth
in Chapters 15 and 16.

Preparing the Database
To demonstrate how a join works, I need to add another table to the database. Execute the command shown
in Listing 3-14, which will create a table called Preferences.

Listing 3-14. Creating a New Table in the Database

USE PartyInvites

DROP TABLE IF EXISTS Preferences

CREATE TABLE Preferences (
 Id bigint IDENTITY,
 Email nvarchar(max),
 NutAllergy bit,
 Teetotal bit,
 ResponseId bigint,

)

The DROP TABLE command tells the database server to delete the Preferences table if it already exists,
which means that you can execute the commands shown in Listing 3-14 repeatedly without causing an error.

http://dx.doi.org/10.1007/978-1-4842-3435-8_14
http://dx.doi.org/10.1007/978-1-4842-3435-8_15
http://dx.doi.org/10.1007/978-1-4842-3435-8_16

ChApTEr 3 ■ WOrkIng WITh DATABASES

46

The CREATE TABLE command is used to create a new table. The name of the table is specified, along
with a list of the columns that the table will contain and the type of each column. The table created by the
command in Listing 3-14 has Id, Email, NutAllergy, and Teetotal columns. The Id column has been
configured with the IDENTITY keyword, which makes the database server responsible for creating unique
values and which Entity Framework Core applies by default to primary key columns. The command shown
in Listing 3-15 inserts new rows into the Responses and Preferences tables.

Listing 3-15. Storing Related Data

USE PartyInvites

INSERT INTO Responses(Name, Email, Phone, WillAttend)
VALUES ('Dave Habbs', 'dave@example.com', '555-777-1234', 1)

INSERT INTO Preferences (Email, NutAllergy, Teetotal)
VALUES ('dave@example.com', 0, 1)

The first INSERT command adds a row to the Responses table. The second INSERT command adds a row
to the Preferences table. Execute the commands shown in Listing 3-16 to query these tables and see the
new data.

Listing 3-16. Querying for the New Data

USE PartyInvites

SELECT * FROM Responses
SELECT * FROM Preferences

The first SELECT command queries the database for all the Response rows and includes the row shown
in Table 3-9, which was created by the first INSERT command in Listing 3-15.

Table 3-9. The New Responses Row

Id Email Name Phone WillAttend

8 dave@example.com Dave Habbs 555-777-1234 1

Table 3-10. The New Preferences Row

Id Email NutAllergy Teetotal

1 dave@example.com 0 1

The second SELECT command queries the database for all the Preferences rows and produces the
result shown in Table 3-10. Notice that the ResponseId property of the row in the Preferences table matches
the Id value for the row shown in Table 3-9.

ChApTEr 3 ■ WOrkIng WITh DATABASES

47

Table 3-11. The JOIN Results

Email Name NutAllergy Teetotal

dave@example.com Dave Habbs 0 1

Performing a Join
There are different types of joins, but the kind that is used by Entity Framework Core is known as an inner
join, which selects rows from tables that share a common value. Listing 3-17 contains a query that performs
an inner join on the Responses and Preferences tables.

Listing 3-17. Performing an Inner Join

USE PartyInvites

SELECT Responses.Email, Responses.Name, Preferences.NutAllergy, Preferences.Teetotal
FROM Responses
INNER JOIN Preferences ON Responses.Email = Preferences.Email

The SELECT command asks the database server for columns from both tables and the INNER JOIN
keywords are used to specify that rows from the Responses table should be joined with rows from the
Preferences table where both have the same Email value. The result is that data values from both rows
created in Listing 3-16 are combined into a single result, as shown in Table 3-11.

This is a simple join, but it shows the basic mechanism and will help you make sense of the queries that
Entity Framework Core uses to get data from databases used to store complex data models.

Summary
In this chapter, I showed you how to use Visual Studio to inspect the database that is used to store an
application’s data. I also showed you how to execute basic SQL commands so that you have a sense of how
Entity Framework Core is using the database and you can check you are getting the results that you expect.
In the next chapter, I start the process of creating a more complex and realistic application: SportsStore.

49© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_4

CHAPTER 4

SportsStore:
A Real (Data) Application

In this chapter, I start the process of building a more realistic project that demonstrates how ASP.NET Core
MVC and Entity Framework Core are used together. The project will be simple but realistic and focus on the
most commonly used Entity Framework Core features. The application will be a variation on the SportsStore
application that I use in many of my books, with an increased focus on data and data storage.

In this chapter, I build a simple self-contained ASP.NET Core MVC application. In the next chapter, I
add Entity Framework Core and store the application data in a database. In the chapters that follow, I add
more data operations, expand the data model, add support for customer features, and show you how to
scale up the application. Throughout the SportsStore chapters, I point you at the chapters that describe
key features in isolation and in more detail. Starting in Chapter 5, when I add Entity Framework Core to
the project, I also describe the most common problems that you are likely to encounter and explain how to
resolve them.

 ■ Note My focus in this book is on Entity Framework Core and how it can be used in an MVC application. I
have omitted some SportsStore features, such as authentication for administration features, and expanded on
others, such as the data model.

Creating the Project
To create the SportsStore project, start Visual Studio and select New ➤ Project from the File menu. Select
the ASP.NET Core Web Application project template, set the Name field to SportsStore, and click the Browse
button to select a convenient location to store the project, as shown in Figure 4-1.

 ■ Tip You can download this project from the GitHub repository for this book, https://github.com/apress/
pro-ef-core-2-for-asp.net-core-mvc.

https://doi.org/10.1007/978-1-4842-3435-8_4
http://dx.doi.org/10.1007/978-1-4842-3435-8_5
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

50

Click the OK button to continue the project setup. Ensure that .NET Core and ASP.NET Core 2.0 are
selected at the top of the window and click the Empty template, as shown in Figure 4-2. Visual Studio
includes templates that set up ASP.NET Core MVC and Entity Framework Core in a project, but the result
hides some useful details. I start with a basic ASP.NET Core project and build it up step-by-step in the
chapters that follow so you can see how the different components work together.

Figure 4-1. Creating the example project

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

51

Click the OK button and Visual Studio will create the SportsStore project with a basic configuration that
sets up ASP.NET Core but doesn’t configure the MVC framework or Entity Framework Core.

Configuring the MVC Framework
The next step is to add the basic configuration for the MVC framework so that I can add controllers and
views to handle HTTP requests. I added the MVC middleware to the ASP.NET Core request pipeline, as
shown in Listing 4-1.

Listing 4-1. Configuring MVC in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

Figure 4-2. Configuring the ASP.NET Core project

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

52

namespace SportsStore {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

These changes configure the MVC framework using the default routing schema, add support for static
files, and configure the error pages so they provide details useful for developers.

Adding the Model
The model for this application will be based around a list of products. I created the Models folder and added
to it a class file called Product.cs with the code shown in Listing 4-2.

Listing 4-2. The Contents of the Product.cs File in the Models Folder

namespace SportsStore.Models {

 public class Product {
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal PurchasePrice { get; set; }
 public decimal RetailPrice { get; set; }
 }
}

This is a variation on the Product class that I usually use in my books so that I can better demonstrate
useful Entity Framework Core features.

Adding a Repository
To provide consistent access to the data in an application, I like to use the repository pattern, where an
interface defines the properties and methods used to access the data and an implementation class is used to
work with the data storage mechanism. The advantages of using the repository pattern are that unit testing
the MVC part of an application is easier and details of how the data is stored are hidden from the rest of the
application.

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

53

 ■ Tip Using a repository is a good idea for most projects, but it is not a requirement for working with Entity
Framework Core. In part 3, for example, most of examples don’t have a repository because there are a lot of
complex code changes and I didn’t want to have to repeatedly work changes through multiple classes and
interfaces. Don’t worry if you are unconvinced about the benefits of the repository pattern because you can
always add one later, albeit with some refactoring.

To create the repository interface, I added a file called IRepository.cs to the Models folder and added
the code shown in Listing 4-3.

Listing 4-3. The Contents of the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 void AddProduct(Product product);
 }
}

The Products property will provide read-only access to all the products that the application knows
about. The AddProduct method will be used to add new products.

For this chapter, I am going to store the model objects in memory, which I then replace with Entity
Framework Core in Chapter 4. I added a class called DataRepository.cs to the Models folder and added the
code shown in Listing 4-4.

Listing 4-4. The Contents of the DataRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private List<Product> data = new List<Product>();

 public IEnumerable<Product> Products => data;

 public void AddProduct(Product product) {
 this.data.Add(product);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_4

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

54

The DataRepository class implements the IRepository interface and uses a List to keep track of
Product objects, which means that the data will be lost as soon as the application is stopped or restarted. I
introduce a persistent repository in Chapter 4, but this is enough to get the ASP.NET Core MVC part of the
project working before I introduce Entity Framework Core.

I added the statement shown in Listing 4-5 to the Startup class to register the DataRepository class as
the implementation to use for dependencies on the IRepository interface.

Listing 4-5. Configuring Dependency Injection in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;

namespace SportsStore {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddSingleton<IRepository, DataRepository>();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The statement in Listing 4-5 registers the DataRepository class using the AddSingleton method, which
means that a single object will be created the first time that a dependency on the IRepository interface is
resolved and then used for all subsequent dependencies.

Adding a Controller and View
The emphasis for the example application is going to be the administration of product objects because that
provides the greatest scope for demonstrating different data features. I need a controller that will receive
HTTP requests and translate them into operations on Product objects, so I created the Controllers folder,
added to it a code file called HomeController.cs, and used it to define the controller shown in Listing 4-6.

http://dx.doi.org/10.1007/978-1-4842-3435-8_4

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

55

Listing 4-6. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public IActionResult Index() => View(repository.Products);

 [HttpPost]
 public IActionResult AddProduct(Product product) {
 repository.AddProduct(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

The Index action passes the collection of Product objects from the repository to its view, which will
display a table of data to the user. The AddProduct method stores new Product objects based on the data
received in an HTTP POST request.

Next, I created the Views/Home folder and added to it a file called Index.cshtml, with the content shown
in Listing 4-7. This is the view that will display the application’s Product data and allow the user to create
new objects.

Listing 4-7. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row">
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

56

 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 @if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
 } else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col"></div>
 </div>
 }
 }
</div>

A grid layout is used to display an inline form for creating new objects, along with details of all the
existing Product objects known to the application or a placeholder if there are no objects.

Adding the Finishing Touches
I right-clicked the SportsStore project item in the Solution Explorer, selected Add ➤ New Item, and select the
JSON File template (found in the ASP.NET Core ➤ Web ➤ General category) to create a file called .bowerrc
with the content shown in Listing 4-8. (It is important to pay attention to this file name: it starts with a
period, contains the letter r twice and has no file extension).

Listing 4-8. The Contents of the .bowerrc File in the SportsStore Folder

{
 "directory": "wwwroot/lib"
}

I used the JSON File template again to create a file called bower.json, with the content shown in
Listing 4-9.

Listing 4-9. The Contents of the bower.json File in the SportsStore Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0"
 }
}

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

57

When you save the changes to the file, Visual Studio will download the new version of the Bootstrap
package and install it in the wwwroot/lib folder.

 ■ Note Bower, the client-side package management tool that I use to install Bootstrap in this chapter, has
been deprecated and will eventually be replaced. Bower remains under active support, and there is integrated
support for using it in Visual Studio, which is why I have used it in this book.

Next, I created the Views/Shared folder and added a file to it called _Layout.cshtml that I used to
define the shared layout shown in Listing 4-10.

Listing 4-10. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body>
 <div class="p-2">
 @RenderBody()
 </div>
</body>
</html>

This simple layout provides the structure of the HTML document required by browsers so that I don’t
have to include it in every view. It also includes a link element that tells browsers to request the CSS file
containing the Bootstrap styles, which I use to style content throughout this book.

To use the layout in Listing 4-10 by default, I added a file called _ViewStart.cshtml in the Views folder
with the content shown in Listing 4-11. (If you use the MVC View Start Page item template to create this file,
then Visual Studio will add the content shown in the listing automatically.)

Listing 4-11. The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

To enable the ASP.NET Core MVC tag helpers and make the model class easier to reference, I added a
file called _ViewImports.cshtml to the Views folder and added the content shown in Listing 4-12.

Listing 4-12. The Contents of the _ViewImports.cshtml File in the Views Folder

@using SportsStore.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

58

The final step is to configure the application so that it will listen for HTTP requests on port 5000. I edited
the launchSettings.json file in the Properties folder to replace the randomly assigned ports, as shown in
Listing 4-13. There is no special significance of port 5000, other than I use it throughout the examples in this
book.

Listing 4-13. Changing the Service Ports in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "SportsStore": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000/"
 }
 }
}

Running the Example Application
To build and start the example application, open a new command prompt or PowerShell window, navigate
to the SportsStore project folder (the one that contains the bower.json file), and run the command shown
in Listing 4-14.

Listing 4-14. Starting the Example Application

dotnet run

CHaptEr 4 ■ SportSStorE: a rEal (Data) applICatIon

59

The application will begin listening for HTTP requests on port 5000. Open a browser window and
navigate to http://localhost:5000. You will see the initial placeholder, which will be replaced once you fill
out the form fields and click the Add button, as illustrated in Figure 4-3.

Summary
In this chapter, I created a simple ASP.NET Core MVC application that I will use in the following chapters.
At the moment, the application’s data is stored in memory, which means that all products are lost when the
application is stopped or restarted. In the next chapter, I add Entity Framework Core to the project and store
data persistently in a database.

Figure 4-3. Running the example application

61© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_5

CHAPTER 5

SportsStore: Storing Data

In this chapter, I demonstrate how to store the data in the SportsStore application in a database. I show you how
to add Entity Framework Core to the project, how to prepare the data model, how to create and use a database,
and how to adapt the application so that it makes efficient SQL queries. I also describe the problems that you
are most likely to encounter when adding Entity Framework Core to a project and explain how to solve them.

Preparing for this Chapter
I continue to use the SportsStore project I created in Chapter 4. No changes are required for this chapter.
Open a command prompt or PowerShell window, navigate to the SportsStore project folder (the one that
contains the bower.json file), and use dotnet run to start the application. Use a browser to navigate to
http://localhost:5000 and you will see the content shown in Figure 5-1. You can use the HTML form to
store Product objects, but they will be lost when the application is stopped or restarted because the data is
stored only in memory.

 ■ Tip You can download the SportsStore project—and the projects for all the other chapters in this book—
from https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Figure 5-1. Running the example application

https://doi.org/10.1007/978-1-4842-3435-8_5
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 5 ■ SportSStore: Storing Data

62

Configuring Entity Framework Core
The default configuration that Visual Studio creates for ASP.NET Core projects includes the NuGet packages
required to run Entity Framework Core applications. A separate package is required to add the command-
line tools that manage databases, and it must be installed manually.

Right-click the SportsStore project item in the Solution Explorer window, select Edit SportsStore.csproj
from the pop-up menu, and add the configuration element shown in Listing 5-1.

Listing 5-1. Adding a Package in the SportsStore.csproj File in the SportsStore Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

Packages that include command-line tools must be added manually using the
DotNetCliToolReference element. The package shown in the listing includes the dotnet ef commands
that are used to manage databases in projects that use Entity Framework Core.

Configuring Entity Framework Core Logging Messages
It is important to understand the SQL queries and commands that Entity Framework Core sends to the
database server, even in a project that stores only a small amount of data. To configure Entity Framework
Core to generate logging messages that will display the SQL queries it uses, I added a file called
appsettings.json to the SportsStore folder using the ASP.NET Configuration File item template and added
the configuration statements shown in Listing 5-2.

Listing 5-2. The Contents of the appsettings.json File in the SportsStore Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=_CHANGE_ME;

Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {

Chapter 5 ■ SportSStore: Storing Data

63

 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

The default content that Visual Studio uses for this type of file includes a connection string for a
database, which I’ll change shortly. The highlighted additions in Listing 5-2 set the default logging level to
None, which disables all logging messages. This is then overridden for the Microsoft.EntityFrameworkCore
package using the Information setting, which will provide details of the SQL that Entity Framework Core
uses. You don’t have to disable all other logging messages in real projects, but this combination will make it
easier to follow the examples.

Preparing the Data Model
In the following sections, I prepare the data model that already exists in the SportsStore project for use with
Entity Framework Core.

Defining a Primary Key Property
To store data in a database, Entity Framework Core needs to be able to uniquely identify each object, which
requires selecting a property that will be used as the primary key. For most projects, the simplest way to
define a primary key is to add a long property called Id to the data model class, as shown in Listing 5-3.

Listing 5-3. Adding a Primary Key Property in the Product.cs File in the Models Folder

namespace SportsStore.Models {

 public class Product {

 public long Id { get; set; }

 public string Name { get; set; }
 public string Category { get; set; }
 public decimal PurchasePrice { get; set; }
 public decimal RetailPrice { get; set; }
 }
}

This approach means that Entity Framework Core will configure the database so that the database
server will generate primary key values so you don’t have to worry about avoiding duplicates. Using a long
value ensures that there is a large range of primary key values available and means that most projects will be
able to store data indefinitely without worrying about running out of keys.

Creating the Database Context Class
Entity Framework Core relies on a database context class to provide an application with access to the data in
a database. To provide the example application with a context, I added a class called DataContext.cs to the
Models folder with the code shown in Listing 5-4.

Chapter 5 ■ SportSStore: Storing Data

64

Listing 5-4. The Contents of the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts) : base(opts) {}

 public DbSet<Product> Products { get; set; }
 }
}

When you use Entity Framework Core to store a simple data model like the one in the SportsStore
application, the database context class is correspondingly simple—although this will change as the data
model becomes more complex in later chapters. For the moment, there are three important characteristics
of the database context class.

The first characteristic is that the base class is DbContext, which is defined in the Microsoft.
EntityFrameworkCore namespace. Using DbContext as the base class is what makes a database context and
provides access to Entity Framework Core functionality.

The second characteristic is that the constructor receives a DbContextOptions<T> object (where T is the
context class), which must be passed to the constructor of the base class using the base keyword, like this:

...
public DataContext(DbContextOptions<DataContext> opts) : base(opts) { }
...

The constructor parameter will provide Entity Framework Core with the configuration information
it needs to connect to the database server. You will receive an error if you don’t define the constructor
parameter or don’t pass on the object.

The third characteristic is a property whose type is DbSet<T>, where T is the class that is going to be
stored in the database.

...
public DbSet<Product> Products { get; set; }
...

The data model class is Product, so the property in Listing 5-4 returns a DbSet<Product> object. The
property must be defined with get and set clauses. The set clause allows Entity Framework Core to assign
an object that provides convenient access to the data. The get clause provides access to that data to the rest
of the application.

Updating the Repository Implementation
The next step is to update the repository implementation class so that data is accessed through the context
class defined in the previous section, as shown in Listing 5-5.

Chapter 5 ■ SportSStore: Storing Data

65

Listing 5-5. Using the Context Class in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 //private List<Product> data = new List<Product>();
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products;

 public void AddProduct(Product product) {
 this.context.Products.Add(product);
 this.context.SaveChanges();
 }
 }
}

In an ASP.NET Core MVC application, access to data context objects is managed using dependency
injection, and I added a constructor to the DataRepository class that receives a DataContext object, which
will be provided by dependency injection at runtime.

The Products property defined by the repository interface can be implemented by returning the
DbSet<Product> property defined by the context class. Similarly, the AddProduct method can be easily
implemented because the DbSet<Product> object defines an Add method that accepts Product objects and
stores them persistently.

The most significant change is the call to the SaveChanges method, which tells Entity Framework Core
to send any pending operations—such as requests to the Add method to store data—to the database.

Preparing the Database
In the sections that follow, I go through the process of configuring the SportsStore application to describe the
database that I want to use and then asking Entity Framework Core to create it. This is known as a code-first
project, where you start with one or more C# classes and use them to create and configure the database. The
alternative is known as a database-first project, where you create a data model from an existing database—a
process that I describe in Chapters 17 and 18.

Configuring the Connection String
Entity Framework Core relies on connection strings to provide details of how to contact the database server
used by the context class. The format of connection strings differs based on the database server you are
using but generally includes the server name and network port of the database server, the name of the
database, and authentication credentials. Connection strings are defined in the appsettings.json file, and
in Listing 5-6, I have defined the connection string for the SportsStore database. In this book, I am using
the LocalDB version of SQL Server, which is designed specifically for developers and doesn’t require any
configuration or credentials.

http://dx.doi.org/10.1007/978-1-4842-3435-8_17
http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 5 ■ SportSStore: Storing Data

66

 ■ Tip You must ensure that the connection string is on a single unbroken line. the fixed width of a book
page makes it hard to show the connection string, but you will get an error if you split the connection string into
multiple lines to make it easier to read.

The format of connection strings is specific to each database server. For the connection string in
Listing 5-6, there are four configuration properties, as described in Table 5-1.

Listing 5-6. Adding a Connection String in the appsettings.json File in the SportsStore Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_

Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

Table 5-1. The Four Configuration Properties of the LocalDB Connection String

Name Description

Server This property specifies the name of the database server that Entity
Framework Core will connect to. For LocalDB, this value is (localdb)\\
MSSQLLocalDB, which allows a connection to the database server without
requiring any further configuration.

Database This property specifies the name of the database that Entity Framework
Core will use. In Listing 5-6, I removed the placeholder that Visual Studio
added to the file and specified SportsStore as the name.

Trusted_Connection When set to true, Entity Framework Core will authenticate with the
database server using Windows account credentials. This property isn’t
required for LocalDB even though Visual Studio adds it by default when it
creates the appsettings.json file.

MultipleActiveResultSets This property configures the connection to the database server so that the
results from multiple queries can be read at the same time.

Configuring the Database Provider and Context Class
I added the configuration statements shown in Listing 5-7 to the Startup class to tell Entity Framework
Core how to use the connection string, which database provider should be used, and how to manage the
context class.

Chapter 5 ■ SportSStore: Storing Data

67

Listing 5-7. Configuring Entity Framework Core in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace SportsStore {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddTransient<IRepository, DataRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The constructor and the Configuration property are used to access the configuration data in the
appsettings.json file, which allows me to read the connection string. The AddDbContext<T> extension
method is used to set up the context class and tells Entity Framework Core which database provider to use
(through the UseSqlServer method, in this case, but a different method is used for each database provider)
and provides the connection string.

Notice that I also changed the method that configures dependency injection for the IRepository
interface, like this:

...
services.AddTransient<IRepository, DataRepository>();
...

Chapter 5 ■ SportSStore: Storing Data

68

In Chapter 4, I used the AddSingleton method to ensure that a single DataRepository object was used
to resolve all dependencies on the IRepository interface, which was important because the application
data was stored in a List and I wanted the same objects to always be used. Now that I am using Entity
Framework Core, I have switched to the AddTransient method, which ensures that a new DataRepository
object is created each time a dependency on the IRepository is resolved. This is important because Entity
Framework Core expects to create a new context object for each HTTP request in an ASP.NET Core MVC
application.

Creating the Database
The steps in the previous section told Entity Framework Core what type of data I want to store and how to
connect to the database server. The next step is to create the database.

Entity Framework Core manages databases through a feature called migrations, which are sets of
changes that create or modify a database to synchronize it with the data model (and which I describe in
detail in Chapter 13). To create a migration that will set up the database, open a new command prompt or
PowerShell window, navigate to the SportsStore project folder (the one that contains the bower.json file),
and run the command shown in Listing 5-8.

Listing 5-8. Creating a Migration

dotnet ef migrations add Initial

The dotnet ef commands access the features in the package added in Listing 5-1. The migrations add
arguments tell Entity Framework Core to create a new migration, and the final argument specifies the name
for the migration, Initial, which is the conventional name to use for the migrations that first prepares a
database.

When you run the command in Listing 5-8, Entity Framework Core will inspect the project, find the
context class, and use it to create a migration. The result will be a Migrations folder visible in the Solution
Explorer that contains class files whose statements will prepare the database.

It isn’t enough to just create the migration, which is just a set of instructions. These instructions must
be executed to create the database so that it can store the application data. To execute the instructions in the
Initial migration, run the command shown in Listing 5-9 in the SportsStore project folder.

 ■ Tip if you have already followed the examples in this chapter and see an error telling you that there is
already an object named Products, then run dotnet ef database drop --force in the project folder to
remove the database before running the command in Listing 5-9.

Listing 5-9. Applying a Migration

dotnet ef database update

Entity Framework Core will connect to the database server specified in the connection string and
execute the statements in the migration. The result will be a database that can be used to store Product
objects.

http://dx.doi.org/10.1007/978-1-4842-3435-8_4
http://dx.doi.org/10.1007/978-1-4842-3435-8_13

Chapter 5 ■ SportSStore: Storing Data

69

Running the Application
The basic support for storing Product objects persistently is in place, and the application is ready to be
tested, even though there is still some work to be done. Start the application using dotnet run in the
SportsStore project folder, navigate to http://localhost:5000, and use the HTML form to create Product
objects using the values shown in Table 5-2.

Table 5-2. The Values for Creating Test Product Objects

Name Category Purchase Price Retail Price

Kayak Watersports 200 275

Lifejacket Watersports 30 48.95

Soccer Ball Soccer 17 19.50

Figure 5-2. Testing data storage

Click the Add button for each set of data values, and Entity Framework Core will store the object in the
database, producing the result shown in Figure 5-2.

The user experience has remained the same, but, behind the scenes, the data is being stored by Entity
Framework Core in the database. Stop and restart the application using dotnet run, and the data you
entered will still be available.

Chapter 5 ■ SportSStore: Storing Data

70

Avoiding the Query Pitfalls
The application is working, and data is being stored in the database, but there is still work to be done to get
the best from Entity Framework Core. In particular, there are two common pitfalls to be avoided. These are
problems that can be recognized by examining the SQL queries that Entity Framework Core sends to the
database, and in Listing 5-10, I have added a statement to the Index action of the Home controller that will
help make the queries triggered by an HTTP request easier to see.

Listing 5-10. Adding a Console Statement in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public IActionResult Index() {
 System.Console.Clear();
 return View(repository.Products);
 }

 [HttpPost]
 public IActionResult AddProduct(Product product) {
 repository.AddProduct(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

The System.Console.Clear method will clear the console when the Index action is invoked so that
queries from previous requests won’t be visible. Start the application, navigate to http://localhost:5000,
and examine the logging messages that are displayed.

 ■ Note the System.Console.Clear method will work only when you use dotnet run to start the
application from powerShell or the command prompt. it will cause an exception if you try to start the application
using the Visual Studio debugger.

You will see that there are two logging messages that show two queries sent to the database, like this:

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
...

Chapter 5 ■ SportSStore: Storing Data

71

In the following sections, I explain why there are two requests and why one of them doesn’t take full
advantage of the capabilities of the database server.

Understanding the IEnumerable<T> Pitfall
Entity Framework Core makes it easy to query a database using LINQ, although it doesn’t always work
the way you might expect. In the Index view used by the Home controller, I use the LINQ Count method to
determine how many Product objects have been stored in the database, like this:

...
@if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
} else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col"></div>
 </div>
 }
}
...

To determine how many Product objects have been stored in the database, Entity Framework Core
uses a SQL SELECT statement to get all of the Product data that is available, uses that data to create a series
of Product objects, and then counts them. As soon as the counting is complete, the Product objects are
discarded.

This isn’t a problem when there are only three objects in the database, but the amount of work required
to count objects this way becomes an issue as the amount of data increases. A more effective approach is to
ask the database server to do the counting, which will spare Entity Framework Core the need to transfer all of
the data and create the objects. This can be done with a simple change to the view model type, as shown in
Listing 5-11.

Listing 5-11. Changing the View Model in the Index.cshtml File in the Views/Home Folder

@model IQueryable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <!-- ...other elements omitted for brevity... -->
</div>

Chapter 5 ■ SportSStore: Storing Data

72

If you reload the browser window, you will see that the first of the two queries that Entity Framework
Core sends to the database server has changed.

...
SELECT COUNT(*)
FROM [Products] AS [p]
...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
...

The SELECT COUNT query asks the database server to count the Product objects and doesn’t retrieve
data or create any objects in the application.

Getting different queries for different view model types may seem like counterintuitive behavior, and
understanding why it happens is essential to ensuring that Entity Framework Core can query databases
efficiently.

LINQ is implemented as a set of extension methods that operate on objects that implement the
IEnumerable<T> interface. This interface represents a sequence of objects, and it is implemented by the
generic collection classes and arrays.

Entity Framework Core includes a duplicate set of LINQ extension methods that operate on objects that
implement the IQueryable<T> interface. This interface represents a database query, and these duplicate
methods means that operations such as Count can be performed as easily on data stored in the database as
on in-memory objects.

The DbSet<T> class used in the database context class created in Listing 5-4 implements both of these
interfaces so that the Products property, for example, implements both the IEnumerable<Product> and
IQueryable<T> interfaces. When the view model in the Index view was set to IEnumerable<Product>, the
standard version of the Count method was used. The standard Count implementation has no understanding
of Entity Framework Core and just counts up the objects in the sequence. This triggers the SELECT query and
produces the inefficient behavior where all of the data is read and used to create objects that are counted
and discarded.

When I changed the view model to IQueryable<Product>, the Entity Framework Core version of the
Count method was used. This version of the method allows Entity Framework Core to translate the complete
query into SQL and produces the more efficient version that uses SELECT COUNT to get the number of stored
objects without needing to retrieve any data.

UNDERSTANDING THE RAZOR VIEW MODEL CAST

You might be surprised that i can treat the view model object as an IQueryable<Product> object,
even though the result of the repository class’s Products property is IEnumerable<T>. When views are
compiled, the C# class that razor produces includes an explicit conversion to the type specified by the
view model, similar to including this statement in the action method:

...
public IActionResult Index() {
 System.Console.Clear();
 return View(repository.Products as IQueryable<Product>);
}
...

Chapter 5 ■ SportSStore: Storing Data

73

in the case of this example, this feature means i can switch between working with the IQueryable<T>
and IEnumerable<T> interfaces just by changing the @model expression. the type conversion is done
at runtime, which is why any mismatches between the object provided by the controller and the object
expected by the view won’t become apparent until the application is running.

Understanding the Duplicate Query Pitfall
Making one of the queries more efficient doesn’t explain why there are two queries in the first place. As
I explained in the previous section, the DbSet<T> class implements the IQueryable<T> interface, which
represents a database query and which allows LINQ to be used even on data in the database.

By default, Entity Framework Core doesn’t execute the query until the IQueryable<T> object is
enumerated. This allows queries to be composed gradually and for new queries to be created by calling a
LINQ method on an existing query, rather than on the data it returns. But this behavior also means a fresh
SQL query is sent to the database each time an IQueryable<T> is enumerated. This can be helpful for some
applications because it means you can use the same object to get the latest data from the database, but in an
ASP.NET Core MVC application, this usually ends up producing multiple queries for the same data just a few
milliseconds apart.

In the example application, the IQueryable<T> view model object is enumerated twice in the Index
view, like this:

...
@if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
} else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col"></div>
 </div>
 }
}
...

It isn’t just foreach loops that enumerate sequences of objects; LINQ methods that produce a single
result, such as the Count method, will also trigger a query. The IQueryable<T> behavior and its use in the
Index view combine to produce two queries.

The situation may seem improved now that the two queries are no longer identical, but further
improvements are possible, as I describe in the following sections.

Chapter 5 ■ SportSStore: Storing Data

74

AVOIDING UNINTENDED QUERIES

there is nothing wrong with triggering multiple queries from a single IQueryable<T> object, just as
long as that is what you intend to do. the problem is when you forget how IQueryable<T> objects
behave, treat them like IEnumerable<T> objects, and accidentally make queries without noticing. in a
busy application, the resources wasted by accidental queries can be significant and will drive up the
capacity costs for a project.

Avoiding a Query Using CSS
The Index view shows one of the most common causes for duplicate requests in an ASP.NET Core MVC
application, where the Count method is used to see whether there is any data so that placeholder content
can be shown to the user. An alternative way of providing a “no data” placeholder is to make it the
responsibility of the browser by relying on CSS. In Listing 5-12, I have added a style element to the layout
used by the views in the example application and used it to define two custom styles.

Listing 5-12. Defining Styles in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <style>
 .placeholder { visibility: collapse; display: none }
 .placeholder:only-child { visibility: visible; display: flex }
 </style>
</head>
<body>
 <div class="p-2">
 @RenderBody()
 </div>
</body>
</html>

An HTML element assigned to the placeholder class will have its visibility property set to collapse
and its display property set to none by default, which will prevent it from being seen by the user. But when
the HTML element is the only child of its containing element, the property values will be changed, which
is achieved by using the only-child pseudoclass. In Listing 5-13, I have revised the Index view used by the
Home controller to remove the call to the LINQ Count method and rely on the CSS classes instead.

Listing 5-13. Relying on CSS Classes in the Index.cshtml File in the Views/Home Folder

@model IQueryable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

Chapter 5 ■ SportSStore: Storing Data

75

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row">
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">
 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 <div>
 <div class="row placeholder">
 <div class="col text-center p-2">No Data</div>
 </div>
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col"></div>
 </div>
 }
 </div>
</div>

I have added a div element so that the only-child pseudoclass will work and removed the if clause
with its call to the Count method. The result is the element assigned to the placeholder class will always be
included in the HTML sent to the browser but will be visible only if the foreach loop doesn’t generate any
elements, which will happen when no Product objects have been stored in the database. If you reload the
browser window, you will see that there is now only one query sent to the database.

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
...

Chapter 5 ■ SportSStore: Storing Data

76

Forcing Query Execution in the Repository
The problem with working directly with IQueryable<T> objects is that details of how data storage has been
implemented have leaked into other parts of the application, which undermines the sense of functional
separation that the MVC pattern follows.

TAKING A BALANCED APPROACH TO PATTERNS

patterns are useful templates for building projects that are easy to understand and easy to test, but a
balanced approach is required when it comes to implementing them. it doesn’t matter which parts of a
pattern you adopt and which parts you ignore—just as long as you make those decisions consciously.

in the example application, for example, there is a tension between the repository pattern, which aims
to hide details of how data is stored, and the reality of working with entity Framework Core.

By containing the IQueryable<T> object to the repository implementation class, i am limiting the
proportion of the application that has to know about entity Framework Core queries. But it doesn’t do
this completely because the rest of the application still has to know about the primary key property that
i defined in Listing 5-13 and that i will use to identify objects in later chapters.

For me, this is a reasonable balance between practicality (objects have to be uniquely identified) and
principle (containing data storage details to the repository). You may prefer to avoid using a repository
entirely or choose to adhere more rigidly to the repository pattern (by using a different key strategy, for
example, as described in Chapter 19).

An alternative approach is to have the repository implementation class take responsibility for dealing
with the quirks of IQueryable<T> objects and presenting the rest of the application with regular collections
of in-memory objects that implement the IEnumerable<T> interface and can be enumerated without
worrying about unexpected effects. In Listing 5-14, I have changed the repository class so that it no longer
passes on the DbSet<T> objects returned by the context class Products property.

Listing 5-14. Forcing Query Evaluation in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products.ToArray();

 public void AddProduct(Product product) {
 this.context.Products.Add(product);
 this.context.SaveChanges();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

Chapter 5 ■ SportSStore: Storing Data

77

The LINQ ToArray and ToList methods trigger the execution of the query and produce an array or a
list that contains the results. These are regular in-memory collections of objects that implement only the
IEnumerable<T> interface, which means that I have to change the view model in the Index view used by the
Home controller again, as shown in Listing 5-15. It also means that I can safely return to performing multiple
LINQ operations in the view, without having to give thought to how the data has been obtained.

 ■ Note one consequence of this approach is that the repository must be able to provide the rest of the
application with the data it requires, which leads to complex queries being consolidated in the repository
class. i tend to prefer this approach because it makes it easier to see and manage all of the queries that entity
Framework Core will have to deal with. But that’s just my personal preference, and you should choose the
approach that suits you best.

Listing 5-15. Changing the View Model in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row">
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">
 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 <div>
 @if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>

Chapter 5 ■ SportSStore: Storing Data

78

 } else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col"></div>
 </div>
 }
 }
 </div>
</div>

Restart the application using dotnet run and navigate to http://localhost:5000; you will see the
familiar output shown in earlier figures. The user experience hasn’t changed throughout this section, but if
you examine the logging messages generated by the application, you will see that there is only one query to
the database, even though the view model object is enumerated twice.

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
...

Common Problems and Solutions
Using Entity Framework Core to store and retrieve data is straightforward once you get the basic feature in
place, but there are pitfalls to avoid. In the sections that follow, I describe the problems you are most likely to
encounter and explain how to resolve them.

Problems Creating or Accessing the Database
The most fundamental problems arise when trying to create the database or access it from the application.
For the most part, these are problems caused by misconfiguration, as I explain in the following sections.

The “No executable found matching command dotnet-ef” Error
The dotnet ef commands are used to create and manage migrations, but they are not enabled by default
and rely on a package being added to the application. If you receive a “no executable found” error when
you try to run any of the dotnet ef commands, then open the .csproj file and make sure that there is a
DotNetCliToolReference reference for the Microsoft.EntityFrameworkCore.Tools.DotNet package, as
shown in Listing 5-1.

If you have added the package, then make sure you are running the commands in the project folder,
which is the one that contains the .csproj file and the Startup.cs file. If you try to use dotnet ef in any
other folder, then the .NET Core runtime won’t be able to find the commands you are using.

Chapter 5 ■ SportSStore: Storing Data

79

The “Build Failed” Error
The project is automatically compiled when you run a dotnet ef command, and the “build failed” error
is reported if there are any problems in the code, although no details about the cause of the problem are
provided.

If you want to see what is preventing the compiler from building the project, then run dotnet build in
the project folder. You can then resolve the problem and run the dotnet ef command again.

 ■ Note this error can also be caused by trying to run one of the dotnet ef commands after you have
started the application using dotnet run in another command prompt or powerShell window. the build process
tries to override files that are held open by the running application, which causes a failure. Stop the application
and your dotnet ef command should succeed.

The “The entity type requires a primary key to be defined” Error
If you see this error when trying to create a migration, then the most likely cause is that you have not selected
a primary key. For simple applications, the best approach is the one shown in Listing 5-3. For complex
applications, the advanced features for working with keys are described in Chapter 19.

The “There is already an object named <Name> in the database” Exception
This exception occurs when you try to apply a migration that tries to create a database table that already
exists. This usually happens when you remove a migration from a project, re-create it, and then try to apply
it to the database again. The database already contains the tables created by the migration, which prevents it
from succeeding.

This problem is most likely to arise during development, and the easiest solution is to delete and re-
create the database by running the commands in Listing 5-16 in the project folder. These commands will
remove the database and the data it contains, which means that it should not be used on production systems.

Listing 5-16. Resetting a Database

dotnet ef database drop --force
dotnet ef database update

The “A Network-Related or Instance-Specific Error Occurred” Exception
This exception tells you that Entity Framework Core has been unable to contact the database server. The
most common cause of this exception is a mistake in the connection string in the appsettings.json file. If
you are using LocalDB for development, then make sure that you have set the Server configuration property
to (localdb)//MSSQLLocalDb, where there are two / characters and the second part of the name is MS_SQL_
Local_Db (but without the underscore characters). If you are using the full SQL Server product—or another
database server entirely—then make sure that you have used the correct hostname and TCP port, ensure
that the hostname resolves to the correct IP address, and test your network to make sure that you can reach
the server.

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

Chapter 5 ■ SportSStore: Storing Data

80

The “Cannot Open Database Requested By The Login” Exception
If you receive this exception, then Entity Framework Core is able to communicate with the database server
but has asked to access a database that does not exist. The first thing to check is that you have specified the
correct database name in the connection string in the appsettings.json file. For LocalDB (and the full
SQL Server products), this means correctly setting the Database property, as shown in Listing 5-6. If you are
using a different database server, then check the documentation to see how the database name should be
specified.

 ■ Tip it can be hard to figure out what connection strings should contain, especially when you switch
database server or provider package. the website https://www.connectionstrings.com provides a useful
reference for a wide range of database servers and connection options.

If you have entered the correct database name, then it is possible that you have created a migration but
not applied it, which means that the database server has never been asked to create the database that Entity
Framework Core is asking to access. Run dotnet ef database update in the project folder to apply the
migration.

Problems Querying Data
The biggest problem when querying data is duplicate requests to the database server, as described in the
“Avoiding the Query Pitfalls” section. But that’s not the only problem that can arise, as I explain in the
following sections.

The “Property Could Not Be Mapped” Exception
This exception occurs when you add a property to the data model class but don’t create and apply a
migration to update the database. See Chapter 13 for details of how to use migrations to keep the data model
and the database synchronized.

The “Invalid Object Name” Exception
This exception usually means that Entity Framework Core has tried to query data from a table that does not
exist in the database. This is a variation of the problem described in the previous section and usually means
that the database has not been updated to reflect a change in the application’s data model. See Chapter 13
for details of how migrations work and how to manage them.

The “There is Already an Open DataReader” Exception
This exception occurs when you are trying to start a query before reading all of the results from the previous
one. If you are using SQL Server, you can enable the multiple active result set (MARS) feature in the
connection string, as shown in Listing 5-6. For other databases, you can use the ToArray or ToList method
to force one query to be fully read before starting the next query.

https://www.connectionstrings.com/
http://dx.doi.org/10.1007/978-1-4842-3435-8_13
http://dx.doi.org/10.1007/978-1-4842-3435-8_13

Chapter 5 ■ SportSStore: Storing Data

81

The “Cannot Consume Scoped Service from Singleton” Exception
The AddDbContext method in the Startup class uses the AddedScoped method to set up the dependency
injection for the context class. This means you must use the AddTransient or AddScoped method, as shown
in Listing 5-7, to configure any service that depends on the context class, such as repository implementation
classes. If you use the AddSingleton method to register your services, you will receive an exception when
ASP.NET Core tries to resolve dependencies.

The Stale Context Data Problem
In an ASP.NET Core MVC application, Entity Framework Core expects a new context object to be created for
each HTTP request. A common problem, however, is to keep hold of context objects and try to use them for
subsequent requests.

The problem this presents is that each Entity Framework Core context object keeps track of the objects
it has created to use a cache and to detect changes. Keeping context objects and reusing them can produce
unexpected results because the data is out of date or incomplete. Even though you may have an aversion to
creating objects for a single request, it is already the pattern used by the rest of the application—the MVC
framework creates new controller and view objects for each HTTP request—and it is how Entity Framework
Core expects its context objects to be used.

Problems Storing Data
For the most part, few changes are required to allow Entity Framework Core to store instances of classes
in an MVC data model. There are some common problems, however, which I describe in the sections that
follow.

Objects Are Not Stored
If the application seems to be working but objects are not stored in the database, then the first thing to check
is that you remembered to call the SaveChanges method in your repository implementation class. Entity
Framework Core will only update the database after the SaveChanges method is called and will silently
discard changes if you forget.

Only Some Property Values Are Not Stored
If only some of the data values associated with an object are being stored in the database, then make sure
that you only use properties and that all of them have set and get clauses. Entity Framework Core will
only store the value of properties and will ignore any methods or fields by default. If the constraints of your
application prevent you from using only properties in your data model classes, then see Chapter 20 for the
advanced Entity Framework Core features for changing the way that data model classes are used.

The “Cannot Insert Explicit Value for Identity Column” Exception
If you have selected a primary key as shown in Listing 5-3, then Entity Framework Core will configure the
database so that the database server is responsible for generating the values that will allow objects to be
uniquely identified.

http://dx.doi.org/10.1007/978-1-4842-3435-8_20

Chapter 5 ■ SportSStore: Storing Data

82

This means that multiple applications—or instances of the same application—can share the same
database without coordination to avoid duplicate values. It also means that an exception will be thrown if
you try to store a new object with a key value that is not the default for the key type. For the Product class,
the primary key type is long, so new objects can be stored only when the Id value is zero, which is the default
long value. The most common cause of this exception is including an input element in the view that is used
to create new objects and allowing the user to provide a value, which is then used by the MVC model binder
and passed on to the database via Entity Framework Core.

 ■ Tip See Chapter 19 for the advanced primary key options if you don’t want the database server to
generate values for you.

Summary
In this chapter, I added support for storing data in a database and querying it. I explained the process of
moving to a persistent data store and demonstrated how the queries that an application makes must be
adapted to work efficiently with Entity Framework Core. I also described the most common problems that
you are likely to encounter when you introduce Entity Framework Core to an existing application and told
you how to resolve each of them. In the next chapter, I add features to the SportsStore application to modify
and delete the data in the database.

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

83© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_6

CHAPTER 6

SportsStore: Modifying and
Deleting Data

At the moment, the SportsStore application can store Product objects in the database and perform queries
to read them back again. Most applications also require the ability to make changes to the data after it has
been stored, including removing objects entirely. In this chapter, I add support for updating and deleting
Product objects. I also describe the problems that you are likely to encounter adding these features in your
own projects and explain how to resolve them.

Preparing for This Chapter
In this chapter I continue using the SportsStore project created in Chapter 4 and to which I added Entity
Framework Core in Chapter 5. Run the commands shown in Listing 6-1 in the SportsStore project folder
to delete and re-create the database, which will help ensure that you get the expected results from the
examples.

 ■ Tip You can download the SportsStore project for this chapter—and the projects for every other chapter—
from the GitHub repository for this book: https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Listing 6-1. Deleting and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run and navigate to http://localhost:5000; you will see the
content shown in Figure 6-1.

https://doi.org/10.1007/978-1-4842-3435-8_6
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
http://dx.doi.org/10.1007/978-1-4842-3435-8_5
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

84

Fill out the HTML form using the data values in Table 6-1, which will provide data for the examples in
this chapter.

Figure 6-1. Running the example application

Table 6-1. The Values for Creating Test Product Objects

Name Category Purchase Price Retail Price

Kayak Watersports 200 275

Lifejacket Watersports 30 48.95

Soccer Ball Soccer 17 19.50

Figure 6-2. Adding the test data

When you have added details of all three products, you should see the results shown in Figure 6-2.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

85

Modifying Objects
Entity Framework Core supports a number of different ways of updating objects, which I describe in
Chapters 12 and 21. In this chapter, I start with the simplest technique, in which an object created by the
MVC model binder is used to completely replace the object stored in the database.

Updating the Repository
To get started, I have changed the IRepository interface to add methods that the rest of the application can
use to retrieve and update an existing object, as shown in Listing 6-2.

Listing 6-2. Adding Methods in the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 Product GetProduct(long key);

 void AddProduct(Product product);

 void UpdateProduct(Product product);
 }
}

The GetProduct method will provide a single Product object using its primary key value. The
UpdateProduct method receives a Product object and does not return a result. In Listing 6-3, I have added
the new method to the repository implementation class.

Listing 6-3. Adding a Method in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products.ToArray();

 public Product GetProduct(long key) => context.Products.Find(key);

 public void AddProduct(Product product) {
 context.Products.Add(product);

http://dx.doi.org/10.1007/978-1-4842-3435-8_12
http://dx.doi.org/10.1007/978-1-4842-3435-8_21

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

86

 context.SaveChanges();
 }

 public void UpdateProduct(Product product) {
 context.Products.Update(product);
 context.SaveChanges();
 }
 }
}

The DbSet<Product> returned by the database context’s Products property provides the feature that
I need to implement the new methods. The Find method accepts a primary key value and queries the
database for the object it corresponds to. The Update method accepts a Product object and uses it to update
the database, replacing the object in the database that has the same primary key. As with all operations that
change the database, I have to call the SaveChanges method after the Update method.

 ■ Tip it can be awkward to have to remember to call the SaveChanges method, but it soon becomes second
nature, and this approach means you can set up multiple changes by calling the context object’s methods and
then send them all to the database at the same time with a single SaveChanges call. i explain how this works in
detail in Chapter 24.

Updating the Controller and Creating a View
The next step is to update the Home controller so there are action methods that will allow the user to select
a Product object for editing and send changes to the application, as shown in Listing 6-4. I have also
commented out the line that clears the console so that the SQL queries that Entity Framework Core performs
for the new methods will be easier to see.

Listing 6-4. Adding Actions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public IActionResult Index() {
 //System.Console.Clear();
 return View(repository.Products);
 }

 [HttpPost]
 public IActionResult AddProduct(Product product) {
 repository.AddProduct(product);

http://dx.doi.org/10.1007/978-1-4842-3435-8_24

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

87

 return RedirectToAction(nameof(Index));
 }

 public IActionResult UpdateProduct(long key) {
 return View(repository.GetProduct(key));
 }

 [HttpPost]
 public IActionResult UpdateProduct(Product product) {
 repository.UpdateProduct(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

You can see how the action methods are mapped onto the features provided by the repository and
through to the database context class. To provide the controller with a view for the new actions, I added a file
called UpdateProduct.cshtml to the Views/Home folder with the content shown in Listing 6-5.

Listing 6-5. The Contents of the UpdateProduct.cshtml in the Views/Home Folder

@model Product

<h3 class="p-2 bg-primary text-white text-center">Update Product</h3>

<form asp-action="UpdateProduct" method="post">
 <div class="form-group">
 <label asp-for="Id"></label>
 <input asp-for="Id" class="form-control" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="PurchasePrice"></label>
 <input asp-for="PurchasePrice" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="RetailPrice"></label>
 <input asp-for="RetailPrice" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

88

The view presents the user with an HTML form that can be used to change the properties of a Product
object, with the exception of the Id property, which is used as the primary key. Primary keys cannot be
easily changed once they have been assigned, and it is simpler to delete an object and create a new one if a
different key value is required. For this reason, I have added the readonly attribute to the input element that
shows the value of the Id property but doesn’t allow it to be changed.

To integrate the update feature into the rest of the application, I added a button element for each of the
Product objects displayed by the Index view, as shown in Listing 6-6. I also added a column to the grid that
displays the Id property.

Listing 6-6. Integrating Updates in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row p-2">
 <div class="col-1"></div>
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">
 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 <div>
 @if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
 } else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

89

 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

 </div>
 </div>
 }
 }
 </div>
</div>

Start the application using dotnet run and navigate to http://localhost:5000; you will see the new
elements, which show the primary key and provide an Edit button for each product, as shown in Figure 6-3.

Figure 6-3. Adding elements to the Index view

Click the Edit button for the Soccer Ball product, change the value of the Purchase Price field to 16.50,
and click the Save button. The browser will send the form data to the UpdateProduct action method on
the Home controller, which will receive a Product object that has been created by the MVC model binder.
The Product object will be passed on to the Update method of the database context class, and when the
SaveChanges method is called, the form data values will be stored in the database, as shown in Figure 6-4.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

90

If you examine the logging messages generated by the application, you can see how the actions you
performed result in SQL commands being sent to the database server. When you clicked the Edit button,
Entity Framework Core queried the database for the details of the Soccer Ball object with this command:

...
SELECT TOP(1) [e].[Id], [e].[Category], [e].[Name], [e].[PurchasePrice],
 [e].[RetailPrice]
FROM [Products] AS [e]
WHERE [e].[Id] = @__get_Item_0
...

The Find method that I used in Listing 6-6 is translated into a SELECT command for a single object,
which is specified using the TOP keyword. When you clicked the Save button, Entity Framework Core
updated the database using this command:

...
UPDATE [Products] SET [Category] = @p0, [Name] = @p1, [PurchasePrice] = @p2,
 [RetailPrice] = @p3
WHERE [Id] = @p4;
...

The Update method is translated into a SQL UPDATE command that stores the form values that have
been received from the HTTP request.

Figure 6-4. Updating an object

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

91

Updating Only Changed Properties
The basic building blocks for performing updates are in place, but the result is inefficient because Entity
Framework Core has no baseline against which to figure out what has changed and so has no choice but
to store all of the properties. To see the problem, click the Edit button for one of the products and then
click Save without making any changes. Even though there are no new data values, the logging messages
generated by the application show that the UPDATE command produced by Entity Framework Core sends the
values for all of the properties defined by the Product class.

...
UPDATE [Products] SET [Category] = @p0, [Name] = @p1, [PurchasePrice] = @p2,
 [RetailPrice] = @p3
WHERE [Id] = @p4;
...

Entity Framework Core includes a change-detection feature that can work out which properties have
changed. For a data model class as simple as Product, this is unlikely to be an issue, but for more complex
data models, detecting changes can be important.

The change detection feature requires a baseline against which the data received from the user can be
compared. There are different ways of providing the baseline, which I describe in Chapter 12, but I use the
easiest approach in this chapter, which is to query the database for the existing data. In Listing 6-7, I have
updated the repository implementation class so that it queries the database for the stored Product object
and uses it to avoid updating properties that have not changed.

 ■ Tip the cost of the query must be balanced against the benefit of avoiding unnecessary updates, but this
approach is simple and reliable and works well with the features that entity framework Core provides to stop
two users trying to update the same data, as described in Chapter 20.

Listing 6-7. Avoiding Unnecessary Updates in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products.ToArray();

 public Product GetProduct(long key) => context.Products.Find(key);

 public void AddProduct(Product product) {
 context.Products.Add(product);
 context.SaveChanges();
 }

http://dx.doi.org/10.1007/978-1-4842-3435-8_12
http://dx.doi.org/10.1007/978-1-4842-3435-8_20

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

92

 public void UpdateProduct(Product product) {
 Product p = GetProduct(product.Id);
 p.Name = product.Name;
 p.Category = product.Category;
 p.PurchasePrice = product.PurchasePrice;
 p.RetailPrice = product.RetailPrice;
 // context.Products.Update(product);
 context.SaveChanges();
 }
 }
}

This code bridges two different features in the application. Entity Framework Core performs change
tracking on objects that it creates from query data, while the MVC model binder creates objects from HTTP
data. These two sources of objects are not integrated, and problems occur if care is not taken to keep them
separate. The safest way of taking advantage of change tracking is to query the database and then copy the
values from the HTTP data, as I have done in the listing. When the SaveChanges method is called, Entity
Framework Core will work out which values are changed and update only those properties in the database.

 ■ Tip notice that i have commented out the call to the Update method, which is not required when a query
provides baseline data.

To see how this works, start the application using dotnet run, navigate to http://localhost:5000, and
click the Edit button for the Kayak product. Change the Retail Price value to 300 and click the Save button.
Examine the logging messages generated by the application, and you will see that the UPDATE command that
Entity Framework Core has sent to the database only modifies the property that was changed.

...
UPDATE [Products] SET [RetailPrice] = @p0
WHERE [Id] = @p1;
...

Performing Bulk Updates
Bulk updates are often required in applications where there are dedicated administration roles that need
to make changes to multiple objects in a single operation. The exact nature of the updates will differ, but
common reasons for bulk updates include correcting data entry mistakes or reassigning objects to new
categories, both of which can be time-consuming to perform on individual objects. Bulk updates are easy to
perform using Entity Framework Core, but they require a little effort to get them working smoothly with the
ASP.NET Core MVC part of the application.

Updating the Views and Controller
To add support for performing bulk updates, I updated the Index view to contain an Edit All button that
targets the UpdateAll action. I also added a ViewBag property called UpdateAll, which will lead to the
display of a partial view called InlineEditor.cshtml when true, as shown in Listing 6-8.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

93

Listing 6-8. Supporting Bulk Updates in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
@if (ViewBag.UpdateAll != true) {
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row p-2">
 <div class="col-1"></div>
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">
 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 <div>
 @if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
 } else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

 </div>

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

94

 </div>
 }
 }
 </div>
 <div class="text-center">
 <a asp-action="UpdateAll" class="btn btn-primary">Edit All
 </div>
} else {
 @Html.Partial("InlineEditor", Model)
}
</div>

I created the partial view by adding a file called InlineEditor.cshtml to the Views/Home folder with the
content shown in Listing 6-9.

Listing 6-9. The Contents of the InlineEditor.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold">Purchase Price</div>
 <div class="col font-weight-bold">Retail Price</div>
</div>
@{ int i = 0; }
<form asp-action="UpdateAll" method="post">
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">
 @p.Id
 <input type="hidden" name="Products[@i].Id" value="@p.Id" />
 </div>
 <div class="col">
 <input class="form-control" name="Products[@i].Name"
 value="@p.Name" />
 </div>
 <div class="col">
 <input class="form-control" name="Products[@i].Category"
 value="@p.Category" />
 </div>
 <div class="col text-right">
 <input class="form-control" name="Products[@i].PurchasePrice"
 value="@p.PurchasePrice" />
 </div>
 <div class="col text-right">
 <input class="form-control" name="Products[@i].RetailPrice"
 value="@p.RetailPrice" />
 </div>

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

95

 </div>
 i++;
 }
 <div class="text-center m-2">
 <button type="submit" class="btn btn-primary">Save All</button>
 <a asp-action="Index" class="btn btn-outline-primary">Cancel
 </div>
</form>

The partial view creates a set of form elements whose name follows the MVC convention for a collection of
objects so that the Id property is given the names Products[0].Id, Products[1].Id, and so on. Setting up the
names for the input elements requires a counter, which produces the awkward mix of Razor and C# expressions.

In Listing 6-10, I have added action methods to the Home controller, which will allow the user to start the
bulk edit process and submit the data.

Listing 6-10. Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public IActionResult Index() {
 //System.Console.Clear();
 return View(repository.Products);
 }

 [HttpPost]
 public IActionResult AddProduct(Product product) {
 repository.AddProduct(product);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult UpdateProduct(long key) {
 return View(repository.GetProduct(key));
 }

 [HttpPost]
 public IActionResult UpdateProduct(Product product) {
 repository.UpdateProduct(product);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult UpdateAll() {
 ViewBag.UpdateAll = true;
 return View(nameof(Index), repository.Products);
 }

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

96

 [HttpPost]
 public IActionResult UpdateAll(Product[] products) {
 repository.UpdateAll(products);
 return RedirectToAction(nameof(Index));
 }
 }
}

The POST version of the UpdateAll method accepts an array of Product objects, which the MVC model
binder will create from the form data and pass on to the repository method of the same name.

Updating the Repository
In Listing 6-11, I have added a new method to the repository interface that will perform a bulk update.

Listing 6-11. Adding a Method in the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 Product GetProduct(long key);

 void AddProduct(Product product);

 void UpdateProduct(Product product);

 void UpdateAll(Product[] products);
 }
}

To complete the feature, I added an UpdateAll method to the repository implementation that updates
the database using the data received from the HTTP request, as shown in Listing 6-12.

Listing 6-12. Performing a Bulk Edit in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products.ToArray();

 public Product GetProduct(long key) => context.Products.Find(key);

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

97

 public void AddProduct(Product product) {
 context.Products.Add(product);
 context.SaveChanges();
 }

 public void UpdateProduct(Product product) {
 Product p = GetProduct(product.Id);
 p.Name = product.Name;
 p.Category = product.Category;
 p.PurchasePrice = product.PurchasePrice;
 p.RetailPrice = product.RetailPrice;
 //context.Products.Update(product);
 context.SaveChanges();
 }

 public void UpdateAll(Product[] products) {
 context.Products.UpdateRange(products);
 context.SaveChanges();
 }
 }
}

The DbSet<T> class provides methods for working on both individual objects and collections of objects.
In this example, I have used the UpdateRange method, which is the collection counterpart to the Update
method. When the SaveChanges method is called, Entity Framework Core will send a series of SQL UPDATE
commands to update the server. Start the application using dotnet run, navigate to http://localhost:5000,
and click the Edit All button to display the bulk editing feature, as shown in Figure 6-5.

Figure 6-5. Editing multiple objects

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

98

Using Change Detection for Bulk Updates
The code in Listing 6-12 doesn’t use the Entity Framework Core change-detection feature, which means that
all of the properties for all of the Product objects will be updated. To update only changed values, I modified
the UpdateAll method in the repository class, as shown in Listing 6-13.

Listing 6-13. Using Change Detection in the DataRepository.cs File in the Models Folder

...
public void UpdateAll(Product[] products) {
 //context.Products.UpdateRange(products);

 Dictionary<long, Product> data = products.ToDictionary(p => p.Id);
 IEnumerable<Product> baseline =
 context.Products.Where(p => data.Keys.Contains(p.Id));

 foreach(Product databaseProduct in baseline) {
 Product requestProduct = data[databaseProduct.Id];
 databaseProduct.Name = requestProduct.Name;
 databaseProduct.Category = requestProduct.Category;
 databaseProduct.PurchasePrice = requestProduct.PurchasePrice;
 databaseProduct.RetailPrice = requestProduct.RetailPrice;
 }
 context.SaveChanges();
}
...

The process for performing the update can be convoluted. I start by creating a dictionary of the Product
objects received from the MVC model binder, using the Id property for keys. I use the collection of keys to
query for the corresponding objects in the database, like this:

...
IEnumerable<Product> baseline =
 context.Products.Where(p => data.Keys.Contains(p.Id));
...

I enumerate the query objects and copy the property values from the request objects. When the
SaveChanges method is called, Entity Framework Core performs change-detection and updates only those
values that have changed. Start the application using dotnet run, navigate to http://localhost:5000,
and click the Edit All button. Change the Name field of the first product to Green Kayak and the Retail Price
field of the Lifejacket to 50. Click the Save All button and examine the logging messages generated by the
application. To get the baseline data for change-detection, Entity Framework Core sends this query to the
database:

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[PurchasePrice], [p].[RetailPrice]
FROM [Products] AS [p]
WHERE [p].[Id] IN (1, 2, 3)
...

The objects that are created from this data are used for change detection. Entity Framework Core works
out which properties have new values and sends two UPDATE commands to the database.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

99

...
UPDATE [Products] SET [Name] = @p0
WHERE [Id] = @p1;
...
UPDATE [Products] SET [RetailPrice] = @p2
WHERE [Id] = @p3;
...

You can see that the Name value is changed by the first command and the RetailPrice value is changed
by the second command, corresponding to the changes made using the MVC part of the application.

Deleting Data
Deleting objects from the database is a simple process, although it can become more involved as the data
model grows, as I explain in Chapter 7. In Listing 6-14, I have added Delete method to the repository
interface.

Listing 6-14. Adding a Method in the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 Product GetProduct(long key);

 void AddProduct(Product product);

 void UpdateProduct(Product product);

 void UpdateAll(Product[] products);

 void Delete(Product product);
 }
}

In Listing 6-15, I have updated the repository implementation class to add support for the Delete
method.

Listing 6-15. Deleting Objects in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

http://dx.doi.org/10.1007/978-1-4842-3435-8_7

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

100

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products.ToArray();

 public Product GetProduct(long key) => context.Products.Find(key);

 // ...other methods omitted for brevity...

 public void Delete(Product product) {
 context.Products.Remove(product);
 context.SaveChanges();
 }
 }
}

The DbSet<T> class has Remove and RemoveRange methods for deleting one or several objects from the
database. As with other operations that modify the database, no data will be deleted until the SaveChanges
method is called.

Working through the application, I added an action method to the Home controller that receives details
of the Product object to delete from the HTTP request and passes them on to the repository, as shown in
Listing 6-16.

Listing 6-16. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 // ...other action methods omitted for brevity...

 [HttpPost]
 public IActionResult Delete(Product product) {
 repository.Delete(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

To complete the feature, I added a form element for each Product objects displayed by the Index view
used by the Home controller so that the user can trigger a delete, as shown in Listing 6-17.

 ■ Tip the form contains the existing edit button element just so that the two buttons will be displayed side
by side by the browser.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

101

Listing 6-17. Adding a Form in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 @if (ViewBag.UpdateAll != true) {
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 <form asp-action="AddProduct" method="post">
 <div class="row p-2">
 <div class="col-1"></div>
 <div class="col"><input name="Name" class="form-control" /></div>
 <div class="col"><input name="Category" class="form-control" /></div>
 <div class="col">
 <input name="PurchasePrice" class="form-control" />
 </div>
 <div class="col">
 <input name="RetailPrice" class="form-control" />
 </div>
 <div class="col">
 <button type="submit" class="btn btn-primary">Add</button>
 </div>
 </div>
 </form>
 <div>
 @if (Model.Count() == 0) {
 <div class="row">
 <div class="col text-center p-2">No Data</div>
 </div>
 } else {
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <form asp-action="Delete" method="post">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

102

 <input type="hidden" name="Id" value="@p.Id" />
 <button type="submit" class="btn btn-outline-danger">
 Delete
 </button>
 </form>
 </div>
 </div>
 }
 }
 </div>
 <div class="text-center">
 <a asp-action="UpdateAll" class="btn btn-primary">Edit All
 </div>
 } else {
 @Html.Partial("InlineEditor", Model)
 }
</div>

Notice that the form contains only an input element for the Id property. That’s all that Entity
Framework Core uses to delete an object from the database, even though the operation is performed on a
complete Product object. Rather than send additional data that isn’t going to be used, I have sent just the
primary key value, which the MVC model binder will use to create a Product object, leaving all the other
properties null or the default value for the type.

 ■ Note this is another example of how much implementation detail is allowed to leak into the rest of the
application. Sending just an Id value for a delete operation is efficient and simple, but it does rely on knowledge
of how entity framework Core works, and that creates a dependency on how the data is being stored. the
alternative is not to rely on the behavior of entity framework Core, but that means sending values for properties
that are going to be ignored and that will increase the amount of bandwidth required by the application. Some
design decisions are clear-cut, but others require difficult choices between suboptimal alternatives.

To test the delete feature, start the application using dotnet run, navigate to http://localhost:5000,
and click the Delete button for the Soccer Ball item. The Product object will be removed from the database,
as shown in Figure 6-6.

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

103

Common Problems and Solutions
The Entity Framework Core features for updating and deleting data are reasonably straightforward although
there can be difficulties when using these features with objects that have been created by the MVC model
binder from HTTP requests. In the sections that follow, I describe the problems you are most likely to
encounter and explain how to resolve them.

Objects Are Not Updated or Deleted
If the application seems to be working but objects are not being modified, then the first thing to check
is that you remembered to call the SaveChanges method in your repository implementation class. Entity
Framework Core will only update the database after the SaveChanges method is called and will quietly
discard changes if you forget.

The “Reference Not Set to an Instance of an Object” Exception
This exception is caused by trying to update an object whose primary property is set to null or zero. The
most common reason for this problem is forgetting to include a value for the primary key property in the
HTML form that is used to update an object. Although you cannot change the primary key value, you must
ensure that a value is provided as part of the HTML form. Use a hidden input element if you don’t want the
user to see the primary key value.

Figure 6-6. Deleting an object from the database

CHapter 6 ■ SportSStore: ModifYinG and deletinG data

104

The “Instance of Entity Type Cannot be Tracked” Exception
This exception is caused when you call the Entity Framework Core Update method using an object created
by the MVC model binder after you have queried the database for the same object using Entity Framework
Core. The database context class keeps track of the objects it creates to make change-detection work, and
Entity Framework Core can’t cope when you try to introduce a conflicting object that has been created by the
MVC framework.

You can only use the Update method if you have not queried for baseline data. To avoid this problem,
copy the properties from the object created by the MVC model binder to the object created by Entity
Framework Core, as shown in Listing 6-7.

The “Property Has a Temporary Value” Exception
This exception occurs when you try to send an HTTP request to the application to delete an object but forget
to include a value for the primary key property. The MVC model binder will create an object whose primary
key value is the default for the property type, which is used to indicate a temporary value when waiting for
the database server to allocate a value when storing a new object. To prevent this exception, ensure you
include an input element that provides the primary key value in the HTML form. The type of the input
element can be set to hidden to prevent the user from changing the value.

Updates Result in Zero Values
If numeric properties are set to zero by an update, the likely cause is either that the HTML form doesn’t
include a value for this property or the value entered by the user cannot be parsed into the property data
type by the MVC model binder. To fix the first problem, ensure that there are values for all the properties
defined by the data model class. To fix the second problem, use the MVC validation features to make partial
updates when data values cannot be processed.

Summary
In this chapter, I added support for updating and deleting objects in the SportsStore application. I showed
you how to modify individual objects and perform bulk updates and how to provide Entity Framework
Core with baseline data for its change-detection feature. I also showed you how to delete data, which is
simple to do with a one-class data model but becomes more complex as the data model grows. In the next
chapter, I expand the data model for the SportsStore application.

105© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_7

CHAPTER 7

SportsStore: Expanding the Model

In this chapter, I expand the data model for the SportsStore application beyond the single Product class.
I show you how to normalize data by replacing a string property with a separate class and explain how to
access the data once you have created it. I also add support for representing customer orders, which is an
essential part of any online store.

Preparing for This Chapter
In this chapter, I continue using the SportsStore project created in Chapter 4 and modified in the chapters
since. To prepare for this chapter, I am going to consolidate the process for creating and editing Product
objects into a single view. In Listing 7-1, I combined the action methods that add or update Product objects
in the Home controller and removed the actions for performing bulk updates.

 ■ Tip You can download the SportsStore project for this chapter—and the projects for every other chapter—
from the GitHub repository for this book: https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Listing 7-1. Consolidating Actions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public IActionResult Index() {
 return View(repository.Products);
 }

 public IActionResult UpdateProduct(long key) {
 return View(key == 0 ? new Product() : repository.GetProduct(key));
 }

https://doi.org/10.1007/978-1-4842-3435-8_7
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHapter 7 ■ SportSStore: expandinG tHe Model

106

 [HttpPost]
 public IActionResult UpdateProduct(Product product) {
 if (product.Id == 0) {
 repository.AddProduct(product);
 } else {
 repository.UpdateProduct(product);
 }
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Product product) {
 repository.Delete(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

The consolidated actions rely on the default value for long properties to determine whether the user
wants to modify an existing object or create a new one. In Listing 7-2, I have updated the Index view to
reflect the changes in the controller.

Listing 7-2. Reflecting Controller Changes in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <form asp-action="Delete" method="post">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

 <input type="hidden" name="Id" value="@p.Id" />
 <button type="submit" class="btn btn-outline-danger">

CHapter 7 ■ SportSStore: expandinG tHe Model

107

 Delete
 </button>
 </form>
 </div>
 </div>
 }
 <div class="text-center p-2">
 <a asp-action="UpdateProduct" asp-route-key="0"
 class="btn btn-primary">Add
 </div>
</div>

Run the commands shown in Listing 7-3 in the SportsStore project folder to delete and re-create the
database, which will help ensure that you get the expected results from the examples.

Listing 7-3. Deleting and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run and navigate to http://localhost:5000; you will see the
content shown in Figure 7-1. Don’t add any data to the database because it will be updated with a new
migration in the next section and data added now will produce an exception.

Figure 7-1. Running the example application

Creating a Data Model Relationship
At the moment, each Product object is created with a Category value that is expressed as a string value. In
a real project, it would only be a matter of time before a typo puts a product into an unintended category.
To avoid this kind of problem, relationships can be used to normalize the application’s data, which has the
effect of reducing duplication and ensuring consistency, as I demonstrate in the sections that follow.

CHapter 7 ■ SportSStore: expandinG tHe Model

108

Adding a Data Model Class
The starting point is to create a new data model class. I added a file called Category.cs to the Models folder
and used it to define the class shown in Listing 7-4.

Listing 7-4. The Contents of the Category.cs File in the Models Folder

namespace SportsStore.Models {

 public class Category {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 }
}

The Category class will represent a category of products. The Id property is the primary key property,
and the Name and Description properties will be provided by the user when a new category is created and
stored in the database.

Creating the Relationship
The next step is to create a relationship between the two data model classes, which is done by adding
properties to one of those classes. In any data relationship, one of the classes is known as the dependent
entity, and it is this class to which the properties are added. To work out which class is the dependent entity,
ask yourself which type of object cannot exist without the other. In the case of the SportsStore application,
a category will be able to exist without containing any products, but I want every product to belong to a
category—and that means the Product class is the dependent entity in this situation. In Listing 7-5 I have
added two properties to the Product class that create the relationship with the Category class.

 ■ Tip don’t worry if selecting the dependent entity doesn’t make sense at the moment. i return to this topic
in more detail in Chapter 14, and you will become more comfortable with the concept as you gain experience
with entity Framework Core.

Listing 7-5. Adding Relationship Properties in the Product.cs File in the Models Folder

namespace SportsStore.Models {

 public class Product {

 public long Id { get; set; }

 public string Name { get; set; }
 //public string Category { get; set; }
 public decimal PurchasePrice { get; set; }
 public decimal RetailPrice { get; set; }

http://dx.doi.org/10.1007/978-1-4842-3435-8_14

CHapter 7 ■ SportSStore: expandinG tHe Model

109

 public long CategoryId { get; set; }
 public Category Category { get; set; }
 }
}

The first property I added is called CategoryId and is an example of a foreign key property, which Entity
Framework Core will use to track the relationship by assigning a primary key value that identifies a Category
object. The name of a foreign key property is composed of the class name plus the primary key property
name, which is how I arrived at CategoryId.

The second property replaces the existing Category property and is an example of a navigation
property. Entity Framework Core will populate this property with the Category object that is identified by
the foreign key property, which makes it more natural to work with the data in the database.

Updating the Context and Creating the Repository
To access the Category objects, I added a DbSet<T> property to the database context class, as shown in
Listing 7-6.

Listing 7-6. Adding a Property in the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts) : base(opts) {}

 public DbSet<Product> Products { get; set; }

 public DbSet<Category> Categories { get; set; }
 }
}

The new property follows the same pattern as the existing one: it is a public property with get and set
clauses, and it returns DbSet<T>, where T is the class I want to store in the database.

When you expand the data model, you can provide the rest of the application with access to the new
data types by adding members to the existing repository or by creating a new one. For the SportsStore
application, I am going to create a separate repository just to demonstrate how it is done. I added a class file
called CategoryRepository.cs to the Models folder and used it to define the interface and implementation
class shown in Listing 7-7.

Listing 7-7. The Contents of the CategoryRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface ICategoryRepository {

 IEnumerable<Category> Categories { get; }

CHapter 7 ■ SportSStore: expandinG tHe Model

110

 void AddCategory(Category category);
 void UpdateCategory(Category category);
 void DeleteCategory(Category category);
 }

 public class CategoryRepository : ICategoryRepository {
 private DataContext context;

 public CategoryRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Category> Categories => context.Categories;

 public void AddCategory(Category category) {
 context.Categories.Add(category);
 context.SaveChanges();
 }

 public void UpdateCategory(Category category) {
 context.Categories.Update(category);
 context.SaveChanges();
 }

 public void DeleteCategory(Category category) {
 context.Categories.Remove(category);
 context.SaveChanges();
 }
 }
}

I have defined the repository interface and implementation class in a single file and used the simplest
approach to performing updates, without relying on the change-detection features. In Listing 7-8, I
registered the repository and its implementation in the Startup class for use with the dependency injection
feature.

Listing 7-8. Registering a Repository in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace SportsStore {
 public class Startup {

CHapter 7 ■ SportSStore: expandinG tHe Model

111

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddTransient<IRepository, DataRepository>();
 services.AddTransient<ICategoryRepository, CategoryRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating and Applying a Migration
Entity Framework Core can’t store Category objects until the database has been updated to match the
changes in the data model. To update the database, a new migration must be created and applied to the
database, which is done by running the commands shown in Listing 7-9 in the SportsStore project folder.

 ■ Tip if you get an exception when you run the dotnet ef database update command, then the likely reason
is you added Product data to the database after running the commands in listing 7-3. run the commands in
listing 7-3 again, and the database will be reset and updated to the migration created in listing 7-9.

Listing 7-9. Creating and Applying a Database Migration

dotnet ef migrations add Categories
dotnet ef database update

The first command creates a new migration called Categories, which will contain the commands
required to prepare the database to store new objects. The second command executes those commands to
update the database.

Creating a Controller and View
I have created a required relationship between the Product and Category classes, which means that
every Product must be associated with a Category object. With this kind of relationship, it is helpful to
provide the user with the means to manage the Category objects in the database. I added a class file called
CategoriesController.cs to the Controllers folder and used it to create the controller shown in Listing 7-10.

CHapter 7 ■ SportSStore: expandinG tHe Model

112

 ■ Tip the alternative to a required relationship is an optional one, where a Product object can be associated
with a Category but doesn’t have to be. i explain how to create both kinds of relationship in detail in part 2.

Listing 7-10. The Contents of the CategoriesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class CategoriesController : Controller {
 private ICategoryRepository repository;

 public CategoriesController(ICategoryRepository repo) => repository = repo;

 public IActionResult Index() => View(repository.Categories);

 [HttpPost]
 public IActionResult AddCategory(Category category) {
 repository.AddCategory(category);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult EditCategory(long id) {
 ViewBag.EditId = id;
 return View("Index", repository.Categories);
 }

 [HttpPost]
 public IActionResult UpdateCategory(Category category) {
 repository.UpdateCategory(category);
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult DeleteCategory(Category category) {
 repository.DeleteCategory(category);
 return RedirectToAction(nameof(Index));
 }
 }
}

The Categories controller receives a repository to access category data through its constructor and
defines actions that support querying the database and creating, updating, and deleting Category objects.
To provide the controller with a view, I created the Views/Categories folder and added to it a file called
Index.cshtml with the content shown in Listing 7-11.

CHapter 7 ■ SportSStore: expandinG tHe Model

113

Listing 7-11. The Contents of the Index.cshtml File in the Views/Categories Folder

@model IEnumerable<Category>

<h3 class="p-2 bg-primary text-white text-center">Categories</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Description</div>
 <div class="col-3"></div>
 </div>
 @if (ViewBag.EditId == null) {
 <form asp-action="AddCategory" method="post">
 @Html.Partial("CategoryEditor", new Category())
 </form>
 }
 @foreach (Category c in Model) {
 @if (c.Id == ViewBag.EditId) {
 <form asp-action="UpdateCategory" method="post">
 <input type="hidden" name="Id" value="@c.Id" />
 @Html.Partial("CategoryEditor", c)
 </form>
 } else {
 <div class="row p-2">
 <div class="col-1">@c.Id</div>
 <div class="col">@c.Name</div>
 <div class="col">@c.Description</div>
 <div class="col-3">
 <form asp-action="DeleteCategory" method="post">
 <input type="hidden" name="Id" value="@c.Id" />
 <a asp-action="EditCategory" asp-route-id="@c.Id"
 class="btn btn-outline-primary">Edit
 <button type="submit" class="btn btn-outline-danger">
 Delete
 </button>
 </form>
 </div>
 </div>
 }
 }
</div>

This view provides an all-in-one interface for managing categories and delegates creating, and editing
objects to a partial view. To create the partial view, I added a file called CategoryEditor.cshtml to the
Views/Categories folder and added the content shown in Listing 7-12.

CHapter 7 ■ SportSStore: expandinG tHe Model

114

Listing 7-12. The Contents of the CategoryEditor.cshtml File in the Views/Categories Folder

@model Category

<div class="row p-2">
 <div class="col-1"></div>
 <div class="col">
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="col">
 <input asp-for="Description" class="form-control" />
 </div>
 <div class="col-3">
 @if (Model.Id == 0) {
 <button type="submit" class="btn btn-primary">Add</button>
 } else {
 <button type="submit" class="btn btn-outline-primary">Save</button>
 <a asp-action="Index" class="btn btn-outline-secondary">Cancel
 }
 </div>
</div>

To make it easier to move around the application, I added the elements shown in Listing 7-13 to the
shared layout.

Listing 7-13. Adding Elements in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <style>
 .placeholder { visibility: collapse; display: none }
 .placeholder:only-child { visibility: visible; display: flex }
 </style>
</head>
<body>
 <div class="container-fluid">
 <div class="row p-2">
 <div class="col-2">
 <a asp-controller="Home" asp-action="Index"
 class="@GetClassForButton("Home")">
 Products

 <a asp-controller="Categories" asp-action="Index"
 class="@GetClassForButton("Categories")">
 Categories

 </div>

CHapter 7 ■ SportSStore: expandinG tHe Model

115

 <div class="col">
 @RenderBody()
 </div>
 </div>
 </div>
</body>
</html>

@functions {
 string GetClassForButton(string controller) {
 return "btn btn-block " + (ViewContext.RouteData.Values["controller"]
 as string == controller ? "btn-primary" : "btn-outline-primary");
 }
}

I have added buttons that select the Product and Categories controllers with a simple inline function
that uses Bootstrap CSS styles to highlight the button for the currently displayed controller.

 ■ Note i don’t often use inline razor functions because i prefer to keep all of the C# code in class files. But
in this case, the function has the benefit of keeping the example concise, and it is related only to the content in
the view and is easier than creating a view component.

Populating the Database with Categories
It will be helpful to have some data to work with while completing the data relationship. Start the application
using dotnet run, click the Categories button, and use the HTML form to create categories using the values
in Table 7-1.

Table 7-1. The Data Values for Creating Categories

Name Description

Watersports Make a splash

Soccer The world’s favorite game

Running Run like the wind

When you have added all three categories, you should see the content illustrated in Figure 7-2.

CHapter 7 ■ SportSStore: expandinG tHe Model

116

Using a Data Relationship
The part of the application that deals with Product objects must be updated to reflect the new relationship
in the database. There are two parts to this process: including the category data when querying the database
and allowing the user to select a category when creating or editing a product.

Working with Related Data
Entity Framework Core ignores relationships unless you explicitly include them in queries. This means that
navigation properties such as the Category defined by the Product class will be left null by default. The
Include extension method is used to tell Entity Framework Core to populate a navigation property with
related data and is called on the IQueryable<T> object that represents a query. In Listing 7-14, I have used
the Include method to include the related Category objects in the queries made by the product repository.

Listing 7-14. Including Related Data in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products
 .Include(p => p.Category).ToArray();

 public Product GetProduct(long key) => context.Products
 .Include(p => p.Category).First(p => p.Id == key);

Figure 7-2. Adding category data to the application

CHapter 7 ■ SportSStore: expandinG tHe Model

117

 public void AddProduct(Product product) {
 context.Products.Add(product);
 context.SaveChanges();
 }

 public void UpdateProduct(Product product) {
 Product p = context.Products.Find(product.Id);
 p.Name = product.Name;
 //p.Category = product.Category;
 p.PurchasePrice = product.PurchasePrice;
 p.RetailPrice = product.RetailPrice;
 p.CategoryId = product.CategoryId;
 context.SaveChanges();
 }

 public void UpdateAll(Product[] products) {
 Dictionary<long, Product> data = products.ToDictionary(p => p.Id);
 IEnumerable<Product> baseline =
 context.Products.Where(p => data.Keys.Contains(p.Id));

 foreach(Product databaseProduct in baseline) {
 Product requestProduct = data[databaseProduct.Id];
 databaseProduct.Name = requestProduct.Name;
 databaseProduct.Category = requestProduct.Category;
 databaseProduct.PurchasePrice = requestProduct.PurchasePrice;
 databaseProduct.RetailPrice = requestProduct.RetailPrice;
 }
 context.SaveChanges();
 }

 public void Delete(Product product) {
 context.Products.Remove(product);
 context.SaveChanges();
 }
 }
}

The Include method is defined in the Microsoft.EntityFrameworkCore namespace, and it accepts a
lambda expression that selects the navigation property you want Entity Framework Core to include in the
query. The Find method that I used for the GetProduct method cannot be used with the Include method,
so I have replaced it with the First method, which achieves the same effect. The result of these changes is
that Entity Framework Core will populate the Product.Category navigation property for the Product objects
created by the Products property and the GetProduct method.

Notice the changes that I made to the UpdateProduct method. First, I query for the baseline data
directly, rather than through the GetProduct method because I don’t want to load related data when
performing an update. Second, I commented out the statement that sets the Category property and added
a statement that sets the CategoryId property instead. Setting the foreign key property is all that Entity
Framework Core needs to update the relationship between two objects in the database.

CHapter 7 ■ SportSStore: expandinG tHe Model

118

Selecting a Category for a Product
In Listing 7-15, I have updated the Home controller so that it has access to the Category data through the
repository and passes on the data to its view. This will allow the view to select from the complete set of
categories when editing or creating a Product object.

Listing 7-15. Using Category Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;
 private ICategoryRepository catRepository;

 public HomeController(IRepository repo, ICategoryRepository catRepo) {
 repository = repo;
 catRepository = catRepo;
 }

 public IActionResult Index() {
 return View(repository.Products);
 }

 public IActionResult UpdateProduct(long key) {
 ViewBag.Categories = catRepository.Categories;
 return View(key == 0 ? new Product() : repository.GetProduct(key));
 }

 [HttpPost]
 public IActionResult UpdateProduct(Product product) {
 if (product.Id == 0) {
 repository.AddProduct(product);
 } else {
 repository.UpdateProduct(product);
 }
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Product product) {
 repository.Delete(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

To allow the user to choose one of the categories when creating or editing a Product, I added a select
element to the UpdateProduct view, as shown in Listing 7-16.

CHapter 7 ■ SportSStore: expandinG tHe Model

119

Listing 7-16. Displaying Categories in the UpdateProduct.html File in the Views/Home Folder

@model Product

<h3 class="p-2 bg-primary text-white text-center">Update Product</h3>

<form asp-action="UpdateProduct" method="post">
 <div class="form-group">
 <label asp-for="Id"></label>
 <input asp-for="Id" class="form-control" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <select class="form-control" asp-for="CategoryId">
 @if (Model.Id == 0) {
 <option disabled selected>Choose Category</option>
 }
 @foreach (Category c in ViewBag.Categories) {
 <option selected=@(Model.Category?.Id == c.Id)
 value="@c.Id">@c.Name</option>
 }
 </select>
 </div>
 <div class="form-group">
 <label asp-for="PurchasePrice"></label>
 <input asp-for="PurchasePrice" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="RetailPrice"></label>
 <input asp-for="RetailPrice" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

I include a placeholder option element if the view is being used to create a new Product object and use
a Razor expression to apply the selected attribute if an existing object is being edited.

All that remains is to update the Index view to follow the navigation property and display the name of
the selected category for each Product object, as shown in Listing 7-17.

CHapter 7 ■ SportSStore: expandinG tHe Model

120

Listing 7-17. Following a Navigation Property in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category.Name</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <form asp-action="Delete" method="post">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

 <input type="hidden" name="Id" value="@p.Id" />
 <button type="submit" class="btn btn-outline-danger">
 Delete
 </button>
 </form>
 </div>
 </div>
 }
 <div class="text-center p-2">
 <a asp-action="UpdateProduct" asp-route-key="0"
 class="btn btn-primary">Add
 </div>
</div>

Creating and Editing Products with Categories
Start the application using dotnet run, navigate to http://localhost:5000, click the Add button, and use
the form to create Product objects using the data shown in Table 7-2. As you create each object, use the
select element to pick the category from the list.

CHapter 7 ■ SportSStore: expandinG tHe Model

121

As you create each object, the Index action will be executed to display the results, which will cause
Entity Framework Core to query the database for the Product data and its related Category objects. You can
see how this is translated into a SQL query by examining the logging messages generated by the application,
like this:

...
SELECT [p].[Id], [p].[CategoryId], [p].[Name], [p].[PurchasePrice],
 [p].[RetailPrice], [p.Category].[Id], [p.Category].[Description],
 [p.Category].[Name]
FROM [Products] AS [p]
INNER JOIN [Categories] AS [p.Category] ON [p].[CategoryId] = [p.Category].[Id]
...

Entity Framework Core uses the foreign key to query for the data it needs to create the Category objects
related to each Product and uses an inner join to combine data from the Products and Categories tables.

Once you have created all three Product objects, click Categories, click the Edit button for the
Watersports category, and change the value of the Name field to Aquatics. Click the Save button and click
Products, and you will see that both the Product objects in the edited category are shown with the new
name, as illustrated in Figure 7-3.

 ■ Caution if you delete a Category object, then the Product objects that are related to it will also be
deleted, which is the default configuration for required relationships. i explain how this works and the
alternative configuration options in Chapter 22.

Figure 7-3. The effect of changing a category name

Table 7-2. The Values for Creating Test Product Objects

Name Category Purchase Price Retail Price

Kayak Watersports 200 275

Lifejacket Watersports 30 48.95

Soccer Ball Soccer 17 19.50

http://dx.doi.org/10.1007/978-1-4842-3435-8_22

CHapter 7 ■ SportSStore: expandinG tHe Model

122

Adding Support for Orders
To demonstrate a more complex relationship, I am going to add support for creating and storing orders and
use them to represent product selections made by customers. In the sections that follow, I expand the data
model with additional classes, update the database, and add a controller to manage the new data.

Creating the Data Model Classes
I started by adding a file called Order.cs to the Models folder and using it to define the class shown in
Listing 7-18.

Listing 7-18. The Contents of the Order.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public class Order {
 public long Id { get; set; }
 public string CustomerName { get; set; }
 public string Address { get; set; }
 public string State { get; set; }
 public string ZipCode { get; set; }
 public bool Shipped { get; set; }

 public IEnumerable<OrderLine> Lines { get; set; }
 }
}

The Order class has properties that store the customer’s name and address and whether the products
have been shipped. There is also a navigation property that provides access to the related OrderLine objects,
which will represent an individual product selection. To create this class, I added a file called OrderLine.cs
to the Models folder with the code shown in Listing 7-19.

Listing 7-19. The Contents of the OrderLine.cs File in the Models Folder

namespace SportsStore.Models {

 public class OrderLine {
 public long Id { get; set; }

 public long ProductId { get; set; }
 public Product Product { get; set; }

 public int Quantity { get; set; }

 public long OrderId { get; set; }
 public Order Order { get; set; }
 }
}

CHapter 7 ■ SportSStore: expandinG tHe Model

123

Each OrderLine object is related to an Order and a Product and has a property that indicates how many
of that product the customer requires. To make it convenient to access the Order data, I added the properties
shown in Listing 7-20 to the context class.

Listing 7-20. Adding Properties in the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts) : base(opts) {}

 public DbSet<Product> Products { get; set; }

 public DbSet<Category> Categories { get; set; }

 public DbSet<Order> Orders { get; set; }
 public DbSet<OrderLine> OrderLines { get; set; }
 }
}

Creating the Repository and Preparing the Database
To provide consistent access to the new data to the rest of the application, I added a file called
IOrdersRepository.cs to the Models folder and used it to define the interface shown in Listing 7-21.

Listing 7-21. The Contents of the IOrdersRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public interface IOrdersRepository {

 IEnumerable<Order> Orders { get; }
 Order GetOrder(long key);
 void AddOrder(Order order);
 void UpdateOrder(Order order);
 void DeleteOrder(Order order);
 }
}

Next, I added a file called OrdersRepository.cs to the Models folder and used it to create the
implementation class shown in Listing 7-22.

CHapter 7 ■ SportSStore: expandinG tHe Model

124

Listing 7-22. The Contents of the OrdersRepository.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class OrdersRepository : IOrdersRepository {
 private DataContext context;

 public OrdersRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Order> Orders => context.Orders
 .Include(o => o.Lines).ThenInclude(l => l.Product);

 public Order GetOrder(long key) => context.Orders
 .Include(o => o.Lines).First(o => o.Id == key);

 public void AddOrder(Order order) {
 context.Orders.Add(order);
 context.SaveChanges();
 }

 public void UpdateOrder(Order order) {
 context.Orders.Update(order);
 context.SaveChanges();
 }

 public void DeleteOrder(Order order) {
 context.Orders.Remove(order);
 context.SaveChanges();
 }
 }
}

The repository implementation follows the pattern established for the other repositories and forgoes
change detection in favor of simplicity. Note the use of the Include and ThenInclude methods to navigate
around the data model and add related data to queries—a process I describe in detail in Chapters 14–16.

In Listing 7-23, I added a statement to the Startup class so that dependencies on the IOrderRepository
interface will be resolved using transient OrderRepository objects by the dependency injection system.

Listing 7-23. Configuring Dependency Injection in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

http://dx.doi.org/10.1007/978-1-4842-3435-8_14
http://dx.doi.org/10.1007/978-1-4842-3435-8_16

CHapter 7 ■ SportSStore: expandinG tHe Model

125

using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace SportsStore {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddTransient<IRepository, DataRepository>();
 services.AddTransient<ICategoryRepository, CategoryRepository>();
 services.AddTransient<IOrdersRepository, OrdersRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Run the commands shown in Listing 7-24 in the SportsStore project folder to prepare the database to
store the new data model classes by creating and applying an Entity Framework Core migration.

Listing 7-24. Creating and Applying a New Database Migration

dotnet ef migrations add Orders
dotnet ef database update

Creating Controllers and Views
All of the Entity Framework Core plumbing is in place to work with Order objects, and the next step is
to add the MVC features that will allow instances to be created and managed. I added a class file called
OrdersController.cs to the Controllers folder and used it to define the controller shown in Listing 7-25.
I have left out the code for the AddOrUpdateOrder method, which I’ll complete when the rest of the features
are in place.

CHapter 7 ■ SportSStore: expandinG tHe Model

126

Listing 7-25. The Contents of the OrdersController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrdersController : Controller {
 private IRepository productRepository;
 private IOrdersRepository ordersRepository;

 public OrdersController(IRepository productRepo,
 IOrdersRepository orderRepo) {
 productRepository = productRepo;
 ordersRepository = orderRepo;
 }

 public IActionResult Index() => View(ordersRepository.Orders);

 public IActionResult EditOrder(long id) {
 var products = productRepository.Products;
 Order order = id == 0 ? new Order() : ordersRepository.GetOrder(id);
 IDictionary<long, OrderLine> linesMap
 = order.Lines?.ToDictionary(l => l.ProductId)
 ?? new Dictionary<long, OrderLine>();
 ViewBag.Lines = products.Select(p => linesMap.ContainsKey(p.Id)
 ? linesMap[p.Id]
 : new OrderLine { Product = p, ProductId = p.Id, Quantity = 0 });
 return View(order);
 }

 [HttpPost]
 public IActionResult AddOrUpdateOrder(Order order) {

 // ...action method to be completed...

 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult DeleteOrder(Order order) {
 ordersRepository.DeleteOrder(order);
 return RedirectToAction(nameof(Index));
 }
 }
}

The LINQ statements in the EditOrder action method may look convoluted, but they prepare the
OrderLine data so that there is one object for every Product, even if there has been no previous selection for
that product.

CHapter 7 ■ SportSStore: expandinG tHe Model

127

For a new order, this means that the ViewBag.Lines property will be populated with a sequence of
OrderLine objects, corresponding to each Product in the database, with Id and Quantity properties set to
zero. When the object is stored in the database, the zero Id value will indicate this is a new object, and the
database server will assign a new unique primary key.

For existing orders, the ViewBag.Lines property will be populated with the OrderLine objects read from
the database, filled out with extra objects with zero Id properties for the remaining products.

This structure takes advantage of the way that ASP.NET Core MVC and Entity Framework Core fit
together and simplifies the process of updating the database, as you will see when you work through the rest
of the example.

The next step is to create a view that will list all of the objects in the database. I created the Views/Orders
folder and added to it a file named Index.cshtml with the content shown in Listing 7-26.

Listing 7-26. The Contents of the Index.cshtml File in the Views/Orders Folder

@model IEnumerable<Order>

<h3 class="p-2 bg-primary text-white text-center">Orders</h3>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Zip</div>
 <div class="col font-weight-bold">Total</div>
 <div class="col font-weight-bold">Profit</div>
 <div class="col-1 font-weight-bold">Status</div>
 <div class="col-3"></div>
 </div>
 <div>
 <div class="row placeholder p-2"><div class="col-12 text-center">
 <h5>No Orders</h5>
 </div></div>
 @foreach (Order o in Model) {

 <div class="row p-2">
 <div class="col-1">@o.Id</div>
 <div class="col">@o.CustomerName</div>
 <div class="col">@o.ZipCode</div>
 <div class="col">@o.Lines.Sum(l => l.Quantity
 * l.Product.RetailPrice)</div>
 <div class="col">@o.Lines.Sum(l => l.Quantity
 * (l.Product.RetailPrice - l.Product.PurchasePrice))</div>
 <div class="col-1">@(o.Shipped ? "Shipped" : "Pending")</div>
 <div class="col-3 text-right">
 <form asp-action="DeleteOrder" method="post">
 <input type="hidden" name="Id" value="@o.Id" />
 <a asp-action="EditOrder" asp-route-id="@o.Id"
 class="btn btn-outline-primary">Edit
 <button type="submit" class="btn btn-outline-danger">
 Delete
 </button>
 </form>

CHapter 7 ■ SportSStore: expandinG tHe Model

128

 </div>
 </div>
 }
 </div>
</div>
<div class="text-center">
 <a asp-action="EditOrder" class="btn btn-primary">Create
</div>

This view presents a summary of the Order objects in the database and displays both the total price of
the products ordered and the amount of profit that will be made. There are buttons to create a new order and
to edit and delete an existing one.

