

Microsoft® SQL Server™ 2012

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter
Blind folio i

A Beginner’s
guide

Dušan Petković

Fifth Edition

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore
Sydney Toronto

Fm.indd 1 2/1/12 1:47:41 PM

Copyright © 2012 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-176159-8

MHID: 0-07-176159-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-176160-4,

MHID: 0-07-176160-8.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of
a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no
intention of infringement of the trademark. Where such designations appear in this book, they have been printed with
initial caps.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results
obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in
and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the
right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with
these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant
or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-
Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter / Blind folio i

eBook 160-8 cr_pg.indd 1 2/17/12 5:26:54 PM

mailto:bulksales@mcgrawhill.com
mailto:bulksales@mcgrawhill.com

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter
Blind folio iii

Dedicated to my sons, Ilja and Igor.

Fm.indd 3 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter
Blind folio iv

About the Author
Dušan Petković is a professor in the Department of Computer Science at the
University of Applied Sciences in Rosenheim, Germany. He is the bestselling author
of four editions of SQL Server: A Beginner’s Guide and has authored numerous
articles for SQL Server Magazine and technical papers for Embarcadero.

About the Technical Editor
Todd Meister has been working in the IT industry for over 15 years. He’s been a
technical editor on over 75 titles ranging from SQL Server to the .NET Framework.
Besides technical editing books, he is the Senior IT Architect at Ball State
University in Muncie, Indiana. He lives in central Indiana with his wife, Kimberly,
and their four clever children.

Fm.indd 4 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

v

Contents at a Glance

 Part I Basic Concepts and Installation

 Chapter 1 Relational Database Systems: An Introduction 3

 Chapter 2 Planning the Installation and Installing SQL Server 21

 Chapter 3 SQL Server Management Studio 41

 Part II Transact-SQL Language

 Chapter 4 SQL Components 71

 Chapter 5 Data Definition Language 95

 Chapter 6 Queries 135

 Chapter 7 Modification of a Table’s Contents 209

 Chapter 8 Stored Procedures and User-Defined Functions 227

 Chapter 9 System Catalog 259

 Chapter 10 Indices 273

 Chapter 11 Views 293

 Chapter 12 Security System of the Database Engine 315

 Chapter 13 Concurrency Control 359

 Chapter 14 Triggers 383

 Part III SQL Server: System Administration

 Chapter 15 System Environment of the Database Engine 405

 Chapter 16 Backup, Recovery, and System Availability 427

 Chapter 17 Automating System Administration Tasks 467

 Chapter 18 Data Replication 487

Fm.indd 5 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 v i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

 Chapter 19 Query Optimizer 507

 Chapter 20 Performance Tuning 541

 Part IV SQL Server and Business Intelligence

 Chapter 21 Business Intelligence: An Introduction 581

 Chapter 22 SQL Server Analysis Services 597

 Chapter 23 Business Intelligence and Transact-SQL 627

 Chapter 24 SQL Server Reporting Services 659

 Chapter 25 Optimizing Techniques for Relational Online Analytical Processing 683

 Part V Beyond Relational Data

 Chapter 26 SQL Server and XML 705

 Chapter 27 Spatial Data 735

 Chapter 28 SQL Server Full-Text Search 755

 Index 781

Fm.indd 6 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

vii

Contents
Acknowledgments xxiii

Introduction xxv

 Part I Basic Concepts and Installation

 Chapter 1 Relational Database Systems: An Introduction 3
Database Systems: An Overview 4

Variety of User Interfaces 5
Physical Data Independence 5
Logical Data Independence 5
Query Optimization 6
Data Integrity 6
Concurrency Control 6
Backup and Recovery 7
Database Security 7

Relational Database Systems 7
Working with the Book’s Sample Database 8
SQL: A Relational Database Language 11

Database Design 11
Normal Forms 13
Entity-Relationship Model 15

Syntax Conventions 17
Summary 18
Exercises 18

 Chapter 2 Planning the Installation and Installing SQL Server 21
SQL Server Editions 22
Planning Phase 23

General Recommendations 23
Planning the Installation 27

Installing SQL Server 31
Summary 40

Fm.indd 7 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 v i i i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

 Chapter 3 SQL Server Management Studio 41
Introduction to SQL Server Management Studio 42

Connecting to a Server 43
Registered Servers 44
Object Explorer 45
Organizing and Navigating SQL Server Management Studio’s Panes 46

Using SQL Server Management Studio with the Database Engine 47
Administering Database Servers 47
Managing Databases Using Object Explorer 50

Authoring Activities Using SQL Server Management Studio 60
Query Editor 60
Solution Explorer 63
SQL Server Debugging 64

Summary 66
Exercises 67

 Part II Transact-SQL Language

 Chapter 4 SQL Components 71
SQL’s Basic Objects 72

Literal Values 72
Delimiters 73
Comments 74
Identifiers 74
Reserved Keywords 74

Data Types 75
Numeric Data Types 75
Character Data Types 76
Temporal Data Types 76
Miscellaneous Data Types 78
Storage Options 81

Transact-SQL Functions 82
Aggregate Functions 83
Scalar Functions 83

Scalar Operators 90
Global Variables 91

Fm.indd 8 2/1/12 1:47:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s i x

NULL Values 92
Summary 93
Exercises 93

 Chapter 5 Data Definition Language 95
Creating Database Objects 96

Creation of a Database 96
CREATE TABLE: A Basic Form 101
CREATE TABLE and Declarative Integrity Constraints 104
Referential Integrity 110
Creating Other Database Objects 113
Integrity Constraints and Domains 115

Modifying Database Objects 117
Altering a Database 118
Altering a Table 125

Removing Database Objects 130
Summary 131
Exercises 131

 Chapter 6 Queries 135
SELECT Statement: Its Clauses and Functions 136

WHERE Clause 138
GROUP BY Clause 151
Aggregate Functions 153
HAVING Clause 159
ORDER BY Clause 160
SELECT Statement and IDENTITY Property 163
CREATE SEQUENCE Statement 164
Set Operators 167
CASE Expressions 172

Subqueries 174
Subqueries and Comparison Operators 175
Subqueries and the IN Operator 176
Subqueries and ANY and ALL Operators 177

Temporary Tables 179
Join Operator 180

Two Syntax Forms to Implement Joins 180
Natural Join 181

Fm.indd 9 2/1/12 1:47:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Cartesian Product 187
Outer Join 188
Further Forms of Join Operations 190

Correlated Subqueries 193
Subqueries and the EXISTS Function 194
Should You Use Joins or Subqueries? 195

