
Fanie Reynders

Modern API Design
with ASP.NET Core 2

Building Cross-Platform
Back-End Systems

Modern API Design with ASP.NET Core 2: Building Cross-Platform Back-End Systems

ISBN-13 (pbk): 978-1-4842-3518-8 ISBN-13 (electronic): 978-1-4842-3519-5
https://doi.org/10.1007/978-1-4842-3519-5

Library of Congress Control Number: 2018935910

Copyright © 2018 by Fanie Reynders

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484235188. For more
detailed information, please visit http://www.apress.com/source-code.

Fanie Reynders
Odijk, The Netherlands

Chapter 1: API Design Demystified ��� 1

The Importance of APIs ��� 1

REST: The Good, Bad, and Ugly�� 3

Principles of REST ��� 5

Wrapping Up ��� 7

Chapter 2: Introduction to ASP�NET Core �� 9

What Is ASP�NET Core? �� 10

 NET Core vs �NET Framework �� 11

Why Use ASP�NET Core? �� 11

The �NET Ecosystem �� 12

ASP�NET Core Features �� 13

Tooling Available for ASP�NET Core �� 13

Setting Up the Development Environment �� 16

A Lap Around the �NET Core CLI �� 19

Wrapping Up ��� 22

Foreword ��� ix

Introduction ���xvii

Contents

Chapter 3: Your First API Application ��� 23

Getting Started �� 23

Dependency Injection �� 29

Application Startup ��� 30

Creating an Endpoint ��� 33

Wrapping Up ��� 36

Chapter 4: Extensibility Architecture �� 37

Hosts and Servers ��� 37

Creating a Custom Server�� 41

Middleware ��� 49

Routing �� 54

Hosted Services �� 57

Wrapping up �� 59

Chapter 5: MVC ��� 61

The MVC Pattern ��� 61

MVC in ASP�NET Core ��� 62

Controllers and Actions ��� 64

Model Binding and Validation ��� 75

Filters �� 86

Formatting Responses �� 89

Application Parts ��� 93

Wrapping Up ��� 94

Chapter 6: The Configuration Model ��� 95

Basic Configuration ��� 96

Configuration Providers �� 99

Strongly Typed Configuration �� 106

Working with Changes �� 110

Wrapping Up ��� 111

Chapter 7: Logging and Error Handling �� 113

Adding Logging ��� 114

Log Anatomy ��� 116

Grouping and Filtering �� 121

Different Logging Providers �� 125

Dealing with Exceptions �� 127

Wrapping Up ��� 130

Chapter 8: Securing APIs �� 131

Authentication & Authorization ��� 132

Protecting Sensitive Data �� 140

Enforcing SSL �� 145

Cross-origin Requests ��� 146

Request Rate Limiting ��� 149

Wrapping Up ��� 153

Chapter 9: Bells & Whistles �� 155

HATEOAS ��� 155

Versioning ��� 165

Swagger �� 173

GraphQL �� 177

Wrapping Up ��� 184

Chapter 10: Testing & Debugging ��� 185

Why Is Testing Important? ��� 185

Unit Testing ��� 186

Dealing with Dependencies �� 192

Integration Testing �� 194

Debugging �NET Core and ASP�NET Core Sources ��� 199

Wrapping Up ��� 201

Chapter 11: Hosting & Deployment ��� 203

Hosting on Windows ��� 203

Hosting on Linux ��� 209

Hosting on Docker ��� 212

Publishing to Azure ��� 217

Continuous Integration & Deployment �� 221

Wrapping Up ��� 227

Index ��� 229

Foreword

The .NET community has been re-energized by the enthusiasm building behind open

source .NET Core. Engineers who have invested years in .NET and ASP.NET are now able

to run their code cross-platform on Windows, Linux, Mac, and more. They can make

micro-services and run them in containers as well as within container orchestrators like

Kubernetes.

There’s a ton of new standards and new architectures to learn and explore. There’s

new open source libraries and new best practices. REST has cemented itself as a

must-know architectural style. We need to learn the principles of REST and how those

principles map to features in ASP.NET Core 2.0. We also need to expand our web APIs

with the power of GraphQL, which will allow us to query our APIs with this exciting

emerging standard. And we need to document our APIs with the Open API specification

(Swagger).

The book you’re holding now is a fantastic entry point for developers both new and

old. You’ll learn all about .NET Core from the CLI (command-line interface) on up, then

build ASP.NET RESTful web services to power any system’s back-end. You’ll explore best

practices for unit and integration testing your services, then for lock-down services with

authentication and authorization using open standards. This book is full of practical

examples of how to design modern APIs to power websites and mobile apps.

Finally, you’ll examine not only how to deploy your code to on-premises servers or

the cloud, but also how to do it with continuous integration and continuous deployment.

Check in your services and see them tested and deployed automatically! Your .NET web

services are now cross-platform, fast, and modular!

I’m thrilled to have played a small part in the open sourcing of .NET and

ASP.NET. I’m looking forward to seeing what you build with the ASP.NET Core 2 open

source web framework!

Scott Hanselman

@shanselman

Principal Program Manager, Open Source .NET and ASP.NET

Introduction

Do you have interest in designing elegant enterprise-grade APIs that can scale and run

on any platform? Are you always looking for the next big thing by staying on the forefront

of the latest technologies? Do you want to expand your knowledge by learning ASP.NET

Core?

Modern API Design with ASP.NET Core 2 is formulated to help the all-around

developer gain useful skills for developing APIs in ASP.NET Core 2 and is based on

proven industry patterns and practices, like REST. The book covers a wide range of topics

with regards to building as well as deploying scalable and cross-platform API solutions.

In the first chapter, I will introduce you to APIs and the vital role they play in our

world today. I will also demystify what REST is and what it means for an application to be

RESTful by covering the six principles of REST that were introduced by Roy Fielding.

The second chapter is all about getting familiar with ASP.NET Core by learning what

it is and how its features align with REST. You also will look at the different tooling that is

available for building an API.

In Chapter 3, you will start to create your first API with ASP.NET Core and learn about

the essential aspects of its components, like dependency injection and the application

startup bootstrapper.

In Chapter 4, you will delve into the extensibility architecture of ASP.NET Core and

learn how to create a custom HTTP server by using the file system to process incoming

requests. You will discover the concepts of middleware and routing to process and route

requests to the particular receiving logic of your application, as well as how hosted

services can help run background tasks.

After a quick introduction of MVC in Chapter 5, you will explore what ASP.NET Core

MVC is and how it compares to its predecessor in the previous versions of ASP.NET, and

you will learn about implementing an API using ASP.NET Core MVC. I will also cover

essential features of the framework, like model binding and model validation, filters,

formatters, and application parts.

Chapter 6 is all about configuration as you learn about the new configuration model

of ASP.NET Core and the different ways of managing configuration data, which originates

from multiple sources, within your application.

I will briefly cover application logging and exception handling in Chapter 7, and

you’ll learn the different techniques that we can apply to gain useful insights from the

application at any given moment in time.

As I move onto the topic of security, you’ll learn about the differences between

authentication and authorization as well as the different authentication schemes that are

available when working with server applications. In Chapter 8, I’ve also implemented

JWT authentication, and you’ll learn about protecting sensitive data using the ASP.NET

Core data-protection stack, enforcing SSL, and implementing rate-limiting to prevent

DoS and DDoS attacks.

Chapter 9 is all about adding extra value to our APIs, as you discover how to

implement HATEOAS in an ASP.NET Core application, before moving onto the topic of

versioning. Furthermore, you will learn technologies like Swagger and GraphQL to make

APIs stand out from the rest.

You’ll learn about the importance of testing in Chapter 10, and you’ll witness some

examples of unit and integration tests before learning how to debug the compiled source

code of ASP.NET Core using Source Link.

Marking the end of the book, Chapter 11 is all about hosting and deploying ASP.

NET Core applications to different hosts, like IIS, Linux, Docker, and Azure, as well as

implementing continuous integration and continuous deployment using VSTS and

Azure.

As a final thought, I hope that you enjoy reading this book as much as I enjoyed

writing it, and I am very grateful for having such an opportunity to publish my work and

experiences.

 Using This Book
This book is broken down into different chapters, each covering a range of sections

relating to that topic of the chapter.

When a code is discussed, the irrelevant parts of the code might be omitted inside

the code block with an ellipse (…), for simplicity and to keep the focus on the right place.

Because the technology mentioned in this book is cross-platform, when shell

commands are executed, each line will be prefixed with a dollar sign ($) to indicate a

new command line and is not indented to be part of the command.

 Useful Links
The following are links you may find useful:

• Microsoft .NET – https://www.microsoft.com/net

• ASP.NET Core Documentation – https://docs.microsoft.com/en-

us/aspnet/core

• Visual Studio – https://www.visualstudio.com

• Microsoft Azure – https://azure.microsoft.com

https://www.microsoft.com/net
https://docs.microsoft.com/en-us/aspnet/core
https://docs.microsoft.com/en-us/aspnet/core
https://www.visualstudio.com/
https://azure.microsoft.com/

API Design Demystified
The times have changed—we commute with Uber, overnight with Airbnb, pay with

cryptocurrencies, and have breaking news at our fingertips via social media. We snap,

chat, and share our lives in real-time—and these kinds of apps make it happen.

What drives most of these apps, however, are Application Programming Interfaces

(APIs), which are the glue of the connected world we live in. APIs are everywhere, from

the doorbell in our smart homes to the traffic updates in our connected cars.

In web development, an API is a set of rules or contracts that dictate how consumers

should interact with services by explicitly defining expected inputs and outputs. This is

an architectural approach to abstract away the definition from the implementation.

Note Although other uses of APIs include libraries, frameworks, and operating
systems, the scope of this book will focus on the context of web-based APIs.

In this chapter, we will address the importance of APIs by understanding what they

are as well as by getting introduced to the different architectural styles of web API design.

We will then zoom into the REST architectural style and, by applying the six principles of

REST, learn what it means to have a RESTful service.

 The Importance of APIs
In today’s modern, connected world, the API is one of the most critical elements of

cloud-based services. Having billions of services out there for consumption requires

good abstraction to promote compatibility, usability, and maintainability.

The API plays a crucial part in the integration of two systems, as it enforces a

standardized communication link between them. For example, an electrical drill

needs power from an electricity source for it to work. To be able to connect electrical

equipment to power sources, we need a wall socket and a plug.

2

In this analogy, the wall socket is the API for providing electricity, and the drill is

the consumer, as it uses a specific plug to be able to connect to power. One could, of

course, connect the drilling machine directly to the wiring circuit, but it would require

more manual work and be very unsafe. Imagine having to hardwire everything in your

home; the result would be a mess. The point here is that having a plug and wall-socket

mechanism drastically improves interoperability, allowing devices to be pluggable given

a standard interface.

Web APIs are no different, as they ensure that systems can communicate seamlessly

without the complexity of hardwiring. In fact, an API promotes accessibility by allowing

multiple systems to use one implementation of business logic, regardless of their

technology stack.

Imagine if the National Weather Service had to explicitly implement a system-

integration point for each of its consumer systems. Updates and maintenance would be

a nightmare, and that apparently wouldn’t scale very well. Instead, implement an API to

facilitate the flow of data in one standard way. Doing this also opens up the door to other

possibilities, like integration with third-party systems, which can lead to opportunities to

monetize on some of the internal components.

Other benefits of providing an API are control and analytics. It is vital that you secure

sensitive endpoints, and having a mechanism to control access is paramount. There is a

Dutch saying, “meten is weten,” which means measuring is knowing. Understanding how

services are used provides useful insights on feasibility and potential optimizations.

APIs can be implemented in many different architectural styles. The most common

styles that are used in the industry are RPC, WSDL, SOAP, and REST. When designing an

API, it is important to use the right style for the problem at hand, as each of the styles has

its advantages and disadvantages.

Note To keep things in perspective, we will mainly focus on the REST-based
architectural style. The others are only mentioned to broaden the understanding
within the context of REST.

ChAPTER 1 API DESIgn DEmySTIfIED

3

 REST: The Good, Bad, and Ugly
REST is an acronym for Representational State Transfer, which is a style of architecture

based on a set of predefined principles that describe how networked resources are

defined and addressed. A service that implements the principles of REST is called a

RESTful service.

It is common for web services to have clean, readable, and extensionless unique

resource identifiers (URIs) or to return data in JavaScript Object Notation (JSON)

format, but having extensionless URIs and endpoints that return vanilla JSON does not

necessarily make the service a RESTful service.

Figure 1-1 shows a typical output of a web service given a certain request and

includes a dialog response from a developer who doesn’t completely comprehend what

a RESTful service is.

Let’s take a look at a typical scenario involving a web service for managing a user

profile. Here are some example endpoints for doing basic create, read, update, and delete

(CRUD) operations on a profile, returning the results in Extensible Markup Language

(XML) format:

/getAllProfiles

/getProfile?id=2

/createProfile

/deleteProfile?id=4

/updateProfile?name=eddy

Figure 1-1. Example of a common assumption made by web-service
developers

ChAPTER 1 API DESIgn DEmySTIfIED

4

These endpoints don’t look too harmful. The first two endpoints, /getAllProfiles

and /getProfile?id=2, get all profiles and get a specific profile with an ID of 2,

respectively. The /createProfile endpoint is responsible for creating a new profile, and

as you might have guessed by now, the last two endpoints, /deleteProfile?id=4 and /

updateProfile?name=eddy, delete and update a specific profile accordingly.

After some time in production, the business requested that more features be added,

like the ability to retrieve additional friend information with a specific profile response

as well as the capability to search for profiles by name. Typically, developers tend to just

implement these capabilities in a quick and dirty fashion by adding two more endpoints

to the collection, resulting in Version 2 of the service looking like the following:

/getAllProfiles

/getProfile?id=2

/getProfileWithFriends?id=2

/searchProfileByName?name=frank

/createProfile

/deleteProfile?id=4

/updateProfile?name=eddy

The additional endpoints may meet the requested business requirements but start

to make the code very redundant by having the same type of information be served with

slightly different aspects of it.

For Version 3 of the service, it is further requested that it support JSON responses

on some of the current functionality in order for it to be “RESTful.” Keeping to the

consistency of naming conventions and to prevent breaking changes (which can be a

good thing), the developers might simply add more endpoints to the collection:

/getAllProfiles

/getAllProfilesJson

/getProfile?id=2

/getProfileJson?id=2

/getProfileWithFriends?id=2

/getProfileWithFriendsJson?id=2

/searchProfileByName?name=frank

/searchProfileByNameJson?name=frank

ChAPTER 1 API DESIgn DEmySTIfIED

5

/createProfile

/deleteProfile?id=4

/updateProfile?name=eddy

As you can see, by just adding support for an additional output format, you can

basically multiply the read operations. Going forward with this pattern would be a

recipe for disaster, and one can imagine what the impact would be, given another simple

request by the business.

Tip Unlike apps, the general end users of our applications are not typical
business or consumer users, but rather developers of applications. It is crucial that
you provide an excellent developer experience when designing APIs.

In the previous example scenario, the web services tended to lean more toward a

remote procedure call (RPC)–style web service rather than a RESTful service. Having an

RPC-style web service is not wrong, but it is important to not confuse the characteristics

of REST and RPC.

In an RPC world, endpoints are mere functions that get triggered remotely, whereas

in a RESTful world endpoints are entities, also known as resources.

Properly designing an API is hard because requirements tend to change and we need

to adapt to the business needs of the day. Implementing patterns like REST will improve

the experience of our web services by making them less redundant, more scalable, and

more maintainable.

 Principles of REST
Originally introduced by Roy Fielding in early 2000, the term REST was used to

complement the design of HTTP 1.1 and URIs as the architectural style for distributed

hypermedia-driven systems.

Some of the most important concerns that a RESTful architecture affects include

performance, scalability, simplicity, interoperability, communication visibility,

component portability, and reliability. These properties are encapsulated by six principles,

which are defined by Fielding as the constraints guiding a RESTful system design.

ChAPTER 1 API DESIgn DEmySTIfIED

6

The Client-Server constraint enforces the proper separation of concerns between

the UI/consumer and the back-end, which mostly contains the business-logic and

data-storage implementations. We can observe this constraint in typical network-based

systems like websites. In this style, the client initiates requests to the server, which

reacts with triggering responses. Enforcing separation between the client and the server

promotes the ability to have them evolve entirely independently from each other given

that the interface between them doesn’t change.

Often combined with the Client-Server constraint, the Layered System constraint

dictates that layers should be organized hierarchically, restricting the use of a service to

the layers directly beneath and above it. Orchestrating components in layers drastically

improves reusability, making them more modular.

Building on the Client-Server style is the Stateless constraint. Communication

between the client and the server needs to be stateless, meaning that a request should

contain all the information necessary for the server to understand and to create context.

The client is ultimately responsible for managing session state and cannot rely on the

server for directly storing any state data. Does this mean that the actual contents of the

state need to be transferred back and forth all the time? The short answer is no—it is

entirely acceptable for the state to be persisted elsewhere and for the client to include an

identifier for retrieving it.

The key feature that associates a system with REST is a Uniform Interface. This

constraint consists of four essential parts, which are resource identification, resource

manipulation, self-describing responses, and state management. These architectural

elements are implemented directly through URIs, HTTP verbs, media types, and

Hypermedia as the Engine of Application State (HATEOAS), respectively.

Note hATEOAS is also part of the Uniform Interface as well as a constraint of the
REST stateless application, which allows a client to have no prior knowledge of
how to interact with the server beyond a general understanding of the hypermedia
provided by the server.

The Cache constraint derives from the Stateless constraint and requires that

responses coming from the server are explicitly labeled as cacheable or non-cacheable,

regardless if they are explicitly or implicitly defined. Responses that are cached allow

clients to reuse them later when making similar requests, thus improving speed and

latency. Caching can be applied to both the client and the server side.

ChAPTER 1 API DESIgn DEmySTIfIED

7

Caution It is important to not confuse response cache and application/session
state, which can be wrongly interpreted as conflicting constraints of REST. The
former refers to short-lived transactional messages, and the latter denotes specific
persisted context.

The final and optional constraint is Code on Demand, which allows a client to

access specific resources from the server without knowledge of how to process them.

This style is typically implemented by web-based applications that have clients using a

client-side scripting language, like JavaScript. Having the ability to add functionality to a

deployed client not only promotes extensibility but can also help to offload some server-

side tasks onto the client, making it more responsive.

Apply these six constraints to your API services—then and only then will they

become truly RESTful.

 Wrapping Up
The key takeaways from this chapter are to realize the importance of APIs as well as

know how to design them appropriately and understand what it means to have a RESTful

API. Throughout this book, we will mainly focus on the most important features of ASP.

NET Core to help implement the principles of REST within APIs.

Now that we have a basic understanding of APIs and REST, in the next chapter we

will dive right into the technology that can help facilitate building modern, RESTful APIs

by introducing ASP.NET Core.

ChAPTER 1 API DESIgn DEmySTIfIED

Introduction to ASP.NET
Core
Active Server Pages (ASP) was first introduced in 1998 as Microsoft’s flagship

development framework for building server-side technologies. It was meant to compete

with other web frameworks, like PHP, which was very popular at the time. It was initially

developed for creating and running dynamic, interactive web applications. Upon

requesting an ASP file, the web server executes any code in the file and returns the result

it produces to the browser.

Initially only focused on rendering pure websites in Hypertext Markup Language

(HTML) on the server, ASP (also known as Classic ASP) evolved to become ASP.NET in

2002 as part of the .NET framework—one of the most used frameworks today.

The ASP.NET framework is the successor to Classic ASP and offers a vast variety of

application models for building web-based applications fit for almost any scenario. To

date, ASP.NET includes ASP.NET Web Pages for, like Classic ASP, creating simple page-

driven websites; ASP.NET Web Forms for making dynamic form-driven web applications;

ASP.NET MVC for creating more advanced web applications based on the Model View

Controller (MVC) pattern; and ASP.NET Web API specifically for building APIs.

Fast forward to 2016, when a new variety was born called ASP.NET Core. It combined

the best of ASP.NET Web Pages, -MVC, and -Web API application models into one

application framework, which majorly contributed to the One ASP.NET movement,

meaning one extensible web framework.

Note At the time of authoring this book, the latest version of ASP.NET Core was
version 2.0. The content referred to is focused toward ASP.NET Core and is limited
to the most recent known version only.

10

As the .NET framework evolved, it became more mature and stable, which was a

good thing as it was among the premiere frameworks of choice. The downside was that

.NET and ASP.NET were both tightly coupled to the release cycles of Visual Studio, which

were slow.

The need for quicker releases was urgent and demanded decoupling from Visual

Studio, its languages, and its development frameworks. The resulting modularity allows

for faster release cycles and quicker feedback loops, enabling technology to adapt at the

same pace as business changes.

 What Is ASP.NET Core?
To help you fully understand what ASP.NET Core is, you should first take a step back and

wrap your head around the underlining development platform, called .NET Core.

The .NET Core framework is a brand-new, lightweight, and modular platform

developed by Microsoft and the community for building cross-platform applications and

services. It implements the .NET Standard protocol to target all platforms in order to

deliver a unified experience.

Note The .NET Standard is not to be confused with the .NET framework or .NET
Core as it is intended to serve as a specification that compatible frameworks need
to implement to target multiple platforms. More information on .NET Standard can
be found at https://blogs.msdn.microsoft.com/dotnet/2016/09/26/
introducing-net-standard.

One of the key features of this framework is that it is extremely fast and has been one

of the top-performing frameworks on the TechEmpower benchmarks site (https://www.

techempower.com/benchmarks).

Furthermore, multiple languages are supported by .NET Core, like C#, VB, and F#,

including modern programmatic constructs like generics, language-integrated query

(LINQ), asynchronous programming, and other features one could expect from a

modern language.

Built from the ground up, the ASP.NET Core framework is an open source, cross-

platform web platform for developing cloud-based server applications. It can run on

both the full .NET framework and the .NET Core framework, which is natively cross-

platform, meaning applications targeting ASP.NET Core can run everywhere.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks

11

ASP.NET Core is optimized for applications deployed both to the cloud or on-

premises. Modularity is at the heart of its design, making it extremely flexible and

extensible. By using the available tooling for ASP.NET Core, you can develop and run

your applications on Windows, Linux, and Mac.

 .NET Core vs .NET Framework
Although .NET Core and the full .NET framework share many common components,

there are fundamental differences between the two, and choosing between them

depends on the scenario at hand.

When there is a need for the application to run cross-platform or have an architecture

based on microservices, to promote high availability and scalability, or to run side-by-

side with different versions of .NET, then using .NET Core will be the right choice.

Use the .NET framework if the application is currently using the full .NET framework

and the recommendation suggested extending instead of migrating, or if there are third-

party libraries, technologies, or platforms that do not support .NET Core.

Note The .NET framework is not obsolete and will still be around and supported
for a long time. The .NET Core framework is also not intended to be a replacement
for the full .NET framework but rather is built to co-exist with it.

 Why Use ASP.NET Core?
ASP.NET Core includes a unified use case for building web-based user interfaces

and web APIs. Furthermore, it integrates with other modern client-side frameworks,

development workflows, and tools.

The framework contains a cloud-ready, environment-based configuration system

out of the box that supports application settings provided in many different formats, all

in one simple model. One of the unique features of ASP.NET Core is the notion of making

dependency injection a first-class citizen within the framework.

Unlike the HttpHandlers and HttpModules featured in the ASP.NET framework, the

new HTTP request pipeline has been designed for more straightforward use, making it

much more modular and lightweight.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

12

Inherently, ASP.NET Core can be hosted everywhere (because it is built on top of

.NET Core), be it internet information services (IIS), self-hosted in its own process, or

even hosted inside Docker.

Regarding deployments, all components of ASP.NET Core comprise of multiple

NuGet packages, allowing granular features to be autonomously installed.

 The .NET Ecosystem
Now that you have a better understanding of .NET Core and ASP.NET Core, it is

beneficial to understand how these components fit into the overall .NET ecosystem.

Figure 2-1 provides a bird’s-eye view of all the essential parts of .NET.

Note In Figure 2-1, ASP.NET Core hangs over both the .NET framework and .NET
Core. This shows that ASP.NET Core and everything built on top of it supports direct
compilation for both the .NET framework and the .NET Core framework side-by- side.

Figure 2-1. Overview of the .NET platform

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

13

 ASP.NET Core Features
In the previous section, we briefly covered some of the characteristics of ASP.NET Core.

Following this notion, let’s now focus on some of the most important features of this

framework to highlight how it can relate to implementing a RESTful architecture.

Hosting is a fundamental feature of ASP.NET Core and is at the heart of any

server-based application. An application host acts as a container and is responsible

for managing the lifetime of the application. The host also contains environment

configuration and servers for handling requests. From a REST perspective, hosts and

servers satisfy the Client-Server constraint.

The middleware feature aligns beautifully with the Layered System constraint from

REST. The overall request/response architecture is primarily driven by middleware,

which are components that can intercept requests and perform specific logic before

possibly invoking the next component in the pipeline or stopping the request entirely.

To have maintainable and extensible code, you need to have loosely coupled

components that are easy to test. Using a pattern called dependency injection (DI), one

can achieve loose-coupling by automatically resolving code dependencies by “injecting”

them when needed. In ASP.NET Core, DI is baked right in and available from the start.

One of the unique features of ASP.NET Core is configuration, which allows for

application settings to be read at runtime from many different sources, like files, from the

command line, environment variables, in-memory, encrypted secret stores, or your own

tailor-made providers, like an INI file provider.

ASP.NET Core provides an extensive logging infrastructure that works with many

providers to send entries to many destinations. You can control the level of logging as

well as the scope of log entries, which groups log data for similar operations.

As previously mentioned, MVC is an example of an application framework

supported by ASP.NET Core. Given the nature of the open-ended architectural design,

it allows you also to create your own application framework that can run seamlessly on

ASP.NET Core.

 Tooling Available for ASP.NET Core
Figure 2-2 shows an overview of the tooling available for ASP.NET Core in the Microsoft

stack.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

14

Starting from the bottom, we have the .NET Shared Software Development Kit
(SDK) component. This contains libraries with all common APIs for .NET tooling and

serves as the foundational layer for all the other tools.

Moving further up, we have the full version of Visual Studio, also known as the

Visual Studio IDE. ASP.NET Core is supported by Visual Studio 2015 (with a minimum of

update 3) and upward; however, in this book we’ll be making use of the latest version to

date, which is Visual Studio 2017.

Visual Studio has the tools you need to quickly create and deploy modern

web applications and has support for a wide range of popular languages for web

development. Frankly, it has one of the best editors for working with HTML5, CSS3,

JavaScript, and JSON. One can seamlessly switch between languages and project types,

be it PHP, Java, or Python, LESS or SASS for styling, right through to C# and ASP.NET.

Running software in containerized environments is becoming more and more a

thing. Visual Studio 2017 now has built-in support for Docker, a well known container

platform, allowing us to run, deploy, and even debug applications running in Docker

right within Visual Studio.

When it comes to productivity with modern web frameworks like Angular and

Bootstrap, Visual Studio 2017 is far ahead, providing great IntelliSense and advanced

language support.

Figure 2-2. Overview of the different tooling available

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

15

The components that make ASP.NET Core and .NET Core light up within Visual

Studio 2017 are all open source, which means you can report an issue if you find a bug,

suggest a new feature, or, better yet, submit a pull request yourself.

Out of the box, Visual Studio supports all popular package managers, like NuGet,

which offers rich .NET libraries (mostly server side), NPM for great tools and utilities,

and Bower for client-side libraries.

With tools for Apache Cordova, you can quickly build cross-platform hybrid web

applications using web technologies like HTML5, CSS3, and JavaScript. You might have

guessed it: Visual Studio even has support for great emulating experiences with which to

run and test our applications.

Visual Studio makes it very easy to work with the cloud by integrating directly with

Microsoft Azure. You can publish and manage your web applications in the cloud or even

remote-debug them directly from within Visual Studio.

Visual Studio allows you to use the source code repository of your choice, be it based

on GIT or even TFS version control. It delivers an excellent experience in managing your

source code, gathering bug-tracking and unit-testing statistics, and debugging a wide

range of languages like C#, Python, NodeJS, and others.

Quite recently, Microsoft also announced Visual Studio for Mac, which is a

complete native version of the Visual Studio IDE that runs on Macs to attract more

developers who love using their Macs. Version control hosted on any provider is

integrated as a first-class citizen, which is great for working seamlessly with other

developers on other operating systems. Just like Visual Studio for Windows, Visual Studio

for Mac is also packed with the goodness of Xamarin, which allows you to create native

apps while sharing just one code base for iOS, Android, and Mac OS.

Next on the diagram is the .NET Core Command Line Interface (CLI), which is a

new cross-platform toolchain for creating cross-platform .NET applications. It brings

most of the tooling features to any terminal interface, be it Command Prompt or

PowerShell on Windows or Bash on Linux and Mac.

It can be installed using a native installer, typically on a developer’s machine, as well

as a shell script, which is used mainly on build servers. The great thing about the .NET

Core CLI is that it supports true side-by-side versioning, meaning you can have multiple

versions of the SDK installed on one machine.

Built on top of Visual Studio, we have Extensions. This extension model allows us

to create great add-ons for Visual Studio. There are many recommended extensions

available from the Visual Studio Marketplace that can help us build awesome web

applications using ASP.NET Core, which we will cover during this book.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

16

Furthermore, also quite a new kid on the block is Visual Studio Code (VS Code),

which is, in my opinion, one of the best text editors out there for both productivity

and development. Developing ASP.NET Core applications within VS Code is a breeze

as it leverages the .NET Core CLI beneath the surface for a seamless build and debug

experience. It even comes with GIT access baked right in.

As mentioned before, ASP.NET Core runs everywhere; even better, it can be

developed in literally any text editor—even Notepad. Some of the other great editors out

there are Vim, Atom, and Sublime.

These tools are a prime example of how Microsoft enables productivity so any

developer can build great solutions on any platform, for any platform, and it allows

developers to use the tools they know and love.

 Setting Up the Development Environment
Getting ASP.NET Core is easy. In fact, there are many ways of installing this framework

onto your environment. In this section, we will cover two ways of installing ASP.NET

Core. Figure 2-3 shows where to get started: https://www.visualstudio.com.

Figure 2-3. The Visual Studio home page

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

https://www.visualstudio.com/

17

The quickest and simplest way to get going is to install the Visual Studio

2017 IDE. This includes a new installer that helps you easily add exactly the modules you

want with Visual Studio 2017.

On the Visual Studio home page, hover your cursor over the Download Visual Studio

button and then click the version you would like to install. The download should only

take a quick moment as it is using an online installer to do the heavy lifting.

Tip Visual Studio 2017 comes in three different editions: Community, free for
students or individual developers and open source projects; Professional, for
the professional developer or small teams; and Enterprise, for medium to big
enterprises. These editions can all run side-by-side, but for this book, the use of
the Community edition is just fine.

Figure 2-4 shows the new installer experience as it presents a choice of different

workloads to choose from.

Figure 2-4. The new Visual Studio 2017 installer experience

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

18

After selecting ASP.NET and web development workload, click Install and sit back

while Visual Studio gets installed with all the goodness of ASP.NET. This workload

includes the core Visual Studio editor IDE as well as the ASP.NET Core 2.0 and .NET Core

2.0 development tools.

Note These instructions assume the installation of the Visual Studio 2017 IdE for
a Windows-only environment. To install for Mac, you need to browse to
https://www.visualstudio.com/vs/visual-studio-mac.

If you instead want to develop with ASP.NET Core 2.0 in Visual Studio Code, you just

need to grab the bits separately. Figure 2-5 shows the Visual Studio Code homepage at

https://code.visualstudio.com, where you can download the latest version of the

Visual Studio Code editor for your operating system.

Now that you have a decent editor, the next thing is to install the .NET Core

SDK, which includes all the tools you will need for developing cross-platform server

applications using ASP.NET Core.

Figure 2-5. The Visual Studio Code home page

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

https://www.visualstudio.com/vs/visual-studio-mac
https://code.visualstudio.com/

19

Figure 2-6 shows the download page for the .NET Core SDK at https://www.

microsoft.com/net/core. Just pick your operating system and follow the installation

instructions.

Note Both the Visual Studio Code editor and .NET Core SdK will run on Windows,
Linux, and Mac.

 A Lap Around the .NET Core CLI
Included in the .NET Core SDK is the .NET Core CLI, which is a cross-platform

toolchain that acts as a foundation for all other higher-level editors and provides a set of

commands for creating, building, testing, running, and deploying .NET applications.

A command is executed by specifying a syntax structure that includes the driver

dotnet followed by the command and its respective arguments.

Figure 2-6. The .NET Core SDK download page

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

https://www.microsoft.com/net/core
https://www.microsoft.com/net/core

20

Tip For the sake of simplicity, this section will only cover a limited set of basic
and project-modification commands. To get more in-depth information about
the .NET Core CLI, use the -h or --help options or browse to https://docs.
microsoft.com/en-us/dotnet/core/tools.

The dotnet new command creates a new artifact from a specifically named template.

To get a list of installed templates to choose from, use the following syntax:

$ dotnet new [-l|--list]

Figure 2-7 shows an example output from the console detailing the installed templates.

The following command syntax creates a new artifact by using the template short

name as an argument:

$ dotnet new <template short name> [-n|--name]

Figure 2-7. Output showing installed templates

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

https://docs.microsoft.com/en-us/dotnet/core/tools
https://docs.microsoft.com/en-us/dotnet/core/tools

21

Tip Although it is optional to specify a name, it is highly recommended. If no
name is specified, the name of the current directory will be used instead.