To provide the view for creating or editing an order, I added a file called EditOrder.cshtml to the
Views/Orders folder and added the content shown in Listing 7-27.

Listing 7-27. The Contents of the EditOrder.cshtml File in the Views/Orders Folder

@model Order

<h3 class="p-2 bg-primary text-white text-center">Create/Update Order</h3>

<form asp-action="AddOrUpdateOrder" method="post">
 <div class="form-group">
 <label asp-for="Id"></label>
 <input asp-for="Id" class="form-control" readonly />
 </div>
 <div class="form-group">
 <label asp-for="CustomerName"></label>
 <input asp-for="CustomerName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Address"></label>
 <input asp-for="Address" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="State"></label>
 <input asp-for="State" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="ZipCode"></label>
 <input asp-for="ZipCode" class="form-control" />
 </div>
 <div class="form-check">
 <label class="form-check-label">
 <input type="checkbox" asp-for="Shipped" class="form-check-input" />
 Shipped
 </label>
 </div>

CHapter 7 ■ SportSStore: expandinG tHe Model

129

 <h6 class="mt-1 p-2 bg-primary text-white text-center">Products Ordered</h6>
 <div class="container-fluid">
 <div class="row">
 <div class="col font-weight-bold">Product</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold">Quantity</div>
 </div>
 @{ int counter = 0; }
 @foreach (OrderLine line in ViewBag.Lines) {
 <input type="hidden" name="lines[@counter].Id" value="@line.Id" />
 <input type="hidden" name="lines[@counter].ProductId"
 value="@line.ProductId" />
 <input type="hidden" name="lines[@counter].OrderId" value="@Model.Id" />
 <div class="row mt-1">
 <div class="col">@line.Product.Name</div>
 <div class="col">@line.Product.Category.Name</div>
 <div class="col">
 <input type="number" name="lines[@counter].Quantity"
 value="@line.Quantity" />
 </div>
 </div>
 counter++;
 }
 </div>
 <div class="text-center m-2">
 <button type="submit" class="btn btn-primary">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

This view provides the user with a form containing input elements for the properties defined by the
Order class, as well as elements for each of the Product objects in the database, which will be populated with
selected quantities when editing existing objects.

To make the new features easier to access, I added the element shown in Listing 7-28 to the layout
shared by all the views.

Listing 7-28. Adding an Element in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <style>
 .placeholder { visibility: collapse; display: none }
 .placeholder:only-child { visibility: visible; display: flex }
 </style>
</head>

CHapter 7 ■ SportSStore: expandinG tHe Model

130

<body>
 <div class="container-fluid">
 <div class="row p-2">
 <div class="col-2">
 <a asp-controller="Home" asp-action="Index"
 class="@GetClassForButton("Home")">
 Products

 <a asp-controller="Categories" asp-action="Index"
 class="@GetClassForButton("Categories")">
 Categories

 <a asp-controller="Orders" asp-action="Index"
 class="@GetClassForButton("Orders")">
 Orders

 </div>
 <div class="col">
 @RenderBody()
 </div>
 </div>
 </div>
</body>
</html>

@functions {
 string GetClassForButton(string controller) {
 return "btn btn-block " + (ViewContext.RouteData.Values["controller"]
 as string == controller ? "btn-primary" : "btn-outline-primary");
 }
}

Start the application using dotnet run, navigate to http://localhost:5000, click the Orders button,
and click Create. You will see an empty form that contains elements for all the products in the database.
Since this is a new order, all the Quantity fields are zero, as shown in Figure 7-4.

CHapter 7 ■ SportSStore: expandinG tHe Model

131

Storing Order Data
No data is stored when you click the Save button because I left the AddOrUpdateOrder method incomplete in
Listing 7-25. To complete the controller, I added the code shown in Listing 7-29 to the action method.

Listing 7-29. Storing Data in the OrdersController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult AddOrUpdateOrder(Order order) {
 order.Lines = order.Lines
 .Where(l => l.Id > 0 || (l.Id == 0 && l.Quantity > 0)).ToArray();
 if (order.Id == 0) {
 ordersRepository.AddOrder(order);
 } else {

Figure 7-4. The view for creating new objects

CHapter 7 ■ SportSStore: expandinG tHe Model

132

 ordersRepository.UpdateOrder(order);
 }
 return RedirectToAction(nameof(Index));
}
...

The code statements I used in the action method rely on a useful Entity Framework Core feature: when
I pass an Order object to the AddOrder or UpdateOrder repository method, the Entity Framework Core will
store not only the Order object but also its related OrderLine objects. This may not seem important, but it
simplifies a process that would otherwise require a series of carefully coordinated updates.

To see the SQL commands that are produced, start the application using dotnet run, navigate to
http://localhost:5000/orders, click the Create button, and fill out the form. It doesn’t matter what details
you use for the customer, but make sure you enter the quantities for the products shown in Table 7-3.

Table 7-3. The Quantities Values Required
to Create an Order

Product Quantity

Kayak 1

Lifejacket 2

Soccer Ball 0

When you click the Save button, you will see several SQL commands in the logging messages generated by
the application. The first stores the Order object, and the second gets the value assigned for the primary key.

...
INSERT INTO [Orders] ([Address], [CustomerName], [Shipped], [State], [ZipCode])
VALUES (@p0, @p1, @p2, @p3, @p4);

SELECT [Id]
FROM [Orders]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

Entity Framework Core then uses the primary key of the Order object to store the OrderLine objects,
like this:

...
DECLARE @inserted0 TABLE ([Id] bigint, [_Position] [int]);
MERGE [OrderLines] USING (
VALUES (@p5, @p6, @p7, 0),
 (@p8, @p9, @p10, 1)) AS i ([OrderId], [ProductId], [Quantity], _Position) ON 1=0
WHEN NOT MATCHED THEN
 INSERT ([OrderId], [ProductId], [Quantity])
 VALUES (i.[OrderId], i.[ProductId], i.[Quantity])
 OUTPUT INSERTED.[Id], i._Position
INTO @inserted0;
...

CHapter 7 ■ SportSStore: expandinG tHe Model

133

Finally, Entity Framework Core queries the database to get the primary keys assigned to the OrderLine
objects, like this:

...
SELECT [t].[Id] FROM [OrderLines] t
INNER JOIN @inserted0 i ON ([t].[Id] = [i].[Id])
ORDER BY [i].[_Position];
...

Don’t worry if you can’t make complete sense of the SQL commands. The point to note is that Entity
Framework Core takes care of storing the related data and generates the SQL commands automatically.
The final point to note about the code in Listing 7-29 relates to this statement:

...
order.Lines = order.Lines
 .Where(l => l.Id > 0 || (l.Id == 0 && l.Quantity > 0)).ToArray();
...

This statement excludes any OrderLine object for which no quantity has been selected, except for
objects that have already been stored in the database. This ensures that the database isn’t full of OrderLine
objects that are not part of an order but does allow updates to be made to previously stored data.

When you save the data, a summary of the order will be displayed, as illustrated in Figure 7-5.

Figure 7-5. A summary of order data

Common Problems and Solutions
The features for creating and working with related data can be awkward, and in the following sections,
I describe common problems and explain how to resolve them.

The “ALTER TABLE conflicted with the FOREIGN KEY” Exception
This exception usually occurs when you apply a migration to a database that contains constraints that the
existing data in the database doesn’t conform to. For the SportsStore application, for example, you would
have seen this exception if you had created Product objects in the database before applying the migration
that added support for separate Category objects. The existing data in the database would not have
conformed to the requirement to have a foreign key relationship with a category and so the database update
would have failed.

CHapter 7 ■ SportSStore: expandinG tHe Model

134

The simplest way to solve this problem is to drop and re-create the database, which will remove any
data it contains. This isn’t a suitable approach in a production system, however, where the data will have to
be carefully modified before the migration can be applied.

The “UPDATE Conflicted with the FOREIGN KEY” Exception
This exception occurs when you try to store a new object or update an existing one using data that doesn’t
match the constraints applied to the database to support related data. The most likely cause is omitting a
key value for the related data. In the context of the SportsStore application, for example, this exception will
occur if you try to store or update a Product object without including a value for the CategoryId property. If
you receive this exception, make sure that your HTML form contains input elements for all of the foreign key
properties defined by your data model classes.

The “The Property Expression ‘x => x.<name>’ is Not Valid” Exception
This exception occurs when you forget to add get and set clauses to a navigation property and then select
it using the Include method. Omitting the clauses creates a field rather than a property and the Include
method cannot follow it in a query. To solve the problem, add get and set clauses to create a property. You
may also have to re-create and reapply the migration that defines the relationship.

The “Type of Navigation Property <name> Does Not Implement
ICollection<OrderLine>” Exception
Entity Framework Core is sensitive to the data types assigned to its navigation properties, and this exception
can result when you perform a LINQ query on a navigation property collection before storing data, as I did in
Listing 7-29 for the SportsStore application. To fix the problem, call the ToArray method on the result of your
LINQ query, which will produce a result that implements the interface that Entity Framework Core expects.

The “The Property <name> is Not a Navigation Property of Entity
Type <name>” Exception
This exception occurs when you use the Include method to select a property that Entity Framework Core
cannot follow for related data. The most common cause of this problem is selecting the foreign key property
rather than the navigation property it is paired with. In the case of the SportsStore application, you would see
this error if you use the Include method to select the ProductId property from an OrderLine object, rather
than the Product property.

The “Invalid Object Name <name>” Exception
This exception usually occurs when you create a migration that expands the data model with a relationship
but have forgotten to apply it to the database. Use the dotnet ef database update command to apply the
migrations in your project, and see Chapter 13, where I explain how migrations work in detail.

http://dx.doi.org/10.1007/978-1-4842-3435-8_13

CHapter 7 ■ SportSStore: expandinG tHe Model

135

Objects Are Deleted Instead of Being Updated
If you find that trying to update an object actually results in it being deleted, then the likely cause is that
you are loading related data and then setting the navigation property to null when getting the baseline
data for change detection. In the case of the SportsStore application, for example, you can see this behavior
by querying for a baseline Product object, using the Include method to load the related Category object,
and then setting the Category property to null before calling the SaveChanges method. This combination
of actions leads Entity Framework Core to quietly delete the object you had intended to update. To fix this
problem, don’t load the related data and don’t set the navigation property to null.

The Class Name for Related Data Is Displayed in a View
This problem is caused by using a Razor expression that selects the value of the navigation property,
which returns the related object. Razor then calls the ToString method, which returns the class name.
To include a data value from related data in a view, select one of the related object’s properties so that you
use @Category.Name and not just @Category, for example.

Summary
In this chapter, I expanded the SportsStore data model by adding new classes and creating relationships
between them. I explained how to query for related data, how to perform updates, and how to resolve the
most common problems these features are likely to cause. In the next chapter, I show you how to adapt the
MVC and Entity Framework Core parts of the application to deal with large amounts of data.

137© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_8

CHAPTER 8

SportsStore: Scaling Up

When you create an application, the focus is usually on getting the right foundation, and that’s the approach
I have taken with the SportsStore project. As the application progresses, it can be useful to increase the amount
of data you are working with so that you can see the impact it has on the operations that the user has to perform
and the amount of time they take. In this chapter, I add test data to the database to show the flaws in the
way that SportsStore presents data to the user and address these by adding support for paginating, ordering,
and searching data. I also show you how to improve the performance of these operations by using the Entity
Framework Core that supports advanced data model configuration options, known as the Fluent API.

Preparing for This Chapter
I continue to use the SportsStore project that was created in Chapter 4 and updated in the chapters since.
Run the commands shown in Listing 8-1 in the SportsStore project folder to delete and re-create the
database.

 ■ Tip You can download the SportsStore project for this chapter—and the projects for every other chapter—
from the GitHub repository for this book: https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Listing 8-1. Deleting and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Creating a Seed Data Controller and View
For this chapter, I need a controller that can populate the database with test data. I added a file called
SeedController.cs to the Controllers folder and used it to define the controller shown in Listing 8-2.

Listing 8-2. The Contents of the SeedController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;
using System.Linq;

https://doi.org/10.1007/978-1-4842-3435-8_8
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

CHapter 8 ■ SportSStore: SCalinG Up

138

namespace SportsStore.Controllers {

 public class SeedController : Controller {
 private DataContext context;

 public SeedController(DataContext ctx) => context = ctx;

 public IActionResult Index() {
 ViewBag.Count = context.Products.Count();
 return View(context.Products
 .Include(p => p.Category).OrderBy(p => p.Id).Take(20));
 }

 [HttpPost]
 public IActionResult CreateSeedData(int count) {
 ClearData();
 if (count > 0) {
 context.Database.SetCommandTimeout(System.TimeSpan.FromMinutes(10));
 context.Database
 .ExecuteSqlCommand("DROP PROCEDURE IF EXISTS CreateSeedData");
 context.Database.ExecuteSqlCommand($@"
 CREATE PROCEDURE CreateSeedData
 @RowCount decimal
 AS
 BEGIN
 SET NOCOUNT ON
 DECLARE @i INT = 1;
 DECLARE @catId BIGINT;
 DECLARE @CatCount INT = @RowCount / 10;
 DECLARE @pprice DECIMAL(5,2);
 DECLARE @rprice DECIMAL(5,2);
 BEGIN TRANSACTION
 WHILE @i <= @CatCount
 BEGIN
 INSERT INTO Categories (Name, Description)
 VALUES (CONCAT('Category-', @i),
 'Test Data Category');
 SET @catId = SCOPE_IDENTITY();
 DECLARE @j INT = 1;
 WHILE @j <= 10
 BEGIN
 SET @pprice = RAND()*(500-5+1);
 SET @rprice = (RAND() * @pprice)
 + @pprice;
 INSERT INTO Products (Name, CategoryId,
 PurchasePrice, RetailPrice)
 VALUES (CONCAT('Product', @i, '-', @j),
 @catId, @pprice, @rprice)
 SET @j = @j + 1
 END
 SET @i = @i + 1
 END

CHapter 8 ■ SportSStore: SCalinG Up

139

 COMMIT
 END");
 context.Database.BeginTransaction();
 context.Database
 .ExecuteSqlCommand($"EXEC CreateSeedData @RowCount = {count}");
 context.Database.CommitTransaction();
 }
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult ClearData() {
 context.Database.SetCommandTimeout(System.TimeSpan.FromMinutes(10));
 context.Database.BeginTransaction();
 context.Database.ExecuteSqlCommand("DELETE FROM Orders");
 context.Database.ExecuteSqlCommand("DELETE FROM Categories");
 context.Database.CommitTransaction();
 return RedirectToAction(nameof(Index));
 }
 }
}

When it comes to generating large quantities of test data, creating .NET objects and storing them in the
database is inefficient. The Seed controller uses the Entity Framework Core features for working directly with
SQL to create and execute a stored procedure that produces test data much more quickly. (I describe these
features in detail in Chapter 23.)

DON’T DO THIS IN REAL PROJECTS

the approach i have taken in listing 8-2 should be used only for generating test data and not for any
other part of an application.

For this chapter, i needed a mechanism so you can reliably generate large amounts of test data without
requiring complex database tasks or using third-party tools. (there are some excellent commercial tools
available for generating SQl data, but they generally require a license for anything more than a few
hundred rows.)

Working directly with SQl should be done with caution because it bypasses a lot of the useful
protections that entity Framework Core provides, is difficult to test and maintain, and often ends up
working on a single database server. You should also avoid creating stored procedures in C# code,
which i have done in listing 8-2 for simplicity.

in short, don’t use any aspect of this technique in the production parts of your applications.

To provide the controller with a view, I created the Views/Seed folder and added to it a file called
Index.cshtml with the content shown in Listing 8-3.

http://dx.doi.org/10.1007/978-1-4842-3435-8_23

CHapter 8 ■ SportSStore: SCalinG Up

140

Listing 8-3. The Contents of the Index.cshtml File in the Views/Seed Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Seed Data</h3>

<form method="post">
 <div class="form-group">
 <label>Number of Objects to Create</label>
 <input class="form-control" name="count" value="50" />
 </div>

 <div class="text-center">
 <button type="submit" asp-action="CreateSeedData" class="btn btn-primary">
 Seed Database
 </button>
 <button asp-action="ClearData" class="btn btn-danger">
 Clear Database
 </button>
 </div>
</form>

<h5 class="text-center m-2">
 There are @ViewBag.Count products in the database
</h5>

<div class="container-fluid">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase</div>
 <div class="col font-weight-bold text-right">Retail</div>
 </div>
 @foreach (Product p in Model) {
 <div class="row">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category.Name</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 </div>
 }
</div>

The view lets you specify how much test data should be generated and displays the first 20 Product
objects, which are provided by the query in the Index action of the Seed controller. To make the Seed
controller easier to use, I added the element shown in Listing 8-4 to the shared layout.

CHapter 8 ■ SportSStore: SCalinG Up

141

Listing 8-4. Adding an Element in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <style>
 .placeholder { visibility: collapse; display: none }
 .placeholder:only-child { visibility: visible; display: flex }
 </style>
</head>
<body>
 <div class="container-fluid">
 <div class="row p-2">
 <div class="col-2">
 <a asp-controller="Home" asp-action="Index"
 class="@GetClassForButton("Home")">
 Products

 <a asp-controller="Categories" asp-action="Index"
 class="@GetClassForButton("Categories")">
 Categories

 <a asp-controller="Orders" asp-action="Index"
 class="@GetClassForButton("Orders")">
 Orders

 <a asp-controller="Seed" asp-action="Index"
 class="@GetClassForButton("Seed")">
 Seed Data

 </div>
 <div class="col">
 @RenderBody()
 </div>
 </div>
 </div>
</body>
</html>

@functions {
 string GetClassForButton(string controller) {
 return "btn btn-block " + (ViewContext.RouteData.Values["controller"]
 as string == controller ? "btn-primary" : "btn-outline-primary");
 }
}

Start the application using dotnet run, navigate to http://localhost:5000, and click the Seed Data
button. Set the value in the input element to 1000 and click the Seed Database button. It will take a moment
to generate the data, after which you will see the result shown in Figure 8-1.

CHapter 8 ■ SportSStore: SCalinG Up

142

 ■ Tip the values for the prices for the test data are generated randomly, which means you may receive
slightly different results for some of the examples.

Figure 8-1. Running the example application

Scaling Up Data Presentation
It doesn’t take a great deal of data to show flaws in the way that the SportsStore application presents its data.
With a thousand objects, the way that the data is presented to the user becomes unusable, and that is still a
relatively small amount of data for an application to deal with. In the sections that follow, I change the way
that the SportsStore application presents its data to help the user perform basic operations and locate the
objects they require.

Adding Support for Pagination
The first problem I am going to tackle is breaking up the data presented to the user so that it isn’t just
one long list. Using simple tables that include all of the objects is a useful approach when laying out the
foundations of an application, but tables containing thousands of rows are unusable in most applications. To
address this, I am going to add support for querying for smaller amounts of data from the database and allow
the user to navigate by paging through these smaller amounts.

When dealing with large amounts of data, it is important to ensure that access to that data is managed
consistently so that there is no way for one part of the application to accidentally query for millions of
objects. The approach I am going to take is to create a collection class that incorporates pagination.

Creating the Paginated Collection Class
To define the collection that provides access to paginated data, I created the Models/Pages folder, added to it
a class called PagedList.cs, and used it to define the class shown in Listing 8-5.

CHapter 8 ■ SportSStore: SCalinG Up

143

Listing 8-5. The Contents of the PagedList.cs File in the Models/Pages Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models.Pages {

 public class PagedList<T> : List<T> {

 public PagedList(IQueryable<T> query, QueryOptions options = null) {
 CurrentPage = options.CurrentPage;
 PageSize = options.PageSize;

 TotalPages = query.Count() / PageSize;
 AddRange(query.Skip((CurrentPage - 1) * PageSize).Take(PageSize));
 }

 public int CurrentPage { get; set; }
 public int PageSize { get; set; }
 public int TotalPages { get; set; }

 public bool HasPreviousPage => CurrentPage > 1;
 public bool HasNextPage => CurrentPage < TotalPages;

 }
}

I have used a strongly typed List as the base class, which will let me build on the base collection
behavior easily. The constructor accepts an IQueryable<T>, which represents the query that will provide the
data to display to the user. This query will be executed twice—once to get the total number of objects that
the query could return and once to get just the objects that will be displayed on the current page. This is the
trade-off inherent in pagination, where an additional COUNT query is balanced against queries for smaller
numbers of objects overall. The other constructor arguments specify the page required for the query and the
number of objects to be displayed per page.

To represent the options required for the query, I added a class file called QueryOptions.cs to the
Models/Pages folder, with the code in Listing 8-6.

Listing 8-6. The Contents of the QueryOptions.cs File in the Models/Pages Folder

namespace SportsStore.Models.Pages {

 public class QueryOptions {
 public int CurrentPage { get; set; } = 1;
 public int PageSize { get; set; } = 10;
 }
}

Updating the Repository
To ensure that pagination is used consistently, I am going to return a PagedList object as the result of
queries performed through the repository. In Listing 8-7, I added a method called GetProduct method,
which returns the data for a single page.

CHapter 8 ■ SportSStore: SCalinG Up

144

Listing 8-7. Returning Pages of Data in the IRepository.cs File in the Models Folder

using System.Collections.Generic;
using SportsStore.Models.Pages;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 PagedList<Product> GetProducts(QueryOptions options);

 Product GetProduct(long key);

 void AddProduct(Product product);

 void UpdateProduct(Product product);

 void UpdateAll(Product[] products);

 void Delete(Product product);
 }
}

In Listing 8-8, I have made the corresponding change to the implementation class for the repository.

Listing 8-8. Returning Pages of Data in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models.Pages;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products
 .Include(p => p.Category).ToArray();

 public PagedList<Product> GetProducts(QueryOptions options) {
 return new PagedList<Product>(context.Products
 .Include(p => p.Category), options);
 }

 // ..other methods omitted for brevity...
 }
}

CHapter 8 ■ SportSStore: SCalinG Up

145

The new method returns a PagedList collection of Product objects for the page specified by the
arguments.

Updating the Controller and View
To add support for pagination to the Home controller, I updated the Index action so that it accepts the
arguments required to select a page and so it uses the new repository method, as shown in Listing 8-9.

Listing 8-9. Using Paged Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.Pages;

namespace SportsStore.Controllers {

 public class HomeController : Controller {
 private IRepository repository;
 private ICategoryRepository catRepository;

 public HomeController(IRepository repo, ICategoryRepository catRepo) {
 repository = repo;
 catRepository = catRepo;
 }

 public IActionResult Index(QueryOptions options) {
 return View(repository.GetProducts(options));
 }

 public IActionResult UpdateProduct(long key) {
 ViewBag.Categories = catRepository.Categories;
 return View(key == 0 ? new Product() : repository.GetProduct(key));
 }

 [HttpPost]
 public IActionResult UpdateProduct(Product product) {
 if (product.Id == 0) {
 repository.AddProduct(product);
 } else {
 repository.UpdateProduct(product);
 }
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Product product) {
 repository.Delete(product);
 return RedirectToAction(nameof(Index));
 }
 }
}

CHapter 8 ■ SportSStore: SCalinG Up

146

The base class of the paged data collection implements the IEnumerable<T> interface, which minimizes
the extent of the changes required to support paged data. The only change required to the view for the Index
action of the Home controller is to display a partial view that will provide details of the pagination, as shown
in Listing 8-10. The rest of the view doesn’t need to change since it will enumerate data in the same way
regardless of whether the sequence it operates on contains all of the available data or just a page of it.

Listing 8-10. Using a Partial View in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="text-center">
 @Html.Partial("Pages", Model)
</div>

<div class="container-fluid mt-3">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase Price</div>
 <div class="col font-weight-bold text-right">Retail Price</div>
 <div class="col"></div>
 </div>
 @foreach (Product p in Model) {
 <div class="row p-2">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category.Name</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 <div class="col">
 <form asp-action="Delete" method="post">
 <a asp-action="UpdateProduct" asp-route-key="@p.Id"
 class="btn btn-outline-primary">
 Edit

 <input type="hidden" name="Id" value="@p.Id" />
 <button type="submit" class="btn btn-outline-danger">
 Delete
 </button>
 </form>
 </div>
 </div>
 }
 <div class="text-center p-2">
 <a asp-action="UpdateProduct" asp-route-key="0"
 class="btn btn-primary">Add
 </div>
</div>

CHapter 8 ■ SportSStore: SCalinG Up

147

To complete the pagination support for Product objects, I defined the partial view by adding a file called
Pages.cshtml to the Views/Shared folder and adding the elements shown in Listing 8-11.

Listing 8-11. The Contents of the Pages.cshtml File in the Views/Shared Folder

<form id="pageform" method="get" class="form-inline d-inline-block">

 <button name="options.currentPage" value="@(Model.CurrentPage -1)"
 class="btn btn-outline-primary @(!Model.HasPreviousPage ? "disabled" : "")"
 type="submit">
 Previous
 </button>

 @for (int i = 1; i <= 3 && i <= Model.TotalPages; i++) {
 <button name="options.currentPage" value="@i" type="submit"
 class="btn btn-outline-primary @(Model.CurrentPage == i ? "active" : "")">
 @i
 </button>
 }
 @if (Model.CurrentPage > 3 && Model.TotalPages - Model.CurrentPage >= 3) {
 @:...
 <button class="btn btn-outline-primary active">@Model.CurrentPage</button>
 }
 @if (Model.TotalPages > 3) {
 @:...
 @for (int i = Math.Max(4, Model.TotalPages - 2);
 i <= Model.TotalPages; i++) {
 <button name="options.currentPage" value="@i" type="submit"
 class="btn btn-outline-primary
 @(Model.CurrentPage == i ? "active" : "")">
 @i
 </button>
 }
 }
 <button name="options.currentPage" value="@(Model.CurrentPage +1)" type="submit"
 class="btn btn-outline-primary @(!Model.HasNextPage? "disabled" : "")">
 Next
 </button>

 <select name="options.pageSize" class="form-control ml-1 mr-1">
 @foreach (int val in new int[] { 10, 25, 50, 100 }) {
 <option value="@val" selected="@(Model.PageSize == val)">@val</option>
 }
 </select>
 <input type="hidden" name="options.currentPage" value="1" />
 <button type="submit" class="btn btn-secondary">Change Page Size</button>
</form>

The view contains an HTML form that is used to send GET requests back to the action method for
pages of data and to change the page size. The Razor expressions look messy, but they adapt the pagination
buttons displayed to the user to the number of pages available. To see the effect, start the application using

CHapter 8 ■ SportSStore: SCalinG Up

148

dotnet run and navigate to http://localhost:5000. The list of products will be broken into pages of ten
items, which can be paged through using a series of buttons, as shown in Figure 8-2.

Figure 8-2. Paging data

Adding Search and Ordering Support
Displaying pages is a good start, but it is still difficult to focus on a specific set of objects. To give the user the
tools they need to locate data, I am going to build on the pagination feature to add support for changing the
display order and for performing searches. The starting point is to expand the PagedList class so that it can
perform searches and order the results of queries using property names, rather than lambda expressions that
select properties, as shown in Listing 8-12. This requires some convoluted code to perform the operations,
but the result can be applied to any data model class and integrates more easily with the ASP.NET Core MVC
parts of the application.

Listing 8-12. Adding Features in the PagedList.cs File in the Models Pages Folder

using System.Collections.Generic;
using System.Linq;
using System;
using System.Linq.Expressions;

namespace SportsStore.Models.Pages {

 public class PagedList<T> : List<T> {

 public PagedList(IQueryable<T> query, QueryOptions options = null) {
 CurrentPage = options.CurrentPage;
 PageSize = options.PageSize;
 Options = options;

 if (options != null) {
 if (!string.IsNullOrEmpty(options.OrderPropertyName)) {
 query = Order(query, options.OrderPropertyName,
 options.DescendingOrder);
 }

CHapter 8 ■ SportSStore: SCalinG Up

149

 if (!string.IsNullOrEmpty(options.SearchPropertyName)
 && !string.IsNullOrEmpty(options.SearchTerm)) {
 query = Search(query, options.SearchPropertyName,
 options.SearchTerm);
 }
 }

 TotalPages = query.Count() / PageSize;
 AddRange(query.Skip((CurrentPage - 1) * PageSize).Take(PageSize));
 }

 public int CurrentPage { get; set; }
 public int PageSize { get; set; }
 public int TotalPages { get; set; }
 public QueryOptions Options { get; set; }

 public bool HasPreviousPage => CurrentPage > 1;
 public bool HasNextPage => CurrentPage < TotalPages;

 private static IQueryable<T> Search(IQueryable<T> query, string propertyName,
 string searchTerm) {
 var parameter = Expression.Parameter(typeof(T), "x");
 var source = propertyName.Split('.').Aggregate((Expression) parameter,
 Expression.Property);
 var body = Expression.Call(source, "Contains", Type.EmptyTypes,
 Expression.Constant(searchTerm, typeof(string)));
 var lambda = Expression.Lambda<Func<T, bool>>(body, parameter);
 return query.Where(lambda);
 }

 private static IQueryable<T> Order(IQueryable<T> query, string propertyName,
 bool desc) {
 var parameter = Expression.Parameter(typeof(T), "x");
 var source = propertyName.Split('.').Aggregate((Expression) parameter,
 Expression.Property);
 var lambda = Expression.Lambda(typeof(Func<,>).MakeGenericType(typeof(T),
 source.Type), source, parameter);
 return typeof(Queryable).GetMethods().Single(
 method => method.Name == (desc ? "OrderByDescending"
 : "OrderBy")
 && method.IsGenericMethodDefinition
 && method.GetGenericArguments().Length == 2
 && method.GetParameters().Length == 2)
 .MakeGenericMethod(typeof(T), source.Type)
 .Invoke(null, new object[] { query, lambda }) as IQueryable<T>;
 }
 }
}

Listing 8-13 shows the corresponding changes to the QueryOptions class.

CHapter 8 ■ SportSStore: SCalinG Up

150

Listing 8-13. Adding Properties in the QueryOptions.cs File in the Models/Pages Folder

namespace SportsStore.Models.Pages {

 public class QueryOptions {

 public int CurrentPage { get; set; } = 1;
 public int PageSize { get; set; } = 10;

 public string OrderPropertyName { get; set; }
 public bool DescendingOrder { get; set; }

 public string SearchPropertyName { get; set; }
 public string SearchTerm { get; set; }
 }
}

To create a generalized view that will present the search and ordering options to the user, I added a file
called PageOptions.cshtml in the Views/Shared folder and added the content shown in Listing 8-14.

Listing 8-14. The Contents of the PageOptions.cshtml File in the Views/Shared Folder

<div class="container-fluid mt-2">
 <div class="row m-1">
 <div class="col"></div>
 <div class="col-1">
 <label class="col-form-label">Search</label>
 </div>
 <div class="col-3">
 <select form="pageform" name="options.searchpropertyname"
 class="form-control">
 @foreach (string s in ViewBag.searches as string[]) {
 <option value="@s"
 selected="@(Model.Options.SearchPropertyName == s)">
 @(s.IndexOf('.') == -1 ? s : s.Substring(0, s.IndexOf('.')))
 </option>

 }
 </select>
 </div>
 <div class="col">
 <input form="pageform" class="form-control" name="options.searchterm"
 value="@Model.Options.SearchTerm" />
 </div>

 <div class="col-1 text-right">
 <button form="pageform" class="btn btn-secondary" type="submit">
 Search
 </button>
 </div>
 <div class="col"></div>
 </div>

CHapter 8 ■ SportSStore: SCalinG Up

151

 <div class="row m-1">
 <div class="col"></div>
 <div class="col-1">
 <label class="col-form-label">Sort</label>
 </div>
 <div class="col-3">
 <select form="pageform" name="options.OrderPropertyName"
 class="form-control">
 @foreach (string s in ViewBag.sorts as string[]) {
 <option value="@s"
 selected="@(Model.Options.OrderPropertyName == s)">
 @(s.IndexOf('.') == -1 ? s : s.Substring(0, s.IndexOf('.')))
 </option>
 }
 </select>
 </div>
 <div class="col form-check form-check-inline">
 <input form="pageform" type="checkbox" name="Options.DescendingOrder"
 id="Options.DescendingOrder"
 class="form-check-input" value="true"
 checked ="@Model.Options.DescendingOrder" />
 <label class="form-check-label">Descending Order</label>
 </div>
 <div class="col-1 text-right">
 <button form="pageform" class="btn btn-secondary" type="submit">
 Sort
 </button>
 </div>
 <div class="col"></div>
 </div>
</div>

This view relies on the HTML 5 feature of associating elements with forms outside of the form element,
which means that I can extend the form defined in the Pages view with elements that are specific to
searching and ordering.

I don’t want to hard-code the list of properties that the user can use to search or order data into the
view, so, for simplicity, I get these values from the ViewBag. This is not an ideal solution, but it does provide
a lot of flexibility, and it allows me to easily adapt the same content to different views and different data. To
display the search and ordering elements to the user alongside the Product list, I added the content shown
in Listing 8-15 to the Index view used by the Home controller.

Listing 8-15. Displaying the Product Features in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Products</h3>

<div class="text-center">
 @Html.Partial("Pages", Model)
 @{
 ViewBag.searches = new string[] { "Name", "Category.Name" };
 ViewBag.sorts = new string[] { "Name", "Category.Name",

CHapter 8 ■ SportSStore: SCalinG Up

152

 "PurchasePrice", "RetailPrice"};
 }
 @Html.Partial("PageOptions", Model)
</div>
<div class="container-fluid mt-3">
 <!-- ...other elements omitted for brevity... -->
</div>

The code block specifies the Product properties by which the user will be able to search and order
Product objects, while the @Html.Partial expression renders the elements for these features.

To see the results, start the application using dotnet run and navigate to http://localhost:5000.
You will see a new series of elements that make navigating the data easier, as shown in Figure 8-3.

Figure 8-3. Searching and ordering Product objects

Applying the Data Presentation Features to Categories
The process for putting the pagination, search, and sorting features in place has been awkward, but now that
the foundation is in place, I can apply them to other data types in the application, such as the management
of Category objects. To begin, I updated the repository interface and implementation classes to add a
method that accepts a QueryOptions object and returns a PagedList result, as shown in Listing 8-16.

Listing 8-16. Adding Page Support in the CategoryRepository.cs File in the Models Folder

using System.Collections.Generic;
using SportsStore.Models.Pages;

namespace SportsStore.Models {

CHapter 8 ■ SportSStore: SCalinG Up

153

 public interface ICategoryRepository {

 IEnumerable<Category> Categories { get; }

 PagedList<Category> GetCategories(QueryOptions options);

 void AddCategory(Category category);
 void UpdateCategory(Category category);
 void DeleteCategory(Category category);
 }

 public class CategoryRepository : ICategoryRepository {
 private DataContext context;

 public CategoryRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Category> Categories => context.Categories;

 public PagedList<Category> GetCategories(QueryOptions options) {
 return new PagedList<Category>(context.Categories, options);
 }

 public void AddCategory(Category category) {
 context.Categories.Add(category);
 context.SaveChanges();
 }

 public void UpdateCategory(Category category) {
 context.Categories.Update(category);
 context.SaveChanges();
 }

 public void DeleteCategory(Category category) {
 context.Categories.Remove(category);
 context.SaveChanges();
 }
 }
}

In Listing 8-17, I have added a QueryOptions parameter to the Index action of the controller that
manages Category objects and used it to query the repository.

Listing 8-17. Adding Page Support in the CategoriesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.Pages;

namespace SportsStore.Controllers {

 public class CategoriesController : Controller {
 private ICategoryRepository repository;

CHapter 8 ■ SportSStore: SCalinG Up

154

 public CategoriesController(ICategoryRepository repo) => repository = repo;

 public IActionResult Index(QueryOptions options)
 => View(repository.GetCategories(options));

 [HttpPost]
 public IActionResult AddCategory(Category category) {
 repository.AddCategory(category);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult EditCategory(long id) {
 ViewBag.EditId = id;
 return View("Index", repository.Categories);
 }

 [HttpPost]
 public IActionResult UpdateCategory(Category category) {
 repository.UpdateCategory(category);
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult DeleteCategory(Category category) {
 repository.DeleteCategory(category);
 return RedirectToAction(nameof(Index));
 }
 }
}

Finally, I can present the features to the user by adding the elements shown in Listing 8-18 to the Index
view used by the Categories controller.

Listing 8-18. Adding Features in the Index.cshtml File in the Views/Categories Folder

@model IEnumerable<Category>

<h3 class="p-2 bg-primary text-white text-center">Categories</h3>

<div class="text-center">
 @Html.Partial("Pages", Model)
 @{
 ViewBag.searches = new string[] { "Name", "Description" };
 ViewBag.sorts = new string[] { "Name", "Description" };
 }
 @Html.Partial("PageOptions", Model)
</div>

<div class="container-fluid mt-3">
 <!-- ...other elements omitted for brevity... -->
</div>

CHapter 8 ■ SportSStore: SCalinG Up

155

To see the new features, start the application, navigate to http://localhost:5000, and click the
Categories button. The list of categories is presented in pages, and the user can search and order them as
required, as shown in Figure 8-4.

Figure 8-4. Paging, sorting and searching categories

Indexing the Database
Adding a thousand test objects to the database is enough to show the scaling limitations of the way that data
was presented to the user, but it isn’t enough data to reveal the limitations of the database. To see the effect
of working with larger amounts of data, I have added statements to the PagedList constructor that measure
how long it takes to perform a query and write the elapsed time to the console, as shown in Listing 8-19.

 ■ Tip there are many ways to measure performance, and most database servers provide tools that will
help you understand how long queries take to execute. in the case of SQl Server, the SQl Server profiler
and the SQl Server Management Studio tools provide endless amounts of detail. these tools can be useful,
but i generally rely on the approach that i take in listing 8-19 because it is simple and accurate enough to
understand the magnitude of any performance problems.

Listing 8-19. Timing the Query in the PagedList.cs File in the Models/Pages Folder

using System.Collections.Generic;
using System.Linq;
using System;
using System.Linq.Expressions;
using System.Diagnostics;

CHapter 8 ■ SportSStore: SCalinG Up

156

namespace SportsStore.Models.Pages {

 public class PagedList<T> : List<T> {

 public PagedList(IQueryable<T> query, QueryOptions options = null) {
 CurrentPage = options.CurrentPage;
 PageSize = options.PageSize;
 Options = options;

 if (options != null) {
 if (!string.IsNullOrEmpty(options.OrderPropertyName)) {
 query = Order(query, options.OrderPropertyName,
 options.DescendingOrder);
 }
 if (!string.IsNullOrEmpty(options.SearchPropertyName)
 && !string.IsNullOrEmpty(options.SearchTerm)) {
 query = Search(query, options.SearchPropertyName,
 options.SearchTerm);
 }
 }

 Stopwatch sw = Stopwatch.StartNew();
 Console.Clear();

 TotalPages = query.Count() / PageSize;
 AddRange(query.Skip((CurrentPage - 1) * PageSize).Take(PageSize));

 Console.WriteLine($"Query Time: {sw.ElapsedMilliseconds} ms");
 }

 // ...other members omitted for brevity...
 }
}

Start the application using dotnet run, navigate to http://localhost:5000, click the Seed Data
button, and populate the database with the number of objects you want to test. When the database has been
seeded, click the Products button, select the Purchase Price property for the Sort select element, select the
Descending Order option, and click the Sort button.

If you examine the logging messages generated by the application, you will see the queries that have
been used to get the data and the amount of time they took.

...
SELECT COUNT(*)
FROM [Products] AS [p]
...
SELECT [p].[Id], [p].[CategoryId], [p].[Name], [p].[PurchasePrice],
 [p].[RetailPrice], [p.Category].[Id], [p.Category].[Description],
 [p.Category].[Name
FROM [Products] AS [p]
INNER JOIN [Categories] AS [p.Category] ON [p].[CategoryId] = [p.Category].[Id]
ORDER BY [p].[PurchasePrice] DESC

CHapter 8 ■ SportSStore: SCalinG Up

157

OFFSET @__p_0 ROWS FETCH NEXT @__p_1 ROWS ONLY
...
Query Time: 14 ms
...

Table 8-1 shows the amount of time it takes to perform these queries on my development machine
for different amounts of seed data. You may see different times when you perform the tests, but what’s
important is the way that the amount of time taken to perform the queries increases along with the amount
of data.

Table 8-1. The Time Taken to Perform Queries

Objects Time

1,000 14ms

10,000 17ms

100,000 185ms

1,000,000 2453ms

2,000,000 5713ms

Creating and Applying Indexes
Part of the performance problem is that the database server has to examine a lot of data rows to find the data
that the application requires. An effective way to reduce the amount of work that the database server has to
perform is to create indexes, which speed up queries but do so after taking some initial time to prepare and
a little additional work after every update. For the SportsStore application, I am going to add indexes for the
properties of the Product and Category classes that the user can use to search for or order data. Indexes are
created in the database context class, as shown in Listing 8-20.

Listing 8-20. Creating Indexes in the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts) : base(opts) {}

 public DbSet<Product> Products { get; set; }

 public DbSet<Category> Categories { get; set; }

 public DbSet<Order> Orders { get; set; }
 public DbSet<OrderLine> OrderLines { get; set; }

CHapter 8 ■ SportSStore: SCalinG Up

158

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Product>().HasIndex(p => p.Name);
 modelBuilder.Entity<Product>().HasIndex(p => p.PurchasePrice);
 modelBuilder.Entity<Product>().HasIndex(p => p.RetailPrice);

 modelBuilder.Entity<Category>().HasIndex(p => p.Name);
 modelBuilder.Entity<Category>().HasIndex(p => p.Description);
 }
 }
}

The OnModelCreating method is overridden to customize the data model using the Entity Framework
Core Fluent API feature, which I describe in detail in Parts 2 and 3 of this book. The Fluent API allows you
override the default Entity Framework Core behaviors and to access advanced features, such as creating
indexes. In the listing, I have created indexes for the Name, PurchasePrice, and RetailPrice properties of
the Product class and for the Name and Description properties of the Category class. I don’t need to create
indexes for the primary or foreign key properties because Entity Framework Core does that for me by default.

Creating indexes requires a new migration to be created and applied to the database. Run the
commands shown in Listing 8-21 in the SportsStore project folder to create a migration called Indexes and
apply it to the database.

 ■ Tip it can take a while to apply a migration that creates indexes when there is a lot of data in the database
because all of the existing data has to be added to the index. You may want to use the Seed controller to reduce
the amount of test data before executing the migration commands.

Listing 8-21. Creating and Applying a Database Migration

dotnet ef migrations add Indexes
dotnet ef database update

Once the migration has been applied, restart the application and repeat the query tests to see the
impact on performance. Table 8-2 shows the query times before and after the indexes were added for my PC.

Table 8-2. The Time Taken to Perform Queries

Objects Time Indexed Time

1,000 14ms 9ms

10,000 17ms 10ms

100,000 185ms 23ms

1,000,000 2453ms 143ms

2,000,000 5713ms 158ms

CHapter 8 ■ SportSStore: SCalinG Up

159

UNDERSTANDING THE COUNT QUERY PERFORMANCE

there is still a small increase in the amount of time taken as the amount of data increases. the query
that i make to get the number of objects that have been stored in the database is translated into a SQl
SELECT COUNT command, the performance of which drops for a large number of objects. Database
servers generally offer alternative methods of counting data, and in the case of SQl Server, you can
query the metadata that the database server maintains about the database, like this:

...
select sum (spart.rows)
from sys.partitions spart
where spart.object_id = object_id('Products') and spart.index_id < 2
...

this type of query cannot be performed using linQ. instead, see Chapter 23 for details of using the
entity Framework Core features that support executing SQl commands directly.

Common Problems and Solutions
Scaling up the amount of data that the application supports requires a careful balance of adapting the
ASP.NET Core MVC part of the application to ask Entity Framework Core for smaller amounts of data and
providing tools for ordering and searching data. In the sections that follow, I describe the problems that you
are most likely to encounter and explain how to resolve them.

Queries for Pages Are Too Slow
The most likely reason for slow queries is that the application is retrieving all of the objects from the
database and then sorting or searching them in memory before taking just those objects required for a single
page. Each time the user switches to a new page, this process is repeated, creating large amounts of work to
retrieve and process objects that are then discarded.

This problem is usually caused by LINQ methods being called on the IEnumerable<T> interface, rather
than the IQueryable<T> interface, as described in Chapter 5. The quickest way to diagnose this problem is to
look application’s logging messages to see the SQL queries that Entity Framework Core produces. Although
the details will vary, using the IQueryable<T> interface with the OrderBy and Skip LINQ methods will
produce queries with ORDER BY and OFFSET clauses.

If you are using the IQueryable<T> interface, then you should check for duplicate queries, as described
in Chapter 5. It is easy to forget that enumerating the sequence of objects will trigger a query, especially
when working out how many page buttons are required, for example.

Applying the Index Migration Times Out
When you apply a migration to the database that adds indexes, the database server has to populate the index
using the data that has already been stored. This can be a lengthy process for large databases, and the dotnet
ef command can time out before the process is complete, which will cause the migration to fail and prevent
the indexes from being created. To solve this problem in development, drop and re-create the database so
that the indexes are applied when there is no data. For production systems, back up the database, remove
the data, and then apply the migrations. Once the indexes have been created, you can populate the database
again using small blocks of data so that each update only requires a small amount of work.

http://dx.doi.org/10.1007/978-1-4842-3435-8_23
http://dx.doi.org/10.1007/978-1-4842-3435-8_5
http://dx.doi.org/10.1007/978-1-4842-3435-8_5

CHapter 8 ■ SportSStore: SCalinG Up

160

Creating an Index Does Not Improve Performance
If you find that an index does not improve your query times, then the first thing to check is that the migration
that creates the indexes has been applied to the database. The next most likely problem is that indexes
have not been created for all of the properties that the application uses for queries. If your application uses
combinations of properties for searches, you may need to create additional indexes, as described in Part 3.

Summary
In this chapter, I showed adapted the SportsStore application to deal with larger amounts of data. I added
support for paging, sorting, and searching the data, which allow the user to work with manageable numbers
of objects at a time. I also used the Fluent API to customize the data model and add indexes to improve
query performance. In the next chapter, I add the customer-facing features to the SportsStore application.

161© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_9

CHAPTER 9

SportsStore: Customer Features

In this chapter, I am going to build the customer-facing parts of the SportsStore application, which will allow
a user to select products, see their shopping cart, and check out to create an order. The features that I add
in this chapter are largely related to the ASP.NET Core MVC framework and build on the Entity Framework
Core foundation created in previous chapters.

I pick up the pace in this chapter because most of the work is building features using ASP.NET Core
MVC on top of the foundation created with Entity Framework Core in previous chapters.

Preparing for This Chapter
I continue to use the SportsStore project that was created in Chapter 4 and updated in the chapters since.

 ■ Tip You can download the SportsStore project for this chapter—and the projects for every other chapter—
from the GitHub repository for this book: https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Removing the Timing Statements
In Chapter 8, I measured the time taken to perform queries. The statements that timed the query are no
longer required, and I have commented them out in Listing 9-1.

Listing 9-1. Commenting Out Statements in the PagedList.cs File in the Models/Pages Folder

using System.Collections.Generic;
using System.Linq;
using System;
using System.Linq.Expressions;
using System.Diagnostics;

namespace SportsStore.Models.Pages {

 public class PagedList<T> : List<T> {

 public PagedList(IQueryable<T> query, QueryOptions options = null) {
 CurrentPage = options.CurrentPage;
 PageSize = options.PageSize;
 Options = options;

https://doi.org/10.1007/978-1-4842-3435-8_9
http://dx.doi.org/10.1007/978-1-4842-3435-8_4
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
http://dx.doi.org/10.1007/978-1-4842-3435-8_8

CHapter 9 ■ SportSStore: CuStomer FeatureS

162

 if (options != null) {
 if (!string.IsNullOrEmpty(options.OrderPropertyName)) {
 query = Order(query, options.OrderPropertyName,
 options.DescendingOrder);
 }
 if (!string.IsNullOrEmpty(options.SearchPropertyName)
 && !string.IsNullOrEmpty(options.SearchTerm)) {
 query = Search(query, options.SearchPropertyName,
 options.SearchTerm);
 }
 }

 //Stopwatch sw = Stopwatch.StartNew();
 //Console.Clear();
 TotalPages = query.Count() / PageSize;
 AddRange(query.Skip((CurrentPage - 1) * PageSize).Take(PageSize));
 //Console.WriteLine($"Query Time: {sw.ElapsedMilliseconds} ms");
 }

 // ...other members omitted for brevity...
 }
}

Adding a View Import
In Chapter 8, I used the PagedList class in views without changing the view model, just to demonstrate that
I could add scale up features to an application with the minimum of changes. In this chapter, I am going to
use the PagedList class directly in views, so I added the containing namespace to the view imports file, as
shown in Listing 9-2.

Listing 9-2. Adding a Namespace in the _ViewImports.cshtml File in the Views Folder

@using SportsStore.Models
@using SportsStore.Models.Pages
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Modifying the Data Model
To prepare the data model for the customer-facing features, I added a Description property to the Product
class so that customers can learn a little about the products they see, as shown in Listing 9-3.

Listing 9-3. Adding a Property in the Products.cs File in the Models Folder

namespace SportsStore.Models {

 public class Product {

 public long Id { get; set; }

 public string Name { get; set; }
 public string Description { get; set; }

http://dx.doi.org/10.1007/978-1-4842-3435-8_8

CHapter 9 ■ SportSStore: CuStomer FeatureS

163

 public decimal PurchasePrice { get; set; }
 public decimal RetailPrice { get; set; }

 public long CategoryId { get; set; }
 public Category Category { get; set; }
 }
}

To make it easier to query and store data by category, I added a navigation property to the Category
class that Entity Framework Core will be able to populate with the related Product objects, as shown in
Listing 9-4.

Listing 9-4. Adding a Navigation Property in the Category.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {

 public class Category {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }

 public IEnumerable<Product> Products { get; set; }
 }
}

Adding Product Seed Data
I want to be able to switch between large amounts of test data and small amounts of more realistic data.
To that end, I added the code shown in Listing 9-5 to the Seed controller to add the standard SportsStore
categories and products.

Listing 9-5. Adding Production Seed Data in the SeedController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class SeedController : Controller {
 private DataContext context;

 public SeedController(DataContext ctx) => context = ctx;

 public IActionResult Index() {
 ViewBag.Count = context.Products.Count();
 return View(context.Products
 .Include(p => p.Category).OrderBy(p => p.Id).Take(20));
 }

CHapter 9 ■ SportSStore: CuStomer FeatureS

164

 // ...other actions omitted for brevity...

 [HttpPost]
 public IActionResult CreateProductionData() {
 ClearData();

 context.Categories.AddRange(new Category[] {
 new Category {
 Name = "Watersports",
 Description = "Make a splash",
 Products = new Product[] {
 new Product {
 Name = "Kayak", Description = "A boat for one person",
 PurchasePrice = 200, RetailPrice = 275
 },
 new Product {
 Name = "Lifejacket",
 Description = "Protective and fashionable",
 PurchasePrice = 40, RetailPrice = 48.95m
 },
 }
 },
 new Category {
 Name = "Soccer",
 Description = "The World's Favorite Game",
 Products = new Product[] {
 new Product {
 Name = "Soccer Ball",
 Description = "FIFA-approved size and weight",
 PurchasePrice = 18, RetailPrice = 19.50m
 },
 new Product {
 Name = "Corner Flags", Description
 = "Give your playing field a professional touch",
 PurchasePrice = 32.50m, RetailPrice = 34.95m
 },
 new Product {
 Name = "Stadium",
 Description = "Flat-packed 35,000-seat stadium",
 PurchasePrice = 75000, RetailPrice = 79500
 }
 }
 },
 new Category {
 Name = "Chess",
 Description = "The Thinky Game",
 Products = new Product[] {
 new Product {
 Name = "Thinking Cap",
 Description = "Improve brain efficiency by 75%",
 PurchasePrice = 10, RetailPrice = 16
 },

CHapter 9 ■ SportSStore: CuStomer FeatureS

165

 new Product {
 Name = "Unsteady Chair", Description
 = "Secretly give your opponent a disadvantage",
 PurchasePrice = 28, RetailPrice = 29.95m
 },
 new Product {
 Name = "Human Chess Board",
 Description = "A fun game for the family",
 PurchasePrice = 68.50m, RetailPrice = 75
 },
 new Product {
 Name = "Bling-Bling King",
 Description = "Gold-plated, diamond-studded King",
 PurchasePrice = 800, RetailPrice = 1200
 }
 }
 }
 });
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The new action method creates a series of Category objects and sets the Products navigation property
to a collection of Product objects. All of the objects are passed to the AddRange method and are stored in
the database by the SaveChanges method. To target the new action method, I added the elements shown in
Listing 9-6 to the Index view used by the Seed controller.

Listing 9-6. Adding an Element in the Index.cshtml File in the Views/Seed Folder

@model IEnumerable<Product>

<h3 class="p-2 bg-primary text-white text-center">Seed Data</h3>

<form method="post">
 <div class="form-group">
 <label>Number of Objects to Create</label>
 <input class="form-control" name="count" value="50" />
 </div>

 <div class="text-center">
 <button type="submit" asp-action="CreateProductionData"
 class="btn btn-outline-primary">
 Production Seed
 </button>
 <button type="submit" asp-action="CreateSeedData" class="btn btn-primary">
 Seed Database
 </button>

CHapter 9 ■ SportSStore: CuStomer FeatureS

166

 <button asp-action="ClearData" class="btn btn-danger">
 Clear Database
 </button>
 </div>
</form>

<h5 class="text-center m-2">
 There are @ViewBag.Count products in the database
</h5>

<div class="container-fluid">
 <div class="row">
 <div class="col-1 font-weight-bold">Id</div>
 <div class="col font-weight-bold">Name</div>
 <div class="col font-weight-bold">Category</div>
 <div class="col font-weight-bold text-right">Purchase</div>
 <div class="col font-weight-bold text-right">Retail</div>
 </div>
 @foreach (Product p in Model) {
 <div class="row">
 <div class="col-1">@p.Id</div>
 <div class="col">@p.Name</div>
 <div class="col">@p.Category.Name</div>
 <div class="col text-right">@p.PurchasePrice</div>
 <div class="col text-right">@p.RetailPrice</div>
 </div>
 }
</div>

The button element sends an HTTP POST request, which will have the effect of clearing the database
and seeding it with the standard SportsStore products and categories.

Preparing the Database
To prepare the database for this chapter, run the commands shown in Listing 9-7 in the SportsStore project
folder. These commands add a new migration that reflects the change to the data model and then delete and
re-create the database.

Listing 9-7. Preparing the Database

dotnet ef migrations add Customer
dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Seed Data button,
and then click the Production Seed button. Products and categories will be added to the database and
displayed, as shown in Figure 9-1.

CHapter 9 ■ SportSStore: CuStomer FeatureS

167

Displaying Products to the Customer
In the sections that follow, I add the support required to display a list of products to the user, allowing them
to filter by category and paginate through the products available to purchase. To do this, I will build on the
features I added in previous chapters.

Preparing the Data Model
To start the customer-facing part of the application, I added the ability to query Product objects by their
category, starting with the repository interface, as shown in Listing 9-8.

Listing 9-8. Querying by Category in the IRepository.cs File in the Models Folder

using System.Collections.Generic;
using SportsStore.Models.Pages;

namespace SportsStore.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 PagedList<Product> GetProducts(QueryOptions options, long category = 0);

 Product GetProduct(long key);

Figure 9-1. Running the example application

CHapter 9 ■ SportSStore: CuStomer FeatureS

168

 void AddProduct(Product product);

 void UpdateProduct(Product product);

 void UpdateAll(Product[] products);

 void Delete(Product product);
 }
}

In Listing 9-9, I made the corresponding change in the implementation class, using the LINQ Where
method to query based on the foreign key property that associates a Product with its related Category.

Listing 9-9. Querying by Category in the DataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models.Pages;

namespace SportsStore.Models {

 public class DataRepository : IRepository {
 private DataContext context;

 public DataRepository(DataContext ctx) => context = ctx;

 public IEnumerable<Product> Products => context.Products
 .Include(p => p.Category).ToArray();

 public PagedList<Product> GetProducts(QueryOptions options,
 long category = 0) {
 IQueryable<Product> query = context.Products.Include(p => p.Category);
 if (category !=- 0) {
 query = query.Where(p => p.CategoryId == category);
 }
 return new PagedList<Product>(query, options);
 }

 // ...other methods omitted for brevity...
 }
}

The IQueryable<T> interface allows me to compose the query based on the method parameters,
creating an object that will query the database only when it is enumerated. This is the advantage of working
with IQueryable<T> objects, although the drawback is the ease with which duplicate queries can be
accidentally triggered.

CHapter 9 ■ SportSStore: CuStomer FeatureS

169

Creating the Store Controller, Views, and Layout
To provide the controller that will present the data to the customer, I added a file called StoreController.cs
to the Controllers folder and added the code shown in Listing 9-10.

Listing 9-10. The Contents of the StoreController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.Pages;

namespace SportsStore.Controllers {

 public class StoreController : Controller {
 private IRepository productRepository;
 private ICategoryRepository categoryRepository;

 public StoreController(IRepository prepo, ICategoryRepository catRepo) {
 productRepository = prepo;
 categoryRepository = catRepo;
 }

 public IActionResult Index([FromQuery(Name = "options")]
 QueryOptions productOptions,
 QueryOptions catOptions,
 long category) {
 ViewBag.Categories = categoryRepository.GetCategories(catOptions);
 ViewBag.SelectedCategory = category;
 return View(productRepository.GetProducts(productOptions, category));
 }

 }
}

I use two QueryOptions objects to manage the display of Product and Category data. These are used to
obtain a PagedList<Product> object, which is passed to the view as its model, and a PagedList<Category>
object, which is added to the ViewBag.

To provide a layout for the customer-facing features, I created the Views/Store folder and added to it a
file called _Layout.cshtml with the content shown in Listing 9-11.

Listing 9-11. The Contents of the _Layout.cshtml File in the Views/Store Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <title>SportsStore</title>
</head>
<body>
 <div class="container-fluid">

CHapter 9 ■ SportSStore: CuStomer FeatureS

170

 <div class="row bg-dark p-4 text-white">
 <div class="col-auto"><h4>SPORTS STORE</h4></div>
 <div class="col"></div>
 <div class="col-auto text-right">
 (Cart Goes Here)
 </div>
 </div>
 </div>
 @RenderBody()
</body>
</html>

This layout presents the standard SportsStore header I use in most of my books, with a placeholder for
the summary of the customer’s shopping cart, which I’ll add to the application later. To display the list of
products, I added a file called Index.cshtml to the Views/Store folder with the content shown in Listing 9-12.

Listing 9-12. The Contents of the Index.cshtml File in the Views/Store Folder

@model PagedList<Product>

<div class="container-fluid">
 <div class="row no-gutters">
 <div class="col-auto">
 @Html.Partial("Categories", ViewBag.Categories as PagedList<Category>)
 </div>
 <div class="col">
 <div class="container-fluid">
 <div class="row pt-4 pb-1">
 <div class="col text-center">
 @Html.Partial("Pages", Model)
 </div>
 </div>
 <div class="row pt-1 pb-1">
 <div class="col"></div>
 <div class="col-6 text-center form-group">
 <input form="pageform" type="hidden"
 name="options.searchpropertyname" value="Name" />
 <input form="pageform" name="options.searchterm"
 placeholder="Seach..." class="form-control" />
 </div>
 <div class="col">
 <button form="pageform" class="btn btn-secondary"
 type="submit">Search</button>
 </div>
 <div class="col"></div>
 </div>
 @foreach (Product p in Model) {
 <div class="row">
 <div class="col">
 <div class="card m-1 p-1 bg-light">
 <div class="bg-faded p-1">
 <h4>

CHapter 9 ■ SportSStore: CuStomer FeatureS

171

 @p.Name
 <span class="badge badge-pill badge-primary"
 style="float:right">
 <small>$@p.RetailPrice</small>

 </h4>
 </div>
 <form id="@p.Id" asp-action="AddToCart"
 asp-controller="Cart" method="post">
 <input type="hidden" name="Id" value="@p.Id" />
 <input type="hidden" name="Name"
 value="@p.Name" />
 <input type="hidden" name="RetailPrice"
 value="@p.RetailPrice" />
 <input type="hidden" name="returnUrl" value=
 "@ViewContext.HttpContext.Request.PathAndQuery()"
 />

 @(p.Description
 ?? "(No Description Available)")
 <button type="submit"
 class="btn btn-success btn-sm pull-right"
 style="float:right">
 Add To Cart
 </button>

 </form>
 </div>
 </div>
 </div>
 }
 </div>
 </div>
 </div>
</div>

This view brings together a number of features to display products, including pagination and search
support. To display the list of categories to the user, I added a file called Categories.cshtml to the
Views/Store folder with the content shown in Listing 9-13.

Listing 9-13. The Contents of the Categories.cshtml File in the Views/Store Folder

@model PagedList<Category>

<div class="container-fluid mt-4">

 <div class="row no-gutters">
 <div class="col mt-1">
 <button form="pageform" name="category" value="0" type="submit"
 class="btn btn-block @(ViewBag.SelectedCategory == 0
 ? "btn-primary" : "btn-outline-primary")">
 All

CHapter 9 ■ SportSStore: CuStomer FeatureS

172

 </button>
 </div>
 </div>

 <div class="row no-gutters mt-4"></div>

 <div class="row no-gutters">
 <div class="col mt-1">
 <button form="pageform"
 name="catoptions.currentPage" value="@(Model.CurrentPage -1)"
 class="btn btn-block btn-outline-secondary
 @(!Model.HasPreviousPage ? "disabled" : "")"
 type="submit">
 Previous
 </button>
 </div>
 </div>

 @foreach (Category c in Model) {
 <div class="row no-gutters">
 <div class="col mt-1">
 <button form="pageform" name="category" value="@c.Id"
 type="submit"
 class="btn btn-block @(ViewBag.SelectedCategory == c.Id
 ? "btn-primary" : "btn-outline-primary")">
 @c.Name
 </button>
 </div>
 </div>
 }

 <div class="row no-gutters">
 <div class="col mt-1">
 <button form="pageform"
 name="catoptions.currentPage" value="@(Model.CurrentPage +1)"
 class="btn btn-block btn-outline-secondary
 @(!Model.HasNextPage? "disabled" : "")"
 type="submit">
 Next
 </button>
 </div>
 </div>
</div>

This view lists the categories that are available and provides Previous and Next buttons to page through
the list. The button elements that select categories use the HTML form called pagesform to target the
controller with the chosen category’s primary key value.

CHapter 9 ■ SportSStore: CuStomer FeatureS

173

Creating the Return URL
I need to know which URL to navigate back to after the user has selected a product, and to make the process
easier, I created the Infrastructure folder and added to it a class file called UrlExtensions.cs, with the
code shown in Listing 9-14.

Listing 9-14. The Contents of the UrlExtensions.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;

namespace SportsStore.Infrastructure {

 public static class UrlExtensions {

 public static string PathAndQuery(this HttpRequest request) =>
 request.QueryString.HasValue
 ? $"{request.Path}{request.QueryString}"
 : request.Path.ToString();
 }
}

This class defines the PathAndQuery extension method that I used in a form element in Listing 9-13. To
enable the use of the extension method in the view, I added the statement shown in Listing 9-15 to the view
imports file.

Listing 9-15. Adding a Namespace in the _ViewImports.cshtml File in the Views Folder

@using SportsStore.Models
@using SportsStore.Models.Pages
@using SportsStore.Infrastructure
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Testing the Store Display
To see the effect of the changes, start the application using dotnet run and navigate to http://localhost:5000/
store. You will see the list of products, which can be filtered by category, as shown in Figure 9-2.

 ■ Tip You can see how the display deals with larger amounts of data by navigating to
http://localhost:5000/seed and generating test data.

CHapter 9 ■ SportSStore: CuStomer FeatureS

174

Adding the Shopping Cart
The next step is to add support for selecting products and storing them in a cart, which can then be used to
complete an order. In the sections that follow, I configure the application to store session data and use this as
a temporary store for product selections.

Enabling Persistent Session Data
Some of the features needed to complete the SportsStore application need to store data across HTTP
requests, which I will do using the ASP.NET Core session data feature configured to store its data using
Entity Framework Core. To add the package required to configure the session database, I right-clicked the
SportsStore project item in the Solution Explorer, selected Edit SportsStore.csproj from the pop-up menu,
and made the changes shown in Listing 9-16.

Listing 9-16. Adding Packages in the SportsStore.csproj File in the SportsStore Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

Figure 9-2. Displaying products

CHapter 9 ■ SportSStore: CuStomer FeatureS

175

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.3" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.Extensions.Caching.SqlConfig.Tools"
 Version="2.0.0" />
 </ItemGroup>

</Project>

Save the change and Visual Studio will download and install the new package. Open a new command
prompt and run the command shown in Listing 9-17 in the SportsStore project folder to create the session
database.

 ■ Caution You might be tempted to create your own session data feature, but don’t underestimate the
amount of work that is required, especially to ensure that expired sessions are periodically purged from the
database. my advice is to use your time and skills to create features for your application and not to reinvent
something that microsoft has already provided.

Listing 9-17. Creating the Session Database

dotnet sql-cache create "Server=(localdb)\MSSQLLocalDB;Database=SportsStore" "dbo"
"SessionData"

The dotnet sql-cache create command prepares the session database but is awkward to work with
because it doesn’t read its configuration from the appsettings.json file, meaning that the arguments must
be carefully typed. The first argument is the connection string for the database, the second argument is the
schema name (which is dbo by default), and the final argument is the name of the table that will be added to
the database and for which I have specified SessionData.

Configuring Sessions in the Application
To enable sessions in the database, I added the statements shown in Listing 9-18 to the Startup class.

Listing 9-18. Enabling Sessions in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;

CHapter 9 ■ SportSStore: CuStomer FeatureS

176

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace SportsStore {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddTransient<IRepository, DataRepository>();
 services.AddTransient<ICategoryRepository, CategoryRepository>();
 services.AddTransient<IOrdersRepository, OrdersRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString = conString;
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });
 services.AddSession(options => {
 options.Cookie.Name = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.Cookie.HttpOnly = false;
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The session feature will only store string values. To make this feature easier to use, I added a file called
SessionExtensions.cs to the Infrastructure folder and added the code shown in Listing 9-19.

Listing 9-19. The Contents of the SessionExtensions.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Newtonsoft.Json;

namespace SportsStore.Infrastructure {

 public static class SessionExtensions {

CHapter 9 ■ SportSStore: CuStomer FeatureS

177

 public static void SetJson(this ISession session, string key, object value) {
 session.SetString(key, JsonConvert.SerializeObject(value));
 }

 public static T GetJson<T>(this ISession session, string key) {
 var sessionData = session.GetString(key);
 return sessionData == null
 ? default(T) : JsonConvert.DeserializeObject<T>(sessionData);
 }
 }
}

This class defines extensions methods that serialize objects to the JSON format and restore them again,
allowing me to easily store simple objects as session data.

Creating the Cart Model Class
To represent the customer’s product selections, I added a file called Cart.cs to the Models folder and used it
to define the class shown in Listing 9-20.

Listing 9-20. The Contents of the Cart.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class Cart {
 private List<OrderLine> selections = new List<OrderLine>();

 public Cart AddItem(Product p, int quantity) {
 OrderLine line = selections
 .Where(l => l.ProductId == p.Id).FirstOrDefault();
 if (line != null) {
 line.Quantity += quantity;
 } else {
 selections.Add(new OrderLine {
 ProductId = p.Id,
 Product = p,
 Quantity = quantity
 });
 }
 return this;
 }

 public Cart RemoveItem(long productId) {
 selections.RemoveAll(l => l.ProductId == productId);
 return this;
 }

CHapter 9 ■ SportSStore: CuStomer FeatureS

178

 public void Clear() => selections.Clear();

 public IEnumerable<OrderLine> Selections { get => selections; }
 }
}

The Cart class manages a collection of OrderLine objects, which represent individual product
selections and which can be easily stored in the database when an order is created.

Creating the Controller and Views
To provide the logic that will support working with Cart objects, I added a file called CartController.cs to
the Controllers folder with the code shown in Listing 9-21.

Listing 9-21. The Contents of the CartController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Infrastructure;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Http;
using System.Linq;

namespace SportsStore.Controllers {

 [ViewComponent(Name = "Cart")]
 public class CartController : Controller {
 private IRepository productRepository;
 private IOrdersRepository ordersRepository;

 public CartController(IRepository prepo, IOrdersRepository orepo) {
 productRepository = prepo;
 ordersRepository = orepo;
 }

 public IActionResult Index(string returnUrl) {
 ViewBag.returnUrl = returnUrl;
 return View(GetCart());
 }

 [HttpPost]
 public IActionResult AddToCart(Product product, string returnUrl) {
 SaveCart(GetCart().AddItem(product, 1));
 return RedirectToAction(nameof(Index), new { returnUrl });
 }

 [HttpPost]
 public IActionResult RemoveFromCart(long productId, string returnUrl) {
 SaveCart(GetCart().RemoveItem(productId));
 return RedirectToAction(nameof(Index), new { returnUrl });
 }

CHapter 9 ■ SportSStore: CuStomer FeatureS

179

 public IActionResult CreateOrder() {
 return View();
 }

 [HttpPost]
 public IActionResult CreateOrder(Order order) {
 order.Lines = GetCart().Selections.Select(s => new OrderLine {
 ProductId = s.ProductId,
 Quantity = s.Quantity
 }).ToArray();
 ordersRepository.AddOrder(order);
 SaveCart(new Cart());
 return RedirectToAction(nameof(Completed));
 }

 public IActionResult Completed() => View();

 private Cart GetCart() =>
 HttpContext.Session.GetJson<Cart>("Cart") ?? new Cart();

 private void SaveCart(Cart cart) =>
 HttpContext.Session.SetJson("Cart", cart);

 public IViewComponentResult Invoke(ISession session) {
 return new ViewViewComponentResult() {
 ViewData = new ViewDataDictionary<Cart>(ViewData,
 session.GetJson<Cart>("Cart"))
 };
 }
 }
}

The controller defines actions that add and remove items from the cart, display the contents of the cart,
and allow the customer to create an order. Some of these methods accept a returnUrl parameter that allows
the user to return to the product list without losing the query string parameters that configure the pagination
and category filtering options. This class is also a view component, which I will use to display a summary of
the cart in the customer-facing layout.

Creating the Views
To provide the new controller with a view for managing the cart, I created the Views/Cart folder and added
to it a file called Index.cshtml with the contents shown in Listing 9-22.

Listing 9-22. The Contents of the Index.cshtml File in the Views/Cart Folder

@model Cart
@{
 Layout = "~/Views/Store/_Layout.cshtml";
}

<h2 class="m-3">Your Cart</h2>

CHapter 9 ■ SportSStore: CuStomer FeatureS

180

<div class="container-fluid">
 <div class="row">
 <div class="col font-weight-bold">Quantity</div>
 <div class="col font-weight-bold">Product</div>
 <div class="col font-weight-bold text-right">Price</div>
 <div class="col font-weight-bold text-right">Subtotal</div>
 <div class="col"></div>
 </div>
 @if (Model.Selections.Count() == 0) {
 <div class="row mt-2"><div class="col-12"><h4>Cart is Empty</h4></div></div>
 } else {
 @foreach (OrderLine line in Model.Selections) {
 <div class="row mt-1">
 <div class="col">@line.Quantity</div>
 <div class="col">@line.Product.Name</div>
 <div class="col text-right">
 $@line.Product.RetailPrice.ToString("f2")
 </div>
 <div class="col text-right">
 $@((line.Product.RetailPrice
 * line.Quantity).ToString("f2"))
 </div>
 <div class="col">
 <form asp-action="RemoveFromCart">
 <button type="submit" name="productId"
 value="@line.ProductId"
 class="btn btn-sm btn-outline-danger">Remove</button>
 </form>
 </div>
 </div>
 }
 }
 <div class="row mt-2">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col text-right font-weight-bold">Total:</div>
 <div class="col text-right font-weight-bold">
 $@(Model.Selections.Sum(l => l.Product.RetailPrice
 * l.Quantity).ToString("f2"))
 </div>
 <div class="col"></div>
 </div>
</div>
<div class="text-center m-2">
 @if (ViewBag.returnUrl != null) {

 Continue Shopping

 }

CHapter 9 ■ SportSStore: CuStomer FeatureS

181

 <a asp-action="CreateOrder" class="btn btn-primary">
 Place Order

</div>

The view displays a summary of the customer’s selection and provides buttons that return to the
product list or continue to create an order. To gather the information required to create an order, I added a
file called CreateOrder.cshtml to the Views/Cart folder with the content shown in Listing 9-23.

Listing 9-23. The Contents of the CreateOrder.cshtml File in the Views/Cart Folder

@model Order
@{
 Layout = "~/Views/Store/_Layout.cshtml";
}

<h2 class="m-3">Your Details</h2>

<form asp-action="CreateOrder" method="post" class="m-4">
 <div class="form-group">
 <label>Your Name:</label>
 <input asp-for="CustomerName" class="form-control" />
 </div>
 <div class="form-group">
 <label> Your Address</label>
 <input asp-for="Address" class="form-control" />
 </div>
 <div class="form-group">
 <label>Your State:</label>
 <input asp-for="State" class="form-control" />
 </div>
 <div class="form-group">
 <label>Your Zip Code:</label>
 <input asp-for="ZipCode" class="form-control" />
 </div>
 <div class="text-center m-2">
 <button type="submit" class="btn btn-primary">Place Order</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

To display a message to the user once an order has been created, I added a file called Completed.cshtml
to the Views/Cart folder with the content shown in Listing 9-24.

Listing 9-24. The Contents of the Completed.cshtml File in the Views/Cart Folder

@{
 Layout = "~/Views/Store/_Layout.cshtml";
}
<div class="text-center m-4">
 <h2>Thanks!</h2>
 <p>Thanks for placing your order.</p>
 <p>We'll ship your goods as soon as possible.</p>

CHapter 9 ■ SportSStore: CuStomer FeatureS

182

 <a asp-action="Index" asp-controller="Store"
 class="btn btn-primary">
 OK

</div>

To create the view for the cart summary widget, I created the Views/Shared/Components/Cart folder
and added to it a file called Cart.cshtml, with the content shown in Listing 9-25.

Listing 9-25. The Contents of the Default.cshtml File in the Views/Shared/Components/Cart Folder

@model Cart

@if (Model?.Selections?.Count() > 0) {
 <div>@Model.Selections.Count() items,
 $@(Model.Selections.Sum(l => l.Quantity
 * l.Product.RetailPrice).ToString("f2"))
 </div>
 if (ViewContext.RouteData.Values["controller"] as string != "Cart") {
 <a asp-action="Index" asp-controller="Cart"
 class="btn btn-sm btn-light">
 Checkout

 }
}

This view displays the number of items in the cart and their total cost. There is also a button that will
navigate to the Cart controller if that is not the controller that has rendered the view. To display the cart
widget, I used the Component.InvokeAsync method to add the view component to the layout used for the
store features, as shown in Listing 9-26.

Listing 9-26. Adding an Element in the _Layout.cshtml File in the Views/Store Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <title>SportsStore</title>
</head>
<body>
 <div class="container-fluid">
 <div class="row bg-dark p-4 text-white">
 <div class="col-auto"><h4>SPORTS STORE</h4></div>
 <div class="col"></div>
 <div class="col-auto text-right">
 @await Component.InvokeAsync("Cart", Context.Session)
 </div>
 </div>
 </div>

CHapter 9 ■ SportSStore: CuStomer FeatureS

183

 @RenderBody()
</body>
</html>

Testing the Ordering Process
To test the ordering process, start the application using dotnet run and navigate to http://localhost:5000/
store. Click the Add to Cart button for one or more products and then click the Place Order button. Enter the
customer details and click the Place Order button; you will see the completion messages. Figure 9-3 shows the
sequence.

Figure 9-3. Placing an order

Common Problems and Solutions
This chapter has largely been about building application features using MVC, and there have been few
additions that are likely to cause problems with Entity Framework Core.

Clicking a Page Button Manages the Wrong Data Type
If you click the button to change the page of Categories, for example, but find that the Product page
changes, then the likely cause is that the HTML forms in your views are updating the wrong PageOptions
object. Pay close attention to the names of the parameters in your action methods and make sure that you
use these names as prefixes in the name attributes of your HTML elements. If in doubt, use the browser’s F12
developer tools to see what form values are being sent to the application.

CHapter 9 ■ SportSStore: CuStomer FeatureS

184

Clicking a Page Button Has No Effect
The most common cause of buttons that have no effect is omitting the form attribute, which is used to
associate an HTML element with a form. This is a feature of HTML 5 but often causes confusion because
developers are not used to extending a form beyond its form element.

The “Cannot Insert Explicit Value for Identity Column” Exception
This is an exception that I described previously, but it is worth noting again because it occurs often. In the
context of this chapter, the likely cause is to have queried the database for objects and then stored them
as session data, just as I did with the Product objects associated with an OrderLine. The objects that you
queried for already have primary keys, and the exception is thrown because Entity Framework Core attempts
to add them to the database as new objects.

When you subsequently get the object from session data and store it in the database, you must ensure
that you remove references to the related data for which you queried previously. For the OrderLine objects
that I stored in the Cart as session data and then stored in the database with an Order, I used the following
code to remove the references to Product objects and produce a clean set of OrderLine objects:

...
order.Lines = GetCart().Selections.Select(s => new OrderLine {
 ProductId = s.ProductId, Quantity = s.Quantity
}).ToArray();
...

Session Objects Are Null
If you see errors indicating that the objects you expect to access via session data are null, then you may have
forgotten to create the session database, using the command shown in Listing 9-17.

Session Objects Are Lost or Inconsistently Available
This is most likely caused by configuring the session feature to store its data in memory rather than in a
database. An in-memory session store can be quicker, but the data is lost when the application is restarted,
which is especially problematic if you using application containers, such as Docker containers, and are
adapting to demand by starting and stopping containers.

Similarly, using an in-memory session store can lead to inconsistent session data when there are
multiple instances of the MVC application running and you have not configured the network to ensure that
HTTP requests from the same client are always handled by the same MVC instance. If you encounter either
of these problems, then consider storing session data in a database as demonstrated in this chapter.

Summary
In this chapter, I completed the SportsStore application by adding the customer-facing features. I created a
product list that the user can page through, search, or filter by category. Product selections are added to a
cart, which can then be used to create an order, which is stored in the database. Most of the features that I
added in this chapter used the MVC framework to build on the Entity Framework Core foundation created
in earlier chapters, and this is a pattern than you will see in your own project—a lot of initial data model
configuration and code and then a series of user-facing features that fall into place quickly. In the chapter,
I complete the SportsStore project by creating a RESTful API.

185© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_10

CHAPTER 10

SportsStore: Creating a RESTful
Web Service

Web services are useful for providing data to client-side applications that are written with frameworks such
as Angular or React. These applications are typically run in browsers and don’t require the HTML content
that the rest of the SportsStore provides. Instead, these applications interact with the ASP.NET Core MVC
application using HTTP requests and receive data formatting using the JavaScript Object Notation (JSON)
standard.

In this chapter, I am going to complete the SportsStore application by adding a RESTful web service that
can provide web clients with access to the application’s data. ASP.NET Core MVC has excellent support for
creating RESTful web services, but care has to be taken to get the right results when using Entity Framework
Core.

There are no hard-and-fast rules for how web services should work, but the most common approach
is to adopt the Representational State Transfer (REST) pattern. There is no authoritative specification for
REST, and there is no consensus about what constitutes a RESTful web service, but there are some common
themes that are widely used for web services.

The core premise of REST—and the only aspect for which there is broad agreement—is that a web
service defines an API through a combination of the URLs and HTTP methods such as GET and POST. The
HTTP method specifies the type of operation, while the URL specifies the data object or objects that the
operation applies to.

Preparing for This Chapter
For this chapter, I continue using the SportsStore project that was created in Chapter 4 and that I have been
building up in in the chapters since. Run the commands shown in Listing 10-1 in the SportsStore project
folder to reset the database.

Listing 10-1. Resetting the Example Application Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Seed Data button,
and then click Production Seed. The database will be seeded with a small number of products, as shown in
Figure 10-1.

https://doi.org/10.1007/978-1-4842-3435-8_10
http://dx.doi.org/10.1007/978-1-4842-3435-8_4

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

186

 ■ Tip You can download the SportsStore project for this chapter—and the projects for every other chapter—
from the github repository for this book: https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Creating a Web Service
In the sections that follow, I build a simple web service that provides access to the Product data stored by the
SportsStore application.

Creating the Repository
When adding a web service to an application, it is a good idea to create a separate repository because the
queries that client-side applications perform can be different from those of a regular ASP.NET Core MVC
application. For the SportsStore web service, I added a file called IWebServiceRepository.cs to the Models
folder and used it to define the interface shown in Listing 10-2.

Figure 10-1. Running the example application

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

187

Listing 10-2. The Contents of the IWebServiceRepository.cs File in the Models Folder

namespace SportsStore.Models {

 public interface IWebServiceRepository {

 object GetProduct(long id);

 }
}

I am starting with just a GetProduct method, which will accept a primary key value and return the
corresponding Product object from the database. The GetProduct method returns an object result, rather
than a Product, so that I can demonstrate how to present Entity Framework Core data from a web service.

For the repository implementation class, I added a file called WebServiceRepository.cs to the Models
folder and used it to define the class shown in Listing 10-3.

Listing 10-3. The Contents of the WebServiceRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products.FirstOrDefault(p => p.Id == id);
 }
 }
}

The class implements the GetProduct method by using the LINQ FirstOrDefault method to locate the
object stored in the database that has the specified Id value. When creating a web service, it is important that
you deal with requests for nonexistent data, which is why I have used the FirstOrDefault method.

To register the repository and its implementation class, I added the statements shown in Listing 10-4 to
the Startup class.

Listing 10-4. Configuring the Repository in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

188

namespace SportsStore {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddTransient<IRepository, DataRepository>();
 services.AddTransient<ICategoryRepository, CategoryRepository>();
 services.AddTransient<IOrdersRepository, OrdersRepository>();
 services.AddTransient<IWebServiceRepository, WebServiceRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString = conString;
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });
 services.AddSession(options => {
 options.Cookie.Name = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.Cookie.HttpOnly = false;
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the API Controller
ASP.NET Core MVC makes it easy to add web services to an application using standard controller features.
I added a class called ProductValuesController.cs to the Controllers folder and add the code shown in
Listing 10-5.

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

189

Listing 10-5. The Contents of the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private IWebServiceRepository repository;

 public ProductValuesController(IWebServiceRepository repo)
 => repository = repo;

 [HttpGet("{id}")]
 public object GetProduct(long id) {
 return repository.GetProduct(id) ?? NotFound();
 }
 }
}

The name of this new controller class is ProductValuesController, which follows the convention of
including the word Values in the name to indicate that the controller will return data to its clients rather
than HTML. Another convention for web service controllers is to create a separate part of the routing
schema dedicated to handling requests for data. The most common way to do this is to create URLs for web
services that start with /api, followed by the plural form of the name of the data type that the web service
handles. For a web service handling Product objects, this means that HTTP requests should be sent to the /
api/products URL, which I have configured using the Route attribute, like this:

...
[Route("api/products")]
...

The only action currently defined by the controller is the GetProduct method, which returns a single
Product object based on its primary key, which is the value assigned to its Id property. The action method is
decorated with the HttpGet method, which will allow ASP.NET Core MVC to use this action to handle HTTP
GET requests.

...
[HttpGet("{id}")]
public Product GetProduct(long id) {
...

The attribute’s argument extends the URL schema defined by the Route attribute so that the GetProduct
method can be reached by a URL in the form /api/products/{id}. Action methods for web services return
.NET objects, which are automatically serialized and sent to the client.

To prevent the web service serializing a null response when a nonexistent object is requested, the
action method uses the null-coalescing operator to call the NotFound method, like this:

...
return repository.GetProduct(id) ?? NotFound();
...

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

190

This will return a 404 - Not Found status code, which signals to the client that the request could not be
satisfied.

Testing the Web Service
To test the new web service, start the application using dotnet run. Open a new PowerShell window and
execute the command shown in Listing 10-6 to send an HTTP get request to the API controller.

 ■ Note i use the powerShell Invoke-RestMethod command throughout this chapter to simulate requests
from a client-side application.

Listing 10-6. Testing the Web Service

Invoke-RestMethod http://localhost:5000/api/products/1 -Method GET | ConvertTo-Json

The HTTP request is dispatched to the GetProduct method on the ProductValues controller, which
uses the Find method to retrieve a Product object from the database. The Product object is serialized into
the JSON format and returned to the browser, which will display the data it receives.

{
 "id":1,
 "name":"Kayak",
 "description":"A boat for one person",
 "purchasePrice":200.00,
 "retailPrice":275.00,
 "categoryId":1,
 "category":null
}

Notice that the category navigation property is set to null because I didn’t ask Entity Framework Core
to load the related data for the Product object.

Projecting a Result to Exclude Null Navigation Properties
Sending a client application data that contains null properties can lead to confusion because it may not
be obvious whether there is no related data or there is related data but it just hasn’t been included in the
response. You know enough about the data model to realize that the categoryId value indicates that there is
related data, but expecting a client application to make that distinction is problematic, especially if it is being
developed by a different team of programmers. If you don’t want to include related data properties, you can
avoid confusion by using LINQ to project a result that excludes the foreign key and navigation properties
from the result, as shown in Listing 10-7.

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

191

Listing 10-7. Excluding Properties in the WebServiceRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products
 .Select(p => new { Id = p.Id, Name = p.Name,
 Description = p.Description, PurchasePrice = p.PurchasePrice,
 RetailPrice = p.RetailPrice})
 .FirstOrDefault(p => p.Id == id);
 }
 }
}

I use the LINQ Select method to pick the properties that I want included in the result and use the
FirstOrDefault method to select the object with the specified primary key value. Restart the application
using dotnet run and use a separate PowerShell window to execute the command shown in Listing 10-8.

Listing 10-8. Requesting a Product Object

Invoke-RestMethod http://localhost:5000/api/products/1 -Method GET | ConvertTo-Json

The result from this request is the following JSON data, which excludes the related data properties:

{
 "id":1,
 "name":"Kayak",
 "description":"A boat for one person",
 "purchasePrice":200.00,
 "retailPrice":275.00
}

If you examine the logging messages generated by the application, you will see that Entity Framework
Core has requested only the specified properties from the database.

...
SELECT TOP(1) [p].[Id], [p].[Name], [p].[Description], [p].[PurchasePrice],
 [p].[RetailPrice]
FROM [Products] AS [p]
WHERE [p].[Id] = @__id_0
...

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

192

Including Related Data in a Web Service Response
Care is required if you want to include related data in a web service response. To demonstrate the problem,
I have changed the query used by the repository so that it uses the Include method to select the Category
object with which the Product object is associated, as shown in Listing 10-9.

Listing 10-9. Including Related Data in the WebServiceRepository.cs File in the Models Folder

using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products.Include(p => p.Category)
 .FirstOrDefault(p => p.Id == id);
 }
 }
}

To see the problem that this code hides, start the application using dotnet run and use a separate
PowerShell window to execute the command shown in Listing 10-10.

Listing 10-10. Requesting Related Data

Invoke-RestMethod http://localhost:5000/api/products/1 -Method GET | ConvertTo-Json

Instead of JSON data, you will see the following error message:

Invoke-RestMethod : Unable to read data from the transport connection: The connection was closed.

ASP.NET Core MVC uses a package called Json.NET to deal with serialization, and a configuration
change is required to reveal the cause of the error, as shown in Listing 10-11.

Listing 10-11. Changing the Serializer Configuration in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Newtonsoft.Json;

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

193

namespace SportsStore {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc().AddJsonOptions(opts =>
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize);
 services.AddTransient<IRepository, DataRepository>();
 services.AddTransient<ICategoryRepository, CategoryRepository>();
 services.AddTransient<IOrdersRepository, OrdersRepository>();
 services.AddTransient<IWebServiceRepository, WebServiceRepository>();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(conString));

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString = conString;
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });
 services.AddSession(options => {
 options.Cookie.Name = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.Cookie.HttpOnly = false;
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Restart the application using dotnet run. Rather than use PowerShell, open a new browser window and
request the http://localhost:5000/api/products/1 URL. When the browser requests the data, you will
see that the application reports the following error and exits:

...
Process is terminating due to StackOverflowException
...

The content displayed by the browser reveals what has happened. Even though the URL you requested
targeted a single Product object and its related Category, a lot of data was sent by the application before it
crashed.

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

194

...
{"id":1,"name":"Kayak","description":"A boat for one person",
 "purchasePrice":200.00,"retailPrice":275.00,"categoryId":1,
 "category": {"id":1,"name":"Watersports",
 "description":"Make a splash",
 "products":[{"id":1,"name":"Kayak",
 "description":"A boat for one person",
 "purchasePrice":200.00,"retailPrice":275.00,
 "categoryId":1,
 "category":{"id":1,"name":"Watersports",
 "description":"Make a splash",
 "products":[{"id":1,"name":"Kayak","description":"A boat for one
...

There is an endless loop where the Category navigation property of the Product object points to its
related Category object, whose Products navigation property includes the Product object and so on. This
is caused by an Entity Framework Core feature called fixing up, in which objects that have been received
from the database are used as the values for navigation properties. I describe the fixing up process in detail
in Chapter 14 and explain when it can be useful, but for RESTful web services, this feature causes problems
because the JSON serializer just keeps following the navigation properties until the application encounters
a stack overflow. The configuration change in Listing 10-11 tells the JSON serializer to keep following
references even when it has already serialized an object. The default behavior is to throw an exception when
a loop is detected, which is what caused the error in Listing 10-10.

Avoiding Circular References in Related Data
There is no way to disable the fixing up feature, so the best solution for avoiding endless loops of related data
is to set the navigation property to null before it reaches the JSON serializer to create a dynamic type so that
there are no null values included in the result, which is the approach that I have taken in Listing 10-12.

Listing 10-12. Avoiding an Endless Loop in the WebServiceRepository.cs File in the Models Folder

using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products.Include(p => p.Category)
 .Select(p => new {
 Id = p.Id, Name = p.Name, PurchasePrice = p.PurchasePrice,
 Description = p.Description, RetailPrice = p.RetailPrice,
 CategoryId = p.CategoryId,
 Category = new {
 Id = p.Category.Id,
 Name = p.Category.Name,
 Description = p.Category.Description

http://dx.doi.org/10.1007/978-1-4842-3435-8_14

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

195

 }
 })
 .FirstOrDefault(p => p.Id == id);
 }
 }
}

Start the application using dotnet run and use a separate PowerShell window to execute the command
shown in Listing 10-13.

Listing 10-13. Requesting Related Data

Invoke-RestMethod http://localhost:5000/api/products/1 -Method GET | ConvertTo-Json

The command produces the following JSON result, which includes all of the related data but doesn’t
contain a circular reference:

...
{
 "id": 1,
 "name": "Kayak",
 "purchasePrice": 200.00,
 "description": "A boat for one person",
 "retailPrice": 275.00,
 "categoryId": 1,
 "category":
 {
 "id": 1,
 "name": "Watersports",
 "description": "Make a splash"
 }
}
...

Querying for Multiple Objects
When handling queries for multiple objects, it is important to restrict the amount of data you send to the
client application. If you simply return all of the objects in the database, then you will drive up the cost of
running your application and may even overwhelm the client application. In Listing 10-14, I have added a
method to the web service repository interface that allows a client to specify a start index for the results and
the number of objects they require.

Listing 10-14. Adding a Method in the IWebServiceRepository.cs File in the Models Folder

namespace SportsStore.Models {

 public interface IWebServiceRepository {

 object GetProduct(long id);

 object GetProducts(int skip, int take);
 }
}

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

196

In Listing 10-15, I have added the method in the implementation class and used the technique from the
previous section to avoid circular references with the related data.

Listing 10-15. Adding a Method in the WebServiceRepository.cs File in the Models Folder

using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products.Include(p => p.Category)
 .Select(p => new {
 Id = p.Id, Name = p.Name, PurchasePrice = p.PurchasePrice,
 Description = p.Description, RetailPrice = p.RetailPrice,
 CategoryId = p.CategoryId,
 Category = new {
 Id = p.Category.Id,
 Name = p.Category.Name,
 Description = p.Category.Description
 }
 })
 .FirstOrDefault(p => p.Id == id);
 }

 public object GetProducts(int skip, int take) {
 return context.Products.Include(p => p.Category)
 .OrderBy(p => p.Id)
 .Skip(skip)
 .Take(take)
 .Select(p => new {
 Id = p.Id, Name = p.Name, PurchasePrice = p.PurchasePrice,
 Description = p.Description, RetailPrice = p.RetailPrice,
 CategoryId = p.CategoryId,
 Category = new {
 Id = p.Category.Id,
 Name = p.Category.Name,
 Description = p.Category.Description
 }
 });
 }
 }
}

In Listing 10-16, I have added an action to the web service controller that allows clients to request
multiple objects.

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

197

Listing 10-16. Adding an Action in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private IWebServiceRepository repository;

 public ProductValuesController(IWebServiceRepository repo)
 => repository = repo;

 [HttpGet("{id}")]
 public object GetProduct(long id) {
 return repository.GetProduct(id) ?? NotFound();
 }

 [HttpGet]
 public object Products(int skip, int take) {
 return repository.GetProducts(skip, take);
 }
 }
}

To test the new action method, start the application using dotnet run and use a separate PowerShell
window to execute the command shown in Listing 10-17.

Listing 10-17. Querying for Multiple Objects

Invoke-RestMethod http://localhost:5000/api/products?skip=2"&"take=2 -Method GET | ConvertTo-Json

The HTTP requests asks the web service to skip the first two objects and then return the next two, which
produces the following results:

...
{
 "value": [
 {
 "id": 3,
 "name": "Soccer Ball",
 "purchasePrice": 18.00,
 "description": "FIFA-approved size and weight",
 "retailPrice": 19.50,
 "categoryId": 2,
 "category": {
 "id": 2,
 "name": "Soccer",
 "description": "The World\u0027s Favorite Game"
 }
 },
 {

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

198

 "id": 4,
 "name": "Corner Flags",
 "purchasePrice": 32.50,
 "description": "Give your playing field a professional touch",
 "retailPrice": 34.95,
 "categoryId": 2,
 "category": {
 "id": 2,
 "name": "Soccer",
 "description": "The World\u0027s Favorite Game"
 }
 }],
 "Count": 2
}
...

Completing the Web Service
The complexity in a web service that uses Entity Framework Core data is in the serialization of responses,
as described in the previous section. The other standard data operations follow the same pattern as shown
in earlier chapters. In Listing 10-18, I have added methods to the repository to allow objects to be stored,
updated, and deleted.

Listing 10-18. Adding Methods in the IWebServiceRepository.cs File in the Models Folder

namespace SportsStore.Models {

 public interface IWebServiceRepository {

 object GetProduct(long id);

 object GetProducts(int skip, int take);

 long StoreProduct(Product product);

 void UpdateProduct(Product product);

 void DeleteProduct(long id);
 }
}

In Listing 10-19, I have added the new methods to the repository implementation class.