Table Expressions 196
Derived Tables 197
Common Table Expressions 198

Summary 205
Exercises 205

 Chapter 7 Modification of a Table’s Contents 209
INSERT Statement 210

Inserting a Single Row 210
Inserting Multiple Rows 213
Table Value Constructors and INSERT 214

UPDATE Statement 215
DELETE Statement 217
Other T-SQL Modification Statements and Clauses 219

TRUNCATE TABLE Statement 219
MERGE Statement 220
The OUTPUT Clause 221

Summary 225
Exercises 225

 Chapter 8 Stored Procedures and User-Defined Functions 227
Procedural Extensions 228

Block of Statements 228
IF Statement 229
WHILE Statement 230
Local Variables 231
Miscellaneous Procedural Statements 232
Exception Handling with TRY, CATCH, and THROW 233

Stored Procedures 236
Creation and Execution of Stored Procedures 237
Stored Procedures and CLR 242

Fm.indd 10 2/1/12 1:47:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x i

User-Defined Functions 247
Creation and Execution of User-Defined Functions 248
Changing the Structure of UDFs 255
User-Defined Functions and CLR 255

Summary 256
Exercises 257

 Chapter 9 System Catalog 259
Introduction to the System Catalog 260
General Interfaces 262

Catalog Views 262
Dynamic Management Views and Functions 265
Information Schema 267

Proprietary Interfaces 268
System Stored Procedures 268
System Functions 269
Property Functions 270

Summary 271
Exercises 271

 Chapter 10 Indices 273
Introduction 274

Clustered Indices 276
Nonclustered Indices 277

Transact-SQL and Indices 278
Creating Indices 278
Obtaining Index Fragmentation Information 282
Editing Index Information 283
Altering Indices 284
Removing and Renaming Indices 286

Guidelines for Creating and Using Indices 287
Indices and Conditions in the WHERE Clause 287
Indices and the Join Operator 288
Covering Index 288

Special Types of Indices 289
Virtual Computed Columns 290
Persistent Computed Columns 290

Fm.indd 11 2/1/12 1:47:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x i i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Summary 291
Exercises 292

 Chapter 11 Views 293
DDL Statements and Views 294

Creating a View 294
Altering and Removing Views 298
Editing Information Concerning Views 299

DML Statements and Views 299
View Retrieval 300
INSERT Statement and a View 300
UPDATE Statement and a View 303
DELETE Statement and a View 305

Indexed Views 306
Creating an Indexed View 307
Modifying the Structure of an Indexed View 309
Editing Information Concerning Indexed Views 310
Benefits of Indexed Views 311

Summary 312
Exercises 312

 Chapter 12 Security System of the Database Engine 315
Authentication 317

Implementing an Authentication Mode 318
Encrypting Data 318
Setting Up the Database Engine Security 324

Schemas 327
User-Schema Separation 327
DDL Schema-Related Statements 328

Database Security 330
Managing Database Security Using Management Studio 331
Managing Database Security Using Transact-SQL Statements 332
Default Database Schemas 333

Roles 333
Fixed Server Roles 334
Fixed Database Roles 336

Fm.indd 12 2/1/12 1:47:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x i i i

Application Roles 337
User-Defined Server Roles 339
User-Defined Database Roles 340

Authorization 341
GRANT Statement 342
DENY Statement 346
REVOKE Statement 347
Managing Permissions Using Management Studio 348
Managing Authorization and Authentication of Contained Databases 349

Change Tracking 351
Data Security and Views 354
Summary 355
Exercises 356

 Chapter 13 Concurrency Control 359
Concurrency Models 360
Transactions 361

Properties of Transactions 362
Transact-SQL Statements and Transactions 363
Transaction Log 366

Locking 367
Lock Modes 368
Lock Granularity 370
Lock Escalation 371
Affecting Locks 372
Displaying Lock Information 373
Deadlock 374

Isolation Levels 375
Concurrency Problems 375
The Database Engine and Isolation Levels 376

Row Versioning 378
READ COMMITTED SNAPSHOT Isolation Level 379
SNAPSHOT Isolation Level 380

Summary 381
Exercises 381

Fm.indd 13 2/1/12 1:47:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x i v M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

 Chapter 14 Triggers 383
Introduction 384

Creating a DML Trigger 384
Modifying a Trigger’s Structure 385
Using deleted and inserted Virtual Tables 386

Application Areas for DML Triggers 387
AFTER Triggers 387
INSTEAD OF Triggers 391
First and Last Triggers 392

DDL Triggers and Their Application Areas 393
Database-Level Triggers 394
Server-Level Triggers 395

Triggers and CLR 396
Summary 400
Exercises 401

 Part III SQL Server: System Administration

 Chapter 15 System Environment of the Database Engine 405
System Databases 406

master Database 406
model Database 407
tempdb Database 407
msdb Database 408

Disk Storage 408
Properties of Data Pages 409
Types of Data Pages 412
Parallel Processing of Tasks 414

Utilities and the DBCC Command 415
bcp Utility 415
sqlcmd Utility 416
sqlservr Utility 418
DBCC Command 419

Policy-Based Management 421
Key Terms and Concepts 421
Using Policy-Based Management 422

Fm.indd 14 2/1/12 1:47:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x v

Summary 425
Exercises 425

 Chapter 16 Backup, Recovery, and System Availability 427
Reasons for Data Loss 428
Introduction to Backup Methods 429

Full Database Backup 429
Differential Backup 430
Transaction Log Backup 430
File or Filegroup Backup 431

Performing Database Backup 432
Backing Up Using Transact-SQL Statements 432
Backing Up Using Management Studio 436
Determining Which Databases to Back Up 439

Performing Database Recovery 440
Automatic Recovery 441
Manual Recovery 441
Recovery Models 450

System Availability 453
Using a Standby Server 454
Using RAID Technology 455
Database Mirroring 457
Failover Clustering 457
Log Shipping 458
High-Availability and Disaster Recovery (HADR) 458

Maintenance Plan Wizard 460
Summary 463
Exercises 465

 Chapter 17 Automating System Administration Tasks 467
Starting SQL Server Agent 469
Creating Jobs and Operators 470

Creating a Job and Its Steps 470
Creating a Job Schedule 473
Notifying Operators About the Job Status 475
Viewing the Job History Log 475

Fm.indd 15 2/1/12 1:47:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x v i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Alerts 477
Error Messages 477
SQL Server Agent Error Log 479
Windows Application Log 479
Defining Alerts to Handle Errors 480