To create a new solution called AwesomeSauce and an ASP.NET Core 2.0 Web API

project called AwesomeSauce.Api, run the following commands:

$ dotnet new sln -n AwesomeSauce

$ dotnet new webapi -n AwesomeSauce.Api

Tip Within Command Prompt and Bash you can execute multiple CLI commands
one after the other by chaining them using &&.

It is essential that you understand that the preceding commands just created the

solution and project artifacts separately. The dotnet sln command is responsible for

solution-specific actions. After running the following command to list the projects in the

solution, we notice that it does not contain any projects yet:

$ dotnet sln list

To add the AwesomeSauce.Api project to the AwesomeSauce solution, simply execute

the following command (remember to specify the relative path to the project file):

$ dotnet sln add AwesomeSauce.Api\AwesomeSauce.Api

Rerunning the dotnet sln list command should show the AwesomeSauce.Api

project listed as part of the solution.

The dotnet restore, dotnet build, and dotnet run commands are responsible for

restoring NuGet packages needed by projects as well as their specific tools, building a

project—including its dependencies, and running a project, respectively.

Note As of .NET Core version 2.0, it is no longer necessary to first run dotnet
restore before building and executing. however, it is still a valid command to
make use of in continuous-integration scenarios. Prior versions even do require
this command to be run before the code is built or run.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

22

 Wrapping Up
This chapter was all about getting introduced to ASP.NET Core and wrapping our heads

around its features and capabilities as a world-class web framework for building modern

APIs. We aligned the features of ASP.NET Core with some of the constraints of REST

and explored the different tooling that is available for the ASP.NET Core framework. We

learned how to set up our development environment by installing Visual Studio IDE and

Visual Studio Code, as well as to understand the basics of the .NET Core CLI tooling for

using .NET Core outside of Visual Studio.

In the next chapter, you will create a simple API application using some of the tools

previously covered.

ChAPTEr 2 INTroduCTIoN To ASP.NET CorE

Your First API Application
In the previous chapter, we got a concise overview of ASP.NET Core and the relevant

technologies. This chapter will focus on helping you create a simple API application

using some of the tools we covered previously.

By the end of this chapter, you will be able to create a new API application using

one of the pre-defined templates in ASP.NET Core. We will look at how to deal with

dependencies across the code base while still maintaining loose coupling between

the components. This chapter will also cover the autonomy of the application start-up

mechanism to understand how to configure the application initialization process, and,

lastly, we will be creating a simple API endpoint that is ready for consumption.

 Getting Started
We briefly covered how to create a new web API application using the .NET Core CLI

toolchain in the previous chapter. In this section, we will be using the Visual Studio

2017 IDE to do the same thing.

From within Visual Studio 2017, click File, then select New and click Project. If you

are a keyboard ninja, you could also do this by pressing Ctrl+Shift+N. Figure 3-1 shows

the New Project dialog that will be displayed.

24

In the Web section, we notice two types of ASP.NET web applications, one that is ASP.

NET Core–based and another that is based on the full .NET framework. We need to select

the ASP.NET Core Web Application type and give our project a name.

After clicking OK, the New ASP.NET Core Web Application template dialog is

presented, which is showcased in Figure 3-2.

Figure 3-1. The New Project dialog

Chapter 3 Your First api appliCation

25

Note at this point, it might be good to mention that the asp.net Core project-
creation process shares the same template experience in both the Visual studio
2017 iDe and the .net Core Cli. You will notice that the templates in Figure 3-2
are the same templates from the output of the dotnet new -l command as
highlighted by Figure 2-7 in the previous chapter.

In this dialog, we can change the target framework between .NET Core and the full

.NET framework as well as switch between ASP.NET Core versions. Let’s keep with the

defaults, which have the target framework on .NET Core and ASP.NET Core version 2.0.

We are going to start from scratch so we can learn all about the different essential

aspects of ASP.NET Core 2.0 applications. Select the Empty template and click OK.

After the creation of the project, we can explore the structure that was generated

from the template, as een in Figure 3-3.

Figure 3-2. The New ASP.NET Core Web Application template dialog

Chapter 3 Your First api appliCation

26

An ASP.NET Core project introduces the Dependencies node inside the project,

which houses all project-level infrastructure dependencies, like Roslyn analyzers, NuGet

packages, and SDKs. The Empty template also scaffolded a project with Program.cs and

Startup.cs classes.

One of the great things about .NET Core applications is that we can directly edit the

project file from within Visual Studio without having to unload the project first. We can

do this by right-clicking on the project and selecting Edit.

If you are familiar with any previous versions of ASP.NET, you will immediately notice

a striking difference. Compared to the project file of previous versions of ASP.NET, the

contents of the project file of ASP.NET Core are now cleaner, with a more straightforward

layout. Here are the contents of the AwesomeSauce.Api.csproj we just created:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>netcoreapp2.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <Folder Include="wwwroot\" />

 </ItemGroup>

Figure 3-3. The ASP.NET Core project structure

Chapter 3 Your First api appliCation

27

 <ItemGroup>

 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />

 </ItemGroup>

</Project>

Looking at the Project element, there is an Sdk attribute that specifies what

SDK to use for this project. Specifying the target framework can be done using the

TargetFramework element, which is .NET Core 2.0 in our example.

Tip it is also possible to multi-target a project for multiple frameworks by using
the TargetFrameworks (plural) element.

All files located in the same directory as the project file are included in the project

by default. This behavior can be altered by specifying the patterns to include or exclude

using the Folder element. External dependencies, like other project references, external

tools, or NuGet packages, are defined inside an ItemGroup. In our example, a NuGet

package called Microsoft.AspNetCore.All is referenced.

Because we do not need to unload the project to alter the project file, any changes are

immediately reflected upon save and can be directly observed in the project structure.

Let’s examine the Program.cs file:

using Microsoft.AspNetCore;

using Microsoft.AspNetCore.Hosting;

public class Program

{

 public static void Main(string[] args)

 {

 BuildWebHost(args).Run();

 }

 public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseStartup<Startup>()

 .Build();

}

Chapter 3 Your First api appliCation

28

The starting point of any .NET-based application is a static Main function inside a

Program class. In an ASP.NET Core 2 application, a web host is initiated by calling the

BuildWebHost function, which invokes WebHost.CreateDefaultBuilder, which uses the

Builder pattern to create a default web host.

Calling the WebHost.CreateDefaultBuilder function returns an IWebHostBuilder

that allows us to pass the application configuration inline or use the provided extension

methods to fluently define or override specific configurations, like servers, URLs, logging,

web and content roots, and so forth.

The default web host is automatically configured to use the current directory as the

content root; load optional configurations from various sources; log console and debug

output; use the Kestrel server, a new cross-platform web server; and run on IIS if it is

available. We will learn more about the configuration model, logging, and servers in

coming sections.

Instead of using WebHost.CreateDefaultBuilder, we could create a new instance

of a WebHostBuilder class and then define how we want it to be configured. In the

following example, we see the same web host as the default one being created, but

instead of hiding all the magic we explicitly define all the configurations that need to be

applied to the web host:

public static IWebHost BuildWebHost(string[] args) =>

 new WebHostBuilder()

 .UseKestrel()

 .UseContentRoot(Directory.GetCurrentDirectory())

 .ConfigureAppConfiguration(config =>

 config.AddJsonFile("appSettings.json", true)

)

 .ConfigureLogging(logging=>

 logging

 .AddConsole()

 .AddDebug()

)

 .UseIISIntegration()

 .UseStartup<Startup>()

 .Build();

Chapter 3 Your First api appliCation

29

 Dependency Injection
Before we move on, it is essential to understand the concept of dependency injection

(DI). Having dependencies between the components of an application is inevitable, and

if the references to them are not correctly designed, it can have a negative impact on

the maintainability of the code. DI is a design pattern to allow instances of objects to be

passed to other objects that require them at runtime.

Let’s say we have a class called ComponentA that is using ComponentB. The following

example shows a typical scenario where no DI is used, and as a result these components

are tightly coupled together:

public class ComponentA

{

 private readonly ComponentB _componentB;

 public ComponentA()

 {

 this._componentB = new ComponentB();

 }

}

public class ComponentB

{

 public string Name { get; set; }

}

Instead of directly referencing an instance of ComponentB, we can decouple it by

introducing an IComponent interface to abstract away the implementation and expect

an instance of type IComponent in the constructor of ComponentA. In the example that

follows, the previous code is now refactored to use DI, having ComponentB implement

IComponent so that there is no direct reference to an instance of ComponentB anymore:

public interface IComponent

{

 string Name { get; }

}

public class ComponentA

{

 private readonly IComponent _componentB;

Chapter 3 Your First api appliCation

30

 public ComponentA(IComponent componentB)

 {

 this._componentB = componentB;

 }

}

public class ComponentB: IComponent

{

 public string Name { get; set; } = nameof(ComponentB)

}

When we run this code as is, it will result in a NullReferenceException error

because ComponentA is expecting an object of type IComponent, and although

ComponentB implements the IComponent interface, there is nothing configured to pass in

the required instance of IComponent to the constructor of ComponentA.

For the code to run without this issue, we need a mechanism to pass the correct

instance of a requested type during runtime. This can be achieved by making use of an

Inversion of Control (IoC) container to register all the required dependencies and their

instances. There are many frameworks available on NuGet that provide IoC containers

for dependency resolution, namely Unity, Castle Windsor, Autofac, and Ninject.

Note as a general rule of thumb, avoid the explicit instantiation of classes, as
doing this results in a tightly coupled system.

ASP.NET Core implements DI as a first-class citizen in its infrastructure and has

an IoC container built into its core. Most of the moving parts of this framework are

abstracted away from each other to promote extensibility and modularity. This means

that if you choose to use your own favorite IoC container instead of the built-in one, you

absolutely can.

 Application Startup
Now that we understand the concept of configuring and starting a web host, we can

focus on the actual bootstrapping configuration of the application. The UseStartup

method is one of the critical methods that extends an IWebHostBuilder and registers a

class that is responsible for configuring the application startup process.

Chapter 3 Your First api appliCation

31

The type specified in UseStartup needs to match a specific signature to have the

host launch the application correctly. The runtime requires the specified startup class

to contain two public functions, namely ConfigureServices, which is optional, and

Configure, which is compulsory. For example, let’s say that the startup class is defined

as UseStartup<Foo>(); the structure of Foo should match the following:

public class Foo

{

 //optional

 public void ConfigureServices(IServiceCollection services)

 {

 }

 //required

 public void Configure()

 {

 }

}

Across ASP.NET Core we will notice that dependencies and configurations conform

to a certain Add/Use style by first defining what is required and then how it is used. By

explicitly specifying components we need, it optimizes performance and thus increases

the application’s performance, as we only pay for what we use, not the whole thing.

In the ConfigureServices method, all the application-level dependencies are

registered inside the default IoC container by adding them to an IServiceCollection.

Expanding on our previous example, we would map a singleton instance of ComponentB

to an IComponent service as follows:

public void ConfigureServices(IServiceCollection services)

{

 services.AddSingleton<IComponent, ComponentB>();

}

Note it is also possible to register a dependency that binds to itself instead of
using any interfaces by directly expecting the concrete type in the constructor and
calling services.AddSingleton<T>, where T is the concrete type in this case.

Chapter 3 Your First api appliCation

32

In the startup class, the Configure method is responsible for the actual configuration

of the application’s HTTP request pipeline and is required by the runtime. This method

can contain many dependent parameters that are resolved from the IoC container.

Let’s build on the previous examples to have our application print out the name of an

IComponent to the response when invoking it and show the Configure method in action:

public void Configure(IApplicationBuilder app, IComponent component)

{

 app.Run(async (context) =>

 await context.Response.WriteAsync($"Name is {component.Name}")

);

}

The two variables that are automatically resolved are an IApplicationBuilder,

which is the mechanism to configure an application’s request, and an IComponent. The

IApplicationBuilder extends with a Run function, which passes a RequestDelegate

that writes out the Name property of the IComponent to the response. Running the

application will result in the response being “Name is ComponentB.”

It is also possible to configure the application’s dependencies and HTTP request

pipeline directly inline when defining the web host, without the use of a startup class.

Given the default web-host configuration, an inline startup definition could look like the

following:

WebHost.CreateDefaultBuilder()

 .ConfigureServices(services =>

 services.AddSingleton<IComponent, ComponentB>()

)

 .Configure(app =>

 {

 var component = app.ApplicationServices.GetRequiredService<ICompone

nt>();

 app.Run(async (context) =>

 await context.Response.WriteAsync($"Name is {component.Name}")

);

 })

 .Build();

Chapter 3 Your First api appliCation

33

One of the drawbacks of defining the bootstrapping configuration inline is that we can

only pass in one parameter as IApplicationBuilder to the Configure extension method.

This forces us to resolve any dependencies by calling GetRequiredServices manually.

Note Configuration sections can be defined inline while creating the web
host, inside a separate startup class. When using UseStartup for determining
bootstrapping configurations in a separate class, it overrides the configuration
sections defined inline on the web-host builder.

At times it may be necessary to have different configuration setups for different

environments, so ASP.NET Core allows us to explicitly define environment-specific

startup configurations by convention. The startup class is defined as UseStartup(star

tupAssemblyName: ...); the runtime will then look inside the specified assembly for

classes called Startup and Startup[Environment], with [Environment] being the value

that matches the ASPNETCORE_ENVIRONMENT environment variable. If an environment-

specific class is found, it overrides the default one.

For example, if the environment is set as “Development,” the runtime will attempt to

load Startup and StartupDevelopment. Inside the startup classes, the same convention

applies for the ConfigureServices and Configure methods as well, whereby the convention

is Configure[Environment]Services and Configure[Environment] respectively.

 Creating an Endpoint
Now that we have a good understanding of how ASP.NET Core initializes a web host

and bootstraps an application, let’s dive right into building a couple of endpoints for

consumption.

As explained previously, the IApplicationBuilder.Run method ultimately executes

when the application runs and accepts a RequestDelegate as a parameter, which

receives the HttpContext object. Referring to the example in the previous section, the

response will always be the same, regardless of the URI in the request.

In addition to the Run method of IApplicationBuilder, there is also the Use

extension method for intercepting requests that could potentially short-circuit the

pipeline or let the request through to the next layer in the pipeline. The Use extension

method takes in a RequestDelegate for providing the HttpContext, but also receives a

RequestDelegate for the next layer.

Chapter 3 Your First api appliCation

34

Note the mention of layers inside the request pipeline refers to the concept of
middleware. api endpoints are nothing more than middleware being executed in a
specific order. We will delve more into the concept of middleware in the next chapter.

In the example that follows, we make use of the Run and Use methods to implement

the endpoints /foo and /bar as well as a default fallback for an application:

public void Configure(IApplicationBuilder app)

{

 app.Use(async (context, next) =>

 {

 if (context.Request.Path == "/foo")

 {

 await context.Response.WriteAsync($"Welcome to Foo");

 }

 else

 {

 await next();

 }

 });

 app.Use(async (context, next) =>

 {

 if (context.Request.Path == "/bar")

 {

 await context.Response.WriteAsync($"Welcome to Bar");

 }

 else

 {

 await next();

 }

 });

 app.Run(async (context) =>

 await context.Response.WriteAsync($"Welcome to the default")

);

}

Chapter 3 Your First api appliCation

35

The order in which the Run and Use methods define RequestDelegates is significant,

as the runtime will execute each layer in precisely the same order as it was created. In the

preceding example, the first layer checks the request path of the incoming request. If it

matches /foo, it short-circuits the request and directly sends the appropriate response

back, else it executes next(), which is the next RequestDelegate layer in the pipeline

and so on. If the request manages to bypass all the previous Use layers, it eventually

executes Run, which sends the default response back.

Tip removing the Run layer from the preceding example will cause the
application to only serve requests for /foo and /bar. any other requests will
receive a 404 Not Found response.

Other extensions to IApplicationBuilder are Map and MapWhen, which are more

appropriate for working with endpoints. Let’s refactor the previous example to make use

of the Map and MapWhen methods for implementing the /foo and POST /bar endpoints:

public void Configure(IApplicationBuilder app)

{

 app.Map("/foo",

 config =>

 config.Use(async (context, next) =>

 await context.Response.WriteAsync("Welcome to /foo")

)

);

 app.MapWhen(

 context =>

 context.Request.Method == "POST" &&

 context.Request.Path == "/bar",

 config =>

 config.Use(async (context, next) =>

 await context.Response.WriteAsync("Welcome to POST /bar")

)

);

}

Chapter 3 Your First api appliCation

36

The Map and MapWhen methods wrap an IApplication.Use delegate. MapWhen

requires an additional predicate in order to apply conditions that stretch further than the

request path. In the preceding example, all the /foo requests (regardless of their HTTP

method) will invoke the foo endpoint, and only POST requests with path /bar will invoke

the bar endpoint.

This sums up the pure basics of creating simple endpoints in ASP.NET Core. We will

learn more advanced routing concepts about endpoints in the next chapter.

 Wrapping Up
In this chapter, we covered quite a lot about creating your first application in ASP.NET

Core. After exploring the new template experience offered by Visual Studio 2017, we

dove right into the inner workings of the new project system and how a web host is

created. Furthermore, we got a brief overview of dependency injection and learned the

importance and benefits of applying Inversion of Control within our application. We also

dissected the application-startup process to completely understand how it works under

the hood, and lastly we learned how to implement different API endpoints using some of

the provided extension methods on the application builder.

In the next chapter, we will go deeper in the rabbit hole to explore even more exciting

concepts of ASP.NET Core’s extensibility architecture.

Chapter 3 Your First api appliCation

Extensibility Architecture
Extensibility is one of the critical features of ASP.NET Core as it allows for a pluggable

system architecture. We could, of course, go into all the extensibility points of ASP.NET

Core, but to keep to the scope of APIs, in this chapter we will focus on a specific subset.

This chapter will explain some of the essential aspects of ASP.NET Core from an

extensibility point of view. We will learn more about hosts and servers, as well as about

creating a custom server. We will revisit the concept of middleware, delving deeper into

more advanced scenarios. As mentioned before, RESTful APIs deliver resources located

on a specific URI, which can be driven by routing. We will also learn more about routing

from a practical standpoint. In the last section of this chapter, we will cover hosted

services, which are used for running concurrent background tasks within an ASP.NET

Core application.

 Hosts and Servers
The concepts of hosts and servers play a vital part in the RESTful architecture. We

can implement a host with a server that listens for remote requests by clients in ASP.

NET Core, and it will beautifully align with the Client-Server constraint dictated by the

principles of REST.

We briefly touched on the web host in the previous chapter. In ASP.NET Core, a

host is responsible for the bootstrapping, initialization, and lifetime management of

applications. For a web application to run, it requires a host with at least one server for

serving requests and responses.

Part of the bootstrapping responsibility is setting the proper configuration for the

application. The IWebHostBuilder provides built-in functionality to configure the

application configuration model and the application services as well as a mechanism to

set and get settings that are key/value based.

38

We can read and write application settings inline by using the GetSetting and

UseSetting functions, respectively. When calling UseSetting, it is important to

remember that the provided value will be persisted as a string value.

Furthermore, there are also other methods extending IWebHostBuilder to configure

the host. When something goes wrong during the startup of the application, the default

behavior will result in the host’s exiting (unless it is hosted behind IIS). We can control this

behavior by calling CaptureStartupErrors and passing either true or false, depending on

if we want to continue attempting to start the server in the event of an exception.

The UseContentRoot setting is defined for specifying the base path of where the host

should look for content; without this setting, the host will fail to start. The UseWebRoot

setting determines a relative path for serving static assets and is based on the path set by

UseContentRoot.

Applications run on multiple environments, each with a possibly different

configuration. ASP.NET Core supports specifying a named environment to run in. The

framework includes Development, Staging, and Development as built-in environment

names, but we could specify any name for our environment. By default, it reads whatever

environment name is configured on the ASPNETCORE_ENVIRONMENT environmental

variable. We can also explicitly define the environment right on IWebHostBuilder by

using the UseEnvironment method.

Although we covered the mechanism of reading the startup from an external class

in the previous chapter, it might be good to add that we can also load the application

bootstrapping from multiple external assemblies. Using the WebHostDefaults.

HostingStartupAssembliesKey key in the UseSetting method and then specifying

a string value with assembly names separated by a semicolon will scan the specified

assemblies for a class named Startup.

Servers listen to requests made to specific URLs. On the configuration of the web

host, we can specify the URLs where the servers should listen for requests. For this, we

use the UseUrls function, passing the URLs separated by semicolons. It is important to

know that some servers, like Kestrel, also provide a configuration for specifying listening

locations. We could, of course, use the server’s configuration in conjunction with those

specified on the web host, but it’s also possible to explicitly prefer the host’s URLs to the

server’s by using the PreferHostingUrls method.

In the default template we explored previously you might have noticed that Run

is called on IwebHost; this will run the host, blocking any further execution of the

application until the host terminates. We can run the web host in a non-blocking fashion

by calling Start instead.

Chapter 4 extensibility arChiteCture

39

Let’s conclude with two important interfaces used in hosting: the

IHostingEnvironment interface provides context for the current execution environment,

like application and environment name as well as file providers for serving content

from the web and content roots, while the IApplicationLifetime interface allows for

handling events when the application is started and stopped, as well as for providing a

method for stopping the application explicitly.

In ASP.NET Core, servers are responsible for reacting to requests made by clients by

passing these requests to the application as HttpContexts. By default, ASP.NET Core 2.0

includes two built-in servers: Kestrel, a cross-platform HTTP server based on Libuv, and

HTTP.sys, a Windows-only server based on the HTTP.sys kernel driver. Figure 4-1 shows

a diagram of how servers pass requests to the application.

Tip although this book only focuses on some aspects of Kestrel, http.sys is not
covered in further detail.

Kestrel can be hosted by itself as a standalone process, or inside IIS. It is generally a

good idea to use reverse proxy servers such as IIS or Nginx. These act as a gateway when

building API or microservices, providing an additional defense layer as they limit the

exposed surface area of or integrate better with existing infrastructure.

When using a reverse proxy, the requests are first handled by the reverse proxy

server (which is separate from the application) and are then delegated down to Kestrel.

Figure 4-2 shows the request interaction when a reverse proxy server like IIS is used.

Figure 4-1. The request map from the client to the application code

Figure 4-2. HTTP request interaction with IIS as reverse proxy

Chapter 4 extensibility arChiteCture

40

To tell the web host to work behind IIS, we use the UseIISIntegration extension

method from IwebHostBuilder. We will configure the host to listen for requests coming

from the ASP.NET Core IIS Module (ANCM), an IIS module explicitly built for serving

requests from IIS to ASP.NET Core.

Note anCM must be installed in iis on the server (or iis express on your
development machine) for the iis integration to work. Visual studio automatically
installs anCM for us on iis express. anCM for servers can be downloaded from
https://aka.ms/dotnetcore.2.0.0-windowshosting.

As mentioned before, ASP.NET Core is super pluggable. If you want to use

another server, you most definitely can. We learned earlier that calling WebHost.

CreateDefaultBuilder will automatically configure Kestrel as the server, but we can

override this behavior so it uses HTTP.sys instead by using the UseHttpSys extension

method. Let’s look at the source code of this method to understand what this does

beneath the surface:

public static IWebHostBuilder UseHttpSys(this IWebHostBuilder hostBuilder)

{

 return hostBuilder.ConfigureServices(services => {

 services.AddSingleton<IServer, MessagePump>();

 // ...

 });

}

See something familiar? This method registers a singleton of an IServer as a

MessagePump, which is an implementation of HTTP.sys. If you dig deeper, you will notice that

MessagePump implements the IServer interface. There is also a UseKestrel method that

binds IServer to KestrelHttpServer. Here’s the source code for the UseKestrel method:

public static IWebHostBuilder UseKestrel(this IWebHostBuilder hostBuilder)

{

 return hostBuilder.ConfigureServices(services => {

 // ...

 services.AddSingleton<IServer, KestrelServer>();

Chapter 4 extensibility arChiteCture

https://aka.ms/dotnetcore.2.0.0-windowshosting

41

 // ...

 });

}

Note Order matters when registering dependencies. if we call
AddSingleton<TInterface, TService>() multiple times with the same
TInterface, the last TService registered will override the previous.

Kestrel and HTTP.sys are built-in, but what if we want to use a third-party server,

like FooServer? Another extension on IWebHostBuilder is UseServer, which accepts an

instance of type IServer. Investigating the source of this method will reveal that, again, it

simply registers a singleton of type IServer:

public static IWebHostBuilder UseServer(this IWebHostBuilder hostBuilder,

IServer server)

{

// ...

 return hostBuilder.ConfigureServices(services => {

 services.AddSingleton(server);

 });

}

 Creating a Custom Server
To create our custom server, we simply need to implement IServer, which has the

following signature:

public interface IServer : IDisposable

{

 IFeatureCollection Features { get; }

 Task StartAsync<TContext>(IHttpApplication<TContext> application,

CancellationToken cancellationToken);

 Task StopAsync(CancellationToken cancellationToken);

}

Chapter 4 extensibility arChiteCture

42

Note IServer requires a set of features to be implemented. you are free to
implement just the features needed by your application, but at a minimum it needs
to support IHttpRequestFeature and IHttpResponseFeature.

The server we will build is called AwesomeServer, an HTTP server that receives

specific requests via files that are dropped in a folder on disk (instead of a network port)

and then forwards them as proper HTTP requests to the rest of the request pipeline of

the application. After the application processes the request, the returning response will

overwrite the same file. Figure 4-3 shows a diagram of how a request is read from a file

and the returning response is written back.

Let’s look under the hood of the AwesomeServer class:

public class AwesomeServer : IServer

{

 public AwesomeServer(IOptions<AwesomeServerOptions> options)

 {

 Features.Set<IHttpRequestFeature>(new HttpRequestFeature());

 Features.Set<IHttpResponseFeature>(new HttpResponseFeature());

 var serverAddressesFeature = new ServerAddressesFeature();

 serverAddressesFeature.Addresses.Add(options.Value.FolderPath);

 Features.Set<IServerAddressesFeature>(serverAddressesFeature);

 }

 public IFeatureCollection Features { get; } = new FeatureCollection();

 public void Dispose() { }

Figure 4-3. The high-level architecture of AwesomeServer

Chapter 4 extensibility arChiteCture

43

 public Task StartAsync<TContext>(IHttpApplication<TContext>

application, CancellationToken cancellationToken)

 {

 return Task.Run(() =>

 {

 var watcher = new AwesomeFolderWatcher<TContext>(application,

Features);

 watcher.Watch();

 });

 }

 public Task StopAsync(CancellationToken cancellationToken)

 {

 return Task.FromResult(0);

 }

}

Starting in the constructor, after adding the two features that are required at

a minimum to make AwesomeServer an HTTP server, we create a new instance of

IServerAddressesFeature, adding the folder path from the IOptions injected and then

adding the feature to the IFeatureCollection.

The IFeatureCollection contains the capabilities of the server. The AwesomeServer

has a server listening address and can process requests as well as responses. StartAsync

and StopAsync contain logic for starting and stopping the server.

When AwesomeServer starts up, a new instance of AwesomeFolderWatcher is

created that is responsible for watching a specific folder. To put things in perspective,

AwesomeFolderWatcher to AwesomeServer is the same as Libuv is to Kestrel.

Here are the contents of AwesomeFolderWatcher:

public class AwesomeFolderWatcher<TContext>

{

 private readonly FileSystemWatcher watcher;

 private readonly IHttpApplication<TContext> application;

 private readonly IFeatureCollection features;

 public AwesomeFolderWatcher(IHttpApplication<TContext> application,

IFeatureCollection features)

 {

Chapter 4 extensibility arChiteCture

44

 var path = features.Get<IServerAddressesFeature>().Addresses.

FirstOrDefault();

 this.watcher = new FileSystemWatcher(path);

 this.watcher.EnableRaisingEvents = true;

 this.application = application;

 this.features = features;

 }

 public void Watch()

 {

 watcher.Created += async (sender, e) =>

 {

 var context = (HostingApplication.Context)(object)application.

CreateContext(features);

 context.HttpContext = new AwesomeHttpContext(features,

e.FullPath);

 await application.ProcessRequestAsync((TContext)(object)context);

 context.HttpContext.Response.OnCompleted(null, null);

 };

 Task.Run(() => watcher.WaitForChanged(WatcherChangeTypes.All));

 }

}

The constructor accepts an IHttpApplication<TContext>, which is an instance of

the application, as we as an IFeatureCollection. Furthermore, a new global instance

of the standard .NET FileSystemWatcher is created inside the constructor and is

configured to watch the folder specified in IServerAddressesFeature.

The Watch method just adds a delegate to the FileSystemWatcher’s Created event

containing the logic to execute whenever a new file is created in the folder being

monitored. Here, we create a new application context, assigning its HttpContext as

a new instance of AwesomeHttpContext, which is a specific override of HttpContext

created especially for the file system.

After an HttpContext is created that contains an HttpRequest and HttpResponse,

we pass it to the application for processing in its request pipeline. When the application

finishes the request and returns the response, we signal the completion of the request by

calling OnCompleted on the Response property of the HttpContext.

Chapter 4 extensibility arChiteCture

45

Let’s investigate a summarized snippet of AwesomeHttpContext:

public class AwesomeHttpContext : HttpContext

{

 public AwesomeHttpContext(IFeatureCollection features, string path)

 {

 this.Features = features;

 this.Request = new FileHttpRequest(this, path);

 this.Response = new FileHttpResponse(this, path);

 }

 public override HttpRequest Request { get; }

 public override HttpResponse Response { get; }

 public override IFeatureCollection Features { get; }

 // ...

}

One of the parameters that the constructor of AwesomeHttpContext accepts is

a folder path, which is passed to both the Request and the Response properties.

FileHttpRequest and FileHttpResponse both inherit from and override the

HttpRequest and HttpResponse, respectively.

Now that we have an HttpContext let’s quickly take a step back and understand

how the request will be translated from plain text in a file. Like the syntax of an HTTP

request, the file contents need to match a specific structure. To keep things simple, we

will stick to the following format:

{HTTP Verb} {Relative Path}

Now, looking into FileHttpRequest, we see that the file is read, the contents

are parsed, and the required parts are built for making a valid HttpRequest that the

application can process:

public class FileHttpRequest : HttpRequest

{

 public FileHttpRequest(HttpContext httpContext, string path)

 {

 var lines = File.ReadAllText(path).Split('\n');

 var request = lines[0].Split(' ');

 this.Method = request[0];

Chapter 4 extensibility arChiteCture

46

 this.Path = request[1];

 this.HttpContext = httpContext;

 }

 public override string Method { get; set; }

 public override PathString Path { get; set; }

 public override string Scheme { get; set; } = "file";

 public override HttpContext HttpContext { get; }

 // ...

}

When the request passes through the application request pipeline, a response is

created and ultimately ends up back on the server. Upon return of the response, we

call the OnCompleted method to run specific logic for handling the response. Here is a

snippet of FileHttpResponse:

public class FileHttpResponse : HttpResponse

{

 public override void OnCompleted(Func<object, Task> callback, object

state)

 {

 using (var reader = new StreamReader(this.Body))

 {

 this.Body.Position = 0;

 var text = reader.ReadToEnd();

 File.WriteAllText(path, $"{this.StatusCode} - {text}");

 this.Body.Flush();

 this.Body.Dispose();

 }

 }

 // ...

}

When calling OnCompleted, we read the response body and write it—together with

the status code—to the original file.

Finally, to keep to the Add/Use pattern, we create an extension method for wiring up

an instance of IServer as AwesomeServer:

Chapter 4 extensibility arChiteCture

47

public static IWebHostBuilder UseAwesomeServer(this IWebHostBuilder

hostBuilder, Action<AwesomeServerOptions> options)

{

 return hostBuilder.ConfigureServices(services =>

 {

 services.Configure(options);

 services.AddSingleton<IServer, AwesomeServer>();

 });

}

Now, let’s take our custom server for a spin! The application in the following sample is

created from the standard Empty template, which returns “Hello World” for any request.

We add UseAwesomeServer when creating the web host, specifying the folder to monitor:

public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseAwesomeServer(o=>o.FolderPath = @"c:\sandbox\in")

 .UseStartup<Startup>()

 .Build();

Figure 4-4 shows the console when running the application. Notice that it listens on

a folder path instead of a URL.

Figure 4-5 shows a sample file that we copy to the c:\sandbox\in directory.

Figure 4-4. The console output when starting an application with
AwesomeServer

Chapter 4 extensibility arChiteCture

48

When dropping the file into the Listen directory, we can see from the logs on the

console that the request was successfully processed and the response was then written to

the original file. Figure 4-6 shows this in action.

Note although using an http server based on the file system isn’t particularly
useful, the preceding example is used only to show the possibilities for
implementing a custom server.

Figure 4-5. The sample file contents

Figure 4-6. The final result after processing the file

Chapter 4 extensibility arChiteCture

49

We now have a better understanding of web hosts and servers in ASP.NET Core from

an extensibility perspective. In the next section, we’ll delve into the request pipeline of

an ASP.NET Core application.

 Middleware
The components that are assembled within the application request pipeline are called

middleware and are responsible for handling requests and responses passing through

the pipeline. In the context of an HTTP request pipeline, middleware is also commonly

referred to as request delegates, which are orchestrated using the Run, Map, and Use

extension methods.