Listing 10-19. Adding Methods in the WebServiceRepository.cs File in the Models Folder

using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class WebServiceRepository : IWebServiceRepository {
 private DataContext context;

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

199

 public WebServiceRepository(DataContext ctx) => context = ctx;

 public object GetProduct(long id) {
 return context.Products.Include(p => p.Category)
 .Select(p => new {
 Id = p.Id, Name = p.Name, PurchasePrice = p.PurchasePrice,
 Description = p.Description, RetailPrice = p.RetailPrice,
 CategoryId = p.CategoryId,
 Category = new {
 Id = p.Category.Id,
 Name = p.Category.Name,
 Description = p.Category.Description
 }
 })
 .FirstOrDefault(p => p.Id == id);
 }

 public object GetProducts(int skip, int take) {
 return context.Products.Include(p => p.Category)
 .OrderBy(p => p.Id)
 .Skip(skip)
 .Take(take)
 .Select(p => new {
 Id = p.Id, Name = p.Name, PurchasePrice = p.PurchasePrice,
 Description = p.Description, RetailPrice = p.RetailPrice,
 CategoryId = p.CategoryId,
 Category = new {
 Id = p.Category.Id,
 Name = p.Category.Name,
 Description = p.Category.Description
 }
 });
 }

 public long StoreProduct(Product product) {
 context.Products.Add(product);
 context.SaveChanges();
 return product.Id;
 }

 public void UpdateProduct(Product product) {
 context.Products.Update(product);
 context.SaveChanges();
 }

 public void DeleteProduct(long id) {
 context.Products.Remove(new Product { Id = id });
 context.SaveChanges();
 }
 }
}

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

200

Notice that the StoreProduct methods return the primary key value assigned to the Product object by
the database server. Client-side applications often keep their own data model, and it is important to ensure
they have the information they require to perform subsequent operations without needing to perform
additional queries.

Updating the Controller
In Listing 10-20, I have updated the web service controller to add actions that correspond to the new
repository methods.

Listing 10-20. Adding Actions in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private IWebServiceRepository repository;

 public ProductValuesController(IWebServiceRepository repo)
 => repository = repo;

 [HttpGet("{id}")]
 public object GetProduct(long id) {
 return repository.GetProduct(id) ?? NotFound();
 }

 [HttpGet]
 public object Products(int skip, int take) {
 return repository.GetProducts(skip, take);
 }

 [HttpPost]
 public long StoreProduct([FromBody] Product product) {
 return repository.StoreProduct(product);
 }

 [HttpPut]
 public void UpdateProduct([FromBody] Product product) {
 repository.UpdateProduct(product);
 }

 [HttpDelete("{id}")]
 public void DeleteProduct(long id) {
 repository.DeleteProduct(id);
 }
 }
}

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

201

To test storing a new object, start the application using dotnet run and use a separate PowerShell
window to execute the command shown in Listing 10-21.

Listing 10-21. Storing New Data

Invoke-RestMethod http://localhost:5000/api/products -Method POST -Body (@{Name="Scuba
Mask"; Description="Spy on the Fish"; PurchasePrice=21; RetailPrice=40;CategoryId=1} |
ConvertTo-Json) -ContentType "application/json"

This command is awkward to type in, but it sends an HTTP POST request to the server with values
for all of the properties that are needed to store a Product object in the database. Once the command has
completed, use a browser window to navigate to http://localhost:5000 and you will see the new object, as
shown in Figure 10-2.

Figure 10-2. Storing an object through the RESTful web service

To test the update feature, use a PowerShell window to run the command shown in Listing 10-22, which
modifies the Kayak product.

Chapter 10 ■ SportSStore: Creating a reStful Web ServiCe

202

Listing 10-22. Modifying Data

Invoke-RestMethod http://localhost:5000/api/products -Method PUT -Body (@{Id=1;Name="Green
Kayak"; Description="A Tiny Boat"; PurchasePrice=200; RetailPrice=300;CategoryId=1} |
ConvertTo-Json) -ContentType "application/json"

Reload the browser window, and you will see that the RetailPrice value for the Kayak product has
been changed to 300, and its name is now Green Kayak.

To test the ability to delete data, use a PowerShell window to run the command shown in Listing 10-23.

Listing 10-23. Deleting an Object

Invoke-RestMethod http://localhost:5000/api/products/1 -Method DELETE

Common Problems and Solutions
Most problems with web services are related to the serialization issues I described earlier in the chapter.
There are some less common issues, however, and I describe them in the sections that follow.

Null Property Values When Storing or Updating Objects
If the object created by the MVC model binder has null or zero values for some of its properties, then the
most likely cause is that you omitted the FromBody attribute from the action method parameter. Only the
URL is used for values by default, and you must explicitly select the source of data when you want the MVC
framework to use other parts of the request.

Slow Web Service Requests
The most common cause of slow requests is enumerating an IQueryable<T> object and accidentally
triggering a query. This is easily done if you are processing data prior to JSON serialization, and it is
important to remember that an IQueryable<T> object will query the database wherever it is enumerated and
not just in Razor views.

The “Cannot Insert Explicit Value for Identity Column” Exception
If you receive this exception when writing a web service, then the most likely cause is that the client has
included a primary key value in an object that is to be stored in the database. If you are writing the client
application, then you can ensure the HTTP request doesn’t include a value. If your web service is being used
by a third-party application, then you can explicitly zero the primary key property in your action method
before asking Entity Framework Core to store the data.

Summary
In this chapter, I completed the SportsStore application by adding a simple RESTful web service that can be
used to provide client-side applications with data. I showed you the common problems that working with
related data can cause and showed you how to avoid them by creating dynamic types. In the next part of the
book, I start to describe the Entity Framework Core features in more depth.

PART II

Entity Framework
Core 2 in Detail

In Part 2 of this book, I dig into the details. I start with an exploration of the basic data
operations that Entity Framework Core supports and explain how databases are managed and
how relationships between objects are handled. I also demonstrate the different ways that
Entity Framework Core can be used with existing databases.

205© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_11

CHAPTER 11

Working with Entity
Framework Core

In this chapter, I explain how Entity Framework Core is applied to an ASP.NET Core MVC project, starting
with the addition of NuGet packages and working through the creation of a basic data model, a database
schema, and the infrastructure to use it. The project created in this chapter sets the foundation for those that
follow, which add Entity Framework Core features. Table 11-1 summarizes the chapter.

Table 11-1. Chapter Summary

Problem Solution Listing

Enable the EF Core command-line tools Add an entry to the .csproj file using a
DotNetCliToolReference element

10

Provide an application with access to EF
Core features

Create a database context class 11

Prepare a data model class for database
storage

Ensure that all of the properties have get and
set clauses and add a primary key property

12

Provide EF Core with details of the database
it should use

Define a connection string 14

Prepare a database for use with EF Core Create and apply a database migration 17

Ensure that queries are processed by the
database

Use the IQueryable<T> interface 24–26

Avoid duplicate queries Force queries to be executed before
enumerating the results

27, 28

https://doi.org/10.1007/978-1-4842-3435-8_11

Chapter 11 ■ Working With entity FrameWork Core

206

Creating the ASP.NET Core MVC Project
For this chapter, I am going to create a project with just the minimum content required by ASP.NET Core.
I will then add the packages, classes, and configuration components to create an MVC application that uses
Entity Framework Core.

To create the project, select New ➤ Project from the Visual Studio File menu and use the ASP.NET Core
Web Application template to create a new project called DataApp, as shown in Figure 11-1.

Figure 11-1. Creating a new application

Chapter 11 ■ Working With entity FrameWork Core

207

Click the OK button to move to the next dialog window. Ensure that ASP.NET Core 2.0 is selected from
the list and click the Empty template, as shown in Figure 11-2. Click OK to close the dialog window and
create the project.

Creating the Data Model Class
The data model in an MVC application is defined using regular C# classes, conventionally defined in a folder
called Models. Entity Framework Core doesn’t have any special requirements for the location of the data
model classes and will happily work with the MVC convention.

To add a data model class to the example project, create the Models folder and add to it a C# file called
Product.cs with the code shown in Listing 11-1.

Listing 11-1. The Contents of the Product.cs File in the Models Folder

namespace DataApp.Models {

 public class Product {

 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 }
}

Figure 11-2. Configuring the project

Chapter 11 ■ Working With entity FrameWork Core

208

Data model classes tend to be simple collections of properties, which makes them easy to work with
and ensures they can be represented in formats such as JSON, which is often used by HTTP web services, as
demonstrated in Chapter 10. The Product class in Listing 11-1 defines Name, Category, and Price properties
and is a simplification of the data model from the SportsStore example in Part 1. I’ll add more complexity to
the data model in later chapters, but this is enough to get started.

Configuring Services and Middleware
The Empty template creates a basic ASP.NET Core project that requires additional configuration to enable
the MVC framework. Add the statements shown in Listing 11-2 to the Startup class to enable the MVC
framework and middleware components that are useful for development.

Listing 11-2. Enabling Services and Middleware in the Startup.cs File in the DataApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace DataApp {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

These changes enable developer-friendly error messages, add support for static content (such as HTML
and CSS files), and set up the MVC framework with the default routing configuration.

http://dx.doi.org/10.1007/978-1-4842-3435-8_10

Chapter 11 ■ Working With entity FrameWork Core

209

Adding a Controller and View
Now that the MVC framework has been enabled, I can create a controller and a view to handle HTTP
requests. Create a Controllers folder and add to it a C# class file called HomeController.cs with the code
shown in Listing 11-3.

Listing 11-3. The Content of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;

namespace DataApp.Controllers {
 public class HomeController : Controller {

 public IActionResult Index() {
 return View(new Product[] {
 new Product { Name = "P1", Category = "Cat1", Price = 10 },
 new Product { Name = "P2", Category = "Cat2", Price = 20 },
 new Product { Name = "P3", Category = "Cat3", Price = 30 },
 });
 }
 }
}

There is one action method in this controller, named Index, and it creates a collection of placeholder
Product objects that is passed as the view model objects to the default view. These static objects will be
replaced later in the chapter when the database and Entity Framework Core are up and running.

To provide a consistent layout for the application, create a folder called Views/Shared and add a Razor
layout page called _Layout.cshtml with the content shown in Listing 11-4.

Listing 11-4. The Content of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body>
 <div class="p-2">
 <h4 class="bg-primary text-center p-2 text-white">@ViewData["Title"]</h4>
 @RenderBody()
 </div>
</body>
</html>

Chapter 11 ■ Working With entity FrameWork Core

210

To create the view for the Index action method on the Home controller, create the Views/Home folder and
add to it a Razor view called Index.cshtml with the content shown in Listing 11-5.

Listing 11-5. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 ViewData["Title"] = "Products";
 Layout = "_Layout";
}

<table class="table table-sm table-striped">
 <thead>
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 </tr>
 }
 </tbody>
</table>

The view uses the collection of Product objects it receives from the controller as its view model to
generate rows in an HTML table, displaying the value of the Name, Category, and Price properties.

To enable tag helpers, I created a view imports page called _ViewImports.cshtml in the Views folder
and added the statements shown in Listing 11-6.

Listing 11-6. The Contents of the _ViewImports.cshtml File in the Views Folder

@using DataApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Adding the Bootstrap CSS Framework
The layout file you created in Listing 11-4 includes a link element for the CSS stylesheet from the Bootstrap
framework, which I use to style the HTML content throughout this book. To add Bootstrap to the project,
right-click the DataApp item in the Solution Explorer, select Add ➤ New Item from the pop-up menu, and
use the the JSON File template (found in the ASP.NET Core ➤ Web ➤ General category) to create a file called
.bowerrc with the content shown in Listing 11-7. (It is important to pay attention to this file name: it starts
with a period, contains the letter r twice and has no file extension).

Listing 11-7. The Contents of the .bowerrc File in the DataApp Folder

{
 "directory": "wwwroot/lib"
}

Chapter 11 ■ Working With entity FrameWork Core

211

Use the JSON File template once again to create a file called bower.json, with the content shown in
Listing 11-8.

Listing 11-8. The Contents of the bower.json File in the DataApp Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0"
 }
}

When you save the changes to the file, Visual Studio will download the new version of the Bootstrap
package and install it in the wwwroot/lib folder.

Configuring the HTTP Port
Changing the port that will be used by ASP.NET Core to receive requests will make the examples easier to
follow. Edit the launchSettings.json file in the Properties folder and change the URLs as shown in
Listing 11-9.

Listing 11-9. Changing the HTTP Ports in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "DataApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000/"
 }
 }
}

Chapter 11 ■ Working With entity FrameWork Core

212

The URLs in this file are used to configure the application when it is started using IIS Express and when
it is run from the command line. The examples in this book are run from the command line so that logging
messages can easily be seen.

Running the Example Application
Working with Entity Framework Core requires a lot more command line work than you may be used to,
which means that starting the application from the command line can often be the most natural way to
work, especially since it provides easy access to useful logging messages. Open a command prompt or
PowerShell window, navigate to the DataApp project folder (the one that contains the Startup.cs class file),
and run the command shown in Listing 11-10.

Listing 11-10. Testing the Example Application

dotnet run

Open a new browser window and navigate to http://localhost:5000 and you will see the response
shown in Figure 11-3. Once you have confirmed that the application is running correctly, use Control+C to
stop it.

Figure 11-3. Testing the example application

Chapter 11 ■ Working With entity FrameWork Core

213

Adding and Configuring Entity Framework Core
Now that there is a basic ASP.NET Core MVC application to work with, it is time to configure Entity
Framework Core so that it is able to store and retrieve data on behalf of the MVC application.

Adding the NuGet Package
The project created by Visual Studio is configured to use the ASP.NET Core meta-package, which was
introduced with ASP.NET Core 2. A single NuGet package provides access to all of the individual packages
required to start development on a project, including ASP.NET Core, the MVC framework, and Entity
Framework Core, which is in contrast to earlier releases that required a long list of NuGet packages to be
manually added before development could begin.

As useful as the meta-package can be, one addition is still required for projects that use Entity
Framework Core. Many important Entity Framework Core operations are performed using command-line
tools, and the NuGet package that provides the command-line features is not part of the meta-package and
must be installed manually.

Listing 11-11 shows the addition of the tools package to the DataApp.csproj file, which you can access
by right-clicking the DataApp project item in the Solution Explorer and selecting Edit DataApp.csproj from
the pop-up menu.

Listing 11-11. Adding the Tools Package in the DataApp.csproj File in the DataApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.5" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

This package is added using a DotNetCliToolReference element rather than the PackageReference
used for regular packages. The DotNetCliToolReference element is used to add command-line tool
packages to a project and isn’t supported by the regular NuGet tools and is the reason that the file must be
added manually. When you save the change to the csproj file, Visual Studio will download the package and
add it to the project.

Chapter 11 ■ Working With entity FrameWork Core

214

Creating the Database Context Class
A database context class provides Entity Framework Core with details of the data model classes whose
instances will be stored in the database. The context class is one of the most important components for
working with Entity Framework Core. To create the context class, add a class file called EFDatabaseContext.
cs in the DataApp/Models folder with the code shown in Listing 11-12.

Listing 11-12. The Contents of the EFDatabaseContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.Extensions.DependencyInjection;

namespace DataApp.Models {
 public class EFDatabaseContext : DbContext {

 public EFDatabaseContext(DbContextOptions<EFDatabaseContext> opts)
 : base(opts) { }

 public DbSet<Product> Products { get; set; }
 }
}

The constructor for the EFDatabaseContext class accepts a DbContextOptions object, which is used to
configure Entity Framework Core. For ASP.NET Core MVC applications, this configuration is performed in
the Startup class, as demonstrated later in this chapter, and so the constructor simply passes on the options
object to the base class.

 ■ Tip the context class must define a constructor, even though it does not contain any code statements. you
will receive an error if you create a context class without the constructor.

Database context classes tell Entity Framework Core which data model classes are to be stored in
the database by defining properties that return DbSet<T>, where the type parameter, T, specifies the data
model class.

Preparing the Entity Class
Entity Framework Core needs to be able to uniquely identify Product objects so that they can be stored in
the database and assigned a primary key. By default, Entity Framework Core looks for a property called Id
or <Type>Id to use as the key, which means that for the Product class, the key property can be called Id or
ProductId. To prepare the Product class for storage by Entity Framework Core, edit the Product class to add
the property shown in Listing 11-13.

Chapter 11 ■ Working With entity FrameWork Core

215

Listing 11-13. Adding a Key Property in the Product.cs File in the Models Folder

namespace DataApp.Models {

 public class Product {

 public long Id { get; set; }

 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 }
}

The type of the key property affects how it is handled by Entity Framework Core. For numeric types,
such as int and long, the schema will be configured so that the database is responsible for generating the
unique key value. This is useful for ASP.NET Core MVC applications where there can be multiple instances
of the application sharing the same database and coordinating unique values can be complex. For other
types, such as string, the property will still be used as a key, but the application is responsible for generating
the values. I describe the advanced options for working with keys in Chapter 19.

Updating the Controller
To replace the static data with objects obtained using Entity Framework Core, open the HomeController.cs
file and make the changes shown in Listing 11-14.

Listing 11-14. Using Real Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private EFDatabaseContext context;

 public HomeController(EFDatabaseContext ctx) {
 context = ctx;
 }

 public IActionResult Index() {
 return View(context.Products);
 }
 }
}

The controller’s constructor will receive a context object, which will be provided by the ASP.NET Core
dependency injection feature, providing the link between the MVC and Entity Framework Core parts of the
application.

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

Chapter 11 ■ Working With entity FrameWork Core

216

The job of the Index action method is to provide its view with a collection of Product objects to display.
This collection is now obtained by reading the database context’s Products property, which returns a
DbSet<Product> object. The DbSet<Product> class implements the IEnumerable<Product> interface, which
means that the Index.cshtml view can enumerate the sequence of Product objects without any changes.
(However, as I explain in the “Avoiding the IEnumerable vs. IQueryable Pitfall” section, care must be taken
with when using this interface.)

Configuring the Database Provider
Entity Framework Core isn’t tied to any specific database server. Instead, all of the functionality that is
required for a specific database server, such as MySQL or Microsoft SQL Server, is contained in a package
called the database provider. This means that Entity Framework Core can be used with any database for
which a provider is available. There are typically two steps required to configure the database provider:
setting up the connection string so that the database provider knows how to communicate with the database
server and configuring the application so that Entity Framework Core knows which database provider
should be used for the context class and

A connection string gives a database provider the information it needs to connect to a specific database
server. Each provider uses a different format of connection string, but they usually include the hostname and
port required for the network connection, the user credentials required for authentication, and the name of
the database that the application wants to use. Most projects use different instances of the database server
so that the actions performed by developers are kept separate from real customer data, and this means that
different connection strings will be required at different times. Configuration settings that change often are
defined in the appsettings.json file so that they can be altered without needing to recompile the project,
and this file is the usual home of connection strings in applications that use Entity Framework Core.

Defining the Connection String
Right-click the DataApp project item in the Solution Explorer, select Add ➤ New Item, and use the
ASP.NET Configuration File item template to create a file called appsettings.json with the content shown
in Listing 11-15.

 ■ Caution the connection string must be entered as a single unbroken line. the connection string is too
long to show on a single line on the printed page, which is the cause of the awkward formatting in
Listing 11-15. if in doubt, take a look at the appsettings.json file for this chapter on the github repository
for this book (https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc).

Listing 11-15. The Contents of the appsettings.json File in the DataApp Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=DataAppDb;MultipleActive

ResultSets=true"
 }
}

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 11 ■ Working With entity FrameWork Core

217

The connection string contains the details that will be used to connect to SQL Server. Each part of this
connection string is described in Table 11-2.

 ■ Note this connection string is simpler than most because it uses the configuration-free LocalDB feature,
which is installed with Visual Studio. Connection strings for deployment database servers will be more complex
and will usually include details of the hostname and tCp port for the network connection, along with credentials
for authentication.

Configuring the Application
You must configure the application so that Entity Framework Core knows which database provider you need
and which connection string it should use to access the database. This is done in the Startup class, as shown
in Listing 11-16.

Listing 11-16. Configuring the Database Provider in the Startup.cs File in the DataApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DataApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

Table 11-2. The Elements of the Database Connection String

Name Description

Server This setting specifies the hostname for the server. For the example, this is
(localdb)\\MSSQLLocalDB because the database is accessed via the SQL
Server LocalDB feature. For other types of database, the connection string
will usually include the hostname and TCP port that should be used to
connect to the database server.

Database This setting specifies the name of the database. For the example, this is
DataAppDb.

MultipleActiveResultSets This setting determines whether a client can execute multiple active SQL
statements on a single connection. For MVC applications, this is usually
set to true because it avoids common exceptions when enumerating
collections of data objects in Razor views.

Chapter 11 ■ Working With entity FrameWork Core

218

namespace DataApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

ASP.NET Core automatically loads the contents of the appsettings.json file when the application
starts and makes the configuration settings it contains, including connection strings, available through the
IConfiguaton interface. In Listing 11-16 the constructor receives the IConfiguration object and assigns it to
a property called Configuration, which is then used in the ConfigureServices method to configure Entity
Framework Core.

The configuration of Entity Framework Core is done in the ConfigureServices method, starting
with getting the connection string from the configuration data. I have used the most direct approach to
get the connection string, which is to use an array-style indexer to specify the name of the configuration
property in a single string. The sections of the string represent the structure in the appsettings.json file
so that ConnectionStrings:DefaultConnection corresponds to the DefaultConnection property in the
ConnectionStrings section of the appsettings.json file, like this:

...
string conString = Configuration["ConnectionStrings:DefaultConnection"];
...

Once I have the connection string, I configure the database provider and associate it with the database
context class using the AddDbContext extension method. The type parameter for the AddDbContext method
specifies the context class, and the method receives a DbContextOptionsBuilder object that is used to select
and configure the database provider, like this:

...
services.AddDbContext<EFDatabaseContext>(options => options.UseSqlServer(conString));
...

This statement identifies the EFDatabaseContext class for Entity Framework Core. The UseSqlServer
method selects the database provider for SQL Server and tells it to connect to the database using the
connection string read from the appsettings.json file.

Chapter 11 ■ Working With entity FrameWork Core

219

Configuring Entity Framework Core Logging
Many of the examples in this book rely on understanding how C# statements in the application are
translated into SQL queries that are sent to the database. To configure the ASP.NET Core logging system so
that it will display useful messages from Entity Framework Core, make the additions to the appsettings.
json file shown in Listing 11-17.

Listing 11-17. Enabling EF Core Logging in the appsettings.json File in the DataApp Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=DataAppDb;MultipleActiveR
esultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

The logging system is configured as part of the ASP.NET Core initialization process performed by the
Program class. The logging system reads the Logging:LogLevel configuration data and uses it to select the
log messages that will be displayed. The logging configuration in Listing 11-17 selects Information-level
messages from the Microsoft.EntityFrameworkCore namespace, which will include details of the SQL
queries sent from the application to the database server. Logging messages from other namespaces are
disabled.

Generating and Applying the Migration
Entity Framework Core uses migrations to create or modify the database so that it can be used to store
the application’s data. Use a command prompt or PowerShell window to run the commands shown in
Listing 11-18 in the DataApp folder. The first command creates a new migration that contains the commands
that will create the schema. The second command applies the migration to the database.

 ■ Tip if you receive a “build failed” message when you run the commands in Listing 11-18, the likely cause
is that the application is still running. Stop the application, wait a moment, and then run the commands to
create and apply the migration again.

Listing 11-18. Creating and Applying the Database Migration

dotnet ef migrations add Initial
dotnet ef database update

I explain how migrations work in detail in Chapter 13, but the combined effect of these commands is to
create the DataAppDb database, with a table called Products that has Id, Name, Category, and Price columns
that correspond to the properties defined by the Product entity class.

http://dx.doi.org/10.1007/978-1-4842-3435-8_13

Chapter 11 ■ Working With entity FrameWork Core

220

The logging configuration created in Listing 11-17 ensures that you will see the SQL commands that are
sent to the database by the dotnet ef database update command as it applies the migration. The most
important part shows you how the migration has created a new table Products, like this:

...
CREATE TABLE [Products] (
 [Id] bigint NOT NULL IDENTITY,
 [Category] nvarchar(max) NULL,
 [Name] nvarchar(max) NULL,
 [Price] decimal(18, 2) NOT NULL,
 CONSTRAINT [PK_Products] PRIMARY KEY ([Id])
);
...

You can see that the SQL CREATE TABLE command creates columns in the Products table that
correspond to the properties defined by the Product model class. This is how Entity Framework Core stores
application data: .NET objects are stored as rows in a table with the value of each property being stored in its
own column. Entity Framework Core does a lot more, of course, but as long as you keep the object-to-table-
row mapping in mind, everything else will be a little easier to understand.

The migration also created a table called __EFMigrationsHistory that Entity Framework Core uses
to keep track of which migrations have been applied, but it is the Products table that is important for the
example application because it will be used to store Product objects.

Populating the Database
To populate the database with some initial data, select Tools ➤ SQL Server ➤ New Query and enter
(localdb)\MSSQLLocalDB in the Server Name field. (Note that there is one \ character in this string, rather
than the two that are required to define the connection string in the appsettings.json file.)

Ensure that Windows Authentication is selected for the Authentication field and click the Database
Name menu to select DataAppDb from the drop-down list, which will display a complete list of the
databases that have been created using LocalDB. Click Connect and enter the contents of Listing 11-19 into
the editor.

Listing 11-19. Seeding the Database

USE DataAppDb

INSERT INTO Products (Name, Category, Price) VALUES
 ('Kayak', 'Watersports', 275),
 ('Lifejacket', 'Watersports', 48.95),
 ('Soccer Ball', 'Soccer', 19.50),
 ('Corner Flags', 'Soccer', 34.95),
 ('Stadium', 'Soccer', 79500),
 ('Thinking Cap', 'Chess', 16),
 ('Unsteady Chair', 'Chess', 29.95),
 ('Human Chess Board', 'Chess', 75),
 ('Bling-Bling King', 'Chess', 1200)

SELECT Id, Name, Category, Price from Products

Chapter 11 ■ Working With entity FrameWork Core

221

The statements in this file add rows to the Products table in the DataAppDb database, providing values
for the Name, Category, and Price columns. There are no values for the Id columns because they will be
generated by the database to ensure that they are unique.

Select Execute from the Visual Studio SQL menu. Visual Studio will send the SQL statements to SQL
Server, where they will be executed and produce the output shown in Table 11-3.

Starting the Example Application
All of the pieces are in place, and it is time to start the application. Using a command prompt or PowerShell
window to navigate to the DataApp project folder and run the command shown in Listing 11-20.

Listing 11-20. Running the Example Application

dotnet run

The application will be compiled and started, and the integrated ASP.NET Core web server will start
listening for requests on HTTP port 5000.

Table 11-3. The Seed Data

Id Name Category Price

1 Kayak Watersports 275.00

2 Lifejacket Watersports 48.95

3 Soccer Ball Soccer 19.50

4 Corner Flags Soccer 34.95

5 Stadium Soccer 79500.00

6 Thinking Cap Chess 16.00

7 Unsteady Chair Chess 29.95

8 Human Chess Board Chess 75.00

9 Bling-Bling King Chess 1200.00

Chapter 11 ■ Working With entity FrameWork Core

222

Open a new browser window, request http://localhost:5000, and you will see that Entity Framework
Core has provided the application with the data shown in Figure 11-4. Once you have confirmed that the
application is operating correctly, press Control+C at the command prompt to exit.

UNDERSTANDING HOW THE APPLICATION WORKS

Before moving on, it is worth spending a moment to understand how the application has received the
data displayed in Figure 11-4.

When the aSp.net Core runtime received the http request from the browser on port 5000, it
dispatched it to the mVC framework, which used its routing system to select the Index action on the
Home controller to generate a response.

the Index action read the Products property of the EFDatabaseContext object that the controller
received through its constructor and received a sequence of Product objects. this sequence was
passed as the view model to Views/Home/Index.cshtml view, which enumerated the objects it
contained to generate rows in an htmL table.

When the sequence of Product objects was enumerated, entity Framework Core read the contents of
the Products table from the DataAppDb database, managed by SQL Server through its LocalDB feature.
the name of the database and details of how to connect to the database server were contained in the
connection string, defined in the appsettings.json file, and read in the Startup class.

Figure 11-4. Using Entity Framework Core in the example application

Chapter 11 ■ Working With entity FrameWork Core

223

...
"DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=DataAppDb;
 MultipleActiveResultSets=true"
...

the name of the table that contains the data was taken from the name given to the DbSet<T> property
defined by the EFDatabaseContext context class.

...
public DbSet<Product> Products { get; set; }
...

entity Framework Core used this name in the migration that was used to generate the schema for the
database. the data rows that were read from the table contained values from the Id, Name, Category,
and Price columns, and these were used to create the Product objects that were processed by the
Index.cshtml view.

the elegance of this approach is how little each part of the application needs to know about the rest
of the project to do its job. the Index.cshtml view, for example, didn’t need to be changed to work
with the data from the database; it was written to process an IEnumerable<Product> before entity
Framework Core was added to the project, and that’s what it still uses. entity Framework Core takes
care of translating the rows in the database into Product objects and makes the process of working
with data largely seamless. Some changes were required for the controller, but, as you will see in the
next section, this can be minimized by implementing the repository pattern.

if you find yourself confused by how some features work in later chapters, then remind yourself of this
example and how the sequence of classes, configuration settings, and database features combined to
provide the mVC part of the application with data. it will help remind you that entity Framework Core
isn’t magic, even if it can sometimes feel like it. as you progress through the chapters that follow, you
will see how each feature is implemented, and you will see that everything builds on a foundation
revealed by this example.

Implementing the Repository Pattern
The Home controller in the example application works directly with an EFDatabaseContext object to
access the data in the database. This is a perfectly functional approach, but it can be improved upon by
implementing the repository pattern.

A repository consists of an interface that defines the data operations that can be performed in an
application and an implementation class that does the actual work. The MVC parts of the application only
use the interface, while, behind the scenes, the implementation class performs the data operations using the
database context.

Using a repository makes it easier to isolate MVC components and consolidates the code that deals with
Entity Framework Core, which makes it easier to unit test the different parts of the application and to switch
to a different database (or even replace Entity Framework Core entirely and use a different data access layer).
Without a repository, the code that deals with data tends to spread throughout the project, leading to code
duplication and making effective unit testing difficult.

Chapter 11 ■ Working With entity FrameWork Core

224

Defining the Repository Interface and Implementation Class
The starting point for a repository is to define an interface that allows data to be read through Entity
Framework Core. Create a class file called IDataRepository.cs in the Models folder and add the code shown
in Listing 11-21.

 ■ Caution Don’t implement the repository pattern in a real project until you have read the “avoiding the
ienumerable vs. iQueryable pitfall” section. the code shown in Listing 11-21 and Listing 11-22 contains a trap
for the unwary.

Listing 11-21. The Contents of the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {
 public interface IDataRepository {

 IEnumerable<Product> Products { get; }
 }
}

The repository interface will become more complex as features are added in later sections, but for the
moment it defines only a single property called Products, which will return a sequence of Product objects.
Create an implementation of the repository interface by adding a class file called EFDataRepository.cs to
the Models folder with the code shown in Listing 11-22.

Listing 11-22. The Contents of the EFDataRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public IEnumerable<Product> Products => context.Products;
 }
}

The implementation class receives an EFDatabaseContext object through its constructor, which it uses
to implement the Products property required by the IRepository interface. This may not seem like a big
step forward, but it means that the Home controller can be updated to depend on the repository interface
without needing any knowledge of the context class, as shown in Listing 11-23.

Chapter 11 ■ Working With entity FrameWork Core

225

Listing 11-23. Using the Repository in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 return View(repository.Products);
 }
 }
}

The Index action method works in the same way as it did before the repository was introduced but obtains
its collection of Product objects via the repository interface. This makes it easy to create mock implementation
classes for unit testing or to create different implementations that work with different data layers.

Configure the dependency injection feature to use the EFDataRepository class as the implementation
of the IRepository interface by making the change to the Startup class shown in Listing 11-24.

Listing 11-24. Configuring Dependency Injection in the Startup.cs File in the DataApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DataApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace DataApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));
 services.AddTransient<IDataRepository, EFDataRepository>();
 }

Chapter 11 ■ Working With entity FrameWork Core

226

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Run the application again using the dotnet run command, and you will see the same data. The
difference is that the data is obtained through the repository interface, which has broken the tight coupling
between the MVC and EF Core parts of the application.

Avoiding the IEnumerable vs IQueryable Pitfall
There is a trap for the unwary in the way that I implemented the repository interface in the previous section.
A change to the application is required to reveal the problem, as shown in Listing 11-25, which updates
the Index action method on the Home controller so that it uses LINQ to filter the objects that are passed to
the view.

Listing 11-25. Filtering Objects in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 return View(repository.Products.Where(p => p.Price > 25));
 }
 }
}

Chapter 11 ■ Working With entity FrameWork Core

227

The LINQ query selects only those Product objects whose Price property has a value of greater than
25. Start the application using the dotnet run command in the DataApp folder, and use a web browser to
request http://localhost:5000. You will see that only those Product objects whose Price property is
greater than 25 are displayed, as shown in Figure 11-5.

If you examine the logging messages written to the command prompt, you can see the SQL query that
Entity Framework Core uses to get the data from the database.

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
FROM [Products] AS [p]
...

Even though only some of the rows in the Products table are required, the query used by Entity
Framework Core doesn’t perform any filtering and asks the database for all the Product data. This is a quirk
in the way that LINQ evaluates its queries, which means that all of the Product objects stored in the database
are retrieved into the application, only after which is the filtering specified by the Where method applied.

For the example application, this means that all of the data is read from the Products table in the
database and used to create Product objects, which are then inspected by the LINQ Where method and
discarded if their Price value is too low.

This isn’t a problem for applications that have small amounts of data. There are nine Product objects
stored in the database in the example application. All nine will be read by the SQL query and then used
to create Product objects, but only seven of them will be selected by the Where method. For such a small
amount of data, the fact that two extra objects are retrieved by Entity Framework Core and then discarded
by the MVC controller isn’t worth worrying about. But the situation is different for applications that have
substantial amounts of data, where retrieving a large number of table rows, using them to create objects, and
then discarding them is a wasteful and expensive operation.

Figure 11-5. Filtering data

Chapter 11 ■ Working With entity FrameWork Core

228

To fix the problem, changes are required to the repository interface and its implementation class.
Listing 11-26 shows the change to the interface.

Listing 11-26. Fixing the Data Retrieval Issue in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {
 public interface IDataRepository {

 IQueryable<Product> Products { get; }
 }
}

The IQueryable interface is derived from IEnumerable but represents a query that should be processed
by the database. Listing 11-27 makes the corresponding change to the implementation class so that it reflects
the new return type for the Products property.

Listing 11-27. Fixing the Data Retrieval Issue in the EFDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;
 }
}

Restart the application with the dotnet run command and use the browser to request http://
localhost:5000. In the messages written to the command prompt, you will see that a different query has
been sent to SQL Server.

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
FROM [Products] AS [p]
WHERE [p].[Price] > 25.0
...

The use of the IQueryable interface changes the way that the LINQ query is evaluated and ensures
that the filtering is performed by the database server rather than by the MVC application. Only the data in
the database that meets the filter criteria is retrieved, and no objects are created only to be immediately
discarded.

Chapter 11 ■ Working With entity FrameWork Core

229

Understanding and Avoiding the Additional Query Problem
The drawback of using the IQueryable<T> interface is that it is easy to accidentally generate more database
queries than you intended. To demonstrate the problem, I have modified the action method in the Home
controller so that it performs multiple operations on the data it receives from Entity Framework Core, as
shown in Listing 11-28.

Listing 11-28. Multiple Data Operations in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 var products = repository.Products.Where(p => p.Price > 25);
 ViewBag.ProductCount = products.Count();
 return View(products);
 }
 }
}

The new statement in the Index method calls the Count method on the collection of objects that
are obtained from the repository. This seems innocuous enough, but if you start the application using
dotnet run and request http://localhost:5000, the logging messages will reveal that two queries were
sent to the database. The first query asks the database server to count the number of products that match
the filter, like this:

...
SELECT COUNT(*)
FROM [Products] AS [p]
WHERE [p].[Price] > 25.0
...

The second query actually retrieves the data objects.

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
FROM [Products] AS [p]
WHERE [p].[Price] > 25.0
...

Chapter 11 ■ Working With entity FrameWork Core

230

The IQueryable<T> interface triggers a new query every time that it is evaluated, which means that
one query is sent when the Count method is called, and the second query occurs when the Razor view
enumerates the Product objects to populate the HTML table sent to the browser. The queries appear in a
different order from the code statements because the Razor view isn’t rendered until after action method has
completed.

The underlying problem is that Entity Framework Core doesn’t have enough insight into the LINQ
queries to realize that both data operations could be handled using a single database query. In this situation,
you can avoid the additional queries by converting the IQueryable<T> object into a regular IEnumerable<T>
using the ToArray or ToList methods, as shown in Listing 11-29.

Listing 11-29. Avoiding Additional Queries in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 var products = repository.Products.Where(p => p.Price > 25).ToArray();
 ViewBag.ProductCount = products.Count();
 return View(products);
 }
 }
}

The ToArray method forces evaluation of the query and produces a collection of objects that can be
processed further without triggering additional queries, which means that the Count method operates on the
data that has already been retrieved from the database, rather than triggering a new query.

 ■ Note the examples in this section may give you the impression that you face the constant risk of either
querying for more data or sending more queries than you need. the key is to examine the logging messages
from the application to make sure you are getting the behavior you required, and this will become second
nature once you get used to working with entity Framework Core.

Hiding the Data Operations
A knock-on problem with using the IQueryable<T> interface is that it exposes details of how the data is
managed to the rest of the application. This means that every time a new action method is written, for
example, you must pay attention to whether the IQueryable<T> interface is being used and make sure you
are requesting only the data you require using only the essential number of queries.

Chapter 11 ■ Working With entity FrameWork Core

231

An alternative better approach is to hide away the detail of how the data is acquired in the repository
so that the data can be used without having to worry about how it has been obtained. For the example
application, this means moving the code that selects data from the controller into the repository. In
Listing 11-30, I have replaced the Products property defined by the repository interface with a method
that performs the query that was being done by the controller. This allows the repository to return an
IEnumerable<Product> object that doesn’t leak implementation details but that also doesn’t retrieve and
then discard data or trigger unexpected queries.

 ■ Tip you don’t have to hide the data operations in your application. if you do, you are less likely to produce
unexpected queries or request too much data, but the result can be less flexible and does have the effect
of shifting complexity into the repository. i tend to mix and match approaches in my own projects (and the
examples in this book), and i keep a careful eye on the logging messages produced by the application to ensure
that i understand the way that the code in the mVC part of the application is being translated into SQL queries.

Listing 11-30. Defining Query Methods in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {
 public interface IDataRepository {

 IEnumerable<Product> GetProductsByPrice(decimal minPrice);
 }
}

The Products property has been replaced with a GetProductsByPrice method. The MVC part of the
application will use this method rather than make its own queries directly using LINQ. Listing 11-31 shows
the changes required to the repository implementation class.

Listing 11-31. Defining Query Methods in the EFDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public IEnumerable<Product> GetProductsByPrice(decimal minPrice) {
 return context.Products.Where(p => p.Price >= minPrice).ToArray();
 }
 }
}

Chapter 11 ■ Working With entity FrameWork Core

232

The context class’s DbSet<Product> property implements the IQueryable<Product> interface. This
means that I could simply have returned the result from the LINQ query without any kind of casting or
conversion, but I have used the ToArray method to ensure that the onward use of the data won’t trigger any
additional queries.

Listing 11-32 updates the Index action method of the Home controller so that it uses the
GetProductsByPrice method, leaving the repository to deal with filtering the data.

Listing 11-32. Using a Data Query Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 var products = repository.GetProductsByPrice(25);
 ViewBag.ProductCount = products.Count();
 return View(products);
 }
 }
}

The action method is able to get the filtered data it requires without worrying about how it is obtained
and can perform additional operations on that data—such as using the LINQ Count method—without
needing to consider if doing so will have an undesirable side effect.

Test the changes by starting the application with dotnet run and using a browser to navigate to
http://localhost:5000. There is no change in the objects displayed in the browser, but the repository no
longer exposes any implementation details, which improves the separation between the Entity Framework
Core and MVC framework parts of the application and makes working with the application’s data a less
fraught process, albeit a less flexible one because the controller can receive only a specific subset of the data
from the database.

Completing the Example MVC Application
To finish this chapter, I am going to complete the MVC part of the application by adding action methods and
views for the most common operations that an application requires, along with methods in the repository
to support them, completing the MVC part of the application. The implementation of the operations using
Entity Framework Core is the subject the next chapter, so the repository class will just write out a message to
the command prompt for now.

Chapter 11 ■ Working With entity FrameWork Core

233

Completing the Repository
There are five core data operations that are required by most MVC applications: retrieving a single item,
retrieving all items, creating a new item, updating an existing item, and deleting an item. Once you have
these five operations set up and working, everything else will fall into place. Edit the repository interface to
add the methods shown in Listing 11-33.

Listing 11-33. Adding Methods in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {
 public interface IDataRepository {

 Product GetProduct(long id);

 IEnumerable<Product> GetAllProducts();

 void CreateProduct(Product newProduct);

 void UpdateProduct(Product changedProduct);

 void DeleteProduct(long id);
 }
}

The GetProduct and DeleteProduct methods define parameters that accept a primary key value for
a stored object, corresponding to the Id property. The CreateProduct and UpdateProduct accept Product
objects, and the GetAllProducts has no parameters.

Edit the EFDataRepository class and add the methods shown in Listing 11-34 as placeholders for
functionality that will be added in later chapters. The exception is the GetAllProducts method, which
simply returns the value of the context object’s Product property to provide access to all of the Product
objects in the database.

Listing 11-34. Adding Methods in the EFDataRepository.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

Chapter 11 ■ Working With entity FrameWork Core

234

 public Product GetProduct(long id) {
 Console.WriteLine("GetProduct: " + id);
 return new Product();
 }

 public IEnumerable<Product> GetAllProducts() {
 Console.WriteLine("GetAllProducts");
 return context.Products;
 }

 public void CreateProduct(Product newProduct) {
 Console.WriteLine("CreateProduct: "
 + JsonConvert.SerializeObject(newProduct));
 }

 public void UpdateProduct(Product changedProduct) {
 Console.WriteLine("UpdateProduct : "
 + JsonConvert.SerializeObject(changedProduct));
 }

 public void DeleteProduct(long id) {
 Console.WriteLine("DeleteProduct: " + id);
 }
 }
}

The Newtonsoft.Json package is one that ASP.NET Core MVC relies on and that is installed as
a dependency of the MVC packages. In this listing, it is used to serialize the objects received by the
CreateProduct and UpdateProduct methods so they can be written to the console and easily examined.

Adding the Action Methods
To add the actions that will use the new data operations, edit the Home controller to add the methods shown
in Listing 11-35. These methods use the ASP.NET Core MVC conventions and features for handling requests,
including POST-only methods and model binding.

Listing 11-35. Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

Chapter 11 ■ Working With entity FrameWork Core

235

 public IActionResult Index() {
 return View(repository.GetAllProducts());
 }

 public IActionResult Create() {
 ViewBag.CreateMode = true;
 return View("Editor", new Product());
 }

 [HttpPost]
 public IActionResult Create(Product product) {
 repository.CreateProduct(product);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult Edit(long id) {
 ViewBag.CreateMode = false;
 return View("Editor", repository.GetProduct(id));
 }

 [HttpPost]
 public IActionResult Edit(Product product) {
 repository.UpdateProduct(product);
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(long id) {
 repository.DeleteProduct(id);
 return RedirectToAction(nameof(Index));
 }
 }
}

Updating and Adding Views
To complete the MVC side of the application, add a new Razor view called Editor.cshtml to the Views/
Shared folder and add the markup shown in Listing 11-36. This view will be used when the user wants to edit
or create an item and relies on the view bag property set by the Create and Edit methods in Listing 11-35 to
change its appearance and the action to which the HTML form is submitted.

Listing 11-36. The Contents of the Editor.cshtml File in the Views/Shared Folder

@model DataApp.Models.Product
@{
 ViewData["Title"] = ViewBag.CreateMode ? "Create" : "Edit";
 Layout = "_Layout";
}

Chapter 11 ■ Working With entity FrameWork Core

236

<form asp-action="@(ViewBag.CreateMode ? "Create" : "Edit")" method="post">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

Finally, edit the Index view to add buttons that will delete items and start the create and editing
processes, as shown in Listing 11-37.

Listing 11-37. Adding Buttons to the Index.cshtml File in the Views/Home Folder

@model IEnumerable<DataApp.Models.Product>
@{
 ViewData["Title"] = "Products";
 Layout = "_Layout";
}

<table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 <td>
 <form asp-action="Delete" method="post">
 <a asp-action="Edit"
 class="btn btn-sm btn-warning" asp-route-id="@p.Id">
 Edit

 <input type="hidden" name="id" value="@p.Id" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>

Chapter 11 ■ Working With entity FrameWork Core

237

 </td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create New Product

Start the application using dotnet run and navigate to http://localhost:5000 to see the result,
shown in Figure 11-6. The MVC part of the application is complete, and the repository pattern has been
implemented, which provides the foundation for adding features in the next chapter.

Summary
In this chapter, I demonstrated how to add Entity Framework Core to an ASP.NET Core MVC application and
showed you the different ways that the repository pattern can be applied. I will enhance the example project
in the chapters that follow, starting with the next chapter, in which I introduce the basic data operations that
Entity Framework Core supports.

Figure 11-6. Completing the MVC part of the application

239© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_12

CHAPTER 12

Performing Data Operations

The data model in the example application is too simple to be representative of real projects, but it does
allow me to easily explain how the four core data operations (creating, reading, updating, and deleting data)
can be performed using Entity Framework Core. I show you how to create more complex data models in
later chapters, but, as you will see in this chapter, even a simple model can reveal much about how Entity
Framework Core works. Table 12-1 puts basic data operations in context.

Table 12-1. Putting Basic Data Operations in Context

Question Answer

What are they? The basic data operations allow you to read, store, update, and delete
data from a database.

Why are they useful? These operations are the basic building blocks of working with Entity
Framework Core.

How are they used? The database context class defines a property that provides methods
for storing, updating, and deleting data and on which LINQ queries
can be performed to read data from the database.

Are there any pitfalls or limitations? These operations can be inefficient and require the database server
to perform more work unless steps are taken to use features such as
change detection.

Are there any alternatives? If you are using Entity Framework Core, then these features are the
foundation for working with data.

https://doi.org/10.1007/978-1-4842-3435-8_12

Chapter 12 ■ performing Data operations

240

Table 12-2 summarizes the chapter.

Table 12-2. Chapter Summary

Problem Solution Listing

Get a single object from
the database

Use the Find method defined by the DbSet<T> object returned the
context class

5

Get all of the objects of
a given type from the
database

Enumerate the DbSet<T> object returned by the context class
property

6

Get a subset of objects Use LINQ to express the constraints that select the objects you require 7–10

Add an object to the
database

Pass the object to the DbSet<T>.Add method and call SaveChanges 11–12

Update an object in the
database

Pass the object to the DbSet<T>.Update method and call
SaveChanges

13

Use change detection to
minimize updates

Query the database to get the baseline object, change its property
values, and call SaveChanges

14–15

Use change detection
without querying for
baseline data

Include the original state of the object in the HTTP request and use it
to provide the baseline

16–19

Remove an object from
the database

Pass the object to the DbSet<T>.Remove method and call
SaveChanges

21

Preparing for This Chapter
This chapter uses the DataApp project created in Chapter 11. To prepare for this chapter, open a command
prompt or PowerShell window in the DataApp project folder and run the command shown in Listing 12-1.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, https://github.com/apress/pro-ef-core-2-for-
asp.net-core-mvc.

Listing 12-1. Resetting the Database

dotnet ef database drop --force

This command removes the database, which will help ensure that you get the expected results from the
examples in this chapter. Run the command shown in Listing 12-2 in the DataApp project folder to re-create
the database.

Listing 12-2. Preparing the Database

dotnet ef database update

http://dx.doi.org/10.1007/978-1-4842-3435-8_11
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 12 ■ performing Data operations

241

To seed the database with data, select Tools ➤ SQL Server ➤ New Query and enter
(localdb)\MSSQLLocalDB in the Server Name field. Ensure that Windows Authentication is selected for
the Authentication field and click the Database Name menu to select DataAppDb from the drop-down list,
which will display a complete list of the databases that have been created using LocalDB. Click Connect to
open a connection to the database.

 ■ Tip the history tab keeps track of the databases you have connected to using Visual studio and allows
you to reconnect to databases without needing to enter the connection details again.

Enter the SQL shown in Listing 12-3 into the editor. Select Execute from the Visual Studio SQL menu.
Visual Studio will ask the database server to execute the SQL, which will ensure that there is data for the
example application to work with.

Listing 12-3. Seeding the Database

USE DataAppDb

INSERT INTO Products (Name, Category, Price)
VALUES
 ('Kayak', 'Watersports', 275),
 ('Lifejacket', 'Watersports', 48.95),
 ('Soccer Ball', 'Soccer', 19.50),
 ('Corner Flags', 'Soccer', 34.95),
 ('Stadium', 'Soccer', 79500),
 ('Thinking Cap', 'Chess', 16),
 ('Unsteady Chair', 'Chess', 29.95),
 ('Human Chess Board', 'Chess', 75),
 ('Bling-Bling King', 'Chess', 1200)

When you execute the SQL, you will see the following result, which indicates that nine rows of data were
added to the database:

(9 row(s) affected)

Starting the Example Application
Start the application by running the command shown in Listing 12-4 in the DataApp folder.

Listing 12-4. Starting the Example Application

dotnet run

Chapter 12 ■ performing Data operations

242

Open a browser window and request http://localhost:5000. The ASP.NET Core MVC application will
use Entity Framework Core to retrieve data from the database and generate the response shown in Figure 12-1.

Figure 12-1. Running the example application

Reading Data
To understand how Entity Framework Core works, the best place to start is by querying the database and
retrieving the data it contains. In the sections that follow, I explain how to query for a single entity object, all
objects, and just some objects.

Reading an Object by Key
The key to the data operations used in this chapter is the DbSet<T> class, which is used as the result for the
properties defined by the database context class. Here is the definition of the Products property from the
EFDatabaseContext class, defined in Chapter 11:

...
public DbSet<Product> Products { get; set; }
...

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 12 ■ performing Data operations

243

Properties like this have two roles. The first role is to tell Entity Framework Core that the Product class
is an entity class, meaning that Product objects will be stored in the database. This is important information
when Entity Framework Core creates a migration because it influences the tables and rows that must be
created to store the data in the database.

The second role is to provide a property that allows operations to be performed on the database,
meaning that Product objects can be created, read, updated, and deleted using Entity Framework Core. The
DbSet<T> class implements interfaces and defines methods that make these operations possible. The first,
and most basic, of these methods is called Find, and it is described in Table 12-3 for quick reference.

Table 12-3. The DbSet<T> Method for Querying by Key

Name Description

Find(key) This method reads the row in the table that has the specified key and returns an object that
represents it. If there is no row with that key, null is returned. If the table requires multiple
keys, as described in Chapter 19, they can be specified as multiple parameters: Find(key1,
key2, key3).

The Find method is useful when you have a key and want the object that is associated with it. In terms
of the example application, that means you have the value assigned to the Id property of a Product object
that has been stored in the database and you want to retrieve the complete Product object.

This is the purpose of the GetProduct method in the repository, which means that the Find method can
be used to implement this method, as shown in Listing 12-5.

Listing 12-5. Querying by Key in the EFDataRepository.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public Product GetProduct(long id) {
 return context.Products.Find(id);
 }

 public IEnumerable<Product> GetAllProducts() {
 Console.WriteLine("GetAllProducts");
 return context.Products;
 }

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

Chapter 12 ■ performing Data operations

244

 public void CreateProduct(Product newProduct) {
 Console.WriteLine("CreateProduct: "
 + JsonConvert.SerializeObject(newProduct));
 }

 public void UpdateProduct(Product changedProduct) {
 Console.WriteLine("UpdateProduct : "
 + JsonConvert.SerializeObject(changedProduct));
 }

 public void DeleteProduct(long id) {
 Console.WriteLine("DeleteProduct: " + id);
 }
 }
}

The GetProduct method is used to provide the current property values for a Product object when the
user starts the editing process in the MVC part of the application. Start the application using dotnet run, use
a browser to navigate to http://localhost:5000, and click one of the Edit buttons. The form that is shown
will be populated with data obtained from the Product object created by the Find method, as shown in
Figure 12-2.

Chapter 12 ■ performing Data operations

245

If you examine the logging output from the application on the command prompt, you will see the SQL
query sent to the database.

...
SELECT TOP(1) [e].[Id], [e].[Category], [e].[Name], [e].[Price]
FROM [Products] AS [e]
WHERE [e].[Id] = @__get_Item_0
...

The query retrieves values for each of the properties defined by the Product class for the first row in the
table that has the specified value for the Id column. These values are used by the Find method to create the
Product object that it returns. This object is then passed to the MVC part of the application so that it can be
displayed to the user.

Figure 12-2. Querying for a single object

Chapter 12 ■ performing Data operations

246

Querying All Objects
To retrieve all the data objects stored in the database, you can read the value of the context class’s Products
property, which returns a DbSet<Product> object. The DbSet<T> class implements the IQueryable<T> and
IEnumerable<T> interfaces, which means you can enumerate the sequence of Product objects read from the
database using a foreach loop.

The repository class already includes support for reading all of the data objects, through the
GetAllProducts method that I defined in Chapter 11, as follows:

...
public IEnumerable<Product> GetAllProducts() {
 return context.Products;
}
...

Entity Framework Core doesn’t read the data from the database until you enumerate the DbSet<T>
property, which can be a source of confusion. To demonstrate how Entity Framework Core defers reading
the data, update the Index action on the Home controller, as shown in Listing 12-6.

Listing 12-6. Querying All Objects in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index() {
 var products = repository.GetAllProducts();
 System.Console.WriteLine("Property value has been read");
 return View(products);
 }

 public IActionResult Create() {
 ViewBag.CreateMode = true;
 return View("Editor", new Product());
 }

 // ...other actions omitted for brevity...
 }
}

The System.Console.WriteLine statement in Listing 12-6 writes out a message when the Products
property has been read and before the value is passed to the View method.

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 12 ■ performing Data operations

247

Restart the application using dotnet run and request http://localhost:5000. Examine the logging
output from the application, and you will see that the statement from Listing 12-6 appears before the SQL
query is sent to the database, as follows:

...
Property value has been read
...
info: Microsoft.EntityFrameworkCore.Database.Sql[1]
 Executed DbCommand (6ms) [Parameters=[], CommandType='Text',
 CommandTimeout='30']
 SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
 FROM [Products] AS [p]
...

The data is retrieved from the database only when an operation is performed on the sequence, such as
enumeration with a foreach loop or when using LINQ to convert the sequence to an array or a list (using the
ToArray or ToList methods).

Querying for Specific Objects
The DbSet<T> properties defined by context objects also allow more complex queries to be created using the
LINQ to Entities feature. The DbSet<T> class implements the IQueryable<T> interface, which, as explained
in Chapter 11, is used to create queries that select objects from the database. This allows the use of LINQ to
query and process data but with the benefit that the query is executed by the database server so that only the
matching data objects are read from the database.

When using a DBSet<T> property, the query isn’t sent to the database until the sequence of objects
is enumerated. This means queries can be built up by chaining together multiple LINQ methods across
multiple code statements, which fits nicely into the model of working with MVC applications.

As a demonstration, edit the Index.cshtml view to add an HTML form that will allow the user to filter
the list of products that is displayed in the table, as shown in Listing 12-7.

Listing 12-7. Adding Filtering in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<DataApp.Models.Product>
@{
 ViewData["Title"] = "Products";
 Layout = "_Layout";
}

<div class="m-1 p-2">
 <form asp-action="Index" method="get" class="form-inline">
 <label class="m-1">Category:</label>
 <select name="category" class="form-control">
 <option value="">All</option>
 <option selected="@(ViewBag.category == "Watersports")">
 Watersports
 </option>
 <option selected="@(ViewBag.category == "Soccer")">Soccer</option>
 <option selected="@(ViewBag.category == "Chess")">Chess</option>
 </select>

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 12 ■ performing Data operations

248

 <label class="m-1">Min Price:</label>
 <input class="form-control" name="price" value="@ViewBag.price" />
 <button class="btn btn-primary m-1">Filter</button>
 </form>
</div>
<table class="table table-sm table-striped">
 <thead>
 <tr><th>ID</th><th>Name</th><th>Category</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 <td>
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-id="@p.Id">
 Edit

 <input type="hidden" name="id" value="@p.Id" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create New Product

The new elements present the user with a select element to pick a category and with an input element
to specify a minimum price. The values of these elements will be included in the GET request sent to the
application when the Filter button is clicked.

To receive the filter criteria in the application, edit the Index action on the Home controller as shown in
Listing 12-8.

Listing 12-8. Receiving Filter Criteria in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

Chapter 12 ■ performing Data operations

249

 public IActionResult Index(string category = null, decimal? price = null) {
 var products = repository.GetFilteredProducts(category, price);
 ViewBag.category = category;
 ViewBag.price = price;
 return View(products);
 }

 public IActionResult Create() {
 ViewBag.CreateMode = true;
 return View("Editor", new Product());
 }

 // ...other actions omitted for brevity...
 }
}

The Index action method defines two optional parameters that are passed to a repository method called
GetFilteredProducts. To create the GetFilteredProducts method used by the Index action, extend the
repository interface as shown in Listing 12-9.

 ■ Tip i used a nullable decimal value for the price parameter in Listing 12-8 to differentiate between the
user entering nothing (in which case the parameter will be null) and the user entering zero (in which case the
parameter will be 0). Using a regular decimal parameter would result in a zero value for both situations.

Listing 12-9. Adding a Method in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {
 public interface IDataRepository {

 Product GetProduct(long id);

 IEnumerable<Product> GetAllProducts();

 IEnumerable<Product> GetFilteredProducts(string category = null,
 decimal? price = null);

 void CreateProduct(Product newProduct);

 void UpdateProduct(Product changedProduct);

 void DeleteProduct(long id);
 }
}

Chapter 12 ■ performing Data operations

250

The final step is to implement the method to build up the LINQ query based on the values that the
user has provided. Edit the repository class to implement the GetFilteredProducts method, as shown in
Listing 12-10.

Listing 12-10. Building a Query in the EFDataRepository.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public Product GetProduct(long id) {
 return context.Products.Find(id);
 }

 public IEnumerable<Product> GetAllProducts() {
 Console.WriteLine("GetAllProducts");
 return context.Products;
 }

 public IEnumerable<Product> GetFilteredProducts(string category = null,
 decimal? price = null) {

 IQueryable<Product> data = context.Products;
 if (category != null) {
 data = data.Where(p => p.Category == category);
 }
 if (price != null) {
 data = data.Where(p => p.Price >= price);
 }
 return data;
 }

 // ...other methods omitted for brevity...
 }
}

The implementation of this method starts by reading the value of the context’s Product
property and assigning it to an IQueryable<Product> variable. As explained in Chapter 11, using the
IQueryable<Product> interface ensures that the data filtering is done in the database, rather than loading all
of the objects and then filtering them.

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 12 ■ performing Data operations

251

The query is built up based on whether values have been received for the category and price
parameters. If there are parameter values, then the value of the IQuerable<Product> variable is updated
using the LINQ Where method. The database isn’t queried until the IQueryable<T> object is enumerated in
the view, which is how the LINQ methods can be used to selectively compose the query across several lines
of code.

To see the effect of the changes, restart the application, request http://localhost:5000, and use the
form fields shown in Figure 12-3 to filter the data displayed by the application.

Figure 12-3. Filtering data in the example application

There are four possible types of query that can be produced.

•	 Querying all objects, when both parameters are null

•	 Querying for objects in a specific category and no minimum price

•	 Querying for objects with a minimum price in all categories

•	 Querying for objects in a specific category and with a minimum price

You can see each of the queries that will be sent to the database server by selecting category values and
entering numbers into the price field. For example, this is the query that will be sent if you select a category
but do not enter a minimum price:

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
FROM [Products] AS [p]
WHERE [p].[Category] = @__category_0
...

Chapter 12 ■ performing Data operations

252

This is the query that is used when both a category and a minimum price have been selected:

...
SELECT [p].[Id], [p].[Category], [p].[Name], [p].[Price]
FROM [Products] AS [p]
WHERE ([p].[Category] = @__category_0) AND ([p].[Price] >= @__price_1)
...

The key point is that the selection of the data is performed by the query that is sent to the database,
ensuring that only matching data is returned to the application.

Storing New Data
The next step is to add the ability to store new objects in the database. Edit the repository class to implement
the CreateProduct method as shown in Listing 12-11.

Listing 12-11. Storing Data in the EFDataRepository.cs File in the Models Folder

...
public void CreateProduct(Product newProduct) {
 newProduct.Id = 0;
 context.Products.Add(newProduct);
 context.SaveChanges();
}
...

There are two sources of Product objects in the example application: the MVC model binding process
and the database context object. The model binding process creates Product objects when it receives an
HTTP POST request, and the context object creates Product objects when it reads data from the database.

Entity Framework Core is responsible for the Product objects that are created by the database context
object but has no visibility of the ones created by the MVC model binder. The Add method, which is called
on the context’s DbSet<T> property, makes Entity Framework Core aware of a Product object that has been
created elsewhere in the application so that it can be written to the database.

 ■ Tip the DbSet<T> property also defines an AddRange method that can be used to store multiple objects in
a single method call, as demonstrated in Chapter 13.

The SaveChanges method saves outstanding changes made to the Product objects that are being
managed by Entity Framework Core to the database. This includes any Product objects that have been
passed to the Add method. The effect of the code in Listing 12-11 is to make Entity Framework Core aware of
a Product object and store it in the database.

To see the effect, restart the application using dotnet run, use a browser to navigate to
http://locahost:5000, and click the Create button. Fill out the form fields and click the Save button.

When the Create action method on the Home controller is invoked to handle the HTTP POST request,
it receives a Product object created by the model binder as its parameter. The action method calls the
CreateProduct method on the repository, which makes Entity Framework Core aware of the Product object
with the Add method and uses the SaveChanges method to store it in the database. The new data will be
displayed in the table of products, as shown in Figure 12-4.

http://dx.doi.org/10.1007/978-1-4842-3435-8_13

Chapter 12 ■ performing Data operations

253

Understanding Key Assignment
Notice that the CreateProduct method explicitly sets the value of the Id property of the Product object to
zero:

...
newProduct.Id = 0;
...

The primary key values for new objects are allocated by the database server when new rows in the
table are created, and an exception will be thrown if the value for the Id property isn’t zero. In Listing 12-11,
I explicitly set the Id property to zero to ensure that the value received from the HTTP request isn’t used.

 ■ Note i could have configured the mVC model binder to ignore values for the Id property in the http
request, but this presumes that the model binder is the only source of Product objects passed to the
CreateProduct method. i like to make sure that the entity framework Core part of the application is robust in
its own right, which is why i explicitly set the property to zero in Listing 12-11.

When Entity Framework Core stores a new object, it immediately performs a SQL query to discover the
value that the database server has assigned to the Id column of the new table row. You can see this in the
SQL statements that are logged to the command prompt when a new product is created, like this:

...
INSERT INTO [Products] ([Category], [Name], [Price])
VALUES (@p0, @p1, @p2);

Figure 12-4. Storing new data

Chapter 12 ■ performing Data operations

254

SELECT [Id]
FROM [Products]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

The INSERT statement tells the database server to create a new row in the Products table and provides
values for the Category, Name, and Price columns. The SELECT statement queries the value for the Id column
that has been used to create the new row. The value that is returned is used to update the Product object,
ensuring that the object is consistent with its representation in the database.

You can see how this works by reading the value of the Id property after the SaveChanges method, as
shown in Listing 12-12.

Listing 12-12. Determining the Key Value in the EFDataRepository.cs File in the Models Folder

...
public void CreateProduct(Product newProduct) {
 newProduct.Id = 0;
 context.Products.Add(newProduct);
 context.SaveChanges();
 Console.WriteLine($"New Key: {newProduct.Id}");
}
...

Restart the application using dotnet run and repeat the process of creating a new data item. Examine
the output from the application, and you will see that there is a message that shows the key value assigned to
the new Product, like this:

New Key: 11

The key value is also displayed in the table of products displayed by the browser.

Updating Data
The process for modifying existing data is similar to storing new data but requires a little work to get it working
efficiently. There are three different ways to approach updates, which are described in the sections that follow.

Updating a Complete Object
The simplest approach to performing an update is to put the Product object created by the MVC model
binding process under the management of Entity Framework Core, similar to the process for storing new
data. To add support for updating data in this way, edit the UpdateProduct method in the EFDataRepository
class, as shown in Listing 12-13.

Listing 12-13. Updating Data in the EFDataRepository.cs File in the Models Folder

...
public void UpdateProduct(Product changedProduct) {
 context.Products.Update(changedProduct);
 context.SaveChanges();
}
...

Chapter 12 ■ performing Data operations

255

The DbSet<T>.Update method is used to let Entity Framework Core know a Product object that has
been modified, and the context’s SaveChanges method writes the object to the database.

 ■ Tip the DbSet<T> property also defines an UpdateRange method that can be used to update multiple
objects in a single method call, as demonstrated in Chapter 15.

To see the effect, restart the application using the dotnet run command, click the Edit button for the
Stadium product, and change the value of the Name field to Stadium (Large). Click the Save button; the
database will be updated, and the change will then be reflected in the list of products when the browser is
redirected to the Index action, as shown in Figure 12-5.

Figure 12-5. Updating an object

The advantage of this approach is simplicity: only two lines of code are required to handle updates.
The disadvantage is that Entity Framework Core knows that the Product object has changed but doesn’t
have enough information to determine that only one property has changed. This means the values for all
the Product object’s properties have to be stored in the database, where you can see all three properties are
updated.

...
UPDATE [Products] SET [Category] = @p0, [Name] = @p1, [Price] = @p2
WHERE [Id] = @p3;
...

http://dx.doi.org/10.1007/978-1-4842-3435-8_15

Chapter 12 ■ performing Data operations

256

Only one property has changed, but all three properties are updated in the database. For simple objects,
writing unchanged properties isn’t a significant issue. For real projects with complex data models, this
approach can be inefficient.

 ■ Tip if you examine the console output from the application, you will see that the UPDATE statement is
the middle of three that are sent to the database server. first is SET NOCOUNT ON, which disables the feature
that reports on how many rows are affected by a query to improve performance. next, the UPDATE statement
updates the modified row or rows in the table. the third statement is SELECT @@ROWCOUNT, which reports on
how many rows have been affected by the UPDATE. entity framework Core always checks that the expected
number of rows has been changed.

Querying the Existing Data Before Updating
Entity Framework Core has the ability to work out exactly which properties in an object have been modified,
which can be used to avoid writing unchanged data to the database. To understand how Entity Framework
Core handles change detection, modify the UpdateProduct method in the repository as shown in Listing 12-14.

Listing 12-14. Using Change Detection in the EFDataRepository.cs File in the Models Folder

...
public void UpdateProduct(Product changedProduct) {
 Product originalProduct = context.Products.Find(changedProduct.Id);
 originalProduct.Name = changedProduct.Name;
 originalProduct.Category = changedProduct.Category;
 originalProduct.Price = changedProduct.Price;
 context.SaveChanges();
}
...

There are two Product objects in this example. The changedProduct object is received as the action
method parameter and has been created by the MVC model binder using the HTTP POST request data.
The originalProduct object is created by Entity Framework Core as the result of the Find method and
represents the data that is currently in the database.

Entity Framework Core keeps track of the objects it creates using data from the database and works
out when the value of properties has changed. To take advantage of this feature, I assign the values of the
properties of the changedProduct object to the originalProduct object and then call the SaveChanges
method. Entity Framework Core will inspect the property values of the originalProduct object to see
whether they have changed since the object was created and will update only the ones that are different.

Restart the application, click the Edit button for the Stadium product again, and change the Name field
from Stadium (Large) to Stadium (Small). When you click the Save button, the logging messages will show a
SQL statement that only updates the property that has changed, like this:

...
UPDATE [Products] SET [Name] = @p0
WHERE [Id] = @p1;
...

Chapter 12 ■ performing Data operations

257

The change detection process has identified that the Name property has changed, and the statement sent
to the database server performs an update on just that property.

Understanding Change Detection
The base class for database contexts, DbContext, defines an Entry method that returns an EntityEntry
object. This object is used by Entity Framework Core to detect changes in the objects that it creates.
Table 12-4 describes the most useful EntityEntry properties.

Table 12-4. Useful EntityEntry Properties

Name Description

State This property returns a value from the EntityState enum to indicate the state of
the object. The values are Added, Deleted, Detached, Modified, and Unchanged.

OriginalValues This property returns a collection of the original property values, indexed by
property name.

CurrentValues This property returns a collection of the current property values, indexed by
property name.

These properties can be used to inspect the status of entity objects, which can reveal how the change
tracking process works. Listing 12-15 changes the repository’s UpdateProduct method to write out change
tracking information, using the EntityEntry object.

Listing 12-15. Inspecting Tracking Details in the EFDataRepository.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json;
using Microsoft.EntityFrameworkCore.ChangeTracking;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 // ...methods omitted for brevity...

 public void UpdateProduct(Product changedProduct) {
 Product originalProduct = context.Products.Find(changedProduct.Id);
 originalProduct.Name = changedProduct.Name;
 originalProduct.Category = changedProduct.Category;
 originalProduct.Price = changedProduct.Price;

Chapter 12 ■ performing Data operations

258

 EntityEntry entry = context.Entry(originalProduct);
 Console.WriteLine($"Entity State: {entry.State}");
 foreach (string p_name in new string[]
 { "Name", "Category", "Price" }) {
 Console.WriteLine($"{p_name} - Old: " +
 $"{entry.OriginalValues[p_name]}, " +
 $"New: {entry.CurrentValues[p_name]}");
 }
 context.SaveChanges();
 }

 public void DeleteProduct(long id) {
 Console.WriteLine("DeleteProduct: " + id);
 }
 }
}

The changes to the UpdateProduct method get the EntityEntry for the Product object created by the
Find method and write out the value of the State properties and the current and original values for the Name,
Category, and Price properties.

To see the tracking information, start the application using dotnet run and edit one of the products
shown in the table. When the Save button is clicked, the data that the browser sends to the application will
be applied to the entity object, and the tracking data will be written out to the command prompt.

...
Entity State: Modified
Name - Old: Kayak, New: Green Kayak
Category - Old: Watersports, New: Watersports
Price - Old: 275.00, New: 275.00
...

This tracking data shows that I edited the Name property of the Kayak product, changing it to Green
Kayak. The State property returns the Modified value, and Entity Framework Core will only write properties
whose values have changed to the database, avoiding updating values that have not changed.

Updating in a Single Database Operation
The previous example avoids writing unchanged properties to the database, but it achieves that by querying
the database for the current values, which is trading one inefficiency for another. At this point, you might be
wondering what happened to the Product object that was used to populate the HTML form fields and why
can’t it be used for change detection?

Chapter 12 ■ performing Data operations

259

CHOOSING AN UPDATE STRATEGY

if your data model is relatively simple and your entity objects have few properties, then you should
use the simplest update strategy and write the objects that you receive to the database, as shown
in Listing 12-13, even if that means that values are written when they are not changed. this is an
inefficient approach, but the inefficiencies will be small.

for more complex data models, the decision will depend on the relative costs of database server
capacity and network traffic. if your major expense is network traffic, then you should perform an
additional database read operation, as shown in Listing 12-14. this will increase the demand on the
database but will reduce the amount of data sent over the network to and from the browser. if your
major expense is provisioning the database server, then you should include the original data values in
the htmL form, as shown in Listing 12-17. this approach avoids a database operation but does so by
doubling up the data values included in the form and can require the features described in Chapter 21
to detect when the baseline data has been changed by another user.

Each HTTP request received by the application is processed by a new instance of the Home controller,
and each controller object gets a new repository object and a new database context object. When the HTTP
request has been handled, the controller, repository, and database objects are discarded, along with any
Product objects that have been retrieved from the database. This means that each request must retrieve the
data it requires from the database, even when an earlier request from the same client used performed the
same queries.

However, the third strategy for performing updates is to take advantage of that original read operation
by including the data it obtained in the response sent to the client and using it to avoiding updating
unchanged values.

First, edit the Editor.cshtml file to add the hidden input elements shown in Listing 12-16.

Listing 12-16. Adding Elements in the Editor.cshtml File in the Views/Shared Folder

@model DataApp.Models.Product
@{
 ViewData["Title"] = ViewBag.CreateMode ? "Create" : "Edit";
 Layout = "_Layout";
}

<form asp-action="@(ViewBag.CreateMode ? "Create" : "Edit")" method="post">
 <input name="original.Id" value="@Model?.Id" type="hidden" />
 <input name="original.Name" value="@Model?.Name" type="hidden" />
 <input name="original.Category" value="@Model?.Category" type="hidden" />
 <input name="original.Price" value="@Model?.Price" type="hidden" />
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>

http://dx.doi.org/10.1007/978-1-4842-3435-8_21

Chapter 12 ■ performing Data operations

260

 <div class="form-group">
 <label asp-for="Price"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The name attributes for these elements are prefixed with original followed by a period, which tells the
MVC model binder that these elements should be used as properties for an action method parameter whose
name is original. These elements will provide the original data values when the browser sends the POST
request.

To receive the original data, edit the Home controller and add a parameter to the Edit method, as
shown in Listing 12-17. The name of the parameter is original, which corresponds to the input elements
in Listing 12-16, and the MVC model binder will create a Product object using the values from those input
elements, providing the application with easy access to the original values.

Listing 12-17. Binding the Original Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

 public IActionResult Index(string category = null, decimal? price = null) {
 var products = repository.GetFilteredProducts(category, price);
 ViewBag.category = category;
 ViewBag.price = price;
 return View(products);
 }

 public IActionResult Create() {
 ViewBag.CreateMode = true;
 return View("Editor", new Product());
 }

 [HttpPost]
 public IActionResult Create(Product product) {
 repository.CreateProduct(product);
 return RedirectToAction(nameof(Index));
 }

Chapter 12 ■ performing Data operations

261

 public IActionResult Edit(long id) {
 ViewBag.CreateMode = false;
 return View("Editor", repository.GetProduct(id));
 }

 [HttpPost]
 public IActionResult Edit(Product product, Product original) {
 repository.UpdateProduct(product, original);
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(long id) {
 repository.DeleteProduct(id);
 return RedirectToAction(nameof(Index));
 }
 }
}

The MVC model binder will create two Product objects, one of which contains the values from the
input elements that may have been edited by the user and one of which contains the original values. The
modified Edit method passes both objects to the repository, which must be updated to receive them.
Change the UpdateProduct method defined by the IDataRepository interface, as shown in Listing 12-18.

Listing 12-18. Updating the Method in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {

 public interface IDataRepository {

 Product GetProduct(long id);

 IEnumerable<Product> GetAllProducts();

 IEnumerable<Product> GetFilteredProducts(string category = null,
 decimal? price = null);

 void CreateProduct(Product newProduct);

 void UpdateProduct(Product changedProduct, Product originalProduct = null);

 void DeleteProduct(long id);
 }
}

To follow the changes through, edit the EFDataRepository implementation class to add the optional
parameter to the UpdateProduct method and to use it to detect changes, as shown in Listing 12-19.

Chapter 12 ■ performing Data operations

262

Listing 12-19. Tracking Changes in the EFDataRepository.cs File in the Models Folder

...
public void UpdateProduct(Product changedProduct, Product originalProduct = null) {
 if (originalProduct == null) {
 originalProduct = context.Products.Find(changedProduct.Id);
 } else {
 context.Products.Attach(originalProduct);
 }
 originalProduct.Name = changedProduct.Name;
 originalProduct.Category = changedProduct.Category;
 originalProduct.Price = changedProduct.Price;
 context.SaveChanges();
}
...

If the UpdateProduct receives an originalProduct parameter, it is placed under the management
of Entity Framework Core using the DbSet<T>.Attach method, which sets up the Entity Framework Core
change tracking process and sets the associated EntityEntry.State property to Unmodified.

The property values from the other Product object are copied to the tracked object, and the change
detection process will ensure that only changed values will be stored in the database.

Restart the application, click the Edit button for the Stadium product again, and change the Name field
from Stadium (Small) to Stadium (Regular). When you click the Save button, the logging messages will show
a SQL statement that only updates the property that has changed, like this:

...
UPDATE [Products] SET [Name] = @p0
WHERE [Id] = @p1;
...

No additional query is required to work out what has changed since the baseline data has been
included in the HTTP POST request.

 ■ Tip see Chapter 21 for details of how to detect when the baseline data has been changed since it was
read from the database.

Deleting Data
The final data operation to implement is deletion, which is a relatively simple process when compared
with updates. To add support for deleting rows from the database, edit the DeleteProduct method in the
repository class to add the code shown in Listing 12-20.

http://dx.doi.org/10.1007/978-1-4842-3435-8_21

Chapter 12 ■ performing Data operations

263

Listing 12-20. Deleting Data in the EFDataRepository.cs File in the Models Folder

...
public void DeleteProduct(long id) {
 Product p = context.Products.Find(id);
 context.Products.Remove(p);
 context.SaveChanges();
}
...

The DbSet class defines a Remove method that accepts an entity object. When the SaveChanges method
is called, Entity Framework Core will ask the database to remove the row from the database table. You can
see how the Remove method results in a SQL command by examining the output from the application, which
will contain an entry like this:

...
DELETE FROM [Products]
 WHERE [Id] = @p0;
...

The problem with the code in Listing 12-20 is that it uses the Find method to query the database to get
the Product that should be deleted. This works, but it results in a database operation that can be avoided by
creating a Product object directly, as shown in Listing 12-21.

 ■ Tip the DbSet<T> property also defines a RemoveRange method that can be used to delete multiple
objects in a single method call, as demonstrated in Chapter 16.

Listing 12-21. Deleting Data in the EFDataRepository.cs File in the Models Folder

...
public void DeleteProduct(long id) {
 context.Products.Remove(new Product { Id = id });
 context.SaveChanges();
}
...

Only the key is used to identify the row in the database that will be deleted, so the delete operation can
be performed by creating a new Product object with just an Id value and passing it to the Remove method.
To see the effect, restart the application, navigate to http://localhost:5000, and click a Delete button to
remove a product from the database, as shown in Figure 12-6. The result is the same but without the need to
read data before deleting it.

http://dx.doi.org/10.1007/978-1-4842-3435-8_16

Chapter 12 ■ performing Data operations

264

Summary
In this chapter, I explained how to perform basic data operations using Entity Framework Core. For the most
part, these operations are easy to perform and fit well into the MVC model, although some thought must be
given to the queries that are required to perform each task, which is a recurring theme when using Entity
Framework Core. In the next chapter, I describe the Entity Framework Core migrations feature, which is used
to prepare databases for storing application data.

Figure 12-6. Deleting data

265© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_13

CHAPTER 13

Understanding Migrations

In this chapter, I describe the migrations feature, which is how Entity Framework Core ensures the database
reflects the data model in the application, even as that model changes. This is known as code first, meaning
that you start with the data model classes you require and use migrations to create and manage the
database. (This is as opposed to database first, where you work with an existing database, which I describe in
Chapters 17 and 18.)

In this chapter, I explain how to create and apply migrations, how to assess the impact of migrations,
and how to manage migrations using command-line tools and an API. Table 13-1 puts migrations in context.

Table 13-1. Putting Migrations in Context

Question Answer

What are they? Migrations are groups of commands that prepare databases for use with
Entity Framework Core applications. They are used to create the database
and then keep it synchronized with changes in the data model.

Why are they useful? Migrations automate the process of creating and maintaining databases for
storing application data. Without migrations, you would have to create the
database using SQL commands and manually configure Entity Framework
Core to use it.

How are they used? Migrations are created and applied using the dotnet ef command-line tools.

Are there any pitfalls or
limitations?

The error messages that Entity Framework Core produces when working
with migrations are not always clear. The most common problem is creating
migrations but not applying them to the database.

Are there any alternatives? You create the database first and then create the data model classes for use
with Entity Framework Core. See Chapter 17 for examples.

 ■ Caution Many of the commands described in this chapter change the structure of the database and can
result in data loss. Do not use these commands on production databases until you are sure that you understand
their effects and only after you have taken backups of critical data.

https://doi.org/10.1007/978-1-4842-3435-8_13
http://dx.doi.org/10.1007/978-1-4842-3435-8_17
http://dx.doi.org/10.1007/978-1-4842-3435-8_18
http://dx.doi.org/10.1007/978-1-4842-3435-8_17

Chapter 13 ■ UnDerstanDing Migrations

266

Table 13-2 summarizes the chapter.

Preparing for This Chapter
This chapter uses the DataApp project created in Chapter 11 and modified in Chapter 12. To prepare for
this chapter, open a command prompt or PowerShell window in the DataApp project folder and run the
command shown in Listing 13-1.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, https://github.com/apress/pro-ef-core-2-for-
asp.net-core-mvc.

Listing 13-1. Resetting the Database

dotnet ef database drop --force

This command removes the database, which will help ensure that you get the right expected results from
the examples in this chapter. Next, start the application by running the command shown in Listing 13-2.

Listing 13-2. Starting the Example Application

dotnet run

Table 13-2. Chapter Summary

Problem Solution Listing

Create a new migration Use the dotnet ef migration add command 12

See the changes that a migration
contains

Use the dotnet ef migrations script command 3, 10, 13

Apply a migration to the database Use the dotnet ef database update command 4–9, 15–17

List the migrations in a project Use the dotnet ef migrations list command 14

Remove a migration Use the dotnet ef migrations remove command 18–20

Reset the database Use the dotnet ef database update 0 command
or the dotnet ef database drop command

21, 22

Manage migrations for multiple
databases

Create a separate context class and specify its
name when using the dotnet ef command

23–28,
30, 31

See the database contexts in a project Use the dotnet ef dbcontext list command 29

Managing migrations programmatically Use the Entity Framework Core migrations API 32–35

Seed the database programmatically Use the migrations API to ensure that there are no
pending updates before using the context class to
add data to the database

36–39

http://dx.doi.org/10.1007/978-1-4842-3435-8_11
http://dx.doi.org/10.1007/978-1-4842-3435-8_12
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 13 ■ UnDerstanDing Migrations

267

The application will start, but when you use a browser to request the URL http://localhost:5000,
you will see an error. The stack trace is long, and the error will be repeated several times, but here is the
important part of the message:

...
SqlException: Cannot open database "DataAppDb" requested by the login.
...

Understanding Migrations
The reason that the error was reported in the previous section was because the database hasn’t been
prepared for the application. The connection string in the appsettings.json file specifies a database called
DataAppDb, like this:

...
"DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=DataAppDb;
 MultipleActiveResultSets=true"
...

SQL Server doesn’t know anything about the DataAppDb database at the moment, so when the
application tried to read the data from it, an error occurred. Databases are prepared using Entity Framework
Core migrations. A migration is a C# class that contains instructions for creating a database schema. When a
migration is applied, the database, tables, and columns required to store entity data are created.

Working with the Initial Migration
There is already a migration in the example application, which was created in Chapter 11 and which was
used by the application in earlier chapters. Open the DataApp/Migrations folder, and you will see three files.
(One of these files is nested in the Solution Explorer and isn’t visible until its parent item is expanded.) All
three files are described in Table 13-3.

Table 13-3. The Migration Files in the Example Project

Name Description

<timestamp>_Initial.cs This is part of the Initial class, which applies the first
migration to the database. It contains instructions for creating
the database schema.

<timestamp>_Initial.Designer.cs This is part of the Initial class, which applies the first
migration to the database. It contains instructions creating for
model objects.

EFDatabaseContextModelSnapshot.cs This class contains a description of the entity classes used in
the migration and is used to detect changes for creating further
migrations.

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 13 ■ UnDerstanDing Migrations

268

The first two files are partial classes, which means that the code they contain is combined to form a
single C# class. The name of these files starts with a timestamp that indicates when they were created and
is followed the name of the migration they contain. The names in this case include _Initial because the
migration was created in Chapter 11 using this command (you don’t need to run this command again):

dotnet ef migrations add Initial

The convention for working with migrations is to use the name Initial for the first migration that is
created in a project. Open the <timestamp>_Initial.cs file, and you will see the most important part of the
migration, as follows:

using Microsoft.EntityFrameworkCore.Metadata;
using Microsoft.EntityFrameworkCore.Migrations;
using System;
using System.Collections.Generic;

namespace DataApp.Migrations {
 public partial class Initial : Migration {

 protected override void Up(MigrationBuilder migrationBuilder) {

 migrationBuilder.CreateTable(
 name: "Products",
 columns: table => new {
 Id = table.Column<long>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Category = table.Column<string>(nullable: true),
 Name = table.Column<string>(nullable: true),
 Price = table.Column<decimal>(nullable: false)
 },
 constraints: table => {
 table.PrimaryKey("PK_Products", x => x.Id);
 });
 }

 protected override void Down(MigrationBuilder migrationBuilder) {
 migrationBuilder.DropTable(
 name: "Products");
 }
 }
}

 ■ Note the exact code may change, especially if you are using a later version of entity Framework Core or
the database provider for sQL server. But the purpose and general nature of the code will be close enough to
understand what the migration does.

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 13 ■ UnDerstanDing Migrations

269

This part of the Initial class contains the methods that will be called to update the database. Each
migration contains two methods, Up and Down, which are described in Table 13-4.

Table 13-4. The Migration Methods

Name Description

Up() This method contains statements that upgrade the database to store entity data.

Down() This method contains statements that downgrade the database to its original state.

A migration can be used to upgrade or downgrade the database, a process that will make more sense
shortly. For a newly created database, the upgrade process will create the table and columns needed to store
the data, while the downgrade process will return the database to its original state. Both of these processes
are described in the sections that follow.

UNDERSTANDING THE OTHER EF COMMANDS

Working with entity Framework Core means using the command line to create and apply migrations. all
of the commands that i use in this book start with dotnet ef, like this command from Chapter 11:

dotnet ef migration add Initial

this command creates a new migration. it is applied to the database using a similar command, shown
later in the chapter in Listing 13-4:

dotnet ef database update

if you have used earlier versions of entity Framework, you may be familiar with a different set of
commands, such as Add-Migration and Update-Database. these were the original commands used
to manage migrations and databases, but they are only supported by Visual studio and work reliably
only when used in the package Manager Console, which is a powershell window with some additional
features.

this style of command is still supported, but i have not used them in this book. these commands only
work in a specific Visual studio window, and they cause endless problems.

Understanding the Migration Upgrade
The Up method is responsible for upgrading the database. When dealing with the migration that is applied to
a newly created database, Entity Framework Core creates a table for each DbSet<T> property in the context
class. There is only one DbSet property in the context at the moment, called Products, and it has resulted in
this statement in the migration:

...
migrationBuilder.CreateTable(
 name: "Products",
...

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 13 ■ UnDerstanDing Migrations

270

The parameter for the Up method is an instance of the MigrationBuilder class, which provides
methods that are used to specify the changes that will be applied to the database. These methods are
translated into database-specific commands by the database provider, which is how the C# statements in the
migration are translated into SQL statements that SQL Server can execute.

The MigrationBuilder.CreateTable method creates a new database table. By default, Entity
Framework Core uses the name of the DbSet<T> property as the name for the database table, which is why
the name argument to the CreateTable is set to Products for the migration in the example application.

The other arguments to the CreateTable method configure the table. The columns argument is used to
define a column for each of the properties defined by the entity class that the table will be used to store. The
type of the Products property defined by the context class is DbSet<Product>, so Entity Framework Core
adds columns to the table for each property that the Product class defines.

...
migrationBuilder.CreateTable(
 name: "Products",
 columns: table => new {
 Id = table.Column<long>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Category = table.Column<string>(nullable: true),
 Name = table.Column<string>(nullable: true),
 Price = table.Column<decimal>(nullable: false)
 },
...

Columns are defined for the Id, Name, Category, and Price properties. The Id property is configured so
that the database will generate values when new rows are added to the table. Each column is configured with
the .NET type for the corresponding Product property.

To finish the definition of the table, a constraint is added that nominates the Id column as the primary key.

...
migrationBuilder.CreateTable(
 name: "Products",
 columns: table => new {
 Id = table.Column<long>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 Category = table.Column<string>(nullable: true),
 Name = table.Column<string>(nullable: true),
 Price = table.Column<decimal>(nullable: false)
 },
 constraints: table => {
 table.PrimaryKey("PK_Products", x => x.Id);
 });
}
...

Putting these pieces together, the Up method creates a new table called Products, with Id, Name,
Category, and Price columns, configured so that the Id column is the primary key and values for the Id
column will be generated by the database when new rows are created.

Chapter 13 ■ UnDerstanDing Migrations

271

Understanding the Migration Downgrade
The Down method is used to return the database to its previous state, undoing the effect of the Up method.
When dealing with a migration that will be applied to an empty database, the downgrade just has to remove
the table that has been created to store entity data.

...
migrationBuilder.DropTable(name: "Products");
...

The MigrationBuilder.DropTable command removes a table from the database. In this case, the
Products table will be removed, which returns the database to its original state.

Examining the Migration SQL
To see how the commands in the Initial migration class are translated into SQL statements, use a
command prompt to run the command shown in Listing 13-3 in the DataApp folder.

Listing 13-3. Examining a Migration

dotnet ef migrations script

All of the Entity Framework Core command-line tools are invoked with dotnet ef, which targets the
EF Core tools added to the project in Chapter 11. The migrations argument selects the tools that perform
operations on migrations, and the script argument displays the SQL commands that the migration will
execute in the database. For the Initial migration in the example project, the following SQL script will be
generated:

...
IF OBJECT_ID(N'__EFMigrationsHistory') IS NULL
BEGIN
 CREATE TABLE [__EFMigrationsHistory] (
 [MigrationId] nvarchar(150) NOT NULL,
 [ProductVersion] nvarchar(32) NOT NULL,
 CONSTRAINT [PK___EFMigrationsHistory] PRIMARY KEY ([MigrationId])
);
END;

GO

CREATE TABLE [Products] (
 [Id] bigint NOT NULL IDENTITY,
 [Category] nvarchar(max) NULL,
 [Name] nvarchar(max) NULL,
 [Price] decimal(18, 2) NOT NULL,
 CONSTRAINT [PK_Products] PRIMARY KEY ([Id])
);

GO

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 13 ■ UnDerstanDing Migrations

272

INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
VALUES (N'20180124114307_Initial', N'2.0.1-rtm-125');

GO
...

These statements create two tables. One table, called Products, corresponds to the instructions
contained in the migration that were described in the previous section. The other table is called
__EFMigrationsHistory, and it is used to keep track of which migrations have been applied to the database,
the importance of which will become clear when you create additional migrations later in the chapter.

Applying the Migration
A migration doesn’t take effect until it is applied to the database. Run the command shown in Listing 13-4 in
the DataApp folder to apply the migration to the database.

Listing 13-4. Applying a Migration

dotnet ef database update

The dotnet ef command targets the Entity Framework Core tools; the database argument specifies
that you want to perform an operation on the database, and the update argument tells Entity Framework
Core to update the database by applying all of the migrations in the project (although there is only one
migration at the moment). The project will be compiled, and the code in the Up method of the Initial class
will be executed to generate the SQL commands that create and configure the Products table.

 ■ Tip When you apply a migration with the dotnet ef database update command, the database that is
specified in the connection string will be created if it doesn’t already exist. this is how the DataAppDb database
that the application is configured to use comes into being, even though the name of the database isn’t part of
the migration of the sQL script it produces.

Checking the Migration
Select Tools ➤ SQL Server ➤ New Query and enter (localdb)\MSSQLLocalDB in the Server Name field.
Ensure that Windows Authentication is selected for the Authentication field and click the Database Name
menu to select DataAppDb from the drop-down list, which will display a complete list of the databases that
have been created using LocalDB. Once you have connected to the database, enter the SQL shown in
Listing 13-5 into the editor window.

Listing 13-5. Inspecting the Products Table

USE DataAppDb

SELECT column_name, data_type FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'Products'

GO

Chapter 13 ■ UnDerstanDing Migrations

273

Select Execute from the Visual Studio SQL menu to send the query to the database server. The result
contains the name and type of each column in the Products table, showing the effect of the migration, as
shown in Table 13-5, and showing how a row in the Products table contains columns for all of the data
values needed to represent a Product object.

Table 13-5. The Structure of the Products Table

column_name data_type

Id bigint

Category nvarchar

Name nvarchar

Price decimal

Seeding the Database and Running the Application
Now that the database schema has been created, Entity Framework Core will be able to read and store
Product objects on behalf of the example application.

To provide the application with some data to work with, enter the SQL shown in Listing 13-6 into the
SQL query window (or open a new one).

Listing 13-6. Seeding the Database

USE DataAppDb

INSERT INTO Products (Name, Category, Price)
VALUES
 ('Kayak', 'Watersports', 275),
 ('Lifejacket', 'Watersports', 48.95),
 ('Soccer Ball', 'Soccer', 19.50),
 ('Corner Flags', 'Soccer', 34.95),
 ('Stadium', 'Soccer', 79500),
 ('Thinking Cap', 'Chess', 16),
 ('Unsteady Chair', 'Chess', 29.95),
 ('Human Chess Board', 'Chess', 75),
 ('Bling-Bling King', 'Chess', 1200)

Select SQL ➤ Execute to seed the database and receive the following response that reports how many
rows were changed by the command:

 (9 row(s) affected)

Manually seeding databases is a slightly awkward process, but I show you how to handle this using C#
code later in the chapter. Run the command shown in Listing 13-7 in the DataApp folder to start the example
application.

Listing 13-7. Starting the Example Application

dotnet run

Chapter 13 ■ UnDerstanDing Migrations

274

Open a new browser window and request the URL http://localhost:5000. You will see the data table,
as shown in Figure 13-1. Stop the application with Ctrl+C once you have confirmed that the database is
working and has been populated with the seed data.

Before moving on, it is worth reflecting on the effect of the database migration. This section started
without a database and no way to store Product objects. The migration, which was created in Chapter 11, is
a set of C# files that contain instructions for upgrading or downgrading the database. When the migration
was applied, the DataAppDb database was created, and the C# upgrade statements were translated into a
SQL commands that were executed to create and configure the Products table, with columns for each of the
properties defined by the Product class. Each row in the Products table represents a Product object, starting
with the seed data created in Listing 13-6.

It is also worth reflecting on how much of the process was entirely automatic. Entity Framework Core
discovered the database context class, identified the classes that need to be stored in the database, and
worked out how to represent instances of those classes as relational data. Entity Framework Core can require
some direction for more complex examples, as you will see in later chapters, but you can get a long way just
by defining C# classes and letting Entity Framework Core figure out the details for you.

Creating Additional Migrations
The convenience of migrations becomes apparent when the data model in the MVC application changes.
To see how Entity Framework Core handles changes to the data model, edit the Product class to add the
enumeration and property shown in Listing 13-8.

Figure 13-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 13 ■ UnDerstanDing Migrations

275

Listing 13-8. Adding a Property in the Product.cs File in the Models Folder

namespace DataApp.Models {

 public enum Colors {
 Red, Green, Blue
 }

 public class Product {

 public long Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 public Colors Color { get; set; }
 }
}

The Color property uses the Colors enum. Adding a property means that Product objects can no longer
be stored in the database since there is no means of storing Color values.

Bringing the database into sync with the revised data model means creating and applying a new
migration. To create the migration, run the command shown in Listing 13-9 in the DataApp folder.

Listing 13-9. Creating a New Database Migration

dotnet ef migrations add AddColorProperty

The dotnet ef migrations add command creates a new migration, which in this case is called
AddColorProperty. You can use any name you like for migrations, and common naming strategies include
describing the data model change that the migration reflects or using incremental version numbers.