Summary 484
Exercises 485

 Chapter 18 Data Replication 487
Distributed Data and Methods for Distributing 488
SQL Server Replication: An Overview 490

Publishers, Distributors, and Subscribers 490
Publications and Articles 492
The Distribution Database 493
Agents 493
Replication Types 495
Replication Models 499

Managing Replication 502
Configuring the Distribution and Publication Servers 502
Setting Up Publications 504
Configuring Subscription Servers 504

Summary 506
Exercises 506

 Chapter 19 Query Optimizer 507
Phases of Query Processing 508
How Query Optimization Works 509

Query Analysis 510
Index Selection 510
Join Order Selection 514
Join Processing Techniques 514
Plan Caching 516

Tools for Editing the Optimizer Strategy 517
SET Statement 518
Management Studio and Graphical Execution Plans 522
Examples of Execution Plans 523
Dynamic Management Views and Query Optimizer 528

Fm.indd 16 2/1/12 1:47:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x v i i

Optimization Hints 531
Why Use Optimization Hints 531
Types of Optimization Hints 532

Summary 540

 Chapter 20 Performance Tuning 541
Factors That Affect Performance 542

Database Applications and Performance 543
The Database Engine and Performance 545
System Resources and Performance 546

Monitoring Performance 550
Performance Monitor: An Overview 550
Monitoring the CPU 552
Monitoring Memory 554
Monitoring the Disk System 556
Monitoring the Network Interface 558

Choosing the Right Tool for Monitoring 560
SQL Server Profiler 560
Database Engine Tuning Advisor 561

Other Performance Tools of SQL Server 569
Performance Data Collector 569
Resource Governor 572

Summary 576
Exercises 577

 Part IV SQL Server and Business Intelligence

 Chapter 21 Business Intelligence: An Introduction 581
Online Transaction Processing vs Business Intelligence 582

Online Transaction Processing 582
Business Intelligence Systems 583

Data Warehouses and Data Marts 584
Data Warehouse Design 587
Cubes and Their Architectures 590

Aggregation 591
Physical Storage of a Cube 593

Data Access 595

Fm.indd 17 2/1/12 1:47:44 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x v i i i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Summary 595
Exercises 596

 Chapter 22 SQL Server Analysis Services 597
SSAS Terminology 598
Developing a Multidimensional Cube Using BIDS 600

Create a BI Project 601
Identify Data Sources 602
Specify Data Source Views 603
Create a Cube 607
Design Storage Aggregation 608
Process the Cube 610
Browse the Cube 611

Retrieving and Delivering Data 613
Querying Data Using PowerPivot for Excel 615
Querying Data Using Multidimensional Expressions 621

Security of SQL Server Analysis Services 623
Summary 625
Exercises 625

 Chapter 23 Business Intelligence and Transact-SQL 627
Window Construct 628

Partitioning 630
Ordering and Framing 632

Extensions of GROUP BY 635
CUBE Operator 636
ROLLUP Operator 638
Grouping Functions 639
Grouping Sets 641

OLAP Query Functions 642
Ranking Functions 643
Statistical Aggregate Functions 646

Standard and Nonstandard Analytic Functions 647
TOP Clause 647
OFFSET/FETCH 650
NTILE Function 652
Pivoting Data 653

Fm.indd 18 2/1/12 1:47:44 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x i x

Summary 657
Exercises 657

 Chapter 24 SQL Server Reporting Services 659
Introduction to Data Reports 660
SQL Server Reporting Services Architecture 661

Reporting Services Windows Service 662
The Report Catalog 663
Report Manager 663

Configuration of SQL Server Reporting Services 664
Creating Reports 665

Creating Reports with the Report Server Project Wizard 667
Creating Parameterized Reports 675

Managing Reports 678
On-Demand Reports 678
Report Subscription 678
Report Delivery Options 680

Summary 681
Exercises 682

 Chapter 25 Optimizing Techniques for Relational Online Analytical Processing 683
Data Partitioning 684

How the Database Engine Partitions Data 685
Steps for Creating Partitioned Tables 685
Partitioning Techniques for Increasing System Performance 692
Guidelines for Partitioning Tables and Indices 693

Star Join Optimization 694
Columnstore Index 696

Managing Columnstore Index 697
Advantages and Limitations of Columnstore Indices 699

Summary 700

 Part V Beyond Relational Data

 Chapter 26 SQL Server and XML 705
XML: Basic Concepts 706

Requirements of a Well-Formed XML Document 706
XML Elements 708

Fm.indd 19 2/1/12 1:47:44 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

XML Attributes 709
XML Namespaces 710
XML and World Wide Web 711
XML-Related Languages 711

Schema Languages 712
Document Type Definition 712
XML Schema 714

Storing XML Documents in SQL Server 715
Storing XML Documents Using the XML Data Type 717
Storing XML Documents Using Decomposition 723

Presenting Data 724
Presenting XML Documents as Relational Data 725
Presenting Relational Data as XML Documents 725

Querying Data 732
Summary 734

 Chapter 27 Spatial Data 735
Introduction 736

Models for Representing Spatial Data 737
GEOMETRY Data Type 737
GEOGRAPHY Data Type 739
GEOMETRY vs GEOGRAPHY 739
External Data Formats 740

Working with Spatial Data Types 741
Working with the GEOMETRY Data Type 741
Working with the GEOGRAPHY Data Type 745
Working with Spatial Indices 745

Displaying Information Concerning Spatial Data 748
New Spatial Data Features in SQL Server 2012 750

New Subtypes of Circular Arcs 750
New Spatial Indices 752
New System Stored Procedures Concerning Spatial Data 752

Summary 753

 Chapter 28 SQL Server Full-Text Search 755
Introduction 756

Tokens, Word Breakers, and Stop Lists 757
Operations on Tokens 758

Fm.indd 20 2/1/12 1:47:44 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 C o n t e n t s x x i

Relevance Score 760
How SQL Server FTS Works 760

Indexing Full-Text Data 761
Indexing Full-Text Data Using Transact-SQL 761
Index Full-Text Data Using SQL Server Management Studio 765

Querying Full-Text Data 768
FREETEXT Predicate 769
CONTAINS Predicate 770
FREETEXTTABLE Function 772
CONTAINSTABLE Function 773

Troubleshooting Full-Text Data 775
New Features in SQL Server 2012 FTS 777

Customizing a Proximity Search 777
Searching Extended Properties 778

Summary 779

 Index 781

Fm.indd 21 2/1/12 1:47:44 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

xxiii

Acknowledgments

First, I would like to thank my sponsoring editor, Wendy Rinaldi. Since
1998, Wendy has been in charge of all five books that I have published with
McGraw-Hill. I appreciate very much her extraordinary support over all these

years. Also, I would like to acknowledge the important contributions of my technical
editor, Todd Meister, and my copy editor, Bill McManus.