Each middleware component can perform optional logic before and after it is

invoked, as well as choose to pass the request on to the next middleware component in

the pipeline. Figure 4-7 demonstrates the flow of a request through the middleware in an

application request pipeline.

In the preceding example, an incoming request passes through the logic of the first

three middleware components. At middleware 3, the request is then short-circuited and

returns a response, which passes through more logic of middleware 2 and middleware 1.

The logic of middleware 4 is not executed in this case.

Figure 4-7. The flow of a request through the middleware components

Chapter 4 extensibility arChiteCture

50

Having these composable layers of request delegates makes ASP.NET Core

extraordinarily extensible, and applications built on ASP.NET Core are almost entirely

made out of middleware. This architecture helps ASP.NET Core adhere to the Layered

System constraint of REST.

We briefly covered the use of the Run, Map, and Use extension methods in

the previous chapter, but let’s do a quick refresher to wrap our heads around the

construction of middleware. Request delegates can be defined inline (also called inline

middleware) or separately in a reusable class.

Here’s a configuration application that uses a combination of Run, Map, and Use to

invoke middleware inline:

public void Configure(IApplicationBuilder app)

{

 app.Map("/skip", (skipApp) => skipApp.Run(async (context) =>

 await context.Response.WriteAsync($"Skip the line!")));

 app.Use(async (context, next) =>

 {

 var value = context.Request.Query["value"].ToString();

 if (int.TryParse(value, out int intValue))

 {

 await context.Response.WriteAsync($"You entered a number:

{intValue}");

 }

 else

 {

 context.Items["value"] = value;

 await next();

 }

 });

 app.Use(async (context, next) =>

 {

 var value = context.Items["value"].ToString();

 if (int.TryParse(value, out int intValue))

 {

Chapter 4 extensibility arChiteCture

51

 await context.Response.WriteAsync($"You entered a number:

{intValue}");

 }

 else

 {

 await next();

 }

 });

 app.Use(async (context, next) =>

 {

 var value = context.Items["value"].ToString();

 context.Items["value"] = value.ToUpper();

 await next();

 });

 app.Use(async (context, next) =>

 {

 var value = context.Items["value"].ToString();

 context.Items["value"] = Regex.Replace(value, "(?<!^)[AEUI](?!$)",

"*");

 await next();

 });

 app.Run(async (context) =>

 {

 var value = context.Items["value"].ToString();

 await context.Response.WriteAsync($"You entered a string: {value}");

 });

}

Let’s break it down: app.Use("/skip", ...) branches the pipeline matching the

given request URL and then executes the sub-application. When we execute /skip, we

see “Skip the line!” as the response.

Chapter 4 extensibility arChiteCture

52

Back on the main branch, the first middleware checks if the value query parameter

is a number, then it short-circuits the pipeline; when the value query parameter is a

string value, then it assigns a context variable to hold the value and calls next(); to

invoke the following request delegate in the pipeline. When we execute /?value=123 we

get back “You entered a number: 123” as the response.

The second middleware updates the value context variable to an uppercase value

and then calls next(); to invoke the third middleware component, which updates the

value context variable by replacing all vowels with a “*” character and then calls next();

to invoke the last request delegate.

App.Run(...) ultimately executes after the uppercase and masking middleware have

modified the value. If we execute /?value=fanie+reynders we get back “You entered a

string: F*N** R*YND*RS” as the response.

Note it is imperative to understand that ordering matters when working with
request delegates in the application pipeline. the order in which it is defined is the
order in which the components will execute the request and the reverse thereof for
the response during runtime.

Let’s take the previous example and refactor the number check request delegate into

a separate class called NumberCheckerMiddleware to make it reusable.

public class NumberCheckerMiddleware

{

 private readonly RequestDelegate next;

 public NumberCheckerMiddleware(RequestDelegate next)

 {

 this.next = next;

 }

 public async Task Invoke(HttpContext context)

 {

 var value = context.Request.Query["value"].ToString();

 if (int.TryParse(value, out int intValue))

 {

 await context.Response.WriteAsync($"You entered a number:

{intValue}");

Chapter 4 extensibility arChiteCture

53

 }

 else

 {

 context.Items["value"] = value;

 await next(context);

 }

 }

}

Middleware as a separate class is preferred over inline middleware in ASP.NET Core.

Writing middleware as classes requires a class with at least one constructor that expects

the next RequestDelegate in the pipeline as a parameter and an Invoke method that

receives the HttpContext. Regarding the rest of the code changes, it was pretty much

copy-and-paste, except when invoking next(...), as it required the HttpContext as a

parameter.

Instead of calling the number checker delegate inline, we now use app.UseMiddl

eware<NumberCheckerMiddleware>(). We could go a step further and write extension

methods for our middleware:

public static class NumberCheckerMiddlewareExtensions

{

 public static IApplicationBuilder UseNumberChecker(this

IApplicationBuilder app)

 {

 return app.UseMiddleware<NumberCheckerMiddleware>();

 }

}

This allows us to call app.UseNumberChecker(), which makes things more readable.

Here’s what the code could look like when applying these practices:

public void Configure(IApplicationBuilder app)

{

 app.Map("/skip", (skipApp) => skipApp.UseSkipApp());

 app.UseNumberChecker();

 app.UseUpperValue();

 app.UseVowelMasker();

 app.Run(async (context) =>

Chapter 4 extensibility arChiteCture

54

 {

 var value = context.Items["value"].ToString();

 await context.Response.WriteAsync($"You entered a string:

{value}");

 });

}

ASP.NET Core comes with many standard middleware options built in for

authentication, CORS configuration, response caching and compression, routing, managing

sessions, static files, and managing URL rewriting. In the next section, we will look at how

the routing middleware can help us when working with URLs in our application.

 Routing
Request routing is one of the fundamental features of any API application and helps

with identifying resources as Uniform Resource Identifiers (URIs). In ASP.NET Core we

make use of the RouterMiddleware, which gives us the functionality to map an incoming

request to a route handler.

Application routes are configured when the application starts up, and they can

optionally extract values from request URLs to be used further along in the pipeline.

Because the routes are defined based on a specific template, it is also possible to

generate URLs for particular routes during runtime.

An application uses one collection of routes, and when a request comes into the

handler, it scans each route in order and matches the given request to the appropriate

template.

Note this section describes the low-level basics of routing and is not detailing
any specifics of routing from the MVC framework.

To start using the routing functionality, we follow the Add/Use pattern to opt in to the

routing feature within ConfigureServices of the application Startup:

public void ConfigureServices(IServiceCollection services)

{

 services.AddRouting();

}

Chapter 4 extensibility arChiteCture

55

public void Configure(IApplicationBuilder app)

{

 app.UseRouter(...);

}

The UseRouter extension method either receives an IRouter or an

Action<IRouteBuilder>. For simplicity, we’ll use the Action<IRouteBuilder> variant. Using

the provided IRouteBuilder, we can wire up all our necessary routes for the application.

app.UseRouter(builder=>

{

 builder.MapRoute(string.Empty, context =>

 {

 return context.Response.WriteAsync($"Welcome to the default route!"));

 }

 builder.MapGet("foo/{name}/{surname?}", (request, response, routeData) =>

 {

 return response.WriteAsync($"Welcome to Foo, {routeData.

Values["name"]} {routeData.Values["surname"]}"));

 }

 builder.MapPost("bar/{number:int}", (request, response, routeData) =>

 {

 return response.WriteAsync($"Welcome to Bar, number is {routeData.

Values["number"]}"));

 }

});

The builder has many extension methods for building routes for specific types of

requests, and each one receives a route template and request delegate. When using the

RoutingMiddleware, we should always specify a default handler, which is what we do

when calling builder.MapRoute(...), specifying an empty route template and passing a

request delegate that writes “Welcome to the default route!” to the response.

Using builder.MapGet(...) and builder.MapPost(...) will cause the router to

catch all the GET and POST requests, respectively, matching the given templates. Route

data variables can be specified in the templates using the curly braces convention and

consumed by using the provided RouteData parameter.

Chapter 4 extensibility arChiteCture

56

The second route, foo/{name}/{surname?}, will match a URL starting with “foo/”

followed by a value that will be allocated as name and then an optional value as surname.

Optional route variables are denoted using the question mark (?), making them nullable.

Routes can also be further constrained by data type, as seen on the third route, where

POST requests are matched using bar/{number:int}. The value of the number route

variable must be a valid number for the resolver to match the route. There are many

route constraints available that we can apply on route templates, ranging from typed or

ranges to regular expressions.

Generating a URL for a specific route is quite straightforward. Compile a

RouteValueDictionary containing all the route data necessary, create a new

VirtualPathContext, and pass in the HttpContext, RouteValueDictionary, and route

name. By selecting a specific IRoute from the builder’s route collection, we can generate

a relative URL by calling GetVirtualPath.

builder.MapRoute(string.Empty, context =>

{

 var routeValues = new RouteValueDictionary

 {

 { "number", 456 }

 };

 var vpc = new VirtualPathContext(context, null, routeValues, "bar/

{number:int}");

 var route = builder.Routes.Single(r => r.ToString().Equals(vpc.

RouteName));

 var barUrl = route.GetVirtualPath(vpc).VirtualPath;

 return context.Response.WriteAsync($"URL: {barUrl}");

});

Tip to learn more about routing in asp.net Core, please refer to the
fundamentals section of the asp.net Core Documentation at https://docs.
microsoft.com/en-us/aspnet/core/fundamentals/routing.

Chapter 4 extensibility arChiteCture

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing

57

 Hosted Services
A hosted service provides a mechanism for running background tasks within the lifetime

scope of the application. It is quite handy in scenarios where long-running tasks need to

run in the background of an application continuously.

ASP.NET Core provides the IHostedService interface for creating hosted services.

Let’s take a look at its signature.

public interface IHostedService

{

 Task StartAsync(CancellationToken cancellationToken);

 Task StopAsync(CancellationToken cancellationToken);

}

The StartAsync method will fire when the host starts up the hosted service, and

StopAsync will be executed once the host is shutting down.

Let’s put this to the test! A practical example of a hosted service implementation is

data synchronization. In this case, we have an external service providing our application

with comments data. To prevent too many calls to this external service and to have the

risk of being blocked, we can implement a hosted service that downloads the comments

locally for our application to consume safely.

Here’s a snippet of the implementation class called AwesomeHostedService:

public class AwesomeHostedService : IHostedService

{

 private readonly IHostingEnvironment env;

 public AwesomeHostedService(IHostingEnvironment env)

 {

 this.env = env;

 }

 public async Task StartAsync(CancellationToken cancellationToken)

 {

 var client = new HttpClient();

 var file = $@"{env.ContentRootPath}\wwwroot\comments.json";

 while (true)

 {

Chapter 4 extensibility arChiteCture

58

 var response = await client.GetAsync("https://api.external.com/

comments");

 using (var output = File.OpenWrite(file))

 using (var content = await response.Content.

ReadAsStreamAsync())

 {

 content.CopyTo(output);

 }

 Thread.Sleep(60000);

 }

 }

 public Task StopAsync(CancellationToken cancellationToken)

 {

 return Task.FromResult(0);

 }

}

When the hosted service starts up, we use an HttpClient to get all the available

comments from the external service’s API and save them locally to disk as a JSON file.

By injecting the IHostingEnvironment, we can get the content root path wherein the

wwwroot folder resides. This job is executed indefinitely every minute.

Now that we have implemented a hosted service, we need to tell the application

configuration about it. In the ConfigureServices function of the Startup class, we

register a singleton of AwesomeHostedService as IHostedService. When the host starts

up, it will then load all the instances of IHostedService and start them accordingly.

public void ConfigureServices(IServiceCollection services)

{

 services.AddSingleton<IHostedService, MyAwesomeHostedService>();

}

Chapter 4 extensibility arChiteCture

59

 Wrapping up
What an exciting chapter this was! We learned plenty of great things about web hosts

and servers in ASP.NET Core. We also looked a little more in-depth at the concept of

middleware and discovered that most of ASP.NET Core’s infrastructure is based on

request delegates living inside an application request pipeline. We also briefly covered

the routing middleware, allowing us to specify individual routes for specific request

delegates within our application.

Looking back, it was quite a mouthful of code examples to follow along with and try

by yourself. In the next chapter, we’ll dive into MVC to learn more about this framework

for ASP.NET Core.

Chapter 4 extensibility arChiteCture

MVC
This chapter will focus on the implementation of the MVC pattern within ASP.NET Core,

specifically from an API perspective as a fully functional web framework. We will explore

how data are mapped from HTTP requests and bound to action parameters and strongly

typed models, as well as how these models are validated before any data processing

happens.

At the end of this chapter, we will also have a broader understanding of how controllers

work and grasp the importance of action methods to handle incoming requests. We will

learn all about filters and how they can help by executing code before and after the

processing of requests in the pipeline.

Returning the appropriate responses is crucial in APIs, and formatting these

responses is essential when dealing with many different types of responses. In this

chapter, we will also look at how content negotiation uses formatters to return data in

specific formats for specific requests and how we can create custom response formatters

for serving particular responses.

The last section will briefly cover application parts, a new concept in ASP.NET Core

that allows applications to be much more modular than before by discovering MVC

components from within the application context or external assemblies.

 The MVC Pattern
Model View Controller (MVC) is a software design pattern for implementing web

applications with user interfaces, and it is used to separate the concerns of three major

components, which are models, views, and controllers. This architectural pattern has

been around for many years, and it strives to promote code reuse and simultaneous

development.

62

Controllers are the main entry point and handle requests initiated from user

interaction. Logic is performed from within the controller, and then it potentially creates

a model, which houses the state of the application and the business logic around it.

The model is then passed by the controller to a view, which has the responsibility of

rendering a user interface, possibly containing the data from the model. Figure 5-1

shows the interaction of these three components.

Figure 5-1. The communication between the parts of the Model View Controller
pattern

 MVC in ASP.NET Core
ASP.NET Core MVC is an application framework built on top of ASP.NET Core that allows

us to make dynamic web applications with a clean separation of concerns. Compared

to its predecessor, ASP.NET MVC (version 1 to 5), the new ASP.NET Core MVC version

is open source, lightweight, and redesigned from the ground up to be faster and smaller

than before. Its design gives us control entirely over markup and promotes testability

within our applications.

When we look at the previous version of ASP.NET, two of the application models

it contains are MVC and Web API. The MVC application model was initially intended

for rendering views and is used in interactive web applications, whereas Web API was

designed to provide data responses, mainly as XML and JSON formats that are used in

web APIs.

Chapter 5 MVC

63

When we investigate the different components in these application models, we notice

that they each contain identical features. Although it may seem like they are sharing these

elements among themselves, in reality they are not. Figure 5-2 shows a comparison of the

components in MVC 5.x and Web API 2.x in the earlier versions of ASP.NET.

Figure 5-2. A component comparison between ASP.NET MVC 5.x and ASP.NET
Web API 2.x

The new ASP.NET Core MVC framework unifies the web UI and web API concepts

by genuinely sharing the key components that make up web applications. Inherently it is

cross-platform due to the infrastructure of .NET Core and benefits from the same hosting

mechanism as ASP.NET Core. Furthermore, ASP.NET Core MVC introduces brand-new

concepts for working with user interfaces, like view components, razor pages, and

tag helpers.

In ASP.NET Core MVC, the controllers, actions, filters, model binding, dependency

injection, and routing components are shared in one unified application request

pipeline. Think of MVC in ASP.NET Core as a sub-application middleware containing an

inner middleware infrastructure.

Chapter 5 MVC

64

Naming things is hard. During the development of ASP.NET Core, it was initially

called ASP.NET vNext, then renamed to ASP.NET 5 and contained MVC, which was

called MVC 6. Confusion about compatibility and interoperability started to arise from

developers in the community until the team decided to reboot and chose the name

ASP.NET Core—one web framework that contains reusable modules, leaving MVC to be

just a module referred to as ASP.NET Core MVC.

Note the contents of this book describing MVC is limited to the scope of apIs only
and will not contain the other features that are exclusively used for rendering UIs.

 Controllers and Actions
In ASP.NET Core MVC, controllers are used to logically group a section of an application

with a set of standard actions or endpoints. They provide the infrastructure for executing

action methods. Actions are just functions that can accept parameters, do some logic, and

return a specific result, which is then propagated down to the HTTP response at the end.

Action methods can be used to return views for UI-based web applications as well

as data in different formats for API-based web applications. From the request pipeline,

the routing mechanism relays a request to a specific action method contained inside a

controller. Figure 5-3 shows a diagram of the request’s journey to the action method.

Figure 5-3. The flow of a request through the pipeline to action methods and back

Chapter 5 MVC

65

Controllers and actions can be defined in many ways inside ASP.NET Core. By default,

controller classes reside in the Controllers folder in the root of the application and

inherit from the Microsoft.AspNetCore.Mvc.Controller abstract class. The following

example shows how this is done:

namespace Awesome.Api.Controllers

{

 public class People : Controller

 {

 // ...

 }

 // or

 public class CustomersController : Controller

 {

 // ...

 }

}

Alternatively, controllers can also be defined by using the built-in convention,

without the need to inherit from Microsoft.AspNetCore.Mvc.Controller, and are also

referred to as Plain Old CLR Object (POCO) classes. The convention for POCO classes is

to have their name suffixed with “Controller” as in the following example:

namespace Awesome.Api.Controllers

{

 public class PeopleController

 {

 // ...

 }

}

Note that in the preceding example the PeopleController class does not inherit

from the Controller base class. It is also possible to completely drop the “Controller”

suffix on POCO classes by applying the [Controller] attribute on the classes that

need to be classified as controllers. But what about normal classes that happen to

Chapter 5 MVC

66

have a “Controller” suffix? To prevent these normal POCO classes from being marked

as controllers, we can apply the [NonController] attribute on them to negate the

convention:

namespace Awesome.Api.Controllers

{

 [Controller]

 public class Ships

 {

 // ...

 }

}

namespace Awesome.Api.Models

{

 [NonController]

 public class ShipyardController

 {

 // ...

 }

}

If we investigate the source code of ASP.NET Core MVC, we will notice that this is

exactly how the base class ControllerBase works. Classes that inherit from Controller,

which inherits from ControllerBase, will automatically get the [Controller] attribute

because they reside in the ControllerBase class.

When working with an IoC container for injecting dependencies, it is advised to

follow the Explicit Dependency Principle, which means using the constructor of a class

and explicitly defining parameters as receiving dependencies.

namespace Awesome.Api.Controllers

{

 public class PeopleController

 {

 private readonly IMyService _myService;

 public PeopleController(IMyService myService)

 {

Chapter 5 MVC

67

 this.myService = myService;

 }

 // ...

 }

}

Note the controller abstracts the user interface from the back-end, and as
a good practice it is important to also keep business logic out of controllers by
delegating the heavy lifting to services instead.

Actions are defined using public methods with potential input parameters, and they

can return any type, but mostly the return type is IActionResult. Action methods also

can adhere to explicit and implicit conventions by prefixing the method names with one

of the HTTP verbs or by using the [HttpGet], [HttpPut], [HttpPost], [HttpDelete],

[HttpHead], [HttpOptions], and [HttpPatch] attributes.

Just like in the case of non-controllers, methods that happen to be prefixed with

any of the HTTP verbs can be de-classified as action methods by using the [NonAction]

attribute.

public class PeopleController

{

 public IActionResult Get()

 {

 // ...

 }

 public IActionResult GetOne(int id)

 {

 // ...

 }

 [HttpGet]

 public IActionResult FindPerson(string query)

 {

 // ...

 }

Chapter 5 MVC

68

 public IActionResult Post(Person person)

 {

 // ...

 }

 [HttpDelete]

 public IActionResult RemovePerson(int id)

 {

 // ...

 }

 [NonAction]

 public IActionResult GetCurrentTime(int id)

 {

 // ...

 }

}

Using POCO classes as controllers is great, but we can benefit from more built- in

goodness by having controllers inherit from the Controller base class. For empty

responses, it provides helper methods like Ok, NotFound, and BadRequest to respond

with the proper HTTP status codes of 200, 404, and 400, respectively. We can also do

redirection by using the Redirect, LocalRedirect, or RedirectToRoute methods. When

working with non-empty responses, we can use the formatted response helper methods

Ok, Json, File, or Content for APIs and View for rendering HTML.

When working with content negotiation, it is better to use non–type specific methods

like Ok, BadRequest, Created, and so forth. Here is a typical controller containing some of

the helper methods mentioned:

public class PeopleController : Controller

{

 private readonly IPeopleService _peopleService;

 public PeopleController(IPeopleService peopleService)

 {

 this._peopleService = peopleService;

 }

Chapter 5 MVC

69

 public IActionResult Get()

 {

 var people = _peopleService.GetAllPeople();

 return Ok(people);

 }

 public IActionResult Get(int id)

 {

 if (_peopleService.DoesExists(id))

 {

 var person = _peopleService.GetOnePerson(id);

 return Ok(person);

 }

 return NotFound();

 }

 public IActionResult Post(Person person)

 {

 if (_peopleService.Validated(person))

 {

 _peopleService.Create(person);

 return CreatedAtAction(nameof(this.Get), person.Id);

 }

 return BadRequest();

 }

}

If you don’t want to use the provided Controller class and like to stick to the POCO

style convention, it is possible to achieve the same result by just returning a new instance

of an IActionResult. Here’s a snippet of the same code but refactored using the POCO

style:

public class PeopleController

{

 // ...

Chapter 5 MVC

70

 public IActionResult Get()

 {

 var people = _peopleService.GetAllPeople();

 return new OkObjectResult(people);

 }

 public IActionResult Get(int id)

 {

 if (_peopleService.DoesExists(id))

 {

 var person = _peopleService.GetOnePerson(id);

 return new OkObjectResult(person);

 }

 return new NotFoundResult();

 }

 // ...

}

Let’s now add routing to our endpoints. We covered some of the aspects of routing in

Chapter 4, and specifically in the MVC world we can use routing to bind requests coming

from certain routes to action methods.

There are two ways of defining routes for an MVC application—namely, using

the IRouteBuilder and using attribute-based routing. We’ve seen some examples of

IRouteBuilder previously, but here’s a quick example of the Configure method in a

Startup in the context of MVC:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 app.UseMvc(builder =>

 {

 builder.MapRoute("default", "api/{controller}/{action}/{id?}"));

 });

}

Chapter 5 MVC

71

In the preceding example, we create a global route to catch all relevant requests

with a URL matching [controller]/[action]/ followed by an optional identification

number. From a REST perspective, it is better to infer the action methods by HTTP verbs

instead, which is where attribute routing can come in handy.

As the name suggests, attribute routing allows us to explicitly define routes for

endpoints directly on controllers and action methods. In the following example, we see a

typical controller making use of attribute-based routing:

[Route("api/[controller]")]

public class PeopleController

{

 // GET api/people

 [HttpGet("")]

 public IEnumerable<string> Get()

 {

 // ...

 }

 // GET api/people/top

 [HttpGet("top/{n}")]

 public IEnumerable<string> GetTopN(int n)

 {

 // ...

 }

 // POST api/person

 [HttpPost("~/api/person")]

 public IEnumerable<string> Post(Person person)

 {

 // ...

 }

}

In my opinion, this is much more declarative than using the IRouteBuilder

directly. Using the [Route] attribute on the controllers defines the base route for all

the underlying actions, and then each action can contain one or more relative route

templates specified in the [Http...] attributes, except when they start with a tilde

character (~), which will override the base, as seen on the third action method.

Chapter 5 MVC

72

Using conventions in our coding makes things a whole lot easier by inferring some of

the obvious plumbing. The architecture of ASP.NET Core MVC even allows us to change

the conventions if we prefer something more declarative. Let’s look at the signature of

the IApplicationModelConvention interface provided by the framework to implement

custom conventions within MVC:

public interface IApplicationModelConvention

{

 void Apply(ApplicationModel application);

}

The Apply function receives an ApplicationModel, which is a representation of our

MVC application. An ApplicationModel contains a collection of ControllerModel objects,

which contains a collection of ActionModel objects. The goal of the convention design is to

map whatever class adheres to a specific convention into the abstraction structure provided.

Easy enough? Let’s take it for a test drive and implement our own convention that

uses the “Api” suffix instead of the “Controller” suffix for marking POCO classes as

controllers. Furthermore, we want our routes to be inferred from the namespace in this

example. The implementation would look a little like the following:

public class AwesomeApiControllerConvention : IApplicationModelConvention

{

 public void Apply(ApplicationModel application)

 {

 var controllers = Assembly

 .GetExecutingAssembly()

 .GetExportedTypes()

 .Where(t => t.Name.EndsWith("Api"));

 foreach (var controller in controllers)

 {

 var controllerName = controller.Name.Replace("Api", "");

 var model = new ControllerModel(controller.GetTypeInfo(),

controller.GetCustomAttributes().ToArray());

 model.ControllerName = controllerName;

 model.Selectors.Add(new SelectorModel

 {

Chapter 5 MVC

73

 AttributeRouteModel = new AttributeRouteModel()

 {

 Template = $"{controller.Namespace.Replace(".", "/")}/

{controllerName}"

 }

 });

 foreach (var action in controller.GetMethods().Where(p =>

p.ReturnType == typeof(IActionResult)))

 {

 var actionModel = new ActionModel(action, new object[] {

new HttpGetAttribute() })

 {

 ActionName = action.Name

 };

 actionModel.Selectors.Add(new SelectorModel());

 model.Actions.Add(actionModel);

 }

 application.Controllers.Add(model);

 }

 }

}

It all starts by scanning the current assembly for public classes that have a name

ending in “Api”. For each of these classes, a ControllerModel is created, assigning the

controller’s name as whatever the name of the class is (excluding “Api”) and setting its

route template as the namespace with forward slashes.

For each public method that has a return type of IActionResult, a new instance of

an ActionModel is created, wiring the appropriate action name in place. Once all the

actions have been registered, they are added to their applicable ControllerModel, which

is then added to the ApplicationModel.

Chapter 5 MVC

74

All that is left to do is tell ASP.NET Core about this convention. We can either replace

the default convention or add to it. In the following example, you can see how the

custom convention is wired inside the ConfigureServices method by adding it to the

conventions list:

public void ConfigureServices(IServiceCollection services)

{

 services

 .AddSingleton<IPeopleRepository,PeopleRepository>()

 .AddMvc((o) =>

 {

 o.Conventions.Add(new AwesomeApiControllerConvention());

 });

}

Using the following POCO class, we can test out the custom convention. Note that it is

in a special namespace that declares its route and contains a name that ends with “Api”:

namespace Api.People

{

 public class NamesApi

 {

 private readonly IPeopleRepository people;

 public NamesApi(IPeopleRepository people)

 {

 this.people = people;

 }

 public IActionResult Get()

 {

 return new OkObjectResult(people.All);

 }

 }

}

Now, after a quick build and run, it is time to test out the new convention! Use a

browser or any other HTTP client when making the request GET api/people/names,

and you will notice the expected response returned.

Chapter 5 MVC

75

 Model Binding and Validation
In ASP.NET Core MVC, incoming requests are mapped to parameters of action methods,

which can be simple types like integers and strings or more complex types like complete

data transfer objects (DTOs). This process of binding HTTP requests to method

parameters is called model binding and abstracts away the mapping logic to prevent

rewriting the same map over and over.

For example, with the route template api/{controller}/foo/{action}/{name?},

the request GET /api/people/foo/search/fanie?top=5 will invoke the Search action

method in the PeopleController with parameter name as fanie and parameter top as 5.

[Route("api/{controller}/foo/{action}")]

public class PeopleController

{

 [HttpGet("{name?")]

 public IActionResult Search(string name, int top)

 {

 // ...

 }

}

Notice that the name parameter is specified in the route, but not the id, and it still

maps the id parameter from the query parameters. If the name parameter weren’t part of

the route, its value would have tried to be resolved from the query parameters instead.

Likewise, let’s look at a route template specified as [HttpPost("~/api/people")]

and given a POST request with parameters like the following:

POST /api/people?name=Fanie&surname=Reynders

It will invoke the Post action method on PeopleController, accepting a PersonDto

as a complex type with its values mapped from the name and surname properties in the

payload.

 [HttpPost("~/api/people")]

 public IActionResult Post(PersonDto person)

 {

 // ...

}

Chapter 5 MVC

76

We can control the default behavior of model binding by explicitly tagging

parameters with their origin using the built-in [FromBody], [FromForm], [FromHeader],

[FromRoute], and [FromServices] attributes.

Posting raw JSON data to the preceding example will not bind to the person

parameter, causing its values to remain null. This is because the raw data is contained in

the request body, and to fix this we need to tag the person parameter with [FromBody].

After fixing the code, the following request will invoke the action method properly:

POST /api/people

{

 "name":"Fanie",

 "surname":"Reynders"

}

Here is the code containing the modification to the parameter for binding request

parameters to the request body:

[HttpPost("~/api/people")]

public IActionResult Post([FromBody]PersonDto person)

{

 // ...

}

Let’s say that we need to bind to specific entries in the request header from the

following request:

POST /api/people

Content-Type: application/json

Access-Token: 1234abcd

ClientId: MyClient1

{

 "name":"Fanie",

 "surname":"Reynders"

}

Chapter 5 MVC

77

We can simply use the [FromHeader] attribute and apply it to the appropriate action

method parameters:

[HttpPost("~/api/people")]

public IActionResult Post([FromBody]PersonDto person,

[FromHeader(Name="Access-Token")]string accessToken, [FromHeader]string

clientId)

{

 // ...

}

One of the great things about model binding in ASP.NET Core is that it is very

customizable. This is quite useful in scenarios where we want to look up some result

using data from an incoming request and have the result be bound to a specific

parameter type in the action result.

We can build custom model bindings by implementing the IModelBinder interface:

public interface IModelBinder

{

 Task BindModelAsync(ModelBindingContext bindingContext);

}

For example, let’s say we have an API endpoint that receives a Base64 string of

a photo and performs emotion recognition on it. Normally, we would have an action

method accept a string parameter as the Base64 content of the photo, then do the logic

for retrieving the emotional statistics inside the action.

Custom model binding can be useful in this case to allow us to receive a strongly

typed object in the action method containing an object with the emotion statistics instead

of a simple string value. Here is a snippet of a class that implements IModelBinder:

public class AwesomeModelBinder : IModelBinder

{

 public async Task BindModelAsync(ModelBindingContext bindingContext)

 {

 const string propertyName = "Photo";

 var valueProviderResult = bindingContext.ValueProvider.

GetValue(propertyName);

 var base64Value = valueProviderResult.FirstValue;

Chapter 5 MVC

78

 if (!string.IsNullOrEmpty(base64Value))

 {

 var bytes = Convert.FromBase64String(base64Value);

 var emotionResult = await GetEmotionResultAsync(bytes);

 var score = emotionResult.First().Scores;

 var result = new EmotionalPhotoDto

 {

 Contents = bytes,

 Scores = score

 };

 bindingContext.Result = ModelBindingResult.Success(result);

 }

 await Task.FromResult(Task.CompletedTask);

 }

 // ...

}

The BindModelAsync method retrieves the first value of the Photo property

on the model and then converts it to a byte array, which is then passed to the

GetEmotionResultAsync function for performing analysis on emotion statistics. The

result returned is then used to construct a new EmotionalPhotoDto object containing

the photo contents as well as the emotion statistics of the photo. Lastly, the result of the

binding context is then successfully set as the value of the EmotionalPhotoDto object.

Here are the contents of the GetEmotionResultAsync function, which uses an

HttpClient to do a service call to the emotion API of the Microsoft Cognitive Services

REST API to retrieve the emotion statistics of a given image:

private static async Task<EmotionResultDto[]> GetEmotionResultAsync(byte[]

byteArray)

{

 var client = new HttpClient();

 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key",

<SUBSCRIPTION_KEY>); //

Chapter 5 MVC

79

 var uri = "https://<SUBSCRIPTION_LOCATION>.api.cognitive.microsoft.com/

emotion/v1.0/recognize?";

 using (var content = new ByteArrayContent(byteArray))

 {

 content.Headers.ContentType = new MediaTypeHeaderValue("applicati

on/octet-stream");

 var response = await client.PostAsync(uri, content);

 var responseContent = await response.Content.ReadAsStringAsync();

 var result = JsonConvert.DeserializeObject<EmotionResultDto[]>

(responseContent);

 return result;

 }

}

This function returns the response as an array of EmotionResultDto, which looks like

the following:

public class EmotionResultDto

{

 public EmotionScoresDto Scores { get; set; }

}

public class EmotionScoresDto

{

 public float Anger { get; set; }

 public float Contempt { get; set; }

 public float Disgust { get; set; }

 public float Fear { get; set; }

 public float Happiness { get; set; }

 public float Neutral { get; set; }

 public float Sadness { get; set; }

 public float Surprise { get; set; }

}

Chapter 5 MVC

80

On the controller, we have a Post action receiving a parameter of type

EmotionalPhotoDto, which looks like the following:

[ModelBinder(typeof(AwesomeModelBinder))]

public class EmotionalPhotoDto

{

 public byte[] Contents { get; set; }

 public EmotionScoresDto Scores { get; set; }

}

Notice that the EmotionalPhotoDto class is decorated with the ModelBinder attribute

to map it to the AwesomeModelBinder. After running the application, we use Postman to

send a request to the endpoint, as demonstrated in Figure 5-4.