When you run the command in Listing 13-9, new files are added to the Migrations folder. Open the
<timestamp>_AddColorProperty.cs file to see the changes that migration will apply to the database, which
are as follows:

using Microsoft.EntityFrameworkCore.Migrations;
using System;
using System.Collections.Generic;

namespace DataApp.Migrations {
 public partial class AddColorProperty : Migration {

 protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.AddColumn<int>(
 name: "Color",
 table: "Products",
 nullable: false,
 defaultValue: 0);
 }

Chapter 13 ■ UnDerstanDing Migrations

276

 protected override void Down(MigrationBuilder migrationBuilder) {
 migrationBuilder.DropColumn(
 name: "Color",
 table: "Products");
 }
 }
}

The Up method will update the schema to reflect the change in the data model, which in this case means
adding a column called Color to the Products table. The Down method returns the database to its previous
state by dropping the Color column.

Run the command in Listing 13-10 in the DataApp folder to see the SQL statements that the new
migration will produce.

Listing 13-10. Inspecting the Migration SQL Statements

dotnet ef migrations script Initial AddColorProperty

Specifying the names of migrations when using the dotnet ef migrations script command will
show the statements required to update the database from the first migration to the second and will produce
the following result:

...
ALTER TABLE [Products] ADD [Color] int NOT NULL DEFAULT 0;

GO

INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
VALUES (N'<timestamp>_AddColorProperty', N'2.0.1-rtm-125');

GO
...

These statements add a Color property to the Products table and update the __EFMigrationsHistory
table to reflect the application of the migration to the database.

Adding Another Property to the Data Model
I am going to create a third migration to show how changes to the database can be managed. Add the
property shown in Listing 13-11 to the Product class.

Listing 13-11. Adding an Additional Property in the Product.cs File in the Models Folder

namespace DataApp.Models {

 public enum Colors {
 Red, Green, Blue
 }

 public class Product {

Chapter 13 ■ UnDerstanDing Migrations

277

 public long Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 public Colors Color { get; set; }
 public bool InStock { get; set; }
 }
}

The new addition is a bool property called InStock. To create a migration to add support for storing this
property in the database, run the command shown in Listing 13-12 in the DataApp folder.

Listing 13-12. Creating a New Migration

dotnet ef migrations add AddInStockProperty

A new set of migration class files will be added to the Migrations folder of the project. Run the
command shown in Listing 13-13 in the DataApp folder to see the SQL statements that will modify the
Products table.

Listing 13-13. Displaying the SQL Statements for a Migration

dotnet ef migrations script AddColorProperty AddInStockProperty

This command will produce the following result:

...
ALTER TABLE [Products] ADD [InStock] bit NOT NULL DEFAULT 0;

GO

INSERT INTO [__EFMigrationsHistory] ([MigrationId], [ProductVersion])
VALUES (N'<timestamp>_AddInStockProperty', N'2.0.1-rtm-125');

GO
...

You can see how each change to the Product class produces a migration that will bring the data model
and the database back in sync. When a migration is created, Entity Framework Core works out what changes
have to be applied to the database automatically so that the migration only makes the modifications
necessary to represent instances of the modified classes.

Managing Migrations
Creating a migration is only part of the process: a migration must also be applied to the database to
ensure that the application data can be stored. The most common way to manage migrations is to use
the dotnet ef command-line tools, which I describe in the sections that follow. Migrations can also be
managed using an API provided by Entity Framework Core, which I describe in the “Managing Migrations
Programmatically” section of this chapter.

Chapter 13 ■ UnDerstanDing Migrations

278

Listing Migrations
You can see the list of migrations that have been created for the example project by running the command
shown in Listing 13-14 in the DataApp folder.

Listing 13-14. Listing the Available Migrations

dotnet ef migrations list

This command lists all of the migrations that have been created for a project. There are three migrations
in the DataApp project, which produces the following output (although you will see timestamps in the file
names):

...
<timestamp>_Initial
<timestamp>_AddColorProperty
<timestamp>_AddInStockProperty
...

This is a list of the migrations that are defined in the project, which may not have been applied
to the database yet. The migrations are listed in order, which means that you can easily tell that the
AddColorProperty migration builds on the changes that are contained in the Initial migration and that the
AddInStockProperty migration builds on AddColorProperty.

Applying All Migrations
The most common task is to apply all of the migrations that are defined in the project to bring the database
up-to-date in a single step. To apply all of the migrations in the DataApp project, run the command shown in
Listing 13-15 from the DataApp folder.

Listing 13-15. Applying All Migrations

dotnet ef database update

Entity Framework Core will use the __EFMigrationsHistory table to work out which migrations have
already been applied and will bring the database up-to-date.

Select Tools ➤ SQL Server ➤ New Query, connect to the database, and enter the SQL shown in
Listing 13-16.

Listing 13-16. Inspecting the Products Table

USE DataAppDb

SELECT column_name, data_type FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'Products'

GO

Chapter 13 ■ UnDerstanDing Migrations

279

Updating to a Specific Migration
You can update the database to a specific migration, which can be useful when you need to roll back a set of
changes or don’t want to apply all of the migrations in a project in one go. Run the command in Listing 13-17
in the DataApp folder to migrate the database to the AddColorProperty migration.

Listing 13-17. Updating the Database to a Specific Migration

dotnet ef database update AddColorProperty

When the name of a migration is used with the dotnet ef database update command, Entity
Framework Core examines the database to see which migrations have been applied and starts working
toward the target migration, calling the Up or Down method to perform upgrades or downgrades as required
to get to the target state.

In the case of the command in Listing 13-17, to update to the AddColorProperty migration, Entity
Framework Core has to perform a downgrade from the AddInStockProperty migration, which has the effect
of dropping the InStock column from the Products table. You can see the change to the table structure if
you execute the SQL query in Listing 13-16 again, which will show the table structure in Table 13-7.

Table 13-6. The Structure of the Products Table

column_name data_type

Id bigint

Category nvarchar

Name nvarchar

Price decimal

Color int

InStock bit

Table 13-7. The Structure of the Products Table

column_name data_type

Id bigint

Category nvarchar

Name nvarchar

Price decimal

Color int

Select Execute from the Visual Studio SQL menu to send the query to the database server, which will
provide a summary of the table structure, as shown in Table 13-6. The summary includes columns that
correspond to the new properties added to the Product class in Listing 13-8 and Listing 13-11.

Chapter 13 ■ UnDerstanDing Migrations

280

Removing a Migration
Migrations are sometimes created by mistake or outlive their usefulness. Run the command shown in
Listing 13-18 in the DataApp folder to remove the most recent migration added to the project.

Listing 13-18. Removing the Most Recent Migration

dotnet ef migrations remove

The command in Listing 13-18 removes the AddInStockProperty migration, which can be seen in the
output that is produced.

...
Removing migration '<timestamp>_AddInStockProperty'.
Reverting model snapshot.
...

The message about reverting the model snapshot relates to the EFDatabaseContextModelSnapshot.cs
file in the Migrations folder, which is used to compare the entity classes in the project with the most recent
migrations. When you remove a migration, the snapshot used for comparisons is updated to reflect the
change. This is especially useful if you are removing a migration because, for example, you misspelled the
name, because it means that the next migration you create will reflect any changes in the model classes since
the most recent remaining migration in the project.

 ■ Tip You can remove only the most recent migration, which means you have to run the command in
Listing 13-18 several times if you need to remove multiple migrations.

You will see a warning when the migration you are about to remove has already been applied to the
database. This is important because you run the risk of putting the database into a state from which it cannot
be upgraded because the schema doesn’t match the state that the remaining migrations expect to find. To
see the warning, run the command in Listing 13-19 in the DataApp folder.

Listing 13-19. Removing an Applied Migration

dotnet ef migrations remove

This command tells Entity Framework Core to remove the AddColorProperty migration, which has
been applied to the database. You will see the following warning, and the migration will not be removed:

...
The migration '<timestamp>_AddColorProperty' has already been applied to the database.
Revert it and try again. If the migration has been applied to other databases, consider
reverting its changes using a new migration.
...

You can use the dotnet ef database update command to remove the migration from the database or
use the --force argument, as shown in Listing 13-20, to tell Entity Framework Core to proceed anyway and
remove the migration from the project. Run this command in the DataApp folder to force the removal of the
migration, even though it has been applied to the database.

Chapter 13 ■ UnDerstanDing Migrations

281

Listing 13-20. Forcing the Removal of an Applied Migration

dotnet ef migrations remove --force

When you force the removal of the migration, Entity Framework Core doesn’t check the state of
the database before removing the migration from the project. This is confirmed in the output from the
command, shown here:

...
Removing migration '<timestamp>_AddColorProperty' without checking the database. If this
migration has been applied to the database, you will need to manually reverse the changes
it made.
Removing migration '<timestamp>_AddColorProperty'.
Reverting model snapshot.
...

Resetting the Database
There will be times when you want to undo all of the migrations that have been applied to the database and
start over. This can be because you want to test that the migrations produce the expected schema or because
you have forced the removal of a migration that had been applied to the database and the schema and the
project are out of sync.

Run the command shown in Listing 13-21 in the DataApp folder to run the commands in the Down
methods of all of the migrations in the project.

Listing 13-21. Downgrading all Migrations

dotnet ef database update 0

Using 0 as the argument to the dotnet ef database update command removes all of the migrations
that have been applied to the database. This isn’t quite the same as returning to the original starting point
because the DataAppDb database and the __EFMigrationsHistory table still exist (although the table is
empty since no migrations are applied). Run the command shown in Listing 13-22 to return to a completely
clean state.

Listing 13-22. Dropping the Database

dotnet ef database drop --force

This command drops the DataAppDb database completely, including the __EFMigrationsHistory table.
The --force argument can be omitted if you want to be prompted before dropping the database.

Working with Multiple Databases
All the examples so far in this chapter have assumed that the project relies on only one database. When the
dotnet ef migrations and dotnet ef database commands are used, they inspect the project to find the
context class, connect to the database using the associated connection string, and do their work.

When a project relies on multiple databases, which might be because there is one database for product
data and another for user data, then the context class that the migration operation affects must be specified
as part of the command line. The sections that follow add a second database to the example project and
demonstrate how its migrations are created and applied.

Chapter 13 ■ UnDerstanDing Migrations

282

DECIDING WHEN TO CREATE A DIFFERENT DATABASE

a database can contain multiple tables, each of which is able to store a different type of data object.
For many projects, this means that all of the data that an application requires can be stored in a single
database and accessed through a single context class.

the most common reason for using multiple databases is when a project relies on a third-party
package that uses entity Framework Core, such as asp.net Core identity, which is used to manage user
accounts, authentication, and authorization. the application’s custom data (the equivalent of the product
data in the example application) is stored in one database, and the identity data is stored in another. You
may also need multiple databases if your project has to work with data from a legacy application or if
different types of data have different performance or security requirements.

Extending the Data Model
The starting point for adding a second database to the example application is to create a new entity class, a
new repository, and its implementation class. Begin by adding a file called Customer.cs to the Models folder
and adding the code shown in Listing 13-23.

Listing 13-23. The Contents of the Customer.cs File in the Models Folder

namespace DataApp.Models {

 public class Customer {

 public long Id { get; set; }
 public string Name { get; set; }
 public string City { get; set; }
 public string Country { get; set; }
 }
}

The Customer class defines an Id property that will be used as the unique key, values for which will be
generated by the database. The Name, String, and Country properties are conventional string values.

To create a context class for working with Customer objects, add a class file called EFCustomerContext.
cs to the Models folder and add the code shown in Listing 13-24.

Listing 13-24. The Contents of the EFCustomerContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.Extensions.DependencyInjection;

namespace DataApp.Models {
 public class EFCustomerContext : DbContext {

 public EFCustomerContext(DbContextOptions<EFCustomerContext> opts)
 : base(opts) { }

Chapter 13 ■ UnDerstanDing Migrations

283

 public DbSet<Customer> Customers { get; set; }
 }
}

The EFCustomerContext class follows the standard pattern for a context, defining a constructor that
receives a configuration object and a property that returns a DbSet<T> with a type parameter that indicates
the type of objects that the context manages.

To create a repository for Customer objects, add a class file called CustomerRepository.cs to the Models
folder and add the code shown in Listing 13-25. This file contains both the interface and the implementation
class for simplicity.

Listing 13-25. The Contents of the CustomerRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public interface ICustomerRepository {

 IEnumerable<Customer> GetAllCustomers();

 }

 public class EFCustomerRepository : ICustomerRepository {
 private EFCustomerContext context;

 public EFCustomerRepository(EFCustomerContext ctx) {
 context = ctx;
 }

 public IEnumerable<Customer> GetAllCustomers() {
 return context.Customers;
 }
 }
}

The repository provides a GetAllCustomers method that returns all the Customer objects in the
database. I have omitted the other standard data operations, as described in Chapter 12, to keep the example
as simple as possible.

Configuring the Application
A connection string is required so that the database provider can reach the database server, authenticate
itself, and use the new database. Edit the appsettings.json file and add the connection string shown in
Listing 13-26.

http://dx.doi.org/10.1007/978-1-4842-3435-8_12

Chapter 13 ■ UnDerstanDing Migrations

284

Listing 13-26. Defining the Connection String in the appsettings.json File in the DataApp Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=DataAppDb;MultipleActive

ResultSets=true",
 "CustomerConnection": "Server=(localdb)\\MSSQLLocalDB;Database=CustomerDb;MultipleActive

ResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

The new connection string, called CustomerConnection, specifies a database called CustomerDb on the
same LocalDB database server used for Product objects.

 ■ Tip the databases for the example application are both managed by the same database server, which is
sQL server accessed through the LocalDB feature. this isn’t a requirement, and you can use separate database
servers in an application and even mix and match database servers from different suppliers such that an
application can use both sQL server and MysQL databases, for example.

The next step is to configure Entity Framework Core to use the new database and configure the ASP.NET
Core dependency injection feature to handle dependencies on the customer repository interface. Edit the
ConfigureServices method in the Startup class to add the statements shown in Listing 13-27.

Listing 13-27. Configuring the Application in the Startup.cs File in the DataApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DataApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace DataApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

Chapter 13 ■ UnDerstanDing Migrations

285

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));

 string customerConString =
 Configuration["ConnectionStrings:CustomerConnection"];
 services.AddDbContext<EFCustomerContext>(options =>
 options.UseSqlServer(customerConString));

 services.AddTransient<IDataRepository, EFDataRepository>();
 services.AddTransient<ICustomerRepository, EFCustomerRepository>();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating and Applying Migrations
Now that there are two context classes in the application, the commands used earlier in the chapter won’t
work. To see the problem, run the command shown in Listing 13-28 in the DataApp folder.

Listing 13-28. Creating a Migration

dotnet ef migrations add Customers_Initial

This command displays the following error message:

...
More than one DbContext was found. Specify which one to use. Use the '-Context' parameter
for PowerShell commands and the '--context' parameter for dotnet commands.
...

When Entity Framework Core inspects the project, it finds two classes that are derived from DbContext,
and it doesn’t know which one the migration command should be applied to.

You don’t have to search the project to find out which context classes have been discovered. Instead,
run the command shown in Listing 13-29 in the DataApp folder, and Entity Framework Core will display a list
of the context classes it finds.

Listing 13-29. Listing the Context Classes

dotnet ef dbcontext list

Chapter 13 ■ UnDerstanDing Migrations

286

This command displays a list of the context classes that are in the project, as follows:

...
DataApp.Models.EFCustomerContext
DataApp.Models.EFDatabaseContext
...

The name of the class, with or without its namespace, can be used with the --context argument to
select a context to operate on. Run the commands shown in Listing 13-30 in the DataApp folder to create the
initial migration for the Customer class and to reflect the uncaptured changes in the Product class that were
created when migrations were deleted earlier in the chapter, this time specifying the context that it applies
to.

Listing 13-30. Specifying a Context When Creating a Migration

dotnet ef migrations add Initial --context EFCustomerContext
dotnet ef migrations add Current --context EFDatabaseContext

The same technique is required to apply migrations to the database. Run the commands shown in
Listing 13-31 in the DataApp folder to apply the migrations for both databases.

Listing 13-31. Applying Migrations to the Databases

dotnet ef database update --context EFDatabaseContext
dotnet ef database update --context EFCustomerContext

Managing Migrations Programmatically
For most projects, the best way to manage migrations is to use the dotnet ef migrations and dotnet ef
database command-line tools. But Entity Framework Core also provides an API for managing migrations
programmatically, which can be useful when it isn’t possible to use the command line. The migrations
API can be used to create a migrations management tool that can be used to decide which migrations are
applied to a database. In this section, I demonstrate how to create a migrations manager and demonstrate
how the migrations API works.

 ■ Caution Do not use asp.net Core identity to manage access to the migrations management tool. identity
relies on entity Framework Core for data storage, which means that you can easily apply a migration that
prevents you from authenticating yourself and so prevents you from using the management tool. i generally
install the migration management tool on its own, alongside the database server, to keep it separate from the
public-facing MVC applications.

Creating the Migration Manager Class
The starting point for creating the migrations manager is to define a helper that will take care of dealing with
the Entity Framework Core API in a way that is easy to consume from an MVC controller. Create a class file
called MigrationsManager.cs in the Models folder and add the code shown in Listing 13-32.

Chapter 13 ■ UnDerstanDing Migrations

287

Listing 13-32. The Contents of the MigrationsManager.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Migrations;
using Microsoft.EntityFrameworkCore.Infrastructure;

namespace DataApp.Models {

 public class MigrationsManager {
 private IEnumerable<Type> ContextTypes;
 private IServiceProvider provider;
 public IEnumerable<string> ContextNames;

 public MigrationsManager(IServiceProvider prov) {
 provider = prov;

 ContextTypes = provider.GetServices<DbContextOptions>()
 .Select(o => o.ContextType);
 ContextNames = ContextTypes.Select(t => t.FullName);
 ContextName = ContextNames.First();
 }

 public string ContextName { get; set; }

 public IEnumerable<string> AppliedMigrations
 => Context.Database.GetAppliedMigrations();

 public IEnumerable<string> PendingMigrations
 => Context.Database.GetPendingMigrations();

 public IEnumerable<string> AllMigrations
 => Context.Database.GetMigrations();

 public void Migrate(string contextName, string target = null) {
 Context.GetService<IMigrator>().Migrate(target);
 }

 public DbContext Context =>
 provider.GetRequiredService(Type.GetType(ContextName)) as DbContext;
 }
}

Chapter 13 ■ UnDerstanDing Migrations

288

This class has three roles. The first is to get the types and names of the database context classes in
the application. The manager class gets all of the DbContextOptions services that have been registered
as services using the ASP.NET Core dependency injection feature and then, using these services, gets the
associated context class by reading the ContextType property of each DbContextOptions object, like this:

...
ContextTypes = provider.GetServices<DbContextOptions>().Select(o => o.ContextType);
...

This is a somewhat awkward technique, but it is the same one used by Entity Framework Core to
discover context classes.

The second role of the manager class is to take a string containing the type name of a context class and
to obtain an instance of that class using the ASP.NET Core dependency injection feature, like this:

...
public DbContext Context =>
 provider.GetRequiredService(Type.GetType(ContextName)) as DbContext;
...

This is the bridge to the MVC part of the application, which will receive the name of the context that a
migration should be applied to as a string in an HTML form and use it to set the value of the ContextName
property, which is used to identify the context that the user wants to work with.

The third and final role is to perform migration objects on database contexts. The Microsoft.
EntityFrameworkCore namespace includes extension methods that operate on migrations through the
DatabaseFacade objects returned by the DbContext.Database property, as described in Table 13-8.

Table 13-8. The DatabaseFacade Extension Methods for Migrations

Name Description

GetMigrations() This method returns a sequence of string values, each of which is the name
of a migration.

GetAppliedMigrations() This method returns a sequence of string values, each of which is the name
of a migration that has been applied to the database.

GetPendingMigrations() This method returns a sequence of string values, each of which is the name
of a migration that has not yet been applied to the database.

Migrate() This method applies all pending migrations to the database.

The Migrate method doesn’t allow a specific migration to be specified. Providing this functionality
means using the IMigrator service, which is defined in the Microsoft.EntityFrameworkCore.Migrations
namespace and which defines a Migrate method that does allow a migration to be specified, which is how
I implemented the MigrationsManager class’s Migrate method, as follows:

...
Context.GetService<IMigrator>().Migrate(target);
...

Using the methods described in Table 13-8 and the IMigrator service, the manager class is able to
provide information about the migration status of each database context class and apply and remove
individual migrations.

Chapter 13 ■ UnDerstanDing Migrations

289

Creating the Migrations Controller and View
The next step is to create a controller and view that will provide access to the functionality offered by the
MigrationsManager class. Add a class file called MigrationsController.cs to the Controllers folder and
add the code shown in Listing 13-33.

Listing 13-33. The Contents of the MigrationsController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace DataApp.Controllers {

 public class MigrationsController : Controller {
 private MigrationsManager manager;

 public MigrationsController(MigrationsManager mgr) {
 manager = mgr;
 }

 public IActionResult Index(string context) {
 ViewBag.Context = manager.ContextName = context
 ?? manager.ContextNames.First();
 return View(manager);
 }

 [HttpPost]
 public IActionResult Migrate(string context, string migration) {
 manager.ContextName = context;
 manager.Migrate(context, migration);
 return RedirectToAction(nameof(Index), new { context = context });
 }
 }
}

The Index action method is used to display details of the context classes and migrations in the project.
The POST-only Migrate method is used to apply migrations to the database. To provide the controller with
its view, create the Views/Migrations folder and add to it a Razor file called Index.cshtml with the markup
shown in Listing 13-34.

Listing 13-34. The Contents of the Index.cshtml File in the Views/Migrations Folder

@using DataApp.Models
@model MigrationsManager
@{
 ViewData["Title"] = "Migrations";
 Layout = "_Layout";
}

Chapter 13 ■ UnDerstanDing Migrations

290

<div class="m-1 p-2">
 <form asp-action="Index" method="get" class="form-inline">
 <label class="m-1">Database Context:</label>
 <select name="context" class="form-control">
 @foreach (var name in Model.ContextNames) {
 <option selected="@(name == ViewBag.Context)">@name</option>
 }
 </select>
 <button class="btn btn-primary m-1">Select</button>
 </form>
</div>

<table class="table table-sm table-striped m-2">
 <thead>
 <tr><th>Migration Name</th><th>Status</th></tr>
 </thead>
 <tbody>
 @foreach (string m in Model.AllMigrations) {
 <tr>
 <td>@m</td>
 <td>
 @(Model.AppliedMigrations.Contains(m)
 ? "Applied" : "Pending")
 </td>
 </tr>
 }
 </tbody>
</table>

<div class="m-1 p-2">
 <form asp-action="Migrate" method="post" class="form-inline">
 <input type="hidden" name="context" value="@ViewBag.Context" />
 <label class="m-1">Migration:</label>
 <select name="migration" class="form-control">
 <option selected value="@Model.AllMigrations.Last()">All</option>
 @foreach (var m in Model.AllMigrations.Reverse()) {
 <option>@m</option>
 }
 <option value="0">None</option>
 </select>
 <button class="btn btn-primary m-1">Migrate</button>
 </form>
</div>

The view contains a form that is used to select the context class that is managed, a table that lists the
migrations and their status, and a second form that is used to apply migrations.

Chapter 13 ■ UnDerstanDing Migrations

291

Configuring the Application
The MigrationsManager class must be registered with the ASP.NET Core dependency injection system so
that new instances can be created with the IServiceProvider object that is used to get context objects. Edit
the ConfigureServices method of the Startup class to add the statement shown in Listing 13-35.

Listing 13-35. Registering the Helper Class in the Startup.cs File in the DataApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));

 string customerConString =
 Configuration["ConnectionStrings:CustomerConnection"];
 services.AddDbContext<EFCustomerContext>(options =>
 options.UseSqlServer(customerConString));

 services.AddTransient<IDataRepository, EFDataRepository>();
 services.AddTransient<ICustomerRepository, EFCustomerRepository>();
 services.AddTransient<MigrationsManager>();
}
...

The MigrationsManager class is registered using the AddTransient method, which means that every
dependency on the class will be resolved with a new object.

Running the Migrations Manager
Restart the application using the dotnet run command and navigate to the URL http://localhost:5000/
migrations. You can switch between context classes by picking an item using the select element at the top
of the window and clicking the Select button. To upgrade or downgrade a database, select the migration you
want and click the Migrate button, as shown in Figure 13-2. Examine the output from the application, and
you will see the SQL statements that are sent to the database server to move between migrations.

Chapter 13 ■ UnDerstanDing Migrations

292

Seeding Databases Programmatically
Many databases require some seed data so that the application has some baseline data to work with. This is
often the case with product databases, where there is an initial set of products on sale to customers, as well
as security databases, where there is at least one account in the database so that administrators can log in
and perform initial configuration tasks.

So far in this part of the book, the databases have been seeded using raw SQL sent directly to the
database server. This is an error-prone way of adding data to the database and doesn’t use Entity
Framework Core.

Entity Framework Core doesn’t include any built-in support specifically for dealing with seed data,
although it is in the published road map at the time of writing. Until there is a dedicated seeding feature,
there are two techniques that you can use for seeding, which are described in the sections that follow. As I
explain, each approach has benefits and drawbacks, but the overall effect is to populate the database so that
you don’t have to use raw SQL.

Both approaches rely on creating objects and storing them in the database using Entity Framework
Core. To avoid repeating code for each approach, I created a class file called SeedData.cs in the Models
folder and added the code shown in Listing 13-36.

 ■ Caution the code in Listing 13-36 contains a method that removes the data from the database. this is
useful when experimenting with entity Framework Core because you can easily reset the database and try a
different seeding technique. For real projects, caution is required to avoid deleting real production data, and you
may want to mitigate the risk by not implementing the equivalent of the ClearData method in your own projects.

Figure 13-2. Managing migrations programmatically

Chapter 13 ■ UnDerstanDing Migrations

293

Listing 13-36. The Contents of the SeedData.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace DataApp.Models {

 public static class SeedData {

 public static void Seed(DbContext context) {
 if (context.Database.GetPendingMigrations().Count() == 0) {
 if (context is EFDatabaseContext prodCtx
 && prodCtx.Products.Count() == 0) {
 prodCtx.Products.AddRange(Products);
 } else if (context is EFCustomerContext custCtx
 && custCtx.Customers.Count() == 0) {
 custCtx.Customers.AddRange(Customers);
 }
 context.SaveChanges();
 }
 }

 public static void ClearData(DbContext context) {
 if (context is EFDatabaseContext prodCtx
 && prodCtx.Products.Count() > 0) {
 prodCtx.Products.RemoveRange(prodCtx.Products);
 } else if (context is EFCustomerContext custCtx
 && custCtx.Customers.Count() > 0) {
 custCtx.Customers.RemoveRange(custCtx.Customers);
 }
 context.SaveChanges();
 }

 private static Product[] Products = {
 new Product { Name = "Kayak", Category = "Watersports",
 Price = 275, Color = Colors.Green, InStock = true },
 new Product { Name = "Lifejacket", Category = "Watersports",
 Price = 48.95m, Color = Colors.Red, InStock = true },
 new Product { Name = "Soccer Ball", Category = "Soccer",
 Price = 19.50m, Color = Colors.Blue, InStock = true },
 new Product { Name = "Corner Flags", Category = "Soccer",
 Price = 34.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Stadium", Category = "Soccer",
 Price = 79500, Color = Colors.Red, InStock = true },
 new Product { Name = "Thinking Cap", Category = "Chess",
 Price = 16, Color = Colors.Blue, InStock = true },
 new Product { Name = "Unsteady Chair", Category = "Chess",
 Price = 29.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Human Chess Board", Category = "Chess",
 Price = 75, Color = Colors.Red, InStock = true },
 new Product { Name = "Bling-Bling King", Category = "Chess",
 Price = 1200, Color = Colors.Blue, InStock = true }};

Chapter 13 ■ UnDerstanDing Migrations

294

 private static Customer[] Customers = {
 new Customer { Name = "Alice Smith",
 City = "New York", Country = "USA" },
 new Customer { Name = "Bob Jones",
 City = "Paris", Country = "France" },
 new Customer { Name = "Charlie Davies",
 City = "London", Country = "UK" }};
 }
}

The SeedData class defines static properties that define the Product and Customer objects used for
seeding and defines methods that use the static properties to populate and clear the database. Each method
receives a database context object, identifies the type of the context, and then adds or removes the data.

The Seed method, which is responsible for adding seed data to a database, starts by checking that there
are no pending migrations, like this:

...
if (context.Database.GetPendingMigrations().Count() == 0) {
...

Programmatically seeding a database can be tricky because the objects used to populate the database
must match the structure of the database table that Entity Framework Core will use to store them. If there is
a mismatch, then Entity Framework Core won’t be able to store the data, and the seeding will fail. Checking
that there are no pending migrations before trying to store the seed data helps reduce the risk of a mismatch,
but you must still take care to ensure that all changes to the data model classes have been captured in a
migration before trying to seed the database.

Creating a Seeding Tool
The first approach is to create a tool for seeding the database, similar to the one I created earlier in the
chapter for managing migrations. In fact, to avoid duplicating code, I am going to extend the migrations tool
so that it can seed the database as well.

This is the best approach for seeding databases in production systems. The drawback is that seeding
requires a developer or administrator to explicitly perform an action to add the seed data to the database,
which can be frustrating during development (for which the technique described in the “Seeding During
Startup” section is more suitable).

The first step is to add new action methods to the Migrations controller that can be used to seed and
clear the databases, as shown in Listing 13-37.

Listing 13-37. Adding Actions in the MigrationsController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace DataApp.Controllers {

 public class MigrationsController : Controller {
 private MigrationsManager manager;

Chapter 13 ■ UnDerstanDing Migrations

295

 public MigrationsController(MigrationsManager mgr) {
 manager = mgr;
 }

 public IActionResult Index(string context) {
 ViewBag.Context = manager.ContextName = context
 ?? manager.ContextNames.First();
 return View(manager);
 }

 [HttpPost]
 public IActionResult Migrate(string context, string migration) {
 manager.ContextName = context;
 manager.Migrate(context, migration);
 return RedirectToAction(nameof(Index), new { context = context });
 }

 [HttpPost]
 public IActionResult Seed(string context) {
 manager.ContextName = context;
 SeedData.Seed(manager.Context);
 return RedirectToAction(nameof(Index), new { context = context });
 }

 [HttpPost]
 public IActionResult Clear(string context) {
 manager.ContextName = context;
 SeedData.ClearData(manager.Context);
 return RedirectToAction(nameof(Index), new { context = context });
 }
 }
}

The new action methods, called Seed and Clear, can be targeted only using a POST request.
Each method receives the name of the database context class as its argument, which is used with the
MigrationsManager class created in Listing 13-32 to get hold of a context object that can be passed to one of
the methods defined by the SeedData class.

With the action methods in place, I can create buttons that will seed and clear the database, as shown in
Listing 13-38.

Listing 13-38. Adding Buttons in the Index.chstml File in the Views/Migrations Folder

@using DataApp.Models
@model MigrationsManager
@{
 ViewData["Title"] = "Migrations";
 Layout = "_Layout";
}

Chapter 13 ■ UnDerstanDing Migrations

296

<!-- ...elements omitted for brevity... -->

<div class="m-1 p-2">
 <form method="post">
 <input type="hidden" name="context" value="@ViewBag.Context" />
 <button class="btn btn-primary" asp-action="Seed">Seed Database</button>
 <button class="btn btn-danger" asp-action="Clear">Clear Database</button>
 </form>
</div>

The new elements define a form, with the actions specified by each button element through the
asp-action tag helper attribute. To see the result, start the application using dotnet run, navigate to
http://localhost:5000/migrations, and click either the Seed or Clear button, which are shown in
Figure 13-3.

Figure 13-3. Adding seeding support to the migrations tool

Seeding During Startup
The other way to seed a database is to do so automatically during application startup. This is something
that should be done only during development, especially if there are going to be multiple instances of the
application running in production; otherwise, more than one instance of the application can try to seed the
database simultaneously, causing problems and preventing a clean startup.

The advantage of this approach is that it is automatic. If the database has no pending migrations and is
empty, then the database will be seeded. The database can be seeded as part of the application startup by
adding the statements shown in Listing 13-39 to the Startup class.

Chapter 13 ■ UnDerstanDing Migrations

297

Listing 13-39. Seeding the Database in the Startup.cs File in the DataApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DataApp.Models;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;

namespace DataApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));

 string customerConString =
 Configuration["ConnectionStrings:CustomerConnection"];
 services.AddDbContext<EFCustomerContext>(options =>
 options.UseSqlServer(customerConString));

 services.AddTransient<IDataRepository, EFDataRepository>();
 services.AddTransient<ICustomerRepository, EFCustomerRepository>();
 services.AddTransient<MigrationsManager>();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 EFDatabaseContext prodCtx, EFCustomerContext custCtx) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();

 if (env.IsDevelopment()) {
 SeedData.Seed(prodCtx);
 SeedData.Seed(custCtx);
 }
 }
 }
}

Chapter 13 ■ UnDerstanDing Migrations

298

Declaring parameters on the Configure method allows me to receive context objects for the databases,
which can then be passed to the SeedData.Seed method. To prevent seeding the databases automatically in
production, I check the environment to make sure that the application is running in development. The result
is that the database is seeded automatically when the application starts, which you can see by clearing the
database using the tool created in the previous section and then restarting the application.

AVOIDING PROBLEMS WITH THE COMMAND LINE TOOLS

With entity Framework Core 2, Microsoft changed the way that database contexts are discovered, which
means that the code added in Listing 13-39 will be executed even when the command-line tools are
used to manage migrations or apply them to a database. this means that it is possible to get into a
situation where the seeding code is trying to populate a database with data that it is unable to store or
that doesn’t exist. if this happens, you will see an exception when you run the dotnet ef command.
to work around this issue, comment out the calls to the SeedData.Seed method that were added
in Listing 13-39 until you have finished working with the migrations, at which point you can safely
uncomment them again.

Summary
In this chapter, I explained how migrations are used to keep the database schema consistent with the
application and to prepare databases so they can store the application’s data. I demonstrated the process for
creating new migrations, showed you how to upgrade and downgrade the database, and explained how to
apply and manage migrations using the Entity Framework Core API. I finished the chapter by showing you
how to seed the database for production and development environments. In the next chapter, I explain how
to create relationships between objects and represent them in the database.

299© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_14

CHAPTER 14

Creating Data Relationships

The foundation of Entity Framework Core is the way that it represents instances of .NET classes as rows in a
relational database table. When you create relationships between classes, Entity Framework Core responds
by creating corresponding relationships in the database. For the most part, the process of creating data
relationships is intuitive and natural, although there are many options and some advanced features present
pitfalls for the unwary.

In this chapter, I demonstrate how to create relationships between classes in the data model, show you
how Entity Framework Core responds to these changes, and explain how you can use relationships in an
ASP.NET Core MVC application. Table 14-1 puts this chapter in context.

Table 14-1. Putting Data Relationships in Context

Question Answer

What are they? Relationships allow the database to store associations between
objects in the database.

Why are they useful? Relationships allow you to more naturally model data using .NET
objects and then store them and their associations to other objects.

How are they used? Relationships are created by adding properties to data model
classes and then using a migration to update the database. When
storing data, Entity Framework Core will try to store related data
automatically, although that doesn’t always work as you might
expect.

Are there any pitfalls or limitations? Relationships are complicated because the way that databases
manage data associations doesn’t always reflect the natural
behavior of .NET objects. Some effort can be required to get the
behavior you require.

Are there any alternatives? You don’t have to use relationships at all and can just store
individual objects if you prefer, although that will limit you to
applications with simple data models.

https://doi.org/10.1007/978-1-4842-3435-8_14

Chapter 14 ■ Creating Data relationships

300

Table 14-2 summarizes the chapter.

Table 14-2. Chapter Summary

Problem Solution Listing

Create a relationship Add a navigation property and create and apply a migration 1–4, 10

Include related data in a query Use the Include and ThenInclude methods 5–9, 22–29

Store or update related data Use the methods provided by the context class 12–15

Delete related data Use the method provided by the context class 16

Create a required relationship Add a foreign key property with a non-nullable type 17–21

Preparing for This Chapter
This chapter uses the DataApp project created in Chapter 11 and modified in the chapters since. To prepare for
this chapter, open a command prompt in the DataApp folder and run the command shown in Listing 14-1.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, https://github.com/apress/pro-ef-core-2-for-
asp.net-core-mvc.

Listing 14-1. Resetting the Database

dotnet ef database drop --force --context EFDatabaseContext

This command removes the database used to store Product objects, which will help ensure that you get
the right expected results from the examples in this chapter. The application won’t have a database or data to
work with until later in the chapter, after I have demonstrated the process for creating a data relationship.

Creating a Relationship
The best way to understand data relationships is to create one. To get started, I am going to add a new entity
class to the application to represent a supplier for a product. Add a class file called Supplier.cs in the
Models folder and add the code shown in Listing 14-2.

Listing 14-2. The Contents of the Supplier.cs File in the Models Folder

namespace DataApp.Models {

 public class Supplier {
 public long Id { get; set; }
 public string Name { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_11
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 14 ■ Creating Data relationships

301

The new class defines an Id property that will be used to store primary key values in the database and
defines Name, City, and State properties that provide a basic description of a supplier. There is nothing
special about this class at the moment, and it follows the same pattern used in earlier examples.

Adding a Navigation Property
To create a data relationship, add the property shown in Listing 14-3 to the Product class, which will allow
each Product object to be associated with a Supplier object.

Listing 14-3. Adding a Property in the Product.cs File in the Models Folder

namespace DataApp.Models {

 public enum Colors {
 Red, Green, Blue
 }

 public class Product {

 public long Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 public Colors Color { get; set; }
 public bool InStock { get; set; }

 public Supplier Supplier { get; set; }
 }
}

The new property, called Supplier, creates a relationship so that each Product object can be associated
with one Supplier object. This is known as a navigation property because it allows navigation from one
object to another. In this case, if you start with a Product object, you can use the navigation property to
access the related Supplier object.

NAMING NAVIGATION PROPERTIES

in listing 14-3, i used the name Supplier for the navigation property that creates the relationship
with a Supplier object. You don’t have to use the name of the related class for a navigation property,
although it is commonly convenient to do so, as it was in this case. You can use any legal name for a
C# property, and there is an example later in the chapter where i name a property Location to create a
relationship with an instance of a class called ContactLocation.

To understand how Entity Framework Core deals with relationships, it helps to think about the effect
the Supplier property has on the .NET objects in the application without worrying about the database. The
changes to the data model mean that each Product object can be related to a Supplier object, as illustrated
in Figure 14-1.

Chapter 14 ■ Creating Data relationships

302

A Product object’s Supplier property can be null, which means that a Product object does not have to
be related to a Supplier. And a Product object’s Supplier property doesn’t have to be unique, which means
multiple Product objects can be related to the same Supplier.

Creating the Migration
To see how Entity Framework Core handles the addition of the navigation property, run the command
shown in Listing 14-4 in the DataApp project folder to create a migration.

Listing 14-4. Creating a Migration

dotnet ef migrations add Add_Supplier --context EFDatabaseContext

Entity Framework Core will create a migration called Add_Supplier, and if you examine the Up methods
in the <timestamp>_Add_Supplier.cs file in the Migrations folder, you will be able to see how Entity
Framework Core will update the database. The Up method contains four statements that will update the
database. The first statement adds a new column to the existing table in the database.

...
migrationBuilder.AddColumn<long>(name: "SupplierId", table: "Products",
 nullable: true);
...

This is the column that Entity Framework Core will use to keep track of which Supplier object is
associated with a Product object. The arguments to the AddColumn method will create a column called
SupplierId on the existing Products table. The nullable argument is set to true, which means that null
values are allowed in the new column so that a Product object that isn’t related to a Supplier can still be
stored in the database.

Figure 14-1. Creating a relationship between data model classes

Chapter 14 ■ Creating Data relationships

303

The second statement in the migration’s Up method creates a new table that will be used to store
Supplier objects.

...
migrationBuilder.CreateTable(
 name: "Supplier",
 columns: table => new {
 Id = table.Column<long>(nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),
 City = table.Column<string>(nullable: true),
 Name = table.Column<string>(nullable: true),
 State = table.Column<string>(nullable: true)
 },
 constraints: table => {
 table.PrimaryKey("PK_Supplier", x => x.Id);
 });
...

The arguments to the CreateTable method will create a table called Supplier that has Id, Name, City,
and State columns that correspond to the properties defined by the Supplier class. The Id column is
configured as the primary key, and the database server will be responsible for generating values for this
column when new rows are added to the table.

 ■ Tip notice that the name of the table is Supplier, while the name of the existing table is Products. the
convention entity Framework Core follows is to use the name of the DbSet<T> property when it creates a table
for an entity class that is accessible through a context class and to use the name of the navigation property for
an entity class that can be accessed only through a relationship.

The next statement creates an index, which is used to speed up database queries:

...
migrationBuilder.CreateIndex(name: "IX_Products_SupplierId",
 table: "Products", column: "SupplierId");
...

The index isn’t directly related to representing the relationship between Product and Supplier objects,
and I will skip over it for the purposes of this chapter. The final statement in the Up method is responsible for
creating the link between the rows in the Products and Supplier tables:

...
migrationBuilder.AddForeignKey(
 name: "FK_Products_Supplier_SupplierId", table: "Products",
 column: "SupplierId", principalTable: "Supplier",
 principalColumn: "Id", onDelete: ReferentialAction.Restrict);
...

Chapter 14 ■ Creating Data relationships

304

The AddForeignKey method is used to configure the SupplierId column added to the Products table
to create a foreign key relationship with the Id column on the new Supplier table. This helps protect the
integrity of the database by ensuring that a row in the Product table can only have a value for the SupplierId
column that corresponds to a valid row in the Supplier table (or have a value of null, indicating that there is
no relationship to a Supplier).

The combined effect of the statements in the migration’s Up method is to update the database to reflect
the changes in the data model, as illustrated in Figure 14-2.

The Supplier table allows Entity Framework Core to store Supplier objects, and the SupplierId
column added to the Products table will be used to keep track of the relationships between Product and
Supplier objects.

Querying and Displaying the Related Data
I explain how to perform the complete set of data operations on related data in this chapter, but I am going
to start with the most basic task, which is to display the related data values to the user. By default, Entity
Framework Core doesn’t follow navigation properties to load related data. This is to prevent queries from
returning data that isn’t required. To load the Supplier data related to a Product object, add the statement
shown in Listing 14-5 to the repository implementation class.

Listing 14-5. Querying Related Data in the EFDataRepository.cs File in the Models Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Newtonsoft.Json;
using Microsoft.EntityFrameworkCore.ChangeTracking;
using Microsoft.EntityFrameworkCore;

namespace DataApp.Models {

 public class EFDataRepository : IDataRepository {
 private EFDatabaseContext context;

Figure 14-2. The effect of a data relationship on the database

Chapter 14 ■ Creating Data relationships

305

 public EFDataRepository(EFDatabaseContext ctx) {
 context = ctx;
 }

 public Product GetProduct(long id) {
 return context.Products.Include(p => p.Supplier).First(p => p.Id == id);
 }

 public IEnumerable<Product> GetAllProducts() {
 Console.WriteLine("GetAllProducts");
 return context.Products.Include(p => p.Supplier);
 }

 public IEnumerable<Product> GetFilteredProducts(string category = null,
 decimal? price = null, bool includeRelated = true) {

 IQueryable<Product> data = context.Products;
 if (category != null) {
 data = data.Where(p => p.Category == category);
 }
 if (price != null) {
 data = data.Where(p => p.Price >= price);
 }
 if (includeRelated) {
 data = data.Include(p => p.Supplier);
 }
 return data;
 }

 public void CreateProduct(Product newProduct) {
 newProduct.Id = 0;
 context.Products.Add(newProduct);
 context.SaveChanges();
 Console.WriteLine($"New Key: {newProduct.Id}");
 }

 public void UpdateProduct(Product changedProduct,
 Product originalProduct = null) {
 if (originalProduct == null) {
 originalProduct = context.Products.Find(changedProduct.Id);
 } else {
 context.Products.Attach(originalProduct);
 }
 originalProduct.Name = changedProduct.Name;
 originalProduct.Category = changedProduct.Category;
 originalProduct.Price = changedProduct.Price;
 context.SaveChanges();
 }

Chapter 14 ■ Creating Data relationships

306

 public void DeleteProduct(long id) {
 Product p = context.Products.Find(id);
 context.Products.Remove(p);
 context.SaveChanges();
 }
 }
}

The Include extension method is defined in the Microsoft.EntityFrameworkCore namespace and
is called on objects that implement the IQueryable<T> interface to include related data. The argument
to the Include method is an expression that selects the navigation property that Entity Framework Core
should follow to get the related data. In the listing, I select the Supplier object. The Include method can be
incorporated into queries like other LINQ methods, like this:

...
return context.Products.Include(p => p.Supplier);
...

Not all LINQ extension methods can be used on the object returned by the Include method, so you may
have to rework some queries when using related data. The Find method, which I used in earlier examples
to locate a specific Product in the database, cannot be used with Include, so I replaced it with the First
method, which works in a similar way, like this:

...
return context.Products.Include(p => p.Supplier).First(p => p.Id == id);
...

You can decide whether to include related data in a query at runtime. In Listing 14-5, I changed the
GetFilteredProducts method so the Include method is called when the value of the includeRelated
parameter is true but not otherwise, like this:

...
if (includeRelated) {
 data = data.Include(p => p.Supplier);
}
...

To work the support for selectively including related data through to the rest of the application, change
the signature of the IDataRepository interface, as shown in Listing 14-6.

FUTURE SUPPORT FOR LAZY LOADING

earlier versions of entity Framework supported a feature called lazy loading, which Microsoft has
announced will be included in a future release of entity Framework Core. in lazy loading, related data is
loaded from the database automatically when a navigation property is read. For the example application,
this would mean that reading the value of the Supplier property on a Product object will automatically
trigger a sQl query for the data required to create a Supplier object.

Chapter 14 ■ Creating Data relationships

307

lazy loading sounds like a good idea and is often enabled as a convenience feature, allowing the MVC
part of the application to be written without having to create entity Framework Core queries that include
or exclude different sets of related data for different actions. everything just works like magic, and entity
Framework Core makes sure that the data that the MVC part of the application needs is available. But
behind the scenes, extra sQl queries are generated when the navigation properties are read, increasing
the load on the database server and increasing the time taken to process http requests.

My advice is to avoid lazy loading. instead, define repository methods or properties that return data in
all of the combinations that the MVC part of the application requires, with or without related data. put
another way, avoid any feature that generates database queries automatically.

Listing 14-6. Adding a Parameter in the IDataRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace DataApp.Models {

 public interface IDataRepository {

 Product GetProduct(long id);

 IEnumerable<Product> GetAllProducts();

 IEnumerable<Product> GetFilteredProducts(string category = null,
 decimal? price = null, bool includeRelated = true);

 void CreateProduct(Product newProduct);

 void UpdateProduct(Product changedProduct,
 Product originalProduct = null);

 void DeleteProduct(long id);
 }
}

Next, add a parameter to the action method so that the controller can get a value for whether to include
related data from the HTTP request through the MVC model binding process, as shown in Listing 14-7.

Listing 14-7. Adding an Action Parameter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DataApp.Models;
using System.Linq;

namespace DataApp.Controllers {
 public class HomeController : Controller {
 private IDataRepository repository;

 public HomeController(IDataRepository repo) {
 repository = repo;
 }

Chapter 14 ■ Creating Data relationships

308

 public IActionResult Index(string category = null,
 decimal? price = null, bool includeRelated = true) {
 var products = repository
 .GetFilteredProducts(category, price, includeRelated);
 ViewBag.category = category;
 ViewBag.price = price;
 ViewBag.includeRelated = includeRelated;
 return View(products);
 }

 // ...other actions omitted for brevity...
 }
}

One drawback of the way that Entity Framework Core handles related data is that there is no good
way of working out whether the value for a navigation property is null. This is either because there is no
related data for a specific object or because related data was not selected using the Include method. To
work around this, I have used a ViewBag property so that the view will know whether related data has been
requested.

Updating the View to Display Related Data
Now that all of the code changes are in place, I can display the related data using Razor. The model data will
include Supplier objects when they have been requested, and there is a ViewBag property that can be used
to configure a form element, as shown in Listing 14-8.

Listing 14-8. Displaying Related Data in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<DataApp.Models.Product>
@{
 ViewData["Title"] = "Products";
 Layout = "_Layout";
}

<div class="m-1 p-2">
 <form asp-action="Index" method="get" class="form-inline">
 <label class="m-1">Category:</label>
 <select name="category" class="form-control">
 <option value="">All</option>
 <option selected="@(ViewBag.category == "Watersports")">
 Watersports
 </option>
 <option selected="@(ViewBag.category == "Soccer")">Soccer</option>
 <option selected="@(ViewBag.category == "Chess")">Chess</option>
 </select>
 <label class="m-1">Min Price:</label>
 <input class="form-control" name="price" value="@ViewBag.price" />
 <div class="form-check m-1">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 name="includeRelated" value="true"

Chapter 14 ■ Creating Data relationships

309

 checked="@(ViewBag.includeRelated == true)"/>
 Related Data
 </label>
 <input type="hidden" name="includeRelated" value="false" />
 </div>
 <button class="btn btn-primary m-1">Filter</button>
 </form>
</div>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Price</th>
 @if (ViewBag.includeRelated) {
 <th>Supplier</th>
 }
 </tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td><td>@p.Name</td>
 <td>@p.Category</td><td>$@p.Price.ToString("F2")</td>
 @if (ViewBag.includeRelated) {
 <td>@p.Supplier?.Name</td>
 }
 <td>
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-id="@p.Id">
 Edit

 <input type="hidden" name="id" value="@p.Id" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create New Product

I have added a checkbox that will control whether related data is included in the request. When the user
has selected related data, the ViewBag.includeRelated property will be true, and the view uses this value to
display an additional column in the table. The value of the column is obtained by reading the Name property
of the Supplier object related to the Product object that is being displayed, like this:

...
<td>@p.Supplier?.Name</td>
...

Chapter 14 ■ Creating Data relationships

310

The Razor view has no knowledge of the source of the Supplier objects because Entity Framework Core
populates navigation properties with regular .NET objects.

Preparing the Database
I will demonstrate how to perform the complete set of data operations on related data, but it helps to have
some initial data to demonstrate how queries with the Include method work. To add Supplier objects to the
database, make the changes shown in Listing 14-9 to the seed data class.

Listing 14-9. Seeding the Database with Suppliers in the SeedData.cs File in the Models Folder

...
private static Product[] Products {
 get {
 Product[] products = new Product[] {
 new Product { Name = "Kayak", Category = "Watersports",
 Price = 275, Color = Colors.Green, InStock = true },
 new Product { Name = "Lifejacket", Category = "Watersports",
 Price = 48.95m, Color = Colors.Red, InStock = true },
 new Product { Name = "Soccer Ball", Category = "Soccer",
 Price = 19.50m, Color = Colors.Blue, InStock = true },
 new Product { Name = "Corner Flags", Category = "Soccer",
 Price = 34.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Stadium", Category = "Soccer",
 Price = 79500, Color = Colors.Red, InStock = true },
 new Product { Name = "Thinking Cap", Category = "Chess",
 Price = 16, Color = Colors.Blue, InStock = true },
 new Product { Name = "Unsteady Chair", Category = "Chess",
 Price = 29.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Human Chess Board", Category = "Chess",
 Price = 75, Color = Colors.Red, InStock = true },
 new Product { Name = "Bling-Bling King", Category = "Chess",
 Price = 1200, Color = Colors.Blue, InStock = true }};

 Supplier s1 = new Supplier { Name = "Surf Dudes",
 City = "San Jose", State = "CA" };
 Supplier s2 = new Supplier { Name = "Chess Kings",
 City = "Seattle", State = "WA" };

 products.First().Supplier = s1;
 foreach (Product p in products.Where(p => p.Category == "Chess")) {
 p.Supplier = s2;
 }
 return products;
 }
}
...

I have replaced the static array of Product objects in the SeedData class with a property whose getter
creates two Supplier objects and associates them with Product objects. The Surf Dudes supplier is
associated with the first Product object, Kayak, while the Chess Kings supplier is associated with all the
Product objects in the Chess category.

Chapter 14 ■ Creating Data relationships

311

Next, prepare the database for the application by applying the migrations, including the new one that
defines the Supplier relationship. To apply the migrations, run the command shown in Listing 14-10 in the
DataApp project folder.

Listing 14-10. Preparing the Database

dotnet ef database update --context EFDatabaseContext

To start the application, open a command prompt, navigate to the DataApp folder, and start the
application by running the command shown in Listing 14-11.

Listing 14-11. Starting the Example Application

dotnet run

The application will seed the database with Product and Supplier objects, which may take a
moment to complete. Once the application has started, open a browser window and navigate to
http://localhost:5000. You will see the new column in the table that contains the names of the suppliers
for those Product objects that are related to a Supplier object, as shown in Figure 14-3. Notice that not all
Product objects are related to a Supplier and, of those that are, more than one has a relationship with the
same Supplier.

Figure 14-3. Running the example application

Chapter 14 ■ Creating Data relationships

312

If you examine the console output from the application, you will see the query that Entity Framework
Core uses to get the related data.

...
SELECT [p].[Id], [p].[Category], [p].[Color], [p].[InStock], [p].[Name],
 [p].[Price], [p].[SupplierId], [p.Supplier].[Id], [p.Supplier].[City],
 [p.Supplier].[Name], [p.Supplier].[State]
FROM [Products] AS [p]
LEFT JOIN [Supplier] AS [p.Supplier] ON [p].[SupplierId] = [p.Supplier].[Id]
...

The query uses the relationship between the Products and Supplier tables to perform a join so that
all of the data that is required can be obtained in a single query. If you uncheck the Related Data option and
click the Filter button, the query to the database won’t request Supplier data, and the Supplier column
won’t be shown in the table displayed by the browser.

Creating and Updating Related Data
The process for creating or updating related data is performed through the navigation properties and done
using standard .NET objects.

For the example application—in common with most real projects—there are three different scenarios in
which a Supplier object is stored in the database or an existing Supplier object is updated.

•	 New Product and Supplier objects are created at the same time.

•	 A new Supplier object is created and associated with an existing Product object.

•	 An existing Supplier object is modified after it has been associated with a Product object.

To prepare for these operations, I added a view called Supplier.cshtml to the Views/Shared folder with
the content shown in Listing 14-12.

Listing 14-12. The Contents of the Supplier.cshtml File in the Views/Shared Folder

@model DataApp.Models.Product

<input type="hidden" asp-for="Supplier.Id" />
<div class="form-group">
 <label asp-for="Supplier.Name"></label>
 <input asp-for="Supplier.Name" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.City"></label>
 <input asp-for="Supplier.City" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.State"></label>
 <input asp-for="Supplier.State" class="form-control" />
</div>

Chapter 14 ■ Creating Data relationships

313

The model for this view is a Product object. This may seem odd in a view that will be used to work with
Supplier data, but following the MVC conventions and using the asp-for tag helper sets up the HTML
elements so that the MVC model binding process will create a Supplier object using the values from the
input elements and assign it to the Supplier property of the Product object it creates.

Edit the Editor.cshtml view in the Views/Home folder, as shown in Listing 14-13, to incorporate the
view from Listing 14-12 and add some structure to the view content.

Listing 14-13. Using a Partial View in the Editor.cshtml File in the Views/Home Folder

@model DataApp.Models.Product
@{
 ViewData["Title"] = ViewBag.CreateMode ? "Create" : "Edit";
 Layout = "_Layout";
}

<form asp-action="@(ViewBag.CreateMode ? "Create" : "Edit")" method="post">
 <input name="original.Id" value="@Model?.Id" type="hidden" />
 <input name="original.Name" value="@Model?.Name" type="hidden" />
 <input name="original.Category" value="@Model?.Category" type="hidden" />
 <input name="original.Price" value="@Model?.Price" type="hidden" />
 <div class="row m-1">
 <div class="col-6">
 <h5 class="bg-info text-center p-2 text-white">Product</h5>
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 </div>
 <div class="col-6">
 <h5 class="bg-info text-center p-2 text-white">Supplier</h5>
 @Html.Partial("Supplier", Model)
 </div>
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The Bootstrap styles applied to the div elements in Listing 14-13 create a simple grid so that the form
elements are displayed in two columns, one for the fields defined by the Product class and one for the
Supplier class. You will see the layout that has been created in the next section.

Chapter 14 ■ Creating Data relationships

314

Creating a New Supplier When Creating a New Product
The first scenario is the simplest: new Product and Supplier objects are added to the database at the same
time. This requires no further changes to the application because the existing code that creates new Product
object will automatically deal with Supplier objects.

Start the application, using a browser to navigate to http://localhost:5000, and click the Create New
Product button.

Fill out both columns in the form, as shown in Figure 14-4, and click the Save button. If you want to
re-create the Product and Supplier shown in the figure, then use the values shown in Table 14-3.

Table 14-3. The Product and Supplier Details Used in the Figure

Field Value

Product Name Running Shoes

Category Running

Price 100

Supplier Name Zoom Shoes

City San Jose

State CA

Figure 14-4. Creating a supplier along with a new product

Chapter 14 ■ Creating Data relationships

315

When you clicked the Save button, the browser sent an HTTP POST request to the server that contained
values from the input elements defined in Listing 14-12. These input elements were rendered by Razor so
they would be recognized as properties for a Supplier object by the MVC model binder. For example, here is
how the element for the City property was rendered:

...
<input class="form-control" type="text"
 id="Supplier_City" name="Supplier.City" value="">
...

The model binder uses the values in the HTML form to create a Product object and a Supplier object,
which is assigned to the Product object’s Supplier navigation property. The Product object is used as an
argument to the Home controller’s Create method, which passes it on to the repository’s CreateProduct
method. The repository’s CreateProduct method adds the Product object to the collection managed by
the context object and calls the SaveChanges method. Entity Framework Core inspects the Product object
and sees that is Id value is zero, which indicates that it is a new object to be stored in the database. Entity
Framework Core also follows the Product.Supplier navigation property to inspect the Supplier object
and see that it too has an Id value of zero and is a new object to be stored in the database. These objects are
stored as new rows in the Products and Supplier tables, and the value of the SupplierId column on the
Products row is set to the value of the Id column on the Supplier row to record the relationship between the
objects.

If you examine the logging messages produced by the application, you will see the two sets of SQL
statements that stored the data. The first pair of statements creates the row in the Supplier table, which
stores the Supplier object and gets the primary key value that the database server assigned.

...
INSERT INTO [Supplier] ([City], [Name], [State])
VALUES (@p0, @p1, @p2);

SELECT [Id]
FROM [Supplier]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

The second pair of statement creates the row in the Products table and gets the primary key that the
database server assigned.

...
INSERT INTO [Products] ([Category], [Color], [InStock],
 [Name], [Price], [SupplierId])
VALUES (@p3, @p4, @p5, @p6, @p7, @p8);

SELECT [Id]
FROM [Products]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

The result is that Entity Framework Core seamlessly works with the objects that were created by
the MVC model binder and stores two new rows in the database to represent the new objects and the
relationship between them, as illustrated in Figure 14-5.

Chapter 14 ■ Creating Data relationships

316

Updating a Supplier when Updating a Product
A change is required to the context class to create or update a Supplier object when the Product object it is
related to has previously been stored in the database. This is because of the technique I used earlier to take
advantage of the change detection features that Entity Framework Core provides to reduce the number of
database queries that are performed and that must be extended to include the Supplier data. To include
the Supplier data in the HTML form sent to the client, add the elements shown in Listing 14-14 to the
Supplier.cshtml view.

Listing 14-14. Adding Existing Values in the Supplier.cshtml File in the Views/Shared Folder

@model DataApp.Models.Product

<input name="original.Supplier.Id" value="@Model.Supplier?.Id" type="hidden" />
<input name="original.Supplier.Name" value="@Model.Supplier?.Name" type="hidden" />
<input name="original.Supplier.City" value="@Model.Supplier?.City" type="hidden" />
<input name="original.Supplier.State" value="@Model.Supplier?.State" type="hidden" />

<input type="hidden" asp-for="Supplier.Id" />
<div class="form-group">
 <label asp-for="Supplier.Name"></label>
 <input asp-for="Supplier.Name" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.City"></label>
 <input asp-for="Supplier.City" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.State"></label>
 <input asp-for="Supplier.State" class="form-control" />
</div>

Figure 14-5. Creating new Product and Supplier objects

Chapter 14 ■ Creating Data relationships

317

Table 14-4. The Values for Editing the of the Thinking
Cap Product and Supplier

Field Value

Product Name Thinking Cap (Medium)

Supplier Name The Pawn Brokers

City Chicago

State IL

These hidden input elements are the counterparts to the ones in the Editor.cshtml view. To
ensure that changes made by the user are written to the database, edit the UpdateProduct method of the
EFDataRepository class to add the statement shown in Listing 14-15.

Listing 14-15. Including Supplier Data in the EFDataRepository.cs File in the Models Folder

...
public void UpdateProduct(Product changedProduct, Product originalProduct = null) {
 if (originalProduct == null) {
 originalProduct = context.Products.Find(changedProduct.Id);
 } else {
 context.Products.Attach(originalProduct);
 }
 originalProduct.Name = changedProduct.Name;
 originalProduct.Category = changedProduct.Category;
 originalProduct.Price = changedProduct.Price;
 originalProduct.Supplier.Name = changedProduct.Supplier.Name;
 originalProduct.Supplier.City = changedProduct.Supplier.City;
 originalProduct.Supplier.State = changedProduct.Supplier.State;
 context.SaveChanges();
}
...

These statements copy the Name, City, and State values to the object that is being tracked by Entity
Framework Core to ensure that changed values will be stored in the database. Notice that I have not copied
the Supplier.Id property; this value is managed by Entity Framework Core or the database server and is
best left alone when performing an update.

To test the changes, restart the application, navigate to http://localhost:5000, and click the Edit
button for the Thinking Cap product. To see the effect of updating both related objects, make the changes
shown in Table 14-4.

Click the Save button, and the browser will send the modified data to the application. The Product and
Supplier objects will be created from the request data by the model builder, and Entity Framework Core
will save the changes to the database. Since the Supplier object is related to all of the Product objects in the
Chess category, the change will be reflected in several rows in the table, as shown in Figure 14-6.

Chapter 14 ■ Creating Data relationships

318

Deleting Related Data
By default, Entity Framework Core won’t follow a navigation property to remove related data from the
database. This means that deleting a Product object doesn’t remove the Supplier object it is related to.

This is because the Supplier object may be related to other Product objects and removing it from the
database would make the database inconsistent, which the database server works hard to avoid. There
are features that make it easier to perform delete operations, which I describe in later chapters, but for the
moment, I am going to demonstrate just the default configuration and explain the pitfall it presents.

To see how the delete operation is handled, start the application, navigate to http://localhost:5000,
and click the Delete button for Unsteady Chair product, which is related to the The Pawn Brokers product.
The operation removes the product but leaves the Supplier object, which is still related to the other
products in the Chess category, as shown in Figure 14-7.

Figure 14-6. Updating a Product and Supplier

Chapter 14 ■ Creating Data relationships

319

You can tell Entity Framework Core to delete related data, although the database server will cause
an exception if doing so would make the database inconsistent. To see how this works, make the changes
shown in Listing 14-16 to the DeleteProduct method in the EFDataRepository class.

Listing 14-16. Deleting Related Data in the EFDataRepository.cs File in the Models Folder

...
public void DeleteProduct(long id) {
 Product p = this.GetProduct(id);
 context.Products.Remove(p);
 if (p.Supplier != null) {
 context.Remove<Supplier>(p.Supplier);
 }
 context.SaveChanges();
}
...

The statements in Listing 14-16 call the GetProduct method, which retrieves a Product and its related
Supplier from the database. The Product object is deleted through the Remove method provided by the
context object’s DbSet<Product> property. There is no direct access to the Supplier data, but the context
object’s Remove<T> method can be used to remove any object from the database, like this:

...
context.Remove<Supplier>(p.Supplier);
...

Figure 14-7. Deleting an object that has related data

Chapter 14 ■ Creating Data relationships

320

To test this code, restart the application, navigate to http://localhost:5000, and click the Delete
button for the Running Shoes product, as shown in Figure 14-8. This is the only Product object that is
related to the Zoom Shoes Supplier object, which means that deleting these objects doesn’t create any
inconsistencies and both are removed.

Figure 14-8. Deleting related data

Figure 14-9. A delete operation that would cause database inconsistencies

To see how the database server prevents an inconsistency, click the Delete button for the Human Chess
Board product. Since the related Supplier for this Product is also related to other Product objects, deleting
it would leave rows in the Products table with values in their SupplierId columns that refer to a nonexistent
row in the Supplier table. The exception in Figure 14-9 shows how the database server won’t perform an
operation that would cause this problem.

Chapter 14 ■ Creating Data relationships

321

As things stand, the delete operation is not especially helpful, but I will return to this topic later in the
chapter and explain how using different a type of relationship can make delete operations more useful and
predictable.

Creating a Required Relationship
The Product and Supplier classes have an optional relationship, reflecting the fact that a Product doesn’t
have to be related to a Supplier. This is the default type of relationship and mirrors the way that objects
work in the MVC part of the application, where a property that refers to another object may be null.

Some relationships need to be more formal, where it is important that an object of one type always be
related to an object of some other type. In these situations, you can create a required relationship, which
reconfigures the database to enforce the relationship on behalf of the application.

Creating a required relationship means telling Entity Framework Core how it should create the foreign
key column that tracks the relationship in the database. Here are the statements from the migration that
create the relationship between the Products and Supplier tables:

...
migrationBuilder.AddColumn<long>(name: "SupplierId",
 table: "Products", nullable: true);
...
migrationBuilder.AddForeignKey(name: "FK_Products_Supplier_SupplierId",
 table: "Products", column: "SupplierId", principalTable: "Supplier",
 principalColumn: "Id", onDelete: ReferentialAction.Restrict);
...

Entity Framework Core hasn’t been provided with any information about the foreign key relationship
and has used some sensible defaults, including allowing null values in the column that tracks relationships
and creating a foreign key relationship with a name that combines the names of the tables and columns
involved.

Creating a Foreign Key Property
Overriding the defaults is done by creating a property that provides Entity Framework Core with details
about how the foreign key should be created. This is a foreign key property, and it is defined in the same class
that contains the navigation property. In Listing 14-17, I have defined a foreign key property in the Product
class that configures the relationship to Supplier objects.

Listing 14-17. Adding a Foreign Key Property in the Product.cs File in the Models Folder

namespace DataApp.Models {

 public enum Colors {
 Red, Green, Blue
 }

 public class Product {

 public long Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }

Chapter 14 ■ Creating Data relationships

322

 public decimal Price { get; set; }
 public Colors Color { get; set; }
 public bool InStock { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The name of the property tells Entity Framework Core which navigation property it relates to by
combining the navigation property name or the related class name with the name of the primary key. For the
Product class, both of these conventions lead to a property called SupplierId, which Entity Framework Core
will detect as the foreign key property for the Supplier navigation property. (In Chapter 18, I show you how
to override the convention for property names.)

The type of the foreign key property tells Entity Framework Core whether the relationship is optional
or required. The relationship will be optional if the foreign key property type can be set to null (such as
when the type long? is used) and required if null values are not possible (such as when the type long is
used). In Listing 14-17, I used long as the property type; this tells Entity Framework Core to create a required
relationship since long values cannot be set to null.

Run the command shown in Listing 14-18 in the DataApp project folder to create a migration that will
modify the database to apply the attribute.

Listing 14-18. Creating a Migration

dotnet ef migrations add Required --context EFDatabaseContext

If you examine the statements in the Up method of the <timestamp>_Required.cs file in the Migrations
folder, you will see how the change will be applied to the database, as follows:

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.DropForeignKey(name: "FK_Products_Supplier_SupplierId",
 table: "Products");

 migrationBuilder.AlterColumn<long>(name: "SupplierId", table: "Products",
 nullable: false, oldClrType: typeof(long), oldNullable: true);

 migrationBuilder.AddForeignKey(name: "FK_Products_Supplier_SupplierId",
 table: "Products", column: "SupplierId", principalTable: "Supplier",
 principalColumn: "Id", onDelete: ReferentialAction.Cascade);
}
...

The migration will re-create the foreign key relationship between the Products and Supplier tables
to reflect the new property on the Product class. The most important statement is the one that alters the
SupplierId column, and its nullable argument is the one that is used to prevent null values.

...
migrationBuilder.AlterColumn<long>(name: "SupplierId", table: "Products",
 nullable: false, oldClrType: typeof(long), oldNullable: true);
...

http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 14 ■ Creating Data relationships

323

The altered column is no longer allowed to store null values, and the foreign key requires that values
correspond to a row in the Supplier table, which is how required relationships are managed.

Dropping the Database and Preparing the Seed Data
You will get an error if you try to apply the migration to the database because there are rows in the Products
table that contain NULL values and are no longer allowed.

In a real project, you should prepare the database for the migration by removing the data that does not
meet the new requirements. For the example application, I am going to remove the database entirely, update
the seed data, and then re-create it to ensure that all of the data is valid. First, run the command shown in
Listing 14-19 in the DataApp project folder to drop the database.

Listing 14-19. Dropping the Database

dotnet ef database drop --force --context EFDatabaseContext

Next, update the getter for the Products property defined by the SeedData class so that all the Product
objects that are stored are related to a Supplier object, as shown in Listing 14-20.

Listing 14-20. Ensuring Data Relationships in the SeedData.cs File in the Models Folder

...
private static Product[] Products {
 get {
 Product[] products = new Product[] {
 new Product { Name = "Kayak", Category = "Watersports",
 Price = 275, Color = Colors.Green, InStock = true },
 new Product { Name = "Lifejacket", Category = "Watersports",
 Price = 48.95m, Color = Colors.Red, InStock = true },
 new Product { Name = "Soccer Ball", Category = "Soccer",
 Price = 19.50m, Color = Colors.Blue, InStock = true },
 new Product { Name = "Corner Flags", Category = "Soccer",
 Price = 34.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Stadium", Category = "Soccer",
 Price = 79500, Color = Colors.Red, InStock = true },
 new Product { Name = "Thinking Cap", Category = "Chess",
 Price = 16, Color = Colors.Blue, InStock = true },
 new Product { Name = "Unsteady Chair", Category = "Chess",
 Price = 29.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Human Chess Board", Category = "Chess",
 Price = 75, Color = Colors.Red, InStock = true },
 new Product { Name = "Bling-Bling King", Category = "Chess",
 Price = 1200, Color = Colors.Blue, InStock = true }};

 Supplier acme = new Supplier { Name = "Acme Co",
 City = "New York", State = "NY" };
 Supplier s1 = new Supplier { Name = "Surf Dudes",
 City = "San Jose", State = "CA" };
 Supplier s2 = new Supplier { Name = "Chess Kings",
 City = "Seattle", State = "WA" };

Chapter 14 ■ Creating Data relationships

324

 foreach (Product p in products) {
 if (p == products[0]) {
 p.Supplier = s1;
 } else if (p.Category == "Chess") {
 p.Supplier = s2;
 } else {
 p.Supplier = acme;
 }
 }
 return products;
 }
}
...

The changes to the seed data keep the relationships that I set up previously and use the Acme Co
supplier for all other products.

Updating and Seeding the Database
Run the command shown in Listing 14-21 in the DataApp project folder to prepare the database, including
the required relationship between Product and Supplier objects.

Listing 14-21. Updating the Database to Include the Changed Relationship

dotnet ef database update --context EFDatabaseContext

Once Entity Framework Core has applied the migrations, start the application using dotnet run and
use a browser to request the http://localhost:5000 URL. During application startup, the database will be
seeded with data that meets the constraints applied to the database so that all Product objects are related to
a Supplier, as shown in Figure 14-10.

Chapter 14 ■ Creating Data relationships

325

Understanding the Required Relationship Delete Operation
The foreign key property resulted in two important changes in the migration created in Listing 14-21.
The first was to prevent null values from being stored in the SupplierId column, which changed the
relationship from optional to required. The second change makes a surprising difference to the way the
database works and causes a lot of confusion.

When the navigation property was added to the Product class in Listing 14-3 before the foreign key
property was defined, the migration that was created configured the foreign key relationship like this:

...
migrationBuilder.AddForeignKey(
 name: "FK_Products_Supplier_SupplierId", table: "Products",
 column: "SupplierId", principalTable: "Supplier",
 principalColumn: "Id", onDelete: ReferentialAction.Restrict);
...

The onDelete argument tells the database what to do when the row that the Product depends on in the
Supplier table is deleted, using values from the ReferentialAction enum. The Restrict value is used for
optional relationships and configures the database so that a Supplier cannot be deleted while there are rows
in the Products table that depend on it. This is the reason that there was an error when deleting a Supplier
earlier in the chapter.

Figure 14-10. Creating a relationship

Chapter 14 ■ Creating Data relationships

326

When you create a required relationship, the foreign key is reconfigured with a different
ReferentialAction value, like this:

...
migrationBuilder.AddForeignKey(
 name: "FK_Products_Supplier_SupplierId", table: "Products",
 column: "SupplierId", principalTable: "Supplier",
 principalColumn: "Id", onDelete: ReferentialAction.Cascade);
...

When the Cascade value is used, deleting a Supplier causes a cascade delete, which means that any
other Product objects that depend on that Supplier are also deleted. To see the effect of the cascade, start
the application with dotnet run, navigate to http://localhost:5000, and click the Delete button for the
Unsteady Chair product. Not only will this Product be deleted, but so will all of the others that are related to
the Chess Kings supplier, as shown in Figure 14-11.

Figure 14-11. The effect of a cascade delete

It is important to understand that it is the act of deleting the Supplier object that triggers the cascade
delete. You can remove a Product object from the database, and the Supplier will be unaffected. When you
remove a Supplier, the cascade delete is responsible for removing the rows from the Products database that
have a foreign key relationship with the row from the Supplier table that is being deleted.

Bear in mind that it is the database server and not Entity Framework Core that performs the cascade
delete. The configuration of the database that was applied by the migration tells the database server what to
do when a row is deleted. I explain how to take control of this behavior directly in Chapter 22.

http://dx.doi.org/10.1007/978-1-4842-3435-8_22

Chapter 14 ■ Creating Data relationships

327

Querying for Multiple Relationships
Most applications contain more than one data relationship. The process for creating, updating, and deleting
more complex related data is the same, but a different technique is required to tell Entity Framework Core to
follow all of the navigation properties to ensure that you get the data you require.

To demonstrate how this works, I added a class file called ContactLocation.cs to the Models folder and
added the code shown in Listing 14-22.

Listing 14-22. The Contents of the ContactLocation.cs File in the Models Folder

namespace DataApp.Models {

 public class ContactLocation {
 public long Id { get; set; }
 public string LocationName { get; set; }
 public string Address { get; set; }
 }
}

Next, I created a class file called ContactDetails.cs in the Models folder and added the code shown in
Listing 14-23.

Listing 14-23. The Contents of the ContactDetails.cs File in the Models Folder

namespace DataApp.Models {

 public class ContactDetails {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Phone { get; set; }
 public ContactLocation Location { get; set; }
 }
}

The ContactDetails class defines a navigation property called Location that creates a relationship with
a ContactLocation object. To complete the additions, I added a navigation property to the Supplier class, as
shown in Listing 14-24.

Listing 14-24. Adding a Navigation Property in the Supplier.cs File in the Models Folder

namespace DataApp.Models {

 public class Supplier {
 public long Id { get; set; }
 public string Name { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public ContactDetails Contact { get; set; }
 }
}

Chapter 14 ■ Creating Data relationships

328

The Contact property creates a relationship with the ContactDetails class. The overall result is a chain
of relationships between classes, as illustrated in Figure 14-12.

Figure 14-12. Creating a chain of navigation properties

Updating and Seeding the Database
To create a migration that will allow the database to store instances of the new classes, run the command
shown in Listing 14-25 in the DataApp project folder.

 ■ Tip if you get out of sequence with the command in this chapter and start to see Invalid Column
Name exceptions, then comment out the statements in the Startup class that seed the database and run the
commands in listing 14-26 and then listing 14-25. once the database is updated, uncomment the statements
in the Startup class and start the application.

Listing 14-25. Creating a Migration

dotnet ef migrations add AdditionalTypes --context EFDatabaseContext

If you examine the C# statements in the <timestamp>_AdditionalTypes.cs file that has been created
in the Migrations folder, you will see that Entity Framework Core has followed the conventions explained
earlier in the chapter to create tables that will store ContentDetails and ContactLocation objects.

To drop and re-create the database so that it can be reseeded, run the commands in Listing 14-26 in the
DataApp project folder.

Listing 14-26. Re-creating the Database

dotnet ef database drop --force --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

To ensure that there is some data to query when the database is seeded, add the statements shown in
Listing 14-27 to the getter of the Products property in the SeedData class.

Listing 14-27. Expanding the Seed Data in the SeedData.cs File in the Models Folder

...
private static Product[] Products {
 get {
 Product[] products = new Product[] {
 new Product { Name = "Kayak", Category = "Watersports",
 Price = 275, Color = Colors.Green, InStock = true },
 new Product { Name = "Lifejacket", Category = "Watersports",
 Price = 48.95m, Color = Colors.Red, InStock = true },

Chapter 14 ■ Creating Data relationships

329

 new Product { Name = "Soccer Ball", Category = "Soccer",
 Price = 19.50m, Color = Colors.Blue, InStock = true },
 new Product { Name = "Corner Flags", Category = "Soccer",
 Price = 34.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Stadium", Category = "Soccer",
 Price = 79500, Color = Colors.Red, InStock = true },
 new Product { Name = "Thinking Cap", Category = "Chess",
 Price = 16, Color = Colors.Blue, InStock = true },
 new Product { Name = "Unsteady Chair", Category = "Chess",
 Price = 29.95m, Color = Colors.Green, InStock = true },
 new Product { Name = "Human Chess Board", Category = "Chess",
 Price = 75, Color = Colors.Red, InStock = true },
 new Product { Name = "Bling-Bling King", Category = "Chess",
 Price = 1200, Color = Colors.Blue, InStock = true }};

 ContactLocation hq = new ContactLocation {
 LocationName = "Corporate HQ", Address = "200 Acme Way"
 };
 ContactDetails bob = new ContactDetails {
 Name = "Bob Smith", Phone = "555-107-1234", Location = hq
 };

 Supplier acme = new Supplier { Name = "Acme Co",
 City = "New York", State = "NY", Contact = bob };
 Supplier s1 = new Supplier { Name = "Surf Dudes",
 City = "San Jose", State = "CA" };
 Supplier s2 = new Supplier { Name = "Chess Kings",
 City = "Seattle", State = "WA" };

 foreach (Product p in products) {
 if (p == products[0]) {
 p.Supplier = s1;
 } else if (p.Category == "Chess") {
 p.Supplier = s2;
 } else {
 p.Supplier = acme;
 }
 }
 return products;
 }
}
...

The changes create a new contact for Bob Smith at headquarters and assign him as the contact for the
Acme Co supplier.

Querying the Chain of Navigation Properties
The ThenInclude method is used to extend the scope of a query to follow navigation properties defined
by the types selected using the Include method. Listing 14-28 uses the ThenInclude method to tell Entity
Framework Core to follow the navigation properties defined by the Supplier and ContactDetails classes so
that all of the relationships illustrated by Figure 14-12 are included in the query.

Chapter 14 ■ Creating Data relationships

330

Listing 14-28. Following Navigation Properties in the EFDatabaseRepository.cs File in the Models Folder

...
public Product GetProduct(long id) {
 return context.Products.Include(p => p.Supplier)
 .ThenInclude(s => s.Contact).ThenInclude(c => c.Location)
 .First(p => p.Id == id);
}
...

The argument to the ThenInclude method is a lambda function that operates on the type selected by
the previous call to the Include or ThenInclude method and selects the navigation property that you want to
follow. By combining the Include and ThenInclude methods, you can navigate around a complex model to
incorporate all of the data you require in a query.

To display the additional related data, add the elements shown in Listing 14-29 to the Supplier.cshtml view.

Listing 14-29. Displaying Related Data in the Supplier.cshtml File in the Views/Shared Folder

@model DataApp.Models.Product

<input name="original.Supplier.Id" value="@Model.Supplier?.Id" type="hidden" />
<input name="original.Supplier.Name" value="@Model.Supplier?.Name" type="hidden" />
<input name="original.Supplier.City" value="@Model.Supplier?.City" type="hidden" />
<input name="original.Supplier.State" value="@Model.Supplier?.State" type="hidden" />

<input type="hidden" asp-for="Supplier.Id" />
<div class="form-group">
 <label asp-for="Supplier.Name"></label>
 <input asp-for="Supplier.Name" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.City"></label>
 <input asp-for="Supplier.City" class="form-control" />
</div>
<div class="form-group">
 <label asp-for="Supplier.State"></label>
 <input asp-for="Supplier.State" class="form-control" />
</div>
@if (Model.Supplier?.Contact != null) {
 <div class="form-group">
 <label asp-for="Supplier.Contact.Name"></label>
 <input asp-for="Supplier.Contact.Name" class="form-control" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Contact.Phone"></label>
 <input asp-for="Supplier.Contact.Phone" class="form-control" readonly />
 </div>
 <div class="form-group">
 <label asp-for="Supplier.Contact.Location.LocationName"></label>
 <input asp-for="Supplier.Contact.Location.LocationName"
 class="form-control" readonly />
 </div>
}

Chapter 14 ■ Creating Data relationships

331

Figure 14-13. Following a chain of navigation properties in a query

The additions are read-only elements that display values from the extended related data. To test the
query, use dotnet run to start the application, navigate to http://localhost:5000, and click the Edit button
for one of the products whose supplier is Acme Co. You will see the contact details, as shown in Figure 14-13.

Summary
In this chapter, I explained how navigation properties are used to create relationships between data and how
these are reflected in the database and consumed by Entity Framework Core. In the next chapter, I show you
how to use different relationship features.

333© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_15

CHAPTER 15

Working with Relationships Part 1

In this chapter, I show you how to access related data directly and, once you have done this, how you can
complete a relationship so that navigation can be performed in both directions between the objects in the
relationship. This chapter focuses on one-to-many relationships, which are the easiest to create but which
require care when performing queries or updating the database. In Chapter 16, I describe other types of data
relationships that Entity Framework Core supports. Table 15-1 summarizes the chapter.

Table 15-1. Chapter Summary

Problem Solution Listing

Access related data directly rather than
through a navigation property

Add a DbSet<T> property to the context
class and then create and apply a migration

1–7

Access related data by type Use the DbContext.Set<T>() method 8–12

Navigate a relationship in both directions Complete the relationship with a
navigation property

13–15, 20–33

Force execution of a query Use explicit loading 16

Compose data relationships across
multiple queries

Rely on the fixing up feature 17–19

Preparing for This Chapter
This chapter uses the DataApp project created in Chapter 11 and modified in the chapters since. To prepare
for this chapter, open a command prompt in the DataApp folder and run the commands shown in Listing 15-1.

 ■ Tip If you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, https://github.com/apress/pro-ef-core-2-for-
asp.net-core-mvc.

Listing 15-1. Resetting the Database

dotnet ef database drop --force --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

https://doi.org/10.1007/978-1-4842-3435-8_15
http://dx.doi.org/10.1007/978-1-4842-3435-8_16
http://dx.doi.org/10.1007/978-1-4842-3435-8_11
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

334

These commands remove and re-create the database used to store Product objects, which will help
ensure that you get the expected results from the examples in this chapter. Start the application using dotnet
run and use a browser to navigate to http://localhost:5000. The application will seed the database as it
starts, and you will see the list of products shown in Figure 15-1.

Directly Accessing Related Data
In most applications, at least some of the related data has its own lifecycle and workflows that users need
to perform. In the DataApp application, for example, you can easily imagine that an administrator might
need to make a change to reflect an address change. This is difficult because I can only access the data in
the database by starting with a Product object and following its navigation properties. If I want to update
a ContactLocation object, for example, I have to start by searching for a Product that is related to the
Supplier I want to modify, query for that Product, and then follow the navigation properties to get the
Supplier and ContactDetails objects. Only then will I be able to access the ContactLocation object that I
want to modify.

To avoid this kind of issue, you can access related data directly. In the sections that follow, I show you
two different approaches to accessing related data and explain when each should be used.

Figure 15-1. Running the example application

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

335

Promoting Related Data
For data that plays an important role in the application, such that it has its own management tools and
lifecycle, the best approach is to promote the data so it can be accessed through a DbSet<T> property defined
by the context class.

This is the most disruptive approach because it requires a new migration to be created and applied,
but it puts the related data on a first-class footing in the application and follows the conventions that many
developers are accustomed to.

To promote the Supplier data so that it can be accessed directly, I added a property to the
EFDatabaseContext class, as shown in Listing 15-2.

Listing 15-2. Promoting Related Data in the EFDatabaseContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace DataApp.Models {
 public class EFDatabaseContext : DbContext {

 public EFDatabaseContext(DbContextOptions<EFDatabaseContext> opts)
 : base(opts) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }
 }
}

The new property returns a DbSet<Supplier> object that can be used to query and operate on the
Supplier objects in the database. A new migration is required when you define DbSet<T> properties, so run
the commands shown in Listing 15-3 in the DataApp project folder to create and apply a migration.

Listing 15-3. Creating and Applying a Migration

dotnet ef migrations add PromoteSuppliers --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

If you examine the Up method of the <timestamp>_PromoteSuppliers.cs file that has been created
in the Migrations folder, you will see that promoting the Supplier data has led to the database table that
contains the related data being renamed, like this:

...
migrationBuilder.RenameTable(name: "Supplier", newName: "Suppliers");
...

The name change is caused by the switch from one Entity Framework Core convention to another. In
Listing 15-3, I have followed the convention of using the plural form of the class name for the property—
Suppliers, in this case—which Entity Framework Core will use as the name of the table used to store the
Supplier objects in the database. However, there is already a Supplier table in the database, which was
created using the convention of using the name of the navigation property defined in Chapter 14. The
convention for the DbSet<T> property takes precedence and has led to the table that contains Supplier
objects being renamed.

http://dx.doi.org/10.1007/978-1-4842-3435-8_14

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

336

Consuming the Promoted Data
Once you have promoted the data, you can access it using the techniques described in earlier chapters. To
provide a repository for Supplier objects, I added a class file called SupplierRepository.cs to the Models
folder and defined the interface and class shown in Listing 15-4.

Listing 15-4. The Contents of the SupplierRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public interface ISupplierRepository {

 Supplier Get(long id);
 IEnumerable<Supplier> GetAll();
 void Create(Supplier newDataObject);
 void Update(Supplier changedDataObject);
 void Delete(long id);
 }

 public class SupplierRepository : ISupplierRepository {
 private EFDatabaseContext context;

 public SupplierRepository(EFDatabaseContext ctx) => context = ctx;

 public Supplier Get(long id) {
 return context.Suppliers.Find(id);
 }

 public IEnumerable<Supplier> GetAll() {
 return context.Suppliers;
 }

 public void Create(Supplier newDataObject) {
 context.Add(newDataObject);
 context.SaveChanges();
 }

 public void Update(Supplier changedDataObject) {
 context.Update(changedDataObject);
 context.SaveChanges();
 }

 public void Delete(long id) {
 context.Remove(Get(id));
 context.SaveChanges();
 }
 }
}

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

337

I have used simple operations in this repository, avoiding the more complex optimizations described in
Chapter 12. In Listing 15-5, I have registered the repository in the Startup class so that it can be consumed
as a service in the rest of the application.

Listing 15-5. Registering the Promoted Repository in the Startup.cs File in the DataApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));

 string customerConString =
 Configuration["ConnectionStrings:CustomerConnection"];
 services.AddDbContext<EFCustomerContext>(options =>
 options.UseSqlServer(customerConString));

 services.AddTransient<IDataRepository, EFDataRepository>();
 services.AddTransient<ICustomerRepository, EFCustomerRepository>();
 services.AddTransient<MigrationsManager>();
 services.AddTransient<ISupplierRepository, SupplierRepository>();
}
...

To provide a controller for the Supplier data, I added a class called RelatedDataController.cs to the
Controllers folder and defined the class shown in Listing 15-6.

Listing 15-6. The Contents of the RelatedDataController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace DataApp.Controllers {

 public class RelatedDataController : Controller {
 private ISupplierRepository supplierRepo;

 public RelatedDataController(ISupplierRepository repo)
 => supplierRepo = repo;

 public IActionResult Index() => View(supplierRepo.GetAll());
 }
}

The controller defines a single action method that queries the repository for all the Supplier objects in
the database and passes them to the default view. For the view, I created the Views/RelatedData folder and
added to it a view called Index.cshtml with the content shown in Listing 15-7.

http://dx.doi.org/10.1007/978-1-4842-3435-8_12

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

338

Listing 15-7. The Contents of the Index.cshtml File in the Views/RelatedData Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

<table class="table table-striped table-sm">
 <tr><th>ID</th><th>Name</th><th>City</th><th>State</th></tr>
 @foreach (var s in Model.OrderBy(s => s.Id)) {
 <tr>
 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>@s.City</td>
 <td>@s.State</td>
 </tr>
 }
</table>

To see the effect of promoting the Supplier data, start the application and navigate to
http://localhost:5000/relateddata to see the result shown in Figure 15-2.

Accessing Related Data Using a Type Parameter
The alternative to promoting data is to use a set of methods that are provided by the database context class
and that allow the data type to be specified as a type parameter. This is a useful feature for dealing with
data for which you require occasional or limited access for specific operations and for which promotion
to a DbSet<T> property is not warranted. Table 15-2 describes the DbContext methods that accept a type
parameter and can be used to access data without needing to promote it.

Figure 15-2. Promoting related data

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

339

One advantage of these methods is that they can be used to create a generic repository that can be used
to provide access to a specific type when it is configured as a service in the Startup class. I added a class file
called GenericRepository.cs to the Models folder and defined the interface and class shown in Listing 15-8.

Listing 15-8. The Contents of the GenericRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public interface IGenericRepository<T> where T : class {

 T Get(long id);

 IEnumerable<T> GetAll();

 void Create(T newDataObject);

 void Update(T changedDataObject);

 void Delete(long id);
 }

 public class GenericRepository<T> : IGenericRepository<T> where T : class {
 protected EFDatabaseContext context;

 public GenericRepository(EFDatabaseContext ctx) => context = ctx;

 public virtual T Get(long id) {
 return context.Set<T>().Find(id);
 }

 public virtual IEnumerable<T> GetAll() {
 return context.Set<T>();
 }

Table 15-2. The DbContext Methods with Type Parameters

Name Description

Set<T>() This method returns a DbSet<T> object that can be used to query the
database.

Find<T>(key) This method queries the database for the object of type T that has the
specified key.

Add<T>(newObject) This method adds a new object of type T to the database.

Update<T>(changedObject) This method updates an object of type T.

Remove<T>(dataObject) This method removes an object of type T from the database.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

340

 public virtual void Create(T newDataObject) {
 context.Add<T>(newDataObject);
 context.SaveChanges();
 }

 public virtual void Delete(long id) {
 context.Remove<T>(Get(id));
 context.SaveChanges();
 }

 public virtual void Update(T changedDataObject) {
 context.Update<T>(changedDataObject);
 context.SaveChanges();
 }
 }
}

The IGenericRepository<T> interface defines the operations that a repository must provide to work
with the type T. The where clause restricts the type parameter to classes, which is a constraint imposed by
Entity Framework Core. The GenericRepository<T> class implements the interface using the same basic
techniques I used for the Supplier class but performed using the methods described in Table 15-2.

 ■ Tip the methods in listing 15-8 are marked as virtual so that I can create more specialized
implementations of the repository class without having to make wide-ranging changes to the application.

The specific types that the interface and implementation class will be used for are configured when the
dependency injection service is created in the Startup class. In Listing 15-9, I have defined services for the
ContactDetails and ContactLocation classes.

Listing 15-9. Creating Services in the Startup Class in the DataApp Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<EFDatabaseContext>(options =>
 options.UseSqlServer(conString));

 string customerConString =
 Configuration["ConnectionStrings:CustomerConnection"];
 services.AddDbContext<EFCustomerContext>(options =>
 options.UseSqlServer(customerConString));

 services.AddTransient<IDataRepository, EFDataRepository>();
 services.AddTransient<ICustomerRepository, EFCustomerRepository>();
 services.AddTransient<MigrationsManager>();
 services.AddTransient<ISupplierRepository, SupplierRepository>();

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

341

 services.AddTransient<IGenericRepository<ContactDetails>,
 GenericRepository<ContactDetails>>();
 services.AddTransient<IGenericRepository<ContactLocation>,
 GenericRepository<ContactLocation>>();
}
...

To display the data obtained through the generic context methods, I added action methods to the
RelatedData controller, as shown in Listing 15-10. These methods query for all of the available objects of
each type, although all of the standard data operations can be used.

Listing 15-10. Querying for Data in the RelatedDataController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace DataApp.Controllers {

 public class RelatedDataController : Controller {
 private ISupplierRepository supplierRepo;
 private IGenericRepository<ContactDetails> detailsRepo;
 private IGenericRepository<ContactLocation> locsRepo;

 public RelatedDataController(ISupplierRepository sRepo,
 IGenericRepository<ContactDetails> dRepo,
 IGenericRepository<ContactLocation> lRepo) {
 supplierRepo = sRepo;
 detailsRepo = dRepo;
 locsRepo = lRepo;
 }

 public IActionResult Index() => View(supplierRepo.GetAll());

 public IActionResult Contacts() => View(detailsRepo.GetAll());
 public IActionResult Locations() => View(locsRepo.GetAll());
 }
}

 ■ Caution You may be tempted to build on the idea of accessing data classes using type parameters and
set up a generic handler and controller in the asp.net Core pipeline that doesn’t require action methods and
views for each class. this may seem like a good idea, but it should be avoided because it provides access to
all of the data in the database, which is rarely a good idea. Use type parameters behind the scenes to keep the
application simple but explicitly grant access to classes on an individual basis.

The generic repositories are received through the constructor in the normal way and used by the
Contacts and Locations action methods, both of which use the default view. To display the ContactDetails
objects, I created a file called Contacts.cshtml in the Views/RelatedData folder, with the content shown in
Listing 15-11.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

342

Listing 15-11. The Contents of the Contacts.cshtml File in the Views/RelatedData Folder

@model IEnumerable<DataApp.Models.ContactDetails>
@{
 ViewData["Title"] = "ContactDetails";
 Layout = "_Layout";
}
<table class="table table-striped table-sm">
 <tr><th>ID</th><th>Name</th><th>Phone</th></tr>
 @foreach (var s in Model) {
 <tr><td>@s.Id</td><td>@s.Name</td><td>@s.Phone</td></tr>
 }
</table>

The view displays the ContactDetails properties in a table. To provide a corresponding view for the
ContactLocation objects, I added a file called Locations.cshtml to the Views/RelatedData folder with the
content shown in Listing 15-12.

Listing 15-12. The Contents of the Locations.cshtml File in the Views/RelatedData Folder

@model IEnumerable<DataApp.Models.ContactLocation>
@{
 ViewData["Title"] = "ContactLocations";
 Layout = "_Layout";
}
<table class="table table-striped table-sm">
 <tr><th>ID</th><th>Name</th></tr>
 @foreach (var s in Model) {
 <tr><td>@s.Id</td><td>@s.LocationName</td></tr>
 }
</table>

To access the related data through the generic repositories, restart the application and navigate to the
http://localhost:5000/relateddata/contacts and http://localhost:5000/relateddata/locations
URLs, which target the action methods defined in Listing 15-10 and produce the results shown in Figure 15-3.