Fm.indd 23 2/1/12 1:47:45 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

xxv

Introduction

There are a couple of reasons why SQL Server, the system that comprises the
Database Engine, Analysis Services, Reporting Services, Integration Services,
and SQLXML, is the best choice for a broad spectrum of end users and data-

base programmers building business applications:

SQL Server is certainly the best system for Windows operating systems, because CC

of its tight integration (and low pricing). Because the number of installed
Windows systems is enormous and still increasing rapidly, SQL Server is a widely
used database system.
The Database Engine, as the relational database system component, is the easiest CC

database system to use. In addition to the well-known user interface, Microsoft
offers several different tools to help you create database objects, tune your database
applications, and manage system administration tasks.

Generally, SQL Server isn’t only a relational database system. It is a platform that
not only manages structured, semistructured, and unstructured data but also offers
comprehensive, integrated operational and analysis software that enables organizations
to reliably manage mission-critical information.

Goals of the Book
Microsoft SQL Server 2012: A Beginner’s Guide follows four previous editions that
covered SQL Server 7, 2000, 2005, and 2008.

Generally, all SQL Server users who want to get a good understanding of this
database system and to work successfully with it will find this book very helpful. If you
are a new SQL Server user but understand SQL, read the section “Differences Between
SQL and Transact-SQL Syntax” later in this introduction.

This book addresses users of all components of the SQL Server system. For this
reason, it is divided into several parts: The first three parts are most useful to users
who want to learn more about Microsoft’s relational database component called

Fm.indd 25 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x v i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

the Database Engine. The fourth part of the book is dedicated to business intelligence
(BI) users who use either Analysis Services or relational extensions concerning BI.
The last part of the book provides insight for users who want to learn features beyond
the relational data, such as XML technologies, spatial data, and how to search data in
documents.

SQL Server 2012 New Features
Described in the Book
SQL Server 2012 has a lot of new features, and almost all of them are discussed in
this book. For each feature, at least one running example is provided to enable you to
understand that feature better. The following table lists the chapters that describe new
features and provides a brief summary of the new features introduced in each chapter.
(The table also contains features from SQL Server 2008 Release 2.)

Chapter 2 The installation process of SQL Server 2012 in general and the use of Upgrade Advisor in particular
are described in this chapter (Upgrade Advisor analyzes all components of previous releases that are
installed and identifies issues to fix before you upgrade to SQL Server 2012)

Chapter 3 Management Studio Debugger has been enhanced in SQL Server 2012 The new debugger features
described in this chapter are the specification of a breakpoint condition, breakpoint hit count,
breakpoint filter, and breakpoint action, as well as the use of the QuickWatch window

Chapter 5 This chapter describes contained databases in general and partially contained databases, a new feature
of SQL Server 2012, in particular (For an example of how to create such databases, see Example 5 20)

Chapter 6 This chapter introduces two new clauses of the SELECT statement: OFFSET and FETCH It also introduces
sequences and their creation in the section “CREATE SEQUENCE Statement ”

Chapter 8 Exception handling of the Database Engine in SQL Server 2012 is enhanced with the new statement
called THROW (see Example 8 4) The use of the OFFSET and FETCH clauses for server-side paging is
shown in Example 8 5 The extension of the EXECUTE statement with the RESULT SETS option is shown
in Example 8 11

Chapter 9 The section “Dynamic Management Views and Functions” describes two new views:
sys.dm_exec_describe_first_result_set and sys.dm_db_uncontained_entites (see Example 9 4)

Chapter 12 This chapter introduces the CREATE SERVER ROLE statement, which is used to create user-defined
server roles Also, the management of authorization and authentication of contained databases (see
Chapter 5) is described

Chapter 16 This chapter describes one of the most important new features in SQL Server 2012: high availability
and disaster recovery (HADR) HADR overcomes the drawbacks of database mirroring and allows you to
maximize availability for your databases

Fm.indd 26 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 I n t r o d u c t i o n x x v i i

Chapter 22 This chapter introduces the new and powerful tool for querying analytical data: PowerPivot for Excel
This tool allows you to analyze data using the most popular Microsoft tool for such purpose, Microsoft
Excel PowerPivot for Excel was introduced for the first time in SQL Server 2008 R2

Chapter 23 This chapter describes new window functions First, the window frame with its clauses (CURRENT ROW,
UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING) is explained using an example After that, the
differences between the ROWS and RANGE clauses are listed The new functions, LEAD and LAG are
explained, too

Chapter 24 Shared datasets, which were introduced for the first time in SQL Server 2008 R2, are discussed in this
chapter

Chapter 25 The final part of this chapter, which is entirely new material, describes columnstore indices

Chapter 27 The last section of this chapter, “New Spatial Data Features in SQL Server 2012,” describes three new
subtypes of circular arcs (compound strings, compound curves, and curve polygons), a new spatial
index, and two new system stored procedures concerning spatial data

Chapter 28 The last section of this chapter, “New Features in SQL Server 2012 FTS,” introduces two enhancements to
full-text search: customizing a proximity search and searching extended properties

Organization of the Book
The book has 28 chapters and is divided into five parts.

Part I, “Basic Concepts and Installation,” describes the notion of database systems
and explains how to install SQL Server 2012 and its components. It includes the
following chapters:

Chapter 1, “Relational Database Systems: An Introduction,” discusses databases CC

in general and the Database Engine in particular. The notion of normal forms and
the sample database are presented here. The chapter also introduces the syntax
conventions that are used in the rest of the book.
Chapter 2, “Planning the Installation and Installing SQL Server,” describes the CC

first system administration task: the installation of the overall system. Although
the installation of SQL Server is a straightforward task, there are certain steps
that warrant explanation.
Chapter 3, “SQL Server Management Studio,” describes the component called CC

SQL Server Management Studio. This component is presented early in the book
in case you want to create database objects and query data without knowledge of
SQL.