Figure 5-4. The Postman client sending a request to the API

Chapter 5 MVC

81

When the request is fired, we notice that the parameter expected in the Post action

is now properly bound by the emotion statistics of the given photo. Figure 5-5 shows

a breakpoint that is being hit, confirming our custom model binding is working as

expected.

Figure 5-5. The breakpoint is hit, showing the bound parameter

If you don’t like using ModelBinder attributes on classes, you could make use of a

model-binder provider. All you need to do is implement IModelBinderProvider:

public class AwesomeModelBinderProvider : IModelBinderProvider

{

 public IModelBinder GetBinder(ModelBinderProviderContext context)

 {

 if (context.Metadata.ModelType == typeof(EmotionalPhotoDto))

 {

 return new BinderTypeModelBinder(typeof(AwesomeModelBinder));

 }

 return null;

 }

}

Chapter 5 MVC

82

When the provider runs, it returns the appropriate model binder for a specific model

type. All that is left to do is to tell ASP.NET Core MVC about this provider; then, there’s no

more need to make use of the ModelBinder attributes.

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc(options =>

 {

 options.ModelBinderProviders.Insert(0,

new AwesomeModelBinderProvider());

 });

}

Following model binding, the concept of model validation refers to the validation of

data before it is used for further processing. Inside ASP.NET Core, validation is simplified

using validation attributes that are built right in for convenience. Applying validation

using these attributes simply requires us to decorate the appropriate properties on a

class that requires validation. ASP.NET Core MVC will take care of the rest when the

model is evaluated for validity. The following sample DTO class shows how we can

implement simple validation on a Person resource:

public class PersonDto

{

 [Required]

 public int Id { get; set; }

 [Required, MaxLength(20)]

 public string FirstName { get; set; }

 [MinLength(5)]

 public string LastName { get; set; }

 [EmailAddress]

 public string Email { get; set; }

 [Url]

 public string BlogUrl { get; set; }

 [Range(1, 5)]

 public int Level { get; set; }

}

Chapter 5 MVC

83

The attributes used in the preceding code are pretty much self-explanatory.

To validate a certain object, we can check for the ModelState.IsValid property, which is

provided by the ControllerBase class. Here’s an example of how a model is validated:

public IActionResult Post([FromBody] PersonDto item)

{

 if (ModelState.IsValid)

 {

 // do more stuff

 return Ok();

 }

 else

 {

 return BadRequest(ModelState);

 }

}

Tip When using pOCO controller classes, the ModelState property is not available
directly, but can be explicitly acquired by injecting an IActionContextAccessor
constructor parameter and reading the ModelState property from the
ActionContext provided.

When invoking the Post endpoint with the following invalid data in the request

payload:

POST /api/values

Content-Type: application/json

{

 "blogUrl":"http:\\www.example.org"

}

Chapter 5 MVC

84

we will get the following response back because ModelState.IsValid evaluated as false:

{

 "Level": [

 "The field Level must be between 1 and 5."

],

 "BlogUrl": [

 "The BlogUrl field is not a valid fully-qualified http, https, or

ftp URL."

],

 "FirstName": [

 "The FirstName field is required."

]

}

Generally, the validation attributes provided in the framework are enough, but we

can most definitely create our own validation rules if required. Custom validation can

be done in two ways—namely, as validation attributes by inheriting the custom attribute

from ValidationAttribute or by having the model implement the IValidatableObject

interface.

Let’s say we want to build a custom validation attribute that checks if the value starts

with a capital letter. The following code shows how we can achieve that by creating a

class that inherits from ValidationAttribute and overrides the IsValid function:

public class StartsWithCapitalLetterAttribute : ValidationAttribute

{

 protected override ValidationResult IsValid(object value,

ValidationContext validationContext)

 {

 if (value?.ToString()[0] != value?.ToString().ToUpper()[0])

 {

 return new ValidationResult("Value must start with capital

letter");

 }

 return ValidationResult.Success;

 }

}

Chapter 5 MVC

85

Now we can decorate the applicable string properties with a StartsWithCapitalLetter

attribute. Doing the same validation logic, but without the use of attributes, requires us

to have the model implement the IValidatableObject interface. Here is an extract of

the PersonDto:

public class PersonDto: IValidatableObject

{

 //...

 private bool StartsWithCaps(string value)

 {

 return !string.IsNullOrWhiteSpace(value) && value[0].Equals(value.

ToUpper()[0]);

 }

 public IEnumerable<ValidationResult> Validate(ValidationContext

validationContext)

 {

 const string message = "Value must start with capital letter";

 var results = new List<ValidationResult>();

 if (!StartsWithCaps(FirstName))

 {

 yield return new ValidationResult(message,new[] {

nameof(FirstName) });

 }

 if (!StartsWithCaps(LastName))

 {

 yield return new ValidationResult(message, new[] {

nameof(LastName) });

 }

 }

}

Model binding and model validation are both fundamental elements of ensuring

that APIs work correctly in ASP.NET Core and provide huge benefits in terms of the

abstraction, scalability, and maintainability of our code.

Chapter 5 MVC

86

 Filters
Just like middleware, filters in ASP.NET Core MVC provide a mechanism to execute code

before and after specific stages in the pipeline. Filters have their own sub-pipelines

that contain filters that run in a particular order. The filters are grouped into five types.

Figure 5-6 shows an overview of the pipeline in context with filters.

Figure 5-6. The request pipeline when interacting with filters

Authorization filters always run first, and their role is to determine if the user

in the HTTP context has sufficient privileges for accessing the current request.

They can short-circuit a request to return a specific result and implement either the

IAsyncAuthorizationFilter or IAsyncAuthorizationFilter interface.

Resource filters run just after the authorization filters and can run logic before

and after the rest of the pipeline. They run just before the model-binding process and

can perform work to implicate a model’s state. With resource filters, it’s also possible

to short-circuit a request, and they implement either the IAsyncResourceFilter or

IResourceFilter interface.

Before and after an action method is executed, action filters immediately run and can

manipulate the request and response. Action filters implement the IAsyncActionFilter or

IActionFilter interfaces.

In the event of unhandled exceptions, exception filters are used to apply policies

to exceptions not handled before any output is written to the response; these filters

implement either the IAsyncExceptionFilter or IExceptionFilter interface.

Chapter 5 MVC

87

Result filters run immediately before results are executed and only run when the

action method has completed successfully without any errors. Result filters implement

either the IAsyncResultFilter or IResultFilter interface.

Filters can be explicitly applied as attributes or globally registered inside the

Startup class. Before we create an action filter, let’s investigate the signatures of

IAsyncActionFilter and IActionFilter:

public interface IAsyncActionFilter : IFilterMetadata

{

 Task OnActionExecutionAsync(ActionExecutingContext context,

ActionExecutionDelegate next);

}

public interface IActionFilter : IFilterMetadata

{

 void OnActionExecuted(ActionExecutedContext context);

 void OnActionExecuting(ActionExecutingContext context);

}

Note Filters should be implemented using either the synchronous or the
asynchronous version of the interfaces because the framework first checks for the
implementation of the asynchronous version, then for the synchronous version.
the asynchronous filters always take precedence over the synchronous filter
implementations.

Now, let’s implement an action filter so we can understand filters better via a

practical example. The action filter that we will build will assign the timestamp in the

route value collection to the current timestamp when the request is processed. The

action method will also have access to this timestamp variable from its parameters via

model binding, which it will use in its response. When the action is finished, before the

result is rendered, a new header, X-EXPIRY-TIMESTAMP, will be added to the response

headers and will have the value of the original timestamp plus one hour.

Chapter 5 MVC

88

Here are the implementations of both the synchronous and asynchronous styles:

public class TimestampFilter : IActionFilter, IAsyncActionFilter

{

 public void OnActionExecuting(ActionExecutingContext context)

 {

 context.ActionDescriptor.RouteValues["timestamp"] = DateTime.Now.

ToString();

 }

 public void OnActionExecuted(ActionExecutedContext context)

 {

 var ts = DateTime.Parse(context.ActionDescriptor.

RouteValues["timestamp"])

 .AddHours(1)

 .ToString();

 context.HttpContext.Response.Headers["X-EXPIRY-TIMESTAMP"] = ts;

 }

 public async Task OnActionExecutionAsync(ActionExecutingContext

context, ActionExecutionDelegate next)

 {

 this.OnActionExecuting(context);

 var resultContext = await next();

 this.OnActionExecuted(resultContext);

 }

}

The OnActionExecuting method runs before the action is executed, and the

OnActionExecuted method runs after the action method has been executed. Notice

that we are utilizing the synchronous implementation from the asynchronous code in

OnActionExecutionAsync. To register the filter to apply globally to all actions, we need to

add it to the Filters collection on the MvcOptions:

Chapter 5 MVC

89

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc(options =>

 {

 options.Filters.Add(typeof(TimestampFilter));

 });

}

To be able to apply our filter explicitly to only some action methods, we need

to inherit the TimestampFilter class from Attribute and optionally rename it to

TimestampFilterAttribute:

public class TimestampFilterAttribute : Attribute, IActionFilter,

IAsyncActionFilter

{

 //...

}

The preceding code will allow us to decorate the applicable action methods as a

TimestampFilterAttribute attribute:

[TimestampFilter]

public string Get(string timestamp)

{

 return $"Request received at {timestamp}";

}

The mechanism of filters allows for the code to be extremely reusable and decoupled

in logical execution layers.

 Formatting Responses
As you may have noticed during this chapter, the return type of choice used in action

methods is IActionResult, which is not necessary per se, but is considered a best

practice because responses are not limited to only one specific type, as they can either

succeed or fail.

Chapter 5 MVC

90

To explicitly force output of a specific type, we can replace the IActionResult

with concrete types like, for example, IEnumerable<T>, which will then fall back to the

default output formatter to render the response. Furthermore, forcing the output as a

specific type can be accomplished by using concrete action results like JsonResponse for

outputting JSON or ContentResponse for plain text. Another way of forcing a particular

output format is to make use of the [Produces(...)] filter, which can be applied to a

global, controller, or action scope.

In RESTful services, content negotiation is the process of having the client specify the

expected format of the output using a specific media-type value passed in the Accept

header. ASP.NET Core MVC implements a JSON formatter by default, but also supports

other formats when they are passed, given that they are correctly registered within the

framework at startup.

Web browsers may supply Accept headers containing many formats, as well

as wildcards. When a request is coming from a web browser, ASP.NET Core MVC

will ignore the Accept header by default and respond with the standard configured

format. This behavior is to keep things a bit more consistent across the board but can

be overridden by explicitly setting the RespectBrowserAcceptHeader to true in the

MvcOptions.

Content negotiation makes it possible to serve responses from the same action

method in different formats. To add XML formatting to our API, we can simply register

the XML input and output serialization by adding the XML serializer formatters when

adding MVC to the services collection:

services.AddMvc().AddXmlSerializerFormatters();

We can control supporting specific input or output formatters by registering them in

the MvcOptions:

services.AddMvc(options =>

{

 options.OutputFormatters.Add(new XmlSerializerOutputFormatter());

});

Chapter 5 MVC

91

When we want content negotiation to handle content types that are not supported

by the default JSON, XML, or plain text formatters, we can build custom formatters

to handle special media-type formats. In the following example, PeopleController

delivers an array of people on its Get action method:

[Route("api/[controller]")]

public class PeopleController : Controller

{

 //...

 public IActionResult Get()

 {

 IEnumerable<Person> result = people;

 return Ok(result);

 }

}

If we also wanted to support the comma-delimited values (CSV) format, we could

create a class that implements the OutputFormatter abstract class, like the following:

public class CsvOutputFormatter : OutputFormatter

{

 private const string delimiter = ",";

 private const string contentType = "text/csv";

 public CsvOutputFormatter()

 {

 SupportedMediaTypes.Add(MediaTypeHeaderValue.Parse("text/csv"));

 }

 protected override bool CanWriteType(Type type) => type.

GetInterfaces().Contains(typeof(System.Collections.IEnumerable));

 public async override Task WriteResponseBodyAsync(OutputFormatter

WriteContext context)

 {

 var type = context.Object.GetType();

 Type itemType;

Chapter 5 MVC

92

 if (type.GetGenericArguments().Length > 0)

 {

 itemType = type.GetGenericArguments()[0];

 }

 else

 {

 itemType = type.GetElementType();

 }

 var stringWriter = new StringWriter();

 var header = string.Join(",", itemType.GetProperties().Select

(x => x.Name));

 stringWriter.WriteLine(header);

 foreach (var item in (IEnumerable<object>)context.Object)

 {

 var values = item.GetType().GetProperties().Select(pi => new {

Value = pi.GetValue(item, null)});

 var valueLine = string.Empty;

 foreach (var val in values)

 {

 if (val.Value != null)

 {

 valueLine = string.Concat(valueLine, val.Value.

ToString(), delimiter);

 }

 else

 {

 valueLine = string.Concat(valueLine, string.Empty,

delimiter);

 }

 }

 stringWriter.WriteLine(valueLine);

 }

Chapter 5 MVC

93

 var streamWriter = new StreamWriter(context.HttpContext.Response.

Body);

 await streamWriter.WriteAsync(stringWriter.ToString());

 await streamWriter.FlushAsync();

 }

}

Breaking down the preceding bits, we assign text/csv as a supported media type inside

the constructor of the class. The CanWriteType property evaluates if the response is eligible

to be converted to CSV. In this case, we assume any result type of IEnumerable is eligible.

The WriteResponseBodyAsync method does the heavy lifting for constructing the

CSV output. The first thing it does is determine the properties of the type it is working

with, and then it writes the names of each of those properties as the first line to a

StringWriter, separated by a comma.

Next, it loops through each item in the collection and tries to resolve their values

as a string before writing a comma-separated line to the StringWriter. Lastly, it uses a

StreamWriter to write the string value of the StringWriter to the Response body.

We should not forget to register this output formatter in the MvcOptions:

services.AddMvc(options =>

{

 options.OutputFormatters.Add(new CsvOutputFormatter());

});

Now when we specify text/csv as the Accept header in the request to the People API

endpoint, we should get the response formatted as CSV.

 Application Parts
In ASP.NET Core MVC, each feature of an application is added as an application part,

which is an abstraction over its resources. By using application parts, we make it possible

to discover external components to be used in our application that can even be located

in a separate assembly.

Let’s assume we have a compiled class library that contains a specific controller

called PeopleController, which returns a list of people names and is situated within a

particular folder on the server. We can make use of the AddApplicationPart extension

method to add application parts from a given assembly during runtime.

Chapter 5 MVC

94

Here’s an example configuration of an application that imports all MVC bits from an

external assembly from a specific folder on disk:

public void ConfigureServices(IServiceCollection services)

{

 var assembly = Assembly.LoadFile(@"C:\folder\mylib.dll");

 services.AddMvc()

 .AddApplicationPart(assembly);

}

As this application does not directly contain any controllers, when we run it the

magic starts to happen when it manages to invoke action methods originated from

specified external locations.

Tip application parts not only work for controllers but for other features of aSp.
Net Core MVC, like TagHelpers and ViewComponents, as well.

 Wrapping Up
What an exciting chapter this was! After learning how the MVC pattern works, we

got introduced to the new MVC framework in ASP.NET Core as well as its features in

comparison to its predecessors.

We learned all about the MVC middleware pipeline, including controllers and

actions, before moving on to more advanced topics, such as model binding, model

validation, and filters. We also gained useful insights into how to leverage the power of

convention to have MVC bend to our needs.

In the last sections, we covered how responses are formatted and saw how easy it is

to create a custom formatter for outputting CSV data. Lastly, we got a brief overview of

application parts, which allow us to import specific features into our application from

external sources.

This chapter pretty much sums up ASP.NET Core MVC from an API perspective, and

although there is far more to learn about this excellent framework, we will move on to

the next chapter, where we will be discussing the configuration model of ASP.NET Core.

Chapter 5 MVC

The Configuration Model
There’s a saying that goes: “Don’t code hard, hardcode instead.” Terrible, I know.

Almost all applications have configuration data. Some of them are neatly saved in a

configuration file, and others are just hardcoded in a quick and dirty fashion. By using

configuration, we make our code much more reusable and can quickly alter the way it

works without our having to think about it.

Configuration data should live outside the application. If you feel the urge to

hardcode something, stop and think about the impact it may have on the scalability of

the application in the future. When we separate the configuration from the application, it

allows us to deploy the same code to do different things in different environments.

As .NET developers, we should be familiar with the good old app.config and web.

config files, which offer a mechanism for a specific configuration for each application.

ASP.NET Core is no different, but with a much better mechanism for storing and

providing configuration data. In fact, the new configuration model in ASP.NET Core is

much more simplified, flexible, and extendable. Compared to its predecessors, it sets the

bar quite high. In laymen’s terms, it is just awesome.

ASP.NET Core provides a configuration API for working with configurations in web

apps that is based on a collection of name-value pairs. Configuration data can be read

during runtime from multiple sources and are grouped into a multi-level hierarchy.

In this chapter, we will focus on understanding the basic concept of configuration

in ASP.NET Core and how to leverage the provided API to read environment-specific

configuration data from multiple sources into strongly typed objects.

96

 Basic Configuration
Consider the following JSON file that resides in the root directory and is called

awesomeConfig.json; it contains some arbitrary configuration data:

{

 "foo": "value of foo",

 "bar": "value of bar",

 "baz": {

 "foo": "Hello world"

 }

}

We can use this configuration file inside an ASP.NET Core application by creating an

IConfigurationRoot that utilizes a ConfigurationBuilder:

public class Program

{

 public static IConfigurationRoot Configuration { get; set; }

 public static void Main(string[] args)

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("awesomeConfig.json");

 Configuration = builder.Build();

 foreach (var item in Configuration.AsEnumerable())

 {

 Console.WriteLine($"Key: {item.Key}, Value: {item.Value}");

 }

 Console.ReadKey();

 }

}

Chapter 6 the Configuration Model

97

In the preceding example, we create a new ConfigurationBuilder that loads the

awesomeConfig.json file from the current directory using the AddJsonFile extension

method. Calling Build on the builder outputs an instance of IConfigurationRoot,

which implements IConfiguration, allowing us to enumerate through its key-value

pairs. Figure 6-1 shows the output of the executed code.

Notice that the awesomeConfig.json file contains hierarchical data but is flattened

inside the IConfiguration as simple key-value pairs. To read out the values from

IConfiguration, we can simply refer to them by key:

Console.WriteLine($"Foo: {Configuration["foo"]}");

Console.WriteLine($"Bar: {Configuration["bar"]}");

Console.WriteLine($"Baz:Foo: {Configuration["baz:foo"]}");

The hierarchical value of foo inside baz can be referred to by using the colon

(:) character as a separator. As the configuration file can contain multiple levels of

hierarchy, it is a better idea to group similar settings using sections:

var bazSection = Configuration.GetSection("baz");

Console.WriteLine($"Baz:Foo: {bazSection ["foo"]}");

When working with multiple configuration files at the same time, configuration

data is loaded in the same order in which it’s specified, so the latest values override any

previous ones with the same key. For example, given the following files -

Contents of awesomeConfig.json:

{

 "foo": "value of foo",

 "bar": "value of bar",

Figure 6-1. Example code that reads configuration data from a file

Chapter 6 the Configuration Model

98

 "baz": {

 "foo": "Hello world"

 }

}

Contents of awesomeConfig2.json:

{

 "baz": {

 "foo": "Hello Universe"

 }

}

we can override specific configurations by loading another file containing the new

configuration values to take precedence over the previous ones. The following code snippet

shows how configuration data can be overridden by loading data from multiple files:

var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("awesomeConfig.json")

 .AddJsonFile("awesomeConfig2.json");

Figure 6-2 shows the output after running the application with configuration

data loaded from awesomeConfig.json and awesomeConfig2.json. Note that the

original values from awesomeConfig.json are persisted and only the ones specified in

awesomeConfig2.json are overriding the original ones.

Figure 6-2. Output of an application using inherited and overridden
configurations

Chapter 6 the Configuration Model

99

 Configuration Providers
A configuration can be loaded from many different sources containing many different

formats. Configuration providers are responsible for passing the configuration in a

specific format from a pre-defined source to the configuration model of ASP.NET Core.

ASP.NET Core ships with default configuration providers out of the box, allowing

a configuration to be loaded from files (JSON, XML, and INI formats), command-line

arguments, environmental variables, in-memory .NET objects, encrypted user secret

stores, the Azure Key Vault, and custom providers that we can create.

The following example shows how we can load a configuration from multiple

sources and formats supported by ASP.NET Core:

public static void Main(string[] args)

{

 var someSettings = new Dictionary<string, string>()

 {

 { "poco:key1","value 1" },

 { "poco:key2","value 2" }

 };

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("awesomeConfig.json")

 .AddXmlFile("awesomeConfig.xml")

 .AddIniFile("awesomeConfig.ini")

 .AddCommandLine(args)

 .AddEnvironmentVariables()

 .AddInMemoryCollection(someSettings)

 .AddUserSecrets("awesomeSecrets")

 .AddAzureKeyVault("https://awesomevault.vault.azure.net/",

"<clientId>", "<secret>");

 Configuration = builder.Build();

 // ...

}

Chapter 6 the Configuration Model

100

Figure 6-3 shows the contents of the file sources loaded by the AddJsonFile,

AddXmlFile, and AddIniFile extension methods.

More settings can be loaded into the application from optional command-line

arguments. When running the application via the CLI, we can execute the following

command from the command prompt:

$ dotnet run --cli:key1="Value 1" --cli:key2="Value 2"

The preceding code will load the configuration into a section called cli containing

values for key1 and key2 as shown in Figure 6-4.

Figure 6-3. Example configuration in JSON, XML, and INI formats

Chapter 6 the Configuration Model

101

The AddEnvironmentVariables method loads in all the environmental variables

available on the current environment as key-value entries in the IConfiguration

collection. Doing this means that we can access an environment variable by using its key

on the IConfiguration object. Calling AddInMemoryCollection will simply add whatever

IEnumerable<KeyValuePair<string,string>> is passed to it as part of the configuration.

User secrets are used mainly for development purposes to prevent the check-in of

sensitive files into source control that contain required configuration data. When calling

AddUserSecrets, a configuration file called secrets.json in JSON format is loaded from

a specific location on disk (outside source control) for a particular secretId. User secrets

will be loaded from the following locations on each operating system:

• Windows: %APPDATA%\microsoft\UserSecrets\<userSecretsId>

\secrets.json

• Linux: ~/.microsoft/usersecrets/<userSecretsId>/secrets.json

• Mac: ~/.microsoft/usersecrets/<userSecretsId>/secrets.json

Note user secrets are not encrypted and should not be used for storing sensitive
information, as they are intended for development purposes only.

Figure 6-4. Output showing a configuration loaded from command-line
arguments

Chapter 6 the Configuration Model

102

We can manually add or modify values in the secret.json file located on each

platform, but can also make use of the Secret Manager CLI tool. To install the Secret

Manager tool, we need to open the .csproj file and add a new DotNetCliToolReference

element to one of the ItemGroup elements:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>

 <TargetFramework>netcoreapp2.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />

 <DotNetCliToolReference Include="Microsoft.Extensions.SecretManager.

Tools" Version="2.0.0" />

 </ItemGroup>

</Project>

After saving the .csproj file and running a quick dotnet restore, the Secret

Manager will be installed and ready for use. To add a setting to user secrets, we run the

following command from the CLI:

$ dotnet user-secrets --id awesomeSecrets set key1 "Value 1"

Note We are using the --id option in the preceding Cli command to specify which
user secret the setting applies to. We can skip this by adding a UserSecretsId
element containing the secret id in a PropertyGroup inside the .csproj file.

We can get a list of secrets for a specific user secret by executing the following

command from the CLI:

$ dotnet user-secrets --id awesomeSecrets list

When we need to access sensitive information as a configuration in our application,

we can make use of the Azure Key Vault to store confidential data securely in the cloud.

To obtain access to an Azure Key Vault from our application, and to load it into the

configuration collection, we can call AddAzureKeyVault and then pass in the vault URL,

client ID, and client secret.

Instead of passing hard-coded Azure Vault connection information, we can make

use of the ConfigurationBuilder to surface available settings containing connection

Chapter 6 the Configuration Model

103

information for accessing the Azure Key Vault. Here’s an example of the modified code

that uses the ConfigurationBuilder to read out connection information from the

AzureKeyVault section instead of hard-coding it:

public static void Main(string[] args)

{

 // ...

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("awesomeConfig.json")

 .AddXmlFile("awesomeConfig.xml")

 .AddIniFile("awesomeConfig.ini")

 .AddCommandLine(args)

 .AddEnvironmentVariables()

 .AddInMemoryCollection(someSettings)

 .AddUserSecrets("awesomeSecrets");

 var config = builder.Build();

 builder.AddAzureKeyVault(config["AzureKeyVault:url"], config["AzureKey

Vault:clientId"], config["AzureKeyVault:secret"]);

 Configuration = builder.Build();

 //...

}

The ConfigurationBuilder can call Build at any time necessary for consumption,

which can come in handy when we need to use it in itself.

If you are familiar with the previous configuration model of .NET, the following

example web.config file will be familiar:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <connectionStrings>

 <add name="db1" connectionString="Server=myServerAddress;Database=

myDataBase1;Trusted_Connection=True;"/>

 <add name="db2" connectionString="Server=myServerAddress;Database=

myDataBase2;Trusted_Connection=True;"/>

 </connectionStrings>

Chapter 6 the Configuration Model

104

 <appSettings>

 <add key ="setting1" value="value1"/>

 <add key ="setting2" value="value2"/>

 </appSettings>

</configuration>

To be able to use this configuration file within an ASP.NET Core application, we call

AddXmlFile to use the built-in XML file provider, but if the configuration contains more

than one add element per section, it will break when running the application, as shown

in Figure 6-5.

We are getting this error because there are duplicate keys found in the configuration

dictionary. We can solve this by creating a custom configuration provider by

implementing IConfigurationProvider and IConfigurationSource.

Let’s create a new class named AwesomeConfigurationProvider and inherit it

from the ConfigurationProvider base class, which is built in to ASP.NET Core. We

also need to implement the IConfigurationSource interface to be able to pass it to the

configuration builder.

public class AwesomeConfigurationProvider : ConfigurationProvider,

IConfigurationSource

{

 public IConfigurationProvider Build(IConfigurationBuilder builder)

 {

 return this;

 }

}

Figure 6-5. An example exception when a duplicate key is found

Chapter 6 the Configuration Model

105

When the Build function is executed, it will simply return an instance of itself, which

is of type IConfigurationProvider. The provided ConfigurationProvider base class

does most of the default plumbing for us; we just need to override its Load method:

public class AwesomeConfigurationProvider: ConfigurationProvider,

IConfigurationSource

{

 private readonly string fileName;

 public AwesomeConfigurationProvider(string fileName)

 {

 this.fileName = fileName;

 }

 public override void Load()

 {

 using (var fs = new FileStream(fileName, FileMode.Open))

 {

 var doc = XDocument.Load(fs);

 var connectionStrings = doc.Root.Descendants()

 .Where(e => e.Name.Equals(XName.Get("connectionStrings")))

 .Descendants(XName.Get("add")).Select(e =>

 new KeyValuePair<string,

string>($"connectionStrings:{e.Attribute(XName.

Get("name")).Value}", e.Attribute(XName.

Get("connectionString")).Value));

 var appSettings = doc.Root.Descendants()

 .Where(e => e.Name.Equals(XName.Get("appSettings")))

 .Descendants(XName.Get("add")).Select(e =>

 new KeyValuePair<string, string>($"appSettings:{e.

Attribute(XName.Get("key")).Value}", e.Attribute(XName.

Get("value")).Value));

 Data = connectionStrings.Union(appSettings).ToDictionary(e=>e.

Key, e=>e.Value);

 }

 }

 // ...

}

Chapter 6 the Configuration Model

106

The implementation is quite simple. We make use of LINQ-to-XML to load the

file stream into an XDocument. Thereafter, we read out all the connectionString and

appSetting elements and select a flat key-value structure using the values provided

in each of the add elements. The keys contained in the key-value structures are in

section:key format. Lastly, we assign the key-value collections to the Data dictionary,

which is a property in the ConfigurationProvider base class.

Now we can pass an instance of AwesomeConfigurationProvider to the

configuration builder. We do this by creating a new extension method that extends an

IConfigurationBuilder:

public static class AwesomeConfigurationExtensions

{

 public static IConfigurationBuilder AddLegacyXmlConfiguration(this

IConfigurationBuilder configurationBuilder, string path)

 {

 return configurationBuilder.Add(new

 AwesomeConfigurationProvider(path));

 }

}

This allows us to neatly specify a configuration source by invoking the

AddLegacyXmlConfiguration extension method, which adds a new instance of

IConfigurationProvider to the configuration builder:

var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddLegacyXmlConfiguration("web.config");

 Strongly Typed Configuration
Although reading configuration data directly from IConfigurationRoot or

IConfiguration is great, it still would be way better to address the configuration using

a strongly typed object. Let’s take a look at the same sample JSON file awesomeConfig.

json used earlier in this chapter:

{

 "foo": "value of foo",

 "bar": "value of bar",

Chapter 6 the Configuration Model

107

 "baz": {

 "foo": "Hello world"

 }

}

We create a POCO class called AwesomeOptions that represents the structure of the

configuration file:

public class AwesomeOptions

{

 public string Foo { get; set; }

 public string Bar { get; set; }

 public BazOptions Baz { get; set; }

 public class BazOptions

 {

 public string Foo { get; set; }

 }

}

By modifying the original code, we can use the Bind extension method on

IConfiguration to bind the values from the key-value collection to a strongly typed

POCO instance:

public static void Main(string[] args)

{

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("awesomeConfig.json");

 var awesomeOptions = new AwesomeOptions();

 builder.Build().Bind(awesomeOptions);

 Console.WriteLine($"Foo: {awesomeOptions.Foo}");

 Console.WriteLine($"Bar: {awesomeOptions.Bar}");

 Console.WriteLine($"Baz.Foo: {awesomeOptions.Baz.Foo}");

 Console.ReadKey();

}

Chapter 6 the Configuration Model

108

Now, let’s apply this in a proper scenario within the application Startup class.

It turns out that there is an even more elegant way of working with strongly typed

configurations. Given a standard MVC application, we have an application startup like

the following:

public class Startup

{

 public Startup()

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(env.ContentRootPath)

 .AddJsonFile("awesomeConfig.json");

 Configuration = builder.Build();

 }

 public IConfigurationRoot Configuration { get; set; }

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddMvc();

 }

 public void Configure(IApplicationBuilder app)

 {

 app.UseMvc();

 }

}

To add a strongly typed configuration, we need to call the Configure extension

method on IServiceCollection inside the ConfigureServices method and specify the

type as AwesomeOptions:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.Configure<AwesomeOptions>(Configuration);

}

Chapter 6 the Configuration Model

109

This will allow the injection of IOptions<AwesomeOptions> from anywhere in the

application. Here’s an example of AwesomeController using AwesomeOptions options:

public class AwesomeController

{

 private readonly AwesomeOptions awesomeOptions;

 public AwesomeController(IOptions<AwesomeOptions> awesomeOptions)

 {

 this.awesomeOptions = awesomeOptions.Value;

 }

 //...

}

Calling Configure not only works with the given ConfigurationRoot, but also works

quite well with configuration sections:

public void ConfigureServices(IServiceCollection services)

{

 //...

 services.Configure<AwesomeOptions.BazOptions>(Configuration.

GetSection("baz"));

}

This will bind a specific section of a configuration to a strongly typed POCO class,

which can be injected anywhere in the application. For example:

public class AwesomeController

{

 private readonly AwesomeOptions.BazOptions bazOptions;

 public AwesomeController(IOptions<AwesomeOptions.BazOptions> bazOptions)

 {

 this.bazOptions = bazOptions.Value;

 }

 //...

}

Chapter 6 the Configuration Model

110

 Working with Changes
Now that we know all the great things about creating beautiful configurations inside

ASP.NET Core, it is important to understand that configuration data may change during

runtime, and we need our application to react to changes accordingly.

When working with file-based configurations in ASP.NET Core, we can specify

that the configuration model should be reloaded whenever there are changes to the

configuration data, and this is as easy as setting the ReloadOnChange property to true:

var builder = new ConfigurationBuilder()

 .SetBasePath(env.ContentRootPath)

 .AddJsonFile(config =>

 {

 config.Path = "awesomeConfig.json";

 config.ReloadOnChange = true;

 });

Wherever IConfigurationRoot and IConfiguration are used, they will reflect the

latest configuration data pulled from the file that has potentially changed, except when

IOptions<T> is used. Even if the file changes and configuration model are updated via

the file provider, the instance of IOptions<T> will still contain the original values.

To have the configuration data automatically reload the strongly typed IOptions<T>

class as well, we need to use IOptionsSnapshot<T> instead:

public class AwesomeController

 private readonly AwesomeOptions awesomeOptions;

 public AwesomeController(IOptionsSnapshot<AwesomeOptions>

awesomeOptions)

 {

 this.awesomeOptions = awesomeOptions.Value;

 }

 //...

}

Using IOptionsSnapshot<T> has very minimal overhead and allows us to reload

strongly typed POCO classes whenever the configuration data in the original file changes.

Chapter 6 the Configuration Model

111

 Wrapping Up
We have come to the end of yet another chapter where we learned exciting new things

about ASP.NET Core. In this chapter, we explored the basics of how the configuration

model works and how we can quickly load configuration data in any supported format

from multiple different sources.