Figure 15-3. Accessing related data via a generic repository

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

343

Completing a Data Relationship
Promoting the related data has made it easier to access, but working with it can be improved further. At the
moment, the relationships between classes flow in only one direction. I can start with a Product object, for
example, and follow a navigation property to get the related Supplier data, but I can’t start with a Supplier
and navigate in the opposite direction. To address this shortfall, Entity Framework Core allows me to define
properties that allow navigation in the other direction, which is known as completing the relationship.

There is a range of different types of relationship that you can create between classes, but when
you first define a navigation property, Entity Framework Core assumes that you want to create a one-to-
many relationship and that the navigation property has been added to the class at the “many” end of the
relationship. This is what happened when I added a navigation property to the Product class in Chapter 14:
Entity Framework Core created a one-to-many relationship that allowed each Supplier object to be related
to many Product objects and configured the database accordingly.

 ■ Tip I describe how to create other types of relationships in Chapter 16.

Completing a one-to-many relationship is easy and requires a navigation property to be added to
the class at the “one” end of the relationship. This is known as the inverse property, and to complete the
relationship between the Product and Supplier class, I added the inverse navigation property shown in
Listing 15-13 to the Supplier class.

Listing 15-13. Completing a Relationship in the Supplier.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public class Supplier {
 public long Id { get; set; }
 public string Name { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public ContactDetails Contact { get; set; }
 public IEnumerable<Product> Products { get; set; }
 }
}

The navigation property returns an enumeration of the other class in the relationship, which is Product
in this case. This reflects the fact that each Supplier object can be related to many Product objects, and
using IEnumerable<Product> allows Entity Framework Core to provide the complete set of related data.

 ■ Note You don’t have to create a new migration when you complete a one-to-many relationship. a new
migration is required for other types of relationships, as demonstrated in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-3435-8_14
http://dx.doi.org/10.1007/978-1-4842-3435-8_16
http://dx.doi.org/10.1007/978-1-4842-3435-8_16

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

344

Querying Related Data in a One-to-Many Relationship
Once you have completed the relationship, you can start with an object of either type in the relationship
and navigate in both directions. In the case of the example application, this means that I can start with a
Supplier object and follow the Products property to navigate to the set of related Product objects, just as
long as the related data has been included in the request. Including related data in a completed one-to-
many relationship can be performed in a number of different ways, as I explain in the sections that follow.

Querying for All Related Data
If you want the complete set of related data, then you can use the Include or ThenInclude method to extend
the query by selecting the navigation property. In Listing 15-14, I have used the Include method to follow
the Supplier.Products method defined in Listing 15-13 and query for all of the Product objects that are
related to each Supplier.

Listing 15-14. Querying for All Data in the SupplierRepository.cs File in the Models Folder

using System.Collections.Generic;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace DataApp.Models {

 public interface ISupplierRepository {

 Supplier Get(long id);
 IEnumerable<Supplier> GetAll();
 void Create(Supplier newDataObject);
 void Update(Supplier changedDataObject);
 void Delete(long id);
 }

 public class SupplierRepository : ISupplierRepository {
 private EFDatabaseContext context;

 public SupplierRepository(EFDatabaseContext ctx) => context = ctx;

 public Supplier Get(long id) {
 return context.Suppliers.Find(id);
 }

 public IEnumerable<Supplier> GetAll() {
 return context.Suppliers.Include(s => s.Products);
 }

 public void Create(Supplier newDataObject) {
 context.Add(newDataObject);
 context.SaveChanges();
 }

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

345

 public void Update(Supplier changedDataObject) {
 context.Update(changedDataObject);
 context.SaveChanges();
 }

 public void Delete(long id) {
 context.Remove(Get(id));
 context.SaveChanges();
 }
 }
}

The changes in the repository tell Entity Framework Core to query for all the Product objects associated
with a Supplier object. Additional changes are required to display the related data to the user and to start
building out the set of data operations. To display the Product objects related to a Supplier, I added the
content shown in Listing 15-15 to the Index.cshtml file in the Views/RelatedData folder.

Listing 15-15. Displaying Related Data in the Index.cshtml File in the Views/RelatedData Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

<table class="table table-striped table-sm">
 <tr><th>ID</th><th>Name</th><th>City</th><th>State</th></tr>
 @foreach (var s in Model.OrderBy(s => s.Id)) {
 <tr>
 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>@s.City</td>
 <td>@s.State</td>
 </tr>
 @if (s.Products != null) {
 @foreach (var p in s.Products) {
 <tr class="table-dark">
 <td></td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>@p.Price</td>
 </tr>
 }
 }
 }
</table>

The changes to the view display a summary of each Product object after the Supplier object it is
related to. To see the effect, start the application and navigate to http://localhost:5000/relateddata.
The Product objects are shown in dark colored rows, as illustrated by Figure 15-4.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

346

When considering the different ways that related data in a one-to-many relationship can be obtained,
it is helpful to examine the query that was used to get the data from the database. If you examine the logging
output produced by the application, you will see that using the Supplier data is requested first, like this:

...
SELECT [s].[Id], [s].[City], [s].[ContactId], [s].[Name], [s].[State]
FROM [Suppliers] AS [s]
ORDER BY [s].[Id]
...

To get the related data, a second query is sent, which obtains the related Product data, like this:

...
SELECT [s.Products].[Id], [s.Products].[Category], [s.Products].[Color],
 [s.Products].[InStock], [s.Products].[Name], [s.Products].[Price],
 [s.Products].[SupplierId]
FROM [Products] AS [s.Products]
INNER JOIN (
 SELECT [s0].[Id]
 FROM [Suppliers] AS [s0]
) AS [t] ON [s.Products].[SupplierId] = [t].[Id]
ORDER BY [t].[Id]
...

Figure 15-4. Querying for all related data in a one-to-many relationship

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

347

Querying Using Explicit Loading
Using the Include method to follow a one-to-many navigation property doesn’t provide any way to filter the
related data, which means that it is all retrieved from the database. If you want to be more selective, then
Entity Framework Core provides two ways to filter the data that is queried. The first of these techniques is
called explicit loading, which I have used to replace the Include method in Listing 15-16.

Listing 15-16. Using Explicit Loading in the SupplierRepository.cs File in the Models Folder

...
public IEnumerable<Supplier> GetAll() {
 IEnumerable<Supplier> data = context.Suppliers.ToArray();
 foreach (Supplier s in data) {
 context.Entry(s).Collection(e => e.Products)
 .Query()
 .Where(p => p.Price > 50)
 .Load();
 }
 return data;
}
...

Explicit loading relies on the DbContext.Entry method, which I used in Chapter 12 to access change
tracking data. Calling the Entry method defined by the context object returns an EntityEntry object that
provides two methods for accessing related data, as described in Table 15-3.

Table 15-3. The EntityEntry Methods for Related Data

Name Description

Reference(name) This method is used for navigation properties that target a single object, specified
either as a string or using a lambda expression to select a property.

Collection(name) This method is used for navigation properties that target a collection, specified
either as a string or using a lambda expression to select a property.

Once you have used the Reference or Collection method to select the navigation property, the Query
method is used to get an IQueryable object that can be used with LINQ to filter the data that will be loaded.
In Listing 15-16, the Where method is used to filter the related data based on price, telling Entity Framework
Core to query only for those related Product objects whose Price value exceeds 50.

The Load method is used to force execution of the query. This isn’t usually required because the query
will be executed automatically when the IQueryable<T> is enumerated by the Razor view or by a LINQ
method. In this case, however, the Load method is required because the IQueryable<T> objects returned by
the Query method are never enumerated. Without the Load method, the related data queries would not be
executed, and only the Supplier objects would be passed to the Razor view. (The Load method has the same
effect as ToArray or ToList but doesn’t create and return a collection of objects.)

http://dx.doi.org/10.1007/978-1-4842-3435-8_12

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

348

 ■ Note notice that I have used the ToArray method in listing 15-6 before enumerating the Supplier
objects in a foreach loop. the ToArray method forces execution of the query that obtains the Supplier data,
avoiding the situation where one query is performed when the IQueryable<Supplier> is enumerated by the
foreach loop in the repository method and a duplicate query is triggered by the foreach loop in the razor view.

To see the effect of using explicit loading, restart the application and navigate to http://localhost:5000/
relateddata. The Product data that is displayed contains only the filtered objects, as shown in Figure 15-5.

Figure 15-5. Using explicit loading to filter data

The drawback of using explicit loading is that it generates many queries for the database. If you examine
the logging messages created by the application, you will see that the first query is for the Supplier data, as
shown here:

...
SELECT [s].[Id], [s].[City], [s].[ContactId], [s].[Name], [s].[State]
FROM [Suppliers] AS [s]
...

As each Supplier object is processed by the foreach method and the related data is explicitly loaded,
another query is sent to the database, like this one:

...
SELECT [e].[Id], [e].[Category], [e].[Color], [e].[InStock], [e].[Name],
 [e].[Price], [e].[SupplierId]
FROM [Products] AS [e]
WHERE ([e].[SupplierId] = @__get_Item_0) AND ([e].[Price] > 50.0)
...

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

349

There are three Supplier objects stored in the database, which means that four requests in total are
needed to get the data for this example. The number of queries can add up for large numbers of objects,
which means that the explicit loading technique is most effective when there are a small number of objects
for which related data is required. If you are working with larger numbers of objects, then the technique in
the next section may be more suitable.

Querying Using the Fixing Up Feature
Entity Framework Core supports a feature called fixing up, where the data retrieved by a database context
object is cached and used to populate the navigation properties of objects that are created for subsequent
queries. This is a feature that, used carefully, can allow complex queries to be created that obtain related
data more efficiently than explicit loading or following a navigation property using the Include method. In
Listing 15-17, I have relied on the fixing up feature to obtain the Supplier objects and the related Product
objects whose Price value exceeds 50.

Listing 15-17. Relying on Fixing Up in the SupplierRepository.cs File in the Models Folder

...
public IEnumerable<Supplier> GetAll() {
 context.Products.Where(p => p.Supplier != null && p.Price > 50).Load();
 return context.Suppliers;
}
...

There are two queries required for this example. The first uses the context object’s Products property to
retrieve all of the Product objects that are related to a Supplier and whose Price property is greater than 50.
The sole purpose of this query is to populate the Entity Framework Core cache with data objects, so I have
used the Load method to force evaluation of the query.

The second query uses the context object’s Suppliers property to retrieve the Supplier objects. This
query will be executed when the sequence of objects is enumerated in the Razor view, so the Load method
isn’t required. When the second query is executed, Entity Framework Core will automatically examine
the data cached from the first request and use that data to populate the Supplier.Products navigation
properties with the appropriate Product objects. The result is the same outcome as when I used explicit
loading, as shown in Figure 15-6.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

350

 ■ Caution Using the fixing up feature can require some trial and error and requires careful attention to the
queries that are sent to the database. It is possible to get all of the data you require with fewer queries than the
explicit loading technique, but it is surprisingly easy to miss the mark and either query for too much or too little
data or to generate more requests than you intended.

If you look at the logging messages generated by the application, you will see the queries that were
sent to the database. The first query retrieves the Product objects that met the criteria specified by the Where
method.

...
SELECT [p].[Id], [p].[Category], [p].[Color], [p].[InStock], [p].[Name],
 [p].[Price], [p].[SupplierId]
FROM [Products] AS [p]
WHERE [p].[SupplierId] IS NOT NULL AND ([p].[Price] > 50.0)
...

The second query retrieves all of the available Supplier data.

...
SELECT [s].[Id], [s].[City], [s].[ContactId], [s].[Name], [s].[State]
FROM [Suppliers] AS [s]
...

The fixing up process uses the data from the first query to populate the navigation properties of the
objects created from the second query. This process is entirely automatic and will be performed whenever
the same database context object is used to make multiple queries (which is one of the reasons why you
should be careful about the lifecycle of repository objects configured in the Startup class, so that you don’t
get fixed-up data when you are not expecting it).

Figure 15-6. Using fixing up to filter data

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

351

Understanding the Fixing Up Pitfall
The fixing up feature means Entity Framework Core will populate navigation properties with objects that
it has previously created. When used carefully, the fixing up process is a powerful tool for selecting just the
data that is required without endlessly querying the database. But the fixing up process cannot be disabled
and presents a pitfall for the unwary if you follow navigation properties without considering the queries that
have been made.

To demonstrate the problem, I created a view called SupplierRelated.cshtml in the Views/Home folder
and added the content shown in Listing 15-18 to present a Supplier and its list of Product objects to the user.

Listing 15-18. The Contents of the SupplierRelated.cshtml File in the Views/Home Folder

@model DataApp.Models.Supplier

@if (Model?.Products == null) {
 <tr><td colspan="6" class="text-center table-dark">No Related Data</td></tr>
} else {
 @foreach (Product p in Model?.Products) {
 <tr class="table-dark">
 <td colspan="3"></td>
 <td>@p.Name</td>
 <td>@p.Category</td>
 <td>@p.Price</td>
 </tr>
 }
}

This view receives a Supplier as its model and follows the Products navigation property to
create a simple table of related Products. To use this view, I made the change shown in Listing 15-19 to the
Index.cshtml view in the Views/Home folder.

Listing 15-19. Displaying Related Data in the Index.chstml File in the Views/Home Folder

...
<tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Id</td><td>@p.Name</td><td>@p.Category</td>
 <td>$@p.Price.ToString("F2")</td>
 @if (ViewBag.includeRelated) {
 <td>@p.Supplier?.Name</td>
 }
 <td>
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-id="@p.Id">
 Edit

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

352

 <input type="hidden" name="id" value="@p.Id" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 <tr>
 <td colspan="6">@Html.Partial("SupplierRelated", p.Supplier)</td>
 </tr>
 }
</tbody>
...

To see the problem, restart the application and navigate to http://localhost:5000. The fixing up
process is applied to populate navigation properties as Entity Framework Core processes the response from
the database server, which means that the data is inconsistent, as shown in Figure 15-7.

Figure 15-7. Navigating to data beyond the scope of the query

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

353

The figure shows the Products in the Soccer category, and you can see that the related data is different
for each item. This happens because I have followed navigation properties beyond the related data specified
in the query, starting with a Product object, moving on to the related Supplier, and then coming back again
to the related Products. Entity Framework Core uses fixed-up data to populate the Supplier.Products
property but only has the Product objects that have been created so far to work with, which increases with
each Product object that is processed and produces the inconsistent results shown in the figure. To avoid
this type of problem, do not navigate using properties that you have not selected using the Include or
ThenInclude method or fixed up using a previous query.

Working with Related Data in a One-to-Many Relationship
One of the most important characteristics of completed relationships is that operations can be performed
using the navigation properties at both ends of the relationship. In the sections that follow, I show you to
use the navigation properties in the one-to-many relationship between the Supplier and Product classes to
perform different operations.

To prepare for this section, I changed the query used for Supplier objects in the SupplierRepository
class so that all of the related Product objects are included, as shown in Listing 15-20.

Listing 15-20. Changing the Queries in the SupplierRepository.cs File in the Models Folder

...
public IEnumerable<Supplier> GetAll() {
 return context.Suppliers.Include(p => p.Products);
}
...

To separate this example from the others in this chapter, I added a class file called
SuppliersController.cs in the Controllers folder and defined the controller shown in Listing 15-21.

Listing 15-21. The Contents of the SuppliersController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace DataApp.Controllers {

 public class SuppliersController : Controller {
 private ISupplierRepository supplierRepository;

 public SuppliersController(ISupplierRepository supplierRepo) {
 supplierRepository = supplierRepo;
 }

 public IActionResult Index() {
 return View(supplierRepository.GetAll());
 }
 }
}

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

354

The controller defines a single action method that passes all of the Supplier objects to the default view.
To display the Supplier objects and their related Product objects, I created the Views/Suppliers folder and
added to it a file called Index.cshtml with the content shown in Listing 15-22.

Listing 15-22. The Contents of the Index.cshtml File in the Views/Suppliers Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

@foreach (Supplier s in Model) {
 <h4 class="bg-info text-center text-white p-1">@s.Name</h4>
 <div class="container-fluid">
 @if (s.Products == null || s.Products.Count() == 0) {
 <div class="p-1 text-center">No Products</div>
 } else {
 @foreach (Product p in s.Products) {
 <div class="row p-1">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col">@p.Price</div>
 </div>
 }
 }
 </div>
}

To see the content generated by the view, restart the application and navigate to http://localhost:5000/
suppliers. The name of each Supplier is displayed, along with details of the related Product objects, as shown
in Figure 15-8.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

355

Updating Related Objects
Earlier in this chapter, I showed you how to edit the values of Product objects that were retrieved from the
database directly using the DbSet<Product> property defined by the database context class. This is the
simplest and most direct way to perform updates, but you can also make changes by starting with a Supplier
object and accessing the Product objects you want to modify through a navigation property. To show
how to perform edits via a navigation property, I started by creating a view called Editor.cshtml in the
Views/Suppliers folder and adding the content shown in Listing 15-23.

Listing 15-23. The Contents of the Editor.cshtml File in the Views/Suppliers Folder

@model Supplier
@{
 int counter = 0;
}

<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" asp-for="Name" />
 <input type="hidden" asp-for="City" />
 <input type="hidden" asp-for="State" />

 @foreach (Product p in Model.Products) {
 <div class="row">
 <input type="hidden" name="Products[@counter].Id" value="@p.Id" />

Figure 15-8. Displaying Supplier and Product objects

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

356

 <div class="col">
 <input name="Products[@counter].Name" value="@p.Name"
 class="form-control"/>
 </div>
 <div class="col">
 <input name="Products[@counter].Category" value="@p.Category"
 class="form-control" />
 </div>
 <div class="col">
 <input name="Products[@counter].Price" value="@p.Price"
 class="form-control"/>
 </div>
 @{ counter++; }
 </div>
 }
 <div class="row">
 <div class="col text-center m-1">
 <button class="btn btn-sm btn-danger" type="submit">Save</button>
 Cancel
 </div>
 </div>
</form>

This view will be used to allow the user to edit the property values for all the Product objects related to
a Supplier. The slightly awkward structure relies on incrementing an int called counter, which is used to
create HTML elements that will be correctly parsed as an array of Product objects by the MVC model binder.
The property values are presented in a grid of input elements and will be submitted to an action called
Update when the user clicks the Save button.

To incorporate the Editor view into the application, I added the elements shown in Listing 15-24 to the
Index.cshtml view in the Views/Suppliers folder.

Listing 15-24. Incorporating the Editor in the Index.cshtml File in the Views/Suppliers Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

@foreach (Supplier s in Model) {
 <h4 class="bg-info text-center text-white p-1">
 @s.Name
 <a asp-action="Edit" asp-route-id="@s.Id"
 class="btn btn-sm btn-warning">
 Edit

 </h4>
 <div class="container-fluid">
 @if (s.Products == null || s.Products.Count() == 0) {
 <div class="p-1 text-center">No Products</div>

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

357

 } else if (ViewBag.SupplierEditId == s.Id) {
 @Html.Partial("Editor", s);
 } else {
 @foreach (Product p in s.Products) {
 <div class="row p-1">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col">@p.Price</div>
 </div>
 }
 }
 </div>
}

The first addition adds an Edit button alongside the name of each Supplier, which targets the
Edit action and includes the Id of the Supplier object. This will start the editing process by setting a
SupplierEditId property in the ViewBag, which is used by the second addition in Listing 15-24 to display the
Editor view.

To provide the support required by the views, I added the action methods shown in Listing 15-25 to the
Suppliers controller.

Listing 15-25. Adding Actions in the SuppliersController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace DataApp.Controllers {

 public class SuppliersController : Controller {
 private ISupplierRepository supplierRepository;

 public SuppliersController(ISupplierRepository supplierRepo) {
 supplierRepository = supplierRepo;
 }

 public IActionResult Index() {
 ViewBag.SupplierEditId = TempData["SupplierEditId"];
 return View(supplierRepository.GetAll());
 }

 public IActionResult Edit(long id) {
 TempData["SupplierEditId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Update(Supplier supplier) {
 supplierRepository.Update(supplier);
 return RedirectToAction(nameof(Index));
 }
 }
}

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

358

To see how the editing process works, restart the application, navigate to http://localhost:5000/
suppliers, and click the Edit button for Chess Kings. Use the input elements to make changes and click the
Save button to update the database, as shown in Figure 15-9.

Figure 15-9. Editing property values via a navigation property

When you click the Save button, the browser sends an HTTP request that contains the values required
by the MVC model binder to create a Supplier object and a collection of Product objects. The MVC binder
automatically assigns the Product collection to the Supplier.Products property, which is then used to
update the database. Entity Framework Core can’t perform change tracking on these objects (because they
were created by the MVC model binder), so the Supplier object must include values for all of its properties,
which you can see I included in the Editor view.

 ■ Note Bear in mind that completing a relationship doesn’t prevent you from operating on objects directly.
For example, completing the Product/Supplier relationship doesn’t mean that I can only update Product
objects through the Supplier.Products navigation property; I can still query directly for Product objects and
update them individually. Completing a relationship opens up new ways of working and allows you to choose
the one that is most convenient for your project.

Creating New Related Objects
The technique that I described in the previous section can be easily adapted to create new related objects.
When Entity Framework Core processes the collection of Product objects that have been created by the
MVC model binder, any Product object whose Id property value is zero will be added to the database as
a new object. This is a convenient way of creating new objects that will automatically be associated with a
Supplier. This is a useful way to create new objects without breaking the required relationship constraint
between Product and Supplier objects.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

359

To add support for creating new Product object, I added a view called Create.cshtml in the
Views/Suppliers folder and added the content shown in Listing 15-26.

Listing 15-26. The Contents of the Create.cshtml File in the Views/Suppliers Folder

@model Supplier
@{
 int counter = 0;
}

<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" asp-for="Name" />
 <input type="hidden" asp-for="City" />
 <input type="hidden" asp-for="State" />

 @foreach (Product p in Model.Products) {
 <input type="hidden" name="Products[@counter].Id" value="@p.Id" />
 <input type="hidden" name="Products[@counter].Name" value="@p.Name" />
 <input type="hidden" name="Products[@counter].Category"
 value="@p.Category" />
 <input type="hidden" name="Products[@counter].Price" value="@p.Price" />
 counter++;
 }
 <div class="row">
 <div class="col">
 <input name="Products[@counter].Name" value="" class="form-control" />
 </div>
 <div class="col">
 <input name="Products[@counter].Category" class="form-control" />
 </div>
 <div class="col">
 <input name="Products[@counter].Price" class="form-control" />
 </div>
 </div>
 <div class="row">
 <div class="col text-center m-1">
 <button class="btn btn-sm btn-danger" type="submit">Save</button>
 Cancel
 </div>
 </div>
</form>

When updating data through a navigation property, you must take care to include all of the existing
objects in the HTML form. When Entity Framework Core receives the collection of Product objects, for
example, it assumes that it has received the complete set and will try to break relationships with any Product
object that is not in the collection. As a consequence, you must include form data values for all of the
existing data as well as creating elements so that the user can enter new ones, which is what I have done in
Listing 15-26.

To integrate the new view into the application, I added the elements shown in Listing 15-27 to the
Index.cshtml view in the Views/Suppliers folder.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

360

Listing 15-27. Using a Partial View in the Index.cshtml File in the Views/Suppliers Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

@foreach (Supplier s in Model) {
 <h4 class="bg-info text-center text-white p-1">
 @s.Name
 <a asp-action="Edit" asp-route-id="@s.Id"
 class="btn btn-sm btn-warning">Edit
 <a asp-action="Create" asp-route-id="@s.Id"
 class="btn btn-sm btn-danger">Add
 </h4>
 <div class="container-fluid">
 @if (s.Products == null || s.Products.Count() == 0) {
 <div class="p-1 text-center">No Products</div>
 } else if (ViewBag.SupplierEditId == s.Id) {
 @Html.Partial("Editor", s);
 } else {
 @foreach (Product p in s.Products) {
 <div class="row p-1">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col">@p.Price</div>
 </div>
 }
 if (ViewBag.SupplierCreateId == s.Id) {
 @Html.Partial("Create", s);
 }
 }
 </div>
}

The Add button sends a request to an action called Create, and the content in the Create.cshtml view
will be shown when the ViewBag contains a SupplierCreateId property whose value corresponds to the
Id property of the Supplier being processed. To support the new view features, I added the action method
shown in Listing 15-28 to the Suppliers controller.

Listing 15-28. Adding an Action in the SuppliersController.cshtml File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace DataApp.Controllers {

 public class SuppliersController : Controller {
 private ISupplierRepository supplierRepository;

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

361

 public SuppliersController(ISupplierRepository supplierRepo) {
 supplierRepository = supplierRepo;
 }

 public IActionResult Index() {
 ViewBag.SupplierEditId = TempData["SupplierEditId"];
 ViewBag.SupplierCreateId = TempData["SupplierCreateId"];
 return View(supplierRepository.GetAll());
 }

 public IActionResult Edit(long id) {
 TempData["SupplierEditId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Update(Supplier supplier) {
 supplierRepository.Update(supplier);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult Create(long id) {
 TempData["SupplierCreateId"] = id;
 return RedirectToAction(nameof(Index));
 }
 }
}

The Create method sets the ViewBag property that is used to display the Create.cshtml view and then
redirects the browser. Notice that I don’t have to add an action method to handle the create operation. As far
as Entity Framework Core is concerned, this operation is an update on an existing Supplier object, which is
performed through the Update method.

To see the effect, restart the application, navigate to http://localhost:5000/suppliers, and click the
Add button for one of the suppliers. Fill out the form and click Save, and you will see that a new Product
object has been created, as illustrated in Figure 15-10.

Figure 15-10. Creating new related data

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

362

Changing Relationships
The create and update operations are made simple by the fact that the Product objects are associated with
a Supplier. A little more work is required when it comes to changing the Supplier that a Product object is
related to, especially for a required relationship because the database server will not perform updates that
affect the integrity of the database.

To add support for changing a relationship, I added a view called RelationshipEditor.cshtml to the
Views/Suppliers folder and added the content shown in Listing 15-29.

Listing 15-29. The Contents of the RelationshipEditor.cshtml File in the Views/Suppliers Folder

@model ValueTuple<Supplier, IEnumerable<Supplier>>
@{
 int counter = 0;
}

<form asp-action="Change" method="post">
 <input type="hidden" name="Id" value="@Model.Item1.Id" />
 <input type="hidden" name="Name" value="@Model.Item1.Name" />
 <input type="hidden" name="City" value="@Model.Item1.City" />
 <input type="hidden" name="State" value="@Model.Item1.State" />

 @foreach (Product p in Model.Item1.Products) {
 <input type="hidden" name="Products[@counter].Id" value="@p.Id" />
 <input type="hidden" name="Products[@counter].Name" value="@p.Name" />
 <input type="hidden" name="Products[@counter].Category"
 value="@p.Category" />
 <input type="hidden" name="Products[@counter].Price" value="@p.Price" />

 <div class="row">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col">
 <select name="Products[@counter].SupplierId">
 @foreach (Supplier s in Model.Item2) {
 if (p.Supplier == s) {
 <option selected value="@s.Id">@s.Name</option>
 } else {
 <option value="@s.Id">@s.Name</option>
 }
 }
 </select>
 </div>
 </div>

 counter++;
 }

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

363

 <div class="row">
 <div class="col text-center m-1">
 <button class="btn btn-sm btn-danger" type="submit">Save</button>
 Cancel
 </div>
 </div>
</form>

The model for this view is a tuple that contains a Supplier object and an enumeration of Suppliers.
This is an ungainly approach, but, as you will see, this entire process can be awkward, and receiving two
data objects as the view model makes it easier to generate the HTML elements that allow the user to make
changes. The view generates a form with hidden elements that contain the Supplier and Product values
that are not to be changed, along with a select element that allows a different Supplier to be selected for
each Product. The form targets an action method called Change, which I will define shortly.

To incorporate the new partial view into the application, I added the elements shown in Listing 15-30 to
the Index.cshtml view in the Views/Suppliers folder.

Listing 15-30. Incorporating a Partial View in the Index.cshtml File in the Views/Suppliers Folder

@model IEnumerable<DataApp.Models.Supplier>

@{
 ViewData["Title"] = "Suppliers";
 Layout = "_Layout";
}

@foreach (Supplier s in Model) {
 <h4 class="bg-info text-center text-white p-1">
 @s.Name
 <a asp-action="Edit" asp-route-id="@s.Id"
 class="btn btn-sm btn-warning">Edit
 <a asp-action="Create" asp-route-id="@s.Id"
 class="btn btn-sm btn-danger">Add
 <a asp-action="Change" asp-route-id="@s.Id"
 class="btn btn-sm btn-primary">Change
 </h4>
 <div class="container-fluid">
 @if (s.Products == null || s.Products.Count() == 0) {
 <div class="p-1 text-center">No Products</div>
 } else if (ViewBag.SupplierEditId == s.Id) {
 @Html.Partial("Editor", s);
 } else if (ViewBag.SupplierRelationshipId == s.Id) {
 @Html.Partial("RelationshipEditor", (s, Model));
 } else {
 @foreach (Product p in s.Products) {
 <div class="row p-1">
 <div class="col">@p.Name</div>
 <div class="col">@p.Category</div>
 <div class="col">@p.Price</div>
 </div>
 }

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

364

 if (ViewBag.SupplierCreateId == s.Id) {
 @Html.Partial("Create", s);
 }
 }
 </div>
}

The new elements add a Change button that targets the Change action on the controller, which will
set a ViewBag property called SupplierRelationshipId, which is used to decide when to show the partial
view created in Listing 15-29. To add the actions that the views rely on, I added the methods shown in
Listing 15-31 to the SuppliersController class.

Listing 15-31. Adding Actions in the SuppliersController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;

namespace DataApp.Controllers {

 public class SuppliersController : Controller {
 private ISupplierRepository supplierRepository;

 public SuppliersController(ISupplierRepository supplierRepo) {
 supplierRepository = supplierRepo;
 }

 public IActionResult Index() {
 ViewBag.SupplierEditId = TempData["SupplierEditId"];
 ViewBag.SupplierCreateId = TempData["SupplierCreateId"];
 ViewBag.SupplierRelationshipId = TempData["SupplierRelationshipId"];
 return View(supplierRepository.GetAll());
 }

 public IActionResult Edit(long id) {
 TempData["SupplierEditId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Update(Supplier supplier) {
 supplierRepository.Update(supplier);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult Create(long id) {
 TempData["SupplierCreateId"] = id;
 return RedirectToAction(nameof(Index));
 }

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

365

 public IActionResult Change(long id) {
 TempData["SupplierRelationshipId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Change(Supplier supplier) {
 IEnumerable<Product> changed = supplier.Products
 .Where(p => p.SupplierId != supplier.Id);
 if (changed.Count() > 0) {
 IEnumerable<Supplier> allSuppliers
 = supplierRepository.GetAll().ToArray();
 Supplier currentSupplier
 = allSuppliers.First(s => s.Id == supplier.Id);
 foreach(Product p in changed) {
 Supplier newSupplier
 = allSuppliers.First(s => s.Id == p.SupplierId);
 newSupplier.Products = newSupplier.Products
 .Append(currentSupplier.Products
 .First(op => op.Id == p.Id)).ToArray();
 supplierRepository.Update(newSupplier);
 }
 }
 return RedirectToAction(nameof(Index));
 }
 }
}

The code in the Change method that accepts POST requests is convoluted because there is some conflict
between features. I have queried the database to get the complete set of Supplier objects and their related
Product objects so that I can update the relationships that the user has changed. Entity Framework Core
tracks the objects that it has created, which means that I can’t perform database updates using the objects
that are created by the MVC model binder without generating an exception. This means I have to process the
objects created by the MVC model binder to figure out what has to change and then translate those changes
into the objects that Entity Framework Core has created, which can be used to update the database. (Don’t
spend too much time following the code in Listing 15-31 because I show simpler approaches in the sections
that follow.)

To see how relationships can be changed, restart the application, navigate to http://localhost:5000/
suppliers, and click one of the Change buttons. Use the drop-down lists to change relationships and click
the Save button to update the database. The Product objects whose relationships you edited will be shown
alongside their new Supplier, as illustrated in Figure 15-11.

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

366

Simplifying the Relationship Change Code
The code required to handle the updates in Listing 15-31 relies on a series of LINQ queries to get the data
from the database and merge the changes from the objects created from the HTTP request. This approach
works around the Entity Framework Core object tracking system, which underpins features such as change
tracking and fixing up. These are useful features, but the tracking system gets in the way for other operations.

I can simplify the code required to handle the changes by disabling the object tracking feature, as
shown in Listing 15-32, which means I can use the objects created by the MVC model binder to update the
database.

Listing 15-32. Disabling Change Tracking in the SuppliersController.cs File in the Models Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;

namespace DataApp.Controllers {

 public class SuppliersController : Controller {
 private ISupplierRepository supplierRepository;
 private EFDatabaseContext dbContext;

 public SuppliersController(ISupplierRepository supplierRepo,
 EFDatabaseContext context) {
 supplierRepository = supplierRepo;
 dbContext = context;
 }

 public IActionResult Index() {
 ViewBag.SupplierEditId = TempData["SupplierEditId"];
 ViewBag.SupplierCreateId = TempData["SupplierCreateId"];

Figure 15-11. Changing relationships between objects

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

367

 ViewBag.SupplierRelationshipId = TempData["SupplierRelationshipId"];
 return View(supplierRepository.GetAll());
 }

 public IActionResult Edit(long id) {
 TempData["SupplierEditId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Update(Supplier supplier) {
 supplierRepository.Update(supplier);
 return RedirectToAction(nameof(Index));
 }

 public IActionResult Create(long id) {
 TempData["SupplierCreateId"] = id;
 return RedirectToAction(nameof(Index));
 }

 public IActionResult Change(long id) {
 TempData["SupplierRelationshipId"] = id;
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Change(Supplier supplier) {
 IEnumerable<Product> changed
 = supplier.Products.Where(p => p.SupplierId != supplier.Id);
 IEnumerable<long> targetSupplierIds
 = changed.Select(p => p.SupplierId).Distinct();
 if (changed.Count() > 0) {
 IEnumerable<Supplier> targetSuppliers = dbContext.Suppliers
 .Where(s => targetSupplierIds.Contains(s.Id))
 .AsNoTracking().ToArray();
 foreach(Product p in changed) {
 Supplier newSupplier
 = targetSuppliers.First(s => s.Id == p.SupplierId);
 newSupplier.Products = newSupplier.Products == null
 ? new Product[] { p }
 : newSupplier.Products.Append(p).ToArray();
 }
 dbContext.Suppliers.UpdateRange(targetSuppliers);
 dbContext.SaveChanges();
 }
 return RedirectToAction(nameof(Index));
 }
 }
}

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

368

For the sake of simplicity, I have used the data context class directly, rather than work the changes
through the repository interface and implementation class. The code in Listing 15-33 is simpler (although
it may not look like it) because the tracking feature has been disabled by using the AsNoTracking extension
method in the query that retrieves the Supplier and related Product objects from the database.

...
IEnumerable<Supplier> targetSuppliers = dbContext.Suppliers
 .Where(s => targetSupplierIds.Contains(s.Id))
 .AsNoTracking().ToArray();
...

When the AsNoTracking method is used, Entity Framework Core doesn’t keep track of the objects that
it has created, and this allows me to use the Product objects created by the MVC model binder to update the
database.

One reason that the code in Listing 15-32 is simpler than Listing 15-31 is that I don’t have to retrieve the
Product objects related to each Supplier in order to perform the updates. Entity Framework Core doesn’t
update data that has not been queried from the database, so excluding Product objects from the query
means that the existing relationships are not affected by the changes specified by the user.

 ■ Caution the AsNoTracking method should be used with caution because it prevents other useful
features, such as change detection and fixing up, from working.

Further Simplifying the Relationship Change Code
The previous two listings have demonstrated that it is possible to change relationships from the “one” end
of a one-to-many relationship but that doing so is awkward. There is a much simpler way of solving this
problem, which can be understood by thinking about how the relationship is represented in the database.

In the case of the example application, the Product class has a SupplierId property that is used to
store the value of the Id property for the Supplier it is related to. The Products property defined by the
Supplier class is for convenient navigation only, and when the relationship for a Product is changed, Entity
Framework Core only has to update the row in the Products table to reflect the change, even when you
perform those changes via the IEnumerable<Product> navigation property.

Once you realize how the update is performed, you can dramatically simplify the code required to
perform updates by operating on the Product objects directly, as shown in Listing 15-33.

Listing 15-33. Performing Direct Updates in the SuppliersController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Change(long Id, Product[] products) {
 dbContext.Products.UpdateRange(products.Where(p => p.SupplierId != Id));
 dbContext.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Chapter 15 ■ WorkIng WIth relatIonshIps part 1

369

Changing the parameters for the action method tells the MVC model binder that I require the Id value
for the Supplier whose relationships the user is changing and the set of Products related to that Supplier.

I use LINQ to filter out those Product objects that have not changed and pass those that have to the
DbSet<T>.UpdateRange method provided by the database context class, which allows me to update several
objects at once. I call the SaveChanges method to send the changes to the database and then redirect the
browser to the Index action.

The result is the same as the code in Listing 15-31 and Listing 15-32 but simpler and easier to understand.
As this example demonstrates, while it is possible to perform updates using either navigation property in a one-
to-many relationship, giving thought to how the updates will be reflected into the database can give insight into
whether a simpler result can be obtained by giving preference to one property over another.

Summary
In this chapter, I demonstrated how to access related data directly, either by promoting the data with a
context property or by using the context methods that accept a type parameter. Once you have promoted
data, you will often want to navigate from it to other parts of the data model, and I showed you how to
complete a relationship by adding a navigation property to define a one-to-many relationship, which
is the most common in ASP.NET Core MVC and Entity Framework Core development. I explained the
different ways to query related data in a one-to-many relationship and how to create and update related
data through the one-to-many navigation property. I finished this chapter by showing that it is possible to
edit relationships through the navigation property but that simpler results can be obtained by considering
how relationships are represented in the database. In the next chapter, I continue demonstrating the Entity
Framework Core features for using relationships.

371© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_16

CHAPTER 16

Working with Relationship Part 2

The one-to-many relationships that I described in Chapter 15 are not the only types of relationship that
Entity Framework Core supports. In this chapter, I show you how to define one-to-one and many-to-many
relationships, demonstrate how to query for related data when using these relationships, and explain how to
manage these relationships in the database. Table 16-1 summarizes the chapter.

Table 16-1. Chapter Summary

Problem Solution Listing

Define a completed one-to-one
relationship

Add reciprocal navigation properties and add a foreign
key property to the dependent entity class

1–7

Update related objects Deal with the related objects separately to ensure that
you add and update data correctly

8–16

Define a many-to-many
relationship

Create a junction class that has one-to-many
relationships on the two related data types

17–28

Preparing for This Chapter
This chapter uses the DataApp project created in Chapter 11 and modified in the subsequent chapters. To
prepare for this chapter, open a command prompt in the DataApp folder and run the commands shown in
Listing 16-1.

 ■ Tip If you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, https://github.com/apress/pro-ef-core-2-for-
asp.net-core-mvc.

Listing 16-1. Resetting the Database

dotnet ef database drop --force --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

These commands remove and re-create the database used to store Product objects and their related
Supplier, ContactDetails, and ContactLocation objects, which will help ensure that you get the right
expected results from the examples in this chapter.

https://doi.org/10.1007/978-1-4842-3435-8_16
http://dx.doi.org/10.1007/978-1-4842-3435-8_15
http://dx.doi.org/10.1007/978-1-4842-3435-8_11
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

372

Start the application using dotnet run and use a browser to navigate to http://localhost:5000. The
application will seed the database as it starts, and you will see the list of products shown in Figure 16-1.

Figure 16-1. Running the example application

Completing a One-to-One Relationship
In a one-to-one relationship, an object of one type is related to a single object of another type. Two steps
are required to complete a one-to-one relationship, and in the sections that follow, I explain both steps as
I complete a relationship between the Supplier and ContactDetails classes so that each Supplier object
will be related to one ContactDetails object.

Defining the Navigation Property
The first step is to define the navigation property. This is the inverse of the property that I defined in
Chapter 14 that created the relationship between the Supplier and ContactDetails classes. When only
one navigation property is defined, Entity Framework Core assumes that a one-to-many relationship is
required, and it is only when both navigation properties are defined that a one-to-one relationship can be
created. In Listing 16-2, I have added the navigation property to the ContactDetails class that completes the
relationship.

Listing 16-2. Adding a Property in the ContactDetails.cs File in the Models Folder

namespace DataApp.Models {

 public class ContactDetails {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Phone { get; set; }
 public ContactLocation Location { get; set; }

http://dx.doi.org/10.1007/978-1-4842-3435-8_14

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

373

 public Supplier Supplier { get; set; }
 }
}

The Supplier property returns a single Supplier object, rather than the IEnumerable<T> returned by a
navigation property for a one-to-many relationship. The single object result of the navigation property tells
Entity Framework Core that this is a one-to-one relationship. The name of the navigation property is not
taken into account when determining the relationship type.

Selecting the Dependent Entity Class
The second step is to decide which class in the relationship is the dependent entity and define the foreign
key property on it. Entity Framework Core stores objects as rows in database tables. When you create a
relationship between classes, Entity Framework Core adds a column to one of the tables and uses it to
record the primary key value of the related object. The foreign key column and class whose table contains
the foreign key column is called the dependent entity, while the other class (whose table doesn’t contain the
foreign key column) is called the principal entity.

In a one-to-many relationship, the “many” class is always the dependent entity, and Entity Framework
Core always knows where the foreign key column should be defined. But either class can be the dependent
entity in a one-to-one relationship, and only the foreign key property gives Entity Framework Core the
information it needs to put the foreign key column in the right place in the database.

For this example, I am going to make the ContactDetails class the dependent entity, so I defined the
foreign key property shown in Listing 16-3, following the conventions described in Chapter 14.

HOW TO SELECT THE DEPENDENT ENTITY CLASS

When you create a relationship between classes, it can be hard to know where the foreign key property
should go. the question to ask yourself is “should an object of X type be able to exist without a related
object of Y type?” If the answer is yes, then X is your principal entity, and the foreign key property
should be defined in class Y, which is the dependent entity. If the answer is no, then Y is the principal,
and the property should be added to class X, which is dependent. In the case of the Dataapp application,
for example, the question is “should a Supplier be able to exist without a related ContactDetails
object?”

sometimes the answer to this question is obvious, which makes it easy to work out where to put the
foreign key property. For the example application, it makes sense for a product suppler to be able
to exist without a contact, but it makes no sense for the reverse to be true. that is why I made the
ContactDetails class the dependent entity.

often, however, it isn’t clear-cut, especially when dealing with abstract concepts that lack real-world
counterparts. For these relationships, the best you can do is make an informed guess and see how the
application takes shape. this isn’t ideal, but working with data isn’t always easy, and you can always
correct a mistake by moving the foreign key property and then creating and applying a new migration.

http://dx.doi.org/10.1007/978-1-4842-3435-8_14

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

374

Listing 16-3. Defining a Foreign Key Property in the ContactDetails.cs File in the Models Folder

namespace DataApp.Models {

 public class ContactDetails {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Phone { get; set; }
 public ContactLocation Location { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

The type of the foreign key property determines whether the one-to-one relationship is required
or optional. I specified long as the type for the property in Listing 16-3, which will create a required
relationship, meaning that a ContactDetails object cannot be stored in the database unless it is related to
a Supplier object. If I had used a type that can be set to null, such as long?, then an optional relationship
would have been created.

 ■ Caution always complete a relationship with a foreign key property. If you don’t specify a foreign
key property in a one-to-one relationship, then entity Framework Core may try to guess which class is the
dependent entity, which can lead to unexpected results.

Creating and Applying the Migration
You can create a migration once you have defined the navigation and foreign key properties. Run the
command shown in Listing 16-4 to create a new migration that will change the relationship between
ContactDetails and Supplier objects.

Listing 16-4. Creating a Migration for a One-to-One Relationship

dotnet ef migrations add CompleteOneToOne --context EFDatabaseContext

To understand how completing the relationship will change the database, open the <timestamp>_
CompleteOneToOne.cs file that has been created in the Migrations folder and examine the Up method.

When there was only a navigation property, Entity Framework Core created a one-to-many relationship
in which the Supplier class was the dependent entity. To reflect the new relationship, the migration
removes the existing foreign key column and creates a new one on the ContactDetails table, which makes
the ContactDetails class the dependent entity. To reflect the fact that the relationship is one-to-one, the
migration includes this statement:

...
migrationBuilder.CreateIndex(
 name: "IX_ContactDetails_SupplierId", table: "ContactDetails",
 column: "SupplierId", unique: true);
...

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

375

The one-to-one relationship is represented by creating an index that requires unique values in the foreign
key column. This ensures that a ContactDetails object can be related to a single Supplier object only.

 ■ Tip the migration cannot be applied to the database because the existing data conflicts with the new
constraints imposed by the migration. I will drop and re-create the database so that it will be reseeded when
the application is started.

Working with One-to-One Relationships
Once you have completed the relationship, performing operations on related data through a one-to-one
relationship is straightforward, as described in the sections that follow.

Querying Related Data in a One-to-One Relationship
Querying data in a one-to-one relationship is a simple task because you know that you have only one
related object to deal with. The Include method is used to tell Entity Framework Core to follow a navigation
property and query for the related object in a one-to-one relationship. You can start the query with the
objects at either end of the relationship, and for this chapter I am going to query for ContactDetails objects
and navigate to the related Supplier objects.

To demonstrate working with one-to-one relationships, I added a class file called One2OneController.cs
in the Controllers folder and used it to define the controller shown in Listing 16-5.

 ■ Note as explained in Chapter 11, I recommend using a repository in real projects, but I am working
directly with the database context class in this controller to avoid having to make three changes (controller,
repository interface, and implementation class) each time I demonstrate a different feature or operation.

Listing 16-5. The Contents of the One2OneController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;

namespace DataApp.Controllers {

 public class One2OneController : Controller {
 private EFDatabaseContext context;

 public One2OneController(EFDatabaseContext ctx) => context = ctx;

 public IActionResult Index () {
 return View(context.Set<ContactDetails>().Include(cd => cd.Supplier));
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_11

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

376

The controller defines an action method called Index that queries the database for all of the
ContactDetails objects and related Supplier objects and uses them as the view model for the default view.

To display the data to the user, I created the Views/One2One folder and added to it a new view file called
Index.cshtml with the content shown in Listing 16-6.

Listing 16-6. The Contents of the Index.cshtml File in the Views/One2One Folder

@model IEnumerable<DataApp.Models.ContactDetails>
@{
 ViewData["Title"] = "ContactDetails";
 Layout = "_Layout";
}
<table class="table table-striped table-sm">
 <tr>
 <th>ID</th>
 <th>Name</th>
 <th>Phone</th>
 <th></th>
 <th class="table-dark text-center" colspan="4">Supplier</th>
 </tr>
 @foreach (var s in Model) {
 <tr>
 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>@s.Phone</td>
 <td>
 <form>
 <button class="btn btn-sm btn-warning"
 asp-action="Edit" asp-route-id="@s.Id">
 Edit
 </button>
 </form>
 </td>
 @if (s.Supplier != null) {
 <td class="table-dark">@s.Supplier.Id</td>
 <td class="table-dark">@s.Supplier.Name</td>
 <td class="table-dark">@s.Supplier.City</td>
 <td class="table-dark">@s.Supplier.State</td>
 } else {
 <td colspan="4" class="table-dark text-center">
 No Related Supplier
 </td>
 }
 </tr>
 }
</table>
Create

The view creates a table with each row displaying a ContactDetails object and its related Supplier.
There are also button and anchor elements that target action methods that do not yet exist on the controller
but that I will used to demonstrate different features in later sections.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

377

Updating the Database and Running the Application
You will get an error if you try to apply the migration created in the database because the data that it already
contains conflicts with the changes that the migration contains. For a production database, you would take
the time to migrate the data, but for a development project, the database can be dropped and re-created.
Run the commands shown in Listing 16-7 in the DataApp project folder to drop the database and apply the
migration for the one-to-one relationship.

Listing 16-7. Dropping and Re-creating the Database

dotnet ef database drop --force --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

Start the application using dotnet run and navigate to http://localhost:5000/one2one. The database
will be seeded when the application starts, and the requested URL will target the Index action method
defined in the controller in Listing 16-5, which selects the view created in Listing 16-6 and display the results
shown in Figure 16-2.

Figure 16-2. Displaying related data in a one-to-one relationship

Creating and Updating Related Objects
You can create and update related objects through either navigation property in a one-to-one relationship.
This means, for example, that you can operate on a Supplier object through a ContactDetails object’s
Supplier property or, equally, operate on a ContactDetails object through a Supplier object’s Contact
property. I am focusing on the ContactDetails data in this section, so I added the action methods shown in
Listing 16-8 to the One2One controller to handle the editing and creation processes.

Listing 16-8. Adding Action Methods in the One2OneController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

378

namespace DataApp.Controllers {

 public class One2OneController : Controller {
 private EFDatabaseContext context;

 public One2OneController(EFDatabaseContext ctx) => context = ctx;

 public IActionResult Index () {
 return View(context.Set<ContactDetails>().Include(cd => cd.Supplier));
 }

 public IActionResult Create() => View("ContactEditor");

 public IActionResult Edit(long id) {
 return View("ContactEditor",
 context.Set<ContactDetails>()
 .Include(cd => cd.Supplier).First(cd => cd.Id == id));
 }

 [HttpPost]
 public IActionResult Update(ContactDetails details) {
 if (details.Id == 0) {
 context.Add<ContactDetails>(details);
 } else {
 context.Update<ContactDetails>(details);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

These actions follow the same pattern used in earlier chapters. The Create and Edit methods are
used to select a view called ContactEditor that will allow the user to create or modify an object, with the
EditContact method using the repository to query for the object that the user has selected. The Update
method is used to receive POST requests containing the data entered by the user and calls the context
object’s Add or Update method to update the database.

To provide the view that will allow the user to create or edit an object, I created a view called
ContactEditor.cshtml in the Views/One2One folder and added the elements shown in Listing 16-9.

Listing 16-9. The Contents of the ContactEditor.cshtml File in the Views/One2One Folder

@model DataApp.Models.ContactDetails
@{
 ViewData["Title"] = Model == null ? "Create" : "Edit";
 Layout = "_Layout";
}

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

379

<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" asp-for="Supplier.Id" />
 <h4>Contact Details</h4>
 <div class="p-1 m-1">
 <div class="form-row">
 <div class="form-group col">
 <label asp-for="Name" class="form-control-label"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group col">
 <label asp-for="Phone" class="form-control-label"></label>
 <input asp-for="Phone" class="form-control" />
 </div>
 </div>
 </div>
 <h4>Supplier</h4>
 <div class="p-1 m-1">
 <div class="form-row">
 <div class="form-group col">
 <label asp-for="Supplier.Name" class="form-control-label"></label>
 <input asp-for="Supplier.Name" class="form-control" />
 </div>
 <div class="form-group col">
 <label asp-for="Supplier.City" class="form-control-label"></label>
 <input asp-for="Supplier.City" class="form-control" />
 </div>
 <div class="form-group col">
 <label asp-for="Supplier.State" class="form-control-label"></label>
 <input asp-for="Supplier.State" class="form-control" />
 </div>
 </div>
 @if (ViewBag.Suppliers != null) {
 @Html.Partial("RelationshipEditor", Model.SupplierId)
 }
 </div>
 <div class="text-center m-1">
 <button type="submit" class="btn btn-primary">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The most important elements in this view are the ones that the user won’t see: the hidden elements
that will include the Id property values of the ContactDetails and Supplier objects. If the value of these
properties is zero, then new object will be created; for any other value an existing object will be updated.
(This view also refers to a partial view that I will create in the next section.)

Start the application using dotnet run, navigate to http://localhost:5000/one2one, and click the
Create button. Fill out the input elements and click the Save button to create new ContactDetails and
Supplier objects, which will then be displayed, as shown in Figure 16-3.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

380

Click the Edit button for the newly created object and change the value of the Name field for the Supplier object.
When you click the Save button, Entity Framework Core will follow the navigation property of the ContactDetails
object that is created by the MVC model binder and use it to update the database, as shown in Figure 16-4.

Figure 16-4. Updating existing objects via a navigation property

Figure 16-3. Creating new objects via a navigation property

Changing One-to-One Relationships
Care must be taken when changing the relationships between objects, especially with required relationships.
Entity Framework Core doesn’t enforce the restrictions on relationships before sending updates to the
database, and it is easy to perform an update that violates the referential integrity of the database, producing an
error. In the sections that follow, I show you how to update both required and optional relationships, starting
with the existing required relationship that is already configured in the database for the example application.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

381

Changing a Required One-to-One Relationship
The challenge with a required relationship is that you must avoid storing any dependent entity that is not
related to a principal entity. For the example application, that means that every ContactDetails object
must be associated with a Supplier object. Attempting to store or update a ContactDetails object that isn’t
related to a Supplier will cause an error.

A required relationship is applied in only one direction; the dependent entity must be related to a
principal entity but a principal does not have to be related to a dependent. For the example application, this
means that Supplier objects can exist without being related to a ContactDetails object. This corresponds
to how relationships are represented in the database, where the foreign key column is defined on the table
used to store dependent entities but the table for the principal entity contains no information about the
relationship at all.

This presents two different scenarios for changing an object’s relationship. The first is when you want
to change a relationship so that a dependent entity will be related to a principal entity that is not currently
in a relationship. For the example application, this means that there are unattached (or “spare”) Supplier
objects available, and one of these becomes related to a ContactDetails object, replacing the existing
Supplier. At the end of this operation, the Supplier that the ContactDetails object was originally related to
becomes one of the spares.

The second scenario is when you want to create a relationship to a Supplier that is already related to
another object. You can’t leave the existing ContactDetails object unattached without violating the database
constraints, so you must create a relationship with another Supplier, typically by performing a swap.

To add support for changing an existing relationship, I made the changes shown in Listing 16-10 to the
One2One controller.

Listing 16-10. Changing Relationships in the One2OneController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace DataApp.Controllers {

 public class One2OneController : Controller {
 private EFDatabaseContext context;

 public One2OneController(EFDatabaseContext ctx) => context = ctx;

 public IActionResult Index () {
 return View(context.Set<ContactDetails>().Include(cd => cd.Supplier));
 }

 public IActionResult Create() => View("ContactEditor");

 public IActionResult Edit(long id) {
 ViewBag.Suppliers = context.Suppliers.Include(s => s.Contact);
 return View("ContactEditor",
 context.Set<ContactDetails>()
 .Include(cd => cd.Supplier).First(cd => cd.Id == id));
 }

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

382

 [HttpPost]
 public IActionResult Update(ContactDetails details) {
 if (details.Id == 0) {
 context.Add<ContactDetails>(details);
 } else {
 context.Update<ContactDetails>(details);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

I am going to build up this feature step-by-step because it can be confusing. The only change I have
made at the moment is to create a ViewBag property that will provide the view with the Supplier data. This
will ensure that a partial view called RelationshipEditor.cshtml is included in the output when the user
edits an object, which provides me with the opportunity to present a list of existing Supplier objects with
which a relationship can be established. I created a view file with the name RelationshipEditor.cshtml in
the Views/One2One folder and added the content shown in Listing 16-11.

Listing 16-11. The Contents of the RelationshipEditor.cshtml File in the Views/One2One Folder

@model long

<div class="p-1 m-1">
 @foreach (Supplier s in ViewBag.Suppliers) {
 @if (s.Id != Model) {
 <div class="form-row">
 <div class="form-group col">
 <input type="radio" name="targetSupplierId" value="@s.Id" />
 @if (s.Contact == null) {
 <input type="hidden" name="spares" value="@s.Id" />
 }
 </div>
 <div class="form-group col-1">
 <label class="form-control-label">@s.Id</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">@s.Name</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">@s.City</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">@s.State</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">
 @(s.Contact == null ? "(None)" : s.Contact.Name)
 </label>

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

383

 </div>
 </div>
 }
 }
</div>

This partial view enumerates a sequence of Supplier objects to present a list to the user, allowing a
Supplier to be chosen using a radio button that includes a form data value called targetSupplierId in the
HTTP POST request that will be sent to the application. There is also a collection of values called spares that
contain the primary key values of the Supplier objects that are free, which I will use to work out whether
there is an existing relationship to change.

Use dotnet run to start the application, navigate to http://localhost:5000/one2one, and click the
Edit button for one of the ContactDetails objects that is shown. In addition to the input elements from the
previous examples, you will see a list of the Supplier objects, excluding the one that the current object is
related to, as shown in Figure 16-5.

Figure 16-5. Displaying a list of suppliers

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

384

Now that all of the preparation is complete, I can add the code that will change the relationship. The
first scenario is when the user selects a Supplier object that is not currently related to a ContactDetails
object. This is an easy change to make because all I have to do is change the value of the SupplierId
property of the ContactDetails object to the primary key of the “spare” Supplier. This change will break the
relationship with the current Supplier and create a relationship with the new Supplier. Listing 16-12 shows
the changes that are required to the controller to handle this type of change.

Listing 16-12. Changing Relationships in the One2OneController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(ContactDetails details,
 long? targetSupplierId, long[] spares) {
 if (details.Id == 0) {
 context.Add<ContactDetails>(details);
 } else {
 context.Update<ContactDetails>(details);
 if (targetSupplierId.HasValue) {
 if (spares.Contains(targetSupplierId.Value)) {
 details.SupplierId = targetSupplierId.Value;
 }
 }
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

The new targetSupplierId parameter will have a value when the user selects one of the existing
Supplier objects, while the spares parameter will contain the primary key values of the Supplier objects
that are not in a relationship. The new statements in the action method use the parameters to see whether
the user has selected an existing spare Supplier and, if so, sets the SupplierId property to create a
relationship.

To see the effect of this code, restart the application, and navigate to http://localhost:5000/one2one.
Click one of the Edit buttons and select the radio button for one of the Supplier objects that is shown
with (None) in the final column, indicating that it is spare. Click the Save button, and you will see that the
ContactDetails object is now related to the Supplier you selected, as illustrated by Figure 16-6.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

385

Figure 16-6. Selecting a free supplier

The second scenario is the one that causes confusion. When you want to create a relationship with
a Supplier that is not spare, additional steps are required to update the database while preserving its
referential integrity. In Listing 16-13, I have added the statements to the Update action method that will
handle this process.

Listing 16-13. Changing Existing Relationships in the One2OneController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(ContactDetails details,
 long? targetSupplierId, long[] spares) {
 if (details.Id == 0) {
 context.Add<ContactDetails>(details);
 } else {
 context.Update<ContactDetails>(details);
 if (targetSupplierId.HasValue) {
 if (spares.Contains(targetSupplierId.Value)) {
 details.SupplierId = targetSupplierId.Value;
 } else {
 ContactDetails targetDetails = context.Set<ContactDetails>()
 .FirstOrDefault(cd => cd.SupplierId == targetSupplierId);

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

386

 targetDetails.SupplierId = details.Supplier.Id;
 Supplier temp = new Supplier { Name = "temp" };
 details.Supplier = temp;
 context.SaveChanges();

 temp.Contact = null;
 details.SupplierId = targetSupplierId.Value;
 context.Suppliers.Remove(temp);
 }
 }
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

If the Supplier that the user has selected is already related to a ContactDetails object, then some
shuffling has to be done. First, I query the database for the ContactDetails object that is related to the
Supplier that the user wants and change its SupplierId property so that it is related to the object that the
user is editing. (I walk through a specific example at the end of this section, which will help you make sense
of what is happening in this sequence of updates.)

I can’t update the database at this point because two ContactDetails objects are related to the same
Supplier, which isn’t allowed in the database. And, since this is a required one-to-one relationship, I can’t
store either ContactDetails object unless it is related to a Supplier.

So, the next step is to create a new Supplier object, which I assign to a variable called temp, and use it to
create a relationship with the ContactDetail object that is being edited. At this point, I call the SaveChanges
method to store the changes, and a new row will be created in the Suppliers table for the temp object.

As a result of the update, the Supplier object that the user has selected is a spare and is available
for use. I assign its primary key value to the SupplierId property of the ContactDetails object that is
being edited, tell Entity Framework Core to delete the temporary Supplier object, and then call the
SaveChanges method again. The second update removes the row from the temp object and creates the
ContactDetails/Supplier relationship that the user requested.

 ■ Tip this kind of multistage operation is usually performed inside a transaction so that the changes applied
by the first update can be automatically undone if the second update in the operation fails for some reason. see
Chapter 24 for details of how transactions work and how they are supported by entity Framework Core.

To see how this works, restart the application using dotnet run, navigate to http://localhost:5000/
one2one, and click one of the Edit buttons. Select the radio button for a Supplier that is already related to a
ContactDetails object and click the Save button. The new code added to the action method in Listing 16-13
will update the database so that the relationships between the ContactDetails and Supplier objects are
swapped over, as shown in Figure 16-7.

http://dx.doi.org/10.1007/978-1-4842-3435-8_24

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

387

Figure 16-7. Selecting a supplier that is already related to a contact details object

I selected the Alice Jones ContactDetails object, which is related to the Surf Dudes Supplier and
told the application that I want it to be related to the Acme Co Supplier instead. The Acme Co Supplier
is related to the Bob Smith ContactDetails object. Here are the actions I perform to achieve the update
required by the user:

 1. Change the Bob Smith object’s SupplierId property to the Id value of the Surf
Dudes object.

 2. Create a temporary Supplier object and assign it to the Alice Jones Supplier
property.

 3. Update the database so that the Acme Co object is not in a relationship with a
ContactDetails object and is “spare.”

 4. Change the Alice Jones SupplierId property to the Id value of the Acme Co object.

 5. Delete the temporary Supplier object.

 6. Update the database again, which stores the relationship between the Alice Jones
and Acme Co objects and removes the temporary Supplier.

This is an undeniably awkward process—and one that causes a lot of confusion—but it ensures that the
constraints in the database are honored and avoids any errors from the database server.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

388

Changing an Optional One-to-One Relationship
The process is simpler when you are working with an optional one-to-one relationship because you don’t
have to worry about ensuring that every ContactDetails object is related to a Supplier object, only that you
avoid duplicate foreign key values. Changing the type of the foreign key property to one that can be set to
null will change the required relationship to an optional one. In Listing 16-14, I have changed the type of the
foreign ley property defined by the ContactDetails navigation property.

Listing 16-14. Changing a Property Type in the ContactDetails.cs File in the Models Folder

namespace DataApp.Models {

 public class ContactDetails {
 public long Id { get; set; }
 public string Name { get; set; }
 public string Phone { get; set; }
 public ContactLocation Location { get; set; }

 public long? SupplierId { get; set; }
 public Supplier Supplier { get; set; }
 }
}

Run the commands shown in Listing 16-15 in the DataApp project folder to update the database to
reflect the relationship change. (The database doesn’t have to be dropped and re-created because the
change loosens the restrictions in the database.)

Listing 16-15. Creating and Applying a Migration

dotnet ef migrations add OptionalOneToOne --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

Now that the relationship is optional, I can simplify the code in the controller’s Update method, as
shown in Listing 16-16.

Listing 16-16. Simplifying the Update Method in the One2OneController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(ContactDetails details,
 long? targetSupplierId, long[] spares) {
 if (details.Id == 0) {
 context.Add<ContactDetails>(details);
 } else {
 context.Update<ContactDetails>(details);
 if (targetSupplierId.HasValue) {
 if (spares.Contains(targetSupplierId.Value)) {
 details.SupplierId = targetSupplierId.Value;
 } else {
 ContactDetails targetDetails = context.Set<ContactDetails>()
 .FirstOrDefault(cd => cd.SupplierId == targetSupplierId);
 targetDetails.SupplierId = null;

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

389

 details.SupplierId = targetSupplierId.Value;
 context.SaveChanges();
 }
 }
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Swapping the related objects is no longer required because ContactDetails can now be stored in the
database without a relationship to a Supplier object. When the user selects a Supplier, I query the database
to find the ContactDetails object to which it is related and set its SupplierId property to null. This is an
important step because the SupplierId values must still be unique and two ContactDetails objects cannot
be related to the same Supplier.

To see the effect, restart the application, repeat the editing process, and select a Supplier that is already
related to a ContactDetails object. When you click the Save button, you will see that the old relationship
has been broken and that the ContactDetails object is shown as unrelated, as illustrated in Figure 16-8.

Figure 16-8. Selecting a related Supplier when using an optional relationship

Defining Many-to-Many Relationships
Entity Framework Core can be used to create and manage many-to-many relationships, where each object
of one type can have nonexclusive relationships with multiple objects of another type. Some applications
can’t get by with only one-to-one and one-to-many relationships, so the sections that follow demonstrate
how to define and use a many-to-many relationship, even though the Entity Framework Core support for
doing so is awkward.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

390

To prepare for this example, I added a class file called Shipment.cs to the Models folder and used it
to define the class shown in Listing 16-17. This class will be one of the participants in the many-to-many
relationship.

Listing 16-17. The Contents of the Shipment.cs File in the Models Folder

namespace DataApp.Models {

 public class Shipment {
 public long Id { get; set; }
 public string ShipperName {get; set;}
 public string StartCity { get; set; }
 public string EndCity { get; set; }
 }
}

The Shipment class will represent a shipment of products. To keep track of which products have been
shipped, I am going to create a many-to-many relationship with the Product class. This means that a
Product object can be related to many Shipment objects (indicating that products are delivered in multiple
shipments), and a Shipment object can be related to multiple Product objects (indicating that a shipment
can contain multiple products).

Creating the Junction Class
Entity Framework Core can represent a many-to-many relationship only by combining two one-to-many
relationships and using a junction class to join them together. Don’t worry if this doesn’t make immediate
sense because it will start to become clearer as you see how the different pieces fit together.

To create the junction class, I added a class file called ProductShipmentJunction.cs to the Models
folder and used it to define the class shown in Listing 16-18.

Listing 16-18. The Contents of the ProductShipmentJunction.cs File in the Models Folder

namespace DataApp.Models {

 public class ProductShipmentJunction {

 public long Id { get; set; }

 public long ProductId { get; set; }
 public Product Product { get; set; }

 public long ShipmentId { get; set; }
 public Shipment Shipment { get; set; }
 }
}

The sole purpose of the junction class is to act as a container for two one-to-many relationships.
The ProductShipmentJunction class defines two sets of navigation and foreign key properties that create
relationships with the Product and Shipment classes and is the dependent entity in both relationships.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

391

Completing the Many-to-Many Relationship
Completing the relationship means adding navigation properties to both the Product and Supplier classes
to complete the individual one-to-many relationships and to allow navigation from one class to the other, via
the junction class. In Listing 16-19, I have added the navigation property to the Product class.

Listing 16-19. Adding a Navigation Property in the Product.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public enum Colors {
 Red, Green, Blue
 }

 public class Product {

 public long Id { get; set; }
 public string Name { get; set; }
 public string Category { get; set; }
 public decimal Price { get; set; }
 public Colors Color { get; set; }
 public bool InStock { get; set; }

 public long SupplierId { get; set; }
 public Supplier Supplier { get; set; }

 public IEnumerable<ProductShipmentJunction>
 ProductShipments { get; set; }
 }
}

The new navigation property completes the relationship with the junction class and not the Shipment
class. In Listing 16-20, I have added the corresponding property to the Shipment class, completing its
relationship with the junction class.

Listing 16-20. Adding a Navigation Property in the Shipment.cs File in the Models Folder

using System.Collections.Generic;

namespace DataApp.Models {

 public class Shipment {
 public long Id { get; set; }
 public string ShipperName {get; set;}
 public string StartCity { get; set; }
 public string EndCity { get; set; }

 public IEnumerable<ProductShipmentJunction>
 ProductShipments { get; set; }
 }
}

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

392

Both of the entity classes define navigation properties that return IEnumerable<ProductShipmentJunction>
and have no direct relationship with one another. This makes navigation and data operations more
complicated but does build on a familiar foundation to provide the many-to-many feature, as you will see in
the sections that follow.

Run the commands shown in Listing 16-21 in the DataApp project folder to create a migration that will
update the database so that it can store the Shipment object and represent the many-to-many relationship.

Listing 16-21. Creating a Migration

dotnet ef migrations add ManyToMany --context EFDatabaseContext

If you examine the Up method in the <timestamp>_ManyToMany.cs file that has been created in
the Migrations folder, you will see that two new tables have been added. Entity Framework Core has
detected the new navigation property on the Product class and determined that it needs to store the
ProductShipmentJunction and Shipment objects. The ProductShipmentJunction class is the dependent entity
in both of its relationships, and this is the table to which Entity Framework Core adds the foreign key columns
that will be used to represent relationships with the Product and Supplier classes. The result is a one-to-many
relationship between the ProductShipmentJunction class and the Product class and a one-to-many relationship
between the ProductShipmentJunction class and the Shipment class, as shown in Figure 16-9.

Figure 16-9. Understanding how many-to-many relationships will be represented in the database

Each ProductShipmentJunction object acts as a junction between a Product and Shipment object, and
the collection of ProductShipmentJunction objects returned by the navigation properties will provide access
to the complete set of related objects, albeit indirectly, as you will see in the sections that follow.

Preparing the Application
To have some data to work with, I have added some Shipment objects to the seed data class, as shown in
Listing 16-22. There are no relationships created by the new objects, and they will exist in isolation when
they are stored in the database. I’ll show you how to create and manage the relationships shortly.

Listing 16-22. Adding Data in the SeedData.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace DataApp.Models {

 public static class SeedData {

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

393

 public static void Seed(DbContext context) {
 if (context.Database.GetPendingMigrations().Count() == 0) {
 if (context is EFDatabaseContext prodCtx
 && prodCtx.Products.Count() == 0) {
 prodCtx.Products.AddRange(Products);
 prodCtx.Set<Shipment>().AddRange(Shipments);
 } else if (context is EFCustomerContext custCtx
 && custCtx.Customers.Count() == 0) {
 custCtx.Customers.AddRange(Customers);
 }
 context.SaveChanges();
 }
 }

 public static void ClearData(DbContext context) {
 if (context is EFDatabaseContext prodCtx
 && prodCtx.Products.Count() > 0) {
 prodCtx.Products.RemoveRange(prodCtx.Products);
 prodCtx.Set<Shipment>()
 .RemoveRange(prodCtx.Set<Shipment>());
 } else if (context is EFCustomerContext custCtx
 && custCtx.Customers.Count() > 0) {
 custCtx.Customers.RemoveRange(custCtx.Customers);
 }
 context.SaveChanges();
 }

 public static Shipment[] Shipments {
 get {
 return new Shipment[] {
 new Shipment { ShipperName = "Express Co",
 StartCity = "New York", EndCity = "San Jose"},
 new Shipment { ShipperName = "Tortoise Shipping",
 StartCity = "Boston", EndCity = "Chicago"},
 new Shipment { ShipperName = "Air Express",
 StartCity = "Miami", EndCity = "Seattle"}
 };
 }
 }

 private static Product[] Products {
 get {
 // ...statements omitted for brevity...
 }
 }

 private static Customer[] Customers = {
 new Customer { Name = "Alice Smith",
 City = "New York", Country = "USA" },
 new Customer { Name = "Bob Jones",
 City = "Paris", Country = "France" },

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

394

 new Customer { Name = "Charlie Davies",
 City = "London", Country = "UK" }};
 }
}

The new Shipments property returns an array of Shipment objects, which are added to the database
using the Set<T>.AddRange method in the Seed method. The ClearData method has also been updated to
remove Shipment objects from the database, also using the Set<T> feature.

The seed data will be applied only to an empty database, so run the commands shown in Listing 16-23
in the DataApp folder to drop and re-create the database with all of the migrations, including the one created
in Listing 16-22 that adds support for the many-to-many relationship.

Listing 16-23. Dropping and Re-creating the Database

dotnet ef database drop --force --context EFDatabaseContext
dotnet ef database update --context EFDatabaseContext

Querying for Many-to-Many Data
The approach required for many-to-many relationships has an effect on the way that queries are performed.
Be careful when writing the code that queries a one-to-one database because it is easy to focus just on the
classes that are important to the application and forget about the role of the junction class.

To create a basic query, I added a class file called Many2ManyController.cs in the Controllers folder
and used it to define the controller shown in Listing 16-24.

Listing 16-24. The Contents of the Many2ManyController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

namespace DataApp.Controllers {

 public class Many2ManyController : Controller {
 private EFDatabaseContext context;

 public Many2ManyController(EFDatabaseContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(new ProductShipmentViewModel {
 Products = context.Products.Include(p => p.ProductShipments)
 .ThenInclude(ps => ps.Shipment).ToArray(),
 Shipments = context.Set<Shipment>().Include(s => s.ProductShipments)
 .ThenInclude(ps => ps.Product).ToArray()
 });
 }
 }

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

395

 public class ProductShipmentViewModel {
 public IEnumerable<Product> Products { get; set; }
 public IEnumerable<Shipment> Shipments { get; set; }
 }
}

The Many2Many controller defines an Index action method that passes a ProductShipmentViewModel
object to the default view. The ProductShipmentViewModel class allows me to pass both the Product and
Shipment data to the view in a consistent way.

The query statements in the Index action populate the properties of the view model objects with data,
using the custom context property for Product objects and the Set<T> method to query the Shipment data.
In both cases, the Include method is used to follow the navigation property to the junction class, and the
ThenInclude method is used to include the other type in the relationship.

You must take the junction class into account when you want to display the related data in this kind of
relationship. To provide the Index action defined in Listing 16-24 with a view, I created the Views/Many2Many
folder and added to it a Razor file called Index.cshtml with the content shown in Listing 16-25.

Listing 16-25. The Contents of the Index.cshtml File in the Views/Many2Many Folder

@model DataApp.Controllers.ProductShipmentViewModel
@{
 ViewData["Title"] = "Many To Many";
 Layout = "_Layout";
}

<h4>Shipments</h4>
<table class="table table-sm table-striped">
 <tr><th>ID</th><th>Name</th><th>Product Names</th><th></th></tr>
 @if (Model.Shipments?.Count() > 0) {
 @foreach (Shipment s in Model.Shipments) {
 <tr>
 <td>@s.Id</td><td>@s.ShipperName</td>
 <td>
 @(string.Join(", ", s.ProductShipments
 .Select(ps => ps.Product.Name)))
 </td>
 <td>
 <a asp-action="EditShipment" asp-route-id="@s.Id"
 class="btn btn-sm btn-primary">Edit
 </td>
 </tr>
 }
 } else {
 <tr><td colspan="3" class="text-center">No Data</td></tr>
 }
</table>

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

396

<h4>Products</h4>
<table class="table table-sm table-striped">
 <tr><th>ID</th><th>Name</th><th>Shipment Names</th></tr>
 @if (Model.Products?.Count() > 0) {
 @foreach (Product p in Model.Products) {
 <tr>
 <td>@p.Id</td><td>@p.Name</td>
 <td colspan="2">
 @(string.Join(", ", p.ProductShipments
 .Select(ps => ps.Shipment.ShipperName)))
 </td>
 </tr>
 }
 } else {
 <tr><td colspan="3" class="text-center">No Data</td></tr>
 }
</table>

The view displays tables that contain details of the Product and Shipment objects, with links that target
actions I’ll add later in this chapter to demonstrate how relationships are changed. Each table row uses
navigation properties to reach through the junction class to get the collection of related objects, which are
then processed using LINQ and the string.Join method to create an array of names.

 ■ Tip the view evaluates the sequences of data objects more than once, which is why I used the ToArray
method in the queries in listing 16-25, as described in Chapter 15, to prevent duplicate queries from being sent
to the database.

Start the application using dotnet run and navigate to http://localhost:5000/many2many. The
database will have been seeded with the data in Listing 16-25 during startup, but there are no many-to-many
relationships currently, which produces the result shown in Figure 16-10.

http://dx.doi.org/10.1007/978-1-4842-3435-8_15

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

397

Managing Many-to-Many Relationships
To begin adding support for managing relationships, I added the action method shown in Listing 16-26 to
the Many2Many controller. The action method queries the database for the object that the user has selected
and passes it to a view called ShipmentEditor.

Listing 16-26. Adding an Action in the Many2ManyController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

namespace DataApp.Controllers {

 public class Many2ManyController : Controller {
 private EFDatabaseContext context;

 public Many2ManyController(EFDatabaseContext ctx) => context = ctx;

Figure 16-10. Querying with a many-to-many relationship

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

398

 public IActionResult Index() {
 return View(new ProductShipmentViewModel {
 Products = context.Products.Include(p => p.ProductShipments)
 .ThenInclude(ps => ps.Shipment).ToArray(),
 Shipments = context.Set<Shipment>().Include(s => s.ProductShipments)
 .ThenInclude(ps => ps.Product).ToArray()
 });
 }

 public IActionResult EditShipment (long id) {
 ViewBag.Products = context.Products.Include(p => p.ProductShipments);
 return View("ShipmentEditor", context.Set<Shipment>().Find(id));
 }
 }

 public class ProductShipmentViewModel {
 public IEnumerable<Product> Products { get; set; }
 public IEnumerable<Shipment> Shipments { get; set; }
 }
}

To allow the user to edit the relationships for a Shipment object, I need the object itself and the
complete collection of Product objects so that I can show which ones are currently related and which are
not, which means that I also need to get the ProductShipmentJunction objects. I get the Product and
ProductShipmentJunction objects in a single query, using the Include method, and assign the results to
the ViewBag.Products property, which provides access to the Products and the means to work out whether
they are related to the Shipment that the user has selected. For the Shipment object itself, I use the database
context object’s Set<T> method to query the database with the Find method and pass the Shipment object as
the model to the View method.

To provide the action method with its view, I added a view file called ShipmentEditor.cshtml to the
Views/Many2Many folder and added the content shown in Listing 16-27.

Listing 16-27. The Contents of the ShipmentEditor.cshtml in the Views/Many2Many Folder

@model DataApp.Models.Shipment
@{
 ViewData["Title"] = "Many To Many";
 Layout = "_Layout";
}

<div class="m-1 p-1">
 <div class="row">
 <div class="col">Name</div>
 <div class="col">Start</div>
 <div class="col">End</div>
 </div>
 <div class="row">
 <div class="col">@Model.ShipperName</div>
 <div class="col">@Model.StartCity</div>
 <div class="col">@Model.EndCity</div>
 </div>
</div>

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

399

<form asp-action="UpdateShipment" method="post" class="p-2">
 <input type="hidden" name="id" value="@Model.Id" />
 <h4>Products</h4>
 @foreach (Product p in ViewBag.Products) {
 <div class="form-row">
 <div class="form-group col-1">
 @if (p.ProductShipments.Any(ps => ps.ShipmentId == Model.Id)) {
 <input type="checkbox" name="pids" value="@p.Id" checked />
 } else {
 <input type="checkbox" name="pids" value="@p.Id" />
 }
 </div>
 <div class="form-group col">
 <label class="form-control-label">@p.Name</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">@p.Category</label>
 </div>
 <div class="form-group col">
 <label class="form-control-label">@p.Price.ToString("C2")</label>
 </div>
 </div>
 }
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The Shipment object is used to display property values to the user and to provide the value for the
hidden input element in the form. The collection of Product objects is used to display a grid of details,
with the ProductShipmentJunction objects being used to determine whether the Product is related to the
Shipment model object.

When the user clicks the Save button presented by the view, the HTML form is sent to an action called
UpdateShipment. In Listing 16-28, I have added the action method to the Many2Many controller along with the
code required to update the database to reflect the relationships that the user has selected.

 ■ Note the code in listing 16-28 updates only the many-to-many relationship and does not update
any other aspect of the Shipment object. see Chapter18 for a demonstration of updating an object and its
many-to-many relationships in a single action method.

Listing 16-28. Updating Relationships in the Many2ManyController.cs File in the Controllers Folder

using DataApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Collections.Generic;
using System.Linq;

http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

400

namespace DataApp.Controllers {

 public class Many2ManyController : Controller {
 private EFDatabaseContext context;

 public Many2ManyController(EFDatabaseContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(new ProductShipmentViewModel {
 Products = context.Products.Include(p => p.ProductShipments)
 .ThenInclude(ps => ps.Shipment).ToArray(),
 Shipments = context.Set<Shipment>().Include(s => s.ProductShipments)
 .ThenInclude(ps => ps.Product).ToArray()
 });
 }

 public IActionResult EditShipment (long id) {
 ViewBag.Products = context.Products.Include(p => p.ProductShipments);
 return View("ShipmentEditor", context.Set<Shipment>().Find(id));
 }

 public IActionResult UpdateShipment(long id, long[] pids) {
 Shipment shipment = context.Set<Shipment>()
 .Include(s => s.ProductShipments).First(s => s.Id == id);
 shipment.ProductShipments = pids.Select(pid
 => new ProductShipmentJunction {
 ShipmentId = id, ProductId = pid
 }).ToList();
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }

 public class ProductShipmentViewModel {
 public IEnumerable<Product> Products { get; set; }
 public IEnumerable<Shipment> Shipments { get; set; }
 }
}

The new action method receives the Id value of the Shipment object that the user has edited and an
array of the Id values for the Product objects for which relationships are required.

The first step in updating the relationships is to query the database to get the Shipment object and its
related junction objects. This is an important step because if you do not retrieve the junction object from the
database, Entity Framework Core won’t delete any existing relationships that are no longer required.

 ■ Caution If you do not query for the existing relationships, then you will find that new relationships are
added to the database but that ones that the user deselects are left unchanged.

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

401

The next step is to replace the collection of junction objects with ones that contain just the relationships
that the user has chosen, like this:

...
shipment.ProductShipments = pids.Select(pid =>
 new ProductShipmentJunction { ShipmentId = id, ProductId = pid }).ToList();
...

The LINQ Select method is used to project a sequence of ProductShipmentJunction objects whose
foreign key properties are set to represent one of the relationships that the user has chosen. (The ToList
method is required to create a variable-length collection, which is what Entity Framework Core expects to
work with.)

No explicit action is required to delete the existing relationships that are no longer required. When the
SaveChanges method is called, Entity Framework Core will use the collection of junction objects created by
the action method to update the database, creating and deleting data as required.

To see the result, restart the application, navigate to http://localhost:5000/many2many, and click the
Edit button for one of the shipments. Check the Product objects for which a relationship is required and
click the Save button. You will see that the relationships are reflected in both the Shipments and Products
sections of the list and that each object can be related to multiple other objects, as shown in Figure 16-11.

Figure 16-11. Managing many-to-many relationships

Chapter 16 ■ WorkIng WIth relatIonshIp part 2

402

Summary
In this chapter, I explained how Entity Framework Core supports one-to-one and many-to-many
relationships. I showed you how to define these relationships, how to perform queries on related data, and
how to update these relationships on behalf of the user. In the next chapter, I show you how to use Entity
Framework Core with an existing database.

403© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_17

CHAPTER 17

Scaffolding an Existing Database

The examples in earlier chapters start with the C# classes that define the model and use them to create a
database, which is known as code-first development. A different approach is required for projects that need
to use an existing database, known as database-first development, and in this chapter, I show you how to
use the Entity Framework Core scaffolding feature, which inspects a database and automatically generates a
data model. This feature is best suited to simple databases, while more complex projects are better served by
manual data modeling, which I describe in Chapter 18. Table 17-1 puts this chapter in context.

Table 17-1. Putting Database Scaffolding in Context

Question Answer

What is it? Scaffolding is the process of building a data model so that Entity
Framework Core can use an existing database.

Why is it useful? Not all projects are able to create a new database. Scaffolding
inspects an existing database and creates a data model
automatically.

How is it used? Scaffolding is performed using a command-line tool.

Are there any pitfalls or limitations? The scaffolding process can’t deal with all database features and
can get bogged down with large and complex databases.

Are there any alternatives? You can model the database manually, as described in Chapter 18.

https://doi.org/10.1007/978-1-4842-3435-8_2
http://dx.doi.org/10.1007/978-1-4842-3435-8_18
http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 17 ■ SCaffolding an exiSting databaSe

404

Table 17-2 summarizes the chapter.

Preparing for This Chapter
This chapter depends on a database that is created without using Entity Framework Core in order to
simulate a database that already exists. To do this, I am going to use the Visual Studio features for executing
SQL queries to create and populate a database, as described in the sections that follow.

 ■ Note i build up the database step-by-step in the listings that follow to make the process easier to follow.
however, typing complex SQl statements is an error-prone process, and the best way to create the database
is to download the SQl file that i included in the project for this chapter, which can be downloaded from the
github repository for this book (https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc).

Understanding the Example Existing Database
To help put the SQL that appears in this part of the chapter in context, I will describe the database that I
am going create. The database will be called ZoomShoesDb, and it will represent the product database for
the fictional Zoom running shoe company. Table 17-3 lists the table that I will add to the database and the
relationships between them. Real databases are much more complex than the example, but it contains all
of the characteristics that I need to demonstrate the Entity Framework Core features for working with an
existing database.

Table 17-2. Chapter Summary

Problem Solution Listing

Scaffold an existing database Run the command line tool and then adjust the context
class for use with Entity Framework Core

1–23

Reflect database changes in the
application

Rescaffold the database 24–30

Table 17-3. The Tables in the Example Database

Name Description

Shoes This table will be the centerpiece of the database and will contain details of the products
produced by the company. This table has relationships with all of the other tables.

Categories This table contains the set of categories used to describe the company’s running
shoes. It has a many-to-many relationship with the Shoes table through the
ShoeCategoryJunction table.

ShoeCategory
Junction

This is the junction table for the many-to-many relationship between the Shoes and
Categories tables.

Colors This table contains the set of color combinations in which shoes are available and
has a one-to-many relationship with the Shoes table.

SalesCampaigns This table contains details of the sales campaign for each shoe and has a one-to-one
relationship with the Shoes table.

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 17 ■ SCaffolding an exiSting databaSe

405

Connecting to the Database Server
Start Visual Studio without opening or creating a new project. Select Tools ➤ SQL Server ➤ New Query and
enter (localdb)\MSSQLLocalDB in the Server Name field. (Note that there is only one backslash—the \
character—in the database name, rather than the two that are required when defining a connection string in
the appsettings.json file.)

Ensure that Windows Authentication is selected for the Authentication field and ensure that <default>
is selected for the Database Name field, as shown in Figure 17-1, and click the Connect button. Visual Studio
will open a new query window into which SQL statements can be entered and executed.

Figure 17-1. Connecting to the database server

Creating the Database
The first step is to create the database. Enter the statements shown in Listing 17-1 into the editor window,
right-click, and select Execute from the pop-up menu.

Chapter 17 ■ SCaffolding an exiSting databaSe

406

 ■ Note if you are using Visual Studio Code, click execute Query from the menu when you right-click the
editor pane.

Listing 17-1. Creating the Database

USE master

DROP DATABASE IF EXISTS ZoomShoesDb
GO

CREATE DATABASE ZoomShoesDb
GO

USE ZoomShoesDb
GO

The DROP DATABASE command deletes the ZoomShoesDb database if it already exists, which means
that you can return to the listing and start over if you make a mistake while preparing the database for this
chapter. The CREATE DATABASE command creates the database, and the USE command tells the database
server that the commands that follow are to be applied to the ZoomShoesDb database.

Creating the Colors Table
The order in which tables are created is important because the database server won’t allow foreign key
relationships to be defined on tables that don’t exist. The Colors table has to be created before the Shoes
table, for example, so that the Shoes table can be defined with a foreign key column that will be used for the
one-to-many relationship described in Table 17-3. Enter the SQL shown in Listing 17-2 in the SQL editor
window, right-click, and select Execute from the pop-up menu to create and populate the Colors table.

Listing 17-2. Creating and Populating the Colors Table

CREATE TABLE Colors (
 Id bigint IDENTITY(1,1) NOT NULL,
 Name nvarchar(max) NOT NULL,
 MainColor nvarchar(max) NOT NULL,
 HighlightColor nvarchar(max) NOT NULL,
CONSTRAINT PK_Colors PRIMARY KEY (Id));

SET IDENTITY_INSERT dbo.Colors ON
INSERT dbo.Colors (Id, Name, MainColor, HighlightColor)
 VALUES (1, N'Red Flash', N'Red', N'Yellow'),
 (2, N'Cool Blue', N'Dark Blue', N'Light Blue'),
 (3, N'Midnight', N'Black', N'Black'),
 (4, N'Beacon', N'Yellow', N'Green')
SET IDENTITY_INSERT dbo.Colors OFF
GO

The CREATE TABLE command creates the Colors table, which has Id, Name, MainColor, and
HighlightColor columns, with the Id column used as the primary key column. The INSERT command
populates the table, with the SET IDENTITY command used to temporarily allow data to be added with

Chapter 17 ■ SCaffolding an exiSting databaSe

407

values for the Id column. The Colors table is configured so that the database server is responsible for
generating values for the Id column, but I need to specify the values when populating the database so that I
can set up the relationships between tables correctly.

To test that you have created the table correctly, replace the text in the editor window with the SQL
query shown in Listing 17-3.

Listing 17-3. Querying the Colors Table

SELECT * FROM Colors

Right-click in the editor window and select Execute from the pop-up menu; you should see the output
in Table 17-4, reflecting the structure and contents of the Colors table.

 ■ Caution if you don’t get the expected results, then return to listing 17-1 and start over. You may be
tempted to carry on regardless, but you will not get the expected results later in the chapter.

Creating the Shoes Table
The Shoes table contains details of the products that are produced by the shoe company. To create the table,
replace the text in the editor window with the SQL shown in Listing 17-4 and then right-click and select
Execute from the pop-up menu.

Listing 17-4. Creating and Populating the Shoes Table

CREATE TABLE Shoes (
 Id bigint IDENTITY(1,1) NOT NULL,
 Name nvarchar(max) NOT NULL,
 ColorId bigint NOT NULL,
 Price decimal(18, 2) NOT NULL,
 CONSTRAINT PK_Shoes PRIMARY KEY (Id),
 CONSTRAINT FK_Shoes_Colors FOREIGN KEY(ColorId) REFERENCES dbo.Colors (Id))

SET IDENTITY_INSERT dbo.Shoes ON
INSERT dbo.Shoes (Id, Name, ColorId, Price)
 VALUES (1, N'Road Rocket', 2, 145.0000),
 (2, N'Trail Blazer', 4, 150.0000),
 (3, N'All Terrain Monster', 3, 250.0000),
 (4, N'Track Star', 1, 120.0000)
SET IDENTITY_INSERT dbo.Shoes OFF
GO

Table 17-4. The Structure and Data of the Colors Table

Id Name MainColor HighlightColor

1 Red Flash Red Yellow

2 Cool Blue Dark Blue Light Blue

3 Midnight Black Black

Chapter 17 ■ SCaffolding an exiSting databaSe

408

The CREATE TABLE command creates a table with Id, Name, ColorId, and Price columns. The Id column
holds the primary keys, and there is a foreign key relationship between the ColorId column and the Id
column of the Colors table.

To ensure that the Shoes table has been created and populated correctly, replace the contents of the
editor window with the query shown in Listing 17-5.

Listing 17-5. Querying the Shoes Table

SELECT * FROM Shoes

Right-click in the editor window and select Execute from the pop-up menu, and you should see the
output in Table 17-5, reflecting the structure and contents of the Shoes table.

Creating the SalesCampaigns Table
The SalesCampaigns table has a one-to-one relationship with the Shoes table and contains details of the
sales campaign associated with each shoe product, where the Shoes table is the principal entity in the
relationship. To create and populate the table, replace the contents of the editor with the SQL shown in
Listing 17-6. Right-click in the editor window and select Execute from the pop-up menu to create and
populate the table.

Listing 17-6. Creating and Populating the SalesCampaigns Table

CREATE TABLE SalesCampaigns(
 Id bigint IDENTITY(1,1) NOT NULL,
 Slogan nvarchar(max) NULL,
 MaxDiscount int NULL,
 LaunchDate date NULL,
 ShoeId bigint NOT NULL,
 CONSTRAINT PK_SalesCampaigns PRIMARY KEY (Id),
 CONSTRAINT FK_SalesCampaigns_Shoes FOREIGN KEY(ShoeId)
 REFERENCES dbo.Shoes (Id),
 INDEX IX_SalesCampaigns_ShoeId UNIQUE (ShoeId))

SET IDENTITY_INSERT dbo.SalesCampaigns ON
INSERT dbo.SalesCampaigns (Id, Slogan, MaxDiscount,
 LaunchDate, ShoeId) VALUES
 (1, N'Jet-Powered Shoes for the Win!', 20, CAST(N'2019-01-01' AS Date), 1),
 (2, N'"Blaze" a Trail with Side-Mounted Flame Throwers ',
 15, CAST(N'2019-05-03' AS Date), 2),
 (3, N'All Surfaces. All Weathers. Victory Guaranteed.',

Table 17-5. The Structure and Data of the Shoes Table

Id Name ColorId Price

1 Road Rocket 2 145.00

2 Trail Blazer 4 150.00

3 All Terrain Monster 3 250.00

4 Track Star 1 120.00

Chapter 17 ■ SCaffolding an exiSting databaSe

409

 5, CAST(N'2020-01-01' AS Date), 3),
 (4, N'Contains an Actual Star to Dazzle Competitors',
 25, CAST(N'2020-01-01' AS Date), 4)
SET IDENTITY_INSERT dbo.SalesCampaigns OFF
GO

The SalesCampaigns table has Id, Slogan, MaxDiscount, LauchDate, and ShoeId columns. The Id
column is used to store primary keys, and the ShoeId column is a foreign key column that stores values from
the Id column of the Shoes table. There is also an index that requires unique values on the ShoeId column
and enforces the one-to-one relationship with the Shoes table.

To ensure that the table has been created and populated correctly, replace the contents of the editor
window with the query shown in Listing 17-7.

Listing 17-7. Querying the SalesCampaigns Table

select * from SalesCampaigns

Right-click in the editor window and select Execute from the pop-up menu, and you should see the
output in Table 17-6, reflecting the structure and contents of the table.

Creating the Categories and ShoeCategoryJunction Tables
To complete the database, I am going to create the Categories table and the ShoeCategoryJunction table
that will allow a many-to-many relationship with the Shoes table. To create and populate these tables,
replace the contents of the editor window with the SQL that is shown in Listing 17-8. Right-click in the editor
window and select Execute to perform the actions specified by the SQL commands.

Listing 17-8. Creating the Categories and ShoeCategoryJunction Tables

CREATE TABLE Categories(
 Id bigint IDENTITY(1,1) NOT NULL,
 Name nvarchar(max) NOT NULL,
 CONSTRAINT PK_Categories PRIMARY KEY (id));

SET IDENTITY_INSERT dbo.Categories ON
INSERT dbo.Categories (Id, Name) VALUES
 (1, N'Road/Tarmac'), (2, N'Track'), (3, N'Trail'), (4, N'Road to Trail')
SET IDENTITY_INSERT dbo.Categories OFF
GO

Table 17-6. The Structure and Data of the SalesCampaigns Table

Id Slogan MaxDiscount LaunchDate ShoeId

1 Jet-Powered Shoes for the Win! 20 2019-01-01 1

2 "Blaze" a Trail with Side-Mounted Flame Throwers 15 2019-05-03 2

3 All Surfaces. All Weathers. Victory Guaranteed. 5 2020-01-01 3

4 Contains an Actual Star to Dazzle Competitors 25 2020-01-01 4

Chapter 17 ■ SCaffolding an exiSting databaSe

410

CREATE TABLE ShoeCategoryJunction(
 Id bigint IDENTITY(1,1) NOT NULL,
 ShoeId bigint NOT NULL,
 CategoryId bigint NOT NULL,
 CONSTRAINT PK_ShoeCategoryJunction PRIMARY KEY (Id),
 CONSTRAINT FK_ShoeCategoryJunction_Categories FOREIGN KEY(CategoryId)
 REFERENCES dbo.Categories (Id),
CONSTRAINT FK_ShoeCategoryJunction_Shoes FOREIGN KEY(ShoeId)
 REFERENCES dbo.Shoes (Id))

SET IDENTITY_INSERT dbo.ShoeCategoryJunction ON
INSERT dbo.ShoeCategoryJunction (Id, ShoeId, CategoryId)
 VALUES (1, 1, 1), (2, 2, 3), (3, 2, 4), (4, 3, 1),
 (5, 3, 2), (6, 3, 3), (7, 3, 4), (8, 4, 2)
SET IDENTITY_INSERT dbo.ShoeCategoryJunction OFF
GO

The Categories table has Id and Name columns, with the Id column used for primary keys. The
ShoeCategoryJunction has Id, ShoeId, and CategoryId columns, with the Id column used for primary keys
and the other columns used for foreign key relationships with the Shoes and Categories tables. This is the
same approach to handling many-to-many relationships that I described in Chapter 16.