Fm.indd 27 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x v i i i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Part II, “Transact-SQL Language,” is intended for end users and application
programmers of the Database Engine. It comprises the following chapters:

Chapter 4, “SQL Components,” describes the fundamentals of the most important CC

part of a relational database system: a database language. For all such systems,
there is only one language that counts: SQL. In this chapter, all components of
SQL Server’s own database language, called Transact-SQL, are described. You can
also find the basic language concepts and data types in this chapter. Finally, system
functions and operators of Transact-SQL are described.
Chapter 5, “Data Definition Language,” describes all data definition language CC

(DDL) statements of Transact-SQL. The DDL statements are presented in three
groups, depending on their purpose. The first group contains all forms of the
CREATE statement, which is used to create database objects. The second group
contains all forms of the ALTER statement, which is used to modify the structure
of some database objects. The third group contains all forms of the DROP
statement, which is used to remove different database objects.
Chapter 6, “Queries,” discusses the most important Transact-SQL statement: CC

SELECT. This chapter introduces you to database data retrieval and describes the
use of simple and complex queries. Each SELECT clause is separately defined
and explained with reference to the sample database.
Chapter 7, “Modification of a Table’s Contents,” discusses the four Transact-CC

SQL statements used for updating data: INSERT, UPDATE, DELETE, and
MERGE. Each of these statements is explained through numerous examples.
Chapter 8, “Stored Procedures and User-Defined Functions,” describes procedural CC

extensions, which can be used to create powerful programs called stored
procedures and user-defined functions (UDFs), programs that are stored on the
server and can be reused. Because Transact-SQL is a complete computational
language, all procedural extensions are inseparable parts of the language. Some
stored procedures are written by users; others are provided by Microsoft and are
referred to as system stored procedures. The implementation of stored procedures
and UDFs using the Common Language Runtime (CLR) is also discussed in this
chapter.
Chapter 9, “System Catalog,” describes one of the most important parts of a CC

database system: system tables and views. The system catalog contains tables
that are used to store the information concerning database objects and their
relationships. The main characteristic of system tables of the Database Engine
is that they cannot be accessed directly. The Database Engine supports several
interfaces that you can use to query the system catalog.

Fm.indd 28 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 I n t r o d u c t i o n x x i x

Chapter 10, “Indices,” covers the first and most powerful method that database CC

application programmers can use to tune their applications to get better system
response and therefore better performance. This chapter describes the role of
indices and gives you guidelines for how to create and use them. The end of the
chapter introduces the special types of indices supported by the Database Engine.
Chapter 11, “Views,” explains how you create views, discusses the practical use CC

of views (using numerous examples), and explains a special form of views called
indexed views.
Chapter 12, “Security System of the Database Engine,” provides answers to all CC

your questions concerning security of data in the database. It addresses questions
about authorization (which user has been granted legitimate access to the database
system) and authentication (which access privileges are valid for a particular user).
Three Transact-SQL statements are discussed in this chapter, GRANT, DENY,
and REVOKE, which provide the access privileges of database objects against
unauthorized access. The end of the chapter explains how data changes can be
tracked using the Database Engine.
Chapter 13, “Concurrency Control,” describes concurrency control in depth. CC

The beginning of the chapter discusses the two different concurrency models
supported by the Database Engine. All Transact-SQL statements related to
transactions are also explained. Locking as a method to solve concurrency control
problems is discussed further. At the end of the chapter, you will learn what
isolation levels and row versions are.
Chapter 14, “Triggers,” describes the implementation of business logic using CC

triggers. Each example in this chapter concerns a problem that you may face in
your everyday life as a database application programmer. The implementation of
managed code for triggers using CLR is also shown in the chapter.

Part III, “SQL Server: System Administration,” describes all objectives of Database
Engine system administration. It comprises the following chapters:

Chapter 15, “System Environment of the Database Engine,” discusses some CC

internal issues concerning the Database Engine. It provides a detailed description
of the Database Engine disk storage elements, system databases, and utilities.
Chapter 16, “Backup, Recovery, and System Availability,” provides an overview CC

of the fault-tolerance methods used to implement a backup strategy using either
SQL Server Management Studio or corresponding Transact-SQL statements.
The first part of the chapter specifies the different methods used to implement

Fm.indd 29 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x x M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

a backup strategy. The second part of the chapter discusses the restoration of
databases. The final part of the chapter describes in detail the following options
available for system availability: failover clustering, database mirroring, log
shipping, and high availability and disaster recovery (HADR).
Chapter 17, “Automating System Administration Tasks,” describes the Database CC

Engine component called SQL Server Agent that enables you to automate certain
system administration jobs, such as backing up data and using the scheduling and
alert features to notify operators. This chapter also explains how to create jobs,
operators, and alerts.
Chapter 18, “Data Replication,” provides an introduction to data replication, CC

including concepts such as the publisher and subscriber. It introduces the different
models of replication, and serves as a tutorial for how to configure publications
and subscriptions using the existing wizards.
Chapter 19, “Query Optimizer,” describes the role and the work of the query CC

optimizer. It explains in detail all the Database Engine tools (the SET statement,
SQL Server Management Studio, and various dynamic management views)
that can be used to edit the optimizer strategy. The end of the chapter provides
optimization hints.
Chapter 20, “Performance Tuning,” discusses performance issues and the tools CC

for tuning the Database Engine that are relevant to daily administration of the
system. After introductory notes concerning the measurements of performance,
this chapter describes the factors that affect performance and presents tools for
monitoring SQL Server.

Part IV, “SQL Server and Business Intelligence,” discusses business intelligence
(BI) and all related topics. The chapters in this part of the book introduce Microsoft
Analysis Services and Microsoft Reporting Services. SQL/OLAP and existing
optimization techniques concerning relational data storage are described in detail, too.
This part includes the following chapters:

Chapter 21, “Business Intelligence: An Introduction,” introduces the notion of CC

data warehousing. The first part of the chapter explains the differences between
online transaction processing and data warehousing. The data store for a data
warehousing process can be either a data warehouse or a data mart. Both types of
data stores are discussed, and their differences are listed in the second part of the
chapter. The data warehouse design is explained at the end of the chapter.