We covered the eight built-in configuration providers that ship with ASP.NET Core

and learned how they could be used in conjunction with each other to override specific

values. In this chapter, we also learned how to build a custom configuration provider that

loads the settings used in legacy systems straight into the configuration model.

Another key takeaway of this chapter was binding the configuration model to

strongly typed POCO classes that can be injected and used anywhere in an application.

We also saw how easy it is to refresh the configuration model whenever something

changes within the configuration files.

In the next chapter, we will learn all about logging, which helps us gain useful

insights into our ASP.NET Core applications.

Chapter 6 the Configuration Model

Logging and Error
Handling
Application logging plays a crucial role in tracking and identifying issues that may

surface as well as in providing useful insights on the workflow processes of solutions.

When things go wrong, one of the first sources to look at is the application’s log.

Depending on the number of details that are logged, each entry represents an action that

occurred at a specific date and time.

Logs can contain system-generated events as well as events explicitly defined by

the developer and are usually grouped into categories like errors, informational, and

warning. Application logs are application specific, hence the name, and do not often

include OS-specific events.

In this chapter, we will focus on understanding how logging can benefit applications

and help us extract useful information about why certain things happen. We will be

introduced to ASP.NET Core’s logging API and learn how to quickly get started with

adding logging functionality to any ASP.NET Core application.

During this chapter, we will work with the different parts of a log entry and learn

how to correctly group log entries to keep similar items together. We will learn about log

filtering and how to log certain types of entries in specific scenarios and environments.

We will cover the six built-in logging providers of ASP.NET Core and how to use

them, as well as some third-party logging providers that are available. At the end of the

chapter, we also will learn about error handling and how to catch and handle application

exceptions.

114

 Adding Logging
Logging can be used anywhere in ASP.NET Core, and to create a log we merely need to

inject an ILogger object that was previously registered in the DI container. Before logging

can be used, the specific logging configuration first needs to be added to the host.

Looking at the ILogger interface, it exposes a Log method that we can use to write a

specific type of entry and exception to the configured logging providers:

public interface ILogger

{

 IDisposable BeginScope<TState>(TState state);

 bool IsEnabled(LogLevel logLevel);

 void Log<TState>(LogLevel logLevel, EventId eventId, TState state,

Exception exception, Func<TState, Exception, string> formatter);

}

We can use the Log method on the Ilogger—for example, logging a simple,

informative string:

logger.Log(LogLevel.Information, 0, typeof(object), null,

(type,exception)=> "Hello world");

As we noticed, doing this every time we want to make a log entry can become quite

tedious and will make our code very unreadable. Fortunately, there are extension

methods available for logging specific levels of log entries; they are LogCritical for

critical logs, LogDebug for logging debug information, LogError for logging exceptions,

LogInformation for logging informative entries, LogTrace for logging trace entries,

and LogWarning for logging any warning entries. We will go deeper into log levels and

severity in the next section.

Let’s take a look at the most basic example of an application with a host using Kestrel

and a separate Startup class:

using Microsoft.AspNetCore.Hosting;

using Microsoft.AspNetCore.Builder;

using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

Chapter 7 Logging and error handLing

115

public class Program

{

 public static void Main(string[] args)

 {

 new WebHostBuilder()

 .UseKestrel()

 .UseStartup<Startup>()

 .ConfigureLogging(logging =>

 {

 logging.AddConsole();

 })

 .Build()

 .Run();

 }

 public class Startup

 {

 public void Configure(IApplicationBuilder app, ILogger<Startup>

logger)

 {

 app.Run(async (context) =>

 {

 logger.LogInformation("This is awesome!");

 await context.Response.WriteAsync("Hello World!");

 });

 }

 }

}

Investigating the preceding code, we see that the host is configured with logging to

the console window. In the Configure method of the Startup class, a logger parameter

type of ILogger<out TCategoryName> is injected, where TCategoryName can be any type,

and usually the class of where the log entry is added from. Figure 7-1 shows that the log

entries are logged to the console window when running the application and invoking the

default endpoint.

Chapter 7 Logging and error handLing

116

What we see in the console is that three informational events occurred. The

framework logged when the request started and finished, and the application code

logged “This is awesome!” upon invocation of the default endpoint.

 Log Anatomy
When creating logs, we need to map it to a category string, which is used during the

output of the entry. As we saw in the previous section, a log is typically created to be used

inside a specific class, which is thus the category.

It is possible to write log entries to many categories within a given class. By making

use of an ILoggerFactory, we can create a logger on-the-fly, bound to a specific group.

Altering our initial code, let’s add logging to other parts of the Startup class:

public class Startup

{

 private readonly ILoggerFactory loggerFactory;

 public Startup(ILoggerFactory loggerFactory)

 {

 this.loggerFactory = loggerFactory;

 var constructorLogger = loggerFactory.CreateLogger("Startup.ctor");

 constructorLogger.LogInformation("Logging from constructor!");

 }

Figure 7-1. The output of an application with console logging

Chapter 7 Logging and error handLing

117

 public void Configure(IApplicationBuilder app)

 {

 var configureLogger = loggerFactory.CreateLogger("Startup.

Configure");

 configureLogger.LogInformation("Logging from Configure!");

 app.Run(async (context) =>

 {

 var logger = loggerFactory.CreateLogger("Startup.Configure.Run");

 configureLogger.LogInformation("Logging from app.Run!");

 await context.Response.WriteAsync("Hello World!");

 });

 }

}

An ILoggerFactory is injected into the constructor and used to create an ILogger

wherever a specific logger is required. In the preceding code, three loggers are created

for three parts of the class. Figure 7-2 shows the output of the updated code when

running and invoking the default endpoint.

Ideally, we need to stick to one category per class to keep things simple. In the

previous example, we notice a number zero in block brackets ([0]), which is the identifier

of the event. Because we never specified an event ID, it defaults to 0. Using event IDs can

help us to classify the log entries as belonging to related parts of the application.

Figure 7-2. Output of the updated code using multiple loggers

Chapter 7 Logging and error handLing

118

Let’s now get rid of the multiple loggers and revert to injecting the ILogger<Startup>,

but this time into the constructor, and also making use of proper event IDs:

public class Startup

{

 private readonly ILogger logger;

 public Startup(ILogger<Startup> logger)

 {

 this.logger = logger;

 logger.LogInformation(1000, "Logging from constructor!");

 }

 public void Configure(IApplicationBuilder app)

 {

 logger.LogInformation(1001, "Logging from Configure!");

 app.Run(async (context) =>

 {

 logger.LogInformation(1002, "Logging from app.Run!");

 await context.Response.WriteAsync("Hello World!");

 });

 }

}

As seen in Figure 7-3, each event within a category can have a specific event ID tied

to it, which we can later map to some friendly string.

Chapter 7 Logging and error handLing

119

In ASP.NET Core, log levels are used to determine the severity of the log entry and

are ordered in the following order, from the least to the highest severity:

• Trace has the lowest severity of 0 and is only to be used in specific

scenarios to provide the developer with valuable information when

debugging an issue. As trace log entries may contain sensitive data,

this type is disabled by default for the production environment.

• Debug entries have a severity of 1 and are used for short-term

information during development and debugging. To prevent an

overload of information in the logs, these kind of entries are typically

disabled for production and enabled on demand whenever an issue

is debugged.

• Information type entries have a severity of 2 and are mainly used to

log the general workflow of an application. Having informative logs is

a good thing but can be dangerous if not used correctly, so keeping to

this level of severity is entirely up to the developer.

• Warning entries have a severity of 3 and are mainly used for

unexpected events that occur in the application workflow. Typically,

validation and general errors that are handled are commonly

classified as a warning.

Figure 7-3. Log entries with event IDs

Chapter 7 Logging and error handLing

120

• Error log entries have a severity of 4 and are used for any unhandled

errors or exceptions within the scope of the application; they indicate

a failure inside the current activity, but not application wide.

• As the name suggests, Critical entries are reserved for all application-

wide failures that require immediate attention and have the highest

severity of 5.

• The None log level has a severity of 6 and is mainly used for log

filtering.

A log entry has a specific message it writes to the logging providers, and this message

can be formatted to contain data that are related to the log entry. Let’s say we want to log

a user’s whereabouts with the current date and time. Writing the following code snippet

will write a message that contains the current date and time:

logger.LogInformation("User {userName} entered at {entryTime}", userName,

DateTime.Now);

This will output the following to the log:

User Fanie entered at 11/30/2017 15:01:53

We could also have used the Interpolated Strings feature of C# 6 to format the log

entry’s variables inline by doing the following:

logger.LogInformation($"User {userName} entered at {DateTime.Now}");

Although writing it like this increases the readability of the code, it will not send the

parameter collection to the logging provider, which may use the parameters as metadata.

If we formatted the log entries as in the preceding example, the following sample output

of log entries would be the same for humans, but different for machines:

User Fanie entered at 11/30/2017 15:01:53

User Steven entered at 11/30/2017 16:08:22

User Andrea entered at 11/30/2017 16:11:53

User Gerald entered at 11/30/2017 16:23:10

User Peter entered at 11/30/2017 16:30:03

User Martin entered at 11/30/2017 16:35:12

Chapter 7 Logging and error handLing

121

Let’s say we want to find all check-ins after a certain date and time. Searching

through the preceding log might become tricky as we would then need to make use of

clever wildcard tricks or regular expressions for matching strings.

When we provide the format of the message and the variables separately, the logging

provider can make use of the submitted data and store them separately so they can be

queried against.

Note the framework does string formatting in this way to implement semantic or
structured logging so that logging providers have more control over the data inside
the log entries.

Log entries also can contain an optional exception object that can be used to extend

the metadata of the specific entry in the log.

 Grouping and Filtering
At times it is necessary to capture more details of a given transaction or process. We can

group a set of logical operations with the same log information by using scopes, which

are IDisposable objects that result from calling ILogger.BeginScope<TState> and last

until they are disposed of. Let’s use a scope to group some of the log entries inside the

Configure method:

public void Configure(IApplicationBuilder app)

{

 app.Run(async (context) =>

 {

 using (logger.BeginScope("This is an awesome group"))

 {

 logger.LogInformation("Log entry 1");

 logger.LogWarning("Log entry 2");

 logger.LogError("Log entry 3");

 }

 await context.Response.WriteAsync("Hello World!");

 });

}

Chapter 7 Logging and error handLing

122

It is important to point out that the details of scoped logs need to be explicitly

enabled on the provider. To do this, we need to set the IncludeScopes property for the

provided options object of the provider:

public static void Main(string[] args)

{

 new WebHostBuilder()

 .UseKestrel()

 .UseStartup<Startup>()

 .ConfigureLogging(logging =>

 {

 logging.AddConsole(options=>options.IncludeScopes = true);

 })

 .Build()

 .Run();

}

Figure 7-4 shows the output of the logs after we’ve added grouping and enabled

scopes on the provider.

Figure 7-4. Sample output showing scopes in logs

Chapter 7 Logging and error handLing

123

It is possible to specify a minimum log-level severity for everything or to enforce

a specific filter for a certain provider and category. All logs sent that are below the

provided minimum log level aren’t sent to the particular logging provider, which means

they won’t get processed, stored, or displayed.

To set the minimum log level across the board in code, we need to call the

SetMinimumLevel function:

public static void Main(string[] args)

{

 new WebHostBuilder()

 .UseKestrel()

 .UseStartup<Startup>()

 .ConfigureLogging(logging =>

 {

 logging.AddConsole();

 logging.SetMinimumLevel(LogLevel.Information);

 })

 .Build()

 .Run();

}

Tip to suppress all logs, set the minimum level to LogLevel.None.

Within the ConfigureLogging function, we can also define minimum levels for

different scenarios. For example, the following code suppresses all severities for all logs,

except for the Default and Program.Startup categories, as they have a minimum level

of Error and Critical, respectively:

logging

 .SetMinimumLevel(LogLevel.None);

 .AddFilter("Default", LogLevel.Error)

 .AddFilter<ConsoleLoggerProvider>("Program.Startup", LogLevel.Critical);

Note the last filter in the preceding code is specific to the Console logger.

Chapter 7 Logging and error handLing

124

Filters can work both ways, in that we can specify minimum levels and special

conditions in order to only show certain severity levels. The following code limits the

logging by only showing Warning entries globally and Information entries specific to the

Console logger:

logging

 .AddFilter(s => s == LogLevel.Warning)

 .AddFilter<ConsoleLoggerProvider>(s => s == LogLevel.Information);

We have total control over how and when things are logged. The examples thus far

have showed how we could configure log grouping and filtering using code, but we could

also make use of the powerful configuration system to abstract all these configurations

into a separate file, making it more maintainable.

To integrate with the configuration model, we need to set up the application

configuration on the web host and bind it to the logging configuration, like in the

following example snippet:

public static void Main(string[] args)

{

 new WebHostBuilder()

 .UseKestrel()

 .UseStartup<Startup>()

 .UseContentRoot(Directory.GetCurrentDirectory())

 .ConfigureAppConfiguration((context, config) =>

 {

 config.AddJsonFile("config.json")

 .ConfigureLogging((context, logging) =>

 {

 var config = context.Configuration.GetSection("Logging");

 logging.AddConfiguration(config);

 logging.AddConsole();

 })

 .Build()

 .Run();

}

Chapter 7 Logging and error handLing

125

The config.json file will then look something like the following; it excludes all

scopes and sets the log filters for each category accordingly:

{

 "Logging": {

 "IncludeScopes": false,

 "LogLevel": {

 "Default": "Error"

 },

 "Console": {

 "LogLevel": {

 "Program.Startup": "Critical"

 }

 }

 }

}

 Different Logging Providers
ASP.NET Core ships with built-in support for six logging providers. So far, we have only

used the Console logger to write log output to the console window, but we can easily add

more logging providers to work in conjunction with each other.

We already know to add the Console logging provider; we can just call the

AddConsole function on the ILoggingBuilder.

As developers, we sometimes need to log useful information to the IDE or similar

environment, and that is when the Debug logger can come in handy. We can add the

Debug logger by calling the AddDebug function on the ILoggingBuilder. This provider

writes the logging output using the System.Diagnostics.Debug class by using Debug.

WriteLine calls.

Note Linux logs written to the debug logger will end up in the /var/log/
message path.

Chapter 7 Logging and error handLing

126

To enable logging to an event tracer, we can use the EventSource logging provider,

which is cross-platform and allows us to log events to Event Tracing for Windows (ETW)

when running on the Windows operating system. Calling the AddEventSourceLogger

function on the ILoggerProvider will set up logging using the EventSource provider.

In cases where we need to log to the Windows Event Log, we can make use of

the EventLog logging provider, adding it by calling the AddEventLog function on the

ILoggingBuilder. Here’s an example snippet for logging to the Windows Event Log:

logger.AddEventLog(new EventLogSettings

{

 EventLog = new EventLog("AwesomeLog", "AwesomeMachine", "AwesomeApi")

});

Note the code in the example assumes that a log called AwesomeLog and log
source AwesomeApi already exist on a machine with the name AwesomeMachine.

The Trace Listener provider allows us to log to a variety of trace listeners, such as

the TextWriterTraceListener; we can add it by calling the AddTraceSource method on

ILoggingBuilder.

Note the eventLog and trace Listener providers are Windows-only and require
your application to target the full .net 4.6 framework. if the application targets
operating systems other than Windows, one should make use of #if definitions.
read more on targeting multiple platforms here: https://docs.microsoft.
com/en-us/dotnet/core/tutorials/libraries.

If an application is deployed to Azure as an app service, it automatically gets

configured with the Azure App Service logging provider. All that we need to do is turn

it on inside the Azure portal. This provider does not affect when we run the application

locally and will only work within the Azure environment.

One of the great things about ASP.NET Core is the open source community

projects, some of which offer great extensions to the framework. Some of the third-

party logging providers out there are Elmah.IO (https://github.com/elmahio/Elmah.

Io.Extensions.Logging), JSNLog (http://jsnlog.com), Loggr (https://github.

Chapter 7 Logging and error handLing

https://docs.microsoft.com/en-us/dotnet/core/tutorials/libraries
https://docs.microsoft.com/en-us/dotnet/core/tutorials/libraries
https://github.com/elmahio/Elmah.Io.Extensions.Logging
https://github.com/elmahio/Elmah.Io.Extensions.Logging
http://jsnlog.com/
https://github.com/imobile3/Loggr.Extensions.Logging

127

com/imobile3/Loggr.Extensions.Logging), NLog (https://github.com/NLog/

NLog.Extensions.Logging), and Serilog (https://github.com/serilog/serilog-

extensions- logging). These logging providers are excellent and allow us to plug it in

and have it work as expected.

 Dealing with Exceptions
It is essential that our applications deal with any exception that might occur. This ties in

with the fact that logging is significant for debugging critical issues. As developers, we

tend to be lazy, and looking up problems in a log file isn’t always the best solution while

developing.

To help us gain instant insight into why a particular request goes wrong, we can

make use of special developer exception pages provided by ASP.NET Core. They are

HTML-based pages generated by the runtime that encapsulate all the useful information

around the problem, like the stack trace, for instance.

Here’s an example snippet of how we can switch on the developer exception pages

inside an ASP.NET Core application:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

}

As we can see, the UseDeveloperExceptionPage function is only called if the

current environment is Development. Figure 7-5 shows a typical example of an

ArgumentNullException that is thrown by the server and displayed nicely in a

developer-friendly console.

Chapter 7 Logging and error handLing

https://github.com/imobile3/Loggr.Extensions.Logging
https://github.com/NLog/NLog.Extensions.Logging
https://github.com/NLog/NLog.Extensions.Logging
https://github.com/serilog/serilog-extensions-logging
https://github.com/serilog/serilog-extensions-logging

128

Developer exception pages give us useful insights, like the full stack trace that

includes a view pointing to the specific line of code in question, the query string

collection, any cookies, and the full request headers that were passed.

Note developer exception pages must only be enabled for development
environments as you don’t want sensitive information, like the stack trace, visible
on production.

When making a request, the HTTP mechanism always provides a status code with

the response. These status codes include the 1xx-series, which are used for informational

purposes, the 2xx-series, which indicate successful responses, such as 200 OK or 201

Created, the 3xx-series, which indicate some form of redirection, the 4xx-series for client

errors, like 404 Not Found or 400 Bad Request, and the 5xx-series, which are server

errors, like 500 Internal Server Error.

Figure 7-5. Example of a developer exception page

Chapter 7 Logging and error handLing

129

By default, ASP.NET Core applications do not provide any other details on status

codes, but we can enable these details by using the StatusCodePagesMiddleware. We

must call the UseStatusPages extension method available on IApplicationBuilder:

public void Configure(IApplicationBuilder app)

{

 app.UseStatusCodePages();

}

When running the application and invoking an endpoint that does not exist, we will

get the following response formatted as plain text:

Status code page, status code: 404

We can also customize the response to our liking. For example, the following code

uses an overload of the UseStatusCodePages function, thus allowing us to write directly

to the Response stream:

app.UseStatusCodePages(async context =>

{

 context.HttpContext.Response.ContentType = "text/plain";

 await context.HttpContext.Response.WriteAsync(

 $"Awesome Status Page, status code: {context.HttpContext.Response.

StatusCode}");

});

Now, when the application hits a Not Found error, the following will be in the

response body:

Awesome Status Page, status code: 404

Note although a response body is returned, the status code in the header will
still be the appropriate status code as expected.

Chapter 7 Logging and error handLing

130

 Wrapping Up
Great! We are at the end of the chapter. So far, we have learned about the importance of

application logging and how to add logging to an application using the API provided by ASP.

NET Core. We covered the different log severities as well as the various parts of a log entry.

We learned how log entries could be suppressed or explicitly filtered for specific

scenarios and environments, as well as how to abstract the logging configuration away

from the code by making use of the configuration model.

We briefly went through all the internal and external logging providers that are

available right now in the latest version of ASP.NET Core. Lastly, we saw how to make

use of developer-friendly exception pages when debugging during the development

lifecycle, as well as how to add custom responses to specific response statuses.

In the next chapter, we will turn the knob up a notch and learn all about

implementing security for APIs in ASP.NET Core.

Chapter 7 Logging and error handLing

Securing APIs
Having APIs everywhere is excellent, but they need to be secure externally as well as

internally. Even a small breach has the potential risk of a damaging ripple effect. API

security is not limited to authentication or authorization but also includes protecting

the underlying infrastructure, like rate limiting to prevent denial of service (dos) or

distributed denial of service (DDoS) attacks. Attackers continuously come up with new and

creative ways to breach systems, and it’s important to keep on standard and up-to- date

with the latest threats out there.

ASP.NET Core offers a wide range of features to help us configure and manage

the security of our APIs. The framework provides a rich identity model for securing

applications and integrates with third-party identity providers like Facebook or Twitter,

as well as offers a mechanism to manage application secrets for communicating with

these providers.

In this chapter, we will learn the basics of what authentication and authorization are

by clearly understanding the differences between them as well as ways of implementing

them in our API applications. We will learn about the ASP.NET Core data-protection

stack for storing sensitive data securely and how to enforce secure communication by

using a secure sockets layer (SSL).

We will end the chapter by implementing cross-origin resource sharing (CORS) to

prevent cross-domain service calls and rate-limiting in order to prevent DoS as well as

DDoS attacks.

Note The overall scope of this book only covers a subset of all the security
features provided by ASP.NET Core, which are focused toward implementing
security within the context of API applications.

132

 Authentication & Authorization
Before we move on, it is important to understand what authentication and authorization

are, as well as what the difference is between them. Authentication is the process of

verifying the identity of the person or system requesting access to a specific resource,

and authorization is the process of verifying if the authenticated user has the sufficient

rights to do certain things. Think of authentication as the right one has to enter a room,

while authorization dictates what one can do once in the room.

The authentication process can be abstracted away from the application and

used by other services as well, but the authorization process is typically specific to an

application, where specific roles have different permissions.

The HTTP protocol provides a mechanism to negotiate access to a secure resource.

Figure 8-1 shows the process of HTTP authentication.

Figure 8-1. A typical authentication flow

A standard authentication workflow starts with an anonymous request of a protected

resource on the server. The HTTP server handles the request and denies access to the

protected resource due to insufficient credentials, then sends a WWW-Authenticate

header back indicating the types of authentication schemes that are required. The client

sends a request containing an Authorization header, with the value conforming to

the particular authentication scheme required. When the server receives the request, it

validates the credentials in the Authorization header and lets the request through the

pipeline.

ChAPTEr 8 SECurINg APIS

133

The server can provide multiple authentication schemes that the client can choose

from for authenticating them. From the flow shown in Figure 8-1, we see that the server

is using the Basic authentication scheme. Here are some other authentication schemes:

• Although the Anonymous scheme cannot be classified as an

authentication scheme, it is still an empty scheme that does not

contain any authentication information. It is mainly used to grant

access to everyone.

• The Basic authentication scheme is one of the oldest and previously

most commonly used schemes for authenticating users as it provides

a simple authentication flow. This scheme requires a string that

consists out of a username and password concatenated with a

colon (:), and then encoded as a Base64 string. For example, a typical

Authorization header containing a Basic authentication scheme

with username awesomeuser and password as awesomepassword

may look like this:

Authorization: Basic YXdlc29tZXVzZXI6YXdlc29tZXBhc3N3b3Jk

Note The credentials in the Basic authentication scheme are encoded and not
encrypted, and are sent over the wire as plain text. using the Basic authentication
scheme to secure resources is not recommended, but it is strongly advised that
you consider the use of SSL in the scenario where there is no other choice.

• The Digest authentication scheme is a replacement for the Basic

authentication scheme. The server sends a random string to the

client as a challenge. This random string is called a nonce. The client

authenticates them by sending a hash that contains a username,

password, and nonce, as well as potentially other information.

• Bearer authentication is among the most popular and more secure

authentication schemes around. It works by making use of bearer

tokens for accessing OAuth 2.0–protected resources. Anyone in

possession of a bearer token can gain access to associated resources.

Bearer tokens are usually short-lived and expire after a specific point

ChAPTEr 8 SECurINg APIS

134

in time. Here’s an example of an Authorization header containing a

Bearer token:

Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.e30.3u5

UwreDwHRgVR4roifZDnacpsa3hkX5_hqhp6tLnV0

• The NTLM authentication scheme is short for NT LAN Manager and

is a challenge–response scheme that is more secure than the Digest

scheme. This scheme uses Windows credentials to transform the

challenge data, instead of using the encoded credentials.

• The Negotiate scheme automatically selects between the NTLM

authentication scheme and the Kerberos protocol, which is faster

than NTLM.

Note The NTLM and Negotiate authentication schemes are specific to the
Windows operating system.

There are a few things to consider when deciding which authentication scheme to

go with. When implementing security, think about what you are trying to protect and

whether the resource that is being protected really needs to be protected. Adding HTTP

authentication to the mix adds more overhead to requests and responses, making it less

interoperable with clients.

When security is a must, consider an authentication scheme with the right level of

protection; the Basic scheme provides the least amount of security and the Negotiate

scheme is the strongest.

A server should never provide a WWW-Authenticate scheme that it does not support

or does not correctly implement to secure a particular resource. Clients ultimately have a

choice between the schemes provided by the server.

With ASP.NET Core we have a range of choices of authentication providers with

which to implement security. ASP.NET Core Identity is a membership system for adding

login functionality to applications and provides a mechanism for users to log in to the

app with credentials or by using a third party, like Facebook, Twitter, Google, Microsoft,

and others.

ChAPTEr 8 SECurINg APIS

135

Note ASP.NET Core Identity is most commonly used with web applications
consisting of user interfaces, and not with web APIs. This feature of ASP.NET Core
is considered out of scope for this literature.

When hosting applications in the cloud, we can leverage the power of Azure Active
Directory (AAD) to act as a gatekeeper for protecting secure resources. ASP.NET

Core has native integration with AAD by making use of Bearer authentication. Azure

also offers Azure Active Directory B2C (Azure AD B2C), which is a cloud identity-

management solution for web applications that have a minimal configuration for

authenticating against social, enterprise, and local accounts.

Note read more on Azure AD B2C and explore a sample ASP.NET Core 2.0
implementation here: https://azure.microsoft.com/en-gb/resources/
samples/active-directory-b2c-dotnetcore-webapi.

There are also great third-party OSS authentication providers available from the

community, like AspNet.Security.OpenIdConnect.Server (ASOS), IdentityServer4, and

OpenIddict, which are OpenID Connect server frameworks for ASP.NET Core, as well as

PwdLess, which is a simple and stateless mechanism for authentication in ASP.NET Core

without using passwords.

Now that we have a broader understanding of authentication, authorization, and

the surrounding technologies, let’s implement security on an API by using the Bearer

authentication scheme. For this implementation, we will make use of JSON Web Tokens

(JWTs), which is an open and industry standard for representing claims between parties.

The JWT standard provides a compact and self-contained way to transfer

information between two parties as a JSON object. JWTs are signed with an HMAC secret

or an RSA public and private key pair. A JWT consists of three parts, namely a header, a

payload, and a signature, and is rendered using the following pseudocode:

[X=base64(header)].[Y=base64(payload)].[sign([X].[Y])]

The resulting JWT token is a string consisting of the three parts separated by a dot (.).

The first two parts are Base64-encoded strings of the header and payload sections in the

JSON object, and the last part is a combination of the first two Base64 strings, separated

by a dot (.) and signed.

ChAPTEr 8 SECurINg APIS

https://azure.microsoft.com/en-gb/resources/samples/active-directory-b2c-dotnetcore-webapi
https://azure.microsoft.com/en-gb/resources/samples/active-directory-b2c-dotnetcore-webapi

136

Figure 8-2 explains the typical flow when using JWT tokens with the Bearer

authentication scheme.

Figure 8-2. A typical flow of Bearer authentication using JWT

Note You can read more on JSON Web Tokens here:
 https://jwt.io/introduction.

The following example is based on the standard Web API template in ASP.NET Core

and contains the Values API. To start implementing Bearer authentication on this API,

we need to add the authentication middleware to ASP.NET Core and configure it to use

JWT Bearer authentication. Here is an excerpt from the Startup class:

public class Startup

{

 //...

 public void ConfigureServices(IServiceCollection services)

 {

 services

 .AddAuthentication(JwtBearerDefaults.AuthenticationScheme)

 .AddJwtBearer(options =>

 {

ChAPTEr 8 SECurINg APIS

https://jwt.io/introduction

137

 var serverSecret = new SymmetricSecurityKey(Encoding.UTF8.

GetBytes(Configuration["JWT:ServerSecret"]));

 options.TokenValidationParameters = new

TokenValidationParameters

 {

 IssuerSigningKey = serverSecret,

 ValidIssuer = Configuration["JWT:Issuer"],

 ValidAudience = Configuration["JWT:Audience"]

 };

 });

 services.AddMvc();

 }

 public void Configure(IApplicationBuilder app)

 {

 app.UseAuthentication();

 app.UseMvc();

 }

}

When adding the authentication middleware by calling AddAuthentication, we

configure the default authentication scheme to be Bearer. By further configuring the

authentication, we call the AddJwtBearer function and specify JwtBearerOptions, where

the IssuerSigningKey, ValidIssuer, and ValidAudience are assigned from the values

sourced in the appSettings.json configuration file.

Inside the Configure function, we need to remember to call UseAuthentication,

which puts everything in place for the authentication flow.

Note The AddAuthentication and UseAuthentication methods are called
before AddMvc and UseMvc to handle authentication early in the pipeline.

Before running the application, we need to decorate the ValuesController with the

[Authorize] attribute to have it protected using our authentication mechanism.

ChAPTEr 8 SECurINg APIS

138

After running the application and attempting to request to /api/values, the

following response is returned:

HTTP/1.1 401 Unauthorized

...

WWW-Authenticate: Bearer

As we can see, the status is 401, which means we are not authorized for access, and

the WWW-Authenticate response header hints that we should use the Bearer scheme.

Let’s now add the endpoint for issuing the JWT token. We create a new Controller

called AuthenticateController and add the JWT-generation logic inside the Post

action. Here, we want to verify the client credentials to generate a JWT token.

Credentials are to be posted to the /api/authenticate endpoint using Basic

security, with the Authorization header set to the Base64-encoded value of awesome-

user:awesome-password.

The following code snippet shows the contents of the AuthenticateController class:

[Route("api/authenticate")]

public class AuthenticateController: Controller

{

 //...

 public IActionResult Post()

 {

 var authorizationHeader = Request.Headers["Authorization"].First();

 var key = authorizationHeader.Split(' ')[1];

 var credentials = Encoding.UTF8.GetString(Convert.

FromBase64String(key)).Split(':');

 var serverSecret = new SymmetricSecurityKey(Encoding.UTF8.GetBytes

(Configuration["JWT:ServerSecret"]));

 if (credentials[0] == "awesome-username" && credentials[1] ==

"awesome-password")

 {

 var result = new

 {

 token = GenerateToken(serverSecret)

 };

ChAPTEr 8 SECurINg APIS

139

 return Ok(result);

 }

 return BadRequest();

 }

 //...

After the Authorization header is parsed, the credentials are validated, and if they

are valid, we then call the GenerateToken function, which generates the JWT token using

the given server secret sourced from the appSettings.json configuration file:

private string GenerateToken(SecurityKey key)

{

 var now = DateTime.UtcNow;

 var issuer = Configuration["JWT:Issuer"];

 var audience = Configuration["JWT:Audience"];

 var identity = new ClaimsIdentity();

 var signingCredentials = new SigningCredentials(key,

SecurityAlgorithms.HmacSha256);

 var handler = new JwtSecurityTokenHandler();

 var token = handler.CreateJwtSecurityToken(issuer, audience, identity,

now, now.Add(TimeSpan.FromHours(1)), now, signingCredentials);

 var encodedJwt = handler.WriteToken(token);

 return encodedJwt;

}

The GenerateToken method uses multiple variables, like the issuer and audience

from the configuration file, and generates a new JWT token that is valid for one hour.

After running the application, we can invoke the following request:

POST /api/authenticate HTTP/1.1

...

Authorization: Basic YXdlc29tZS11c2VybmFtZTphd2Vzb21lLXBhc3N3b3Jk

The following response will then be returned:

HTTP/1.1 200 OK

{

 "token": "..."

}

ChAPTEr 8 SECurINg APIS

140

Now that we have a valid JWT token, let’s try it out by executing the same request to

a protected resource as we did earlier in this section, but this time it will send the Bearer

token in the Authorization header:

GET /api/values HTTP/1.1

...

Authorization: Bearer ...

Executing the preceding request will return a 200 OK response containing the

expected results inside the response body.

Now that we are more familiar with adding Bearer authentication, we will shift our

focus from securing protected resources to protecting sensitive data.

 Protecting Sensitive Data
Sometimes it is necessary to store sensitive data, and we need a way to securely protect

the contents thereof using a reliable and robust mechanism because the storing

mechanism might not be as secure. The data-protection APIs provided by Windows are

great for securing sensitive data on desktop applications but are not suitable for web

applications.

The ASP.NET Core data-protection stack offers a long-term replacement for the old

cryptography model used in previous versions of ASP.NET and is designed to align better

with modern security requirements out of the box.

Note The API provided by the data-protection stack is not officially intended for
the indefinite storage of secured data but can be used to do so depending on the
scenario and the discretion of the developer. Other technologies, like Azure rights
Management, are more suitable for indefinite storage of sensitive data as they
support stronger key-management capabilities.