To ensure that the table has been created and populated correctly, replace the contents of the editor
window with the query shown in Listing 17-9.

Listing 17-9. Querying the Categories and ShoeCategoryJunction Tables

SELECT * FROM Categories
INNER JOIN ShoeCategoryJunction
ON Categories.Id = ShoeCategoryJunction.ShoeId

Right-click in the editor window and select Execute from the pop-up menu, and you should see the
output in Table 17-7, which combines the structure and content of the two tables.

Table 17-7. The Structure and Data for the Categories and ShoeCategoryJunction Tables

Id Name Id ShoeId CategoryId

1 Road/Tarmac 1 1 1

2 Track 2 2 3

2 Track 3 2 4

3 Trail 4 3 1

3 Trail 5 3 2

3 Trail 6 3 3

3 Trail 7 3 4

4 Road to Trail 8 4 2

http://dx.doi.org/10.1007/978-1-4842-3435-8_16

Chapter 17 ■ SCaffolding an exiSting databaSe

411

Creating the ASP.NET Core MVC Project
In addition to the database, I need an ASP.NET Core MVC project so that I can demonstrate how Entity
Framework Core can be used with an existing database. To create the project, select New ➤ Project from the
Visual Studio File menu, select the ASP.NET Core Web Application template, and set the name of the project
to be ExistingDb, as shown in Figure 17-2. (You will be prompted to save the contents of the SQL editor
window. As long as you received the expected results for each query, you won’t need the SQL statements
again.) Click the OK button to proceed with the project creation process.

Figure 17-2. Creating the new ASP.NET Core MVC project

Chapter 17 ■ SCaffolding an exiSting databaSe

412

Ensure that .NET Core and ASP.NET Core 2.0 are selected in the menu at the top of the window
and select the Empty project template, as shown in Figure 17-3. Click the OK button to complete the
configuration process and create the new project.

Adding the Tools NuGet Package
The metapackage that Visual Studio adds to new projects contains the ASP.NET Core MVC and Entity
Framework Core functionality, but a manual addition is required to set up the Entity Framework Core
command-line tools. Right-click the ExistingDb project item in the Solution Explorer, select Edit ExistingDb.
csproj from the pop-up menu, and add the configuration element shown in Listing 17-10.

Listing 17-10. Adding the Tools Package in the ExistingDb.csproj File in the ExistingDb Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

Figure 17-3. Configuring the new ASP.NET Core MVC project

Chapter 17 ■ SCaffolding an exiSting databaSe

413

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.5" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

Save the file, and the package will be downloaded and installed, providing the project with the
command-line tools that are required for the examples in this chapter.

Configuring ASP.NET Core Middleware and Services
The Empty project template requires configuration to set up the middleware and services in the Startup
class required for an MVC application, as shown in Listing 17-11.

Listing 17-11. Configuring Middleware and Services in the Startup.cs File in the ExistingDb Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ExistingDb {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

I have not added any configuration statements for Entity Framework Core. I’ll set up the services
required to work with the database later in the chapter.

Chapter 17 ■ SCaffolding an exiSting databaSe

414

Adding a Controller and View and Installing Bootstrap
The final preparation for this chapter is to create a simple controller and view so that the application can be
tested and to install the Bootstrap CSS package so that I can easily style the HTML content displayed to the
user. For the controller, I created the Controllers folder and added to it a class file called HomeController.
cs, with the content shown in Listing 17-12.

Listing 17-12. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ExistingDb.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 return View();
 }
 }
}

I will build on this controller later in the chapter, but at the moment there is one action method that
selects the default view. To create the view, I created the Views/Home folder and added to it a file called
Index.cshtml, to which I added the content shown in Listing 17-13.

Listing 17-13. The Contents of the Index.cshtml File in the Views/Home Folder

@{
 ViewData["Title"] = "Existing Database";
 Layout = "_Layout";
}

<h2 class="bg-info p-1 m-1 text-white">Placeholder for Data</h2>

To provide a shared layout for the views in the example application, I created the Views/Shared folder
and added to it a file called _Layout.cshtml with the content shown in Listing 17-14.

Listing 17-14. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body>
 <div class="p-2">
 @RenderBody()
 </div>
</body>
</html>

Chapter 17 ■ SCaffolding an exiSting databaSe

415

To install the Bootstrap CSS package, I used the the JSON File template (found in the ASP.NET
Core ➤ Web ➤ General category) to create a file called .bowerrc with the content shown in Listing 17-15.
(It is important to pay attention to this file name: it starts with a period, contains the letter r twice and has no
file extension).

Listing 17-15. The Contents of the .bowerrc File in the ExistingDb Folder

{
 "directory": "wwwroot/lib"
}

I used the JSON File template again to create a file called bower.json, with the content shown in Listing 4-9.

Listing 17-16. The Contents of the bower.json File in the ExistingDb Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0"
 }
}

When you save the changes to the file, the Bootstrap package will be downloaded and installed in the
wwwroot/lib folder.

Testing the Example Application
To simplify the process of working with the application, edit the Properties/launchSettings.json file and
change the two URLs that it contains so they both specify port 5000, as shown in Listing 17-17. This is the
port that I will use in the URLs to demonstrate different features of the example application.

Listing 17-17. Changing Ports in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "ExistingDb": {

http://dx.doi.org/10.1007/978-1-4842-3435-8_4#Par34

Chapter 17 ■ SCaffolding an exiSting databaSe

416

 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000/"
 }
 }
}

Start the application using dotnet run in the ExistingDb project folder and use a browser to navigate to
http://localhost:5000 to see the placeholder content, as shown in Figure 17-4.

Scaffolding an Existing Database
The easiest way to work with an existing database is to use the Entity Framework Core scaffolding feature,
which inspects a database and creates the context and model classes required to perform queries and other
data operations.

Even if you create a data model for an existing database manually, as I describe in Chapter 18, it can still
be worth using the scaffolding feature to make sure that the description of the database that you have been
provided is correct. In the sections that follow, I show you how to use the scaffolding feature and explain how
to use the data model it creates in an ASP.NET Core MVC application.

Performing the Scaffold Process
The scaffolding process is performed using a command-line tool contained in the package added to the
example project in Listing 17-10. Run the command shown in Listing 17-18 in the ExistingDb project folder
to inspect the example database and generate a data model.

 ■ Tip the layout of the page makes it difficult to show complex commands, but you must take care to enter
all parts of listing 17-18 into a single line in the command prompt.

Figure 17-4. Running the example application

http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 17 ■ SCaffolding an exiSting databaSe

417

Listing 17-18. Scaffolding an Existing Database

dotnet ef dbcontext scaffold "Server=(localdb)\MSSQLLocalDB;Database=ZoomShoesDb"
"Microsoft.EntityFrameworkCore.SqlServer" --output-dir "Models/Scaffold" --context
ScaffoldContext

The basic command is dotnet ef dbcontext scaffold, which runs the scaffolding process. The first
two arguments are required and provide the connection string for the database that is to be modeled and
the name of the database provider. There are two optional arguments in Listing 17-18: the --output-dir
argument specifies the directory (and namespace) for the C# classes generated by the scaffolding process,
and the --context argument specifies the name of the context class used to access the database.

DEALING WITH PROBLEM DATABASES

the scaffolding process that results from the command in listing 17-18 is seamless because the
example database is simple and created specifically for this chapter. When you scaffold a real database,
it is important to keep a close eye on the output from the dotnet ef command because this is where
any problem will be reported.

Some issues will just be warnings, where some aspect of the database cannot be mapped cleanly into
entity framework Core, resulting in a compromise in the data model that is created. but there can also
be showstoppers where entity framework Core doesn’t know how to proceed. for these situations,
you can either model the database manually, as described in Chapter 18, or restrict the scope of the
scaffolding process by using the --table argument to select the tables that you want to work with and
exclude those that cause problems.

In Listing 17-18, I provided the connection string for the example database created at the start of
the chapter and selected the SQL Server provider. The optional arguments specify that the data model
classes should be placed in the Models/Scaffold folder and that the context class should be called
ScaffoldContext.

The command will take a moment to run. When it is complete, you will see that a Models/Scaffold
folder is shown in the Solution Explorer, containing a class that represents each table in the database, along
with a context class called ScaffoldContext.

Each class that has been generated by the scaffolding process follows roughly the same style that I
described in earlier chapters. For example, here are the contents of the Shoes.cs file, which will be used to
represent rows of data from the Shoes table in the database:

using System;
using System.Collections.Generic;

namespace ExistingDb.Models.Scaffold {

 public partial class Shoes {

 public Shoes() {
 ShoeCategoryJunction = new HashSet<ShoeCategoryJunction>();
 }

http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 17 ■ SCaffolding an exiSting databaSe

418

 public long Id { get; set; }
 public string Name { get; set; }
 public long ColorId { get; set; }
 public decimal Price { get; set; }

 public Colors Color { get; set; }
 public SalesCampaigns SalesCampaigns { get; set; }
 public ICollection<ShoeCategoryJunction> ShoeCategoryJunction { get; set; }
 }
}

You can see how this class matches up with the ones created in earlier chapters. The Id, Name, ColorId,
and Price properties correspond to the columns added to the Shoes table. The Color, SalesCampaigns,
and ShoeCategoryJunction properties allow navigation to related data, corresponding to the relationships
between the tables in the database.

There are some small differences. The class name, for example, is Shoes because the scaffolding
process uses the names of the database table. And the constructor initializes the collection for the
ShoeCategoryJunction property, which is something that I omitted in earlier chapters, preferring to deal
with null values when there is no data available, rather than an empty collection.

The scaffolding process also creates a context class, which has DbSet<T> properties for each of the tables
in the database. The context also overrides the OnConfiguring and OnModelCreating methods, which were
not required in earlier chapters. Here are the contents of the ScaffoldContext.cs file, with some of the
statements from the OnModelCreating method removed for brevity:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace ExistingDb.Models.Scaffold {

 public partial class ScaffoldContext : DbContext {

 public virtual DbSet<Categories> Categories { get; set; }
 public virtual DbSet<Colors> Colors { get; set; }
 public virtual DbSet<SalesCampaigns> SalesCampaigns { get; set; }
 public virtual DbSet<ShoeCategoryJunction> ShoeCategoryJunction { get; set; }
 public virtual DbSet<Shoes> Shoes { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder
 optionsBuilder) {
 if (!optionsBuilder.IsConfigured) {
 optionsBuilder.UseSqlServer(
 @"Server=(localdb)\MSSQLLocalDB;Database=ZoomShoesDb");
 }
 }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

Chapter 17 ■ SCaffolding an exiSting databaSe

419

 // ...statements omitted for brevity...

 modelBuilder.Entity<Shoes>(entity => {
 entity.Property(e => e.Name).IsRequired();

 entity.HasOne(d => d.Color)
 .WithMany(p => p.Shoes)
 .HasForeignKey(d => d.ColorId)
 .OnDelete(DeleteBehavior.ClientSetNull)
 .HasConstraintName("FK_Shoes_Colors");
 });
 }
 }
}

The functionality provided by the code in these methods was elsewhere in earlier chapters. The
OnConfiguring method contains the connection string for the database, which is defined in a settings file
in ASP.NET Core MVC projects. The OnModelCreating method contains the statements that create the
mapping between the database and the data model classes, and these statements were part of the snapshot
class created by migrations. I’ll move the connection string to its normal location shortly, and I explain the
purpose of the statements in the OnModelCreating method in Chapter 18.

Using a Scaffolded Data Model in the ASP.NET Core MVC
Once you have created the data model, it can be used in an ASP.NET Core MVC with just a few changes, as I
describe in the sections that follow.

Creating the Configuration File
The first step is to create a configuration file to contain the connection string that the scaffolding process
put into the context class (and which won’t work for ASP.NET Core MVC applications). I used the ASP.NET
Configuration File item template to add a file called appsettings.json to the project and make the changes
shown in Listing 17-19.

Listing 17-19. The Contents of the appsettings.json File in the ExistingDb Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=ZoomShoesDb;MultipleActiv
eResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 17 ■ SCaffolding an exiSting databaSe

420

In addition to changing the connection string, I have added the Logging configuration section so that
Entity Framework Core will display details of the queries it sends to the database server. The logging changes
are not required to get the data model working but are useful so that you can see how Entity Framework Core
works with the database.

Updating the Context Class
The context class created by the scaffolding process must be modified before it can be used with the rest
of the ASP.NET Core MVC application. Remove or comment out the OnConfiguring method and replace it
with a constructor that accepts its configuration options through dependency injection, as shown in
Listing 17-20.

Listing 17-20. Updating the Context in the ScaffoldContext.cs File in the Models/Scaffold Folder

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace ExistingDb.Models.Scaffold {

 public partial class ScaffoldContext : DbContext {

 public virtual DbSet<Categories> Categories { get; set; }
 public virtual DbSet<Colors> Colors { get; set; }
 public virtual DbSet<SalesCampaigns> SalesCampaigns { get; set; }
 public virtual DbSet<ShoeCategoryJunction> ShoeCategoryJunction { get; set; }
 public virtual DbSet<Shoes> Shoes { get; set; }

 public ScaffoldContext(DbContextOptions<ScaffoldContext> options)
 : base(options) { }

 //protected override void OnConfiguring(DbContextOptionsBuilder
 // optionsBuilder) {
 // if (!optionsBuilder.IsConfigured) {
 // optionsBuilder.UseSqlServer
 // (@"Server=(localdb)\MSSQLLocalDB;Database=ZoomShoesDb");
 // }
 //}

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 // ...statements omitted for brevity...

 }
 }
}

Chapter 17 ■ SCaffolding an exiSting databaSe

421

Registering Middleware and Services
The scaffolding process doesn’t configure Entity Framework Core for use with ASP.NET Core MVC or register
the context class as a service for dependency injection. To get the different parts of the application working
together, I add the statements shown in Listing 17-21 to the Startup class.

Listing 17-21. Configuring the Application in the Startup.cs File in the ExistingDb Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using ExistingDb.Models.Scaffold;
using Microsoft.EntityFrameworkCore;

namespace ExistingDb {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<ScaffoldContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Updating the Controller and View
The rest of the application is ready, and all that remains is to update the controller so that it gets the data
from the database and displays it to the user. In Listing 17-22, I have added statements to the Home controller
that query the database for data. I am only going to add some basic features because I am going make
changes to the data model and I don’t want to have to work every change through multiple action methods
and views.

Chapter 17 ■ SCaffolding an exiSting databaSe

422

Listing 17-22. Querying for Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ExistingDb.Models.Scaffold;
using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Controllers {

 public class HomeController : Controller {
 private ScaffoldContext context;

 public HomeController(ScaffoldContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Shoes
 .Include(s => s.Color)
 .Include(s => s.SalesCampaigns)
 .Include(s => s.ShoeCategoryJunction)
 .ThenInclude(junct => junct.Category));
 }
 }
}

Working with a scaffolding data model is just the same as using one that has been created with a
migration. In Listing 17-22, I have queried the database using the Shoes property defined by the context class
and followed the navigation properties to the related data with the Include and ThenInclude methods.

To enable the ASP.NET Core MVC tag helpers and provide easy access to the model classes in views, I
added a file called _ViewImports.cshtml in the Views folder with the content shown in Listing 17-23.

Listing 17-23. The Contents of the _ViewImports.cshtml File in the Views Folder

@using ExistingDb.Models.Scaffold
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

To display the data to the user, I replace the contents of the Index.cshtml file in the Views/Home folder
with the elements shown in Listing 17-24.

Listing 17-24. Displaying Data in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Shoes>
@{
 ViewData["Title"] = "Existing Database";
 Layout = "_Layout";
}

<div class="container-fluid">
 <h4 class="bg-primary p-3 text-white">Zoom Shoes</h4>
 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th><th>Price</th><th>Color</th>
 <th>Slogan</th><th>Categories</th>

Chapter 17 ■ SCaffolding an exiSting databaSe

423

 </tr>
 </thead>
 <tbody>
 @foreach (Shoes s in Model) {
 <tr>
 <td>@s.Name</td>
 <td>$@s.Price.ToString("F2")</td>
 <td>@s.Color.Name</td>
 <td>@s.SalesCampaigns?.Slogan</td>
 <td>
 @String.Join(", ", s.ShoeCategoryJunction
 .Select(j => j.Category.Name))
 </td>
 </tr>
 }
 </tbody>
 </table>
</div>

Start the application using dotnet run and navigate to http://localhost:5000; you will see a table
containing details of the data in the database, accessed through the data model created using the scaffolding
process, as shown in Figure 17-5.

Responding to Database Changes
If you don’t have sole use of an existing database, you may have to respond to changes that are made
for the benefit of other applications. In the sections that follow, I simulate a change to the database and
demonstrate how to update the scaffolded data model to accommodate the change in the application.

Figure 17-5. Using a scaffolded data model

Chapter 17 ■ SCaffolding an exiSting databaSe

424

Modifying the Database
To simulate a change to the database, select Tools ➤ SQL Server ➤ New Query and connect to the database
using the steps described at the start of this chapter. Paste the SQL shown in Listing 17-25 into the editor,
right-click, and select Execute from the pop-up menu.

 ■ Tip if you want to reset the database, then you can execute the SQl statements in listings 17-1 to 17-6.
(this process is easier if you download the project for this chapter from the github repository, which contains
SQl files that contain all of the require statements.)

Listing 17-25. Changing the Database

USE ZoomShoesDb

CREATE TABLE Fittings (
 Id bigint IDENTITY(1,1) NOT NULL,
 Name nvarchar(max) NOT NULL,
CONSTRAINT PK_Fittings PRIMARY KEY (Id));
GO

SET IDENTITY_INSERT Fittings ON
INSERT Fittings (Id, Name)
 VALUES (1, N'Narrow'),
 (2, N'Standard'),
 (3, N'Wide'),
 (4, N'Big Foot')
SET IDENTITY_INSERT Fittings OFF
GO

ALTER TABLE Shoes
 ADD FittingId bigint
ALTER TABLE Shoes
 ADD CONSTRAINT FK_Shoes_Fittings FOREIGN KEY(FittingId) REFERENCES Fittings (Id)
GO

UPDATE Shoes SET FittingId = 2
GO

SELECT * from Shoes

Chapter 17 ■ SCaffolding an exiSting databaSe

425

These statements add a Fittings table and add a foreign key property on the Shoes table that
references the primary key column of the new table. The final statement queries the table to show the effect
of the change and will produce the data shown in Table 17-8.

This type of change causes problems for the ASP.NET Core MVC application because the data model
doesn’t have any representation of the OutOfStock column. Queries of the Shoes database won’t contain all
of the data in the table, and the application won’t be able to store new objects in the Shoes table because the
required value for the OutOfStock column will be missing.

Updating the Data Model
Updating the data model to reflect the change in the database means repeating the scaffolding process. Run
the command shown in Listing 17-26 in the ExistingDb project folder, ensuring that you include the two
additional arguments shown in bold.

Listing 17-26. Updating the Data Model

dotnet ef dbcontext scaffold "Server=(localdb)\MSSQLLocalDB;Database=ZoomShoesDb"
"Microsoft.EntityFrameworkCore.SqlServer" --output-dir "Models/Scaffold" --context
ScaffoldContext --force --no-build

The --force argument tells Entity Framework Core to replace the existing data model classes with
new ones. The --no-build argument prevents the project from being built before the scaffolding process is
performed. It is easy to get into a situation where the scaffolding process generates a data model that is out
of sync with the rest of the application, such as controllers and views. Entity Framework Core tries to build
the project by default before scaffolding a database, and a failed build—commonly because a property or
data model class has been removed—will prevent the scaffolding process from being performed. Using the
--no-build argument avoids this problem and lets you update the rest of the application once the database
has been scaffolded.

Table 17-8. The Effect of Adding a Column to the Shoes Table

Id Name ColorId Price FittingId

1 Road Rocket 2 145.00 2

2 Trail Blazer 4 150.00 2

3 All Terrain Monster 3 250.00 2

4 Track Star 1 120.00 2

Chapter 17 ■ SCaffolding an exiSting databaSe

426

Updating the Context Class
The scaffolding process will replace the context class, overwriting the changes required to support an ASP.
NET Core MVC application. When the scaffolding process is complete, repeat the process of commenting
out the OnConfiguring method and adding a constructor that receives a configuration options argument, as
shown in Listing 17-27.

Listing 17-27. Updating the Context in the ScaffoldContext.cs File in the Models/Scaffold Folder

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace ExistingDb.Models.Scaffold {
 public partial class ScaffoldContext : DbContext {
 public virtual DbSet<Categories> Categories { get; set; }
 public virtual DbSet<Colors> Colors { get; set; }
 public virtual DbSet<Fittings> Fittings { get; set; }
 public virtual DbSet<SalesCampaigns> SalesCampaigns { get; set; }
 public virtual DbSet<ShoeCategoryJunction> ShoeCategoryJunction { get; set; }
 public virtual DbSet<Shoes> Shoes { get; set; }

 public ScaffoldContext(DbContextOptions<ScaffoldContext> options)
 : base(options) { }

 //protected override void OnConfiguring(DbContextOptionsBuilder
 // optionsBuilder) {
 // if (!optionsBuilder.IsConfigured) {
 // optionsBuilder.UseSqlServer
 // (@"Server=(localdb)\MSSQLLocalDB;Database=ZoomShoesDb");
 // }
 //}

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 // ...statements omitted for brevity...
 }
 }
}

Updating the Controllers and Views
Depending on the changes to the database, you will also have to update the rest of the project to ensure
that the application works correctly. For the example application, that means updating the Home controller
to follow the new navigation property added to the Shoes class to include the related data in its queries and
updating the view to display that data. Listing 17-28 shows the change to the controller.

Chapter 17 ■ SCaffolding an exiSting databaSe

427

Listing 17-28. Following a New Navigation Property in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ExistingDb.Models.Scaffold;
using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Controllers {

 public class HomeController : Controller {
 private ScaffoldContext context;

 public HomeController(ScaffoldContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Shoes
 .Include(s => s.Color)
 .Include(s => s.SalesCampaigns)
 .Include(s => s.ShoeCategoryJunction)
 .ThenInclude(junct => junct.Category)
 .Include(s => s.Fitting));
 }
 }
}

To display the additional data to the user, Listing 17-29 adds a column to the table in the
Index.cshtml view.

Listing 17-29. Displaying Additional Data in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Shoes>
@{
 ViewData["Title"] = "Existing Database";
 Layout = "_Layout";
}

<div class="container-fluid">
 <h4 class="bg-primary p-3 text-white">Zoom Shoes</h4>
 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Color</th>
 <th>Slogan</th>
 <th>Categories</th>
 <th>Fitting</th>
 </tr>
 </thead>
 <tbody>
 @foreach (Shoes s in Model) {
 <tr>
 <td>@s.Name</td>

Chapter 17 ■ SCaffolding an exiSting databaSe

428

 <td>$@s.Price.ToString("F2")</td>
 <td>@s.Color.Name</td>
 <td>@s.SalesCampaigns?.Slogan</td>
 <td>
 @String.Join(", ", s.ShoeCategoryJunction
 .Select(j => j.Category.Name))
 </td>
 <td>@s.Fitting.Name</td>
 </tr>
 }
 </tbody>
 </table>
</div>

To see the effect of the database change, start the application using dotnet run and navigate to
http://localhost:5000, which will produce the result shown in Figure 17-6.

Adding Persistent Data Model Features
Many data models are simply classes that act as collections of data and navigation properties to represent
the data in the database. But some applications require additional code in the data model classes to perform
tasks such as validation or to synthesize data that isn’t available in the database. Re-creating the data model
each time the database changes can present a problem because the model classes are overwritten, meaning
that any additional logic will be lost.

Figure 17-6. Displaying data from the updated database

Chapter 17 ■ SCaffolding an exiSting databaSe

429

To address this, Entity Framework Core creates partial classes when it creates the data model during
the scaffolding process. As an example, here is the definition of the Shoes class that Entity Framework Core
created:

...
public partial class Shoes {
...

Partial classes can be defined in multiple files, which allows any additional logic required by the
application to be defined separately from the file created by the scaffolding process and ensures that it will
survive changes in the database. To demonstrate how this works, I created the Models/Logic folder and
added to it a class file called Shoes.cs with the code shown in Listing 17-30.

Listing 17-30. The Contents of the Shoes.cs File in the Models/Logic Folder

namespace ExistingDb.Models.Scaffold {

 public partial class Shoes {

 public decimal PriceIncTax => this.Price * 1.2m;
 }
}

The different parts of a partial class must be defined in the same namespace, which is why this class is
in the ExistingDb.Models.Scaffold namespace, even though the class file is in the Logic folder. One part of
a partial class can access the members of the other parts, which means that the PriceIncTax property is able
to read the value of the Price property.

 ■ Caution defining additional logic for model classes in a partial class means that the code will not be
affected when the data model is re-created, but you must still ensure the code remains useful and accurate
following a database change.

In Listing 17-31, I have updated the view that displays the data to use the property defined in
Listing 17-30.

Listing 17-31. Using a Partial Class Property in the Index.cshtml File in the Views/Home Folder

...
<tbody>
 @foreach (Shoes s in Model) {
 <tr>
 <td>@s.Name</td>
 <td>$@s.PriceIncTax.ToString("F2")</td>
 <td>@s.Color.Name</td>
 <td>@s.SalesCampaigns?.Slogan</td>
 <td>

Chapter 17 ■ SCaffolding an exiSting databaSe

430

 @String.Join(", ", s.ShoeCategoryJunction
 .Select(j => j.Category.Name))
 </td>
 <td>@s.Fitting.Name</td>
 </tr>
 }
</tbody>
...

To see the effect of the additional logic, start the application with dotnet run and navigate to
http://localhost:5000, which will show the prices with a 20 percent increase for tax, as illustrated by
Figure 17-7.

Summary
In this chapter, I showed you how to use an existing database by using the Entity Framework Core scaffolding
feature, which inspects the database and creates the context and entity classes required to use it. This is a
useful feature for simple databases, but it can be more difficult to use in more complex projects. In the next
chapter, I show you to create the data model manually, rather than relying on the scaffolding process.

Figure 17-7. Using a partial class for additional model logic

431© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_18

CHAPTER 18

Manually Modeling a Database

In Chapter 17, I used the scaffolding process to automatically create a data model for an existing database.
The scaffolding process is convenient, but it doesn’t provide much in the way of fine-grained control, and
the result can be awkward to use. In this chapter, I show you how to manually model a database. This process
requires more work but produces a data model that is more natural to work with and easier to manage when
the database changes. Table 18-1 puts this chapter in context.

Table 18-1. Putting Manual Database Modeling in Context

Question Answer

What is it? Manual modeling creates a data model for a database without
using scaffolding.

Why is it useful? The scaffolding feature can’t always cope with large and
complex databases.

How is it used? The Fluent API is used to configure the data model in the
context class.

Are there any pitfalls or limitations? If you are modeling only part of the database, you must ensure
that there are no dependencies on the parts you exclude.

Are there any alternatives? The only alternative is to use the scaffolding views.

Table 18-2 summarizes the chapter.

Table 18-2. Chapter Summary

Problem Solution Listing

Manually model a database Create a context class and use the Fluent API to
configure the data model

1–11, 19–32

Manually model a relationship Define navigation properties and configure the
relationships using attributes or Fluent API statements

12–18

http://agilemanifesto.org/
http://dx.doi.org/10.1007/978-1-4842-3435-8_17

Chapter 18 ■ Manually Modeling a database

432

Preparing for This Chapter
This chapter uses the ExistingDb project created in Chapter 17 and relies on the database that was created in
that chapter. If you have jumped directly to this chapter, you will need to follow the steps outlined at the start
of Chapter 17 to create the database that the examples in this chapter rely on.

 ■ Tip you can download the project, which contains files with the sQl statements required to create the
database, as part of the free source code download for this book, available at https://github.com/apress/
pro-ef-core-2-for-asp.net-core-mvc.

To ensure that the database has been created and contains the expected data, start the application
using dotnet run and navigate to http://localhost:5000, which will produce the result shown
in Figure 18-1.

Figure 18-1. Running the example application

Creating a Manual Data Model
Before starting to model an existing database, you must understand its schema and know which parts of
the database you need for the ASP.NET Core MVC application. Running the scaffolding process described
in Chapter 18 can be a useful starting point if you have not been provided with a detailed description of the
database and its design, even if you use the scaffolded data model only for reference as you build a model
manually.

http://dx.doi.org/10.1007/978-1-4842-3435-8_17
http://dx.doi.org/10.1007/978-1-4842-3435-8_17
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
http://dx.doi.org/10.1007/978-1-4842-3435-8_18

Chapter 18 ■ Manually Modeling a database

433

Creating the Context and Entity Classes
The starting point for a manually created data model is to create a context class. I created a Models/Manual
folder and added to it a class file called ManualContext.cs, which I used to define the class shown in
Listing 18-1.

Listing 18-1. The Contents of the ManualContext.cs File in the Models/Manual Folder

using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Models.Manual {

 public class ManualContext : DbContext {

 public ManualContext(DbContextOptions<ManualContext> options)
 : base(options) { }

 public DbSet<Shoe> Shoes { get; set; }
 }
}

The ManualContext class is derived from DbContext, has a constructor that receives a configuration
object that is passed on to the superclass constructor, and defines a DbSet<T> property called Shoes that
provides access to a collection of Shoe objects. If this seems familiar, it is because you can get a long way
toward modeling a database just by following the conventions that have been used in earlier chapters. To
define the Shoe class used by the context, I added a class file called Shoe.cs in the Models/Manual folder and
added the code shown in Listing 18-2.

Listing 18-2. The Contents of the Shoe.cs File in the Models/Manual Folder

namespace ExistingDb.Models.Manual {

 public class Shoe {
 public long Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

The Shoe class contains properties for some of the columns in the Shoes table, although I have not yet
created the navigation properties. To make the new context available for use by the rest of the application,
I created the service shown in Listing 18-3.

Listing 18-3. Creating a Service in the Startup.cs File in the ExistingDb Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

Chapter 18 ■ Manually Modeling a database

434

using Microsoft.Extensions.Configuration;
using ExistingDb.Models.Scaffold;
using Microsoft.EntityFrameworkCore;
using ExistingDb.Models.Manual;

namespace ExistingDb {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];

 services.AddDbContext<ScaffoldContext>(options =>
 options.UseSqlServer(conString));

 services.AddDbContext<ManualContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The new context uses the same connection string as the context created by the scaffolding process,
since both are connecting to the same database.

Creating the Controller and View
To test the initial data model, I created a class file called ManualController.cs in the Controllers folder
and added the code shown in Listing 18-4.

Listing 18-4. The Contents of the ManualController.cs File in the Controllers Folder

using ExistingDb.Models.Manual;
using Microsoft.AspNetCore.Mvc;

namespace ExistingDb.Controllers {

 public class ManualController : Controller {
 private ManualContext context;

Chapter 18 ■ Manually Modeling a database

435

 public ManualController(ManualContext ctx) => context = ctx;

 public IActionResult Index() => View(context.Shoes);
 }
}

The Index action passes the DbSet<Shoe> object returned by the context’s Shoes property to the default
view. To provide the action with its view, I created the Views/Manual folder and added to it a view called
Index.cshtml with the content shown in Listing 18-5.

Listing 18-5. The Contents of the Index.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model IEnumerable<Shoe>
@{
 ViewData["Title"] = "Manual Data Model";
 Layout = "_Layout";
}

<div class="container-fluid">
 <h4 class="bg-primary p-3 text-white">Zoom Shoes</h4>
 <table class="table table-striped table-sm">
 <tr><th>Id</th><th>Name</th><th>Price</th></tr>
 @foreach (Shoe s in Model) {
 <tr>
 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>$@s.Price.ToString("F2")</td>
 </tr>
 }
 </table>
</div>

The view displays a table containing the Id, Name, and Price values for each Shoe object in the sequence
received from the action method. To test the manual data model, start the application using dotnet run and
navigate to http://localhost:5000/manual, which will produce the result shown in Figure 18-2.

Chapter 18 ■ Manually Modeling a database

436

Understanding the Basic Data Model Conventions
As the previous section showed, it is easy to create a data model manually if you are able to follow the
conventions that Entity Framework Core expects. Even in a simple data model like the one I created in the
previous section, I relied on several conventions to get the data from the database. I’ll explain each of them
in due course, but I am going to focus on these most basic conventions:

•	 The name of the property in the context class corresponds to the name of the
database table so that the Shoes property in the context class corresponds to the
Shoes table in the database. (If there is no context class property and data is accessed
through the Set<T> method, then the name of the entity class is used as the table
name.)

•	 The names of the properties in the entity class correspond to the names of the
columns in the database table so that the Id, Name, and Price properties will be used
to represent the values in the Id, Name, and Price columns in the Shoes table.

•	 The primary key will be represented by a property called Id or <Type>Id so that the
primary key for the Shoe class will be a property called Id or ShoeId.

These are the conventions that you have already become accustomed to from earlier chapters when
migrations were used to create a database from context and entity classes. Entity Framework Core uses the
same conventions when working with an existing database, which means that the mapping between objects
and the database can be set up without needing any explicit configuration.

Figure 18-2. Testing the manual data model

Chapter 18 ■ Manually Modeling a database

437

Overriding the Data Model Conventions
Entity Framework Core conventions are convenient when the design of the database aligns with what
you need in the application. But this rarely happens, especially if you are trying to integrate an existing
database into a project. Entity Framework Core provides two different ways in which you can override the
conventions so that you can create a data model that suits the ASP.NET Core MVC part of the project while
still providing access to the data in the database: attributes and the Fluent API. Attributes are easy to use but
don’t provide access to the full range of Entity Framework Core features. The Fluent API is more complex but
provides greater control over how the data model is mapped to the database. I introduce both approaches
in the sections that follow and demonstrate how they can be used to override the three basic conventions
described previously.

Using Attributes to Override Data Model Conventions
The basic data model conventions can be overridden using the attributes described in Table 18-3, which are
applied to the entity model class.

Table 18-3. The Attributes for Overriding the Basic Data Model Conventions

Name Description

Table This attribute specifies the database table and overrides the name of the property in the
context class.

Column This attribute specifies the column that provides values for the property it is applied to.

Key This attribute is used to identify the property that will be assigned the primary key value.

I added a file called Style.cs to the Models/Manual folder and used it to define the class shown in
Listing 18-6 to demonstrate how these attributes work.

Listing 18-6. The Contents of the Style.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ExistingDb.Models.Manual {

 [Table("Colors")]
 public class Style {

 [Key]
 [Column("Id")]
 public long UniqueIdent { get; set; }

 [Column("Name")]
 public string StyleName { get; set; }

 public string MainColor { get; set; }
 public string HighlightColor { get; set; }
 }
}

Chapter 18 ■ Manually Modeling a database

438

The Table attribute tells Entity Framework Core that the source of data for this class is the Colors table.
I used the Key attribute to specify that the UniqueIdent property should be used for primary key values,
along with the Column attribute to ensure that the Id column will be used as the source for those values.
I used the Column attribute to tell Entity Framework Core that values for the StyleName property should be
assigned values from the Name column.

You only have to apply attributes for the changes you require, which allows me to rely on the
conventions for the MainColor and HighlightColor properties, which will be assigned values from the
columns of the same name. To complete this example, I added a property to the context class to make
accessing the data more convenient, as shown in Listing 18-7.

Listing 18-7. Adding a Convenience Property in the ManualContext.cs File in the Models/Manual Folder

using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Models.Manual {

 public class ManualContext : DbContext {

 public ManualContext(DbContextOptions<ManualContext> options)
 : base(options) { }

 public DbSet<Shoe> Shoes { get; set; }

 public DbSet<Style> ShoeStyles { get; set; }
 }
}

I’ll use this property to access the data in the next section, after I have introduced the Fluent API.

CHOOSING BETWEEN ATTRIBUTES AND THE FLUENT API

the basic data model conventions can be overridden using either attributes or the Fluent api, so you
can choose whichever approach feels most natural. some developers prefer annotating classes with
attributes because it is more consistent with how asp.net Core MVC features such as validation and
authorization work. other developers prefer to describe the data model in the context class so that all of
changes from the regular conventions can be seen and understood in a single place.

there are some advanced features that can be used only through the Fluent api. if you need to use
these features to model a database, then you have no choice but to do so using the Fluent api, even
if you prefer working with attributes. that said, as this chapter has demonstrated, you can mix and
match attributes and the Fluent api to create a data model, which means that you can use attributes
for the features they support if that is your preference. if so, bear in mind that Fluent api statements
take precedence over attributes and that the attributes will be quietly ignored if you override the same
convention using the Fluent api.

Chapter 18 ■ Manually Modeling a database

439

Using the Fluent API to Override Model Conventions
The Fluent API is used to override the data model conventions by describing parts of the data model
programmatically. Attributes are suitable for making simple changes, but eventually you will have to deal
with a situation for which there is no suitable attribute, and that requires an advanced feature that only the
Fluent API supports.

 ■ Note in this chapter, i am using the Fluent api to model an existing database, but it can also be used to
fine-tune the migrations in a code-first application, as demonstrated in part 3.

To show an equivalent example to the use of attributes in the previous section, I added a file called
ShoeWidth.cs to the Models/Manual folder and used it to define the class shown in Listing 18-8.

Listing 18-8. The Contents of the ShoeWidth.cs File in the Models/Manual Folder

namespace ExistingDb.Models.Manual {

 public class ShoeWidth {

 public long UniqueIdent { get; set; }

 public string WidthName { get; set; }
 }
}

I am going to use the ShoeWidth class to represent the data in the Fittings table. The class does not
follow the Entity Framework Core conventions: the class name does not match the database table name, and
I want to use the UniqueIdent and WidthName properties for the Id and Name columns.

Rather than modify the entity class, the Fluent API is applied in the context class by overriding the
OnModelCreating method, as shown in Listing 18-9.

Listing 18-9. Using the Fluent API in the ManualContext.cs File in the Models/Manual Folder

using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Models.Manual {

 public class ManualContext : DbContext {

 public ManualContext(DbContextOptions<ManualContext> options)
 : base(options) { }

 public DbSet<Shoe> Shoes { get; set; }

 public DbSet<Style> ShoeStyles { get; set; }

 public DbSet<ShoeWidth> ShoeWidths { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

Chapter 18 ■ Manually Modeling a database

440

 modelBuilder.Entity<ShoeWidth>().ToTable("Fittings");
 modelBuilder.Entity<ShoeWidth>().HasKey(t => t.UniqueIdent);
 modelBuilder.Entity<ShoeWidth>()
 .Property(t => t.UniqueIdent)
 .HasColumnName("Id");

 modelBuilder.Entity<ShoeWidth>()
 .Property(t => t.WidthName)
 .HasColumnName("Name");
 }
 }
}

The OnModelCreating method receives a ModelBuilder object, on which the Fluent API is used. The
most important method defined by the ModelBuilder class is Entity<T>, which allows an entity class to be
described to Entity Framework Core and overrides the conventions that would otherwise be used.

The Entity<T> method returns an EntityTypeBuilder<T> object, which defines a series of
methods that are used to describe the data model to Entity Framework Core. Table 18-4 describes the
EntityTypeBuilder<T> methods used in Listing 18-9.

 ■ Tip the Fluent api methods that select an entity class property, such as the HasKey and Property
methods described in table 18-4, are overloaded so that properties can be specified as strings or using a
lambda expression. lambda expressions avoid typos that cause errors only when the application is running, so
these are the methods that i use in this book.

Table 18-4. The EntityTypeBuilder<T> Methods Used in Listing 18-9

Name Description

ToTable(table) This method is used to specify the table for the entity class, equivalent to the
Table attribute.

HasKey(selector) This method is used to specify the key property for an entity class, equivalent
to the Key attribute. The argument is a lambda expression that selects the key
property.

Property(selector) This method is used to select a property so that it can be described in more
detail, as described in the following text.

The ToTable and HasKey methods are used on their own to specify the database table and the
primary key property for the ShoeWidth class. The Property method is used to select a property for further
configuration and returns a PropertyBuilder<T> object where T is the type returned by the selected
property. The PropertyBuilder<T> class defines a number of methods that are used to provide fine-grained
control over a property and that I will describe throughout this chapter and the chapters that follow. The
PropertyBuilder<T> method that I used in Listing 18-9 is the HasColumnName method, which is used to
select the database table column that will provide values for the selected property and which is described in
Table 18-5 for quick reference.

Chapter 18 ■ Manually Modeling a database

441

Using the Customized Data Model
Regardless of whether you use the attributes or the Fluent API, once you have overridden the conventions
to create the data model that your application requires, you can use the context class and the entity classes
as you would normally. To complete this section, I added statements to the Index action of the Manual
controller that pass the ShoeStyle and ShoeWidth objects to the default view using the ViewBag, as shown in
Listing 18-10.

Listing 18-10. Using the Customized Model in the ManualController.cs File in the Controllers Folder

using ExistingDb.Models.Manual;
using Microsoft.AspNetCore.Mvc;

namespace ExistingDb.Controllers {

 public class ManualController : Controller {
 private ManualContext context;

 public ManualController(ManualContext ctx) => context = ctx;

 public IActionResult Index() {
 ViewBag.Styles = context.ShoeStyles;
 ViewBag.Widths = context.ShoeWidths;
 return View(context.Shoes);
 }
 }
}

To display the data to the user, I added the content shown in Listing 18-11 to the Index.cshtml view in
the Views/Manual folder.

Listing 18-11. Displaying Additional Data in the Index.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model IEnumerable<Shoe>
@{
 ViewData["Title"] = "Manual Data Model";
 Layout = "_Layout";
}

<div class="container-fluid">
 <h4 class="bg-primary p-3 text-white">Zoom Shoes</h4>
 <table class="table table-striped table-sm">
 <tr><th>Id</th><th>Name</th><th>Price</th></tr>
 @foreach (Shoe s in Model) {

Table 18-5. The PropertyBuilder<T> Method Used in Listing 18-9

Name Description

HasColumnName(name) This method is used to select the column that will provide values for the
selected property, equivalent to using the Column attribute.

Chapter 18 ■ Manually Modeling a database

442

 <tr>
 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>$@s.Price.ToString("F2")</td>
 </tr>
 }
 </table>
 <div class="row">
 <div class="col">
 <h5 class="bg-primary p-2 text-white">Styles</h5>
 <table class="table table-striped table-sm">
 <tr>
 <th>UniqueIdent</th><th>Style Name</th>
 <th>Main Color</th><th>Highlight Color</th>
 </tr>
 @foreach (Style s in ViewBag.Styles) {
 <tr>
 <td>@s.UniqueIdent</td>
 <td>@s.StyleName</td>
 <td>@s.MainColor</td>
 <td>@s.HighlightColor</td>
 </tr>
 }
 </table>
 </div>
 <div class="col">
 <h5 class="bg-primary p-2 text-white">Widths</h5>
 <table class="table table-striped table-sm">
 <tr><th>UniqueIdent</th><th>Name</th></tr>
 @foreach (ShoeWidth s in ViewBag.Widths) {
 <tr><td>@s.UniqueIdent</td><td>@s.WidthName</td></tr>
 }
 </table>
 </div>
 </div>
</div>

To test both techniques for overriding the data model conventions, start the application using dotnet
run and navigate to http://localhost:5000/manual. During startup, Entity Framework Core will use the
attributes and the Fluent API statements as it builds the data model so that the queries made by the action
method are seamlessly mapped into the database, producing the result shown in Figure 18-3.

Chapter 18 ■ Manually Modeling a database

443

RESPONDING TO DATABASE CHANGES

you must ensure that you update your data model when changes are made to the database. there is no
automatic update process, such as when using the scaffolding feature described in Chapter 17.

if you don’t update the data model correctly, you will create a mismatch between entity Framework
Core and the database. this kind of problem won’t become apparent until runtime and can cause subtle
issues that manifest only for specific operations or with certain data values.

ensure that you understand the impact that database changes will have on the application and adhere
to a testing regime that minimizes the chances of errors making their way to production systems.

Modeling Relationships
Although I have set up three classes to represent the data in the database, each exists in isolation and must
be queried individually. Defining the relationships between the classes means adding navigation and
foreign key properties, following the same conventions used for code-first development. Listing 18-12 shows
the changes to the Shoes class to add the navigation and foreign key property that models one side of the
one-to-many relationship between the Shoes and Colors tables in the database.

Figure 18-3. Overriding the data model

http://dx.doi.org/10.1007/978-1-4842-3435-8_17

Chapter 18 ■ Manually Modeling a database

444

Listing 18-12. Adding Properties in the Shoes.cs File in the Models/Manual Folder

namespace ExistingDb.Models.Manual {

 public class Shoe {
 public long Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }

 public long ColorId { get; set; }
 public Style Color { get; set; }
 }
}

When modeling an existing database, the most important property is the one that maps to the
foreign key column in the database table used to store the dependent entity, which is the Shoe class
in this example. The convention for the name of the navigation property is to drop the column name
from the foreign key property so that the navigation property for the relationship stored in the ColorId
property will be Color. Notice that the type returned by the Color property is Style; Entity Framework
Core applies the changes applied to the data model consistently, which means that the attributes used to
specify the Style class as the representation of the data in the Colors table continues even when defining
relationships.

To complete the relationship, I added the inverse navigation property to the Style class, as shown in
Listing 18-13.

Listing 18-13. Completing the Relationship in the Style.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using System.Collections.Generic;

namespace ExistingDb.Models.Manual {

 [Table("Colors")]
 public class Style {

 [Key]
 [Column("Id")]
 public long UniqueIdent { get; set; }

 [Column("Name")]
 public string StyleName { get; set; }

 public string MainColor { get; set; }
 public string HighlightColor { get; set; }

 public IEnumerable<Shoe> Shoes { get; set; }
 }
}

Chapter 18 ■ Manually Modeling a database

445

Overriding the Relationship Conventions Using Attributes
The relationship defined in Listing 18-12 reveals the underlying structure of the database through the
changes that have been applied to the model, with the result that you follow a property called Color to get a
Style object.

One drawback with overriding the data model conventions is that, once you start, you need to keep
going and work the changes all the way through, including ensuring that the name of navigation and
foreign key properties is consistent with the other changes that you have made. In Listing 18-14, I have used
attributes to override the default relationship conventions for the foreign key and navigation properties in
the Shoe class.

Listing 18-14. Overriding Conventions in the Shoe.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations.Schema;

namespace ExistingDb.Models.Manual {

 public class Shoe {
 public long Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }

 [Column("ColorId")]
 public long StyleId { get; set; }

 [ForeignKey("StyleId")]
 public Style Style { get; set; }
 }
}

Two attributes are required to create a relationship with properties that are consistent with the rest
of the data model. The Column attribute tells Entity Framework Core that the StyleId property should be
mapped to the ColorId column, while the ForeignKey attribute is used to specify that the StyleId property
is the foreign key property for the Style navigation property. Together, these attributes allow properties
whose names are consistent with the rest of the data model to express the relationship, without needing to
expose details of the underlying database structure.

The property that I added to the Styles class in Listing 18-14 doesn’t require an attribute because
it follows the regular relationship contentions and Entity Framework Core will recognize it as an inverse
navigation property to the Shoe class. However, if you can’t use the conventional name for this type of
property, then you can use the InverseProperty attribute to tell Entity Framework Core which class the
property relates to, as shown in Listing 18-15.

Listing 18-15. Identifying an Inverse Navigation Property in the Styles.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using System.Collections.Generic;

namespace ExistingDb.Models.Manual {

 [Table("Colors")]
 public class Style {

Chapter 18 ■ Manually Modeling a database

446

 [Key]
 [Column("Id")]
 public long UniqueIdent { get; set; }

 [Column("Name")]
 public string StyleName { get; set; }

 public string MainColor { get; set; }
 public string HighlightColor { get; set; }

 [InverseProperty(nameof(Shoe.Style))]
 public IEnumerable<Shoe> Products { get; set; }
 }
}

The argument for the InverseProperty attribute is the name of the other property in the relationship,
which can be specified as a string or using the nameof function to avoid typos. In the listing, the
InverseProperty attribute has allowed me to change the name of the inverse property to Products.

For future quick reference, Table 18-6 describes the attributes used to override the relationship
conventions in this section. (The Column attribute is described in Table 18-3.)

Table 18-6. The Attributes Used to Override Relationship Conventions

Name Description

ForeignKey(property) This attribute is used to identify the foreign key property for a
navigation property.

InverseProperty(name) This attribute is used to specify the name of the property at the other
end of the relationship.

Overriding the Relationship Conventions Using the Fluent API
If you prefer using the Fluent API, then you can use the Entity<T> method to select an entity class, followed
by the Property method, which allows you to select and configure individual properties. To show how
the Fluent API can be used to describe relationships, in Listing 18-16 I added a foreign key and navigation
property to the Shoe class to create a relationship with the ShoeWidth class, which represents data from the
Fittings database table.

Listing 18-16. Defining Properties in the Shoe.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations.Schema;

namespace ExistingDb.Models.Manual {

 public class Shoe {
 public long Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }

Chapter 18 ■ Manually Modeling a database

447

 [Column("ColorId")]
 public long StyleId { get; set; }

 [ForeignKey("StyleId")]
 public Style Style { get; set; }

 public long WidthId { get; set; }
 public ShoeWidth Width { get; set; }
 }
}

To complete the relationship, I added the inverse navigation property shown in Listing 18-17 to the
ShoeWidth class.

Listing 18-17. Adding a Navigation Property in the ShoeWidth.cs File in the Models/Manual Folder

using System.Collections.Generic;

namespace ExistingDb.Models.Manual {

 public class ShoeWidth {

 public long UniqueIdent { get; set; }

 public string WidthName { get; set; }

 public IEnumerable<Shoe> Products { get; set; }
 }
}

These properties do not follow the relationship conventions and have not been decorated with
attributes, which means that Entity Framework Core won’t be able to determine their purpose. To describe
the role of these properties in the data model, I added the statements shown in Listing 18-18 to the
OnModelCreating method of the ManualContext class.

Listing 18-18. Overriding Conventions in the ManualContext.cs File in the Models/Manual Folder

using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Models.Manual {

 public class ManualContext : DbContext {

 public ManualContext(DbContextOptions<ManualContext> options)
 : base(options) { }

 public DbSet<Shoe> Shoes { get; set; }

 public DbSet<Style> ShoeStyles { get; set; }

 public DbSet<ShoeWidth> ShoeWidths { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

Chapter 18 ■ Manually Modeling a database

448

 modelBuilder.Entity<ShoeWidth>().ToTable("Fittings");
 modelBuilder.Entity<ShoeWidth>().HasKey(t => t.UniqueIdent);
 modelBuilder.Entity<ShoeWidth>()
 .Property(t => t.UniqueIdent)
 .HasColumnName("Id");

 modelBuilder.Entity<ShoeWidth>()
 .Property(t => t.WidthName)
 .HasColumnName("Name");

 modelBuilder.Entity<Shoe>()
 .Property(s => s.WidthId).HasColumnName("FittingId");

 modelBuilder.Entity<Shoe>()
 .HasOne(s => s.Width).WithMany(w => w.Products)
 .HasForeignKey(s => s.WidthId).IsRequired(true);
 }
 }
}

Two configuration statements are required to configure the properties defined in Listing 18-17 and
Listing 18-18 to represent the relationship between the Shoes and Fittings tables. The first statement uses
the same methods shown in the previous section, which tell Entity Framework Core that the values for the
Shoe.WidthId property should be read from the FittingId column. The second statement uses the methods
that the Fluent API provides specifically for describing relationships, as described in Table 18-7.

Table 18-7. The EntityBuilder<T> Methods for Describing Relationships

Name Description

HasOne(property) This method is used to start describing a relationship where the selected entity
class has a relationship with a single object of another type. The argument selects
the navigation property, either by name or by using a lambda expression.

HasMany(property) This method is used to start describing a relationship where the selected entity
class has a relationship with many objects of another type. The argument selects
the navigation property, either by name or by using a lambda expression.

Table 18-8. The Fluent API Methods for Completing the Description of a Relationship

Name Description

WithMany(property) This method is used to select the inverse navigation property in a one-to-many
relationship.

WithOne(property) This method is used to select the inverse navigation property in a one-to-one
relationship.

You start with one of the methods shown the table and describe the other end of the relationship using
one of the methods described in Table 18-8, which tells Entity Framework Core whether this is a one-to-one
or one-to-many relationship.

Chapter 18 ■ Manually Modeling a database

449

Once you have selected the navigation properties for both ends of the relationship, you can configure
the relationship by chaining calls to the methods described in Table 18-9.

Table 18-9. The Fluent API Relationship Configuration Methods

Name Description

HasForeignKey(property) This method is used to select the foreign key property for the relationship.

IsRequired(required) This method is used to specify whether the relationship is required or
optional.

The combination of methods I used in Listing 18-18 tells Entity Framework Core that the Shoe class is
the dependent entity in a required one-to-many relationship with the ShoeWidth class and that the WidthId
property is the foreign key property. Combined with the statement that maps the WidthId property to the
foreign key column in the database, Entity Framework Core has all of the information it needs to understand
the relationship and how the entity classes are mapped to the database tables.

Completing the Data Model
To complete the data model, I need to define classes to represent the SalesCampaigns and Categories tables
and describe the relationships between them. I added a file called SalesCampaign.cs to the Models/Manual
folder and used it to define the class shown in Listing 18-19.

Listing 18-19. The Contents of the SalesCampaign.cs File in the Models/Manual Folder

using System;
using System.ComponentModel.DataAnnotations.Schema;

namespace ExistingDb.Models.Manual {

 [Table("SalesCampaigns")]
 public class SalesCampaign {

 public long Id { get; set; }
 public string Slogan { get; set; }
 public int? MaxDiscount { get; set; }
 public DateTime? LaunchDate { get; set; }

 public long ShoeId { get; set; }
 public Shoe Shoe { get; set; }
 }
}

I used the Table attribute to specify the table that will be used to create SalesCampaign objects,
allowing me to keep the names of the classes consistent in the data model. The properties defined by the
SalesCampaign class directly map to the columns in the database table, with the exception of the Shoe
property, which is a navigation property for the one-to-one relationship with the Shoe class.

The Categories table has a many-to-many relationship, which means that I need to define the entity
and junction classes. For the entity, I created a file called Category.cs in the Models/Manual folder and used
it to define the class shown in Listing 18-20.

Chapter 18 ■ Manually Modeling a database

450

Listing 18-20. The Contents of the Category.cs File in the Models/Manual Folder

using System.Collections.Generic;

namespace ExistingDb.Models.Manual {

 public class Category {
 public long Id { get; set; }
 public string Name { get; set; }

 public IEnumerable<ShoeCategoryJunction> Shoes { get; set; }
 }
}

To represent the junction required by this relationship, I created a class file called
ShoeCategoryJunction.cs in the Models/Manual folder and defined the class shown in Listing 18-21.

Listing 18-21. The Contents of the ShoeCategoryJunction.cs File in the Models/Manual Folder

namespace ExistingDb.Models.Manual {

 public class ShoeCategoryJunction {

 public long Id { get; set; }
 public long ShoeId { get; set; }
 public long CategoryId { get; set; }

 public Category Category { get; set; }
 public Shoe Shoe { get; set; }
 }
}

This class defines properties that correspond to the columns in the junction table in the database,
along with navigation properties that use the class names in the data model, which are used instead of the
conventional names. The name of the class is the same as the name of the junction table in the database.
Since the junction class conforms to all of the conventions, no attributes or Fluent API statements are
required to configure the class or its relationships.

In Listing 18-22, I have added the navigation properties required for both the SalesCampaign class and
the junction class for the relationship with the Category class from Listing 18-21.

Listing 18-22. Adding Navigation Properties to the Shoe.cs File in the Models/Manual Folder

using System.ComponentModel.DataAnnotations.Schema;
using System.Collections.Generic;

namespace ExistingDb.Models.Manual {

 public class Shoe {
 public long Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }

Chapter 18 ■ Manually Modeling a database

451

 [Column("ColorId")]
 public long StyleId { get; set; }

 [ForeignKey("StyleId")]
 public Style Style { get; set; }

 public long WidthId { get; set; }
 public ShoeWidth Width { get; set; }

 public SalesCampaign Campaign { get; set; }
 public IEnumerable<ShoeCategoryJunction> Categories { get; set; }
 }
}

To provide convenient access to the Category objects, I added a DbSet<T> property to the context class,
as shown in Listing 18-23.

Listing 18-23. Configuring a Relationship in the ManualContext.cs File in the Models/Manual Folder

using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Models.Manual {

 public class ManualContext : DbContext {

 public ManualContext(DbContextOptions<ManualContext> options)
 : base(options) { }

 public DbSet<Shoe> Shoes { get; set; }

 public DbSet<Style> ShoeStyles { get; set; }

 public DbSet<ShoeWidth> ShoeWidths { get; set; }

 public DbSet<Category> Categories { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 // ...statements omitted for brevity...
 }
 }
}

Using the Manually Created Data Model
Now that the data model is complete, I can use the data in the ASP.NET Core MVC part of the application
and let Entity Framework Core handle mapping it to the database where the conventions have not been
followed. In the sections that follow, I demonstrate the process for querying and updating data.

Chapter 18 ■ Manually Modeling a database

452

Querying Data in a Manually Created Data Model
I expanded the query in the Index action of the Manual controller to include all of the available data and
added ViewBag properties for each data type, as shown in Listing 18-24, to demonstrate querying for all the
relationships in the model.

Listing 18-24. Querying for Additional Data in the ManualController.cs File in the Models/Manual Folder

using ExistingDb.Models.Manual;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;

namespace ExistingDb.Controllers {

 public class ManualController : Controller {
 private ManualContext context;

 public ManualController(ManualContext ctx) => context = ctx;

 public IActionResult Index() {
 ViewBag.Styles = context.ShoeStyles.Include(s => s.Products);
 ViewBag.Widths = context.ShoeWidths.Include(s => s.Products);
 ViewBag.Categories = context.Categories
 .Include(c => c.Shoes).ThenInclude(j => j.Shoe);
 return View(context.Shoes.Include(s => s.Style)
 .Include(s => s.Width).Include(s => s.Categories)
 .ThenInclude(j => j.Category));
 }
 }
}

To display the data to the user, I added the elements shown in Listing 18-25 to the Index view used by
the action method.

Listing 18-25. Displaying Data in the Index.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model IEnumerable<Shoe>
@{
 ViewData["Title"] = "Manual Data Model";
 Layout = "_Layout";
}

<div class="container-fluid">
 <h4 class="bg-primary p-3 text-white">Zoom Shoes</h4>
 <table class="table table-striped table-sm">
 <tr>
 <th>Id</th><th>Name</th><th>Price</th><th>Styles</th>
 <th>Widths</th><th>Categories</th><th></th>
 </tr>
 @foreach (Shoe s in Model) {
 <tr>

Chapter 18 ■ Manually Modeling a database

453

 <td>@s.Id</td>
 <td>@s.Name</td>
 <td>$@s.Price.ToString("F2")</td>
 <td class="table-primary">@s.Width?.WidthName</td>
 <td class="table-secondary">@s.Style?.StyleName</td>
 <td class="table-success">
 @string.Join(", ", s.Categories.Select(c => c.Category.Name))
 </td>
 <td class="text-center">
 <a asp-action="Edit" asp-route-id="@s.Id"
 class="btn btn-sm btn-primary">Edit
 </td>
 </tr>
 }
 </table>
 <div class="row">
 <div class="col">
 <h5 class="bg-primary p-2 text-white">Styles</h5>
 <table class="table table-striped table-sm">
 <tr><th>UniqueIdent</th><th>Name</th><th>Products</th></tr>
 @foreach (Style s in ViewBag.Styles) {
 <tr>
 <td>@s.UniqueIdent</td>
 <td>@s.StyleName</td>
 <td class="table-secondary">
 @String.Join(", ", s.Products.Select(p => p.Name))
 </td>
 </tr>
 }
 </table>
 </div>
 <div class="col">
 <h5 class="bg-primary p-2 text-white">Widths</h5>
 <table class="table table-striped table-sm">
 <tr><th>UniqueIdent</th><th>Name</th><td>Products</td></tr>
 @foreach (ShoeWidth s in ViewBag.Widths) {
 <tr>
 <td>@s.UniqueIdent</td>
 <td>@s.WidthName</td>
 <td class="table-primary">
 @String.Join(", ", s.Products.Select(p => p.Name))
 </td>
 </tr>
 }
 </table>
 </div>
 <div class="col">
 <h5 class="bg-primary p-2 text-white">Categories</h5>
 <table class="table table-striped table-sm">
 <tr><th>Id</th><th>Name</th><th>Products</th></tr>
 @foreach (Category c in ViewBag.Categories) {

Chapter 18 ■ Manually Modeling a database

454

 <tr>
 <td>@c.Id</td>
 <td>@c.Name</td>
 <td class="table-success">
 @String.Join(", ", c.Shoes.Select(j => j.Shoe.Name))
 </td>
 </tr>
 }
 </table>
 </div>
 </div>
</div>

Start the application and navigate to http://localhost:5000/manual to see the new content, which is
shown in Figure 18-4.

Figure 18-4. Using a manually created database

Chapter 18 ■ Manually Modeling a database

455

The additions in Listing 18-25 result in a series of tables that display the data in the database,
demonstrating that working with a manually created data model works in just the same way as one that
has been scaffolded or used as the basis for a migration. Entity Framework Core automatically takes care
of dealing with any deviation from the conventions, which you can see by examining the output from the
application. Here is one of the queries used to get the data displayed in the figure; you can see how the
names of classes and properties that have differed from the convention are translated into the tables and
columns in the database:

...
SELECT [c.Shoes].[Id], [c.Shoes].[CategoryId], [c.Shoes].[ShoeId], [s.Shoe].[Id],
 [s.Shoe].[Name], [s.Shoe].[Price], [s.Shoe].[ColorId], [s.Shoe].[FittingId]
FROM [ShoeCategoryJunction] AS [c.Shoes]
INNER JOIN [Shoes] AS [s.Shoe] ON [c.Shoes].[ShoeId] = [s.Shoe].[Id]
INNER JOIN (
 SELECT [c0].[Id]
 FROM [Categories] AS [c0]
) AS [t] ON [c.Shoes].[CategoryId] = [t].[Id]
ORDER BY [t].[Id]
...

 ■ Caution Creating a manual data model results in a more natural development experience in the asp.net
Core MVC part of the application, but it works only when you accurately model the database. entity Framework
Core doesn’t validate that the model you create accurately describes the database, and any problems will only
become apparent when the application tries to query or update the database.

Updating Data in a Manually Created Data Model
I added an anchor element to the view in Listing 18-25 that targets an action called Edit. In this section, I am
going to implement the action method to emphasize that working with a manually created database is just
the same as one that has been scaffolded or used to create a migration. In Listing 18-26, I added methods to
the controller that will allow the user to start the editing process and update an existing Shoe object.

Listing 18-26. Adding Actions in the ManualController.cs File in the Controllers Folder

using ExistingDb.Models.Manual;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;

namespace ExistingDb.Controllers {

 public class ManualController : Controller {
 private ManualContext context;

 public ManualController(ManualContext ctx) => context = ctx;

Chapter 18 ■ Manually Modeling a database

456

 public IActionResult Index() {
 ViewBag.Styles = context.ShoeStyles.Include(s => s.Products);
 ViewBag.Widths = context.ShoeWidths.Include(s => s.Products);
 ViewBag.Categories = context.Categories
 .Include(c => c.Shoes).ThenInclude(j => j.Shoe);
 return View(context.Shoes.Include(s => s.Style)
 .Include(s => s.Width).Include(s => s.Categories)
 .ThenInclude(j => j.Category));
 }

 public IActionResult Edit(long id) {
 ViewBag.Styles = context.ShoeStyles;
 ViewBag.Widths = context.ShoeWidths;
 ViewBag.Categories = context.Categories;
 return View(context.Shoes.Include(s => s.Style)
 .Include(s => s.Campaign)
 .Include(s => s.Width).Include(s => s.Categories)
 .ThenInclude(j => j.Category).First(s => s.Id == id));
 }

 [HttpPost]
 public IActionResult Update(Shoe shoe, long[] newCategoryIds,
 ShoeCategoryJunction[] oldJunctions) {

 IEnumerable<ShoeCategoryJunction> unchangedJunctions
 = oldJunctions.Where(j => newCategoryIds.Contains(j.CategoryId));

 context.Set<ShoeCategoryJunction>()
 .RemoveRange(oldJunctions.Except(unchangedJunctions));

 shoe.Categories = newCategoryIds.Except(unchangedJunctions
 .Select(j => j.CategoryId))
 .Select(id => new ShoeCategoryJunction {
 ShoeId = shoe.Id, CategoryId = id
 }).ToList();

 context.Shoes.Update(shoe);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The Edit action queries the database for a single object and all of its related data so that the current
details can be displayed for editing. The ViewBag is used to pass additional data to the view so that the user
can be presented with the range of options available for changing the related data.

The Update method receives a Shoe object, which will be created by the ASP.NET Core MVC model
binder from HTTP form data and used to update the database. The Update method also receives an array
containing the primary key values of the Category objects that the user wants the Shoe to be related to and
an array of junction objects, which I will ensure is included in the HTTP request data so that I don’t have to
query the database just to figure out which junction objects have to be deleted.

Chapter 18 ■ Manually Modeling a database

457

In Chapter 16, I showed you how to update a many-to-many relationship separately from the objects in
that relationship, which I did by querying the database for the object at one end of the relationships and its
related data, which provided Entity Framework Core with enough information to update the junction table.

That technique won’t work for this chapter because I want to update the Shoe object and the many-to-
many relationship at the same time, and if I query the database for the Shoe, then the Entity Framework Core
change tracking feature will throw an exception when I use the Update method with the Shoe created by the
MVC model binder.

To perform the update, I remove any outdated relationships by comparing the selected categories with
those that were originally related and removing those that are not required by passing the objects to the
RemoveRange method, like this:

...
IEnumerable<ShoeCategoryJunction> unchangedJunctions
 = oldJunctions.Where(j => newCategoryIds.Contains(j.CategoryId));

context.Set<ShoeCategoryJunction>()
 .RemoveRange(oldJunctions.Except(unchangedJunctions));
...

I did not define a context property for the junction data, so I perform the delete operation by getting a
DbSet<T> object using the Set<T> method. To avoid creating duplicate relationships, I compare the original
set of junction objects with the categories that the user has chosen, ensuring that I only create new objects to
fill in the gaps, like this:

...
shoe.Categories = newCategoryIds.Except(unchangedJunctions.Select(j => j.CategoryId))
 .Select(id => new ShoeCategoryJunction {
 ShoeId = shoe.Id, CategoryId = id
 }).ToList();
...

I remove unwanted relationships and create new ones, while carefully leaving those that are unchanged
untouched in the database. In this way, I am able to perform the update using the objects created by the
ASP.NET Core MVC model binder.

Creating the Partial Views
To complete the example, I need to create a partial view for each of the objects that will allow the user to
perform an edit. I started by adding a file called EditShoe.cshtml in the Views/Manual folder and then
added the content shown in Listing 18-27.

Listing 18-27. The Contents of the EditShoe.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe

<input type="hidden" asp-for="Id" />
<h4>Product Details</h4>
<div class="p-1 m-1">

http://dx.doi.org/10.1007/978-1-4842-3435-8_16

Chapter 18 ■ Manually Modeling a database

458

 <div class="form-row">
 <div class="form-group col">
 <label asp-for="Name" class="form-control-label"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group col">
 <label asp-for="Price" class="form-control-label"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 </div>
</div>

Each partial view will contain just the elements required to perform editing of one aspect of the
data presented to the user, and, in this case, there are two input elements that allow the Name and Price
properties of a Shoe object to be edited. Next, I added a file called EditStyle.cshtml in the Views/Manual
folder and added the content shown in Listing 18-28.

Listing 18-28. The Contents of the EditStyle.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe

<label>Style:</label>
<select asp-for="StyleId" class="form-control">
 @foreach (Style s in ViewBag.Styles) {
 if (s.UniqueIdent == Model.StyleId) {
 <option value="@s.UniqueIdent" selected>@s.StyleName</option>
 } else {
 <option value="@s.UniqueIdent">@s.StyleName</option>
 }
 }
</select>

This partial view displays a select element that is used to choose the Style object to which the Shoe
being edited is related. I have taken a similar approach with the ShoeWidth object, creating a file called
EditWidth.cshtml in the Views/Manual folder with the content shown in Listing 18-29.

Listing 18-29. The Contents of the EditWidth.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe

<label>Width:</label>
<select asp-for="WidthId" class="form-control">
 @foreach (ShoeWidth w in ViewBag.Widths) {
 if (w.UniqueIdent == Model.WidthId) {
 <option value="@w.UniqueIdent" selected>@w.WidthName</option>
 } else {
 <option value="@w.UniqueIdent">@w.WidthName</option>
 }
 }
</select>

Chapter 18 ■ Manually Modeling a database

459

There is a one-to-one relationship with the SalesCampaign class, so I have chosen to present the user
with input elements to change the property values by creating a file called EditCampaign.cshtml in the
Views/Manual folder and adding the content shown in Listing 18-30.

Listing 18-30. The Contents of the EditCampaign.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe

<div class="form-row">
 <input type="hidden" asp-for="Campaign.Id" />
 <label>Sales Campaign:</label>
</div>
<div class="form-row">
 <div class="form-group col">
 <label asp-for="Campaign.Slogan" class="form-control-label"></label>
 <input asp-for="Campaign.Slogan" class="form-control" />
 </div>
</div>
<div class="form-row">
 <div class="form-group col">
 <label class="form-control-label">Max Discount:</label>
 <input asp-for="Campaign.MaxDiscount" class="form-control" />
 </div>
 <div class="form-group col">
 <label class="form-control-label">Launch Date:</label>
 <input type="date" asp-for="Campaign.LaunchDate" class="form-control" />
 </div>
</div>

The final partial view will allow the user to select which Category objects the Shoe object being edited
is related to. This is a more complex view because I have included hidden elements that the ASP.NET
Core MVC model binder will use to create the junction objects I use to avoid having to query the database
to determine the current set of relationships in the Update action method. I added a view file called
EditCategory.cshtml in the Views/Manual folder and added the content shown in Listing 18-31.

Listing 18-31. The Contents of the EditCategory.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe

@{ int index = 0; }

@foreach (var junc in Model.Categories) {
 <input type="hidden" name="oldJunctions[@index].Id" value="@junc.Id" />
 <input type="hidden" name="oldJunctions[@index].CategoryId"
 value="@junc.CategoryId" />
 index++;
}

Chapter 18 ■ Manually Modeling a database

460

@foreach (Category c in ViewBag.Categories) {
 <div class="form-group col">
 <label class="form-check-label">
 @if (c.Shoes?.Any(s => s.ShoeId == Model.Id) == true) {
 <input type="checkbox" name="newCategoryIds" value="@c.Id"
 checked class="form-check-input" />
 } else {
 <input type="checkbox" name="newCategoryIds" value="@c.Id"
 class="form-check-input" />
 }
 @c.Name
 </label>
 </div>
}

The awkward foreach loop with the index counter is used to generate data that will be correctly
processed by the ASP.NET Core MVC model binder. The other elements generate a series of labels and
checkboxes that are used to select the categories for a shoe.

Creating the Editor View
All that remains is to create a view that will incorporate the partial views to present the user with a single
editor. I added a file called Edit.cshtml to the Views/Manual folder with the content shown in Listing 18-32.

Listing 18-32. The Contents of the Edit.cshtml File in the Views/Manual Folder

@using ExistingDb.Models.Manual
@model Shoe
@{
 ViewData["Title"] = "Manual Data Model";
 Layout = "_Layout";
}

<form asp-action="Update" method="post">
 @Html.Partial("EditShoe", Model)
 <div class="p-1 m-1">
 <div class="form-row">
 <div class="form-group col">@Html.Partial("EditStyle", Model)</div>
 <div class="form-group col">@Html.Partial("EditWidth", Model)</div>
 </div>
 @Html.Partial("EditCampaign", Model)
 <div class="form-row">
 <label>Categories:</label>
 </div>
 <div class="form-row">@Html.Partial("EditCategory", Model)</div>
 </div>
 <div class="text-center m-1">
 <button type="submit" class="btn btn-primary">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

Chapter 18 ■ Manually Modeling a database

461

To check that the code and views for updating data in a manually created data model works, start
the application, navigate to http://localhost:5000/manual, and click the Edit button for the All Terrain
Monster product. Change the Width option to Big Foot and uncheck the Trail category. Click the Save
button, and you will see the changes you made reflected in the overview, as shown in Figure 18-5.

Figure 18-5. Editing data in a manually created data mode

Summary
In this chapter, I demonstrated the process for manually modeling a database. This is a process that requires
care and attention but can produce a data model that is easier to use in the ASP.NET Core MVC part of the
application when compared with the scaffolding process described in Chapter 17. In Part 3, I describe the
advanced Entity Framework Core features.

http://dx.doi.org/10.1007/978-1-4842-3435-8_17

PART III

Advanced Entity
Framework Core 2

In Part 3 of this book, I describe the advanced features that Entity Framework Core provides.
These are not features that will be needed in every project but they can be invaluable when you
need to go beyond the standard features described in Part 2.

465© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_19

CHAPTER 19

Working with Keys

Selecting the most suitable keys for your data sets the foundation for the rest of the data model. In earlier
chapters, you have seen the role that keys play in uniquely identifying objects, the conventions that Entity
Framework Core uses to select properties to use as keys, and how these conventions are overridden. In this
chapter, I describe the advanced key features that Entity Framework Core provides. Like many of the features
described in this part of the book, you are unlikely to need the advanced key features in every project that
uses Entity Framework Core, but the ability to take control of how keys are used can be important for those
unusual occasions when the standard features can’t deliver the functionality your application required.

Entity Framework Core isn’t able to generate migrations that make substantial changes to keys, which
means that most of the examples in this chapter require the database to be reset or for earlier migrations to
be removed. This emphasizes the importance of choosing your key strategy as early as possible so as to
avoid having to make complex changes to databases that can result in data loss. Table 19-1 puts this chapter
in context.

Table 19-1. Putting Advanced Key Features in Context

Question Answer

What are they? These features allow you to change the way that keys are created
and used.

Why are they useful? Not all applications can work with the default primary key features,
especially when working with an existing database.

How are they used? These features are applied using Fluent API statements in the
database context class.

Are there any pitfalls or limitations? These features require careful thought because it is easy to select
properties whose values do not uniquely identify an object.

Are there any alternatives? These features are optional, and you can use the basic features
described in Part 2.

 ■ Note Many of the advanced features can be applied only using the Fluent API and have no corresponding
attributes. I have added notes when there are attributes available, but the focus of this chapter—and the other
chapters in this part of the book—is firmly on the use of the Fluent API.

https://doi.org/10.1007/978-1-4842-3435-8_19

ChAPter 19 ■ WorkIng WIth keys

466

Table 19-2 summarizes the chapter.

Table 19-2. Chapter Summary

Problem Solution Listing

Change how primary key values are generated Use the Fluent API key generation methods 14–16

Use natural keys Use the IsUnique method to ensure that values
area not duplicated in the database

17, 18,
25–27

Use additional properties to identify objects Create an alternate key 19–24

Use multiple properties to identify objects Create a composite key 28–32

Figure 19-1. Creating a new application

Preparing for This Chapter
For this chapter, I create a new project so that I can demonstrate the more advanced features that Entity
Framework Core supports. To create the project, select New ➤ Project from the Visual Studio File menu and
use the ASP.NET Core Web Application template to create a new project called AdvancedApp, as shown in
Figure 19-1.

 ■ Tip If you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

ChAPter 19 ■ WorkIng WIth keys

467

Click the OK button to move to the next dialog. Ensure that ASP.NET Core 2.0 is selected from the
list and click the Empty template, as shown in Figure 19-2. Click OK to close the dialog window and create
the project.

Creating the Data Model
The data model for this chapter will represent employees in a simplified HR database, just to provide some
variety from the product-based examples I used in earlier chapters. I created a folder called Models and
added to it a class file called Employee.cs, which I used to define the class shown in Listing 19-1.

Listing 19-1. The Contents of the Employee.cs File in the Models Folder

namespace AdvancedApp.Models {

 public class Employee {

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }
 public decimal Salary { get; set; }
 }
}

Figure 19-2. Configuring the project

ChAPter 19 ■ WorkIng WIth keys

468

The Employee class has properties for a person’s Social Security number, name, and salary. A real HR
database would require additional details, but this is enough to get started.

To create the database context class, I added a class file called AdvancedContext.cs to the Models folder
and defined the class shown in Listing 19-2.

Listing 19-2. The Contents of the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 }
 }
}

The context class defines a DbSet property to provide convenient access to the Employee objects in the
database and override the OnModelCreating method so that the Fluent API can be used to configure the
database. No configuration statements are required at the moment because I am happy using the default
conventions for the Employee class.

Creating the Controller and Views
For the ASP.NET Core MVC part of the application, I started by creating the Controllers folder and adding
to it a class file called HomeController.cs, which I used to define the controller shown in Listing 19-3. The
controller defines an Index action that will display data to the user and defines an Update action that will
create and update objects. I introduce the ability to soft-delete objects (meaning they are hidden from the
user but still in the database) in Chapter 20 and to really delete objects in Chapter 22.

Listing 19-3. The Contents of the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees);
 }

http://dx.doi.org/10.1007/978-1-4842-3435-8_20
http://dx.doi.org/10.1007/978-1-4842-3435-8_22

ChAPter 19 ■ WorkIng WIth keys

469

 public IActionResult Edit(long id) {
 return View(id == default(long)
 ? new Employee() : context.Employees.Find(id));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {

 if (employee.Id == default(long)) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

To provide the controller with its views, I created a Views/Home folder and added to it a file called Index.
cshtml with the content shown in Listing 19-4. This view displays a table showing the details of the Employee
objects read from the database, along with buttons that will allow objects to be created and modified.

Listing 19-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>Key</th>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="7" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.Id</td>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td class="text-right">

ChAPter 19 ■ WorkIng WIth keys

470

 <a asp-action="Edit" asp-route-id="@e.Id"
 class="btn btn-sm btn-primary">Edit
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

To allow the user to create or edit an Employee object, I added a file called Edit.cshtml to the
Views/Home folder, with the content shown in Listing 19-5.

Listing 19-5. The Contents of the Edit.cshtml File in the Views/Home Folder

@model Employee
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

<h4 class="bg-info p-2 text-center text-white">
 Create/Edit
</h4>
<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <div class="form-group">
 <label class="form-control-label" asp-for="SSN"></label>
 <input class="form-control" asp-for="SSN" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FirstName"></label>
 <input class="form-control" asp-for="FirstName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FamilyName"></label>
 <input class="form-control" asp-for="FamilyName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="Salary"></label>
 <input class="form-control" asp-for="Salary" />
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Save</button>
 Cancel
 </div>
</form>

To provide a common layout for the view, I created the Views/Shared folder and added to it a file called
_Layout.cshtml with the content shown in Listing 19-6.

ChAPter 19 ■ WorkIng WIth keys

471

Listing 19-6. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <style>
 .placeholder { visibility: collapse }
 .placeholder:only-child { visibility: visible }
 </style>
</head>
<body>
 <div class="p-2">
 @RenderBody()
 </div>
</body>
</html>

The layout includes a link for the file that contains the Bootstrap CSS styles and some custom CSS
that will display the element added to the placeholder class in the Index.cshtml view when there is no data
to display.

To enable tag helpers and import the package that contains the model classes for use in the views,
I added a file called _ViewImports.cshtml in the Views folder and added the content shown in Listing 19-7.

Listing 19-7. The Contents of the _ViewImports.cshtml File in the Views Folder

@using AdvancedApp.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Configuring the Application
To install the NuGet package that provides the Entity Framework Core command-line tools, I right-clicked
the AdvancedApp project item in the Solution Explorer, selected Edit AdvancedApp.csproj from the pop-up
menu, and added the element shown in Listing 19-8.

Listing 19-8. Adding a NuGet Package in the AdvancedApp.csproj File in the AdvancedApp Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

ChAPter 19 ■ WorkIng WIth keys

472

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.5" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

To configure the details of the database for the example application, I used the ASP.NET Configuration
File item template to add a file called appsettings.json to the AdvancedApp project folder and added the
configuration settings shown in Listing 19-9. In addition to the connection string, I configured the logging
system so that Entity Framework Core will display details of the SQL queries and commands that it sends to
the database server.

Listing 19-9. The Contents of the appsettings.json File in the AdvancedApp Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=AdvancedDb;MultipleActive
ResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information"
 }
 }
}

To enable the ASP.NET Core MVC and Entity Framework Core middleware, I added the configuration
statements shown in Listing 19-10 to the Startup class.

Listing 19-10. Configuring Middleware in the Startup.cs File in the AdvancedApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using AdvancedApp.Models;

namespace AdvancedApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

ChAPter 19 ■ WorkIng WIth keys

473

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<AdvancedContext>(options =>
 options.UseSqlServer(conString));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

I used the the JSON File template (found in the ASP.NET Core ➤ Web ➤ General category) to create
a file called .bowerrc with the content shown in Listing 19-11. (It is important to pay attention to this file
name: it starts with a period, contains the letter r twice and has no file extension).

Listing 19-11. The Contents of the .bowerrc File in the AdvancedApp Folder

{
 "directory": "wwwroot/lib"
}

I used the JSON File template again to create a file called bower.json, with the content shown
in Listing 19-12.

Listing 19-12. The Contents of the bower.json File in the AdvancedApp Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0"
 }
}

When you save the file, Visual Studio will download the Bootstrap package and install it into the
wwwroot/lib folder.

To simplify the process of working with the application, edit the Properties/launchSettings.json file
and change the two URLs that it contains so they both specify port 5000, as shown in Listing 19-13. This is
the port that I will use in the URLs to demonstrate different features of the example application.

ChAPter 19 ■ WorkIng WIth keys

474

Listing 19-13. Changing Ports in the launchSettings.json File in the Properties Folder

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:5000/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "AdvancedApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:5000/"
 }
 }
}

Creating the Database and Testing the Application
Run the commands shown in Listing 19-14 in the AdvancedApp project folder to create and apply the
migration that will set up the database to store Employee objects.

Listing 19-14. Creating and Applying a Database Migration

dotnet ef migrations add Initial
dotnet ef database update

I will drop and re-create the database in the next section, but it is important to make sure that the
example application is working before proceeding. Start the application using dotnet run and navigate
to http://localhost:5000. There is no data in the database currently, and you will see the placeholder
content. Click the Create button, fill out the form fields, and click the Save button to store a new Employee
object in the database, producing a result similar to the one shown in Figure 19-3.

ChAPter 19 ■ WorkIng WIth keys

475

Managing Key Generation
When working with SQL Server, there are two strategies that can be used to produce the values used for
primary keys, which are configured using the methods described in Table 19-3.

Table 19-3. The Key Generation Methods

Name Description

ForSqlServerUseIdentityColumns() This method selects the Identity strategy for key generation.

ForSqlServerUseSequenceHiLo() This method specifies the Hi-Lo strategy for key generation.

Figure 19-3. Running the example application

 ■ Note not all database servers support these key strategies. see the documentation for your database
provider package to see what strategies are available.

Understanding the Identity Strategy
The Identity strategy is used by default. When Entity Framework Core stores a new object, it relies on the
database server to create a unique primary key value. This means that storing an object requires two operations,
which you can see if you click the Create button, fill out the form, click the Save button, and examine the logging
messages generated by the application. The first operation inserts the new data into the database, like this:

...
INSERT INTO [Employees] ([FamilyName], [FirstName], [SSN], [Salary])
VALUES (@p0, @p1, @p2, @p3);
...

ChAPter 19 ■ WorkIng WIth keys

476

Entity Framework Core has not included a value for the Id property because it knows that the value
will be assigned by the database server (and, in fact, providing a value for an UPDATE results in an error). The
second operation queries the database to get the primary key that the database generated when it inserted
the new data into the table, like this:

...
SELECT [Id]
FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [Id] = scope_identity();
...

The advantage of this approach is simplicity. The applications using the database don’t have to
coordinate with one another to avoid duplicate keys or have any knowledge of how keys are generated. The
disadvantage is that an additional query is required to obtain the key value.

 ■ Tip If you are not sure what key strategy to follow, then use the Identity strategy because it is the easiest
to work with and least likely to cause you any problems.

Understanding the Hi-Lo Key Strategy
The Hi-Lo strategy is an optimization that allows Entity Framework Core to create primary key values,
instead of the database server, while still ensuring those values are unique. A little work is required to see
how this strategy works because Entity Framework Core migrations are unable to change the strategy of a
primary key that has been created in an earlier migration. The first step is to apply the Fluent API method
from Table 19-3 in the context class to select the Hi-Lo strategy, as shown in Listing 19-15.

Listing 19-15. Selecting a Key Strategy in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .Property(e => e.Id).ForSqlServerUseSequenceHiLo();
 }
 }
}

The strategy is applied by selecting a property and calling the ForSqlServerUseSequenceHiLo methods
described in Table 19-3. To apply the change to the key generation strategy, I need to remove the existing

ChAPter 19 ■ WorkIng WIth keys

477

migration and create a new one so that the data model is created in a single migration and no change in
Identity strategy is required. Run the commands shown in Listing 19-16 in the AdvancedApp project folder to
remove the existing migration and create a replacement.

Listing 19-16. Resetting Migrations

dotnet ef migrations remove --force
dotnet ef migrations add HiLoStrategy

If you examine the Up method in the <timestamp>_ HiLoStrategy.cs file in the Migrations folder, you
will see that a new sequence called EntityFrameworkHiLoSequence has been set up, like this:

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.CreateSequence(
 name: "EntityFrameworkHiLoSequence",
 incrementBy: 10);

 migrationBuilder.CreateTable(
 name: "Employees",
 columns: table => new {
 Id = table.Column<long>(nullable: false),
 FamilyName = table.Column<string>(nullable: true),
 FirstName = table.Column<string>(nullable: true),
 SSN = table.Column<string>(nullable: true),
 Salary = table.Column<decimal>(nullable: false)
 },
 constraints: table => {
 table.PrimaryKey("PK_Employees", x => x.Id);
 });
}
...

The new sequence will be used to create primary key values, as I explain shortly. Run the commands
shown in Listing 19-17 in the AdvancedApp project folder to drop and re-create the database using the new
migration.

Listing 19-17. Recreating the Database

dotnet ef database drop --force
dotnet ef database update

Using the Hi-Lo Strategy
In the Hi-Lo strategy, Entity Framework Core takes responsibility for generating primary keys based on
an initial seed value obtained from the database server. When an application needs to store an object,
Entity Framework Core gets the next value from the EntityFrameworkHiLoSequence sequence and treats
this as the first number in a block of ten primary key values that it can create without needing to refer to the
database server or coordinate with other applications. For example, if the next sequence value is 100,

ChAPter 19 ■ WorkIng WIth keys

478

then Entity Framework Core knows that it can create objects using the primary keys 100, 101, 102, and so on,
through to 109. Once the block of primary keys has been used up, the next value from the sequence is read.
Each application (or instance of the same application) follows the same process to get its own block of keys,
ensuring that no key values are duplicated. The database server ensures that each request for a sequence
value gets a different result, ensuring that there are no duplicate blocks of keys assigned.

To see how this strategy works, start the application, navigate to http://localhost:5000, and go
through the process of creating and storing a new Employee object. There won’t be any obvious difference in
the way that the ASP.NET Core MVC part of the application behaves, and the changes are visible only if you
examine the Entity Framework Core logging messages.

When you store a new object, Entity Framework Core gets the next value from the sequence, like this:

...
SELECT NEXT VALUE FOR [EntityFrameworkHiLoSequence]
...

The sequence value is the start of the block of ten primary keys that Entity Framework Core can use
without needing any further checks. This is known as the “high” part of the key, which gives the Hi-Lo
strategy part of its name. The “low” part comes from incrementing the sequence value to generate the block
of keys, which are included in the INSERT operation, like this:

...
INSERT INTO [Employees] ([Id], [FamilyName], [FirstName], [SSN], [Salary])
VALUES (@p0, @p1, @p2, @p3, @p4);
...

Unlike the Identity strategy, Entity Framework Core doesn’t have to query the database to
determine the primary key value. Each block of keys is shared between the context objects created by an
application, so Entity Framework Core only has to query for the next value in the sequence after it has stored
ten new objects.

 ■ Caution Do not rely on entity Framework Core using a specific sequence of keys. the implementation of
the hi-Lo strategy may change or may be implemented differently if you switch to a different database provider.

The advantage of this strategy is that it doesn’t require a query after each insert operation to discover
the primary key. The disadvantage is that all of the applications using the database must understand and
follow the Hi-Lo strategy for it to work.

Understanding Hi-Lo Key Exhaustion
This strategy can exhaust the possible range of keys because the unused keys in a block will be “lost”
when an application is restarted, so you must select a data type for the primary keys that provides
adequate capacity. To see how ranges of keys are left unused, stop and restart the application, navigate to
http://localhost:5000, click the Create button, and store another Employee object in the database. A new
sequence value will be read from the database and used as the “high” component of the key, producing the
results shown in Figure 19-4. The keys in the range 2 to 10 that were in the block received by the previous
instance of the application will not be used.

ChAPter 19 ■ WorkIng WIth keys

479

Figure 19-4. Skipping key ranges with the Hi-Lo strategy

Working with Natural Keys
Some data types have their own natural keys, which means that there is some aspect of the data that can
uniquely identify an object. In the case of the Employee class, the SSN property might be a natural key in
countries where Social Security numbers can be relied on to be unique.

UNDERSTANDING SURROGATE KEYS

even though the Employee data has a natural key, I still added a dedicated primary key property to the
Employee class, which I used to demonstrate the key generation strategies in the previous section. this
is known as a surrogate key, and its purpose is solely to identify an object; it has no relationship to the
rest of the values that make up an object. It can be difficult to make data model changes that affect the
primary key, as you will see in the examples in this chapter, and using a surrogate key helps minimize
the impact of future changes to the data model. the data in the example application might happily
use social security numbers if it needed to support only one country, but a change to support other
countries might require the SSN property to be removed or modified. this is much harder to do when a
surrogate key has not been used.

ChAPter 19 ■ WorkIng WIth keys

480

Ensuring Unique Values for Natural Keys
Even though I am not using the natural key to uniquely identify Employee objects, it is still important to ensure
that there are no duplicate values for the SSN property stored in the database. This will help prevent mistyped
entries from being entered by users and help minimize problems if I need to change the data model later. The
simplest way to prevent duplicates is to create an index for a property, as shown in Listing 19-18.

Listing 19-18. Creating an Index in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .Property(e => e.Id).ForSqlServerUseSequenceHiLo();

 modelBuilder.Entity<Employee>()
 .HasIndex(e => e.SSN).HasName("SSNIndex").IsUnique();
 }
 }
}

Indexes are created by selecting the class using the Entity method and calling the HasIndex method to
choose the property for which the index will be created. The HasName method is used to specify a name for
the index, and when working with natural keys, you must also call the IsUnique method to add a constraint
to the database to prevent duplicate values.

 ■ Note Indexes can be created only using the Fluent API. there is no attribute support for this feature.

The listing sets up a unique index for the SSN property, which can be added to the database by
creating and applying a migration using the commands shown in Listing 19-19, which must be run in the
AdvancedApp project folder.

Listing 19-19. Creating and Applying a Migration

dotnet ef migrations add UniqueIndex
dotnet ef database update

ChAPter 19 ■ WorkIng WIth keys

481

If you examine the Up method of the <timestamp>_UniqueIndex.cs file that has been added to the
Migrations folder, you will see how the Fluent API statement in Listing 19-18 has altered the database to
enforce uniqueness for the natural key.

...
protected override void Up(MigrationBuilder migrationBuilder) {

 migrationBuilder.AlterColumn<string>(name: "SSN",
 table: "Employees", type: "nvarchar(450)", nullable: true,
 oldClrType: typeof(string), oldNullable: true);

 migrationBuilder.CreateIndex(name: "SSNIndex",
 table: "Employees", column: "SSN", unique: true,
 filter: "[SSN] IS NOT NULL");
}
...

The first statement in the Up method changes the data type of the SSN column so that it has a fixed size.
The second statement creates the index, setting the unique argument to true, so that duplicate entries are
prohibited. Start the application, navigate to http://localhost:5000, and try to store a new Employee object
whose SSN value is the same as the existing entry; you will see the error message shown in Figure 19-5.

Figure 19-5. Enforcing unique values for a natural key

ChAPter 19 ■ WorkIng WIth keys

482

Creating an Alternate Key
A different approach is required if you need to create relationships using natural key values. In these
situations, an alternate key is required, which ensures unique values and also configures the database so that
an object can be uniquely identified by an additional key, as well as with the primary key.

UNDERSTANDING WHEN ALTERNATE KEYS ARE USEFUL

In most applications, you can safely create relationships using the primary key, which is what entity
Framework Core will do by default. If you only need to avoid duplicate values, then create a unique
index instead of creating an alternate key, as described in the previous section. Being able to create
a relationship on an alternate key is important only if you expect the alternate key value to be moved
to another object in the future and you want to seamlessly transfer existing relationships, which is
something that most applications don’t have to worry about.

To demonstrate the use of an alternate key, I added a file called SecondaryIdentity.cs to the Models
folder and used it to define the class shown in Listing 19-20.

Listing 19-20. The Contents of the SecondaryIdentity.cs in the Models Folder

namespace AdvancedApp.Models {

 public class SecondaryIdentity {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool InActiveUse { get; set; }

 public string PrimarySSN { get; set; }
 public Employee PrimaryIdentity { get; set; }
 }
}

This class will represent another name by which an employee is known. The SecondaryIdentity class
defines an PrimaryIdentity property that forms part of the relationship with the Employee class, and the
PrimarySSN property will be used as the foreign key property. To complete the relationship, I added the
inverse navigation property to the Employee class shown in Listing 19-21.

Listing 19-21. Completing the Relationship in the Employee.cs File in the Models Folder

namespace AdvancedApp.Models {

 public class Employee {

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }
 public decimal Salary { get; set; }

ChAPter 19 ■ WorkIng WIth keys

483

 public SecondaryIdentity OtherIdentity { get; set; }
 }
}

The OtherIdentity property returns a SecondaryIdentity object, which tells Entity Framework Core
that this is a one-to-one relationship.

By default, Entity Framework Core will use the primary key of the Employee class for the foreign key column
in the relationship between the SecondaryIdentity and Employee classes. I added the Fluent API statements
shown in Listing 19-22 to the context class to override this convention and use the alternate key instead.

 ■ Note Alternate keys can be created only using the Fluent API. there is no attribute support for this feature.

Listing 19-22. Using an Alternate Key in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .Property(e => e.Id).ForSqlServerUseSequenceHiLo();

 //modelBuilder.Entity<Employee>()
 // .HasIndex(e => e.SSN).HasName("SSNIndex").IsUnique();

 modelBuilder.Entity<Employee>().HasAlternateKey(e => e.SSN);

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => e.SSN)
 .HasForeignKey<SecondaryIdentity>(s => s.PrimarySSN);
 }
 }
}

The first new statement in Listing 19-22 creates the alternate key using the HasAlternateKey method,
which has the same effect as creating a unique index, except that Entity Framework Core will allow
relationships to be created using the selected property. This method is required to prepare a property as an
alternate key only if you are not going to set up the relationship immediately, but I tend to include it anyway,
just to make my intentions obvious.