Fm.indd 30 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 I n t r o d u c t i o n x x x i

Chapter 22, “SQL Server Analysis Services,” discusses the architecture of Analysis CC

Services and the main component of Analysis Services, Business Intelligence
Development Studio (BIDS). The development of a cube using BIDS is shown
using two examples. At the end of the chapter, several ways to retrieve and deliver
data to users are shown.
Chapter 23, “Business Intelligence and Transact-SQL,” explains how you can CC

use Transact-SQL to solve business intelligence problems. This chapter discusses
the window construct, with its partitioning, ordering and framing, CUBE and
ROLLUP operators, rank functions, the TOP n clause, and the PIVOT relational
operator.
Chapter 24, “SQL Server Reporting Services,” describes the Microsoft enterprise CC

reporting solution. This component is used to design and deploy reports. The
chapter discusses the development environment that you use to design and create
reports, and shows you different ways to deliver a deployed report.
Chapter 25, “Optimizing Techniques for Relational Online Analytical CC

Processing,” describes three of the several specific optimization techniques that
can be used especially in the area of business intelligence: data partitioning, star
join optimization, and columnstore indices. The data partitioning technique called
range partitioning is described. In relation to star join optimization, the role
of bitmap filters in the optimization of joins is explained. The final part of the
chapter explains the use of columnstore indices. You will see how to create such
an index and use it to increase the performance of a specific group of analytical
queries.

Part V, “Beyond Relational Data,” is dedicated to three “nonrelational” topics, XML,
spatial data, and full-text search, because SQL Server, as a data platform, doesn’t have to
handle only relational data. The following chapters are included in this part:

Chapter 26, “SQL Server and XML,” discusses SQLXML, Microsoft’s set of CC

data types and functions that supports XML in SQL Server, bridging the gap
between XML and relational data. The beginning of the chapter introduces the
standardized data type called XML and explains how stored XML documents can
be retrieved. After that, the presentation of relational data as XML documents
is discussed in detail. At the end of the chapter you will find a description of the
methods that can be used to query XML data.
Chapter 27, “Spatial Data,” discusses spatial data and two different data types CC

(GEOMETRY and GEOGRAPHY) that can be used to create such data.
Several different standardized functions in relation to spatial data are also shown.

Fm.indd 31 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x x i i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

Chapter 28, “SQL Server Full-Text Search,” first discusses general concepts CC

related to full-text search. The second part describes the general steps that are
required to create a full-text index and then demonstrates how to apply those
steps first using Transact-SQL and then using SQL Server Management Studio.
The rest of the chapter is dedicated to full-text queries. It describes two predicates
and two row functions that can be used for full-text search. For these predicates
and functions, several examples are provided to show how you can solve specific
problems in relation to extended operations on documents.

Almost all chapters include at their end numerous exercises that you can use to improve
your knowledge concerning the chapter’s content. All solutions to the given exercises
can be found both at McGraw-Hill Professional’s web site (www.mhprofessional.com/
computingdownload) and at my own home page (www.fh-rosenheim.de/~petkovic).

Changes from the Previous Edition
If you are familiar with the previous edition of this book, Microsoft SQL Server 2008:
A Beginner’s Guide, you should be aware that I have made significant changes in this
edition. To make the book easier to use, I separated some topics and described them in
totally new chapters. (For instance, Chapter 28 is an entirely new chapter and describes
full-text search in depth.) The following table gives you an outline of significant
structural changes in the book (minor changes aren’t listed).

Chapter 4 An entirely new section, “Storage Options,” describes two different storage options available as of SQL
Server 2008: FILESTREAM and sparse columns The FILESTREAM storage option supports the management
of large objects, which are stored in the NTFS file system, while sparse columns help to minimize data
storage space (These columns provide an optimized way to store column values that are predominantly
NULL)

Chapter 7 The Transact-SQL data modification statements TRUNCATE TABLE and MERGE are now described together,
in the final section of the chapter, “Other T-SQL Modification Statements and Clauses ”

Chapter 10 All existing special types of indices are listed in the final section of the chapter, “Special Types of Indices ”
Some types are described in this chapter, while for the other types a cross reference is provided to the
chapter in which their description can be found

Chapter 15 The Declarative Management Framework, which was covered in Chapter 16 of the previous edition of the
book, has been renamed Policy-Based Management and its coverage has been moved to this chapter (Note:
Chapter 16, “Managing Instances and Maintaining Databases,” from the prior edition has been eliminated
from this edition and its material that is relevant to SQL Server 2012 has been redistributed to other
chapters Consequently, Chapters 17 through 26 of the prior edition are now numbered Chapters 16 through
25, respectively, in this edition The new chapter numbers are reflected in the left column of this table)

Fm.indd 32 2/1/12 1:47:45 PM

http://www.mhprofessional.com/computingdownload
http://www.mhprofessional.com/computingdownload
http://www.fh-rosenheim.de/~petkovic

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 I n t r o d u c t i o n x x x i i i

Chapter 16 Coverage of the Maintenance Plan Wizard has been moved from Chapter 16 of the previous edition and
placed in this chapter (which was Chapter 17 in the prior edition)

Chapter 18 The structure of the chapter has been significantly changed Methods for distributing data are now
streamlined and discussed at the beginning of the chapter

Chapter 19 This chapter includes a new section called “Plan Caching ” The section has been enhanced with a new
example that shows how you can influence the execution of queries

Chapter 20 For each section concerning monitoring system resources (CPU, I/O, and network), several examples
concerning dynamic management views have been added

Chapter 22 This chapter has been significantly revised from the previous edition (in which it was Chapter 23) A new
main section has been added, “Retrieving and Delivering Data,” which introduces PowerPivot for Excel
and describes the Multidimensional Expressions (MDX) language Also, there is a new section concerning
security of SQL Server Analysis Services

Chapter 23 A new section called “Ordering and Framing” replaces the old one (“Ordering”)

Chapter 24 A new main section called “Managing Reports” describes how reports can be delivered

Chapter 25 In addition to the new topic “Columnstore Index,” the section “Star Join Optimization” has been enhanced
with several examples

Chapter 26 Chapter 27, “Overview of XML,” and Chapter 28, “SQL Server and XML,” from the prior edition were
streamlined and merged into this single chapter, retaining the title “SQL Server and XML ” Two new main
sections have been added, which describe all features concerning presentation and retrieval of data

Chapter 27 This chapter, which was Chapter 29 in the previous edition, has been rewritten from scratch to provide
more extensive coverage of spatial data

Chapter 28 This is a new chapter in this edition, addressing an entirely new topic: SQL Server Full-Text search

Differences Between
SQL and Transact-SQL Syntax
Transact-SQL, SQL Server’s relational database language, has several nonstandardized
properties that generally are not known to people who are familiar with SQL only:

Whereas the semicolon (;) is used in SQL to separate two SQL statements in a CC

statement group (and you will generally get an error message if you do not include
the semicolon), in Transact-SQL, use of semicolons is optional.
Transact-SQL uses the GO statement. This nonstandardized statement is CC

generally used to separate statement groups from each other, whereas some
Transact-SQL statements (such as CREATE TABLE, CREATE INDEX, and
so on) must be the only statement in the group.