ChAPTEr 8 SECurINg APIS

141

Let’s look at a basic example of how we can protect sensitive data within an ASP.NET

Core application. Here, we have a simple program that endlessly asks for the input of

sensitive data and outputs both the protected and unprotected versions of the original

input:

using System;

using Microsoft.AspNetCore.DataProtection;

using Microsoft.Extensions.DependencyInjection;

public class Program

{

 public static void Main(string[] args)

 {

 var services = new ServiceCollection()

 .AddDataProtection()

 .Services.BuildServiceProvider();

 var protecterProvider = services.GetService<IDataProtectionProvider>();

 var protector = protecterProvider.CreateProtector("AwesomePurpose");

 while (true)

 {

 Console.Write($"Type something sensitive: ");

 var input = Console.ReadLine();

 var protectedInput = protector.Protect(input);

 Console.WriteLine($"Protected: {protectedInput}");

 var unprotectedInput = protector.Unprotect(protectedInput);

 Console.WriteLine($"Unprotected: {unprotectedInput}");

 Console.WriteLine();

 }

 }

}

The preceding code shows the use of the data-protection API in its simplest form. To

make use of the data-protection API, we need to add it to the IServicesCollection by

calling the AddDataProtection extension method. Doing this will allow the injection of

an IDataProtectionProvider instance.

ChAPTEr 8 SECurINg APIS

142

We use the IDataProtectionProvider instance to create an IDataProtector for a

specific purpose, given a purpose string. The purpose string doesn’t necessarily have to

be a secret, as it is used to create a unique data-protection mechanism for specifying a

purpose.

Tip Multiple purposes and sub-purposes can be defined for an IdataProtector.

After reading the user input, we call the Protect method on the IDataProtector

instance that creates an obfuscated string from the original data. Calling the Unprotect

method on the instance will result in a new string that is equal to the initial unprotected

input.

Figure 8-3 shows the results of four attempts to protect and unprotect the

“Something secure” string.

Figure 8-3. A sample program for protecting and unprotecting a given string

An interesting observation is that the same string is protected four times, each

with different protected payloads, but when they are unprotected, it equates to the

original string.

ChAPTEr 8 SECurINg APIS

143

Another neat feature is the ability to have protected data expire after a specified time.

By using a special IDataProtector we can limit the validity of any previously protected

payload. The ITimeLimitedDataProtector inherits from an IDataProtector and allows

for expiration to be specified for a specific data-protection action.

Let’s alter our code a bit to see how we can enable data-protection expiration for a

message after ten seconds:

public static void Main(string[] args)

{

 var services = new ServiceCollection()

 .AddDataProtection()

 .Services.BuildServiceProvider();

 var protecterProvider = services.GetService<IDataProtectionProvider>();

 var protector = protecterProvider.CreateProtector("AwesomePurpose").

ToTimeLimitedDataProtector();

 DateTimeOffset expiryDate;

 Console.Write($"Type something sensitive: ");

 var input = Console.ReadLine();

 var protectedInput = protector.Protect(input, TimeSpan.FromSeconds(10));

 while (true)

 {

 try

 {

 Console.Clear();

 Console.WriteLine($"Protected: {protectedInput}");

 var unprotectedInput = protector.Unprotect(protectedInput,

out expiryDate);

 Console.WriteLine($"Unprotected: {unprotectedInput}");

 Console.WriteLine($"This message will self-destruct in

{(expiryDate - DateTime.Now).Seconds} second(s).");

 }

 catch (CryptographicException ex)

 {

ChAPTEr 8 SECurINg APIS

144

 Console.WriteLine(ex.Message);

 }

 finally

 {

 Thread.Sleep(1000);

 }

 }

}

We call the ToTimeLimitedDataProtector extension method on the protector to

create an ITimeLimitedDataProtector, which will allow us to specify a Timespan value

for how long the protected payload data is valid until it expires. Upon expiration, a

CryptographicException is thrown. Figure 8-4 shows the output of the program after

adding support for data-protection expiration.

Figure 8-4. Protected payload expiration

ChAPTEr 8 SECurINg APIS

145

 Enforcing SSL
So far, we’ve covered how to gain access to secured resources as well as how to protect

the data of applications, but what about the communication between the client and

the server? A secure sockets layer (SSL) is a protocol for transmitting private data via

the web. By enforcing SSL, we add a layer of security to our solution to make it less

vulnerable to attacks.

Tip It is recommended to enforce SSL in the overall communication between the
components of applications as it will reduce the risk of man-in-the-middle attacks
(MITM). read more about MITM here: https://en.wikipedia.org/wiki/
Man-in-the-middle_attack.

When using MVC, we can apply the [RequireHttps] attribute at all the places

where SSL is required. Enforcing SSL on a global level is a security best practice and can

be achieved by adding a new instance of a RequireHttpsAttribute to the MVC filters

collection:

public void ConfigureServices(IServiceCollection services)

{

 services.Configure<MvcOptions>(options =>

 {

 options.Filters.Add(new RequireHttpsAttribute());

 });

 //...

}

The RequireHttpsAttribute will require the use of the SSL protocol when making

requests to the service. To automatically redirect all requests via HTTPS, we need

to implement a rewriter to redirect all requests to their subsequent HTTPS variants.

The HTTPS rewriter can be implemented by making use of the AddRedirectToHttps

extension method:

public void Configure(IApplicationBuilder app)

{

 //...

ChAPTEr 8 SECurINg APIS

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack

146

 var options = new RewriteOptions()

 .AddRedirectToHttps();

 app.UseRewriter(options);

}

Note To use SSL, one will need to have a valid certificate that is issued by a
certificate authority. It is possible to get a free SSL certificate from Let’s Encrypt;
visit them here: https://letsencrypt.org.

 Cross-origin Requests
Most browsers have a built-in security mechanism that prevents web pages from

making AJAX requests to other domains that are different from the current website or

application. This restriction is called a same-origin policy and helps to protect websites

against malicious access to sensitive data from other sites.

In the modern API landscape, chances of having different domains between the

components of applications are pretty good, and sometimes there is a need to let sites

make cross-origin domain calls to various web APIs. Cross-origin resource sharing

(CORS) is a W3C standard that solves this problem by allowing the relaxation of the

same-origin policy.

By using CORS, a server can explicitly allow specific cross-origin requests, and it’s

much safer than previous techniques were that tried to solve the cross-origin problem.

An origin of a request is the combination of the scheme, host, and port. The following

example endpoint URLs have identical origins:

https://api.awesome.com/customers

https://api.awesome.com/customers/2/orders

https://api.awesome.com/orders/2/history

The first endpoint URL could have the following different origins:

https://api.awesome.com/customers

http://api.awesome.com/customers

http://api.awesome.com:8080/customers

http://awesome.com/api/customers

ChAPTEr 8 SECurINg APIS

https://letsencrypt.org/

147

CORS doesn’t just limit origins, but can also be configured to allow or deny HTTP

methods and HTTP headers.

Browsers that support CORS set special headers automatically for cross-origin

requests, which are validated by the server implementing CORS on the back-end. If the

validation fails, it will cause the AJAX request to fail, and thus will not make the response

available to the client, even if the response was successful.

In ASP.NET Core, we can implement CORS by registering the CORS middleware in

the ConfigureServices method and enabling it globally in the Configure method of

a Startup class. The following example adds CORS to an application that only allows

requests from http://awesome.com:

public class Startup

{

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddCors();

 //...

 }

 public void Configure(IApplicationBuilder app)

 {

 app.UseCors(config => config.WithOrigins("http://awesome.com"));

 //...

 }

}

Note When specifying the origin urL, remember to exclude the possible trailing
slash (/) character, as this will cause the origin validation to fail.

ChAPTEr 8 SECurINg APIS

http://awesome.com/

148

It is important to enable CORS before any other defined components in the request

pipeline in order for CORS to properly take effect. We can also create CORS policies that

will apply in different places in our application, as shown in the code snippet here:

public void ConfigureServices(IServiceCollection services)

{

 services.AddCors(options=>

 {

 options.AddPolicy("AwesomePolicy", builder => builder.

WithOrigins("http://awesome.com"));

 });

 //...

}

We can then use a specific CORS policy on the entire application using the CORS

middleware:

public void Configure(IApplicationBuilder app)

{

 app.UseCors("AwesomePolicy");

 //...

}

If we are using MVC, we could implement CORS even further on different levels.

For example, here’s a code snippet showing the AwesomePolicy CORS policy being used

globally within MVC by adding the CorsAuthorizationFilterFactory to the global filter

collection:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.Configure<MvcOptions>(options =>

 {

 options.Filters.Add(new CorsAuthorizationFilterFactory

("AwesomePolicy"));

 });

}

ChAPTEr 8 SECurINg APIS

149

Alternatively, we could also add CORS per controller level and action level by using

the EnableCorsAtrribute:

[Route("api/[controller]")]

[EnableCors("AwesomePolicy")]

public class AwesomeController : Controller

{

 [EnableCors("AnotherAwesomePolicy")]

 public IEnumerable<string> Get()

 {

 //...

 }

 [DisableCors]

 public string Post()

 {

 //...

 }

 //...

}

In the preceding code snippet, the AwesomePolicy is applied to the whole

AwesomeController class, and furthermore the Get action method also contains the

AnotherAwesomePolicy CORS policy. To exempt a CORS policy on a particular level, we

can use the DisableCorsAttribute, as shown in the Post action method.

 Request Rate Limiting
When an application processes too many requests at once, it can cause a system failure

or even have a negative impact on the underlying infrastructure. We can prevent

potential down-time by implementing request rate limiting on our application, which

will also help protect against DoS and DDoS attacks.

ChAPTEr 8 SECurINg APIS

150

Implementing a request rate limiter is as simple as adding strategic middleware

in the request pipeline to validate incoming requests and then accept or deny them,

depending on the outcome of the validation process. Here’s an example of simple

request rate limiting, which limits requests to five requests every thirty seconds, as

implemented in the AwesomeRateLimiterMiddleware class:

public class AwesomeRateLimiterMiddleware

{

 private const int limit = 5;

 private readonly RequestDelegate next;

 private readonly IMemoryCache requestStore;

 public AwesomeRateLimiterMiddleware(RequestDelegate next, IMemoryCache

requestStore)

 {

 this.next = next;

 this.requestStore = requestStore;

 }

 public async Task Invoke(HttpContext context)

 {

 var requestKey = $"{context.Request.Method}-{context.Request.Path}";

 int hitCount = 0;

 var cacheEntryOptions = new MemoryCacheEntryOptions()

 {

 AbsoluteExpiration = DateTime.Now.AddSeconds(30)

 };

 if (requestStore.TryGetValue(requestKey, out hitCount))

 {

 if (hitCount < limit)

 {

 await ProcessRequest(context, requestKey, hitCount,

cacheEntryOptions);

 }

 else

 {

ChAPTEr 8 SECurINg APIS

151

 context.Response.Headers["X-Retry-After"] =

cacheEntryOptions.AbsoluteExpiration?.ToString();

 await context.Response.WriteAsync("Quota exceeded");

 }

 }

 else

 {

 await ProcessRequest(context, requestKey, hitCount,

cacheEntryOptions) ;

 }

 }

 private async Task ProcessRequest(HttpContext context, string

requestKey, int hitCount, MemoryCacheEntryOptions cacheEntryOptions)

 {

 hitCount++;

 requestStore.Set(requestKey, hitCount, cacheEntryOptions);

 context.Response.Headers["X-Rate-Limit"] = limit.ToString();

 context.Response.Headers["X-Rate-Limit-Remaining"] = (limit -

hitCount).ToString();

 await next(context);

 }

}

By studying the preceding class, we can see that when the middleware is invoked, an

attempt is made to read the number of requests for a specific request key, which can be

any unique string value. In this scenario, the key is a combination of the HTTP method

and the request path.

If a value is found, a check is performed to see if the number of requests amount

is larger than five. If the number of requests is larger than five, it immediately sends a

response back indicating that the rate limit has been exceeded. If the number of requests

is still smaller than five, then it allows the request through the pipeline and increases the

number of requests for that specific request in the in-memory request store.

ChAPTEr 8 SECurINg APIS

152

As a best practice, statistics of the request rate limiting are sent with the response

by using a response header X-Rate-Limit that indicates what the current rate limit is,

as well as a response header X-Rate-Limit-Remaining, which is a value indicating how

many requests are available for the particular request until requests are rate limited.

Also, when rate limiting kicks in, a specific X-Retry-After header is sent that indicates

when the request can be retried without its being rate limited.

To use the AwesomeRateLimiterMiddleware middleware in our application, we need

to make sure to add an implementation of IMemoryCache to the services collection and to

register the middleware as early as possible in the request pipeline:

public class Startup

{

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddMemoryCache();

 }

 public void Configure(IApplicationBuilder app)

 {

 app.UseMiddleware<AwesomeRateLimiterMiddleware>();

 app.Run(async (context) =>

 {

 await context.Response.WriteAsync("Hello World!");

 });

 }

}

Now, when we run our application and execute the request for more than five times

within a time span of thirty seconds, we will get a response indicating that the current

request is rate limited.

Tip The preceding code is intended for conceptual purposes only. There
are plenty of great third-party request limiting implementations available in
the community. One such implementation is AspNetCoreRateLimit by Stefan
Prodan and is available here: https://github.com/stefanprodan/
AspNetCoreRateLimit.

ChAPTEr 8 SECurINg APIS

https://github.com/stefanprodan/AspNetCoreRateLimit
https://github.com/stefanprodan/AspNetCoreRateLimit

153

 Wrapping Up
We’ve reached the end of yet another chapter of the journey of modern API design in ASP.

NET Core. After learning all about authentication and authorization, we implemented

basic JWT authentication to protect our application from unauthorized entry.

We learned about the ASP.NET data-protection stack and how we can leverage it to

protect and unprotect payloads of data for specific purposes. We also covered how to

enforce SSL to help guarantee secure communication between the client and the server.

We ended the chapter by covering more advanced concepts of security, like using

CORS for cross-origin requests and request rate limiting to help prevent the system from

being overloaded with requests during a potential attack.

In the next chapter, we will continue our journey of modern API design by taking a

look at more concepts and technologies to help implement fantastic APIs.

ChAPTEr 8 SECurINg APIS

Bells & Whistles
By now we’ve covered many essential aspects critical to building modern APIs; however,

sometimes there is a requirement to add extra value to the solution proposition to make

it stand out above the rest.

As mentioned previously, developers are ultimately the end-users of our APIs, and

the onus is on us to deliver the best possible experience to them while they use our

API solution. This chapter is focused on some of the additional technologies and other

concepts that can help accelerate the adoption and usability experience of APIs.

After learning about managing the API state with HATEOAS, we will discover the

use of versioning within our APIs and cover different ways of implementing a versioned

API. In this chapter, we will also delve into the use of other tools and frameworks, such

as Swagger, for developing, interacting with, and documenting APIs, as well as GraphQL,

for providing a unified querying experience.

Note There are, of course, many other add-ons we could implement to make our
APIs great. The ones detailed in this chapter are just a subset, but are definitely
among my favorite.

 HATEOAS
As we know by now, one of the constraints of REST is the notion of being completely

stateless. To refresh our memories, this means that when a request is sent by the client to

the server, it should contain all the information needed to process the request without

relying on the server for tracking the interaction state.

156

Hypermedia As The Engine Of Application State (HATEOAS) is a constraint of the

stateless application that allows a REST client to have no prior knowledge of how to

interact with the server beyond a general understanding of hypermedia provided by

the API.

It works by having a client enter a REST application using a fixed URL and then be

provided with further functionality that is discovered as the interaction between the

client and server continues. This communication between client and server is shown in

Figure 9-1.

Figure 9-1. An example set of interactions with a server implementing HATEOAS

In the preceding figure, the client makes an initial request to the server to get the

possible functionality and receives back a payload containing available actions for the

current state. The client then requests a list of bars by invoking the URL of the provided

list-bar action and receives back a payload containing a collection of bars, as well as

further steps that can be invoked for the current state of the response.

If the client requests that a new bar be created by invoking the create-bar action

URL, it receives back a payload containing the created bar, barX, as well as further

actions that can be applied within the context of barX. When the client then requests

barX by invoking the provided URL from the get-bar[X] operation, it receives back

a payload containing barX, along with the other possible further activities within this

context.

ChAPTer 9 Bells & WhIsTles

157

This interaction between the client and server can continue in the same way as just

described as long as the server provides functionality metadata that can be discovered

by the client.

A key benefit of using HATEOAS is that the client application does not need to have

any prior knowledge of URLs of resources on the server. Instead, it only knows of the

particular action names. Figure 9-2 shows how HATEOAS can facilitate the flow in an

example application.

Figure 9-2. An example application making use of actions provided by a
HATEOAS-enabled server

Implementing HATEOAS in ASP.NET Core is straightforward. Resources from the

API are wrapped in an object with an additional property that contains links to other

resources relevant to the particular support. Each link item inside the collection has all

the information needed to successfully link to the other resource in question, like the

relation key, the URL of the endpoint, and the HTTP method for the request.

ChAPTer 9 Bells & WhIsTles

158

Let’s take an example API that provides information about people, where the person

resource type may be represented by the following data transfer object:

public class PersonDto

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Email { get; set; }

}

The People API is represented in the PeopleController, which contains the

endpoints to retrieve a collection of persons or a single person, create a new person, or

update and remove a person:

[Route("api/[controller]")]

public class PeopleController : Controller

{

 //...

 [HttpGet(Name = "get-people")]

 public IActionResult Get()

 {

 //...

 return Ok(people);

 }

 [HttpGet("{id}", Name = "get-person")]

 public IActionResult Get(int id)

 {

 //...

 return Ok(person);

 }

 [HttpPost(Name = "create-person")]

 public IActionResult Post([FromBody]PersonDto person)

 {

 //...

ChAPTer 9 Bells & WhIsTles

159

 return Created(...);

 }

 [HttpPut("{id}", Name = "update-person")]

 public IActionResult Put(int id, [FromBody]PersonDto person)

 {

 //...

 return Ok();

 }

 [HttpDelete("{id}", Name = "delete-person")]

 public IActionResult Delete(int id)

 {

 //...

 return Ok();

 }

}

As a first step in converting the preceding code to a HATEOAS-enabled API, we need

to create an object for holding the links, as well as two wrapper classes for wrapping a

single resource and wrapping a collection of resources:

public class Link

{

 public Link(string rel, string href, string method)

 {

 this.Rel = rel;

 this.Href = href;

 this.Method = method;

 }

 public string Href { get; set; }

 public string Rel { get; set; }

 public string Method { get; set; }

}

ChAPTer 9 Bells & WhIsTles

160

public abstract class Resource

{

 [JsonProperty("_links", Order = -2)]

 public List<Link> Links { get; } = new List<Link>();

}

public class ResourceList<T>

{

 public ResourceList(List<T> items)

 {

 this.Items = items;

 }

 public List<T> Items { get; }

 [JsonProperty("_links", Order = -2)]

 public List<Link> Links { get; } = new List<Link>();

}

In the preceding code, the Link class contains three properties, Rel, Url, and

Method, which are used for holding the link relation key, the URL of an endpoint, and the

HTTP method to be used for the request, respectively. Furthermore, the Resource and

ResourceList classes each contain a property of type List<Link> for holding multiple

links per resource. ResourceList also contains a property called Items of type List<T>,

where T represents the type of the resource.

Inside the Resource and ResourceList<T> classes, the JsonProperty attribute is

used to serialize the particular property to JSON. For the Links property, an Order of -2 is

defined to ensure that it renders first.

We can now extend the existing PersonDto class to be a resource, allowing the class

to inherit the properties of a HATEOAS resource:

public class PersonDto: Resource

{

 //...

}

ChAPTer 9 Bells & WhIsTles

161

To return a collection of persons, we need to wrap the collection in an instance of

ResourceList<PersonDto>:

[HttpGet(Name = "get-people")]

public IActionResult Get()

{

 //...

 var result = new ResourceList<PersonDto>(people);

 return Ok(result);

}

Now, when we run the application and make a request to the get-people endpoint, we

will get a response with a collection of persons, but also with an empty collection of links:

{

 "_links": [],

 "items": [

 {

 "_links": [],

 "id": 1,

 "name": "Fanie",

 "email": "fanie@reynders.co"

 },

 {

 "_links": [],

 "id": 2,

 "name": "Maarten",

 "email": "maarten@example.com"

 },

 {

 "_links": [],

 "id": 2,

 "name": "Marcel",

 "email": "marcel@example.com"

 }

]

}

ChAPTer 9 Bells & WhIsTles

162

The final thing to do is to add the relevant links for each resource in the response.

To keep things simple, we will only add the resource links for the get-people and

get- person endpoints:

[HttpGet(Name = "get-people")]

public IActionResult Get()

{

 //...

 var result = new ResourceList<PersonDto>(people);

 result.Items.ForEach(p =>

 {

 p.Links.Add(new Link("self", Url.Link("get-people", new { id = p.Id

}), "GET"));

 p.Links.Add(new Link("get-person", Url.Link("get-person", new { id

= p.Id }), "GET"));

 });

 result.Links.Add(new Link("create-person", Url.Link("create-person",

null), "POST"));

 return Ok(result);

}

[HttpGet("{id}", Name = "get-person")]

public IActionResult Get(int id)

{

 //...

 person.Links.Add(new Link("self", Url.Link("get-person", new { id }),

"GET"));

 person.Links.Add(new Link("update-person", Url.Link("update-person",

new { id }), "UPDATE"));

 person.Links.Add(new Link("delete-person", Url.Link("delete-person",

new { id }), "DELETE"));

 return Ok(person);

}

ChAPTer 9 Bells & WhIsTles

163

Note It is considered a best practice to include a link to the resource itself with
the relation key as self.

Now, when we invoke one of the endpoints, the response will contain the links we’ve

added to the particular resource response. Here’s an example response of the get-

people endpoint:

{

 "_links": [

 {

 "href": "http://localhost:49185/api/People",

 "rel": "create-person",

 "method": "POST"

 }

],

 "items": [

 {

 "_links": [

 {

 "href": "http://localhost:49185/api/People/1",

 "rel": "self",

 "method": "GET"

 },

 {

 "href": "http://localhost:49185/api/People/1",

 "rel": "update-person",

 "method": "UPDATE"

 },

 {

 "href": "http://localhost:49185/api/People/1",

 "rel": "delete-person",

 "method": "DELETE"

 }

],

ChAPTer 9 Bells & WhIsTles

164

 "id": 1,

 "name": "Fanie",

 "email": "fanie@reynders.co"

 },

 //...

]

}

When we select the first resource from the preceding list and execute the get-person

relation from the links provided, we will get the following response, which contains

further links for any additional functionality within scope:

{

 "_links": [

 {

 "href": "http://localhost:49185/api/People/1",

 "rel": "update-person",

 "method": "UPDATE"

 },

 {

 "href": "http://localhost:49185/api/People/1",

 "rel": "delete-person",

 "method": "DELETE"

 }

],

 "id": 1,

 "name": "fanie",

 "email": "fanie@reynders.co"

}

Note The preceding examples are tailored to show the basics of implementing
a hATeOAs-based API using AsP.NeT Core MVC. There are other third-party
frameworks out there that can be used to implement hATeOAs APIs in AsP.NeT
Core. One of them is my little project, called aspnetcore-hateoas, for which you
can find the Github repository here: https://github.com/faniereynders/
aspnetcore-hateoas.

ChAPTer 9 Bells & WhIsTles

https://github.com/faniereynders/aspnetcore-hateoas
https://github.com/faniereynders/aspnetcore-hateoas

165

 Versioning
When it comes down to the hardcore REST practices, there are endless different religious

debates by so-called REST evangelists, and one of the topics in these discussions is

versioning. Although Roy Fielding strongly recommended against versioning RESTful

APIs, the reality is that sometimes we have no choice. In specific scenarios, being

practical is more beneficial to the theory.

So, why would we want to version our APIs anyway? Well, the most straightforward

answer, in my opinion, is that we don’t live in a perfect world and we are always faced with

possible legacy decisions that cannot be reversed, especially in the context of public APIs.

We shouldn’t go wild and version everything, because improper versioning can

quickly get out of control when it comes to custom implementations. We should

implement versioning with caution and should always strive to have our APIs be

backward compatible at all times.

All APIs must support explicit versioning to be compliant with the REST API

Guidelines outlined by Microsoft because clients need to be dependent on services that

are stable over time, mainly when more features are added that could cause breaking

changes.

APIs are usually versioned using the Major.Minor versioning scheme, but can be

optionally used in conjunction with group versioning, which uses a date formatting

scheme, as YYY-MM-DD. Under the hood, group versioning maps to the appropriate

Major.Minor version.

Versions of APIs can be located in four places, namely in the URL as a query string

parameter, in the URL as a URL path segment, like a key in the header of a request, or

defined as part of a specific media type. Here are some examples of the different options

for versioning APIs:

• Version as a query string parameter in the URL:

https://api.awesome.io/people?api-version=1.0

• Version as a URL segment in the URL:

https://api.awesome.io/v1.0/people

ChAPTer 9 Bells & WhIsTles

166

• Version as a key in the header of the request:

GET /people HTTP/1.1

Host: api.awesome.io

api-version: 1.0

• Version as part of a media type:

GET /people HTTP/1.1

Host: api.awesome.io

Accept: application/json;v=1.0

To add versioning to our APIs in ASP.NET Core MVC, we can make use of the

Microsoft.AspNetCore.Mvc.Versioning package that we will find under the default

NuGet feed.

Tip In Visual studio, NuGet packages can be added using the user interface
by right-clicking on the project and selecting Manage NuGet Packages, or by
executing the Install-Package command in the Package Manager Console.

To install the Microsoft.AspNetCore.Mvc.Versioning package using the Package

Manager Console, we can execute the following command:

Install-Package Microsoft.AspNetCore.Mvc.Versioning

We can also install this package via the .NET CLI by executing the following

command in Command Prompt or Bash:

$ dotnet add package Microsoft.AspNetCore.Mvc.Versioning

After the package is installed, we add the versioning functionality to the services

collection by calling the provided AddApiVersioning extension method:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.AddApiVersioning();

 //...

}

ChAPTer 9 Bells & WhIsTles

167

The preceding code will register the versioning middleware and assume that

the version of the application is version 1.0. The following is a controller class

AwesomeController that contains only one endpoint that returns the current version of

the application:

namespace AwesomeApi.Controllers

{

 [Route("api/awesome")]

 public class AwesomeController : Controller

 {

 public IActionResult Get() => Ok("Version 1");

 }

}

When we run the application and try to invoke the People API by executing a request

to /api/people, we notice the following response:

HTTP/1.1 400 Bad Request

Content-Type: application/json; charset=utf-8

...

{

 "Error": {

 "Code": "ApiVersionUnspecified",

 "Message": "An API version is required, but was not specified."

 }

}

The Bad Request response that is returned explains that an API version is required,

which was not specified. Executing the same request again, but this time appending

the version number as a query parameter ?api-version=1.0, will return a successful

response with the expected OK response:

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8

...

Version 1

ChAPTer 9 Bells & WhIsTles

168

Note The version specified must either match the Major.Minor schema or
group version, defined in a date format YYYY-MM-DD. When working with the
Major.Minor format, we can either specify the whole number, for example,
api- version=1.0, or part thereof, like api-version=1.

Let’s now extend the application by adding new functionality. In version 2.0, we

want the /api/awesome endpoint to return the current version as well as the connection

identifier, as follows:

namespace AwesomeApi.Controllers

{

 [ApiVersion("1.0")]

 [Route("api/awesome")]

 public class AwesomeV1Controller : Controller

 {

 public IActionResult Get() => Ok("Version 1");

 }

 [ApiVersion("2.0")]

 [Route("api/awesome")]

 public class AwesomeV2Controller : Controller

 {

 public IActionResult Get() => Ok($"Version 2 - {Request.

HttpContext.Connection.Id}");

 }

}

One thing that is important in the changes made to the preceding code is that we had

to set the previous version as 1.0 explicitly. Otherwise, it will be used as the latest version

if no version is specified in the request. Because class names need to be unique, we also

had to rename the controllers accordingly.

Personally, I prefer not mixing version numbers with class or method names as

it decreases the readability of the code, and I firmly believe that namespaces are the

perfect place for different versions instead. After refactoring the preceding code, we end

up with the following:

ChAPTer 9 Bells & WhIsTles

169

namespace AwesomeApi.Controllers.V1

{

 [ApiVersion("1.0")]

 [Route("api/awesome")]

 public class AwesomeController : Controller

 {

 public IActionResult Get() => Ok("Version 1");

 }

}

namespace AwesomeApi.Controllers.V2

{

 [ApiVersion("2.0")]

 [Route("api/awesome")]

 public class AwesomeController : Controller

 {

 public IActionResult Get() => Ok($"Version 2 - {Request.

HttpContext.Connection.Id}");

 }

}

Now, after running the application and invoking the /api/awesome?version=2.0

endpoint, we notice the following response:

HTTP/1.1 200 OK

Content-Type: text/plain; charset=utf-8

...

Version 2 - 0HLA68RORHP5A

The preceding example code showed how we could implement versioning that

is specified in the URL as a query parameter. In the next example, we will change the

application to require the version number as a URL segment instead:

namespace AwesomeApi.Controllers.V1

{

 [ApiVersion("1.0")]

 [Route("api/v{version:apiVersion}/awesome")]

ChAPTer 9 Bells & WhIsTles

170

 public class AwesomeController : Controller

 {

 public IActionResult Get() => Ok("Version 1");

 }

}

namespace AwesomeApi.Controllers.V2

{

 [ApiVersion("2.0")]

 [Route("api/v{version:apiVersion}/awesome")]

 public class AwesomeController : Controller

 {

 public IActionResult Get() => Ok($"Version 2 - {Request.

HttpContext.Connection.Id}");

 }

}

As we can see, it is simply mapping the version variable in the URL to the

apiVersion.

It is very common to specify the version in the request header, as this keeps the URLs

clean and uncluttered with version information. To enable request-header versioning,

we need to set the ApiVersionReader option in the ConfigureServices method of the

Startup class:

public void ConfigureServices(IServiceCollection services)

{

 //...

 services.AddApiVersioning(options =>

 {

 options.ApiVersionReader = new HeaderApiVersionReader

("x-api-version");

 });

}

The preceding code will allow us to specify the desired version of the application

by setting the x-api-version header value in the request. In this example, we explicitly

named the header value x-api-version, but it can be a string value. If no name is

specified, it defaults to the api-version header key.

ChAPTer 9 Bells & WhIsTles

171

Note setting the version source as the header will override any version specified
in the query string.

If there is a need to support version numbers specified in both the query string

and the header, although not compliant with the Microsoft REST Guidelines, we can

combine IApiVersionReader implementations to accommodate the need:

public void ConfigureServices(IServiceCollection services)

{

 //...

 services.AddApiVersioning(options =>

 {

 options.ApiVersionReader = ApiVersionReader.Combine(

 new QueryStringApiVersionReader(),

 new HeaderApiVersionReader()

 {

 HeaderNames = { "api-version" }

 });

 });

}

To have the version be specified as part of the content type in the header, we can

make use of the MediaTypeApiVersionReader implementation:

public void ConfigureServices(IServiceCollection services)

{

 //...

 services.AddApiVersioning(options =>

 {

 options.ApiVersionReader = new MediaTypeApiVersionReader();

 });

}

ChAPTer 9 Bells & WhIsTles

172

The preceding configuration will allow us to specify the version as part of the content

type in the Accept header; for example, Accept: application/json;v=2, which will use

version number 2. We can customize the v variable by passing a custom version variable

name in the constructor of the MediaTypeApiVersionReader class.

The examples showed so far were based on different versions per controller, but

what if we wanted to extend the functionality of a given API to be based on action level?

For example, let’s say we have a Names API that, in version one, only outputs a name

when requested, but in version two allows the name to be updated as well.

To implement versioning on an action level, we need to make use of the

[MapToApiVersion] attribute:

[ApiVersion("1.0")]

[ApiVersion("2.0")]

[Route("api/[controller]")]

public class NamesController : Controller

{

 [MapToApiVersion("1.0")]

 public IActionResult Get()

 {

 //...

 }

 [MapToApiVersion("2.0")]

 public IActionResult Put(string name)

 {

 //...

 }

}

We can further customize how the versioning mechanism behaves by setting

the desired options in the ConfigureServices method inside the Startup class. The

following code highlights a few options:

public void ConfigureServices(IServiceCollection services)

{

 //...

ChAPTer 9 Bells & WhIsTles

173

 services.AddApiVersioning(options =>

 {

 options.DefaultApiVersion = new ApiVersion(1,0);

 options.AssumeDefaultVersionWhenUnspecified = true;

 options.ReportApiVersions = true;

 });

}

In the preceding example, we can specify a default version either by passing

the major and minor version numbers or by specifying a group version value.

The default version can be assumed if no version is specified by setting the

AssumeDefaultVersionWhenUnspecified option. The ReportApiVersions option allows

the response to contain an additional api-supported-versions header detailing the

versions that are supported for the particular request.

Note To read more on the versioning functionality provided in this section, please
visit the aspnet-api-versioning Github repository here: https://github.com/
Microsoft/aspnet-api-versioning.

 Swagger
If you haven’t heard about Swagger before, this section will quickly bring you up to speed

in what it is and how we can leverage parts of it in ASP.NET Core to add a little something

extra to our APIs.