ChAPter 19 ■ WorkIng WIth keys

484

The second new statement in Listing 19-22 sets up the relationship between the two classes. The
HasOne and WithOne methods are used to select the navigation properties, and the HasPrincipalKey<T> and
HasForeignKey<T> methods are used to select the alternate key and foreign key properties.

The result is that the SSN property will be configured as an alternate key, which is used as the foreign
key in the relationship with the SecondaryIdentity class. Run the commands shown in Listing 19-23 in the
AdvancedApp project folder to create and apply the change to the database.

Listing 19-23. Creating and Applying a Database Migration

dotnet ef migrations add AlternateKey
dotnet ef database update

If you examine the Up method in the <timestamp>_AlternateKey.cs file that has been added to the
Migrations folder, you will see the foreign key constraint that has been applied to the PrimarySSN column in
the table that has been created to store SecondaryIdentity objects.

...
constraints: table => {
 table.PrimaryKey("PK_SecondaryIdentity", x => x.Id);
 table.ForeignKey(
 name: "FK_SecondaryIdentity_Employees_PrimarySSN",
 column: x => x.PrimarySSN,
 principalTable: "Employees",
 principalColumn: "SSN",
 onDelete: ReferentialAction.Restrict);
});
...

Once you have defined the alternate key, you can use it to create relationships just as you would
with a primary key. To work through the changes into the ASP.NET Core MVC part of the application,
I added the elements shown in Listing 19-24 to the Edit.cshtml view so that the user can create or edit a
SecondaryIdentity object along with the Employee object it is related to.

Listing 19-24. Adding Elements in the Edit.cshtml File in the Views/Home Folder

@model Employee
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

<h4 class="bg-info p-2 text-center text-white">
 Create/Edit
</h4>
<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <div class="form-group">
 <label class="form-control-label" asp-for="SSN"></label>
 <input class="form-control" asp-for="SSN" />
 </div>

ChAPter 19 ■ WorkIng WIth keys

485

 <div class="form-group">
 <label class="form-control-label" asp-for="FirstName"></label>
 <input class="form-control" asp-for="FirstName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FamilyName"></label>
 <input class="form-control" asp-for="FamilyName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="Salary"></label>
 <input class="form-control" asp-for="Salary" />
 </div>

 <input type="hidden" asp-for="OtherIdentity.Id" />
 <div class="form-group">
 <label class="form-control-label">Other Identity Name:</label>
 <input class="form-control" asp-for="OtherIdentity.Name" />
 </div>

 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 asp-for="OtherIdentity.InActiveUse" />
 In Active Use
 </label>
 </div>

 <div class="text-center">
 <button type="submit" class="btn btn-primary">Save</button>
 Cancel
 </div>
</form>

I also modified the Edit method in the Home controller so that the query for an Employee object follows
the navigation property to include the related data and pass it to the view, as shown in Listing 19-25.

Listing 19-25. Including Related Data in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

ChAPter 19 ■ WorkIng WIth keys

486

 public IActionResult Index() {
 return View(context.Employees);
 }

 public IActionResult Edit(long id) {
 return View(id == default(long)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.Id == id));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (employee.Id == default(long)) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The query in the Edit method uses the Include method to follow the navigation property and the First
method to find the object with the Id value specified by the user. To check that the alternate key is working,
start the application using dotnet run, navigate to http://localhost:5000, and create or edit an Employee
object. With the addition of the new relationship (and the alternate key it uses), you can provide details of a
second identity, as shown in Figure 19-6.

ChAPter 19 ■ WorkIng WIth keys

487

 ■ Tip Don’t make any change to the SSN, FirstName, or FamilyName properties of objects that have been
stored in the database. the properties that form the key cannot be changed unless the database is specifically
configured to allow it.

Using Natural Keys as Primary Keys
If you don’t want to use a surrogate key—typically because you have confidence that there will be no data
model changes—you can select a property to use as the primary key and take responsibility for generating
unique values, although this is not a decision to be taken lightly because you are responsible for ensuring
that each value is unique. Natural keys can be messy and cannot always be relied on to be as unique as might
have been assumed during the project design phase. To demonstrate the use of a natural key as the primary
key, I reconfigured the data model using Fluent API statements, telling Entity Framework Core to ignore the
existing primary key property and use the SSN property instead, as shown in Listing 19-26.

Figure 19-6. Using an alternate key as the foreign key in a relationship

ChAPter 19 ■ WorkIng WIth keys

488

 ■ Note you can select any property as the primary key by using the Key attribute. the rest of this example is
the same, including the changes required to deal with keys that the user/application is responsible for generating.

Listing 19-26. Using a Natural Key in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>().HasKey(e => e.SSN);

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => e.SSN)
 .HasForeignKey<SecondaryIdentity>(s => s.PrimarySSN);
 }
 }
}

I have used the Ignore method to exclude the Id property from the data model and the HasKey
method to select the SSN property as the primary key. No change is required to the statement that
configures the relationship between the Employee and SecondaryIdentity classes, although the call to the
HasPrincipalKey method could be removed since Entity Framework Core will use the SSN property in this
relationship by default now that it is the primary key.

Run the commands shown in Listing 19-27 in the AdvancedApp project folder to create and apply a
migration that will change the primary key.

Listing 19-27. Resetting and Updating the Database

dotnet ef migrations remove --force
dotnet ef migrations add NaturalPrimaryKey
dotnet ef database drop --force
dotnet ef database update

ChAPter 19 ■ WorkIng WIth keys

489

Entity Framework Core struggles to make changes that involve keys, and trying to add a migration
changes the primary key won’t work because the migration will try to remove a constraint set up for the
alternate key that is used by the relationship created on it. To work around this problem, I removed the
migration that set up the alternate key, created a migration that selects the SSN property as the primary key,
and then re-created the database.

To work the changes through into the ASP.NET Core MVC part of the application, I updated the
controller so that it uses the SSN property as the primary key, as shown in Listing 19-28.

Listing 19-28. Using the New Primary Key in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees);
 }

 public IActionResult Edit(string SSN) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN) == 0) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The most important change is to the Update method. When I was relying on the database server to
generate key values, I could determine whether a request was an update or create operation by checking
for the default value of the key type. I can’t do that now that the user is responsible for providing a value key
value, so I have queried the database to check to see whether there is an existing object with the key value
included in the request, which I perform using the LINQ Count method.

ChAPter 19 ■ WorkIng WIth keys

490

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and store a new Employee object in the database. If you examine the log messages generated by the
application, you will see that the query in the Update method results in this operation:

...
SELECT COUNT(*)
FROM [Employees] AS [e]
WHERE [e].[SSN] = @__employee_SSN_0
...

This check allows me to determine whether the key specified by the user is already in the database
without loading the data and tripping over the Entity Framework Core data cache when I perform an update
using an object created by the MVC model binder.

Creating Composite Keys
A composite key uniquely identifies an object by combining values from two or more columns in the
database table or properties from the entity class. You won’t need to create composite keys when using
the identity or Hi-Lo strategies to generate key values because they will always be unique, but a composite
key can be useful when using a natural key that is unique only when combined with another value. Social
Security numbers are often treated as unique in the United States, but some studies have estimated that
there are 40 million numbers that are used by more than one person, through a combination of confusion,
errors, and fraud. At the moment, the example application will generate an exception if an attempt is made
to create an Employee object that uses an SSN value already stored in the database, but in this section, I am
going to relax the rules about SSN uniqueness by identifying objects through a combination of properties,
as shown in Listing 19-29.

 ■ Note Composite keys can be created only by using the Fluent API. there is no attribute support for this feature.

Listing 19-29. Creating a Composite Key in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) { }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

ChAPter 19 ■ WorkIng WIth keys

491

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });
 }
 }
}

Composite keys are created by creating an object that selects the properties that should be used in the
key, which are the SSN, FirstName, and FamilyName properties in this example. There can be duplicate values
for each of these properties in the database, just as long as each object has a unique combination of values.
The properties that make up the key have to be used to create relationships too, which you can see reflected
in the lambda expressions used in the HasPrincipalKey method, which configures the one side of the
relationship with the SecondaryIdentity class.

...

.HasPrincipalKey<Employee>(e => new { e.SSN, e.FirstName, e.FamilyName })

...

For the HasForeignKey method, I have specified some additional foreign key properties for keeping
track of the related Employee object using the composite key, and I have defined those properties on the
SecondaryIdentity class in Listing 19-30.

Listing 19-30. Adding Foreign Key Properties in the SecondaryIdentity.cs File in the Models Folder

namespace AdvancedApp.Models {

 public class SecondaryIdentity {
 public long Id { get; set; }
 public string Name { get; set; }
 public bool InActiveUse { get; set; }

 public string PrimarySSN { get; set; }
 public string PrimaryFamilyName { get; set; }
 public string PrimaryFirstName { get; set; }
 public Employee PrimaryIdentity { get; set; }
 }
}

Run the commands shown in Listing 19-31 in the AdvancedApp project folder to create a new migration
and apply it to the database. Entity Framework Core struggles to make the changes required to the primary
key, so these commands remove the migration from the previous section, add a new migration, and then
re-create the database.

ChAPter 19 ■ WorkIng WIth keys

492

Listing 19-31. Creating and Applying a Database Migration

dotnet ef migrations remove --force
dotnet ef migrations add CompositeKey
dotnet ef database drop --force
dotnet ef database update

If you examine the Up method in the <timestamp>_CompositeKey.cs file in the Migrations folder, you
will find a statement that will configure the primary key for the Employees table using a combination of the
properties selected in Listing 19-29.

...
migrationBuilder.AddPrimaryKey(
 name: "PK_Employees",
 table: "Employees",
 columns: new[] { "SSN", "FirstName", "FamilyName" });
...

When you create a composite key, the change has to be worked through the rest of the application.
In Listing 19-32, I have updated the controller so that it will use all of the key properties when querying
the database.

Listing 19-32. Using the Composite Key in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees);
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

ChAPter 19 ■ WorkIng WIth keys

493

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

Without these changes, the controller won’t query the database using the full primary key, which will
lead to some odd results, either selecting the wrong object for editing or failing to insert a new object if it has
an SSN value that is already in the database.

 ■ Tip some methods, such as Find, accept a series of key values that are used to query the database. When
you use these methods, you must provide values in the same order that you used to define the composite key in
the context class. For the example application, this means querying using the values of the SSN, FirstName, and
FamilyName properties in this order because that’s how I defined the composite key.

The final change is to add some additional attributes that select an object for editing in the
Index.cshtml file, as shown in Listing 19-33, so that the Edit method defined by the controller receives all of
the primary key values.

Listing 19-33. Using the Composite Key in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>Key</th>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th></th>
 </tr>
 </thead>

ChAPter 19 ■ WorkIng WIth keys

494

 <tbody>
 <tr class="placeholder"><td colspan="7" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.Id</td>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td class="text-right">
 <a asp-action="Edit" asp-route-ssn="@e.SSN"
 asp-route-firstname="@e.FirstName"
 asp-route-familyname="@e.FamilyName"
 class="btn btn-sm btn-primary">Edit
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

The asp-route- attributes provide the composite key values required to identify an object when the
user edits an Employee. To ensure that the composite key is working, start the application, navigate to
http://localhost:5000, and create new Employee objects using the data values shown in Table 19-4.

Table 19-4. The Data for Checking the Composite Key

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

420-39-1864 Alice Jones 200000 Allie Checked

420-39-1864 Bob Smith 150000 Bobby Unchecked

All three rows in the table contain the same value for the SSN property, but you will see an exception
only when trying to create the third object, which has the same combination of values for the three
properties used in the primary key. This is noted in the exception message displayed by the application,
shown in Figure 19-7.

ChAPter 19 ■ WorkIng WIth keys

495

The error message includes details of the duplicate key, which demonstrates that it is the combination
of primary key properties that are being used to identify objects, like this:

...
The duplicate key value is (420-39-1864, Bob, Smith).
...

When the combination of values forms the key, then individual properties can be duplicated, as this
example demonstrates.

Summary
In this chapter, I demonstrated the advanced Entity Framework Core features for working with keys.
I explained the Identity and Hi-Lo key generation strategies and how to work with natural keys in different
ways: ensuring unique values, using them to create relationships, and as primary keys. In the next chapter,
I describe the advanced features for queries.

Figure 19-7. Trying to create a duplicate composite key

497© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_20

CHAPTER 20

Queries

The Entity Framework Core support for querying with LINQ makes working with data a natural process for
.NET developers. In the sections that follow, I describe the advanced features that Entity Framework Core
provides for controlling queries, which can be useful if you can’t get the behavior you require using the
techniques described in earlier chapters. Table 20-1 puts this chapter in context.

Table 20-1. Putting Advanced Query Features in Context

Question Answer

What are they? The advanced query features allow you to override the default
Entity Framework Core behavior.

Why are they useful? These features can be useful when working with existing
databases or when you have specific performance requirements.

How are they used? These features are applied as part of LINQ queries.

Are there any pitfalls or limitations? These features can unexpectedly change the behavior of
applications or alter query results and should be used with caution.

Are there any alternatives? These are specialized features that most projects will not require.

Table 20-2 summarizes the chapter.

Table 20-2. Chapter Summary

Problem Solution Listing

Query for read-only data Disable the change tracking feature 1–7

Filter the data produced by all queries Apply a query filter 8–12

Override a query filter Use the IgnoreQueryFilters method 13, 14

Query for data using a search expression Use the Like function 15

Perform concurrent queries Use the asynchronous query methods 16, 17

Speed up query reuse Explicitly compile the query 18

Detect client evaluation of queries Enable exception reporting when queries
include client evaluation

19, 21

http://agilemanifesto.org/

Chapter 20 ■ Queries

498

Preparing for This Chapter
In this chapter, I continue to use the AdvancedApp project that I created in Chapter 19. To prepare for this
chapter, I have modified the view used to create and edit Employee objects so the values of the composite
primary key cannot be changed, as shown in Listing 20-1.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

Listing 20-1. Disabling Key Changes in the Edit.cshtml File in the Views/Home Folder

@model Employee
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

<h4 class="bg-info p-2 text-center text-white">
 Create/Edit
</h4>
<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <div class="form-group">
 <label class="form-control-label" asp-for="SSN"></label>
 <input class="form-control" asp-for="SSN" readonly="@Model.SSN" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FirstName"></label>
 <input class="form-control" asp-for="FirstName"
 readonly="@Model.FirstName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FamilyName"></label>
 <input class="form-control" asp-for="FamilyName"
 readonly="@Model.FamilyName"/>
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="Salary"></label>
 <input class="form-control" asp-for="Salary" />
 </div>
 <input type="hidden" asp-for="OtherIdentity.Id" />
 <div class="form-group">
 <label class="form-control-label">Other Identity Name:</label>
 <input class="form-control" asp-for="OtherIdentity.Name" />
 </div>

http://dx.doi.org/10.1007/978-1-4842-3435-8_19
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 20 ■ Queries

499

 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 asp-for="OtherIdentity.InActiveUse" />
 In Active Use
 </label>
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Save</button>
 Cancel
 </div>
</form>

Next, run the commands shown in Listing 20-2 in the AdvancedApp project folder to drop and re-create
the database.

Listing 20-2. Dropping and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and use the values shown in Table 20-3 to store three Employee objects.

Table 20-3. The Data Values for Creating Example Objects

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

657-03-5898 Alice Jones 200000 Allie Checked

300-30-0522 Peter Davies 180000 Pete Checked

When you have created all three objects, you should see the layout illustrated in Figure 20-1.

Chapter 20 ■ Queries

500

Managing Change Tracking for Query Results
The change tracking feature is one of the features that makes Entity Framework Core convenient to use.
When you query the database, Entity Framework Core starts tracking the objects that it creates to represent
the data. When you call the SaveChanges method, Entity Framework Core identifies the properties whose
values have changed and updates the database accordingly.

As useful as this feature can be, it isn’t always needed for every query made in ASP.NET Core MVC
applications. Many HTTP requests that are received by an MVC application target action methods that only
read data from the database and make no changes. If you are reading data, then there is no benefit gained
from the work that Entity Framework Core has to do to set up change tracking for the objects it creates
because there will never be any changes to detect.

You can control whether change tracking is performed for a query using the methods shown in
Table 20-4, which are called on IQueryable<T> objects.

Table 20-4. The Methods Used to Configure Change Tracking

Name Description

AsNoTracking() This method disables change tracking for the results of the query to which it is applied.

AsTracking() This method enables change tracking for the results of the query to which it is applied.

Figure 20-1. Running the example application

Chapter 20 ■ Queries

501

The methods described in Table 20-4 are applied to control change tracking for individual queries. By
default, change tracking is enabled, so in Listing 20-3 I have disabled tracking for the read-only queries made
by the Home controller.

Listing 20-3. Disabling Change Tracking in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.AsNoTracking());
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .AsNoTracking()
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

I have added the AsNotTracking method to the queries in the Index and Edit action methods. The
AsTracking and AsNotTracking methods are applied to IQueryable<T> objects, which means they have to
be included in the chain of methods that create a query before methods such as First that narrow a result to
a single object.

There is no discernable effect of disabling change tracking, but Entity Framework Core is no longer
setting up tracking for objects that are used for read-only actions.

Chapter 20 ■ Queries

502

Removing Individual Objects from Change Tracking
A common problem with change tracking in ASP.NET Core MVC applications arises when you try to perform
an update using an object created by the MVC model binder that has the same primary key as an object
that has been loaded by an Entity Framework Core query that is using change tracking. To demonstrate this
problem, I have modified the Update method in the Home controller, as shown in Listing 20-4.

Listing 20-4. Mixed Objects in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee) {
 if (context.Employees.Find(employee.SSN, employee.FirstName,
 employee.FamilyName) == null) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

I have changed the query in the listing so that it uses the Find method to determine whether a key has
already been used. This is an artificial problem because the original code showed that passing a lambda
expression to the LINQ Count method worked without causing any problems, but this is such a common
issue that it is worth demonstrating the issue even if you have already seen one technique that avoids it.

Start the application using dotnet run and navigate to http://localhost:5000. Click the Edit button
for an Employee and then click the Save button; you will see the error illustrated by Figure 20-2.

Figure 20-2. An exception caused by the change tracking feature

Chapter 20 ■ Queries

503

The error message reports that only one object with a specific key can be tracked. This problem has
arisen because Entity Framework Core has placed the Employee object created as the result of the Find
method into change tracking, and this object has the same primary key as the Employee object that the MVC
model binder created and that has been passed to the Update method. Entity Framework Core can’t perform
change tracking on two objects with the same key because it won’t be able to reconcile any conflicting
changes that are made to them, so the exception is thrown.

The simplest way of avoiding this problem is to use queries that produce simple results that are not
subject to change tracking, such as the original code for this listing that relied on the LINQ Count method.
Entity Framework Core only performs change tracking on entity objects, so any query that produces a
nonentity result, such as an int value, isn’t subject to change tracking. You can also use the AsNoTracking
method, described in the previous section, which will exclude all the objects created by a query from change
tracking.

If neither of these approaches is suitable, you can explicitly remove an object from change tracking. This
doesn’t avoid the work that Entity Framework Core performs to track the object, but it does prevent Entity
Framework Core from throwing an exception.

In Listing 20-5, I have modified the Update method so that the Employee object created by Entity
Framework Core is removed from change tracking so that it won’t conflict with the Employee object created
by the MVC model binder.

Listing 20-5. Removing an Object from Tracking in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee) {
 Employee existing = context.Employees.Find(employee.SSN,
 employee.FirstName, employee.FamilyName);
 if (existing == null) {
 context.Add(employee);
 } else {
 context.Entry(existing).State = EntityState.Detached;
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

The object being tracked is passed to the context object’s Entry method, and the State property is
assigned the EntityState.Detached value. The result is that Entity Framework Core removes the object
from change tracking, which means that it no longer conflicts with the object with the same primary key that
is created from the HTTP request by the MVC model binder.

Changing the Default Change Tracking Behavior
If the majority of your queries do not modify objects, then it can be simpler to disable tracking for all of the
queries made by a context object and use the AsTracking method to enable it for just those queries that
need it.

In Listing 20-6, I have disabled tracking for all queries in the AdvancedContext class. There is only one
context in the example application, but the change in the listing would not affect other contexts, each of
which must be configured in the same way.

Chapter 20 ■ Queries

504

Listing 20-6. Disabling Change Tracking in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {
 ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;
 }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });
 }
 }
}

The ChangeTracker property defined by the DbContext class returns a ChangeTracker object whose
QueryTrackingBehavior property is configured using the enumeration of the same name. Table 20-5 shows
the values for the QueryTrackingBehavior enumeration.

Table 20-5. The QueryTrackingBehavior Values

Name Description

NoTracking This value disables change tracking for the queries made by the context object.

TrackAll This value enables change tracking for the queries made by the context object.

If you disable change tracking by default, then you must use the AsTracking method in any query where
you rely on tracking to detect changes. In Listing 20-7, I have modified the query in the Update method of
the Home controller so that the value for the Salary property is applied to an Employee object read from the
database, which will work only if Entity Framework Core is allowed to use change tracking to detect the
modified value.

Chapter 20 ■ Queries

505

Listing 20-7. Enabling Tracking on a Query in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee) {
 Employee existing = context.Employees
 .AsTracking()
 .First(e => e.SSN == employee.SSN && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName);
 if (existing == null) {
 context.Add(employee);
 } else {
 existing.Salary = employee.Salary;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Without the AsTracking method, Entity Framework Core won’t be able to detect the change and will
not update the database.

Using a Query Filter
A query filter is applied to all of the queries made in the application for a specific entity class. One useful
application of the query filter is to implement a “soft delete” feature that marks objects that are deleted
without removing them from the database, allowing data to be restored if it has been deleted by mistake.

 ■ Note i describe the advanced features for really deleting data in Chapter 22.

To prepare, I added a property to the Employee class that will indicate when an object stored in the
database has been soft-deleted by the user, as shown in Listing 20-8.

Listing 20-8. Adding a Property in the Employee.cs File in the Models Folder

namespace AdvancedApp.Models {

 public class Employee {

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }
 public decimal Salary { get; set; }

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;
 }
}

http://dx.doi.org/10.1007/978-1-4842-3435-8_22

Chapter 20 ■ Queries

506

The next step is to add a query filter that excludes soft-deleted Employee objects from query results, as
shown in Listing 20-9. I have also commented out the line that disables change tracking to keep the example
as simple as possible.

Listing 20-9. Defining a Query Filter in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {
 //ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;
 }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });
 }
 }
}

Query filters are created by selecting a class with the Entity method and then calling the
HasQueryFilter method. The filter is applied to all queries for the selected class, and only those objects for
which the lambda expression returns true will be included in the query results. In the listing, I have defined
a query filter that selects Employee objects whose SoftDeleted value is false.

To implement the soft-delete feature, I have updated the Home controller, as shown in Listing 20-10.
I have added a Delete action that sets an Employee object’s SoftDeleted property to true, which will ensure
that objects that are soft-deleted won’t be excluded by the query filter.

Chapter 20 ■ Queries

507

Listing 20-10. Supporting Soft Delete in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.AsNoTracking());
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .AsNoTracking()
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 Employee existing = context.Employees
 .AsTracking()
 .First(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName);
 if (existing == null) {
 context.Add(employee);
 } else {
 existing.Salary = employee.Salary;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

Chapter 20 ■ Queries

508

To allow the user to use the soft-delete feature, I added elements to the Index.cshtml view, as shown
in Listing 20-11, that will send an HTTP POST request containing the Employee primary key values to the
Delete action method.

Listing 20-11. Adding Elements to the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>Key</th>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="7" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.Id</td>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">Delete</button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

Chapter 20 ■ Queries

509

The form element and its contents are used for the delete and editing features. Each button element
is configured with the action and HTTP method that should be used when the user clicks it, replacing the
anchor element I used previously.

Run the commands shown in Listing 20-12 in the AdvancedApp project folder to create a new migration
and apply it to the database.

Listing 20-12. Creating and Applying a Database Migration

dotnet ef migrations add SoftDelete
dotnet ef database update

To see the effect of the soft-delete, start the application using dotnet run, navigate to
http://locahost:5000, and delete an Employee object. When you delete the object, it will disappear from
the table of Employee objects, as shown in Figure 20-3.

Figure 20-3. Soft-deleting data

Overriding a Query Filter
Being able to soft-delete an object is useful only if there are also facilities for undeleting objects. This means
I need to override the filter so that I can query the database for the soft-deleted objects and present them to
the user. I added a class file called DeleteController.cs to the Controllers folder and used it to define the
controller shown in Listing 20-13.

Listing 20-13. The Contents of the DeleteController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class DeleteController : Controller {
 private AdvancedContext context;

 public DeleteController(AdvancedContext ctx) => context = ctx;

Chapter 20 ■ Queries

510

 public IActionResult Index() {
 return View(context.Employees.Where(e => e.SoftDeleted)
 .Include(e => e.OtherIdentity).IgnoreQueryFilters());
 }

 [HttpPost]
 public IActionResult Restore(Employee employee) {
 context.Employees.IgnoreQueryFilters()
 .First(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName).SoftDeleted = false;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The Index and Restore action methods both need to query for soft-deleted objects, which the query
filter excludes. To ensure these queries have access to the data they require, I called the IgnoreQueryFilters
method, like this:

...
return View(context.Employees.Where(e => e.SoftDeleted)
 .Include(e => e.OtherIdentity).IgnoreQueryFilters());
...

This method makes the query without applying the query filter. To provide the controller with a view,
I created the Views/Delete folder and added to it a file called Index.cshtml with the content shown in
Listing 20-14.

Listing 20-14. The Contents of the Index.cshtml File in the Views/Delete Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Deleted Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="4" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>

Chapter 20 ■ Queries

511

 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td class="text-right">
 <form method="post">
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="FirstName" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <button asp-action="Restore"
 class="btn btn-sm btn-success">Restore</button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>

Start the application using dotnet run and navigate to http://localhost:5000/delete; you will see
a list of the soft-deleted objects. Click the Restore button to set an object’s SoftDeleted property to false,
which will restore it to the main data table presented by the Home controller, as shown in Figure 20-4.

Figure 20-4. Restoring a soft-deleted object

Chapter 20 ■ Queries

512

Querying Using Search Patterns
Entity Framework Core supports the SQL LIKE expression, which means that queries can be performed
using search patterns. In Listing 20-15, I have modified the Index action of the Home controller so that it
receives a search term parameter that is used to create a LIKE query.

Listing 20-15. Using a Search Pattern in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index(string searchTerm) {
 IQueryable<Employee> data = context.Employees;
 if (!string.IsNullOrEmpty(searchTerm)) {
 data = data.Where(e => EF.Functions.Like(e.FirstName, searchTerm));
 }
 return View(data);
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .AsNoTracking()
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 Employee existing = context.Employees
 .AsTracking()
 .First(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName);
 if (existing == null) {
 context.Add(employee);
 } else {
 existing.Salary = employee.Salary;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

Chapter 20 ■ Queries

513

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

There is no direct support for LIKE in LINQ, which results in an awkward syntax. The EF.Functions.
Like method is used to access the LIKE functionality within a Where clause and receives the property that
will be matched and the search term as parameters. In the listing, I have used the Like method to search
for Employee objects whose FirstName value matches the search term parameter received by the action
method. Search terms can be expressed using four wildcards, which are described in Table 20-6.

Table 20-6. The SQL LIKE Wildcards

Wildcard Description

% This wildcard matches any string of zero or more characters.

_ This wildcard matches any single character.

[chars] This wildcard matches any single character within a set.

[^chars] This wildcard matches any single character not within a set.

To see how the search works, start the application using dotnet run, ensure that all of the sample
Employee objects have been restored from soft-deletion, and then navigate to the following URL:

http://localhost:5000?searchTerm=%[ae]%

This search term specified in the URL query string will match any first name that contains the letter
A or E. If you examine the logging messages generated by the application, you will see the query that Entity
Framework Core has sent to the database server.

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[Salary], [e].[SoftDeleted]
FROM [Employees] AS [e]
WHERE ([e].[SoftDeleted] = 0) AND [e].[FirstName] LIKE @__searchTerm_1
...

The important part of the query is the LIKE keyword, which I have highlighted. This ensures that only
objects that match the search term will be read from the database.

Of the three objects created using the data in Table 20-3, only Alice and Peter will be matched by the
search term, producing the results shown in Figure 20-5.

Chapter 20 ■ Queries

514

AVOIDING THE LIKE EVALUATION PITFALL

Care must be taken to apply the EF.Functions.Like method only to IQueryable<T> objects. You must
avoid calling the Like method on an IEnumerable<T> object like this:

...
public IActionResult Index(string searchTerm) {
 IEnumerable<Employee> data = context.Employees;
 if (!string.IsNullOrEmpty(searchTerm)) {
 data = data.Where(e => EF.Functions.Like(e.FirstName, searchTerm));
 }
 return View(data);
}
...

the results will look the same, but if you examine the query sent to the database server, you will see
that the LIKE keyword is not included in the query.

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[Salary], [e].[SoftDeleted]
FROM [Employees] AS [e]
WHERE [e].[SoftDeleted] = 0
...

entity Framework Core will retrieve all the objects that could be matched by the search term, process
them in the application, and discard the ones that are not required. For the example application, that
means the query will load one extra object, but in a real project the amount of data that is loaded and
then discarded can be significant.

Figure 20-5. Using a search term in a query

Chapter 20 ■ Queries

515

Making Asynchronous Queries
Most queries made using Entity Framework Core are synchronous. In most applications, synchronous
queries are perfectly acceptable because the query is the only activity performed by an ASP.NET Core MVC
action method, which is also synchronous.

Entity Framework Core can also perform queries asynchronously, which can be useful if you are using
an asynchronous action method and that action method needs to perform multiple activities concurrently
and only one of those activities is a database query. The set of circumstances in which asynchronous queries
are useful is so specific, in fact, that most ASP.NET Core MVC projects don’t need to use them.

In Listing 20-16, I have rewritten the Index action so that it is asynchronous and takes advantage of the
Entity Framework Core support for asynchronous queries.

Listing 20-16. Making an Asynchronous Query in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;
using System.Net.Http;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public async Task<IActionResult> Index(string searchTerm) {
 IQueryable<Employee> employees = context.Employees;
 if (!string.IsNullOrEmpty(searchTerm)) {
 employees = employees.Where(e =>
 EF.Functions.Like(e.FirstName, searchTerm));
 }
 HttpClient client = new HttpClient();
 ViewBag.PageSize = (await client.GetAsync("http://apress.com"))
 .Content.Headers.ContentLength;
 return View(await employees.ToListAsync());
 }

 // ...other action methods omitted for brevity...
 }
}

The limitations of asynchronous queries make it difficult to create a useful example. In the listing, I used
the HttpClient class to send an asynchronous HTTP GET request to apress.com while also querying the
database.

Chapter 20 ■ Queries

516

AVOIDING THE CONCURRENT QUERY PITFALL

Microsoft specifically warns against using a context object to perform multiple asynchronous requests
because the DbContext class has not been written to accommodate them. this leads some enterprising
developers to use dependency injection to receive two context objects, each of which is used to perform
a concurrent asynchronous request.

...
public HomeController(AdvancedContext ctx, AdvancedContext ctx2) {
...

the problem with this approach is that the asp.Net Core MVC dependency injection feature will create
just one context object and use it to resolve both dependencies, which means that there is one context
object after all. My advice is to accept the limitations of asynchronous query support.

Entity Framework Core provides a series of methods that force asynchronous evaluation of a query.
The most commonly used asynchronous methods are described in Table 20-7, but there are asynchronous
equivalents for all of the methods that force query evaluation, such that the LastAsync method is the
asynchronous counterpart to the Last method. No asynchronous versions of the methods used to create the
query, such as Where, are required because they build up the query without executing it.

Table 20-7. The Commonly Used Methods That Perform an Asynchronous Query

Name Description

LoadAsync() This method forces asynchronous execution of a query but does nothing
with the results. This is the counterpart to the Load method and is most often
used with the fixing up process.

ToListAsync() This method queries the database and returns the resulting objects in a list.

ToArrayAsync() This method queries the database and returns the resulting objects in
an array.

ToDictionaryAsync(key) This method queries the database and returns the resulting objects in a
dictionary, using the specified property as the source of key values.

CountAsync() This method returns the number of objects stored in the database that
match the specified predicate. If no predicate is specified, the number of
stored objects matching the query is returned.

FirstAsync(predicate) This method returns the first object that matches the specified predicate.

ForEachAsync(function) This method invokes the specified function for each of the objects matched
by the query.

Chapter 20 ■ Queries

517

 ■ Note the ForEachAsync method doesn’t have a synchronous counterpart but can be used to invoke a
function for each object that is created from the results of a query.

In the listing, I used the ToListAsync method to query the database asynchronously and pass the
List<Employee> that is produced to the View method. The List<T> class implements the IEnumerable<T>
interface, which means that the existing view can enumerate the objects without any changes. To display
the number of bytes read from apress.com by the asynchronous HTTP request in Listing 20-16, I added the
element shown in Listing 20-17 to the Index view.

Listing 20-17. Adding an Element in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">

 <!-- ...table contents omitted for brevity... -->

</table>
@if (ViewBag.PageSize != null) {
 <h4 class="bg-info p-2 text-center text-white">
 Page Size: @ViewBag.PageSize bytes
 </h4>
}
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

To test the asynchronous query, start the application using dotnet run and navigate to http://
localhost:5000. You will see the page size element shown in Figure 20-6, along with the Employee data that
was retrieved from the database at the same time. (You may see a different number of bytes displayed, since
apress.com is often updated.)

Chapter 20 ■ Queries

518

Explicitly Compiling Queries
One of the most compelling Entity Framework Core features is the way that LINQ queries are translated
into SQL. The translation process can be complex, and to improve performance, Entity Framework Core
automatically keeps a cache of the queries it has processed and creates a hashed representation of every
query that it processes to determine whether there is a cached translation available. If there is, then the
cached translation is used; if not, then a new translation is created and put into the cache for future use.

You can improve the performance of this process by explicitly translating a query so that Entity
Framework Core doesn’t have to create the hash code and check the cache. This is known as explicitly
compiling a query. In Listing 20-18, I have updated the Home controller so that the query performed by the
Index action is explicitly compiled.

Listing 20-18. Compiling a Query in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Threading.Tasks;
using System.Net.Http;
using System;
using System.Collections.Generic;

namespace AdvancedApp.Controllers {

Figure 20-6. Making concurrent queries

Chapter 20 ■ Queries

519

 public class HomeController : Controller {
 private AdvancedContext context;

 private static Func<AdvancedContext, string, IEnumerable<Employee>> query
 = EF.CompileQuery((AdvancedContext context, string searchTerm)
 => context.Employees
 .Where(e => EF.Functions.Like(e.FirstName, searchTerm)));

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index(string searchTerm) {
 return View(string.IsNullOrEmpty(searchTerm)
 ? context.Employees : query(context, searchTerm));
 }

 // ...other action methods omitted for brevity...
 }
}

The statements that produce a compiled query can be difficult to read. The compilation is performed
using the EF.CompileQuery method, like this:

...
EF.CompileQuery((AdvancedContext context, string searchTerm)
 => context.Employees.Where(e => EF.Functions.Like(e.FirstName, searchTerm)));
...

The argument to the CompileQuery method is a lambda expression that receives a context object
and parameters that are used in the query and returns an IQueryable<T> as its result. In the listing, the
lambda expression receives an AdvancedContext object and a string, and it uses them to create an
IQueryable<Employee> that will query the database using the LIKE feature.

The result from the EF.CompileQuery method is a Func<AdvancedContext, string,
IEnumerable<Employee>> object, which represents a function that accepts the context and string and
produces a sequence of Employee objects.

...
private static Func<AdvancedContext, string, IEnumerable<Employee>> query
 = EF.CompileQuery((AdvancedContext context, string searchTerm)
 => context.Employees.Where(e => EF.Functions.Like(e.FirstName, searchTerm)));
...

Notice that the compiled function returns an IEnumerable<T> object, which means that any further
operations that you perform on the result will be executed in memory rather than building on the request
that is sent to the database. This makes sense since the purpose of this process is to create an immutable
query, and it means you must ensure that every aspect of the query you require is included in the expression
passed to the CompileQuery method.

Executing the query is done by invoking the function that is returned by the CompiledQuery method,
like this:

...
return View(string.IsNullOrEmpty(searchTerm)
 ? context.Employees : query(context, searchTerm));
...

Chapter 20 ■ Queries

520

There is no visible difference in the way that a compiled query is executed, but behind the scenes, Entity
Framework Core is able to skip the process of creating a hashed representation of the query and checking to
see whether it has been translated previously.

AVOIDING THE EXCESSIVE QUERYING PITFALL

Notice that i check to see whether the searchTerm parameter for the Index action method is null
outside of the explicitly compiled query. a common mistake when defining the query expression is
including checks that are intended to be performed in the application, like this:

...
EF.CompileQuery((AdvancedContext context, string searchTerm)
 => context.Employees.Where(e => string.IsNullOrEmpty(searchTerm)
 || EF.Functions.Like(e.FirstName, searchTerm)));
...

the problem is that entity Framework Core will incorporate the check for null values into the sQL query,
like this, which may not be what you intended:

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[Salary],
 [e].[SoftDeleted]
FROM [Employees] AS [e]
WHERE ([e].[SoftDeleted] = 0) AND ((@__searchTerm IS NULL
 OR (@__searchTerm = N'')) OR [e].[FirstName] LIKE @__searchTerm)
...

this is the opposite problem to the client evaluation pitfall that i describe in the next section, but both
problems emphasize the importance of examining the sQL queries that entity Framework produces to
make sure they target exactly the data you intended.

Avoiding the Client Evaluation Pitfall
When you start working with Entity Framework Core, it can take a while before you have confidence
that your LINQ queries will be translated into the SQL you require. As this book shows, there are lots of
potential pitfalls that can result in too much data or too little data being retrieved from the database.
There is one potential error that is so common that Entity Framework Core will warn you when it
translates a query into SQL.

The problem occurs when Entity Framework Core is unable to see all of the details of a LINQ query and
cannot translate it completely into SQL. This often occurs when a query is refactored so that the code that
selects a set of data objects can be used more consistently throughout an application. Entity Framework
Core splits up the query so that part of it is executed by the database server and part is executed by the client
application. Not only does this increase the amount of processing that the application has to do, but it can
dramatically increase the amount of data that a query retrieves from the database.

To demonstrate, I added a class file called QueryController.cs to the Controllers folder and used it to
define the controller shown in Listing 20-19.

Chapter 20 ■ Queries

521

Listing 20-19. The Contents of the QueryController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class QueryController : Controller {
 private AdvancedContext context;

 public QueryController(AdvancedContext ctx) => context = ctx;

 public IActionResult ServerEval() {
 return View("Query", context.Employees.Where(e => e.Salary > 150_000));
 }

 public IActionResult ClientEval() {
 return View("Query", context.Employees.Where(e => IsHighEarner(e)));
 }

 private bool IsHighEarner(Employee e) {
 return e.Salary > 150_000;
 }
 }
}

The controller defines two actions that query for Employee objects whose Salary value is greater
than 150,000. The ServerEval method puts the filter expression directly in the Where clause of the LINQ
expression, whereas the ClientEval method uses a separate method, which represents a typical refactoring
process that allows the criteria for selecting high earners into a separate method.

To provide both actions with a view, I created the Views/Query folder and added to it a file called Query.
cshtml with the content shown in Listing 20-20.

Listing 20-20. The Contents of the Query.cshtml File in the Views/Query Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 </tr>
 </thead>

Chapter 20 ■ Queries

522

 <tbody>
 <tr class="placeholder"><td colspan="4" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 </tr>
 }
 </tbody>
</table>

To see the difference in the way that queries are performed, start the application using dotnet run and
navigate to http://localhost:5000/query/servereval and http://localhost:5000/query/clienteval,
both of which will produce the results shown in Figure 20-7.

Figure 20-7. Query results

To understand the difference between the two action methods, you must examine the queries sent to
the database server. The ServerEval action results in this query:

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[Salary], [e].[SoftDeleted]
FROM [Employees] AS [e]
WHERE ([e].[SoftDeleted] = 0) AND ([e].[Salary] > 150000.0)
...

The WHERE clause in this query will retrieve only those Employee objects whose Salary value exceeds
150,000. This means that only the objects that will be subsequently displayed to the user are retrieved from
the database.

Chapter 20 ■ Queries

523

By contrast, here is the query that is produced by the ClientEval action:

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[Salary], [e].[SoftDeleted]
FROM [Employees] AS [e]
WHERE [e].[SoftDeleted] = 0
...

Entity Framework Core isn’t able to see into the controller’s IsHighEarner method and incorporate
the logic it contains into the SQL query. Instead, Entity Framework Core translates the part of the query that
it can see into SQL and then passes the objects it receives through the IsHighEarner method to produce
the query result. The objects that are not selected by the IsHighEarner method are discarded, with the
effect that more data is read from the database and more work is required by the application to produce the
required results. In the example application, that means one additional object is read and created, but in a
real application, the difference can be significant.

Throwing a Client Evaluation Exception
When part of a query has to be evaluated in the client, Entity Framework Core will display a warning
message in the logging output, as follows:

The LINQ expression 'where value(AdvancedApp.Controllers.QueryController)
.IsHighEarner([e])' could not be translated and will be evaluated locally

This can be easy to miss in the flow of logging messages, and you may find that client evaluation
of a query passes unnoticed until there are performance issues in a production application. During
development, it can be useful to receive an exception when part of a query will be evaluated in the client,
which will make the problem more noticeable. In Listing 20-21, I have changed the Entity Framework Core
configuration so that an exception will be thrown.

Listing 20-21. Configuring Exceptions in the Startup.cs File in the AdvancedApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using AdvancedApp.Models;
using Microsoft.EntityFrameworkCore.Diagnostics;

namespace AdvancedApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

Chapter 20 ■ Queries

524

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<AdvancedContext>(options =>
 options.UseSqlServer(conString).ConfigureWarnings(warning =>
 warning.Throw(RelationalEventId.QueryClientEvaluationWarning)));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The ConfigureWarnings method is used to configure the warnings produced by Entity Framework Core
using a lambda expression that receives a WarningsConfigurationsBuilder object that defines the methods
shown in Table 20-8.

Table 20-8. The WarningsConfigurationBuilder Methods

Name Description

Ignore(event) This method tells Entity Framework Core to ignore the specified event.

Log(event) This method tells Entity Framework Core to log the specified event.

Throw(event) This method tells Entity Framework Core to throw an exception for the specified event.

The methods in Table 20-8 are used with the RelationalEventId enumeration, which defines
values that represent the diagnostic events likely to be encountered in an Entity Framework Core
application. There are values for almost 30 different events, although most of them are related to the
lifecycles of database connections and transactions and the creation and application of migrations. You
can see a complete list of events at https://docs.microsoft.com/en-us/ef/core/api/microsoft.
entityframeworkcore.infrastructure.relationaleventid. The value that I used in Listing 20-20 is
QueryClientEvaluationWarning, which represents the event triggered by Entity Framework Core when part
of a request will be evaluated by the client. To see the effect of the change, start the application using dotnet
run and navigate to http://localhost:5000/query/clienteval. Rather than the easily missed warning,
you will see the exception in Figure 20-8.

https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.infrastructure.relationaleventid
https://docs.microsoft.com/en-us/ef/core/api/microsoft.entityframeworkcore.infrastructure.relationaleventid

Chapter 20 ■ Queries

525

Summary
In this chapter, I described the advanced features that Entity Framework Core provides for querying data.
I explained how to control the change tracking feature, how to use a query filter, how to perform queries
using the SQL LIKE feature, and how to explicitly compile queries. I finished the chapter by demonstrating a
common problem caused by refactoring queries and how to configure the application so that you will know
when you encounter this problem in your own projects. In the next chapter, I describe the advanced features
for storing data.

Figure 20-8. The client query evaluation exception

527© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_21

CHAPTER 21

Storing Data

In this chapter, I continue to describe the advanced features that Entity Framework Core provides, focusing
on those that relate to adding or updating data. I show you how to select the data types used to store values,
how to format or validate values, how to hide data values from the rest of the application, and how to detect
concurrent updates by multiple clients. Table 21-1 puts this chapter in context.

Table 21-2 summarizes the chapter.

Table 21-1. Putting Advanced Storage Features in Context

Question Answer

What are they? These features allow you to change the way that data is stored in
the database, overriding the conventional behaviors. This can
range from selecting specific SQL types to detecting when two users
update the same data.

Why are they useful? These features can be useful when you are modeling an existing
database or when your application has specific needs that can’t
easily be met using the standard features.

How are they used? These features are applied through a combination of model class
members and Fluent API statements.

Are there any pitfalls or limitations? Some of these features change the way that data is mapped onto
data model objects, which can lead to odd results if it is not done
carefully.

Are there any alternatives? Most projects can use the standard Entity Framework Core features
for storing data.

https://doi.org/10.1007/978-1-4842-3435-8_21

Chapter 21 ■ Storing Data

528

Preparing for This Chapter
For this chapter, I am going to continue using the AdvancedApp project that I created in Chapter 19 and
modified in Chapter 20. To prepare for this chapter, I have changed the code in the Home controller, as shown
in Listing 21-1, to include related data in the query performed by the Index action and to tidy up the Update
method so that all properties are updated.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

Listing 21-1. Simplifying Code in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.Include(e => e.OtherIdentity));
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)

Table 21-2. Chapter Summary

Problem Solution Listing

Change the SQL data type used to
represent a value

Use the HasColumnType or HasMaxLength
method.

1–6

Process values before they are made
available to the rest of the application or
stored in the database

Use a backing field 7–11

Hide data values from the MVC part of the
application

Use a shadow property 12–15

Set a default value Use the HasDefaultValue method 16–20

Detect concurrent updates Use a concurrency token or enable
row versioning

21–30

http://dx.doi.org/10.1007/978-1-4842-3435-8_19
http://dx.doi.org/10.1007/978-1-4842-3435-8_20
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 21 ■ Storing Data

529

 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 context.Update(employee);
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

To display details of the SecondaryIdentity objects to the user, I made the changes shown in
Listing 21-2 to the Index.cshtml view in the Views/Home folder. I have also taken the opportunity to remove
some of the content added in the previous chapter, which is no longer required.

Listing 21-2. Adding Content in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th>In Use</th>
 <th></th>
 </tr>

Chapter 21 ■ Storing Data

530

 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="7" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td>@(e.OtherIdentity?.InActiveUse.ToString() ?? "(N/A)")</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">Delete</button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

Next, run the commands shown in Listing 21-3 in the AdvancedApp project folder to drop and re-create
the database.

Listing 21-3. Dropping and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and use the values shown in Table 21-3 to store three Employee objects.

Chapter 21 ■ Storing Data

531

When you have created all three objects, you should see the layout illustrated in Figure 21-1.

Specifying SQL Data Types
Entity Framework Core automatically takes care of mapping between .NET and SQL data types, both in
a migration for a code-first project and during the scaffolding phase of a database-first project. Database
servers don’t always support the same data types—or implement them in the same way—and it is the
responsibility of the database provider to make suitable type choices. This means migrations for the same
data model that target two different database servers may use different SQL types, for example.

Most providers use similar types, but there are some variations. Table 21-4 shows the mappings that
are used for the .NET Core primitive types for the official SQL Server database provider and one of the most
popular MySQL providers.

 ■ Caution these mappings may change for future releases of the database providers. Create a migration to
definitively determine which data type a provider uses.

Table 21-3. The Data Values for Creating Example Objects

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

657-03-5898 Alice Jones 200000 Allie Checked

300-30-0522 Peter Davies 180000 Pete Checked

Figure 21-1. Running the example application

Chapter 21 ■ Storing Data

532

You can change the SQL data type used to store a value if the type selected by Entity Framework Core
doesn’t suit you. This feature is most frequently used to adjust the type to ensure sufficient precision for the
values generated by an application or to select a smaller data type to restrict the values that can be stored.

The Salary property of the Employee class is expressed as a .NET decimal, which the SQL Server
provider maps to the decimal(18,2) SQL type (meaning a number with 18 digits to the left of the decimal
point and 2 to the right). This is more precision than I need to express an individual’s income, and in Listing
21-4 I have told Entity Framework Core to use a less precise type, overriding the default type what was
selected when the first migration was created in Chapter 19.

 ■ Caution entity Framework Core doesn’t validate the types or maximum lengths that you specify, which
means you must be sure that the types and sizes you select are suitable for your needs.

Listing 21-4. Changing a Data Type in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

Table 21-4. The Database Provider Mappings for .NET Core Primitive Types

.NET Core Type SQL Server Type MySQL Type

int int int

long bigint bigint

bool bit bit

byte tinyint tinyint

double float double

char int tinyint

short smallint smallint

float real float

decimal decimal(18,2) decimal(65,30)

string nvarchar(max) longtext

TimeSpan time time(6)

DateTime datetime2 datetime(6)

DateTimeOffset datetimeoffset datetime(6)

Guid uniqueidentifier char(36)

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

Chapter 21 ■ Storing Data

533

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)");

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });
 }
 }
}

The HasColumnType method is used to specify a SQL type for a property that has been selected using the
Property method. In the listing, I specified the type decimal(8,2), which reduces the number of digits to
the left of the decimal point to eight.

 ■ Note if you don’t like using the Fluent api, you can specify the SQL type for a property by using the Column
attribute and providing a TypeName argument: [Column(TypeName = "decimal(8, 2)")].

Specifying a Maximum Length
If you are working with a value that will be stored in the database using an array data type, such as string
or int[], then you can provide guidance to Entity Framework Core about the amount of data that you need
to store without having to explicitly select a SQL data type, which means that you can influence the data
type selection without needing to make decisions that are specific to a single database provider or server.
In Listing 21-5, I have used the Fluent API to set a maximum length for the Name property defined by the
SecondaryIdentity class.

 ■ Note if you prefer not to use the Fluent api, you can specify a maximum length by decorating a property
with the MaxLength attribute.

Chapter 21 ■ Storing Data

534

Listing 21-5. Setting a Maximum Length in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)");

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The HasMaxLength method is used to specify a maximum length, and I have used it to specify a
maximum of 100 characters for the Name property.

Updating the Database
Changing a data type or specifying a maximum length requires a migration to update the database. Run the
commands shown in Listing 21-6 in the AdvancedApp project folder to create and apply a new migration.

Chapter 21 ■ Storing Data

535

Listing 21-6. Creating and Applying a Database Migration

dotnet ef migrations add ChangeType
dotnet ef database update

If you examine the Up method in the <timestamp>_ChangeType.cs file in the Migrations folder, you will
see the effect of the HasColumnType and HasMaxLength methods.

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.AlterColumn<string>(name: "Name", table: "SecondaryIdentity",
 maxLength: 100, nullable: true, oldClrType: typeof(string),
 oldNullable: true);

 migrationBuilder.AlterColumn<decimal>(name: "Salary",table: "Employees",
 type: "decimal(8,2)",nullable: false, oldClrType: typeof(decimal));
}
...

The data type that I specified in Listing 21-4 will accommodate numbers that have eight digits before
the decimal place. To see what happens when a number exceeds the available storage, start the application
using dotnet run, navigate to http://localhost:5000, and click the Edit button for one of the items shown.
Change the value of the Salary field to 100000000 (one, followed by eight zeros) and click the Save button.
Entity Framework Core will attempt to update the database, but because the Salary value has more digits
than can be stored using the type specified, an error is reported, as shown in Figure 21-2. The specific error
that you encounter will depend on the nature of the mismatch, but the point is that you must take care to
ensure that the application will not try—or allow the user to try—to store values that cannot be represented
by the database.

Figure 21-2. Exceeding the available storage for a data value

Chapter 21 ■ Storing Data

536

Validating or Formatting Data Values
In many applications, entity classes are just collections of properties that provide convenient access to the
data in the database. In some situations, however, providing direct access to the data values can present a
problem because some form of processing or validation is required.

Entity Framework Core supports backing fields, which store the value in the database but are not available
to the rest of the application, which instead has access to the data mediated by a property. This is easier to
understand with a demonstration, and in Listing 21-7 I have changed the Salary property in the Employee class
so that it no longer provides direct access to the value in the database and uses a backing field instead.

Listing 21-7. Defining a Backing Field in the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary * 2;
 set => databaseSalary = Math.Max(0, value);
 }

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;
 }
}

The backing field is called databaseSalary. The backing field must have a compatible type with the
property you want to work with, and, in this case, the backing field and the Salary property both use the
decimal type. By using a backing field, I can repurpose the Salary property to validate or transform the
value that is stored in the database. In the listing, the Salary property’s getter returns twice the value of the
backing field, and the setter ensures that the minimum value that can be assigned to the backing field is zero,
preventing negative values.

Adding a backing field to the entity class isn’t enough because Entity Framework Core will just assume
that it should continue using the Salary property. In Listing 21-8, I have used the Fluent API to tell Entity
Framework Core about the backing field and how it should be used.

 ■ Note Backing fields can be configured only using the Fluent api. there is no attribute that supports this feature.

Chapter 21 ■ Storing Data

537

Listing 21-8. Setting Up a Backing Field in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

I am able to further configure the property by chaining calls to the existing Fluent API statement that
selects the Salary property, which I used in the previous section to change the data type. I configure the
backing field using the HasField method, specifying the name of the field as the argument. The way that the
backing field is used is configured by calling the UsePropertyAccessMode method, specifying a value from
the PropertyAccessMode enumeration, as described in Table 21-5.

 ■ Tip You don’t have to use UsePropertyAccessMode to configure a backing field, but doing so ensures that
entity Framework Core uses the field in the way that you expect and makes the purpose of the backing field
obvious to other developers who are reading your Fluent api statements.

Chapter 21 ■ Storing Data

538

Choosing the right PropertyAccessMode value is important because this value causes Entity Framework
Core to behave in substantially different ways. In Listing 21-8, the backing field is always the “true” value,
so I have used the Field value, which ensures that Entity Framework Core directly assigns the value in the
database to the backing field when creating the object using query data and uses the backing field value
when writing updates to the database.

No change to the database is required when you add a backing field because this feature only affects
how the data values are mapped to the entity class. To see the effect of changes in this section, start the
application using dotnet run and navigate to http://localhost:5000. When Entity Framework Core
queries the data for Employee objects, it assigns the value from the Salary column to the backing field. When
the Razor view enumerates the Employee objects, it reads the value of the Salary property, whose getter
returns double the value stored in the database, producing the result shown in Figure 21-3.

To see how changing the property value affects the backing field, click the Edit button for one of the
Employee objects and enter 120000 (one hundred and twenty thousand without commas) into the Salary field.

I configured the backing field with the PropertyAccessMode.Field value, which means that the value
of the backing field, rather than the property, is used to update the database. When Entity Framework Core
performs change detection, it is the backing field value—and not the Salary property’s getter—that is used
to update the database. To confirm this is the case, select SQL Server ➤ New Query from the Visual Studio
Tools menu, connect to the database, and execute the query shown in Listing 21-9.

Table 21-5. The PropertyAccessMode Values

Name Description

FieldDuringConstruction This is the default behavior and tells Entity Framework Core to use the
backing field when first creating the object and then to use the property for
all other operations, including change detection.

Field This value tells Entity Framework Core to ignore the property and always use
the backing field.

Property This value tells Entity Framework Core to always use the property and ignore
the backing field.

Figure 21-3. Using a backing field to mediate access to values

Chapter 21 ■ Storing Data

539

Listing 21-9. Querying the Database

USE AdvancedDb
SELECT * FROM Employees

The results from the query show that the backing field was used when Entity Framework Core updated
the Salary column in the Employees table, which will appear as shown in Table 21-6.

If I had used the FieldDuringConstruction value, then Entity Framework Core would have used the
Salary property getter to obtain a value when updating the database.

The updated value is still read through the Salary property getter by the rest of the application, which
remains unaware of the backing field. This is reflected in the view displayed by the ASP.NET Core MVC part
of the application, as shown in Figure 21-4, which shows double the value stored in the database.

Avoiding the Backing Field Selective Update Pitfall
Care must be taken when implementing setters that don’t always update the backing field with which they
are associated. To demonstrate the problem, I changed the setter for the Salary property so that it only
updates the backing field for even values, as shown in Listing 21-10. I have also changed the getter for the
Salary property so that it returns the unmodified value of the backing field, which will make the problem
easier to understand.

Table 21-6. The Database Results

FamilyName FirstName SSN Salary

Davies Peter 300-30-0522 180000

Jones Alice 657-03-5898 200000

Smith Bob 420-39-1864 120000

Figure 21-4. Updating a value with a backing field

Chapter 21 ■ Storing Data

540

Listing 21-10. Selectively Updating the Field in the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary;
 set {
 if (value % 2 == 0) {
 databaseSalary = value;
 }
 }
 }

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;
 }
}

Start the application using dotnet run, navigate to http://localhost:5000, and click one of the Edit
buttons. Enter an odd number, such as 101, in the Salary field and click the Save button. Instead of the value
that you entered, Entity Framework Core will update the database with zero, as shown in Figure 21-5.

Figure 21-5. The effect of a selective backing field update

Chapter 21 ■ Storing Data

541

Only Entity Framework Core understands backing fields and how to use them. In an ASP.NET Core
MVC application, the MVC model binder is also responsible for creating objects. When the browser sends
an HTTP POST request to the controller, the model binder creates a new Employee object and sets the
properties using the values sent by the user. Unlike when Entity Framework Core creates an Employee, the
model binder ignores the backing field and uses the Salary property’s setter to assign the value from the
HTTP request. But the setter ignores the value assigned by the MVC model binder because it isn’t an even
number. This means the backing field has its default value (which is zero for decimal values) when the
Employee object is handed over to the context object so that Entity Framework Core can perform an update.

The best way to avoid this problem is to write setters that always update their backing field. If this is not
possible, then you can query the database so that Entity Framework Core creates an object with the existing
values and apply the values from the HTTP request directly to it, as shown in Listing 21-11.

Listing 21-11. Setting Values Directly in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.Include(e => e.OtherIdentity));
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee, decimal salary) {
 Employee existing = context.Employees.Find(employee.SSN,
 employee.FirstName, employee.FamilyName);
 if (existing == null) {
 context.Add(employee);
 } else {
 existing.Salary = salary;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

Chapter 21 ■ Storing Data

542

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

I have changed the Update method so that it queries the database for the existing Employee object,
which gives me an object created by Entity Framework Core and whose backing field is correctly initialized.
I then assign the value specified by the user in the Salary field, which I receive by adding a salary
parameter to the action method, like this:

...
public IActionResult Update(Employee employee, decimal salary) {
...

This provides me with the value that the user entered into the HTML form so that I can assign it to the
Salary property.

...
existing.Salary = salary;
...

If the setter updates the backing field, then Entity Framework Core will detect the changed value and
update the database. If the setter discards the new value (because it is odd numbered in this case), then
Entity Framework Core will detect no change, and the original value stored in the database will be preserved.

Start the application, navigate to http://localhost:5000, and repeat the process of entering an even
number, such as 100, and then an odd number, such as 101, into the Salary field. This time, when you save
the changes, the odd number will be discarded, but the even number will still be stored in the database, as
shown in Figure 21-6.

Figure 21-6. Avoiding setting a backing field to the default value for its type

Chapter 21 ■ Storing Data

543

Hiding Data Values from the MVC Application
Some types of data are needed to perform database operations but should not be accessible to the MVC
part of the application, either because the data is sensitive or because you want to keep the focus of the
application on the data that the user sees directly. In these situations, you can use shadow properties, which
are properties that are defined in the data model but not in the entity class that represents that data.

Keeping track of the time that objects were stored in the database is the most common use for shadow
properties, providing information that may be useful in diagnosing problems but which is not of interest to
the user and should not be exposed through the ASP.NET Core MVC part of the application.

The Fluent API is used to create shadow properties. In Listing 21-12, I have added a shadow property
called LastUpdated to the Employee class.

 ■ Note Shadow properties can be configured only using the Fluent api. there is no attribute that supports
this feature.

Listing 21-12. Defining a Shadow Property in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated");

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,

Chapter 21 ■ Storing Data

544

 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The shadow property is defined by using the Entity method to select the class and then calling the
Property method. This is a different version of the Property method from the one used in earlier examples.
The argument specifies the name of the shadow property, and the type parameter is used to specify its data
type; the Fluent API in the statement in Listing 21-12 tells Entity Framework Core that there is a DateTime
property called LastUpdated.

 ■ Tip You can chain additional calls to methods like IsRequired to configure shadow properties just like any
other property.

Adding a shadow property to an existing database requires a migration. Run the commands shown in
Listing 21-13 in the AdvancedDb project folder to create a migration called ShadowProperty and apply it to
the database.

Listing 21-13. Creating and Applying a Migration

dotnet ef migrations add ShadowProperty
dotnet ef database update

If you examine the Up method of the <timestamp>_ShadowProperty.cs file that has been created in the
Migrations folder, you can see how Entity Framework Core has set up a column for the shadow property,
even though there is no corresponding property in the Employee class.

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.AddColumn<DateTime>(
 name: "LastUpdated",
 table: "Employees",
 nullable: false,
 defaultValue: new DateTime(1, 1, 1, 0, 0, 0, 0, DateTimeKind.Unspecified));
}
...

Accessing Shadow Property Values
Shadow properties can be accessed through the context class. In Listing 21-14, I have modified the Update
action in the Advanced controller so that a value is assigned to the LastUpdated shadow property when a
change is made to the database.

Chapter 21 ■ Storing Data

545

Listing 21-14. Updating a Shadow Property in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee, decimal salary) {
 Employee existing = context.Employees.Find(employee.SSN,
 employee.FirstName, employee.FamilyName);
 if (existing == null) {
 context.Entry(employee)
 .Property("LastUpdated").CurrentValue = System.DateTime.Now;
 context.Add(employee);
 } else {
 existing.Salary = salary;
 context.Entry(existing)
 .Property("LastUpdated").CurrentValue = System.DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

I used the Entry method in Chapter 12 to access the Entity Framework Core changes detection feature,
but the object that is returned is also used to access shadow properties through its Property method. The
value of the shadow property can be read or set using the CurrentValue property, and in the listing I assign
the current time to the shadow property.

 ■ Note Shadow properties can be accessed only through the context object, which means that even if you
use the context directly in the controller, as i have done in this example, the MVC model binder will not be able
to set a value for any shadow properties, even if the http request contains one.

Including Shadow Properties in Queries
The static EF.Property method is used to include shadow properties in LINQ queries, which means that you
can incorporate shadow properties into queries. In Listing 21-15, I have used the EF.Property method to
order the objects in the database using the shadow property value.

Listing 21-15. Querying with a Shadow Property in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

http://dx.doi.org/10.1007/978-1-4842-3435-8_12

Chapter 21 ■ Storing Data

546

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.Include(e => e.OtherIdentity)
 .OrderByDescending(e => EF.Property<DateTime>(e, "LastUpdated")));
 }

 // ...other actions omitted for brevity...
 }
}

The EF.Property method accepts the object being queried and the name of the shadow property. There
is a type parameter that must be set to the type used to define the property in the Fluent API statement.
To see the use of the shadow property, start the application using dotnet run and navigate to http://
localhost:5000.

Edit one of the Employee objects, and when you click the Save button, you will see that it appears in the
first row in the table, as shown in Figure 21-7.

Setting Default Values
When I set up the LastUpdated property in the previous section, I took responsibility for setting the value
in two places: once when an object was stored in the database for the first time and again when an existing
object was modified.

I can remove one of those statements by asking Entity Framework Core to set a default value for the
LastUpdated property when a new object is stored. To set the default value for the LastUpdated property,
I used the HasDefaultValue method in a Fluent API statement, as shown in Listing 21-16.

 ■ Note Default values can be specified only using the Fluent api. there is no attribute that supports this feature.

Figure 21-7. Using a shadow property to order objects in a LINQ query

Chapter 21 ■ Storing Data

547

Listing 21-16. Configuring a Default Value in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The HasDefaultValue method is used to specify a default value, which will be used when a new row is
created in the database. You can override the default value by supplying a value for the property when storing
an object, but if you do not, then the default value passed to the HasDefaultValue method will be used.

Setting a default value requires a new migration. Run the commands shown in Listing 21-17 in the
AdvancedApp project folder to create a migration called DefaultValue and apply it to the database.

Chapter 21 ■ Storing Data

548

Listing 21-17. Creating and Applying a Database Migration

dotnet ef migrations add DefaultValue
dotnet ef database update

If you examine the Up method in the <timestamp>_DefaultValue.cs file that has been created in the
Migrations folder, you will see that the default value associated with the LastUpdated column has been
changed to January 1, 2000, reflecting the date specified in Listing 21-16.

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.AlterColumn<DateTime>(
 name: "LastUpdated",
 table: "Employees",
 nullable: false,
 defaultValue: new DateTime(2000, 1, 1, 0, 0, 0, 0, DateTimeKind.Unspecified),
 oldClrType: typeof(DateTime));
}
...

Displaying the Default Value
To work this example through the rest of the application, I am going to display the value of the LastUpdate
property to the user. In Listing 21-18, I have promoted the LastUpdated property from a shadow property to
one that can be accessed by the rest of the application by modifying the Employee class. This doesn’t change the
behavior of the property and just means that the property value doesn’t have to be accessed via a context object.

Listing 21-18. Adding a Property in the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary;
 set {
 if (value % 2 == 0) {
 databaseSalary = value;
 }
 }
 }

Chapter 21 ■ Storing Data

549

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;

 public DateTime LastUpdated { get; set; }
 }
}

In Listing 21-19, I have modified the Update method in the Home controller to remove the statement that
sets the LastUpdated property when new objects are stored, instead relying on the default value.

Listing 21-19. Disabling a Statement in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee, decimal salary) {
 Employee existing = context.Employees.Find(employee.SSN,
 employee.FirstName, employee.FamilyName);
 if (existing == null) {
 //context.Entry(employee)
 // .Property("LastUpdated").CurrentValue = System.DateTime.Now;
 context.Add(employee);
 } else {
 existing.Salary = salary;
 context.Entry(existing)
 .Property("LastUpdated").CurrentValue = System.DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

The final step is to add a column to the Index view used by the Home controller to display the value of the
LastUpdated property, as shown in Listing 21-20.

Listing 21-20. Adding a Column in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th>In Use</th>

Chapter 21 ■ Storing Data

550

 <th>Last Updated</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td>@(e.OtherIdentity?.InActiveUse.ToString() ?? "(N/A)")</td>
 <td>@e.LastUpdated.ToLocalTime()</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">Delete</button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

To see a default value, start the application using dotnet run, navigate to http://localhost:5000, and
click the Create button. Fill out the form fields and click the Save button; you will see that the new object is
assigned a LastUpdated value of January 1, 2000, which is the default value I used in Listing 21-16, as shown
in Figure 21-8. The dates displayed will be in the default locale for your system; the dates shown in the figure
are in the format used in the United Kingdom.

 ■ Tip if your database contained Employee objects before the LastUpdated column was added to the
Employee table in the database and you have not edited those objects, you will see a LastUpdated value of
Jan 01 0001, as shown in the figure. this is because the default value is applied only when creating a new
object. the existing data in the database was assigned a value of all zeros when the LastUpdated column was
created, and this is what is displayed.

Chapter 21 ■ Storing Data

551

Detecting Concurrent Updates
Most ASP.NET Core MVC applications follow a query-and-update cycle when the user edits data. Existing
data values are retrieved from the database in a query to provide the user with an initial state, and then an
update is made with any changes. This can be a problem when there are several users performing this cycle
concurrently, as illustrated in Figure 21-9.

Client A and Client B query the same data and get the same values. Client A performs an update and,
shortly after, so does Client B.

This can cause a range of problems, including updates that are silently overwritten and exceptions
for seemingly valid updates. Some problems can take a while to manifest, as clients continue working with
inconsistent or incomplete data.

Figure 21-9. Concurrent updates

Figure 21-8. Assigning a default value

Chapter 21 ■ Storing Data

552

Using Concurrency Tokens
Entity Framework Core can be configured to check a value associated with an object to make sure it hasn’t
changed since the data was read. The property that is selected for this check is known as a concurrency
token, and this technique is useful when you don’t want to—or unable to—make changes to the database to
prevent concurrent updates. In Listing 21-21, I have configured the data model to make the Salary property
a concurrency token for updates to Employee objects.

 ■ Caution as you will learn, the concurrency token feature has some serious limitations. there is a better
alternative available if you are able to modify the database, as described in the next section.

Listing 21-21. Creating a Token in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field)
 .IsConcurrencyToken();

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,

Chapter 21 ■ Storing Data

553

 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The IsConcurrencyToken method is used to tell Entity Framework Core that it should include the
existing value of the property in the query when it performs an update to make sure it hasn’t changed. Using a
concurrency token works only if Entity Framework Core knows the old value before it performs an update, which
requires a little work in ASP.NET Core MVC applications to deal with objects created by the MVC model binder.

 ■ Tip the ConcurrencyCheck attribute can be applied to tell entity Framework Core to use a property as a
concurrency token.

I don’t want to unduly complete this example by having to deal with the effect of a setter that doesn’t
always update the backing field with which it is associated. In Listing 21-22, I have simplified the setter for
the Salary property so that it simply updates the databaseSalary field.

Listing 21-22. Simplifying a Property Setter in the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary;
 set => databaseSalary = value;
 }

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;

 public DateTime LastUpdated { get; set; }
 }
}

To provide Entity Framework Core with the old Salary value to check, I added a hidden input element
to the Edit.cshtml view used by the Home controller, as shown in Listing 21-23. This will ensure that the
Update action method receives the value of the Salary property that was read from the database.

Chapter 21 ■ Storing Data

554

Listing 21-23. Adding an Element in the Edit.cshtml File in the Views/Home Folder

@model Employee
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

<h4 class="bg-info p-2 text-center text-white">
 Create/Edit
</h4>
<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" name="originalSalary" value="@Model.Salary" />
 <div class="form-group">
 <label class="form-control-label" asp-for="SSN"></label>
 <input class="form-control" asp-for="SSN" readonly="@Model.SSN"/>
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FirstName"></label>
 <input class="form-control" asp-for="FirstName"
 readonly="@Model.FirstName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FamilyName"></label>
 <input class="form-control" asp-for="FamilyName"
 readonly="@Model.FamilyName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="Salary"></label>
 <input class="form-control" asp-for="Salary"/>
 </div>
 <input type="hidden" asp-for="OtherIdentity.Id"/>
 <div class="form-group">
 <label class="form-control-label">Other Identity Name:</label>
 <input class="form-control" asp-for="OtherIdentity.Name"/>
 </div>
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 asp-for="OtherIdentity.InActiveUse"/>
 In Active Use
 </label>
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Save</button>
 Cancel
 </div>
</form>

Chapter 21 ■ Storing Data

555

To ensure that Entity Framework Core is able to use the original Salary value to perform the
concurrency check, I added a parameter to the Update action on the Home controller to receive the value
from the input element and apply it to the Employee object that is used to perform the update, as shown in
Listing 21-24.

Listing 21-24. Updating the Action Method in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee, decimal originalSalary) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 Employee e = new Employee {
 SSN = employee.SSN, FirstName = employee.FirstName,
 FamilyName = employee.FamilyName, Salary = originalSalary
 };
 context.Employees.Attach(e);
 e.Salary = employee.Salary;
 e.LastUpdated = DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

The most important thing to remember is that querying the database in the Update method would
undermine the purpose of the concurrency token because the query will return the value that is currently in
the database and not the value that was stored at the time that the client requested the data that the user has
been editing.

In the Update method, I create a new Employee object and set its Salary property using the value from
the hidden input element. This sets the baseline for the Entity Framework Core change detection process
using the data values that were current when the user started the edit operation. I put the Employee object
under change management using the Attach method and change the Salary property using the value
received in the HTTP POST request.

This sequence of steps is awkward, but it allows the concurrency token to be used in an ASP.NET Core
MVC application, and it will make more sense when you see how this feature works.

A database migration isn’t required when using a concurrency token because it affects only the queries
sent by Entity Framework Core, not the database itself. Start the application using dotnet run, navigate to
http://localhost:5000, click the Edit button for one of the objects shown in the table, change the Salary
value, and click the Save button.

If you inspect the logging messages that are generated by the application, you will see the SQL
command that Entity Framework Core sent to the database to perform the update.

...
UPDATE [Employees] SET [LastUpdated] = @p0, [Salary] = @p1
WHERE [SSN] = @p2 AND [FirstName] = @p3 AND [FamilyName] = @p4 AND [Salary] = @p5;
...

Chapter 21 ■ Storing Data

556

The WHERE clause, which I have highlighted, restricts the update so that it will only apply to a row in the
Employees table that has a specific composite primary key and a specific Salary value. This prevents the
update from being applied if another client has modified the concurrency token because no rows will match
the WHERE clause of the UPDATE statement. Entity Framework Core checks to see how many rows have been
changed by the UPDATE statement. If one row is updated, then it assumes that there have been no concurrent
updates. If no rows are updated, then Entity Framework Core assumes that the concurrency token has been
changed by another client and reports an error.

To see the error, open a second browser window and perform an interleaved update: click the Edit
button for the same Employee in both browser windows, change the Salary value in both windows, and click
the Save button in both windows. The second update will fail, and you will see the error message shown in
Figure 21-10.

The limitation of the concurrency check feature is that every update must modify the same column
to indicate a change, and every update must know what a change to that column indicates. In the case of
the example application, this means updates must modify the Salary property to signal to other clients
that there has been a change; updates that affect only other properties won’t prevent concurrent updates.
Despite these problems, using a concurrency token can be useful if you can’t modify the database and you
are able to ensure that clients will update a specific property every time.

Figure 21-10. A concurrency check failure

Chapter 21 ■ Storing Data

557

AVOIDING THE DATE PITFALL

You might assume the limitations of the concurrency token can be avoided by using the LastUpdated
property, which is updated each time an Employee object is updated and doesn’t rely on the user to
make a specific change. Unfortunately, you must ensure that entity Framework Core will query for
exactly the value stored in the database, and dates are subject to variations in precision and formatting.
the LastUpdated values are stored in the database like this:

2017-11-10 09:11:42.3366667

But when entity Framework Core reads these values and parses them into a DateTime object, the
precision is lost, and the format is changed based on the locale configuration. at best, you will get a
value like this:

10/11/2017 09:11:42

When entity Framework Core performs an UPDATE, the date value specified in the WHERE clause won’t
match the value in the database, and no records will be matched. entity Framework Core will think that
the concurrency check has failed, and you will see the exception shown in Figure 21-10.

Using a Row Version to Detect Concurrent Updates
If your project allows you to make changes to the database, a more reliable alternative is a row version, which
is a timestamp that is automatically updated when there is an update but is stored in a way that doesn’t lead
to formatting differences. In Listing 21-25, I have added a property to the Employee class that will be used for
row versioning.

Listing 21-25. Adding a Property in the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary;
 set => databaseSalary = value;
 }

Chapter 21 ■ Storing Data

558

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;

 public DateTime LastUpdated { get; set; }
 public byte[] RowVersion { get; set; }
 }
}

Row versioning is done using a byte array property, which avoids problems with data precision and
formatting. In Listing 21-26, I have added a Fluent API statement that configures the new property so that
it will be used by the row version feature. I have also commented out the method call that configures the
Salary property as a concurrency token.

 ■ Note You can tell entity Framework Core about a row version property by applying the TimeStamp attribute
to it, which is equivalent to using the Fluent api IsRowVersion method.

Listing 21-26. Adding a Row Version in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);
 //.IsConcurrencyToken();

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

Chapter 21 ■ Storing Data

559

 modelBuilder.Entity<Employee>()
 .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName });

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The row version feature is configured by selecting a property and calling the IsRowVersion method. To
prevent concurrent updates, the value for the RowVersion property that was stored in the database at the start
of the edit operation must be included in the HTML sent to the client so that it can be received by the Update
method when the user submits a change, just like the example in the previous section. In Listing 21-27, I have
added a hidden input element to the Edit.cshtml view that contains the value of the RowVersion property.

Listing 21-27. Adding an Element in the Edit.cshtml File in the Views/Home Folder

@model Employee
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

<h4 class="bg-info p-2 text-center text-white">
 Create/Edit
</h4>
<form asp-action="Update" method="post">
 <input type="hidden" asp-for="Id" />
 <input type="hidden" asp-for="RowVersion" />
 @*<input type="hidden" name="originalSalary" value="@Model.Salary" />*@
 <div class="form-group">
 <label class="form-control-label" asp-for="SSN"></label>
 <input class="form-control" asp-for="SSN" readonly="@Model.SSN" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FirstName"></label>
 <input class="form-control" asp-for="FirstName"
 readonly="@Model.FirstName" />
 </div>
 <div class="form-group">
 <label class="form-control-label" asp-for="FamilyName"></label>
 <input class="form-control" asp-for="FamilyName"
 readonly="@Model.FamilyName" />
 </div>

Chapter 21 ■ Storing Data

560

 <div class="form-group">
 <label class="form-control-label" asp-for="Salary"></label>
 <input class="form-control" asp-for="Salary" />
 </div>
 <input type="hidden" asp-for="OtherIdentity.Id" />
 <div class="form-group">
 <label class="form-control-label">Other Identity Name:</label>
 <input class="form-control" asp-for="OtherIdentity.Name" />
 </div>
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox"
 asp-for="OtherIdentity.InActiveUse" />
 In Active Use
 </label>
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Save</button>
 Cancel
 </div>
</form>

To use the value received included in the POST request, I updated the Update method of the Home
controller, as shown in Listing 21-28.

The technique for performing the update is essentially the same as for the previous example, and it is
important not to query the database for the current RowVersion value, which would undermine the purpose
of the concurrency check.

Listing 21-28. Using a Row Version in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 Employee e = new Employee {
 SSN = employee.SSN, FirstName = employee.FirstName,
 FamilyName = employee.FamilyName, RowVersion = employee.RowVersion
 };
 context.Employees.Attach(e);
 e.Salary = employee.Salary;
 e.LastUpdated = DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Chapter 21 ■ Storing Data

561

Notice that I don’t have to change the RowVersion property when I perform the update. The database
server will generate a new RowVersion value for each update, which Entity Framework Core uses in its WHERE
clause for the UPDATE statement.

Finally, I need to a hidden element to the Index view used by the Home controller so that the soft-delete
feature works correctly, as shown in Listing 21-29.

 ■ Tip notice that i used the asp-for tag helper to set the value of the input element. the RowVersion
property type is a byte array, and the tag helper concatenates the array elements to form a string that the MVC
model binder can parse in the subsequent http poSt request.

Listing 21-29. Adding an Element to the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th>In Use</th>
 <th>Last Updated</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td>@(e.OtherIdentity?.InActiveUse.ToString() ?? "(N/A)")</td>
 <td>@e.LastUpdated.ToLocalTime()</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />

Chapter 21 ■ Storing Data

562

 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">
 Delete
 </button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

The drawback of the row version approach is that it requires changes to the database. Run the
commands shown in Listing 21-30 in the AdvancedApp project folder to create and apply a migration called
RowVersion.

Listing 21-30. Creating and Applying a Database Migration

dotnet ef migrations add RowVersion
dotnet ef database update

If you use two browser windows to perform interleaved updates, you will see the same error message
that is shown in Figure 21-10. The difference is that all updates will trigger a change in the RowVersion value.
This means all updates—regardless of the properties they modify—will cause a change that can be used to
detect concurrent updates.

Summary
In this chapter, I described the features that Entity Framework Core provides for taking control of the
way that data is created or stored in the database. I explained how to change the SQL type used to store a
property in the database, how to validate or format data using a backing field, how to use shadow properties
for data that you don’t want the rest of the application to access, and how to set default values when objects
are stored in the database. I finished the chapter by showing you how to detect concurrent updates using the
concurrency token and row version features. In the next chapter, I describe the advanced features available
for deleting data.

563© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_22

CHAPTER 22

Deleting Data

Deleting data can be a surprisingly complex task, especially when it comes to dealing with related data or
modeling an existing database. In this chapter, I describe the Entity Framework Core features for dealing
with deleting data, demonstrate how each of them works, and explain when they are useful. Table 22-1 puts
this chapter into context.

Table 22-2 summarizes the chapter.

Preparing for This Chapter
I continue using the AdvancedApp project, but some changes are required to prepare for this chapter.
To display details of SecondaryIdentity objects, I created a file called SecondaryIdentities.cshtml in the
Views/Home folder and added the content shown in Listing 22-1 to create a partial view.

Table 22-1. Putting Advanced Delete Features in Context

Question Answer

What are they? These features allow you to specify how the database server responds
to requests to delete data.

Why are they useful? There are several different ways that related data can be handled
when an object is deleted, and selecting the right one will ensure
your application has access to the data it needs.

How are they used? These features are applied through a combination of Fluent API
statements and changes to the repository classes in the project.

Are there any pitfalls or limitations? Care must be taken not to cause an unexpected cascade delete in the
database and remove more data than was intended. Equally, you can
create orphaned data by not removing enough data.

Are there any alternatives? You can rely on the default behaviors that Entity Framework Core
applies to the database.

Table 22-2. Chapter Summary

Problem Solution Listing

Change the delete behavior Use the OnDelete method 1–19

https://doi.org/10.1007/978-1-4842-3435-8_22

Chapter 22 ■ Deleting Data

564

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

Listing 22-1. The Contents of the SecondaryIdentities.cshtml File in the Views/Home Folder

<h3 class="bg-info p-2 text-center text-white">Secondary Identities</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>Key</th>
 <th>Name</th>
 <th>Active Use</th>
 <th>Foreign SSN</th>
 <th>Foreign FamilyName</th>
 <th>Foreign FirstName</th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="6" class="text-center">No Data</td></tr>
 @foreach (SecondaryIdentity ident in ViewBag.Secondaries) {
 <tr>
 <td>@ident.Id</td>
 <td>@ident.Name</td>
 <td>@ident.InActiveUse</td>
 <td>@(ident.PrimarySSN ?? "(null)")</td>
 <td>@(ident.PrimaryFirstName ?? "(null)")</td>
 <td>@(ident.PrimaryFamilyName ?? "(null)")</td>
 </tr>
 }
 </tbody>
</table>

To incorporate the partial view into the display shown to the user, I added the element shown in
Listing 22-2 to the Index view used by the Home controller. I also removed the In Use and Last Updated
columns from the table that displays the Employees objects.

Listing 22-2. Adding a Partial View in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

Chapter 22 ■ Deleting Data

565

 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 @*<th>In Use</th>*@
 @*<th>Last Updated</th>*@
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 @*<td>@(e.OtherIdentity?.InActiveUse.ToString() ?? "(N/A)")</td>*@
 @*<td>@e.LastUpdated.ToLocalTime()</td>*@
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">
 Delete
 </button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
@Html.Partial("SecondaryIdentities")
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

For the Home controller, I changed the Index action to provide access to the SecondaryIdentity objects
through the ViewBag, as shown in Listing 22-3. I also changed the Delete method to remove the soft-delete
feature and performed a conventional delete, similar to those used in earlier chapters. (I restore the
soft-delete feature at the end of the chapter.)

Chapter 22 ■ Deleting Data

566

Listing 22-3. Making Changes in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 ViewBag.Secondaries = context.Set<SecondaryIdentity>();
 return View(context.Employees.Include(e => e.OtherIdentity)
 .OrderByDescending(e => EF.Property<DateTime>(e, "LastUpdated")));
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 Employee e = new Employee {
 SSN = employee.SSN, FirstName = employee.FirstName,
 FamilyName = employee.FamilyName,
 RowVersion = employee.RowVersion
 };
 context.Employees.Attach(e);
 e.Salary = employee.Salary;
 e.LastUpdated = DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

Chapter 22 ■ Deleting Data

567

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Remove(employee);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

Next, run the commands shown in Listing 22-4 in the AdvancedApp project folder to drop and re-create
the database.

Listing 22-4. Dropping and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and use the values shown in Table 22-3 to store three Employee objects.

Table 22-3. The Data Values for Creating Example Objects

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

657-03-5898 Alice Jones 200000 Allie Checked

300-30-0522 Peter Davies 180000 Pete Checked

751-07-9405 Theodora Francis 140000 Dora Checked

When you have created all four objects, you should see the layout illustrated in Figure 22-1.

Chapter 22 ■ Deleting Data

568

Understanding Delete Constraints
The context’s Remove method is used to delete data from the database. Passing an object to this method
tells Entity Framework Core that the corresponding data in the database is no longer required and a DELETE
command should be sent to the database server when the SaveChanges method is called.

A common problem arises in ASP.NET Core MVC applications when the object that is to be deleted has
a relationship to other data stored in the database. You can see an example by clicking the Delete button
for one of the Employee objects displayed by the application. The database server won’t allow the data to be
deleted, and you will see the exception in Figure 22-2.

Figure 22-1. Running the example application

Chapter 22 ■ Deleting Data

569

When you delete the principal entity in a relationship, one of three things will happen to the dependent
entity, based on the data model configuration.

•	 The dependent entity will be deleted. This means that deleting an Employee object
would also delete its related SecondaryIdentity.

•	 The dependent entity’s foreign key properties are set to null. This would mean that
deleting an Employee would cause the related SecondaryIdentity object’s SSN,
PrimaryFirstName, and PrimaryFamily name properties to be set to null.

•	 No change is made to the dependent entity.

The third option really means you have to manage related data in the application, taking responsibility
to ensure that you don’t attempt any operation that would delete data on which a relationship depends.
Database servers work hard to ensure the integrity of the databases they manage and will report errors rather
than allow a reference problem to be created.

When a relationship is defined, Entity Framework Core follows a set of conventions to select the delete
behavior, using one of the values defined by the DeleteBehavior enumeration, as described in Table 22-4.

Figure 22-2. Attempting to delete data

Table 22-4. The DeleteBehavior Values

Name Description

Cascade The dependent entity is deleted automatically along with the principal entity.

SetNull The primary key of the dependent entity is set to null by the database server.

ClientSetNull The primary key of the dependent entity is set to null by Entity Framework Core.

Restrict No change is made to the dependent entity.

Chapter 22 ■ Deleting Data

570

The relationship between the Employee and SecondaryIdentity classes is configured in the
CompositeKey migration. If you examine the Up method in the <timestamp>_CompositeKey.cs file in the
Migrations folder, you will find the statement that sets the delete behavior.

...
migrationBuilder.CreateTable(name: "SecondaryIdentity",
 columns: table => new {
 Id = table.Column<long>(type: "bigint", nullable: false)
 .Annotation("SqlServer:ValueGenerationStrategy",
 SqlServerValueGenerationStrategy.IdentityColumn),

 ...column definitions omitted for brevity...

 },
 constraints: table => {
 table.PrimaryKey("PK_SecondaryIdentity", x => x.Id);
 table.ForeignKey(name: "FK_SecondaryIdentity_Employees_
 PrimarySSN_PrimaryFirstName_PrimaryFamilyName",
 columns: x => new { x.PrimarySSN, x.PrimaryFirstName,
 x.PrimaryFamilyName },
 principalTable: "Employees",
 principalColumns: new[] { "SSN", "FirstName", "FamilyName" },
 onDelete: ReferentialAction.Restrict);
 });
...

This relationship has been configured with the Restrict behavior. No change was made to the
SecondaryIdentity object when its related Employee was deleted, causing the exception shown in Figure 22-2.

Configuring the Delete Behavior
The most reliable way to get the behavior you require is to select the desired delete behavior using the Fluent
API, explicitly configuring the data model with a DeleteBehavior value. The descriptions in the table may
seem simple enough, but there are some complications. These behaviors can be different for required and
optional relationships. In addition, just to make things more difficult, Entity Framework Core will only
perform some operations on related data that has been loaded from the database, which can be confusing
in an ASP.NET Core MVC application, where objects are often created by the MVC model binder and will
require special handling. In the sections that follow, I explain how each of the delete behaviors works.

DECIDING WHICH DELETE BEHAVIOR TO USE

the choice of delete behavior can be confusing, and it can be difficult to figure out which one you need,
even after you have seen the demonstrations of each behavior in the sections that follow. here is my
advice if you find yourself uncertain where to begin.

if you are working with a required relationship, then you should start with the Cascade behavior, but do
some testing to make sure that a single delete operation doesn’t propagate through the database and
remove more data than you expected.

Chapter 22 ■ Deleting Data

571

if you are working with an optional relationship, then you should start with the SetNull behavior if your
database server supports it and the ClientSetNull behavior otherwise. But if you have no plan to deal
with orphaned data, then use the Cascade behavior instead.

avoid the Restrict behavior unless you are modeling a database that has specific demands that
cannot be dealt with using the other behaviors. the Restrict behavior lets you take complete control of
the delete process, but that can be harder to implement than you might expect, and it is easy to make
mistakes.

Using the Cascade Delete Behavior
The DeleteBehavior.Cascade value configures the database so that dependent entities are removed from
the database when the principal entity they are related to is deleted. The cascade behavior is the easiest
to work with, but caution is required because you can easily delete more data than you expected since the
database server will continue to follow relationships and delete data to ensure the integrity of the database.
If you apply the cascade behavior too freely, you can find that a delete operation can get out of control and
have far-reaching consequences.

In Listing 22-5, I have added a Fluent API statement to the context class to select the cascade behavior
for the Employee/SecondaryIdentity relationship.

 ■ Note the delete behavior for a relationship can be specified only using the Fluent api. there is no attribute
support for this feature.

Listing 22-5. Configuring the Delete Behavior in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

Chapter 22 ■ Deleting Data

572

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);
 //.IsConcurrencyToken();

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Cascade);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

The OnDelete method is used to configure a relationship’s delete behavior and accepts a
DeleteBehavior value as its argument. This method is used as part of the chain of method calls that define
the relationship between two classes.

Run the commands shown in Listing 22-6 in the AdvancedApp project folder to create and apply a
migration to the database that will change the delete behavior.

Listing 22-6. Creating and Applying a Migration

dotnet ef migrations add CascadeDelete
dotnet ef database update

To see the effect of the change, start the application using dotnet run, navigate to http://
localhost:5000, and click the Delete button for one of the Employee objects. The Employee and its related
SecondaryIdentity object will be removed from the database, as shown in Figure 22-3.

 ■ Tip if you run out of objects to delete, then click the Create button, fill out the fields, and click Save to store
new data in the database. the values you choose are not important because all of the examples in this chapter
are focused just on deleting data.

Chapter 22 ■ Deleting Data

573

The cascade behavior is implemented by the database server, which automatically removes the related
data from the database. You can see this by examining the logging messages generated by the application.
When you clicked the Delete button, Entity Framework Core sent the following SQL to the database:

...
DELETE FROM [Employees]
WHERE [SSN] = @p0 AND [FirstName] = @p1 AND [FamilyName] = @p2
 AND [RowVersion] = @p3;
...

Entity Framework Core only has to delete the principal entity and can rely on the database server to
deal with removing the related data to preserve the integrity of the database.

Setting Foreign Keys to Null
Two of the DeleteBehavior values, SetNull and ClientSetNull, respond to deleting the principal entity
by leaving the dependent entity in the database but setting the foreign key to null. This has the effect of
breaking the relationship between the two objects so that the principal can be deleted without violating the
referential integrity of the database.

 ■ Caution this behavior can be used only for optional relationships. Using this behavior on a required
relationship will produce an exception.

Figure 22-3. Using the cascade delete behavior

Chapter 22 ■ Deleting Data

574

The difference between the SetNull and ClientSetNull behaviors is who takes responsibility for
modifying the dependent entity. With the SetNull behavior, the database server will set the foreign key
property of the dependent entity to null. With the ClientSetNull behavior, Entity Framework Core takes
responsibility for updating the dependent entity.

Not all databases support the SetNull behavior—although SQL Server does—but SetNull has the
advantage of consistency because the ClientSetNull behavior will work only if Entity Framework Core
is made aware of the related data, either because it has been loaded as part of a query or because the
MVC model binder creates an object that contains its primary key. I demonstrate the different ways these
behaviors are used in the sections that follow.

Relying on the Database Server to Change Foreign Keys
If your database server supports it, then the SetNull behavior can be used to update dependent entities even
if they have not been loaded by Entity Framework Core. Of the two delete behaviors that set foreign keys to
null, this is the one that is easiest to work with because you don’t have to make sure that Entity Framework
Core is tracking the objects that have to be modified. In Listing 22-7, I have selected the SetNull behavior for
the Employee/SecondaryIdentity relationship by changing the argument to the OnDelete method.

Listing 22-7. Changing the Delete Behavior in the AdvancedContext.cs File in the Models Folder

...
modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.SetNull);
...

Run the commands shown in Listing 22-8 in the AdvancedApp project folder to create a new migration
and apply it to the database.

Listing 22-8. Creating and Applying a Database Migration

dotnet ef migrations add SetNullDelete
dotnet ef database update

To see how the delete behavior works, start the application using dotnet run, navigate to http://
localhost:5000, and click one of the Delete buttons. You will see that the Employee object is removed from
the database and the foreign key properties of the related SecondaryIdentity object are set to null, as shown
in Figure 22-4.

Chapter 22 ■ Deleting Data

575

If you examine the logging messages produced by the application, you can see the DELETE command
that Entity Framework Core used to remove the Employee object.

...
DELETE FROM [Employees]
WHERE [SSN] = @p0 AND [FirstName] = @p1 AND [FamilyName] = @p2
 AND [RowVersion] = @p3;
...

No command is sent to update the related SecondaryIdentity object, and it is the database server that
updates the foreign key properties of any dependent entities to null.

 ■ Caution Since the SetNull behavior doesn’t delete dependent entities from the database, you can end
up with “orphaned” data. You should use this behavior only if the application is likely to reuse the dependent
entities left in the database. For the example application, there is now a SecondaryIdentity object in the
database that is not associated with an Employee, and the application provides no means to use the existing
object when creating a new Employee, effectively orphaning the data. Orphaned data can cause unexpected
problems, especially if there are uniqueness constraints applied to natural keys, which will stop new objects
from being created with the same key values as used by orphans.

Figure 22-4. Using the SetNull behavior

Chapter 22 ■ Deleting Data

576

Relying on Entity Framework Core to Update Foreign Keys
With the ClientSetNull behavior, Entity Framework Core will update the foreign key properties of dependent
entities when the principal entity is deleted. This is useful if your database server doesn’t support the SetNull
behavior, although it requires some additional work in ASP.NET Core MVC applications because Entity
Framework Core will update only those objects that have been loaded from the database or manually added
to change tracking. This means that either using an additional query to load related data from the database or
including additional information in the HTTP request that the user sends to initiate the delete operation.

To configure the ClientSetNull behavior, I changed the value passed to the OnDelete method in the
context class, as shown in Listing 22-9.

Listing 22-9. Changing the Delete Behavior in the AdvancedContext.cs File in the Models Folder

...
modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.ClientSetNull);
...

A new migration is required to configure the database. Run the commands shown in Listing 22-10 in the
AdvancedApp folder to create the migration and apply it to the database.

Listing 22-10. Creating and Applying a Database Migration

dotnet ef migrations add ClientSetNullDelete
dotnet ef database update

If you examine the Up method in the <timestamp>_ClientSetNullDelete.cs file that has been added to
the Migrations folder, you will see that the delete behavior has been changed, as follows:

...
protected override void Up(MigrationBuilder migrationBuilder) {
 migrationBuilder.DropForeignKey(
 name: "FK_SecondaryIdentity_Employees
 _PrimarySSN_PrimaryFirstName_PrimaryFamilyName",
 table: "SecondaryIdentity");

 migrationBuilder.AddForeignKey(
 name: "FK_SecondaryIdentity_Employees
 _PrimarySSN_PrimaryFirstName_PrimaryFamilyName",
 table: "SecondaryIdentity",
 columns: new[] { "PrimarySSN", "PrimaryFirstName", "PrimaryFamilyName" },
 principalTable: "Employees",
 principalColumns: new[] { "SSN", "FirstName", "FamilyName" },
 onDelete: ReferentialAction.Restrict);
}
...