Fm.indd 33 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x x i v M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

The USE statement, which is used very often in this book, changes the database CC

context to the specified database. For example, the statement USE sample means
that the statements that follow will be executed in the context of the sample
database.

Working with the Sample Databases
This edition of the book uses three sample databases:

This book’s own CC sample database
Microsoft’s CC AdventureWorks database
Microsoft’s CC AdventureWorksDW database

An introductory book like this requires a sample database that can be easily
understood by each reader. For this reason, I used a very simple concept for my own
sample database: it has only four tables with several rows each. On the other hand, its
logic is complex enough to demonstrate the hundreds of examples included in the text
of the book. The sample database that you will use in this book represents a company
with departments and employees. Each employee belongs to exactly one department,
which itself has one or more employees. Jobs of employees center on projects: each
employee works at the same time for one or more projects, and each project engages
one or more employees.

The tables of the sample database are shown next.

The department table:

dept_no dept_name location
d1 Research Dallas

d2 Accounting Seattle

d3 Marketing Dallas

Fm.indd 34 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 I n t r o d u c t i o n x x x v

The employee table:

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

10102 Ann Jones d3

18316 John Barrimore d1

29346 James James d2

9031 Elsa Bertoni d2

2581 Elke Hansel d2

28559 Sybill Moser d1

The project table:

project_no project_name budget
p1 Apollo 120000

p2 Gemini 95000

p3 Mercury 185600

The works_on table:

emp_no project_no Job enter_date
10102 p1 Analyst 2006 10 1

10102 p3 Manager 2008 1 1

25348 p2 Clerk 2007 2 15

18316 p2 NULL 2007 6 1

29346 p2 NULL 2006 12 15

2581 p3 Analyst 2007 10 15

9031 p1 Manager 2007 4 15

28559 p1 NULL 2007 8 1

28559 p2 Clerk 2008 2 1

9031 p3 Clerk 2006 11 15

29346 p1 Clerk 2007 1 4

Fm.indd 35 2/1/12 1:47:45 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Front Matter

 x x x v i M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

You can download the sample database from McGraw-Hill Professional’s web
site (www.mhprofessional.com/computingdownload) or my own home page (www
.fh-rosenheim.de/~petkovic). Also, you can download all the examples in the book as
well as solutions for exercises from my home page.

Although the sample database can be used for many of the examples in this book, for
some examples, tables with a lot of rows are necessary (to show optimization features,
for instance). For this reason, two Microsoft sample databases—AdventureWorks and
AdventureWorksDW—are also used. Both of them can be found at the Microsoft
CodePlex web site www.codeplex.com/MSFTDBProdSamples.

Fm.indd 36 2/1/12 1:47:45 PM

http://www.mhprofessional.com/computingdownload
http://www.codeplex.com/MSFTDBProdSamples
http://www.fh-rosenheim.de/~petkovic
http://www.fh-rosenheim.de/~petkovic

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 /
Blind folio 1

Basic Concepts
and Installation

Part I

Ch01.indd 1 1/24/12 4:39:21 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

In This Chapter

c Database Systems:
An Overview

c Relational Database
Systems

c Database Design
c Syntax Conventions

Relational Database
Systems: An Introduction

Chapter 1

Ch01.indd 3 1/24/12 4:39:21 PM

 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

This chapter describes database systems in general. First, it discusses what a
database system is, and which components it contains. Each component is
described briefly, with a reference to the chapter in which it is described in

detail. The second major section of the chapter is dedicated to relational database
systems. It discusses the properties of relational database systems and the corresponding
language used in such systems—Structured Query Language (SQL).

Generally, before you implement a database, you have to design it, with all its objects.
The third major section of the chapter explains how you can use normal forms to
enhance the design of your database, and also introduces the entity-relationship model,
which you can use to conceptualize all entities and their relationships. The final section
presents the syntax conventions used throughout the book.

Database Systems: An Overview
A database system is an overall collection of different database software components
and databases containing the following parts:

Database application programsCc

Client componentsCc

Database server(s)Cc

DatabasesCc

A database application program is special-purpose software that is designed
and implemented by users or by third-party software companies. In contrast, client
components are general-purpose database software designed and implemented by a
database company. By using client components, users can access data stored on the same
or a remote computer.

The task of a database server is to manage data stored in a database. Each client
communicates with a database server by sending user queries to it. The server processes
each query and sends the result back to the client.

In general, a database can be viewed from two perspectives, the users’ and the
database system’s. Users view a database as a collection of data that logically belong
together. For a database system, a database is simply a series of bytes, usually stored
on a disk. Although these two views of a database are totally different, they do have
something in common: the database system needs to provide not only interfaces
that enable users to create databases and retrieve or modify data, but also system
components to manage the stored data. Hence, a database system must provide the
following features:

Ch01.indd 4 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 5

Variety of user interfacesCc

Physical data independenceCc

Logical data independenceCc

Query optimizationCc

Data integrityCc

Concurrency controlCc

Backup and recoveryCc

Database security Cc

The following sections briefly describe these features.

Variety of User Interfaces
Most databases are designed and implemented for use by many different types of users
with varied levels of knowledge. For this reason, a database system should offer many
distinct user interfaces. A user interface can be either graphical or textual. Graphical
user interfaces (GUIs) accept user’s input via the keyboard or mouse and create
graphical output on the monitor. A form of textual interface, which is often used by
database systems, is the command-line interface (CLI), where the user provides the
input by typing a command with the keyboard and the system provides output by
printing text on the computer monitor.

Physical Data Independence
Physical data independence means that the database application programs do not
depend on the physical structure of the stored data in a database. This important feature
enables you to make changes to the stored data without having to make any changes
to database application programs. For example, if the stored data is previously ordered
using one criterion, and this order is changed using another criterion, the modification
of the physical data should not affect the existing database applications or the existing
database schema (a description of a database generated by the data definition language
of the database system).

Logical Data Independence
In file processing (using traditional programming languages), the declaration of a file
is done in application programs, so any change to the structure of that file usually
requires the modification of all programs using it. Database systems provide logical data

Ch01.indd 5 1/24/12 4:39:21 PM

 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

independence—in other words, it is possible to make changes to the logical structure of
the database without having to make any changes to the database application programs.
For example, if the structure of an object named PERSON exists in the database system
and you want to add an attribute to PERSON (say the address), you have to modify
only the logical structure of the database, and not the existing application programs.
(The application would have to be modified to utilize the newly added column.)