Swagger is an open source framework that helps us design, build, document, and

consume RESTful services, and it provides many different tools for developing, interacting

with, and documenting APIs. According to their website at https://swagger.io, it is the

world’s most popular API tooling and has been adopted by the community for enabling

development across the entire API lifecycle. It is part of the OpenAPI Specification (OAS).

Note This section will not cover all the functionality of swagger and is limited to
include specific parts related to AsP.NeT Core.

ChAPTer 9 Bells & WhIsTles

https://github.com/Microsoft/aspnet-api-versioning
https://github.com/Microsoft/aspnet-api-versioning
https://swagger.io/

174

From the many features that Swagger provides, one of the most commonly used is

probably the specification itself, which provides a machine-readable representation

of a RESTful API for interactive documentation, client SDK code generation, and API

discovery.

Going back to one of the first examples in this chapter, we will build on top of the

initial People API.

Swagger can help us to generate API documentation and interactive help pages for

our APIs in ASP.NET Core by using the Swashbuckle.AspNetCore NuGet package, which

can be installed from within Visual Studio or just by running a simple command from

the CLI:

$ dotnet add package Swashbuckle.AspNetCore

To register the Swagger middleware, we need to call the AddSwaggerGen extension

method in the ConfigureServices of the Startup class:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.AddSwaggerGen(c =>

 {

 c.SwaggerDoc("v1", new Info { Title = "Awesome API", Version = "v1" });

 });

}

The preceding code will create an API documentation generator and call it “v1”. The

next step is to configure the application to use the Swagger features we need:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 app.UseSwagger();

 app.UseSwaggerUI(c =>

 {

 c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");

 });

 app.UseMvc();

}

ChAPTer 9 Bells & WhIsTles

175

In the preceding code, the UseSwagger function will expose an endpoint that serves

a machine-readable representation of the API that is the metadata of the API in JSON

format. The following example is a snippet of the response when executing the Swagger

endpoint:

{

 "swagger": "2.0",

 "info": {

 "version": "v1",

 "title": "Awesome API"

 },

 "basePath": "/",

 "paths": {

 "/api/People": {

 "get": //...

 "post": //...

 "/api/People/{id}": {

 "get": //...

 "put": //...

 "delete": //...

 }

 },

 "definitions": {

 "PersonDto": //...

 },

 "securityDefinitions": {}

}

The UseSwaggerUI function exposes a user interface that uses the Swagger endpoint,

which can be used as interactive documentation of our API. Figure 9-3 shows a glimpse

of navigating to the /swagger endpoint using a browser.

ChAPTer 9 Bells & WhIsTles

176

The actions that are displayed are interactive. Figure 9-4 shows how the screen

changes when we click on one of the listed actions, like POST /api/People, for example.

Figure 9-3. The Swagger page for a sample API

ChAPTer 9 Bells & WhIsTles

177

As we can see, it prompts us for the required parameters to try out the API while

describing the API helpfully and interactively.

Note To read more on the customization and extensibility of swagger in AsP.NeT
Core, please visit the official documentation at https://docs.microsoft.com/
en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger.

 GraphQL
Let’s now shift our focus to a whole different topic that will add bells and whistles to

our APIs. GraphQL is a query language for APIs that was developed by Facebook in

2012 before it became public in 2015, and it includes a runtime for executing requested

queries on your existing data.

Figure 9-4. The detail view of an action rendered by Swagger

ChAPTer 9 Bells & WhIsTles

https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger
https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger

178

The power of GraphQL is that it allows clients to specify precisely what they need,

and nothing more, which makes it easier to use as APIs evolve. Let’s take a look at a

simple example GraphQL query:

{

 person {

 name

 email

 }

}

The preceding GraphQL query will return the following response:

{

 "data": {

 "person": {

 "name": "Fanie",

 "email": "fanie@reynders.co"

 }

 }

}

As we see in the preceding code, the response is almost identical to the request.

If we want further information on a person, let’s say their friends, we simply add the

properties we need:

{

 person {

 name

 email

 friends {

 name

 }

 }

}

ChAPTer 9 Bells & WhIsTles

179

After this GraphQL query processes, it will return a result like the following:

{

 "data": {

 "person": {

 "name": "Fanie",

 "email": "fanie@reynders.co",

 "friends": [

 {

 "name": "Gerald"

 },

 {

 "name": "Joe"

 },

 {

 "name": "Albert"

 }

]

 }

 }

}

Note The aim of this section is only to show how one can integrate GraphQl
within an AsP.NeT Core application. To learn more about GraphQl, please visit
http://graphql.org.

The GraphQL query is sent to a particular GraphQL endpoint, which executes

the query and returns the result as a GraphQL object result. One of the great things

about GraphQL is that it can coexist with REST, meaning that it is merely an extension

of the current system, not a replacement. You can still expose your usual RESTful

endpoints and have the GraphQL endpoint live in harmony with them. GraphQL is not a

replacement for REST per se, but more of an alternative extension.

Let’s go ahead and implement a GraphQL endpoint in our application. We start off

with our domain model, which includes a Person class with basic properties, including

Friends, which is a collection of type Person[]:

ChAPTer 9 Bells & WhIsTles

http://graphql.org/

180

public class Person

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Email { get; set; }

 public Person[] Friends { get; set; } = new Person[] { };

}

To access people information, we have an IPeopleRepository for exposing queries

to get all people and those to get a specific person by Id:

public interface IPersonRepository

{

 IEnumerable<Person> GetAll();

 Person GetOne(int id);

}

Before we go any further, we need to add a NuGet package to our project, called

GraphQL:

dotnet add package GraphQL

Now we can start to implement the GraphQL endpoint by creating a middleware

class called AwesomeGraphQLMiddleware:

public class AwesomeGraphQLMiddleware

{

 private readonly RequestDelegate _next;

 private readonly IPersonRepository _personRepository;

 public AwesomeGraphQLMiddleware(RequestDelegate next, IPersonRepository

personRepository)

 {

 _next = next;

 _personRepository = personRepository;

 }

ChAPTer 9 Bells & WhIsTles

181

 public async Task Invoke(HttpContext httpContext)

 {

 if (httpContext.Request.Path.StartsWithSegments("/graphql"))

 {

 using (var stream = new StreamReader(httpContext.Request.Body))

 {

 var query = await stream.ReadToEndAsync();

 if (!String.IsNullOrWhiteSpace(query))

 {

 var schema = new Schema { Query = new PersonQuery

(_personRepository) };

 var result = await new DocumentExecuter()

 .ExecuteAsync(options =>

 {

 options.Schema = schema;

 options.Query = query;

 });

 await WriteResult(httpContext, result);

 }

 }

 }

 else

 {

 await _next(httpContext);

 }

 }

 private async Task WriteResult(HttpContext httpContext, ExecutionResult result)

 {

 var json = new DocumentWriter(indent: true).Write(result);

 httpContext.Response.StatusCode = 200;

 httpContext.Response.ContentType = "application/json";

 await httpContext.Response.WriteAsync(json);

 }

}

ChAPTer 9 Bells & WhIsTles

182

When invoked, it verifies that the request path is /graphql and then attempts to read

the body of the request using a StreamReader. A Schema object is then constructed, with

the Query property set as an instance of a PersonQuery, which takes in an instance of an

IPersonRepository.

After a new DocumentExecuter is created that executes the query against

the provided schema, the result is written to the response as JSON by calling the

WriteResult function.

The PersonQuery contains the implementation details for GraphQL, and herein we

map all the fields for a given query to the appropriate call on the repository:

public class PersonQuery : ObjectGraphType

{

 public PersonQuery(IPersonRepository personRepository)

 {

 Field<PersonType>("person",

 arguments: new QueryArguments(

 new QueryArgument<IntGraphType>() { Name = "id" }),

 resolve: context =>

 {

 var id = context.GetArgument<int>("id");

 return personRepository.GetOne(id);

 });

 Field<ListGraphType<PersonType>>("people",

 resolve: context =>

 {

 return personRepository.GetAll();

 });

 }

}

Drilling down a bit further, the PersonType is a GraphQL-specific type and contains

explicitly defined fields that are mapped to the Person domain object:

public class PersonType : ObjectGraphType<Person>

{

ChAPTer 9 Bells & WhIsTles

183

 public PersonType()

 {

 Field(x => x.Id);

 Field(x => x.Name);

 Field(x => x.Email);

 Field<ListGraphType<PersonType>>("friends");

 }

}

The last thing to do is to wire up the dependencies and register the

GraphQLMiddleware we’ve just created:

public void ConfigureServices(IServiceCollection services)

{

 //...

 services.AddSingleton<IPersonRepository, PersonRepository>();

}

public void Configure(IApplicationBuilder app)

{

 app.UseMiddleware<AwesomeGraphQLMiddleware>();

 //...

}

We are now finally ready to test out this beast. After a quick compile, we run the

application and post the following GraphQL query to the /graphql endpoint:

{

 person(id:1) {

 name

 friends {

 name

 email

 }

 }

}

ChAPTer 9 Bells & WhIsTles

184

Figure 9-5 shows the output when executing this GraphQL query using a client like

Postman.

Figure 9-5. Output from a GraphQL query in ASP.NET Core

 Wrapping Up
We’ve come to the end of yet another chapter. I hope that you enjoyed reading this

chapter as much as I enjoyed writing it. This chapter was all about adding that extra bling

to our APIs to make them stand out and shine.

We started off by exploring the concept of HATEOAS, including how it relates to REST

and how it can help us to implement a stateless API. After that, we delved into versioning

and explored a few ways of achieving versioning within our ASP.NET Core applications.

We covered the use of Swagger in our applications and how it can contribute to

automatic interactive documentation generation for our APIs. We ended this chapter

with a bang, in my opinion, by diving head first into implementing a GraphQL endpoint

that will allow clients to query precisely what they need from our service.

In the next chapter, we will look at testing web APIs and what ASP.NET Core has to

offer to improve the quality of our code.

ChAPTer 9 Bells & WhIsTles

Testing & Debugging
It is time to shift our focus to another important part of API design, which is the testing

and debugging of the source code. This chapter will briefly share some interesting points

on why testing is essential, as well as dive into the implementation details for creating

unit and integration tests. Also included in this chapter will be complete instructions

on how to debug the source code of compiled external libraries by using their symbols

loaded from the Internet.

 Why Is Testing Important?
In recent years, software testing has become an integral part of product quality assurance

(QA). We all do some level of testing of our code before deploying it to a production

environment, be it a simple little quick-and-dirty exploratory testing or full-blown

automated testing that covers nearly 104 percent of the code.

One can imagine what would happen if car companies just designed, built, and

released their vehicles without first doing some form of testing. Software is no different.

Just like in the case of cars, users rely on working software to do their daily tasks.

In the context of software development, testing is the process of verifying if a

particular software component satisfies a specific functional requirement and a way to

gain insight into the test-result metrics to ensure that the quality of the software is on a

certain level.

To accelerate development turnaround times and to do testing consistently, we make

use of testing tools and frameworks that allow us to perform automated testing tasks

against structured scenarios. Test automation reduces the risk of human error because

humans suck at routine jobs, but machines thrive at them.

186

Software testing methods, such as unit testing and integration testing, are used

within testing frameworks to facilitate the verification process for a specific scenario. As

software development evolves, more sophisticated development processes arise, like

test-driven development (TDD) and behavior-driven development (BDD).

TDD is a process of developing software in the repetition of short iterations.

Functional requirements are transformed into specific test cases that should fail upon

initial execution. Just enough software is written to make a particular test case pass, then,

if need be, the software is refactored to improve code quality. As a result of refactoring,

some test cases might again fail, and then the whole process starts all over by either

changing the test case or changing the software code.

BDD is derived from TDD and combines the techniques and principles of TDD

with the ideas of object-oriented design (OOD) and domain-driven design (DDD). The

structure of test cases in BDD leans toward a user story that contains a title, a short

narrative detailing who, what, and why, as well as acceptance criteria to validate if the

requirement is satisfied.

One of the main reasons why testing is necessary is not just the metrics it produces,

but also the quality it ensures during the software development process. Test cases align

with the code coverage of unit and integration tests to provide useful insights, whether

tests cover all or only some of the scenarios.

 Unit Testing
In this section, we will be exploring the implementation of unit tests using some of the

tools made available by Microsoft and the community. We will be building a solution

from scratch to learn the basics of creating unit tests in .NET Core.

Open your favorite shell program, like PowerShell, and create a new folder in a

location of your choice called awesometests by running mkdir .\awesometests. This

folder will hold the solution for the examples. Move into that folder by executing cd .\

awesometests.

Using the .NET Core CLI, run the following commands to create a new solution

in the directory created in the previous step and to add a class library called

AwesomeService to the solution; this library will contain some business logic to test later:

$ dotnet new sln

$ dotnet new classlib -n AwesomeService

$ dotnet sln add .\AwesomeService\AwesomeService.csproj

Chapter 10 testing & Debugging

187

With your favorite code editor, open the current directory. If you’re using Visual Studio

Code, you can simply run code . to open Visual Studio Code in the current directory.

Under the AwesomeService directory, remove the class file called Class1.cs, which

was automatically created by default, and create a new file called Calculators.cs that

contains the following code:

using System;

namespace AwesomeService

{

 public interface ICalculator

 {

 int Add(int nr1, int nr2);

 }

 public class AwesomeCalculator : ICalculator

 {

 public int Add(int nr1, int nr2)

 {

 throw new NotImplementedException();

 }

 }

}

Back in the shell window, add a new XUnit project called AwesomeService.Tests

to the solution and add a project reference to AwesomeService.csproj by executing the

following CLI commands:

$ dotnet new xunit -n AwesomeService.Tests

$ dotnet sln add .\AwesomeService.Tests\AwesomeService.Tests.csproj

$ cd .\AwesomeService.Tests

$ dotnet add reference ..\AwesomeService\AwesomeService.csproj

Now we are ready to start writing some unit tests. To follow the principles of TDD,

we write a failing test first, then implement just enough code to make the test pass, then

repeat the whole process. Toggle back to the code editor and remove the file UnitTest1.cs,

which was automatically created by default, and then add a new class called

AwesomeCalculatorTest.cs containing the following code:

Chapter 10 testing & Debugging

188

using System;

using Xunit;

namespace AwesomeService.Tests

{

 public class AwesomeCalculator_Add_Should

 {

 [Fact]

 public void Return_2_Given_Value_Of_1_And_1()

 {

 ICalculator calculator = new AwesomeCalculator();

 var result = calculator.Add(1,1);

 Assert.Equal(2, result);

 }

 }

}

In the preceding code, the [Fact] attribute indicates that the method attached to it is

a test. In the test, we create a new instance of AwesomeCalculator as an ICalculator and

then call the Add method on it; we expect the result to be 2.

From the shell window, switch to the .\AwesomeService.Tests directory and run

the following command to run the test:

$ dotnet test

After running the preceding test command, we will see the following output on the

console detailing the results of the test:

Starting test execution, please wait...

[xUnit.net 00:00:00.5405563] Discovering: AwesomeService.Tests

[xUnit.net 00:00:00.6283882] Discovered: AwesomeService.Tests

[xUnit.net 00:00:00.6362569] Starting: AwesomeService.Tests

[xUnit.net 00:00:00.8426874] AwesomeService.Tests.AwesomeCalculator_Add_

Should.Return_2_Given_Value_Of_1_And_1 [FAIL]

[xUnit.net 00:00:00.8448852] System.NotImplementedException : The

method or operation is not implemented.

...

Chapter 10 testing & Debugging

189

Total tests: 1. Passed: 0. Failed: 1. Skipped: 0.

Test Run Failed.

The output indicates that one test was found and run, resulting as failed because a

NotImplementedException was thrown.

Now that we have a failing test, let’s go back to the AwesomeCalculator class and

implement the Add method:

public int Add(int nr1, int nr2)

{

 return nr1 + nr2;

}

After executing the dotnet test command again at the terminal window, it passes:

...

Total tests: 1. Passed: 1. Failed: 0. Skipped: 0.

Test Run Successful.

Following an iteration, let’s introduce a change in business logic by adding a third

number to be included in the addition operation. We do this by changing the Add

method in the ICalculator interface to include a third variable called nr3, and we

also introduce this variable to implement the interface in the AwesomeCalculator class

accordingly:

public interface ICalculator

{

 int Add(int nr1, int nr2, int nr3);

}

public class AwesomeCalculator : ICalculator

{

 public int Add(int nr1, int nr2, int nr3)

 {

 return nr1 + nr2;

 }

}

Chapter 10 testing & Debugging

190

Now we need to change our test to also take the third number into account in its

verification process:

[Fact]

public void Return_4_Given_Value_Of_1_And_1_And_2()

{

 ICalculator calculator = new AwesomeCalculator();

 var result = calculator.Add(1,1,2);

 Assert.Equal(4, result);

}

Running the test again, we will notice that it fails again:

...

AwesomeService.Tests.AwesomeCalculator_Add_Should.Return_4_Given_Value_

Of_1_And_1_And_2 [FAIL]

[xUnit.net 00:00:01.2298122] Assert.Equal() Failure

[xUnit.net 00:00:01.2299612] Expected: 4

[xUnit.net 00:00:01.2300141] Actual: 2

...

Total tests: 1. Passed: 0. Failed: 1. Skipped: 0.

Test Run Failed.

Going back to the AwesomeCalculator class, let’s fix the bug by also taking the third

number variable into account in the addition operation:

public int Add(int nr1, int nr2, int nr3)

{

 return nr1 + nr2 + nr3;

}

After fixing the code, running the tests again will result in a passed test:

...

Total tests: 1. Passed: 1. Failed: 0. Skipped: 0.

Test Run Successful.

The unit test only covers one scenario, namely three numbers being 1, 1, and 2,

respectively. We can create another test method that covers more scenarios, but it can

get quite messy because the same code is tested with different parameters.

Chapter 10 testing & Debugging

191

Instead of creating multiple tests that only contain different variables, we can replace

the [Fact] attribute with the [Theory] and [InlineData] attributes on the test method.

A [Theory] test contains many scenarios for one test method. Let’s modify our test

method to support many scenarios:

[Theory]

[InlineData(1, 2, 3)]

[InlineData(3, 2, 1)]

[InlineData(7, 7, 7)]

public void Return_Sum_Of_Values(int nr1, int nr2, int nr3)

{

 ICalculator calculator = new AwesomeCalculator();

 var actualResult = calculator.Add(nr1, nr2, nr3);

 var expectedResult = nr1 + nr2 + nr3;

 Assert.Equal(expectedResult, actualResult);

}

The modified test method will be seen as three tests, each covering a different

scenario dictated by the data specified in the [InlineData] attribute. Executing the test

runner again will result in the following output:

...

Total tests: 3. Passed: 3. Failed: 0. Skipped: 0.

Test Run Successful.

We can repeat this process over and over during the whole development process.

You can imagine that repeating these steps can become quite cumbersome, but luckily

there is a CLI tool that can help to automate a few things.

We can use the dotnet watch CLI tool to trigger commands whenever the source

files change. It’s available as a NuGet package called Microsoft.DotNet.Watcher.Tools.

To install it, we just need to add the package reference to the AwesomeService.Tests

project as a CLI tool. We do this by editing the AwesomeService.Tests.csproj project

file and adding the following DotNetCliToolReference tag as part of an ItemGroup:

<ItemGroup>

 <DotNetCliToolReference Include="Microsoft.DotNet.Watcher.Tools"

Version="2.0.0"/>

</ItemGroup>

Chapter 10 testing & Debugging

192

After saving the project file and running dotnet restore, the dotnet watch tool is

ready to be used; it has the following syntax:

dotnet watch <command>

Now, instead of just running dotnet test to execute the test runner only once,

we can run the following command with dotnet watch to automatically run the test

command whenever something changes:

$ dotnet watch test

While the watcher is running, whenever we make changes to the files it will

automatically run all the tests that are discovered in the solution.

 Dealing with Dependencies
Unit testing is focused on testing single units of work. Methods that are being tested may

contain references to other dependencies, however, and if those dependencies are also

encapsulated in the method during unit testing, it is not testing a single unit anymore.

When testing methods that are dependent on other components, we can make use

of mocking, which is a process of simulating third-party behavior to isolate the unit

being tested. Here’s an example PersonService class that has a dependency on another

IPersonRepository object:

public class PersonService

{

 private readonly IPersonRepository personRepository;

 public PersonService(IPersonRepository personRepository)

 {

 this.personRepository = personRepository;

 }

 public int CountLetters()

 {

 var names = personRepository.GetNames();

 var count = names.Select(n => n.Length).Sum();

 return count;

 }

}

Chapter 10 testing & Debugging

193

The unit test responsible for testing the CountLetters method needs to provide

an instance of IPersonRepository when instantiating the PersonService class, and

because the PersonService is using an instance of IPersonRepository that might get

data from a database, we need to simulate an instance of IPersonRepository to prevent

calls to an external database.

To implement a simulated instance of IPersonRepository, we can use Moq, which is

a mocking framework, to simulate the behavior of components during testing. To add the

Moq package to the testing project from NuGet, we execute the following shell command

within the folder of the test project:

$ dotnet add package Moq

We can now implement a unit test that uses Moq for creating a mocked instance of

IPersonRepository:

[Fact]

public void Return_Count_Of_Letters()

{

 var personRepositoryMock = new Mock<IPersonRepository>();

 personRepositoryMock.Setup(p => p.GetNames())

 .Returns(new string[] { "Fanie", "Gerald", "Mike" });

 PersonService personService = new PersonService(personRepositoryMock.

Object);

 var actualResult = personService.CountLetters();

 var expectedResult = 15;

 Assert.Equal(expectedResult, actualResult);

}

When creating a Moq mock, we set up certain actions to return specific expected

results. In the preceding case, we created a mock that returns a fixed list of names

whenever GetNames is called. Moq encapsulates the mocked object as the Object

property, which is used wherever it is required.

Chapter 10 testing & Debugging

194

 Integration Testing
Integration testing ensures that the components of an application work as expected

when they are all put together. Unlike unit testing, integration testing involves testing all

implementations of individual components together, which may include infrastructure

concerns.

A prime example of integration testing within the context of ASP.NET Core is

controller testing. Although we can unit test action methods in a controller, the

resulting test will then exclude other required components like filters, routing, and

model binding, which may be crucial to the outcome. We can, of course, use a mocking

framework like Moq to mock out certain parts of the components that we don’t want to

cover with the test.

Let’s create an integration test for verifying that an endpoint of a controller returns

the correct XML response. The following Startup class adds response caching, service

dependencies, MVC, and the ability to format responses in XML to the application:

public class Startup

{

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddResponseCaching();

 services.TryAddSingleton(new HttpClient());

 services.TryAddSingleton<IPeopleRepository, PeopleRepository>();

 services.AddMvc().AddXmlSerializerFormatters();

 }

 public void Configure(IApplicationBuilder app)

 {

 app.UseResponseCaching();

 app.UseMvc();

 }

}

Chapter 10 testing & Debugging

195

Tip in the preceding example, we use the TryAdd… extension method to prevent
the application from overriding the service configurations, which might be explicitly
overridden upon the test setup. nothing changes during the runtime of the
application, as it only adds the particular service if it hasn’t been added before.

Also included in the application is a PersonDto class, which contains XML

serialization attributes that are used for serializing the object in the correct XML format:

[XmlRoot("Person")

public class PersonDto

{

 [XmlAttribute]

 public int Id { get; set; }

 [XmlAttribute]

 public string Name { get; set; }

}

Furthermore, we have an implementation of IPeopleRepository that uses an

HttpClient to get a particular customer name from a remote service and then return an

instance of PersonDto:

public class PeopleRepository : IPeopleRepository

{

 private readonly HttpClient client;

 public PeopleRepository(HttpClient client)

 {

 this.client = client;

 }

 public async Task<PersonDto> GetOneAsync(int id)

 {

 var personResponse = await client.GetAsync($"https://api.awesome.io/

customers/names/{id}");

 var personName = await personResponse.Content.ReadAsStringAsync();

Chapter 10 testing & Debugging

196

 return new PersonDto

 {

 Id = id,

 Name = personName

 };

 }

}

Finally, we have a controller called PeopleController that contains one action

method that returns the appropriate HTTP response depending on the input request:

[Route("api/[controller]")]

public class PeopleController : Controller

{

 private readonly IPeopleRepository peopleRepository;

 public PeopleController(IPeopleRepository peopleRepository)

 {

 this.peopleRepository = peopleRepository;

 }

 [HttpGet("{id}")]

 [ResponseCache(Duration = 30)]

 public async Task<IActionResult> Get(int? id)

 {

 if (id.HasValue)

 {

 var person = await peopleRepository.GetOneAsync(id.Value);

 if (person == null)

 {

 return NotFound();

 }

 return Ok(person);

 }

 return BadRequest();

 }

}

Chapter 10 testing & Debugging

197

The Get action method in the preceding code receives an id parameter from the

route URL string and also caches the response for thirty seconds.

There are a couple of things we need to verify as part of our integration test, namely:

• Given a valid URL route, test if it binds correctly to the input variables

of the action method.

• Verify if the implementation of IPeopleRepository calls into an

external service to retrieve a person’s name.

• Given a valid person id, test if the HTTP status code is 200 (OK).

• Given that the Accept header is set to receive XML, test if the content

type returned is indeed XML, as well as that the actual content is in

XML format, also taking any XML serialization into account.

• Verify if the response contains the correct caching response headers.

The following test method is an example integration test that verifies the items just

outlined:

public class PeopleController_Should

{

 //...

 [Fact]

 public async Task Return_Cached_Person_As_Xml_Given_Id()

 {

 //arrange

 var httpMock = CreateMockHttpClient("Fanie");

 var hostBuilder = new WebHostBuilder()

 .UseStartup<Startup>()

 .ConfigureServices(services =>

 {

 services.AddSingleton(httpMock);

 });

 var server = new TestServer(hostBuilder);

 var client = server.CreateClient();

Chapter 10 testing & Debugging

198

 client.DefaultRequestHeaders.Accept.Add(new

 MediaTypeWithQualityHeaderValue("application/xml"));

 //act

 var response = await client.GetAsync("/api/people/2");

 var content = await response.Content.ReadAsStringAsync();

 //assert

 Assert.True(response.IsSuccessStatusCode);

 Assert.Equal("application/xml", response.Content.Headers.

ContentType.MediaType);

 var expectedContent = "<Person xmlns:xsi=\"http://www.w3.org/2001/

XMLSchema-instance\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

Id=\"2\" Name=\"Fanie\"/>";

 Assert.Equal(expectedContent, content);

 Assert.True(response.Headers.CacheControl.Public);

 Assert.Equal(30, response.Headers.CacheControl.MaxAge.Value.

TotalSeconds);

 }

}

It is good practice for tests to contain clear parts indicating what the test is doing,

namely arrange, for all test initialization logic and setup; act, for the actions being tested;

and assert, for verifying the outcomes.

During the setup phase of the integration test, we create a mock instance of

HttpClient that returns a string value Fanie for all requests because it is considered out

of scope for this test. We create a new web host using the application’s Startup class but

then override the singleton service dependency of HttpClient with our custom mock

version.

We then create a new instance of the TestServer class, which is a special

implementation of IServer provided by the ASP.NET Core framework for running tests,

and pass in the instance of the WebHostBuilder we created earlier.

A test client is created by calling the CreateClient method on the server, which we

can use to execute requests. In the final part of the rest of the test arrangement, we add

an Accept request header as application/xml.

Chapter 10 testing & Debugging

199

 Debugging .NET Core and ASP.NET Core Sources
Things might get a little tricky when debugging code that uses other frameworks because

the source symbols that are loaded during the debugging process are specific to the

application itself. Sometimes we need to jump into the code of other libraries, like .NET

Core and ASP.NET Core, to understand how they work and behave. Normally packaged

libraries are optimized for release and do not include the source symbols that map

the compiled version to the source code. If the source code and source symbols for a

particular library are available, we are able to debug and step through the code.

Visual Studio 2017 (version 15.3.5 and later) allows us to link to external library

sources and step into their code while debugging our application. To do this, open the

Options dialog in Visual Studio 2017 by clicking Tools and then selecting Options. Under

the Debugging General section, uncheck the Enable Just My Code option and make sure

that the Enable Source Link support item is selected. Figure 10-1 shows where to find

these relevant options.

Figure 10-1. The general debugging options

Chapter 10 testing & Debugging

200

Under the Symbols sub-section of Debugging, select Microsoft Symbol Servers and

specify a cache directory for downloading cached symbols. Figure 10-2 shows how to

enable the loading of symbols from Microsoft’s Symbol Servers.

Figure 10-2. Symbol debugging options

Figure 10-3. An example breakpoint calling a function in ASP.NET Core

Now we are ready to do some debugging in the source code of .NET Core and ASP.

NET Core. Add a breakpoint at a given point that is calling into something from ASP.NET

Core—for instance, at the return of the Ok function in the action method—and run the

application to that point. Figure 10-3 shows an example breakpoint for doing this.

Chapter 10 testing & Debugging

201

Tip We can also debug code directly if it contains a bounded test by right-
clicking on the test and selecting Debug Selected Tests.

After the debugging process has started and the breakpoint of the particular line of

code is reached, we can step into the code by pressing F11 on the keyboard. Figure 10-4

shows an example where a breakpoint has been stepped into, revealing the source code

of the calling function.

Figure 10-4. An example line of code stepped into

Note it is possible that you might be prompted by a dialog to download the
source code using source Link from the internet. Just click Download Source and
Continue Debugging to go further.

 Wrapping Up
We’ve come to the end of yet another chapter. We learned many exciting things on the

topic of testing and debugging. Looking back, we covered the importance of testing,

describing the different testing techniques that are used during the development

process. We delved into the implementations of unit and integration tests for ASP.NET

Core applications, as well as how to mock third-party dependencies that we do not want

to test. We closed this chapter by looking at an interesting way of debugging the source

code of external libraries that make their source symbols available via the Internet.

Marking the end of this book, in the next chapter we will explore hosting and

deployment options that are available for ASP.NET Core applications.

Chapter 10 testing & Debugging

Hosting & Deployment
The goal of writing any piece of software is to successfully deploy and run it in a

production environment for use. Applications can run in different environments that

are used for specific purposes, like developer integration testing, user acceptance

testing, and, of course, production. Each environment provides an isolated host where

applications can run.

The term hosting refers to the mechanism that provides access for the application

to the end-user; hosts are typically configured on an application server in a specific

environment. Deployment is the process of transferring an application to a host.

In this chapter, we will cover the different ways of hosting an ASP.NET Core

application on different environment types, like using IIS or Windows Services on

Windows, using Nginx on Linux, and using the Visual Studio Tools for Docker on Docker.

We will also explore the steps involved in publishing an ASP.NET Core application

to cloud-based infrastructures, like Microsoft Azure, and how to set up a continuous

integration and delivery pipeline by using Visual Studio Team Services to automatically

build and deploy applications as they are checked into source control.

 Hosting on Windows
When it comes to hosting ASP.NET Core applications on Windows, there are two options:

on IIS or as a Windows Service. Created by Microsoft, Internet Information Services (IIS) is

a web server meant for use with the Windows NT family and is available as an additional

component that can be installed on the Windows operating system.

Note Although this section covers ASP.NET Core applications running on IIS, it
does not include the steps for installing IIS on the compatible Windows version,
and the assumption is that IIS is already installed and available.

204

Let’s deploy a sample ASP.NET Core application to run under IIS. The first thing

we need to do is create the destination website for the application in IIS. As shown in

Figure 11-1, right-click the Sites node and then select Add Website.

On the next window that opens, we give our site a name of AwesomeApi and select a

physical path from which the website should be loaded. For this example, we’ve created

a new directory under C:\inetpub\awesome, but it can be anywhere, given that IIS

has sufficient access rights to the directory. In the Binding section, we specify the port

number as 80 and bind the website to the api.awesome.io hostname. Figure 11-2 shows

the configuration of the site.

Figure 11-1. The menu for creating a new website in IIS

ChAPTEr 11 hoSTINg & DEPloymENT

205

Note The domain name api.awesome.io is an arbitrary name only used for
example purposes. In a real scenario, we would use a domain name we already
own.

By default, websites created in IIS are assigned an application pool that is bound to

the .NET Common Language Runtime (CLR) by default. Because we are going to host an

ASP.NET Core application, which is independent of the .NET CLR installed on the disk,

it will therefore require no managed code.

Figure 11-3 shows how to configure the application pool to not use managed code by

opening the Application Pools node, selecting the AwesomeApi pool, and then setting the

.NET CLR version to No Managed Code. Click OK to apply the changes.

Figure 11-2. The Add Website dialog

ChAPTEr 11 hoSTINg & DEPloymENT

206

Now the website is created and configured on IIS. After a quick test, requesting

http://api.awesome.io/ping returns a 404 Not Found response, as the directory is

empty. We now need to publish our application to the AwesomeApi created on IIS.

In the sample application, we have an MVC controller called PingController that

has just one endpoint for returning the result as “Pong”:

[Route("[controller]")]

public class PingController : Controller

{

 public IActionResult Get() => Ok("Pong");

}

For simplicity, we have kept with the defaults when creating a new web host in

Program.cs by calling the WebHost.CreateDefaultBuilder function. This function

creates a new web host that is configured to integrate with IIS.

Figure 11-3. The Edit Application Pool dialog

ChAPTEr 11 hoSTINg & DEPloymENT

http://api.awesome.io/ping

207

Open a shell window on the root of the ASP.NET Core application and run the

following commands to build and package the application for deployment:

$ dotnet publish

Running this dotnet publish command will restore all project dependencies,

compile, and package the application up for deployment. In this example, we chose to

publish the application as a framework-dependent deployment (FDD), which means that

the application will be deployed only with its third-party dependencies, and without the

.NET Core framework and runtime, as we trust that .NET Core is already installed on

the destination system. The FDD model is the default model for deploying .NET Core

applications.