Chapter 22 ■ Deleting Data

577

The migration changes the behavior back to Restrict so that the database server takes no action
when an Employee object is deleted. That makes sense because the ClientSetNull behavior relies on Entity
Framework Core to update the foreign key values, rather than the database server.

If you start the application using dotnet run, navigate to http://localhost:5000, and click a Delete
button, you will see the error message shown in Figure 22-5.

This is what happens if you select the ClientSetNull behavior but don’t provide Entity Framework Core
with access to the dependent entities that are related to the object being deleted. The effect is equivalent to
specifying the Restrict behavior because the database server won’t make any changes to the dependent
entities and Entity Framework Core doesn’t know about them.

Using a Query to Load Related Data
One way to make sure that Entity Framework Core knows that there are related objects to delete is to
perform a database query to load the data, as shown in Listing 22-11.

Listing 22-11. Querying for Related Data in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Delete(Employee employee) {

 context.Set<SecondaryIdentity>().FirstOrDefault(id =>
 id.PrimarySSN == employee.SSN
 && id.PrimaryFirstName == employee.FirstName
 && id.PrimaryFamilyName == employee.FamilyName);

Figure 22-5. Deleting a principal entity

Chapter 22 ■ Deleting Data

578

 context.Employees.Remove(employee);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

It is enough to load the data that will be deleted, and I don’t have to do anything with the object that
Entity Framework Core creates other than ensure that it is being tracked.

 ■ Tip i have used the Find method, which executes a query immediately. if your related data can be
accessed only through a linQ query that creates an IQueryable<T>, then you should call the Load method to
force evaluation of the query. Otherwise, entity Framework Core won’t execute the query, the data won’t be
loaded, and the foreign key properties won’t be set to null.

Start the application using dotnet run, navigate to http://localhost:5000, and click a Delete button.
As with the SetNull behavior, the Employee object will be removed from the database, and the foreign key
properties of the related SecondaryIdentity object will be set to null, as shown in Figure 22-6.

Figure 22-6. Using the ClientSetNull behavior

Chapter 22 ■ Deleting Data

579

If you examine the logging messages generated by the application, you will see that Entity Framework
Core has taken responsibility for dealing with both objects. First you will see this command, which sets the
foreign key values of the SecondaryIdentity object to null:

...
UPDATE [SecondaryIdentity] SET [PrimaryFamilyName] = @p0, [PrimaryFirstName] = @p1,
 [PrimarySSN] = @p2
WHERE [Id] = @p3;
...

This ensures that the Employee object can be deleted without causing referential integrity problems.
The delete operation is performed with this command:

...
DELETE FROM [Employees]
WHERE [SSN] = @p4 AND [FirstName] = @p5 AND [FamilyName] = @p6
 AND [RowVersion] = @p7;
...

Avoiding Related Data Query
Entity Framework Core only needs the primary key of the dependent entity to perform an update. You can avoid
the additional query in Listing 22-11 by including an additional value in the HTTP POST request that targets the
Delete operation and use it to give Entity Framework Core the information it requires. In Listing 22-12, I have
added an element to the Index view for the primary key of the related SecondaryIdentity object.

Listing 22-12. Adding an Element in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>

Chapter 22 ■ Deleting Data

580

 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <input type="hidden" name="OtherIdentity.Id"
 value="@e.OtherIdentity.Id" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">
 Delete
 </button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
@Html.Partial("SecondaryIdentities")
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

In Listing 22-13, I have commented out the query in the Delete action method. The new value included
in the HTTP POST request allows the MVC model binder to create a SecondaryIdentity object, which Entity
Framework Core will use to update the database before performing the deleting operation.

Listing 22-13. Disabling a Query in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Delete(Employee employee) {

 //context.Set<SecondaryIdentity>().FirstOrDefault(id =>
 // id.PrimarySSN == employee.SSN
 // && id.PrimaryFirstName == employee.FirstName
 // && id.PrimaryFamilyName == employee.FamilyName);

 context.Employees.Remove(employee);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Chapter 22 ■ Deleting Data

581

Start the application using dotnet run, navigate to http://localhost:5000, and click a Delete button.
The foreign key properties of the related SecondaryIdentity object will be set to null, just as with the
previous example, but without the need to perform an additional query in the Delete action method.

Taking Control of the Delete Operation
The Restrict behavior tells Entity Framework Core and the database server to make no changes to
dependent entities. If you select this behavior, then you are responsible for ensuring that your delete
operation can be performed without causing an error. In Listing 22-14, I have selected the delete behavior in
the context class.

Listing 22-14. Selecting the Restrict Behavior in the AdvancedContext.cs File in the Models Folder

...
modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);
...

Run the commands shown in Listing 22-15 in the AdvancedApp project folder to create a new migration
and apply it to the database.

Listing 22-15. Creating and Applying a Database Migration

dotnet ef migrations add RestrictDelete
dotnet ef database update

Re-creating the Cascade Behavior
If you want to delete related data, then you must either query the database for the objects you want to
remove or ensure there is enough data in the HTTP POST request to create an object that will let Entity
Framework Core perform a delete operation.

In Listing 22-12 I added a hidden input element to the Index.cshtml view that includes the primary
key value of the SecondaryIdentity object in the request to delete an Employee. In Listing 22-16, I take use
this value to tell Entity Framework Core to include the related object in the delete operation.

Listing 22-16. Deleting Related Data in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Delete(Employee employee) {
 if (employee.OtherIdentity != null) {
 context.Set<SecondaryIdentity>().Remove(employee.OtherIdentity);
 }

Chapter 22 ■ Deleting Data

582

 context.Employees.Remove(employee);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
}
...

Start the application using dotnet run, navigate to http://localhost:5000, and click a Delete button
(you may need to create new objects so you have something to delete). Examine the logging messages
generated by the application, and you will see two operations that remove data from the database. The first
removes the SecondaryIdentity object.

...
DELETE FROM [SecondaryIdentity]
WHERE [Id] = @p0;
...

Removing the dependent entity clears the way for the second operation, which removes the principal entity.

...
DELETE FROM [Employees]
WHERE [SSN] = @p1 AND [FirstName] = @p2 AND [FamilyName] = @p3
 AND [RowVersion] = @p4;
...

Re-creating the Set Null Behavior
If you want to take responsibility for setting foreign key properties to null, then you can use the Attach
method to put an object created by the MVC model binder under Entity Framework Core change tracking
and then set the values of the foreign key properties, as shown in Listing 22-17.

 ■ Note this will work only for optional relationships. You will receive an error if you try to set the foreign key
property to null in a required relationship.

Listing 22-17. Setting Foreign Key Properties in the HomeController.cs File in the Controllers Folder

...
[HttpPost]
public IActionResult Delete(Employee employee) {
 if (employee.OtherIdentity != null) {
 SecondaryIdentity identity =
 context.Set<SecondaryIdentity>().Find(employee.OtherIdentity.Id);
 identity.PrimarySSN = null;
 identity.PrimaryFirstName = null;
 identity.PrimaryFamilyName = null;
 }
 employee.OtherIdentity = null;
 context.Employees.Remove(employee);
 context.SaveChanges();

Chapter 22 ■ Deleting Data

583

 return RedirectToAction(nameof(Index));
}
...

I query the database to get the current foreign key values, set the properties to null, and set the
OtherIdentity navigation property to null on the Employee object. When Entity Framework Core updates
the database, it sends UPDATE and DELETE commands just like the ones used by the ClientSetNull behavior.

Reinstating the Soft-Delete Feature
I am going to finish this chapter by reinstating the soft-delete feature and move the permanent delete feature
into the separate Delete controller.

In Listing 22-18, I modified the Home controller so that the Delete action performs the soft delete. I also
changed the query for related data in the Index action so that the SecondaryIdentity objects are accessed
through the Employee navigation properties. This will ensure that the query is subject to the query filter so
that SecondaryIdentity objects whose foreign key properties are null will not be displayed.

Listing 22-18. Updating Actions in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System;
using System.Collections.Generic;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 IEnumerable<Employee> data = context.Employees
 .Include(e => e.OtherIdentity)
 .OrderByDescending(e => e.LastUpdated)
 .ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

Chapter 22 ■ Deleting Data

584

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 Employee e = new Employee {
 SSN = employee.SSN, FirstName = employee.FirstName,
 FamilyName = employee.FamilyName,
 RowVersion = employee.RowVersion
 };
 context.Employees.Attach(e);
 e.Salary = employee.Salary;
 e.LastUpdated = DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Employees.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

Query filters only apply to queries for the class they are applied to, which means you may get
inconsistent results if you use queries that start at different ends of a relationship. In the Index action,
I changed the query for SecondaryIdentity objects so that it selects a subset of the results from a query for
Employee objects. This ensures that only SecondaryIdentity objects that are related to Employee objects that
have not been soft-deleted will be displayed to the user.

 ■ Tip to ensure that only one query is performed, i used the ToArray method to force execution of the
query. Without this method, there would be duplicate queries when the Employee and SecondaryIdentity
objects are enumerated by the view.

Next, I added buttons to the Index view used by the Delete controller so that soft-deleted objects can be
removed from the database, either individually or in bulk, as shown in Listing 22-19.

Listing 22-19. Adding Elements in the Index.cshtml File in the Views/Delete Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}

Chapter 22 ■ Deleting Data

585

<h3 class="bg-info p-2 text-center text-white">Deleted Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="4" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td class="text-right">
 <form method="post">
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="FirstName" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <input type="hidden" name="OtherIdentity.Id"
 value="@e.OtherIdentity.Id" />
 <button asp-action="Restore" class="btn btn-sm btn-success">
 Restore
 </button>
 <button asp-action="Delete" class="btn btn-sm btn-danger">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <form method="post" asp-action="DeleteAll">
 <button type="submit" class="btn btn-danger">Delete All</button>
 </form>
</div>

To complete the feature, I added the actions shown in Listing 22-20 to the Delete controller,
corresponding to the elements added in Listing 22-19.

Chapter 22 ■ Deleting Data

586

Listing 22-20. Adding Actions in the DeleteController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;

namespace AdvancedApp.Controllers {

 public class DeleteController : Controller {
 private AdvancedContext context;

 public DeleteController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.Where(e => e.SoftDeleted)
 .Include(e => e.OtherIdentity).IgnoreQueryFilters());
 }

 [HttpPost]
 public IActionResult Restore(Employee employee) {
 context.Employees.IgnoreQueryFilters()
 .First(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName).SoftDeleted = false;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult Delete(Employee e) {
 if (e.OtherIdentity != null) {
 context.Remove(e.OtherIdentity);
 }
 context.Employees.Remove(e);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult DeleteAll() {
 IEnumerable<Employee> data = context.Employees
 .IgnoreQueryFilters()
 .Include(e => e.OtherIdentity)
 .Where(e => e.SoftDeleted).ToArray();
 context.RemoveRange(data.Select(e => e.OtherIdentity));
 context.RemoveRange(data);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

Chapter 22 ■ Deleting Data

587

The action methods must ensure that the SecondaryIdentity objects related to the Employee objects
are also removed from the database because the data model is configured with the Restrict delete
behavior. To test the soft-delete/hard-delete feature, start the application using dotnet run, navigate
to http://localhost:5000, and click the Delete button for one or more Employee objects. Navigate to
http://localhost:5000/delete, and you can use the buttons shown in Figure 22-7 to restore the objects,
permanently delete a single soft-deleted object, or delete all of the soft-deleted objects.

Summary
In this chapter, I described the different behaviors that Entity Framework Core supports for deleting data.
I showed the differences between the Cascade and SetNull/ClientSetNull behaviors and how to take
control of the delete process using the Restrict behavior. I completed this chapter by restoring the soft-
delete feature and adding support for permanently deleting an object from its soft-deleted state. In the next
chapter, I describe the features that Entity Framework Core provides for using advanced features provided by
database servers.

Figure 22-7. Restoring and completing the soft-delete feature

589© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_23

CHAPTER 23

Using Database Server Features

Even with its advanced features, Entity Framework Core aims to cover the most commonly needed features
provided by database servers. But, knowing that this won’t be enough for some projects, Microsoft has also
included support for working directly with the database server, which can be invaluable if your project has
specialized requirements or if you are modeling a complex database.

In this chapter, I demonstrate how to use SQL directly to access features that Entity Framework Core
doesn’t support directly, including views, stored procedures, and table-valued functions. I also demonstrate
the range of features that Entity Framework Core provides for working with data values that are generated by
the database server. Table 23-1 puts this chapter in context.

 ■ Caution All Entity Framework Core features are subject to variation between database servers and
provider packages, but this is especially the case for the examples in this chapter. These examples have been
tested using SQL Server and the default Microsoft database provider. You may have to make changes to the
examples if you are using a different database server or provider package.

Table 23-1. Putting Database Features in Context

Question Answer

What are they? Database servers provide advanced features that cannot be accessed
using the normal Entity Framework Core techniques. Entity Framework
Core include a set of tools for working with these features so that you
can go beyond the basic set of features common to all database servers.

Why are they useful? These features are useful for increasing the amount of work
undertaken by the database server on behalf of the application
or when you need a particular feature that cannot be accessed
otherwise. If you are working with an existing database, you may have
to use these features to get and store data.

How are they used? These features are accessed through a combination of methods
that are included in LINQ queries and Fluent API statements that
configure the data model.

Are there any pitfalls or limitations? Working directly with database features makes it harder to test your
application code and requires a good understanding of advanced
database server features and the SQL required to use them.

Are there any alternatives? No. The techniques described in this chapter are the only way to
access the database server features.

https://doi.org/10.1007/978-1-4842-3435-8_23

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

590

Table 23-2 summarizes the chapter.

Preparing for This Chapter
In this chapter, I continue to work with the AdvancedApp project that I have been using since Chapter 19.
Some of the queries in this chapter do not include related data, so I changed the Index view used by the Home
controller as shown in Listing 23-1.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

Listing 23-1. Dealing with Missing Related Data in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>

Table 23-2. Chapter Summary

Problem Solution Listing

Execute SQL commands Use the FromSql or ExecuteSqlCommand methods 1–18

Update data model objects to reflect
server-generated values

Use the HasDefaultValueSql or HasSequence
method or the ValueGeneratedOnXXX methods

19–25, 30–33

Ensure that values are unique Use the HasIndex method 26–29

http://dx.doi.org/10.1007/978-1-4842-3435-8_19
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

591

 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <input type="hidden" name="OtherIdentity.Id"
 value="@e.OtherIdentity?.Id" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">
 Delete
 </button>
 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
@if (ViewBag.Secondaries != null) {
 @Html.Partial("SecondaryIdentities")
}
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

I also need to start this chapter without a query filter, so I commented out the Fluent API statement in
the context class that filters out soft-deleted objects, as shown in Listing 23-2.

Listing 23-2. Disabling the Query Filter in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

592

 //modelBuilder.Entity<Employee>()
 // .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

Some of the examples in this chapter require client-side evaluation of queries, so I have commented
out the statement in the Startup class that tells Entity Framework Core to throw an exception when part of a
query will be evaluated in the application, as shown in Listing 23-3.

Listing 23-3. Disabling the Client-Side Exception in the Startup.cs File in the AdvancedApp Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using AdvancedApp.Models;
using Microsoft.EntityFrameworkCore.Diagnostics;

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

593

namespace AdvancedApp {
 public class Startup {

 public Startup(IConfiguration config) => Configuration = config;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 string conString = Configuration["ConnectionStrings:DefaultConnection"];
 services.AddDbContext<AdvancedContext>(options =>
 options.UseSqlServer(conString));
 //.ConfigureWarnings(warning => warning.Throw(
 // RelationalEventId.QueryClientEvaluationWarning)));
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Next, run the commands shown in Listing 23-4 in the AdvancedApp project folder to drop and re-create
the database.

Listing 23-4. Dropping and Re-creating the Database

dotnet ef database drop --force
dotnet ef database update

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and use the values shown in Table 23-3 to store three Employee objects.

Table 23-3. The Data Values for Creating Example Objects

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

657-03-5898 Alice Jones 200000 Allie Checked

300-30-0522 Peter Davies 180000 Pete Checked

When you have created all three objects, you should see the layout illustrated in Figure 23-1.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

594

Using SQL Directly
Entity Framework Core does a good job of providing access to the database server features that most projects
need, but every database server has unique features, and using them means working directly with SQL. In
the sections that follow, I explain the different ways that Entity Framework Core supports working with SQL
and demonstrate how each of them works.

 ■ Caution These features should be used only if you can’t get the results you require using the standard
Entity Framework Core features. Using SQL directly makes your application harder to test and maintain and can
restrict your application so that it will work with only one database server. if you are not using SQL Server, you
may not get the expected results from the examples in this chapter.

Querying Using SQL
Entity Framework Core supports the FromSql method for querying a database using SQL directly. To
demonstrate, I have changed the Index action of the Home controller so that it queries the database using
SQL, as shown in Listing 23-5.

Figure 23-1. Running the example application

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

595

Listing 23-5. Querying Using SQL in the HomeController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System;
using System.Collections.Generic;

namespace AdvancedApp.Controllers {

 public class HomeController : Controller {
 private AdvancedContext context;

 public HomeController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 IEnumerable<Employee> data = context.Employees
 .FromSql(@"SELECT * FROM Employees
 WHERE SoftDeleted = 0
 ORDER BY Salary DESC");
 //ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
 }

 public IActionResult Edit(string SSN, string firstName, string familyName) {
 return View(string.IsNullOrWhiteSpace(SSN)
 ? new Employee() : context.Employees.Include(e => e.OtherIdentity)
 .First(e => e.SSN == SSN
 && e.FirstName == firstName
 && e.FamilyName == familyName));
 }

 [HttpPost]
 public IActionResult Update(Employee employee) {
 if (context.Employees.Count(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName) == 0) {
 context.Add(employee);
 } else {
 Employee e = new Employee {
 SSN = employee.SSN, FirstName = employee.FirstName,
 FamilyName = employee.FamilyName,
 RowVersion = employee.RowVersion
 };
 context.Employees.Attach(e);
 e.Salary = employee.Salary;
 e.LastUpdated = DateTime.Now;
 }
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

596

 [HttpPost]
 public IActionResult Delete(Employee employee) {
 context.Employees.Attach(employee);
 employee.SoftDeleted = true;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

The FromSql method is used to create a query that includes raw SQL, and in the example, I selected data
from the Employees table that hasn’t been soft-deleted and ordered the results by Salary value.

There are restrictions in the SQL you can use with the FromSql method. First, and most important, you
must ensure that your results include columns for every property of the entity class that Entity Framework
Core will create, and those columns must have the same names as those properties. You can only query for a
specific entity class through its DbSet<T>, and related data cannot be included, which means you can’t query
for classes unless they are part of the data model. Finally, Entity Framework Core will not create related
objects, even if you include a JOIN in the raw SQL query. (See the “Composing Complex Queries” section
for details of a different technique for getting related data.)

To see the SQL as it is sent to the database server, start the application using dotnet run and navigate to
http://localhost:5000. Examine the log messages produced by the application, and you will see the query
that corresponds to the raw SQL from Listing 23-5.

...
SELECT * FROM Employees
WHERE SoftDeleted = 0
ORDER BY Salary DESC
...

Since there is no related data retrieved from the database, only details of the Employee objects will be
displayed to the user, as shown in Figure 23-2.

Figure 23-2. Querying the database using raw SQL

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

597

Querying Using Parameters
To prevent SQL injection attacks, you must parametrize any user input that is included in a SQL query. The
simplest way to do this is to rely on the string interpolation feature that includes values by name in a SQL string
and automatically ensures they are handled safely. In Listing 23-6, I have changed the query made by the Index
action so that it accepts a parameter whose value is taken from the HTTP request and used to select data.

Listing 23-6. Using a Query Parameter in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(decimal salary = 0) {
 IEnumerable<Employee> data = context.Employees
 .FromSql($@"SELECT * FROM Employees
 WHERE SoftDeleted = 0
 AND Salary > {salary}
 ORDER BY Salary DESC");
 //ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

Prefixing the string with a dollar sign allows me to include values by name so that {salary} safely
incorporates the value into the query. To see the SQL that is generated, start the application using dotnet run and
navigate to http://localhost:5000. In the logging messages generated by the application, you will see this query:

...
SELECT * FROM Employees
WHERE SoftDeleted = 0 AND Salary > @p0
ORDER BY Salary DESC
...

Entity Framework Core has sent a query that uses a safe parameter rather than incorporating the value
directly into the SQL string. If you navigate to http://localhost:5000?salary=100000, you will see that the
data is filtered so that only Employee objects whose Salary value exceeds 100,000 are displayed, as shown in
Figure 23-3.

Figure 23-3. Querying with user input

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

598

OTHER WAYS OF PASSING PARAMETERS IN QUERIES

if you don’t want to use string interpolation, you can pass parameters safely as arguments to the
FromSql method, like this:

...
context.Employees.FromSql(@"SELECT * FROM Employees
 WHERE SoftDeleted = 0 AND Salary > {0}
 ORDER BY Salary DESC", salary);
...

The arguments are consumed in the order they are specified and referred to in the SQL string using a
zero-based index. if you are working with a string that contains the name of the parameters that the
query requires, then you can use the SqlParameter class to provide the values to the query.

...
SqlParameter min = new SqlParameter("minSalary", salary);

IEnumerable<Employee> data = context.Employees
 .FromSql(@"SELECT * FROM Employees
 WHERE SoftDeleted = 0 AND Salary > @minSalary
 ORDER BY Salary DESC", min);
...

both of these techniques produce queries that match the string interpolation technique shown in
Listing 23-6.

Composing Complex Queries
If your database server and provider package support it, Entity Framework Core is able to use raw SQL as
the foundation for a more complex query, which is composed using standard LINQ methods or other Entity
Framework Core features. As an example, I have uncommented the Fluent API statement in the context class
to enable the query filter that excludes soft-deleted objects, as shown in Listing 23-7.

Listing 23-7. Enabling the Query Filter in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

599

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 // ...other statements omitted for brevity...
 }
 }
}

In Listing 23-8, I have changed the query made in the Index action method so that related data is
included and the results are ordered using the LastUpdated property.

Listing 23-8. Composing a Complex Query in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(decimal salary = 0) {
 IEnumerable<Employee> data = context.Employees
 .FromSql($@"SELECT * FROM Employees
 WHERE SoftDeleted = 0
 AND Salary > {salary}")
 .Include(e => e.OtherIdentity)
 .OrderByDescending(e => e.Salary)
 .OrderByDescending(e => e.LastUpdated).ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

Entity Framework Core generates a query that combines the raw SQL passed to the FromSql method
with an additional query that represents the LINQ methods. To see the composed query, start the
application using dotnet run, navigate to http://localhost:5000?salary=100000, and examine the
logging messages, which will contain this query:

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[LastUpdated],
 [e].[RowVersion], [e].[Salary], [e].[SoftDeleted], [e.OtherIdentity].[Id],
 [e.OtherIdentity].[InActiveUse], [e.OtherIdentity].[Name],
 [e.OtherIdentity].[PrimaryFamilyName], [e.OtherIdentity].[PrimaryFirstName],
 [e.OtherIdentity].[PrimarySSN]
FROM (
 SELECT * FROM Employees
 WHERE SoftDeleted = 0 AND Salary > @p0
) AS [e]
LEFT JOIN [SecondaryIdentity] AS [e.OtherIdentity] ON
 (([e].[SSN] = [e.OtherIdentity].[PrimarySSN])
 AND ([e].[FirstName] = [e.OtherIdentity].[PrimaryFirstName]))
 AND ([e].[FamilyName] = [e.OtherIdentity].[PrimaryFamilyName])
WHERE [e].[SoftDeleted] = 0
ORDER BY [e].[LastUpdated] DESC, [e].[Salary] DESC
...

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

600

The inner part of the query is the string that I passed to the FromSql method, which has been
surrounded by an outer query that uses SELECT to get the column names that Entity Framework Core
requires to create Employee and SecondaryIdentity objects, the JOIN to get the related data, the WHERE
clause to exclude soft-deleted data, and the ORDER BY clause that will sort the data by LastUpdated value.

The mix of raw SQL and standard LINQ methods can make queries more manageable and testable
than those created purely with raw SQL. That said, this technique does put limits on the raw SQL part of
the query. For example, notice that I have moved the WHERE clause that selects data based on the Salary
value into a LINQ OrderByDescending method in Listing 23-8. One of the restrictions placed on raw SQL in
composed queries is that ORDER BY clauses cannot be used.

Using Raw SQL to Query Stored Procedures
Stored procedures are often encountered when working with a database that predates the ASP.NET Core
MVC application or where there are specific performance or data management requirements. Entity
Framework Core supports querying a stored procedure, although the database server or provider may place
restrictions on the types of queries that can be made.

Listing 23-9 contains the SQL statements required to create a simple stored procedure that queries the
database for Employee objects whose Salary value exceeds a specified amount. Select SQL Server ➤ New Query
from the Visual Studio Tools menu, connect to the database, and execute the SQL to create the stored procedure.

 ■ Tip You can download a file containing the SQL statements in Listing 23-9 as part of the free source code
download that accompanies this book at https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc.

Listing 23-9. A Simple Stored Procedure

USE AdvancedDb
GO

DROP PROCEDURE IF EXISTS GetBySalary;
GO

CREATE PROCEDURE GetBySalary
 @SalaryFilter decimal
AS
 SELECT * from Employees
 WHERE Salary > @SalaryFilter AND SoftDeleted = 0
 ORDER BY Salary DESC
GO

Entity Framework Core can’t query the stored procedure using its standard features, which means that
the FromSql method must be used. In Listing 23-10 I have changed the query in the Index action of the Home
controller so that it queries the database using the stored procedure.

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

601

Listing 23-10. Querying Using a Stored Procedure in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(decimal salary = 0) {
 IEnumerable<Employee> data = context.Employees
 .FromSql($"Execute GetBySalary @SalaryFilter = {salary}")
 .IgnoreQueryFilters();
 //ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

The types of query that you can perform with a stored procedure are limited. Related data cannot
be included, for example, which is why I removed the Include. I have removed the OrderByDescending
methods and added the IgnoreQueryFilters methods to prevent client-side execution. Entity Framework
Core cannot compose complex queries using stored procedures, so you must either ensure that the
procedure does all of the filtering and processing that you require or accept that client-side evaluation may
be required. To test the stored procedure query, start the application using dotnet run and navigate to
http://localhost:5000?salary=150000. If you examine the logging messages generated by the application,
you can see that the stored procedure was queried like this:

...
Execute GetHighEarners @SalaryFilter = @p0
...

Since there is no related data, the results will include only Employee data, as shown in Figure 23-4.

Figure 23-4. Querying with a stored procedure

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

602

Composing Complex Queries with Views
If you are able to influence or change the design of the database, then Entity Framework Core has more flexible
support for views, which are virtual tables whose contents are generated by a query. Listing 23-11 contains the
SQL statements required to create a simple view that contains all of the Employee data that has not been soft-
deleted. Views are typically more complex or synthesize data by performing calculations, but this simple view is
enough to demonstrate how they are used with Entity Framework Core. Select SQL Server ➤ New Query from
the Visual Studio Tools menu, connect to the database, and execute the SQL to create the view.

Listing 23-11. A Simple View

USE AdvancedDb
GO

DROP VIEW IF EXISTS NotDeletedView
GO

CREATE VIEW NotDeletedView
AS
 SELECT * FROM Employees
 WHERE SoftDeleted = 0
GO

To query the view, I have updated the Index action on the Home controller, as shown in Listing 23-12.
Since a view returns a table, Entity Framework Core is able to compose a query by mixing raw SQL and
normal LINQ query methods.

Listing 23-12. Querying a View in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(decimal salary = 0) {
 IEnumerable<Employee> data = context.Employees
 .FromSql($@"SELECT * from NotDeletedView
 WHERE Salary > {salary}")
 .Include(e => e.OtherIdentity)
 .OrderByDescending(e => e.Salary)
 .OrderByDescending(e => e.LastUpdated)
 .IgnoreQueryFilters()
 .ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

The view is the source of the data in the query and is complemented by the Include and
OrderByDescending methods. I added the IgnoreQueryFilters method because the view already excludes
soft-deleted data, making the query filter redundant. Start the application, navigate to http://localhost:5000,
and examine the logging messages to see the composed query that was sent to the database server.

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[LastUpdated],
 [e].[RowVersion], [e].[Salary], [e].[SoftDeleted], [e.OtherIdentity].[Id],

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

603

 [e.OtherIdentity].[InActiveUse], [e.OtherIdentity].[Name],
 [e.OtherIdentity].[PrimaryFamilyName], [e.OtherIdentity].[PrimaryFirstName],
 [e.OtherIdentity].[PrimarySSN]
FROM (SELECT * from NotDeletedView WHERE Salary > @p0) AS [e]
LEFT JOIN [SecondaryIdentity] AS [e.OtherIdentity]
 ON (([e].[SSN] = [e.OtherIdentity].[PrimarySSN])
 AND ([e].[FirstName] = [e.OtherIdentity].[PrimaryFirstName]))
 AND ([e].[FamilyName] = [e.OtherIdentity].[PrimaryFamilyName])
ORDER BY [e].[LastUpdated] DESC, [e].[Salary] DESC
...

Since the composed query includes related data, the user is presented with both Employee and
SecondaryIdentity objects, as shown in Figure 23-5.

Composing Complex Queries Using Table-Valued Functions
A table-valued function is like a cross between a view and a stored procedure. Like a stored procedure, a
table-valued function can accept parameters, and it produces a table as its result, just like a view. When
working with Entity Framework Core, table-valued functions can often replace stored procedures with the
advantage of allowing complex queries to be composed.

Figure 23-5. Querying using a view

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

604

Listing 23-13 contains the SQL statements required to create a table-valued function that performs the
same query as the stored procedure created in Listing 23-9. Select SQL Server ➤ New Query from the Visual
Studio Tools menu, connect to the database, and execute the SQL to create the function.

 ■ Tip Entity Framework Core also supports scalar functions, which are functions that return a single value,
rather than the table of results produced by a table-valued function. rather than use SQL directly, you can
create a method in the context class, and Entity Framework Core will know that a call to this method in a query
should result in the function being executed. At the time of writing, this feature is limited and works for only a
limited number of result types. Search online for the Fluent Api HasDbFunction method for details.

Listing 23-13. A Table-Valued Function

USE AdvancedDb
GO

DROP FUNCTION IF EXISTS GetSalaryTable
GO

CREATE FUNCTION GetSalaryTable(@SalaryFilter decimal)
RETURNS @employeeInfo TABLE
(
 SSN nvarchar(450),
 FirstName nvarchar(450),
 FamilyName nvarchar(450),
 Salary decimal(8, 2),
 LastUpdated datetime2(7),
 SoftDeleted bit
) AS
 BEGIN
 INSERT INTO @employeeInfo
 SELECT SSN, FirstName, FamilyName, Salary, LastUpdated, SoftDeleted
 FROM Employees
 WHERE Salary > @SalaryFilter AND SoftDeleted = 0
 ORDER BY Salary DESC
 RETURN
 END
GO

This SQL creates a function called GetSalaryTable that returns a table of almost all of the columns that
Entity Framework Core needs to create Employee objects. The exception is the RowVersion column because
its SQL data type cannot be used in functions.

As noted earlier, raw SQL queries must produce values for all the properties that Entity Framework
Core needs to create an object. To prevent an exception when Entity Framework Core processes the query
results, I have configured the data model to ignore the RowVersion property in the Employee class, as shown
in Listing 23-14.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

605

 ■ Caution Make sure you understand the impact of ignoring properties to get this kind of query to work.
in this case, disabling the RowVersion property disables protection against concurrent updates when the user
soft-deletes an object. Other operations are unaffected because the queries made by the other action methods
in the Home controller do not use the table-valued function.

Listing 23-14. Ignoring a Property in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Ignore(e => e.RowVersion);
 // .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

606

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

To use the table-values function, I changed the query in the Index action of the Home controller, as
shown in Listing 23-15.

Listing 23-15. Querying a Table-Valued Function in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(decimal salary = 0) {
 IEnumerable<Employee> data = context.Employees
 .FromSql($@"SELECT * from GetSalaryTable({salary})")
 .Include(e => e.OtherIdentity)
 //.OrderByDescending(e => e.Salary)
 .OrderByDescending(e => e.LastUpdated)
 .IgnoreQueryFilters()
 .ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

The table-valued function is used as the target for the raw SQL query and receives a parameter that is
used to filter by Salary value. Since Entity Framework Core is able to perform complex queries when table-
valued functions are used, I am able to include related data and order the results. (I have commented out the
OrderByDescending for the Salary property since the function already sorts the data using the Salary value.)

To see the effect, start the application using dotnet run and navigate to http://localhost:5000. In
the logging messages generated by the application, you will see the query that Entity Framework Core has
composed to target the table-valued function.

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[LastUpdated], [e].[Salary],
 [e].[SoftDeleted], [e.OtherIdentity].[Id], [e.OtherIdentity].[InActiveUse],
 [e.OtherIdentity].[Name], [e.OtherIdentity].[PrimaryFamilyName],
 [e.OtherIdentity].[PrimaryFirstName], [e.OtherIdentity].[PrimarySSN]
FROM (SELECT * from GetSalaryTable(@p0)) AS [e]
LEFT JOIN [SecondaryIdentity] AS [e.OtherIdentity]
 ON (([e].[SSN] = [e.OtherIdentity].[PrimarySSN])
 AND ([e].[FirstName] = [e.OtherIdentity].[PrimaryFirstName]))
 AND ([e].[FamilyName] = [e.OtherIdentity].[PrimaryFamilyName])
ORDER BY [e].[LastUpdated] DESC
...

The composed query follows the same structure shown in earlier examples. As this is a composed
query, related data is loaded and displayed to the user, as shown in Figure 23-6.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

607

Calling Stored Procedures or Other Operations
Not all stored procedures are used to query for data, which means that the FromSql method cannot always
be used. Although Entity Framework Core doesn’t automatically expose stored procedures through the
context class, they can still be used. Listing 23-16 contains SQL statements that create two stored procedures
that restore soft-deleted data or remove it permanently. Select SQL Server ➤ New Query from the Visual
Studio Tools menu, connect to the database, and execute the SQL to create the function.

Listing 23-16. Two Stored Procedures

USE AdvancedDb
GO

DROP PROCEDURE IF EXISTS RestoreSoftDelete
DROP PROCEDURE IF EXISTS PurgeSoftDelete
GO

CREATE PROCEDURE RestoreSoftDelete
AS
 BEGIN
 UPDATE Employees

Figure 23-6. Querying using a table-valued function

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

608

 SET SoftDeleted = 0 WHERE SoftDeleted = 1
 END
GO

CREATE PROCEDURE PurgeSoftDelete
AS
 BEGIN
 DELETE from SecondaryIdentity WHERE Id IN
 (SELECT Id from Employees emp
 INNER JOIN SecondaryIdentity ident on ident.PrimarySSN = emp.SSN
 AND ident.PrimaryFirstName = emp.FirstName
 AND ident.PrimaryFamilyName = emp.FamilyName
 WHERE SoftDeleted = 1)
 END
 BEGIN
 DELETE FROM Employees
 WHERE SoftDeleted = 1
 END

Stored procedures that do not return data are called using the ExecuteSqlCommand, which I have used in
Listing 23-17 to update the Delete controller.

Listing 23-17. Calling Stored Procedures in the DeleteController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;

namespace AdvancedApp.Controllers {

 public class DeleteController : Controller {
 private AdvancedContext context;

 public DeleteController(AdvancedContext ctx) => context = ctx;

 public IActionResult Index() {
 return View(context.Employees.Where(e => e.SoftDeleted)
 .Include(e => e.OtherIdentity).IgnoreQueryFilters());
 }

 [HttpPost]
 public IActionResult Restore(Employee employee) {
 context.Employees.IgnoreQueryFilters()
 .First(e => e.SSN == employee.SSN
 && e.FirstName == employee.FirstName
 && e.FamilyName == employee.FamilyName).SoftDeleted = false;
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

609

 [HttpPost]
 public IActionResult Delete(Employee e) {
 if (e.OtherIdentity != null) {
 context.Remove(e.OtherIdentity);
 }
 context.Employees.Remove(e);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult DeleteAll() {
 context.Database.ExecuteSqlCommand("EXECUTE PurgeSoftDelete");
 return RedirectToAction(nameof(Index));
 }

 [HttpPost]
 public IActionResult RestoreAll() {
 context.Database.ExecuteSqlCommand("EXECUTE RestoreSoftDelete");
 return RedirectToAction(nameof(Index));
 }

 }
}

SQL features that do not return data are accessed through the context class’s Database.
ExecuteSqlCommand method, which accepts a SQL string (and optional parameters). In the listing, I have
used the ExecuteSqlCommand method to call the stored procedures defined in Listing 23-16.

The DeleteAll action in Listing 23-17 can already be used by the user, and in Listing 23-18 I have added an
HTML element to the Index view used by the Delete controller so that the RestoreAll method can be targeted.

Listing 23-18. Adding an Element in the Index.cshtml File in the Views/Delete Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Deleted Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="4" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

610

 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td class="text-right">
 <form method="post">
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="FirstName" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <input type="hidden" name="OtherIdentity.Id"
 value="@e.OtherIdentity.Id" />
 <button asp-action="Restore" class="btn btn-sm btn-success">
 Restore
 </button>
 <button asp-action="Delete" class="btn btn-sm btn-danger">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
<div class="text-center">
 <form method="post" asp-action="DeleteAll">
 <button type="submit" class="btn btn-danger">Delete All</button>
 <button type="submit" class="btn btn-success" asp-action="RestoreAll">
 Restore All
 </button>
 </form>
</div>

To confirm that the stored procedures are being called, start the application using dotnet run, navigate
to http://localhost:5000, and use the Delete buttons to soft-delete Employee objects. You can then
navigate to http://localhost:5000/delete and use the Delete All or Restore All button to invoke the stored
procedures, as shown in Figure 23-7.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

611

Using Server-Generated Values
In Chapter 19, you saw how the database server can take responsibility for generating unique keys, but this
isn’t the only type of value that the database server can create. In the sections that follow, I explain the different
Entity Framework Core features that support working with data values generated by the database server.

Using Database Server–Generated Default Values
For many properties, using the HasDefaultValue method with a fixed value, as shown in Chapter 21, can be
useful because it allows you to define a convenient baseline for the objects that you store in the database.

In some projects, however, it can be useful to ask the database server to generate a default value each
time a new object is stored, although the range of default values the database can generate is limited. As an
example, I added a new property to the Employee class, as shown in Listing 23-19. Rather than add a new
property for each different kind of server-generated value, I have added a property whose purpose is just to
act as a placeholder so I can display values easily.

Listing 23-19. Adding a Property to the Employee.cs File in the Models Folder

using System;

namespace AdvancedApp.Models {

 public class Employee {
 private decimal databaseSalary;

 public long Id { get; set; }
 public string SSN { get; set; }
 public string FirstName { get; set; }
 public string FamilyName { get; set; }

 public decimal Salary {
 get => databaseSalary;
 set => databaseSalary = value;
 }

Figure 23-7. Calling a stored procedure

http://dx.doi.org/10.1007/978-1-4842-3435-8_19
http://dx.doi.org/10.1007/978-1-4842-3435-8_21

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

612

 public SecondaryIdentity OtherIdentity { get; set; }

 public bool SoftDeleted { get; set; } = false;

 public DateTime LastUpdated { get; set; }
 public byte[] RowVersion { get; set; }

 public string GeneratedValue { get; set; }
 }
}

Asking the database server to generate a default value for a property is done using the Fluent API
HasDefaultValueSql method, which is similar to the HasDefaultValue method but tells the database server
to execute a SQL expression to get the default value. In Listing 23-20, I have configured the new property
using the HasDefaultValueSql method.

Listing 23-20. Configuring the Default Value in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Ignore(e => e.RowVersion);
 // .Property(e => e.RowVersion).IsRowVersion();

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

613

 modelBuilder.Entity<Employee>().Property(e => e.GeneratedValue)
 .HasDefaultValueSql("GETDATE()");

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

In the listing, I have used the SQL GETDATE function to get a timestamp. There are restrictions on the
SQL expression that can be used to generate default values, which means that the range of values is limited.
References to other columns in the same table are not allowed, for example, which makes sense because the
default value is set when the data is stored. As a result, using SQL to specify default values generally involves
invoking functions or using constants. It is for this reason that most demonstrations of default values rely on
the SQL GETDATE function that I used in this example. There are more flexible options available, as I describe
in the sections that follow.

To receive a value for the GeneratedValue property, I have changed the query in the Index action of the
Home controller so that it no longer queries using the GetSalaryTable function, which returns a subset of the
values that Entity Framework Core requires, as shown in Listing 23-21.

Listing 23-21. Revising the Query in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index() {
 IEnumerable<Employee> data = context.Employees
 //.FromSql($@"SELECT * from GetSalaryTable({salary})")
 .Include(e => e.OtherIdentity)
 //.OrderByDescending(e => e.Salary)
 .OrderByDescending(e => e.LastUpdated)
 .IgnoreQueryFilters()
 .ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

Configuring the database requires a new migration. Run the commands shown in Listing 23-22 in the
AdvancedApp project folder to create a migration called GeneratedDefaultValue and apply it to the example
database.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

614

Listing 23-22. Creating and Applying a Database Migration

dotnet ef migrations add GeneratedDefaultValue
dotnet ef database update

To display the default value to the user, I added the elements shown in Listing 23-23 to the Index view
used by the Home controller.

Listing 23-23. Adding Elements in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
}
<h3 class="bg-info p-2 text-center text-white">Employees</h3>
<table class="table table-sm table-striped">
 <thead>
 <tr>
 <th>SSN</th>
 <th>First Name</th>
 <th>Family Name</th>
 <th>Salary</th>
 <th>Other Name</th>
 <th>Generated</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr class="placeholder"><td colspan="8" class="text-center">No Data</td></tr>
 @foreach (Employee e in Model) {
 <tr>
 <td>@e.SSN</td>
 <td>@e.FirstName</td>
 <td>@e.FamilyName</td>
 <td>@e.Salary</td>
 <td>@(e.OtherIdentity?.Name ?? "(None)")</td>
 <td>@e.GeneratedValue</td>
 <td class="text-right">
 <form>
 <input type="hidden" name="SSN" value="@e.SSN" />
 <input type="hidden" name="Firstname" value="@e.FirstName" />
 <input type="hidden" name="FamilyName"
 value="@e.FamilyName" />
 <input type="hidden" name="RowVersion"
 asp-for="@e.RowVersion" />
 <input type="hidden" name="OtherIdentity.Id"
 value="@e.OtherIdentity?.Id" />
 <button type="submit" asp-action="Delete" formmethod="post"
 class="btn btn-sm btn-danger">
 Delete
 </button>

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

615

 <button type="submit" asp-action="Edit" formmethod="get"
 class="btn btn-sm btn-primary">
 Edit
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
</table>
@if (ViewBag.Secondaries != null) {
 @Html.Partial("SecondaryIdentities")
}
<div class="text-center">
 <a asp-action="Edit" class="btn btn-primary">Create
</div>

To see a default value generated by the database server, start the application using dotnet run, navigate
to http://localhost:5000, click the Create button, and store a new object. When it stores the new data, the
database server will evaluate the SQL expression I used in Listing 23-21 and produce a result similar to the
one shown in Figure 23-8.

Figure 23-8. Generating a default value

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

616

One consequence of having the database server generate default values is that Entity Framework
Core has to query the database to find out what value was assigned. If you examine the logging messages
generated by the application, you will see an INSERT command was used to store the new object in the
database, like this:

...
INSERT INTO [Employees] ([SSN], [FirstName], [FamilyName], [Salary], [SoftDeleted])
VALUES (@p0, @p1, @p2, @p3, @p4);
...

Immediately after the INSERT you will see a query where Entity Framework Core requests the
GeneratedValue and LastUpdated values that were assigned by the database, like this:

...
SELECT [GeneratedValue], [LastUpdated]
FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [SSN] = @p0 AND [FirstName] = @p1 AND [FamilyName] = @p2;
...

Entity Framework Core uses these values to update the properties of the object that has been stored,
which ensures that any subsequent operations performed on that object have a complete set of values.

Incorporating Sequential Values
One way to increase the flexibility of a server-generated default value is to incorporate a sequence, where
the database server will generate unique values on request. This is similar to the feature that generates
key values that I described in Chapter 19, but it can be applied to any property and can be included in a
generated value.

In Listing 23-24, I have added a sequence to the data model and used it as part of the SQL expression
that produces a value for the GeneratedValue property.

Listing 23-24. Using a Sequence in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

617

 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Ignore(e => e.RowVersion);
 // .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.HasSequence<int>("ReferenceSequence")
 .StartsAt(100)
 .IncrementsBy(2);

 modelBuilder.Entity<Employee>().Property(e => e.GeneratedValue)
 .HasDefaultValueSql(@"'REFERENCE_'
 + CONVERT(varchar, NEXT VALUE FOR ReferenceSequence)");

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

Sequences are created using the HasSequence method, where the type parameter sets the data type
for the sequential values and the method argument is the name assigned to the sequence. I used the name
ReferenceSequence, but in a real project, you should make your sequence name as meaningful as you can
because a single sequence can be used anywhere in the database.

The HasSequence method returns a SequenceBuilder object that can be used to configure the sequence
using the methods described in Table 23-4.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

618

In the listing, I used the StartsAt method to specify 100 as the starting value and the IncrementsBy
method to create a sequence that is incremented by two after each new value is generated. To use the
sequence, I changed the expression passed to the HasDefaultValueSql method so that the next value of the
sequence is converted to a string and prefixed with REFERENCE_.

Applying the sequence requires a new migration. Run the commands shown in Listing 23-25 in the
AdvancedApp project folder to create a migration called Sequence and apply it to the database.

Listing 23-25. Creating and Applying a Database Migration

dotnet ef migrations add Sequence
dotnet ef database update

To see the effect, start the application using dotnet run, navigate to http://localhost:5000, click the
Create button, and store a new object in the database. When the results are displayed, you will see that the
sequence has been used to create the default value for the new object, as shown in Figure 23-9.

Table 23-4. The Sequence Configuration Methods

Name Description

StartsAt(value) This method is used to specify the starting value for the sequence.

IncrementsBy(value) This method is used to specify the amount by which the sequence is
incremented after a value is generated.

IsCyclic(cycles) This method is used to specify whether the sequence starts over when the
maximum value is reached.

HasMax(value) This method is used to specify a maximum value for the sequence.

HasMin(value) This method is used to specify a minimum value for the sequence.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

619

AVOIDING THE SEQUENCE PITFALLS

There are two common pitfalls that arise when using sequences. The first pitfall is to be too restrictive
when using the methods described in Table 23-4, resulting in a pool of available values that is too small
to meet the needs of the application. Sometime after development, all of the possible sequence values
will be used up, and the database server will begin reporting errors.

The second pitfall is the most common attempt at correcting an exhausted sequence, which is to
quickly apply the IsCyclic method so that the sequence will start over. values in a cyclic sequence
are not guaranteed to be unique, which means that the same value may be assigned several times and
cause problems for applications that assume that sequence values are unique.

When creating a sequence, select a data type that provides a big enough range of values for your
application. if you require unique values, then consider using an alternate key, as described in Chapter 19.

Computing Values in the Database
A computed column is one that the database server calculates using values already in the database. This can
be a useful way of generating values that would otherwise have to be computed repeatedly each time a query
is performed and that may otherwise require client-side query evaluation.

Figure 23-9. Using a sequence to generate default values

http://dx.doi.org/10.1007/978-1-4842-3435-8_19

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

620

As an example, I changed the query in the Index action of the Home controller so that the user can apply
a search term for the combined FirstName and FamilyName values, as shown in Listing 23-26.

Listing 23-26. Querying with a Search Term in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(string searchTerm) {
 IQueryable<Employee> query = context.Employees.Include(e => e.OtherIdentity);
 if (!string.IsNullOrEmpty(searchTerm)) {
 query = query.Where(e => EF.Functions
 .Like($"{e.FirstName[0]}{e.FamilyName}", searchTerm));
 }
 IEnumerable<Employee> data = query.ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

The query takes the first character of the FirstName property, concatenates it with the value of the
FamilyName property, and performs a search using the Like method. Start the application using dotnet run
and navigate to http://localhost:5000?searchTerm=%ajon%. The search term is %ajon%, which will match
an Employee such as Alice Jones, although you may need to change the search term to match the data you
stored. You will see the following warning in the logging messages generated by the application:

...
The LINQ expression 'where __Functions_0.Like(Format("{0}{1}", [e].FamilyName, Convert([e].
FirstName.get_Chars(0), Object)), __searchTerm_1)' could not be translated and will be
evaluated locally.
...

As I explained in Chapter 20, the Like method will be evaluated in the client if the query cannot be
translated into SQL, and that is what will happen for this example.

A computed column can help avoid client-side evaluation by generating values that can be queried
in the database. In Listing 23-27, I changed the configuration of the GeneratedValue property so that it is a
computed column that will contain the combined name values.

Listing 23-27. Defining a Computed Column in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

http://dx.doi.org/10.1007/978-1-4842-3435-8_20

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

621

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

 modelBuilder.Entity<Employee>()
 .Ignore(e => e.RowVersion);
 // .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.HasSequence<int>("ReferenceSequence")
 .StartsAt(100)
 .IncrementsBy(2);

 modelBuilder.Entity<Employee>().Property(e => e.GeneratedValue)
 //.HasDefaultValueSql(@"'REFERENCE_'
 // + CONVERT(varchar, NEXT VALUE FOR ReferenceSequence)");
 .HasComputedColumnSql(@"SUBSTRING(FirstName, 1, 1)
 + FamilyName PERSISTED");
 modelBuilder.Entity<Employee>().HasIndex(e => e.GeneratedValue);

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

Computed columns are configured using the HasComputedColumnSql method, which receives a SQL
expression that will be used to generate the property values. In this case, the SQL expression creates the
same concatenated name that I used earlier.

...

.HasComputedColumnSql(@"SUBSTRING(FirstName, 1, 1) + FamilyName PERSISTED");

...

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

622

The PERSISTED keyword tells the database server to permanently store the values in the database, rather
than generate them for every query. I have also created an index for the GeneratedValue property using the
Fluent API HasIndex method; this is not a requirement for computed columns, but it will improve search
performance.

Adding a computed column requires an update to the database. Run the commands shown in
Listing 23-28 in the AdvancedApp project folder to create a new migration and apply it to the database.

 ■ Tip The database server will automatically recalculate the computed column value when any of the
values it depends on changes. in the case of the example, this means that the SearchName property will be
recalculated if the FirstName or FamilyName value changes.

Listing 23-28. Creating and Applying a Database Migration

dotnet ef migrations add ComputedColumn
dotnet ef database update

Querying Using a Computed Column
Once a computed column has been defined, it can be used in a query just like any other column.
In Listing 23-29, I have updated the query in the Index action of the Home controller so that the Like
operation is performed on the property that corresponds to the computed column.

Listing 23-29. Using a Computed Column in the HomeController.cs File in the Controllers Folder

...
public IActionResult Index(string searchTerm) {
 IQueryable<Employee> query = context.Employees.Include(e => e.OtherIdentity);
 if (!string.IsNullOrEmpty(searchTerm)) {
 query = query.Where(e => EF.Functions.Like(e.GeneratedValue, searchTerm));
 }
 IEnumerable<Employee> data = query.ToArray();
 ViewBag.Secondaries = data.Select(e => e.OtherIdentity);
 return View(data);
}
...

Start the application using dotnet run and navigate to http://localhost:5000?searchTerm=%ajon%;
you will see the results shown in Figure 23-10, although you may need to change the search term to match
the data in your database. If you examine the logging messages generated by the application, you will see
that the LIKE operation is performed as part of the SQL query.

...
SELECT [e].[SSN], [e].[FirstName], [e].[FamilyName], [e].[GeneratedValue],
 [e].[LastUpdated], [e].[Salary], [e].[SoftDeleted], [e.OtherIdentity].[Id],
 [e.OtherIdentity].[InActiveUse], [e.OtherIdentity].[Name],
 [e.OtherIdentity].[PrimaryFamilyName], [e.OtherIdentity].[PrimaryFirstName],
 [e.OtherIdentity].[PrimarySSN]
FROM [Employees] AS [e]

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

623

LEFT JOIN [SecondaryIdentity] AS [e.OtherIdentity]
 ON (([e].[SSN] = [e.OtherIdentity].[PrimarySSN])
 AND ([e].[FirstName] = [e.OtherIdentity].[PrimaryFirstName]))
 AND ([e].[FamilyName] = [e.OtherIdentity].[PrimaryFamilyName])
WHERE ([e].[SoftDeleted] = 0) AND [e].[GeneratedValue] LIKE @__searchTerm_1
...

Modeling Automatically Generated Values
In some projects, you may have to deal with values that are generated by the database server but that you
have not configured in the database. This is most often because the database contains triggers, which
generate values automatically when data is inserted or modified in the database.

To prepare for this example, run the commands shown in Listing 23-30 in the AdvancedApp project
folder. These commands remove the most recent migration from the project and re-create the database,
which avoids a problem where Entity Framework Core will try to remove a column while it is still being used
by an index.

Listing 23-30. Removing a Migration and Dropping the Database

dotnet ef database drop --force
dotnet ef migrations remove --force
dotnet ef database update

Figure 23-10. Querying using a computed column

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

624

Listing 23-31 contains the SQL statements required to create a simple trigger that updates the
GeneratedValue property when an Employee object is stored or updated in the database. Select SQL Server
➤ New Query from the Visual Studio Tools menu, connect to the database, and execute the SQL to create the
trigger.

Listing 23-31. Creating a Trigger in the Database

USE AdvancedDb
GO

DROP TRIGGER IF EXISTS GeneratedValueTrigger
GO

CREATE TRIGGER GeneratedValueTrigger ON Employees
 AFTER INSERT, UPDATE
AS
BEGIN
 DECLARE @Salary decimal(8,0), @SSN nvarchar(450),
 @First nvarchar(450), @Family nvarchar(450)

 SELECT @Salary = INSERTED.Salary, @SSN = INSERTED.SSN,
 @First = INSERTED.FirstName, @Family = INSERTED.FamilyName
 FROM INSERTED

 UPDATE dbo.Employees SET GeneratedValue = FLOOR(@Salary /2)
 WHERE SSN = @SSN AND FirstName = @First AND FamilyName = @Family
END

This trigger is executed when a row in the Employee table is updated and sets the GeneratedValue
property to half of the Salary value.

Entity Framework Core doesn’t have support for setting up features like triggers in the database, but you
can ensure that it checks to get the values that the database server produces so that subsequent operations
performed using the same objects don’t have incomplete or stale data.

There are four Fluent API methods that can be used to tell Entity Framework Core how values are
generated for a property, as described in Table 23-5.

Table 23-5. The Fluent API Methods for Generating Property Values

Name Description

ValueGeneratedNever() This method tells Entity Framework Core that values will never be
generated for this property, which is the default behavior.

ValueGeneratedOnAdd() This method tells Entity Framework Core that values will be
generated for this property when a new object is stored in the
database.

ValueGeneratedOnUpdate() This method tells Entity Framework Core that values will be
generated for this property when an existing object is updated.

ValueGeneratedOnAddOrUpdate() This method tells Entity Framework Core that values will be
generated when a new object is stored in the database or when an
existing object is updated.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

625

I am going to add a trigger to the database that will generate a value for the GeneratedValue column
when a row is inserted or updated in the SecondaryIdentity table. To configure the data model, I changed
the configuration of the GenerateValue property to remove the computed column and tell Entity Framework
Core to query for generated values when data is inserted or updated, as shown in Listing 23-32.

UNDERSTANDING THE LIMITATIONS OF THE GENERATED VALUE
METHODS

The methods described in Table 23-5 do not configure the database to generated values; they only tell
Entity Framework Core when it should query to get generated values that have already been configured.
This means that these methods are useful for modeling existing databases but will not have an effect
when used in a code-first project.

Even in a database-first project, these methods are useful only if you need to make a series of queries
using the same database context object, such as with the fixing up feature. The additional queries
that Entity Framework Core makes when the methods in Table 23-5 are used are not useful if you will
discard the context—and its cached data—after the create or update operation is performed, which is
the case in most ASp.nET Core MvC applications.

Listing 23-32. Configuring a Property in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {}

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {

 modelBuilder.Entity<Employee>()
 .HasQueryFilter(e => !e.SoftDeleted);

 modelBuilder.Entity<Employee>().Ignore(e => e.Id);
 modelBuilder.Entity<Employee>()
 .HasKey(e => new { e.SSN, e.FirstName, e.FamilyName });

 modelBuilder.Entity<Employee>()
 .Property(e => e.Salary).HasColumnType("decimal(8,2)")
 .HasField("databaseSalary")
 .UsePropertyAccessMode(PropertyAccessMode.Field);

 modelBuilder.Entity<Employee>().Property<DateTime>("LastUpdated")
 .HasDefaultValue(new DateTime(2000, 1, 1));

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

626

 modelBuilder.Entity<Employee>()
 .Ignore(e => e.RowVersion);
 // .Property(e => e.RowVersion).IsRowVersion();

 modelBuilder.HasSequence<int>("ReferenceSequence")
 .StartsAt(100)
 .IncrementsBy(2);

 modelBuilder.Entity<Employee>().Property(e => e.GeneratedValue)
 .ValueGeneratedOnAddOrUpdate();

 modelBuilder.Entity<SecondaryIdentity>()
 .HasOne(s => s.PrimaryIdentity)
 .WithOne(e => e.OtherIdentity)
 .HasPrincipalKey<Employee>(e => new { e.SSN,
 e.FirstName, e.FamilyName })
 .HasForeignKey<SecondaryIdentity>(s => new { s.PrimarySSN,
 s.PrimaryFirstName, s.PrimaryFamilyName })
 .OnDelete(DeleteBehavior.Restrict);

 modelBuilder.Entity<SecondaryIdentity>()
 .Property(e => e.Name).HasMaxLength(100);
 }
 }
}

Changing the configuration of the property requires an update to the database. Run the commands shown
in Listing 23-33 in the AdvancedApp project folder to create a new migration and apply it to the database.

Listing 23-33. Creating and Applying a Migration

dotnet ef migrations add AutomaticallyGenerated
dotnet ef database update

Start the application using dotnet run, navigate http://localhost:5000, click the Create button, and
store a new Employee object. When the data is stored, the trigger will set the GeneratedValue column for the
new row in the database, producing the result shown in Figure 23-11.

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

627

What’s important for this example, however, is that Entity Framework Core will query for
GeneratedValue after performing an INSERT or UPDATE command. In the logging messages that are produced
by the application, you will see the INSERT statement used to store the object you created, like this:

...
INSERT INTO [Employees] ([SSN], [FirstName], [FamilyName], [Salary], [SoftDeleted])
VALUES (@p0, @p1, @p2, @p3, @p4);
...

Immediately after this command, you will see a query that gets the values of the properties that will be
generated by the database server, as follows:

...
SELECT [GeneratedValue], [LastUpdated]
FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [SSN] = @p0 AND [FirstName] = @p1 AND [FamilyName] = @p2;
...

Figure 23-11. Querying for an automatically generated value

ChApTEr 23 ■ USing DATAbASE SErvEr FEATUrES

628

MODELING GENERATED VALUES USING ATTRIBUTES

if you prefer not to use the Fluent Api, then you can tell Entity Framework Core about properties for
which the database server generates values using the DatabaseGenerated attribute, which accepts a
value from the DatabaseGeneratedOption enumeration as its argument, like this:

...
[DatabaseGenerated(Computed)]
public string GeneratedValue { get; set; }
...

Three DatabaseGeneratedOption values are available. The None value indicates that the database will
never generate a value, the Identity option indicates that the database will generate a value when
a new object is stored, and the Computed value tells Entity Framework Core that the database will
generate a value when a new object is stored or an existing object is updated.

Summary
In this chapter, I described the Entity Framework Core features for working directly with SQL. I showed you
how to include SQL directly in your queries and how to create complex queries using different database
server features, including views, stored procedures, and table-valued functions. I also explained the different
ways that the database server can generate data values and how these can be incorporated in an application.
In the next chapter, I explain how Entity Framework Core supports transactions.

629© Adam Freeman 2018
A. Freeman, Pro Entity Framework Core 2 for ASP.NET Core MVC,
https://doi.org/10.1007/978-1-4842-3435-8_24

CHAPTER 24

Using Transactions

In this chapter, I describe the way that Entity Framework Core supports transactions, which are used
to ensure that multiple operations are performed as a single unit of work. If all of the operations can be
performed without problems, then the changes are applied to the database, which is known as committing
the transaction. If one or more operation will fail, then the database is not modified, and the changes
are abandoned, which is known as rolling back the transaction. (I am simplifying a little here because
transactions can be complicated, but this the essence of how transactions work.)

I start by describing the behavior that Entity Framework Core applies by default and then show you how
take control of transactions directly, including how to disable them. Table 24-1 puts this chapter in context.

 ■ Note Not all database servers support transactions. The examples in this chapter are for SQL Server, and
you may see different behavior if you use a different database server.

Table 24-2 summarizes the chapter.

Table 24-1. Putting Transactions in Context

Question Answer

What are they? Transactions allow changes to be grouped together so that they are
all applied if they all succeed and none are applied if any of them
fails.

Why are they useful? Transactions allow related operations to be grouped together to
ensure consistency in the data used by the application, beyond the
relational consistency enforced by the database server.

How are they used? Transactions are enabled by default, but there is also an API for
configuring how transactions are used.

Are there any pitfalls or limitations? Transactions can impact performance, and it is possible to create
deadlocks because updates must be queued when transactions are
being processed.

Are there any alternatives? Applications can make corrective updates to simulate the effect of
rolling back a transaction, but this is hard to do correctly.

https://doi.org/10.1007/978-1-4842-3435-8_24

ChapTer 24 ■ USiNg TraNSaCTioNS

630

Preparing for This Chapter
In this chapter, I continue using the AdvancedApp project that I created in Chapter 19 and have been using
in every chapter since. In Chapter 23, I used raw SQL to create features such as stored procedures and views,
and these are no longer required. Run the commands shown in Listing 24-1 in the AdvancedApp folder to
drop and re-create the database.

Listing 24-1. Resetting the Database

dotnet ef database drop --force
dotnet ef database update

To prepare for this chapter, I added a class file called MultiController.cs in the Controllers folder
and used it to define the class shown in Listing 24-2.

Listing 24-2. The Contents of the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

 public IActionResult Index() {
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 context.UpdateRange(employees);

Table 24-2. Chapter Summary

Problem Solution Listing

Perform updates in isolation Call SaveChanges after each update 5

Disable automatic transactions Use the AutoTransactionsEnabled property 6, 7

Use transactions explicitly Use the BeginTransaction, CommitTransaction, and
RollbackTransaction methods

8, 9

Specify the transaction isolation level Use the IsolationLevel enumeration 10

http://dx.doi.org/10.1007/978-1-4842-3435-8_19
http://dx.doi.org/10.1007/978-1-4842-3435-8_23

ChapTer 24 ■ USiNg TraNSaCTioNS

631

 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

To provide the new controller with a view, I created the Views/Multi folder and added to it a file called
EditAll.cshtml with the content shown in Listing 24-3.

 ■ Tip if you don’t want to follow the process of building the example project, you can download all of the
required files from this book’s source code repository, available at https://github.com/apress/pro-ef-
core-2-for-asp.net-core-mvc.

Listing 24-3. The Contents of the EditAll.cshtml File in the Views/Multi Folder

@model IEnumerable<Employee>
@{
 ViewData["Title"] = "Advanced Features";
 Layout = "_Layout";
 int counter = 0;
}

<h4 class="bg-info p-2 text-center text-white">
 Edit All
</h4>
<form asp-action="UpdateAll" method="post">
 <div class="container">
 @foreach (Employee e in Model) {
 <div class="form-row">
 <div class="col">
 <input class="form-control" name="Employees[@counter].SSN"
 value="@e.SSN" readonly />
 </div>
 <div class="col">
 <input class="form-control" name="Employees[@counter].FirstName"
 value="@e.FirstName" readonly />
 </div>
 <div class="col">
 <input class="form-control" name="Employees[@counter].FamilyName"
 value="@e.FamilyName" readonly />
 </div>
 <div class="col">
 <input class="form-control" name="Employees[@counter].Salary"
 value="@e.Salary" />
 </div>
 </div>
 counter++;
 }

https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc
https://github.com/apress/pro-ef-core-2-for-asp.net-core-mvc

ChapTer 24 ■ USiNg TraNSaCTioNS

632

 </div>
 <div class="text-center m-2">
 <button type="submit" class="btn btn-primary">Save All</button>
 <a class="btn btn-secondary" asp-action="Index"
 asp-controller="Home">
 Cancel

 </div>
</form>

Start the application using dotnet run, navigate to http://localhost:5000, click the Create button,
and use the details in Table 24-3 to populate the database.

When you have finished adding data, you should see the results in Figure 24-1.

Table 24-3. The Data Values for the Example Applicaiton

SSN FirstName FamilyName Salary Other Name In Active Use

420-39-1864 Bob Smith 100000 Robert Checked

657-03-5898 Alice Jones 200000 Allie Checked

300-30-0522 Peter Davies 180000 Pete Checked

Figure 24-1. Running the example application

ChapTer 24 ■ USiNg TraNSaCTioNS

633

Understanding the Default Behavior
Transactions are such a fundamental part of working with a database that Entity Framework Core uses them
automatically. To reveal how transactions are used, I changed the configuration for the logging system so
that Entity Framework Core will report more detailed messages, as shown in Listing 24-4.

Listing 24-4. Changing the Logging Level in the appsettings.json File in the AdvancedApp Folder

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\MSSQLLocalDB;Database=AdvancedDb;MultipleActive

ResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "None",
 "Microsoft.EntityFrameworkCore": "Information",
 "Microsoft.EntityFrameworkCore.Database.Transaction": "Debug"
 }
 }
}

The new entry requests Debug-level messages from the classes that handle Entity Framework Core
transactions. To see how transactions are used by default, start the application using dotnet run, navigate to
http://localhost:5000/multi, and change the Salary values as described in Table 24-4.

Click the Save All button, and Entity Framework Core will update the database. If you examine the
logging messages from the database, you can see the sequence of events (although it can be hard to find
individual messages in the stream of output that is generated by the Debug logging setting). First, Entity
Framework Core creates a new transaction.

...
Beginning transaction with isolation level 'ReadCommitted'.
...

I explain what isolation levels are later, but what’s important for this section is that a transaction has
been started.

I haven’t provided Entity Framework Core with a baseline for change detection, so every object is
updated, resulting in three UPDATE statements, each of which is followed by a SELECT statement to determine
the values generated by the database.

...
UPDATE [Employees] SET [LastUpdated] = @p0, [Salary] = @p1, [SoftDeleted] = @p2
WHERE [SSN] = @p3 AND [FirstName] = @p4 AND [FamilyName] = @p5;
SELECT [GeneratedValue]

Table 24-4. The Salary Values for a Successful
Transaction

Name Salary Value

Bob Smith 150000

Alice Jones 250000

ChapTer 24 ■ USiNg TraNSaCTioNS

634

FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [SSN] = @p3 AND [FirstName] = @p4 AND [FamilyName] = @p5;

UPDATE [Employees] SET [LastUpdated] = @p6, [Salary] = @p7, [SoftDeleted] = @p8
WHERE [SSN] = @p9 AND [FirstName] = @p10 AND [FamilyName] = @p11;
SELECT [GeneratedValue]
FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [SSN] = @p9 AND [FirstName] = @p10 AND [FamilyName] = @p11;

UPDATE [Employees] SET [LastUpdated] = @p12, [Salary] = @p13, [SoftDeleted] = @p14
WHERE [SSN] = @p15 AND [FirstName] = @p16 AND [FamilyName] = @p17;
SELECT [GeneratedValue]
FROM [Employees]
WHERE @@ROWCOUNT = 1 AND [SSN] = @p15 AND [FirstName] = @p16 AND [FamilyName] = @p17;
...

The database server hasn’t reported any errors with these commands, and Entity Framework Core
doesn’t have any further work to perform; therefore, the transaction is committed, which applies the
changes to the database and which is reported with this message:

...
Committing transaction.
...

Until the transaction is committed, the changes are not applied to the database and can be discarded
if the transaction is rolled back. To see a rollback in action, navigate to http://localhost:5000/multi and
change the Salary values as described in Table 24-5.

The value for Bob Smith’s Salary is too large to be represented using the data type configured in the
data model, and you will see an exception when you click the Save All button. The exception interrupts the
update, and the transaction is not committed. Since both the updates from Table 24-5 are performed within
the same transaction, neither update is applied to the database.

Performing Independent Changes
One potential drawback of the default transaction behavior is that it prevents successful updates from being
applied to the database if they are grouped with an update that fails. In the previous section, for example,
you saw how the valid update for Alice Jones failed because it was grouped with the failed update for Bob
Smith. If you want to isolate each update so that it isn’t affected by other failures, then you can call the
SaveChanges method for each update, as shown in Listing 24-5.

Table 24-5. The Salary Values for a
Failed Transaction

Name Salary Value

Bob Smith 900000000

Alice Jones 300000

ChapTer 24 ■ USiNg TraNSaCTioNS

635

Listing 24-5. Performing Independent Changes in the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

 public IActionResult Index() {
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 foreach (Employee e in employees) {
 try {
 context.Update(e);
 context.SaveChanges();
 } catch (Exception) {
 context.Entry(e).State = EntityState.Detached;
 }
 }
 return RedirectToAction(nameof(Index));
 }
 }
}

Each Employee object is passed to the context object’s Update method individually, after which the
SaveChanges method is called. I use a try…catch block to ensure that exceptions thrown by an update do no
disrupt subsequent updates.

The effect is that a separate transaction will be used for each update, which you can see by starting the
application using dotnet run, navigating to http://localhost:5000/multi, and applying the changes in
Table 24-5. The update for Bob Smith will still fail, but this time the update for Alice Jones will be applied to
the database, as shown in Figure 24-2.

 ■ Tip Notice that i alter the change tracking status of Employee objects whose updates have failed to
Detached in the catch clause of the try…catch block. Without this change, entity Framework Core will include
the failed update the next time that the SaveChanges method is called, causing another error and preventing
the other update from being applied.

ChapTer 24 ■ USiNg TraNSaCTioNS

636

If you examine the logging messages generated by the application, you will see that a separate
transaction is created and committed for each object. The exception thrown for the Bob Smith update
prevents the transaction for that change from being committed but does not affect the other changes from
being applied to the database.

Disabling Automatic Transactions
If you don’t want Entity Framework Core to automatically use transactions, then you can disable this feature
by changing the configuration of the context object. Context objects define a Database property that returns
a DatabaseFacade object that provides access to the transaction features. This class defines the property
described in Table 24-6 and which is used to control the automatic transaction feature.

In Listing 24-6, I have used the property described in Table 24-6 to disable the automatic transaction
feature for the AdvancedContext class. This property must be set for each object that is created, which means
that using the constructor ensures consistent results in a ASP.NET Core MVC application where dependency
injection is used.

Listing 24-6. Disabling Automatic Transactions in the AdvancedContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System;

namespace AdvancedApp.Models {

 public class AdvancedContext : DbContext {

 public AdvancedContext(DbContextOptions<AdvancedContext> options)
 : base(options) {

Table 24-6. The DatabaseFacade Property for Automatic Transactions

Name Description

AutoTransactionsEnabled Setting this property to false will disable the automatic transactions feature.

Figure 24-2. Applying updates in their own transactions

ChapTer 24 ■ USiNg TraNSaCTioNS

637

 Database.AutoTransactionsEnabled = false;
 }

 public DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {
 // ...Fluent API statements omitted for brevity...
 }
 }
}

In Listing 24-7, I have returned the UpdateAll method to its original implementation, such that all of the
updates are performed with a single call to the SaveChanges method. This would have previously meat that
all of the updates were performed in a single transaction.

Listing 24-7. Performing Updates in the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using System;
using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

 public IActionResult Index() {
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 context.UpdateRange(employees);
 context.SaveChanges();
 return RedirectToAction(nameof(Index));
 }
 }
}

To see how the configuration change alters the outcome, start the application using dotnet run and
navigate to http://localhost:5000/multi. Make the changes shown in Table 24-7 and click the Save
Changes button.

ChapTer 24 ■ USiNg TraNSaCTioNS

638

When you click the Save All button, you will see an exception because the value for Bob Smith is too
large for the data type used to store Salary values in the database. But, since there is no transaction to be
rolled back, the other changes are applied to the database, as shown in Figure 24-3.

 ■ Tip You may not always see the same outcome when working without transactions because the database
server or provider package may respond in different ways. The important point to note is that you can’t rely on
all of the updates being rolled back if one of them fails.

Using Explicit Transactions
The default behavior is sufficient for most projects, but you can have Entity Framework Core use a
transaction explicitly to group together separate operations. This can be useful if you need to change the way
that transactions are configured or need to perform additional tasks before deciding whether to commit or
roll back a set of updates.

In Listing 24-8, I have revised the UpdateAll method of the Multi controller so that it uses a transaction
explicitly.

Listing 24-8. Using a Transaction in the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;

Figure 24-3. Working without automatic transactions

Table 24-7. The Salary Changes to Test Disabling
Automatic Transactions

Name Salary Value

Peter Davies 200000

Bob Smith 900000000

Alice Jones 200000

ChapTer 24 ■ USiNg TraNSaCTioNS

639

using System;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

 public IActionResult Index() {
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 context.Database.BeginTransaction();
 try {
 context.UpdateRange(employees);
 context.SaveChanges();
 context.Database.CommitTransaction();
 } catch (Exception) {
 context.Database.RollbackTransaction();
 }
 return RedirectToAction(nameof(Index));
 }
 }
}

Direct access to transactions is through the context object’s Database properties, which returns a
DatabaseFacade object that defines the transaction-related members described in Table 24-8.

In the listing, I call BeginTransaction to start a new transaction and then perform the updates.
When the SaveChanges method is called, Entity Framework Core sends the SQL commands to the
database server to perform the updates but does not automatically commit the transaction, unlike when
the automatic transaction feature is used. Instead, the changes are not applied to the database until the
CommitTransaction method is called. I have used a try…catch block to deal with any errors reported by the
database server by calling the RollbackTransaction method, which will abandon changes.

Table 24-8. The DatabaseFacade Transaction Members

Name Description

BeginTransaction() This method creates a new transaction. There is an asynchronous
version of this method called BeginTransactionAsync.

CommitTransaction() This method commits the current transaction.

RollbackTransaction() This method rolls back the current transaction.

CurrentTransaction This property returns the current transaction.

ChapTer 24 ■ USiNg TraNSaCTioNS

640

UNDERSTANDING TRANSACTION DISPOSAL

You will often see transactions created with a using clause that takes the result from the
BeginTransaction method, like this:

...
using (var transaction = context.Database.BeginTransaction()) {
 // ...operations are performed...
 context.Database.CommitTransaction();
}
...

a transaction is automatically rolled back when it is disposed, and the idea of the using clause is to
ensure that disposal happens as soon as the transaction is no longer required, preventing transactions
from stacking up and waiting to be rolled back and have their objects destroyed.

You don’t have to worry about disposing of transactions in an aSp.NeT Core MVC application because
objects are disposed when an action method completes. That means that a transaction will be
rolled back after an action method is executed unless you explicitly call the CommitTransaction or
RollbackTransaction method.

Including Other Operations in a Transaction
The previous example shows how you work directly with transactions but doesn’t perform any tasks that
wouldn’t have worked identically using automatic transactions. One common reason for using transactions
directly is to perform some additional work after the updates have been sent to the database before
determining whether they should be committed or rolled back. As a demonstration, I have added a validation
query to the UpdateAll method that queries the database to place a cap on the cumulative value of the Salary
properties and rolls back the transaction if the total amount is too large, as shown in Listing 24-9.

Listing 24-9. Performing Additional Work in the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using System;
using System.Linq;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

ChapTer 24 ■ USiNg TraNSaCTioNS

641

 public IActionResult Index() {
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 context.Database.BeginTransaction();
 context.UpdateRange(employees);
 context.SaveChanges();
 if (context.Employees.Sum(e => e.Salary) < 1_000_000) {
 context.Database.CommitTransaction();
 } else {
 context.Database.RollbackTransaction();
 throw new Exception("Salary total exceeds limit");
 }
 return RedirectToAction(nameof(Index));
 }
 }
}

After the SaveChanges method is called, I use the Sum method to get the total of the Salary values. I
commit the transaction if the total is less than one million and roll it back and throw an exception otherwise.
To see the effect, start the application, navigate to http://localhost:5000/multi, and change the Salary
values. Click the Save All button, and either you will see how your changes are applied or an exception is
shown and the changes are discarded, as shown in Figure 24-4.

This sort of additional check isn’t possible when using the automatic transaction feature because the
transaction will be committed as soon as the SaveChanges method is called. By working directly with the
transaction, I can perform additional tasks before deciding the outcome.

Figure 24-4. Performing additional work in a transaction

ChapTer 24 ■ USiNg TraNSaCTioNS

642

Changing the Transaction Isolation Level
The isolation level of a transaction specifies how the database server handles updates that have not yet
been committed. In some applications, it can be important to isolate the changes made by one client from
other clients until they are committed. In other applications, this kind of isolation is less important, and
performance can be improved by reducing the extent to which clients are shielded from the uncommitted
changes made by others. The isolation level for a transaction is specified by passing a value from the
IsolationLevel enumeration, as described in Table 24-9.

The higher the isolation level, the less interaction there is between transactions, but the more locking
that the database server has to use, which has a performance impact if there are multiple clients trying
to modify the same data simultaneously. The trade-off when selecting an isolation level is between
performance and inconsistent data. For many applications, especially in ASP.NET Core MVC projects, there
is little need to change the isolation level because the default value will provide an acceptable trade-off. For
some applications, however—especially those with particularly complex databases—the risk of interaction
between transactions can be an issue.

Table 24-9. The IsolationLevel Values

Name Description

Chaos This value is poorly defined, but when it is supported, it typically behaves as though
transactions are disabled. Changes made to the database are visible to other clients
before they are committed, and there is often no rollback support. SQL Server does
not support this isolation level.

ReadUncomitted This value represents the lowest level of isolation that is commonly supported.
Transactions using this isolation level can read changes made by other transactions
that have not been committed.

ReadComitted This value is the default level of isolation that is used if no value is specified. Other
transactions can still insert or delete data between the updates made by the current
transaction, which can result in inconsistent query results.

RepeatableRead This value represents a higher level of isolation that prevents other transactions
from modifying data that the current transaction has read, which ensures consistent
query results.

Serializable This value increases the RepeatableRead isolation level by preventing other
transactions from adding data to regions of the database that have been read by the
current transaction.

Snapshot This value represents the highest level of isolation and ensures that transactions
each work with their own data snapshot. This isolation level requires a change to
the database that cannot be performed using Entity Framework Core. See here for
details: https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
sql/snapshot-isolation-in-sql-server.

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server

ChapTer 24 ■ USiNg TraNSaCTioNS

643

AVOIDING THE HIGH ISOLATION LEVEL PITFALL

You might be tempted to select a high level of transactional isolation just to be on the safe side. This will
certainly avoid the three problems described in this chapter but may also slow down your application.
Database servers increase transactional isolation by locking access to parts of the database; the higher
the level of transactional isolation, the more locking is required and the more likelihood there is that
updates will start to be queued, making clients wait until earlier transactions have completed. The wrong
choice of isolation level will offer no advantage to the application but can drag down performance.

Understanding Dirty Reads, Phantom Rows, and Nonrepeatable Reads
There are three potential problems that can occur when transactions interfere with one another. When you
decide on an isolation level for your transaction, you are really telling the database which of these potential
problems you are willing to accept and how much performance you are willing to sacrifice to avoid them. To
demonstrate all three problems, I made some changes to the Multi controller, as shown in Listing 24-10.

Listing 24-10. Using Isolation Levels in the MultiController.cs File in the Controllers Folder

using AdvancedApp.Models;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Logging;
using System;
using System.Linq;
using System.Data;
using Microsoft.EntityFrameworkCore;

namespace AdvancedApp.Controllers {

 public class MultiController : Controller {
 private AdvancedContext context;
 private ILogger<MultiController> logger;
 private IsolationLevel level = IsolationLevel.ReadUncommitted;

 public MultiController(AdvancedContext ctx, ILogger<MultiController> log) {
 context = ctx;
 logger = log;
 }

 public IActionResult Index() {
 context.Database.BeginTransaction(level);
 return View("EditAll", context.Employees);
 }

 [HttpPost]
 public IActionResult UpdateAll(Employee[] employees) {
 context.Database.BeginTransaction(level);
 context.UpdateRange(employees);

ChapTer 24 ■ USiNg TraNSaCTioNS

644

 Employee temp = new Employee {
 SSN = "00-00-0000",
 FirstName = "Temporary",
 FamilyName = "Row",
 Salary = 0
 };
 context.Add(temp);
 context.SaveChanges();
 System.Threading.Thread.Sleep(5000);
 context.Remove(temp);
 context.SaveChanges();
 if (context.Employees.Sum(e => e.Salary) < 1_000_000) {
 context.Database.CommitTransaction();
 } else {
 context.Database.RollbackTransaction();
 logger.LogError("Salary total exceeds limit");
 }
 return RedirectToAction(nameof(Index));
 }

 public string ReadTest() {
 decimal firstSum = context.Employees.Sum(e => e.Salary);
 System.Threading.Thread.Sleep(5000);
 decimal secondSum = context.Employees.Sum(e => e.Salary);
 return $"Repeatable read results - first: {firstSum}, "
 + $"second: {secondSum}";
 }
 }
}

The isolation level is set as an argument to the BeginTransaction method, which is an extension
method defined in the Microsoft.EntityFrameworkCore namespace. In the listing, I have selected the
ReadUncomitted level, which I use in a transaction that queries the database in the Index action and updates
the database in the UpdateAll action. In the UpdateAll method, I perform the updates received from the
user, add a temporary Employee to the database, and then remove it again. The transaction is committed
only if the sum of the Salary values is less than one million; otherwise, it is rolled back. To slow down the
UpdateAll method and make it easier to see the effects of transactions interacting, I have added a call to the
Thread.Sleep method that delays the transaction being committed or rolled back by five seconds.

To see two of the potential problems, start the application using dotnet run, open two browser
windows, and navigate to http://localhost:5000/multi for both. Change the Salary value for Alice Jones
to 900000 in the first browser window and click Save All. Reload the other browser before the five-second
sleep period elapses, and you will see the results shown in Figure 24-5.

 ■ Caution You won’t always be able to re-create these problems, especially in real projects where
conditions are harder to control. You should select your isolation level based on the level of isolation you need in
principle, even if you can’t re-create a specific problem during testing.

ChapTer 24 ■ USiNg TraNSaCTioNS

645

Even though the changes are subsequently rolled back, there is a period when the ReadUncomitted
isolation level has allowed the changes to be read in another transaction. The temporary row is an example
of a phantom row, and the Salary value displayed for Alice is an example of a dirty read.

To see the third problem, navigate to http://localhost:5000/multi/readtest in one of the windows.
This request targets the ReadTest action added in Listing 24-10, which performs the same query on the
database before and after a five-second pause. This method returns a string so that I don’t have to add a view
to the project, and it will produce a result that shows the same value for both reads, like this:

Repeatable read results - first: 500000.00, second: 500000.00

Use the other browser window to navigate to http://localhost:5000/multi, change Alice’s Salary
to 90000, and click the Save All button. Before the five seconds elapses, reload the first browser window to
repeat the two queries. This time, you will see that each query received a different result.

Repeatable read results - first: 1200000.00, second: 500000.00

This is the nonrepeatable read problem where two queries made by the same transaction return
different results. If you change the isolation level used by the transaction in the controller, you will find these
problems are not seen.

Summary
In this chapter, I described the way that Entity Framework Core supports transactions, starting with the
automatic transaction feature and moving on to working with transactions directly. I explained how
to disable transactions, how to perform additional work as part of a transaction, and how to tell Entity
Framework Core when to commit or roll back changes to the database. I finished the chapter by explaining
the different isolation levels that can be used with transactions and the trade-off that each represents in
terms of performance.

Figure 24-5. Changes made by another transaction

ChapTer 24 ■ USiNg TraNSaCTioNS

646

That’s all I have to tell you about Entity Framework Core for ASP.NET Core MVC development.
I started by introducing the basics of working with database, described common problems you are likely
to encounter, and described all of the key Entity Framework Core features. I hope that you have enjoyed
reading this book as much as I enjoyed writing it, and I wish you every success in your ASP.NET Core MVC
and Entity Framework Core projects.

��������� A
appsettings.json file

connection strings, 20, 216
logging configuration, 26, 62, 219

��������� B
Bootstrap CSS, 12, 210

��������� C
Change detection process, 91, 257, 262
Change tracking, 500
Command-line tools, 19, 62, 213, 412
Concurrency tokens, 552
Concurrent updates, 551
Connection strings, 20, 65, 216

multiple databases, 283
Context classes, 63
CREATE TABLE keywords, 45

��������� D
Database provider, 216
Database server, 589

complex queries, 598
computed columns, 622
direct queries, 594
server-generated values, 611
stored procedures, 600
table-valued functions, 603

Database tools
examining tables, 29

Data validation, 536
DbContext class, 214, 257, 338

OnConfiguring method, 420
OnModelCreating method, 158
scaffolding, 420

DbContextOptions class, 214
DbSet class, 86, 214

accessing data, 335

Attach method, 262
Find method, 263
RemoveAll method, 263
Remove method, 263

DbSet<T> class, 246
DELETE keyword, 44
Deleting data, 99, 262, 563

cacade deletes, 571
constraints, 568
foreign keys, 573

Dependent entities, 373
dotnet ef commands, 22, 219

database drop, 26
database update, 26, 68
dbcontext scaffold, 416
migrations add, 68
migrations list, 278
migrations remove, 280, 477
migrations script, 271

DROP TABLE keywords, 45

��������� E
Entity Framework Core

backing fields, 536
change detection, 91, 257
connection strings, 216
context

classes, 63
database providers, 4
database servers, 3
SQL, 3

database provider, 66, 216, 531
data validation, 536
DbSet<T> class, 86
deleting data, 262
duplicate queries, 73
fixing up, 349
Fluent API, 439
forcing query execution, 76
indexing, 155
key assignment, 253

Index

■ INDEX

648

key features, 465
lazy loading, 306
manual database modeling, 431
migrations, 265
navigation properties, 301
primary keys, 214
queries, 242

filters, 247, 505
Find method, 243
multiple objects, 246
types, 251

reading data, 242
related data, 117
relationships, 107, 299, 321
RemoveAll method, 100
SaveChanges method, 86, 252
scaffolding existing databases, 404
shadow properties, 543
storing data

Add method, 252
AddRange method, 252

transactions, 629
UpdateAll method, 92
updating data, 254

Explicit loading, 347

��������� F
Fluent API

Entity class, 440
HasColumnName method, 440
HasForeignKey method, 449
HasKey method, 440
HasMany method, 448
HasOne method, 448
IsRequired method, 449
OnModelCreating method, 439
relationships, 443
ToTable method, 440
WithMany method, 449
WithOne method, 449

Foreign keys, 321, 573
FROM keyword, 35–36

��������� G, H
GitHub Repository

URL for examples, 5

��������� I
IEnumerable<T> vs. IQueryable<T>, 71, 226
Indexing database, 155

INSERT INTO keywords, 42
IQueryable<T> interface, 223, 230, 246, 250

��������� J
JOIN keyword, 45
Junction tables, 390

��������� K
Keys, 465

alternate, 482
composite, 490
generation

Hi-Lo strategy, 476
identity strategy, 475
methods, 475

natural
indexes, 480
surrogates, 479
unique values, 480

��������� L
Lazy loading, 306
LocalDb, 20, 25

��������� M
Manual modeling, 431

attributes, 437
context class, 433
conventions, 436
fluent API, 439

Migrations, 219, 265
additional, 274
Down method, 269
generated classes, 268
initial, 267
managing, 277, 286
removing, 280
Up method, 269

MySQL, 25, 216, 531

��������� N
.NET Core, 8
NuGet Packages

command-line tools, 213
meta package, 213

��������� O
ORDER BY keyword, 37

Entity Framework Core (cont.)

■ INDEX

649

��������� P
Pagination, 142
Preparation

command-line tools, 19
database server, 25
.NET Core, 8
SQL Server, LocalDb, 25
Visual Studio 2017

extensions, 9
packages, 8

Primary keys, 63, 214
generation, 475

��������� Q
Queries

asynchronous, 515
change tracking, 500
client evaluation, 520
compiling, 518
composing, 250
filtering data, 247
Find method, 243, 263
multiple objects, 246
parameters, 40
query filters, 505

overriding, 509
related data, 304
search patterns, 512
types of, 251

��������� R
Related data

Include method, 117
endless loops, 192
RESTful web services, 192
web service response, 192–194

Relationships, 107, 299, 333
altering, 362
completing, 343, 372
creating related data, 359
dependent entities, 373
explicit loading, 347
fixing up, 349
foreign keys, 321, 374
generic repositories, 341
Include method, 306
many-to-many, 389

junction class, 390
navigation properties, 108, 301, 372
one-to-many, 343
one-to-one, 375

optional, 388
required, 381

reciprocal navigation properties, 343
related data, 117, 304

deleting, 318
promoting, 335
ThenInclude method, 329
updating, 312

required, 321
ThenInclude method, 329
type parameters, 338
updating data, 312

RemoveAll method, 100, 107
Remove method, 100
Repository pattern, 52, 223

hiding data operations, 230
RESTful API, 185

null values, 190
related data, 192

��������� S
SaveChanges method, 252, 263
Scaffolding, 404

connection strings, 419
context class, 420
existing database, 404
manual modeling, 431
persistent features, 428
schema changes, 424

Searching data, 148
Search patterns, 512
SELECT keyword, 35
SET keyword, 43
SportsStore

command-line tools, 62
connection strings, 65
database, 65
data model

preparing, 63–65
relationships, 107

data searches, 148
deleting data, 99
indexing, 155
logging configuration, 62
modifying data, 85
orders, 183
pagination, 142
project creation, 49
repository pattern, 52
RESTful API, 185
seed data, 137
session data, 174
shopping cart, 174

SQL
complex queries, 598
CREATE TABLE keywords, 45

■ INDEX

650

data types, 531
DELETE keyword, 44, 568
deleting data, 44
direct queries, 594
DROP TABLE keywords, 45
FROM keyword, 35–36
INSERT INTO keywords, 42
JOIN keyword, 45
LIKE keyword, 512
ORDER BY keywords, 37
parameters, 597
queries, 33

filtering data, 36
joining data, 45
ordering data, 37
selecting columns, 37

SELECT keyword, 35
SET keyword, 43
stored procedures, 600
storing data, 42
table-valued functions, 603
UPDATE keyword, 43, 44
USE keyword, 35

SQL Server, 25, 216, 531
Startup class, 51, 208, 340
Stored procedures, 600
Storing data, 527

Add method, 252
AddRange method, 252
concurrency tokens, 552
concurrent updates, 551

default values, 546
key assignment, 253
maximum string length, 533
selecting data types, 531
shadow properties, 543

EF Property method, 546
validating values, 536

��������� T
Table-valued functions, 603
Transactions, 629

automatic, 633, 634
disabling, 636

explicit
DatabaseFacade

object, 639
UpdateAll method, 638

isolation levels, 642

��������� U
UPDATE keyword, 43, 44
Updating data, 254

change detection, 257
USE keyword, 35

��������� V, W, X, Y, Z
Visual Studio, 8

database tools, 27
extensions, 9

SQL (cont.)

	Contents
	--- Introducing Entity Core 2
	Entity Framework Core in Context
	Understanding Entity Framework Core
	About This Book
	Summary

	First Entity Core Application
	Getting Ready
	Creating the Project
	Creating the Data Model and Context Classes
	Creating the Controller and Views
	Configuring Entity Framework Core
	Configuring the Startup Class
	Preparing the Database
	Testing the Application
	Summary

	Databases
	Preparing for This Chapter
	Exploring the Database
	Understanding SQL
	Joining Data
	Summary

	SportsStore: Real (Data) Application
	Creating the Project
	Running the Example Application
	Summary

	SportsStore: Storing Data
	Preparing for this Chapter
	Configuring Entity Framework Core
	Preparing the Data Model
	Preparing the Database
	Running the Application
	Avoiding the Query Pitfalls
	Common Problems and Solutions
	Summary

	SportsStore: Modifying & Deleting Data
	Preparing for This Chapter
	Modifying Objects
	Deleting Data
	Common Problems and Solutions
	Summary

	SportsStore: Expanding the Model
	Preparing for This Chapter
	Creating a Data Model Relationship
	Using a Data Relationship
	Adding Support for Orders
	Common Problems and Solutions
	Summary

	SportsStore: Scaling Up
	Preparing for This Chapter
	Scaling Up Data Presentation
	Indexing the Database
	Common Problems and Solutions
	Summary

	SportsStore: Customer Features
	Preparing for This Chapter
	Displaying Products to the Customer
	Adding the Shopping Cart
	Common Problems and Solutions
	Summary

	SportsStore: RESTful Web Service
	Preparing for This Chapter
	Creating a Web Service
	Completing the Web Service
	Common Problems and Solutions
	Summary

	--- Entity Core 2 in Detail
	Working with Entity Core
	Creating the ASP.NET Core MVC Project
	Adding and Configuring Entity Framework Core
	Implementing the Repository Pattern
	Completing the Example MVC Application
	Summary

	Performing Data Operations
	Preparing for This Chapter
	Reading Data
	Storing New Data
	Updating Data
	Deleting Data
	Summary

	Understanding Migrations
	Preparing for This Chapter
	Understanding Migrations
	Creating Additional Migrations
	Managing Migrations
	Working with Multiple Databases
	Managing Migrations Programmatically
	Seeding Databases Programmatically
	Summary

	Creating Data Relationships
	Preparing for This Chapter
	Creating a Relationship
	Creating and Updating Related Data
	Deleting Related Data
	Creating a Required Relationship
	Querying for Multiple Relationships
	Summary

	Relationships 1
	Preparing for This Chapter
	Directly Accessing Related Data
	Completing a Data Relationship
	Working with Related Data in a One-to-Many Relationship
	Summary

	Relationship 2
	Preparing for This Chapter
	Completing a One-to-One Relationship
	Working with One-to-One Relationships
	Defining Many-to-Many Relationships
	Summary

	Scaffolding existing Database
	Preparing for This Chapter
	Scaffolding an Existing Database
	Responding to Database Changes
	Adding Persistent Data Model Features
	Summary

	Manually Modeling a Database
	Preparing for This Chapter
	Creating a Manual Data Model
	Using the Manually Created Data Model
	Summary

	--- Advanced Entity Core 2
	Working with Keys
	Preparing for This Chapter
	Managing Key Generation
	Working with Natural Keys
	Using Natural Keys as Primary Keys
	Creating Composite Keys
	Summary

	Queries
	Preparing for This Chapter
	Managing Change Tracking for Query Results
	Using a Query Filter
	Querying Using Search Patterns
	Making Asynchronous Queries
	Explicitly Compiling Queries
	Avoiding the Client Evaluation Pitfall
	Summary

	Storing Data
	Preparing for This Chapter
	Specifying SQL Data Types
	Validating or Formatting Data Values
	Hiding Data Values from the MVC Application
	Setting Default Values
	Detecting Concurrent Updates
	Summary

	Deleting Data
	Preparing for This Chapter
	Understanding Delete Constraints
	Using the Cascade Delete Behavior
	Setting Foreign Keys to Null
	Taking Control of the Delete Operation
	Reinstating the Soft-Delete Feature
	Summary

	Using Database Server Features
	Preparing for This Chapter
	Using SQL Directly
	Using Server-Generated Values
	Summary

	Using Transactions
	Preparing for This Chapter
	Understanding the Default Behavior
	Using Explicit Transactions
	Summary

	Index