Note The other deployment model is a self-contained deployment (SDC), which
deploys the dependencies to .NET Core along with the application so as to run self-
contained in various environments.

The last thing we need to do is copy the artifacts that were created by the dotnet

publish command on the .\bin\Debug\netcoreapp2.0\publish directory to the

destination directory of the AwesomeApi, which is in this case located at C:\inetpub\

awesome.

Now when we request http://api.awesome.io/ping, we receive the proper

response as “Pong”. How did this work? As part of the deployment, there is a web.config

file that contains the following:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <system.webServer>

 <handlers>

 <add name="aspNetCore" path="*" verb="*" modules="AspNetCoreModule"

resourceType="Unspecified"/>

 </handlers>

 <aspNetCore processPath="dotnet" arguments=".\AwesomeApi.dll"

stdoutLogEnabled="false" stdoutLogFile=".\logs\stdout"/>

 </system.webServer>

</configuration>

ChAPTEr 11 hoSTINg & DEPloymENT

http://api.awesome.io/ping

208

Inside the web.config file, we will find that an IIS handler called aspNetCore is

added that is responsible for relaying the requests through to the application. When

the website starts up, it executes dotnet .\AwesomeApi.dll, which runs our .NET Core

application.

Note As a prerequisite, the ASP.NET Core module must be installed in IIS to have
requests be relayed to Kestrel. Without this module, we will get an HTTP 500.19
error when trying to invoke the application under IIS. The ASP.NET Core module
is included in the Windows Server hosting package and can be downloaded here:
https://www.microsoft.com/net/download/windows.

Another way to publish an ASP.NET Core application to IIS is through a process

called web deploy, which allows us to deploy the application right from within Visual

Studio. We will explore publishing using web deploy later in this chapter.

The other option for hosting an ASP.NET Core application on Windows is doing so

as a Windows Service. To make this work, the application needs to target the full .NET

framework runtime. Edit the project’s .csproj file and add the following code:

<PropertyGroup>

 <TargetFramework>net461</TargetFramework>

 <RuntimeIdentifier>win7-x86</RuntimeIdentifier>

</PropertyGroup>

This code indicates that the application targets the full .NET framework version

4.6.1 and should be compiled to run as a standalone application for x86-based Windows

systems.

Tip Use the ASP.NET Core Application template based on the full .NET framework
to accomplish this for new projects.

To have the application run as a Windows Service, we need to make some changes

to the code. To get started, we need to install the Microsoft.AspNetCore.Hosting.

WindowsServices NuGet package by running the following command from the root

folder of the application in a shell window:

$ dotnet add package Microsoft.AspNetCore.Hosting.WindowsServices

ChAPTEr 11 hoSTINg & DEPloymENT

https://www.microsoft.com/net/download/windows

209

Installing this NuGet package will allow us to run the web host as a Windows Service.

In the Program class, replace Run with RunAsService instead:

public static void Main(string[] args)

{

 BuildWebHost(args).RunAsService();

}

Next, we need to build and bundle our application for deployment by running the

following command from a shell window in the root directory of the project:

$ dotnet publish

The dotnet publish command will create a self-contained application under the

.\bin\Debug\net461\win7-x86\publish directory and will contain an executable called

AwesomeApi.exe. We can now copy the contents of the publish directory to any directory

of our choice, like C:\Services, for instance.

From the command prompt, run the following commands:

$ sc create AwesomeApiService binPath=c:\services\AwesomeApi.exe

$ sc start AwesomeApiService

The sc create command will install the application as a Windows Service and start it

using sc start. When the service is running, we can test the application by invoking it on

http://localhost:5000/ping, assuming port 5000 is the default port that has been set up.

 Hosting on Linux
It is dead simple to deploy .NET Core applications, regardless of the operating system.

Just copy the published artifacts to the destination folder and either run the application

using dotnet yourapp.dll, if the .NET Core runtime is already installed on the server,

or execute the application executable if the .NET Core runtime is packaged with the

application as a self-contained application.

Let’s use the same sample application as we did in the previous section when hosting

the application in IIS and deploy it to a remote server with Ubuntu 16.04 installed.

In a shell window at the root of the project directory structure, execute the following

commands to build and publish the application for the Ubuntu 16.04 distribution:

$ dotnet publish -r ubuntu.16.04-x64

ChAPTEr 11 hoSTINg & DEPloymENT

210

The -r option in the dotnet publish command tells the .NET Core CLI to publish

the application for a specific runtime as a self-contained application.

Now we can use our favorite remote copy tool, like WinSCP if you’re developing

on Windows, and copy the contents of the .\bin\Debug\netcoreapp2.0\

ubuntu.16.04-x64\publish folder to the destination folder on the server—/home/

faniereynders/awesome, for example.

To run the application, just execute the AwesomeApi executable in the /home/

faniereynders/awesome directory. If you’re unable to log on to the server itself

physically, you can use a tool like PuTTY to log in to the Linux server remotely.

Although working with Kestrel as the HTTP server is excellent, it isn’t advised to

have the outside world connect to Kestrel directly, because it is optimized for speed and

doesn’t deal with web serving as well as other servers, like IIS or Nginx, do. A reverse

proxy server can help offload some of the work from the HTTP server—like serving static

content.

Nginx is a high-performance web server mainly used as a reverse proxy, load

balancer, or HTTP cache. To install and run Nginx on a Linux distro running Ubuntu

16.04, run the following command on the server:

$ sudo apt-get update && apt-get install nginx

$ sudo service nginx start

Now if we open a browser and go to the remote address of the server, we should see

the default Nginx page, as shown in Figure 11-4.

ChAPTEr 11 hoSTINg & DEPloymENT

211

We are now ready to configure Nginx to serve our application. From a shell window

on the remote server, open the default configuration file of Nginx in the Nano editor by

executing the following command:

$ sudo nano /etc/nginx/sites-available/default

Replace the contents of the default file with the following:

server {

 listen 80;

 location / {

 proxy_pass http://localhost:5000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection keep-alive;

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 }

}

Figure 11-4. The default page of a server running Nginx

ChAPTEr 11 hoSTINg & DEPloymENT

212

The preceding configuration tells Nginx to relay requests from port 5000 to port 80

and to set the relevant request headers. To save and exit Nano, press Ctrl+O and Ctrl+X,

respectively.

Now when we send a request to the remote server by invoking the endpoint

http://<Remote IP>/ping, we will see the response of “Pong” as expected, as shown in

Figure 11-5.

 Hosting on Docker
ASP.NET Core applications can also be hosted and run inside a Docker container. If

you’re not familiar with Docker, it is the technology for providing the containerization

of applications to allow them to run in an isolated environment on any platform that

supports Docker.

Note This section covers the basics of deploying an ASP.NET Core application
to a Docker container, which is then compiled into a Docker image. It is an
assumption that you have a basic understanding of what Docker is and how it
works, and therefore further details will not be covered in this section. For more
information on Docker, you can visit https://docs.docker.com.

Figure 11-5. The result of a sample application running behind Nginx

ChAPTEr 11 hoSTINg & DEPloymENT

https://docs.docker.com/

213

To fully understand how to create a Docker image of our application and deploy it

to a Docker container, we will go through the necessary steps, which include the bare

minimum for running ASP.NET Core applications inside Docker.

Using the same sample application as we did in the first section, navigate to the root

directory of the project and create a new file called Dockerfile, without any extension,

that contains the following:

FROM microsoft/aspnetcore:2.0

WORKDIR /app

COPY /publish .

ENTRYPOINT ["dotnet", "AwesomeApi.dll"]

The contents of the Dockerfile build on the Microsoft/aspnetcore image with

version 2.0. When it is executed, it copies the contents of the /publish directory to

the current working directory, which is /app inside the container, and calls dotnet

AwesomeApi.dll to run when the image executes.

The next step is to make sure that the /publish directory is created and populated

with the published application. We do this by executing the following on the root

directory of the project in a shell window:

$ dotnet publish –o ./publish

We specify the -o option on the dotnet publish command to indicate the output

directory of the published artifacts.

We are now ready to build a Docker image for our application. From the root

directory in a shell window, execute the following, which will build a new Docker image

with the tag awesomeapi from the Dockerfile in the current directory:

$ docker build -t awesomeapi .

The Docker image is now ready to be used. To run the image inside Docker, we run

the following command, specifying the name of the image as well as the name of the

container as awesome:

$ docker run -d -p 8080:80 --rm --name awesomecontainer awesomeapi

ChAPTEr 11 hoSTINg & DEPloymENT

214

The preceding command runs the awesomeapi image inside the awesomecontainer

container in detached mode, meaning in the background, and maps all requests made

to port 8080 to the internal port 80. The --rm option will ensure the container is stopped

when the host exists. When we request http://localhost:8080/ping, it will invoke the

application running inside Docker and return the expected “Pong” response.

Note If you’re using Docker for Windows and have not yet updated to the
Windows Creators Update, there is a bug in how Windows communicates with
Docker containers via Network Address Translation (NAT). At the time when this
chapter was authored, you needed to access the IP address of the container
directly, instead of localhost. To get the running container’s IP address, execute the
following from a shell window:

$ docker exec awesomecontainer ipconfig

It is a bit tedious having to call dotnet publish each time we want to create a

Docker image of our application in order to have the latest bits included in the package.

A recent update to Docker, however, made it possible to combine multiple steps in one

Dockerfile.

Let’s make some changes to our original Dockerfile:

FROM microsoft/dotnet:2.0-sdk

WORKDIR /app

COPY . ./

RUN dotnet publish -o out

ENTRYPOINT ["dotnet", "out/AwesomeApi.dll"]

Instead of using the microsoft/aspnetcore:2.0 image, we are now using the

microsoft/dotnet:2.0-sdk image to initiate a build stage base for the rest of the

instructions. Microsoft offers a variety of different flavors of .NET to address specific

scenarios.

The microsoft/dotnet:<version>-sdk image contains the .NET SDK and includes

.NET Core as well as the .NET Core CLI Tools and is to be used in the development of

build scenarios. The microsoft/dotnet:<version>-runtime contains the .NET Core

runtime and is optimized for production environments.

ChAPTEr 11 hoSTINg & DEPloymENT

215

As we notice in the Dockerfile, all the files are copied to the working directory

/app, and then executes dotnet publish to restore their dependencies and build and

package the application to the /out directory.

One of the nifty features of Visual Studio 2017 is native support for Dockerizing .NET

Core applications by using Visual Studio Tools for Docker. If you have the .NET Core

cross-platform development workload installed from the Visual Studio 2017 installer,

you are all good to go.

Docker support for .NET Core applications can be added for new or existing projects.

When creating a new .NET Core application, just select the Enable Docker Support

checkbox on the New ASP.NET Core Web Application dialog, as shown in Figure 11-6.

Figure 11-6. Enable Docker support when creating a new ASP.NET Core
application

ChAPTEr 11 hoSTINg & DEPloymENT

216

If you have an existing ASP.NET Core application, merely right-click on the project,

point to Add, and then select Docker Support, as shown in Figure 11-7.

Doing one of the preceding steps will add the required files and configuration to

have the application run in Docker in no time. You will also notice that Visual Studio

makes it possible to run and debug the application right from within Visual Studio. You

do this by clicking the Docker Run button, which is available when selecting the docker-

compose project as the default start-up project for the solution.

Figure 11-7. Adding Docker support on existing ASP.NET Core applications

ChAPTEr 11 hoSTINg & DEPloymENT

217

Note When Docker support is added, Visual Studio adds an additional project
called docker-compose to the solution, which contains Docker-specific files.

 Publishing to Azure
Microsoft Azure is a cloud computing platform provided by Microsoft with which to

build, test, deploy, and manage applications and services using a wide range of available

offerings. One of those offerings is Azure App Service, a Platform-as-a-Service for

creating and managing enterprise-grade, cloud-centric applications that can scale.

Let’s use the same example as we did in the first section when we published our

application to IIS, but this time we are going to the cloud using Azure App Service.

Note To be able to create web applications in Azure for production purposes, you
will need to have an Azure subscription. you can get a free trial here: https://
azure.microsoft.com/en-us/free. or, try Azure App Service without a
subscription for a limited time by going here: https://azure.microsoft.com/
en-us/try/app-service/web.

Like with the IIS scenario we covered earlier in this chapter, we need to create a

logical web app first and then publish our application to it. Among the more natural

ways of creating a web app in Azure is by using the Azure Portal, but this requires an

Azure subscription, so we will make use of their offer for using Azure App Service for a

limited time just to showcase how we deploy an ASP.NET Core application to Azure.

ChAPTEr 11 hoSTINg & DEPloymENT

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/try/app-service/web
https://azure.microsoft.com/en-us/try/app-service/web

218

When navigating to https://azure.microsoft.com/en-us/try/app-service/web,

we will be prompted to select an application type, and as Figure 11-8 shows, we need to

choose Web App and click Next.

Figure 11-9. Try Azure App Service: Select web app template

Figure 11-8. Try Azure App Service: Select app type

Going to the next step prompts us to select a template for the web app, as shown in

Figure 11-9. Select ASP.NET Core and click Create.

ChAPTEr 11 hoSTINg & DEPloymENT

https://azure.microsoft.com/en-us/try/app-service/web

219

After signing in with the provider of our choice, we are presented with a menu

detailing ways of working with the Azure web app we’ve just created, as seen in

Figure 11-10.

Here, we can edit the code online, download the web app content, download the

publish profile, or use Git to clone and push changes. Download the publish profile by

clicking Download Publish Profile. A publish profile is a file containing all the settings for

deploying to a particular website.

Make a note of the generated web app URL. It is only valid for an hour before it

expires, as it is only intended for experimental purposes only.

Figure 11-10. Try Azure App Service: Work with your web app

ChAPTEr 11 hoSTINg & DEPloymENT

220

Back in Visual Studio 2017, with the sample project open, right-click on the project

and select Publish. Doing so will open the Publish section of the project, as seen in

Figure 11-11.

Scroll all the way to the right, select Import profile, then click Publish and select the

publish profile downloaded earlier from Azure.

Note If you have an Azure subscription, you could also publish directly to Azure
from this menu by clicking the microsoft Azure App Service item.

After you choose the publish profile, Visual Studio will proceed to publish the

application to the web app configured in the publish profile. The publish profile is also

added to the project to be used in the future.

When the publishing process is done, we can request the /ping endpoint in our

newly deployed Azure web app:

http://e78c1c6d-0ee0-4-231-b9ee.azurewebsites.net/ping

Figure 11-11. The publish section of the project

ChAPTEr 11 hoSTINg & DEPloymENT

http://e78c1c6d-0ee0-4-231-b9ee.azurewebsites.net/ping

221

 Continuous Integration & Deployment
As mentioned before, the ultimate goal of any application is to run in a production

environment. To help with automating things like getting changes from the developer’s

machine into source control, building and testing, and then finally deploying to

an environment, we can make use of continuous integration (CI) and continuous

deployment (CD).

Continuous integration is the process of merging all developer working copies into a

shared branch that can be built to verify its quality. Continuous delivery is the process of

automatically delivering the merged compiled code to a particular environment for use.

Visual Studio Team Services (VSTS) provides a platform for creating CI and CD

pipelines to automatically deliver ASP.NET Core applications to the host of your choice,

like Microsoft Azure, for instance. Figure 11-12 shows a diagram that explains the

process of getting code into source control, built, and deployed to Azure using VSTS.

Note To follow along with this tutorial, you will need to have a VSTS account
and Azure subscription. get a free VSTS account by going to https://
go.microsoft.com/fwlink/?LinkId=307137.

In the previous section, we used the limited free offer from Microsoft Azure to create

a web app. In this section, we will be building a web app using the Azure Portal.

Figure 11-12. The process of code to Azure using VSTS

ChAPTEr 11 hoSTINg & DEPloymENT

https://go.microsoft.com/fwlink/?LinkId=307137
https://go.microsoft.com/fwlink/?LinkId=307137

222

After signing into the Azure Portal, click New, select Web+Mobile, and then click Web

App, as shown in Figure 11-13.

Figure 11-13. Creating a new web app in Azure

ChAPTEr 11 hoSTINg & DEPloymENT

223

On the next screen, we will be prompted to fill in details about the web app. Here, we

need to give the web app a name, choose the relevant subscription to run in, provide or

create a new resource group as well as app service, and then click Create. Figure 11-14

shows an example web app being built.

Figure 11-14. An example web app being created

ChAPTEr 11 hoSTINg & DEPloymENT

224

When Azure has finished provisioning the new web app, we can open the resource

by clicking on its name under the All Resources section. We are now ready to configure

continuous delivery on the web app, which we do by selecting the Continuous Delivery

section and then clicking Configure, as shown in Figure 11-15.

Figure 11-15. Configure CD for Azure web app

ChAPTEr 11 hoSTINg & DEPloymENT

225

For the next step, the assumption is that we already have a configured VSTS account

with a team project. On the Configure Continuous Delivery screen, set the source code

provider as VSTS, as shown in Figure 11-16, and click OK.

Under the Build section, select ASP.NET Core as the application framework, seen in

Figure 11-17, and click OK.

Figure 11-16. Configure source code provider

Figure 11-17. Configure application framework for the build

ChAPTEr 11 hoSTINg & DEPloymENT

226

The last two sections, Test and Deploy, are considered out of scope for this example,

so we will proceed by accepting the provided defaults and clicking OK.

After a short while, we have a configured CD pipeline and are presented with a

screen like that shown in Figure 11-18.

We can click Refresh Logs to see the activity that happens on the CI/CD pipeline

of the web app. The last thing to do is push our Awesome API, containing the /ping

endpoint, to source control in VSTS.

From the root directory in a shell window, we execute the following command to

initiate a local Git repository:

git init

Next, we need to connect the local Git repository to a remote on VSTS, and executing

the following command does precisely that:

$ git remote add origin <VSTS Repository URL>

Now that the remote is connected, let’s do a pull to get the latest version of the

master branch:

$ git pull origin master

Figure 11-18. The CD pipeline log

ChAPTEr 11 hoSTINg & DEPloymENT

227

After the most recent version is pulled down, we need to add the local files to the

repository, commit, and push the changes to the remote:

$ git add .

$ git commit -m "Yay! First commit"

$ git push

After our changes are pushed, we can go back to the CD activity log of the web app in

Azure, sit back, and watch our application get published to the production environment.

Tip If the build succeeds, but the release fails with the message “no package
found with specified pattern azure,” then it is likely that there is no web.config
or wwwroot folder included as part of the project. The default configuration we
have followed automatically sets an option to look for web-based applications, and
this requires either the web.config file or wwwroot folder to be present. you can
either add these artifacts to the repository or un-check the option in VSTS.

 Wrapping Up
We’ve come to the end of yet another chapter, and also ended this book with a

bang. Looking back, this chapter was all about hosting and deploying ASP.NET Core

applications to a variety of hosts in many different ways.

We’ve seen how to host an ASP.NET Core application on Windows by using IIS or

as a Windows Service, and then jumped right into Linux-world by deploying an ASP.NET

Core application running seamlessly with Nginx on Ubuntu. We briefly covered the

basics of Docker and how to host ASP.NET Core applications in Docker containers, then

ended the chapter by publishing our application to the cloud in Azure, complete with a

configured CI/CD pipeline, which automatically deploys any changes made in the code

to the production environment.

ChAPTEr 11 hoSTINg & DEPloymENT

Index

A
Action filters, 86
Action methods

defined, 67
flow of request, 64
[NonAction] attribute, 67

Active Server Pages (ASP)
ASP.NET Core (see ASP.NET Core)
development, 9
HTML, 9
.NET framework, 9–10
web-based applications, 9

Anonymous scheme, 133
Apache Cordova, 15
Application Programming Interfaces (APIs)

architectural styles, 2
ASP.NET Core project structure, 26
ASP.NET Core Web Application

template dialog, 24–25
authentication process

AAD, 135
anonymous scheme, 133
appSettings.json configuration

file, 139
ASP.NET Core, 134
AuthenticateController

class, 138–139
basic authentication scheme, 133
bearer authentication

scheme, 133, 135

configure function, 137
digest authentication scheme, 133
GenerateToken method, 139
HTTP protocol, 132
JWT, 135
JWT Bearer authentication, 135–136
negotiate scheme, 134
NTLM authentication scheme, 134
PwdLess, 135
WWW-Authenticate scheme, 134

AwesomeSauce.Api.csproj, 26
cloud-based services, 1
creation, 23
cross-origin requests, 146–149
default web host, 28
dependency injection (DI), 29–30
Empty template, 25–26
endpoints, 33, 35–36
Microsoft.AspNetCore.All, 27
New Project dialog, 23–24
Program.cs file, 27
Project element, 27
protect sensitive data

ASP.NET Core, 140
data-protection expiration, 143–144
IDataProtectionProvider

instance, 141
ITimeLimitedDataProtector

inherits, 143
Protect method, 142

230

storing mechanism, 140
ToTimeLimitedDataProtector

extension method, 144
Unprotect method, 142

REST (see Representational State
Transfer (REST))

request rate limiting, 149, 151–152
startup, 30–33
static Main function, 28
SSL, 145
system integration, 1–2
WebHost.CreateDefaultBuilder

function, 28
ASP.NET 5, 64
ASP.NET Core, 199–201

application framework, 13
configuration, 13
dependency injection (DI), 11, 13
development environment

download Visual Studio button, 17
.NET Core SDK download page, 19
new Visual Studio 2017 installer

experience, 17
Visual Studio Code homepage, 18
Visual Studio home page, 16–17

hosting, 13
HttpHandlers and HttpModules, 11
logging infrastructure, 13
middleware, 13
.NET Core CLI, 20–22
.NET ecosystem, 12
NuGet packages, 12
tooling

Extensions, 15
.NET Core CLI, 15
.NET Shared SDK component, 14

overview of, 13–14
Vim, Atom, and Sublime, 16
Visual Studio Code (VS Code), 16
Visual Studio for Mac, 15

web-based user interfaces and web
APIs, 11

Aspnetcore-hateoas, 164
ASP.NET Core IIS Module (ANCM), 40
AspNet.Security.OpenIdConnect.Server

(ASOS), 135
Authorization filters, 86
AwesomeCalculatorTest.cs, 187
AwesomeService, 186
AwesomeService.Tests, 187
Awesometests, 186
Azure

app type selection, 218
Azure App Service, 217–219
Azure Portal, 217
cloud computing platform, 217
Git, 219
publish profile, 219
publish section, 220
template selection, 218

Azure Active Directory (AAD), 135

B
Basic configuration, 96–98
Bearer authentication scheme, 135
Behavior-driven development

(BDD), 186

C
Calculators.cs, 187
Classic ASP, 9
Comma-delimited values (CSV), 91

Application Programming Interfaces
(APIs) (cont.)

Index

231

Configuration model
app.config and web.config files, 95
basic, 96–98
providers, 99–106
scalability, 95
strongly typed, 106–109
working with changes, 110

Configuration providers
AddEnvironmentVariables

method, 101
AddJsonFile, AddXmlFile, and

AddIniFile extension
methods, 100

AddLegacyXmlConfiguration
extension method, 106

AddXmlFile, 104
AwesomeConfigurationProvider, 106
Azure Key Vault, 102
command-line arguments, 101
ConfigurationBuilder, 102–103
ConfigurationProvider, 105
default, 99
IConfigurationProvider, 104
IConfigurationSource, 104
JSON, XML, and INI formats, 100
LINQ-to-XML, 106
Load method, 105
pre-defined source, 99
Secret Manager CLI tool, 102
sources and formats, 99
user secrets, 101
web.config file, 103

Continuous delivery, 221
Continuous integration and

deployment, 221
application framework

configuration, 225
coding process using VSTS, 221

continuous delivery, 221, 224
continuous integration, 221
Git repository initiation, 226–227
Refresh Logs, 226
source code provider

configuration, 225
VSTS, 221
web app creation example, 222, 223

Controllers
action method

“Api” conventions, 72–74
ControllerBase, 66
explicit dependency principle, 66
helper methods, 68–69
POCO, 65, 68–69

defined, 62
CountLetters method, 193
Cross-origin resource sharing

(CORS), 131, 146–149

D
Data transfer objects (DTOs), 75
Denial of service (dos), 131
Dependency injection (DI), 29–30
Digest authentication scheme, 133
Distributed denial of service (DDoS), 131
Docker, 12

changes, 214
containerization of applications, 212
Dockerfile creation, 213
Dockerizing .NET Core

applications, 215
Docker support addition, 216
enable Docker support, 215
--rm option, 214
root directory, 213

Domain-driven design (DDD), 186

Index

232

E
Error handling, see Logging
Exception filters, 86
Explicit dependency principle, 66
Extensibility architecture, 37
Extensible Markup Language (XML), 3

F
Filters

action, 86
authorization, 86
exception, 86
MvcOptions, 88
overview of pipeline, 86
resource, 86
result, 87
Startup class, 87
TimestampFilterAttribute, 89
X-EXPIRY-TIMESTAMP, 87–88

G
GraphQL, 177–180, 182–184

H
Helper methods, 68–69
Hosting

Azure, 217
Docker, 212
Linux, 209
windows, 203

Hosts
interfaces, 39
IwebHost, 38
IWebHostBuilder, 38

services, 57–59
UseContentRoot setting, 38
UseUrls function, 38

HTTP.sys, 39–40
Hypermedia as the Engine of Application

State (HATEOAS), 6
client and server, 156
data transfer object, 158
get-people and get-person

endpoints, 162–164
Link class, 160
PeopleController, 158–159
Resource and ResourceList<T>

classes, 160
ResourceList<PersonDto>, 161
REST application, 156
set of interactions, 156
stateless application, 155–156
wrapper classes, 159–160

Hypertext Markup Language (HTML), 9

I
IdentityServer4, 135
Integration testing

ASP.NET Core, 194
CreateClient method, 198
Get action method, 197
HttpClient, 198
IPeopleRepository, 195–196
PeopleController, 196
PersonDto class, 195
Startup class, 194
test method, 197–198
TestServer class, 198

Internet information services
(IIS), 12, 39, 203

Index

233

J
JavaScript Object Notation (JSON)

format, 3
JSON Web Tokens (JWTs), 135

K
Kestrel, 38–40

L
Linux

dotnet yourapp.dll, 209
Nano editor, command, 211
.NET Core CLI, 210
Nginx, installation command, 210
remote server, 209
sample application result, 212
server running Nginx, 211
tools

PuTTY, 210
WinSCP, 210

Logging
adding, 114–115
anatomy

critical entries, 120
current date and time, 120
debug entries, 119
error log entries, 120
event IDs, 118–119
ILoggerFactory, 116–117
information type entries, 119
Interpolated Strings, 120
message and variables, 121
none log level, 120
Startup class, 116
trace, 119

updated code, 117
warning entries, 119

dealing with exceptions, 127, 129
grouping and filtering, 121–125
providers, 125–126
system-generated events, 113
tracking and identifying issues, 113

M
Man-in-the-middle attacks (MITM), 145
Microsoft Azure, 15
Middleware

component, 49
configuration application, 50–52
defined, 49
NumberCheckerMiddleware, 52–53
request delegates, 49–50
write extension methods, 53

Model binding
EmotionalPhotoDto, 80
EmotionResultDto, 79
emotion statistics, 78
[FromHeader] attribute, 77
IModelBinder interface, 77–78
IModelBinderProvider, 81
IsValid function, 84
name parameter, 75
person parameter, 76
PersonDto, 85
Post action method, 75
query parameters, 75
Base64 string, 77
validation, 82–83

Model View Controller (MVC), 6
actions methods, 64
application part, 93–94

Index

234

in ASP.NET core, 62–64
attribute-based routing, 71
components, 61
controllers (see Controllers)
conventions, 72
defined, 61
formatting responses

content negotiation, 90
CSV format, 91
Get action method, 91
IActionResult, 90
OutputFormatter abstract

class, 91, 93
services collection, 90
StringWriter, 93

pattern, 9
routes, 70

N
National Weather Service, 2
.NET Core, 199–201
.NET Core Command Line

Interface (CLI)
AwesomeSauce.Api, 21
command syntax, 21
cross-platform toolchain, 20
dotnet new command, 21
features, 15
installed templates, 21

.NET ecosystem, 12

.NET Shared Software Development Kit
(SDK) component, 14

NTLM authentication
scheme, 134

NuGet packages, 12

O
Object-oriented design (OOD), 186
OpenAPI Specification (OAS), 173
OpenIddict, 135
Quality assurance (QA), 185

P, Q
Plain Old CLR Object

(POCO), 65, 68–69

R
Remote procedure call (RPC), 5
Representational State Transfer (REST)

business requirements, 4
definition, 3
get all profiles, 4
JSON format, 3
naming conventions, 4
principles

architecture, 5
Cache constraint, 6
Client-Server constraint, 6
Code on Demand, 7
Layered System constraint, 6
Stateless constraint, 6
Uniform Interface, 6

read operations, 5
RPC-style web service, 5
search for profiles, 4
typical scenario, web service, 3
XML format, 3

Request delegates, 49–50
Resource filters, 86
Result filters, 87
Reverse proxy server, 39

Model View Controller (MVC), 6 (cont.)

Index

235

Routing
application, 54
attribute-based, 71
curly braces convention, 55
feature, 54
GetVirtualPath, 56
question mark, 56
URIs, 54
UseRouter extension method, 55

S
Secure sockets layer (SSL), 131, 145
Server

AwesomeServer
Add/Use pattern, 46–47
AwesomeFolderWatcher, 43–44
AwesomeHttpContext, 45
class, 42–43
Empty template, 47
FileHttpRequest, 45–46
FileHttpResponse, 46
Listen directory, 48

create custom
AwesomeServer, 42
high-level architecture, 42

URLs, 38
Strongly typed configuration, 106–109
Swagger, 173–177

T
Test-driven development (TDD), 186
Testing

accelerate development, 185
ASP.NET Core, 199–201
.NET Core, 199–201

software development, 185
software testing methods, 186

U
Unique resource identifiers (URIs), 3, 5, 54
Unit testing

AwesomeCalculator class, 189–190
AwesomeService.Tests directory, 188
AwesomeService.Tests project, 191
awesometests, 186
class library, 186
dependencies, 192–193
[InlineData] attribute, 191
Microsoft.DotNet.Watcher.Tools, 191
NotImplementedException, 189
UnitTest1.cs, 187
variables, 191
XUnit project, 187

V
Versioning

AddApiVersioning extension
method, 166

api-version header, 170
aspnet-api-versioning, 173
AwesomeController, 167
ConfigureServices method, 170, 172
date formatting scheme, 165
IApiVersionReader

implementations, 171
Major.Minor versioning scheme, 165
[MapToApiVersion] attribute, 172
MediaTypeApiVersionReader class, 172
MediaTypeApiVersionReader

implementation, 171

Index

236

Microsoft.AspNetCore.Mvc.Versioning
package, 166

ReportApiVersions option, 173
REST API Guidelines, 165
URL path segment, 165

Visual Studio Marketplace, 16
Visual Studio Team Services (VSTS), 221

W
Windows

creation
application pool, 205, 206
binding section, 204

dotnet publish command, 207
FDD, 207
NuGet package installation, 208
PingController, 206
publish directory, 209
shell window, 207
sites node, 204
web.config file, 207
web deploy, 208
WebHost.CreateDefaultBuilder, 206
website dialog configuration, 205

X, Y, Z
Xamarin, 15

Versioning (cont.)

Index

	Contents
	Intro
	API Design demystified
	The Importance of APIs
	REST: The Good, Bad, and Ugly
	Principles of REST
	Wrapping Up

	Intro to ASP Core
	What Is ASP.NET Core?
	Why Use ASP.NET Core?
	ASP.NET Core Features
	Tooling Available for ASP.NET Core
	Setting Up the Development Environment
	A Lap Around the .NET Core CLI
	Wrapping Up

	First API Application
	Getting Started
	Dependency Injection
	Application Startup
	Creating an Endpoint
	Wrapping Up

	Extensibility Architecture
	Hosts and Servers
	Middleware
	Routing
	Hosted Services
	Wrapping up

	MVC
	The MVC Pattern
	MVC in ASP.NET Core
	Controllers and Actions
	Model Binding and Validation
	Filters
	Formatting Responses
	Application Parts
	Wrapping Up

	Configuration Model
	Basic Configuration
	Configuration Providers
	Strongly Typed Configuration
	Working with Changes
	Wrapping Up

	Logging & Error Handling
	Adding Logging
	Log Anatomy
	Grouping and Filtering
	Different Logging Providers
	Dealing with Exceptions
	Wrapping Up

	Securing APIs
	Authentication & Authorization
	Protecting Sensitive Data
	Enforcing SSL
	Cross-origin Requests
	Request Rate Limiting
	Wrapping Up

	Bells & Whistles
	HA TEOAS
	Versioning
	Swagger
	GraphQL
	Wrapping Up

	Testing & Debugging
	Why Is Testing Important?
	Unit Testing
	Dealing with Dependencies
	Integration Testing
	Debugging .NET Core and ASP.NET Core Sources
	Wrapping Up

	Hosting & Deployment
	Hosting on Windows
	Hosting on Linux
	Hosting on Docker
	Publishing to Azure
	Continuous Integration & Deployment
	Wrapping Up

	Index