Query Optimization
Most database systems contain a subcomponent called optimizer that considers a variety
of possible execution strategies for querying the data and then selects the most efficient
one. The selected strategy is called the execution plan of the query. The optimizer makes
its decisions using considerations such as how big the tables are that are involved in the
query, what indices exist, and what Boolean operator (AND, OR, or NOT) is used in
the WHERE clause. (This topic is discussed in detail in Chapter 19.)

Data Integrity
One of the tasks of a database system is to identify logically inconsistent data and
reject its storage in a database. (The date February 30 and the time 5:77:00 p.m. are
two examples of such data.) Additionally, most real-life problems that are implemented
using database systems have integrity constraints that must hold true for the data. (One
example of an integrity constraint might be the company’s employee number, which
must be a five-digit integer.) The task of maintaining integrity can be handled by the
user in application programs or by the DBMS. As much as possible, this task should
be handled by the DBMS. (Data integrity is discussed in two chapters of this book:
declarative integrity in Chapter 5 and procedural integrity in Chapter 14.)

Concurrency Control
A database system is a multiuser software system, meaning that many user applications
access a database at the same time. Therefore, each database system must have some
kind of control mechanism to ensure that several applications that are trying to update
the same data do so in some controlled way. The following is an example of a problem
that can arise if a database system does not contain such control mechanisms:

The owners of bank account 4711 at bank X have an account balance of $2000.1.
The two joint owners of this bank account, Mrs. A and Mr. B, go to two different 2.
bank tellers, and each withdraws $1000 at the same time.
After these transactions, the amount of money in bank account 4711 should be 3.
$0 and not $1000.

Ch01.indd 6 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 7

All database systems have the necessary mechanisms to handle cases like this
example. Concurrency control is discussed in detail in Chapter 13.

Backup and Recovery
A database system must have a subsystem that is responsible for recovery from
hardware or software errors. For example, if a failure occurs while a database application
updates 100 rows of a table, the recovery subsystem must roll back all previously
executed updates to ensure that the corresponding data is consistent after the error
occurs. (See Chapter 16 for further discussion on backup and recovery.)

Database Security
The most important database security concepts are authentication and authorization.
Authentication is the process of validating user credentials to prevent unauthorized users
from using a system. Authentication is most commonly enforced by requiring the user
to enter a (user) name and a password. This information is evaluated by the system
to determine whether the user is allowed to access the system. This process can be
strengthened by using encryption.

Authorization is the process that is applied after the identity of a user is authenticated.
During this process, the system determines what resources the particular user can use.
In other words, structural and system catalog information about a particular entity is
now available only to principals that have permission to access that entity. (Chapter 12
discusses these concepts in detail.)

Relational Database Systems
The component of Microsoft SQL Server called the Database Engine is a relational
database system. The notion of relational database systems was first introduced by E. F.
Codd in his article “A Relational Model of Data for Large Shared Data Banks” in 1970.
In contrast to earlier database systems (network and hierarchical), relational database
systems are based upon the relational data model, which has a strong mathematical
background.

Note
A data model is a collection of concepts, their relationships, and their constraints that are used to represent data
of a real-world problem.

The central concept of the relational data model is a relation—that is, a table.
Therefore, from the user’s point of view, a relational database contains tables and

Ch01.indd 7 1/24/12 4:39:21 PM

 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

nothing but tables. In a table, there are one or more columns and zero or more rows. At
every row and column position in a table there is always exactly one data value.

Working with the Book’s Sample Database
The sample database used in this book represents a company with departments and
employees. Each employee in the example belongs to exactly one department, which
itself has one or more employees. Jobs of employees center on projects: each employee
works at the same time on one or more projects, and each project engages one or more
employees.

The data of the sample database can be represented using four tables:

departmentCc

employeeCc

projectCc

works_onCc

Tables 1-1 through 1-4 show all the tables of the sample database.
The department table represents all departments of the company. Each department

has the following attributes:

department (dept_no, dept_name, location)

dept_no represents the unique number of each department. dept_name is its name, and
location is the location of the corresponding department.

The employee table represents all employees working for a company. Each employee
has the following attributes:

employee (emp_no, emp_fname, emp_lname, dept_no)

Table 1-1 The Department Table

dept_no dept_name location
d1 Research Dallas

d2 Accounting Seattle

d3 Marketing Dallas

Ch01.indd 8 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 9

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

10102 Ann Jones d3

18316 John Barrimore d1

29346 James James d2

9031 Elke Hansel d2

2581 Elsa Bertoni d2

28559 Sybill Moser d1

Table 1-2 The Employee Table

emp_no project_no job enter_date
10102 p1 Analyst 2006.10.1

10102 p3 Manager 2008.1.1

25348 p2 Clerk 2007.2.15

18316 p2 NULL 2007.6.1

29346 p2 NULL 2006.12.15

2581 p3 Analyst 2007.10.15

9031 p1 Manager 2007.4.15

28559 p1 NULL 2007.8.1

28559 p2 Clerk 2008.2.1

9031 p3 Clerk 2006.11.15

29346 p1 Clerk 2007.1.4

Table 1-4 The works_on Table

project_no project_name budget
p1 Apollo 120000

p2 Gemini 95000

p3 Mercury 186500

Table 1-3 The Project Table

Ch01.indd 9 1/24/12 4:39:21 PM

 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

emp_no represents the unique number of each employee. emp_fname and emp_lname
are the first and last name of each employee, respectively. Finally, dept_no is the
number of the department to which the employee belongs.

Each project of a company is represented in the project table. This table has the
following columns:

project (project_no, project_name, budget)

project_no represents the unique number of each project. project_name and budget
specify the name and the budget of each project, respectively.

The works_on table specifies the relationship between employees and projects. It has
the following columns:

works_on (emp_no, project_no, job, enter_date)

emp_no specifies the employee number and project_no specifies the number of the
project on which the employee works. The combination of data values belonging
to these two columns is always unique. job and enter_date specify the task and the
starting date of an employee in the corresponding project, respectively.

Using the sample database, it is possible to describe some general properties of
relational database systems:

Rows in a table do not have any particular order.Cc

Columns in a table do not have any particular order.Cc

Every column must have a unique name within a table. On the other hand, Cc

columns from different tables may have the same name. (For example, the sample
database has a dept_no column in the department table and a column with the
same name in the employee table.)
Every single data item in the table must be single valued. This means that in every Cc

row and column position of a table there is never a set of multiple data values.
For every table, there is at least one column with the property that no two rows Cc

have the same combination of data values for all table columns. In the relational
data model, such an identifier is called a candidate key. If there is more than one
candidate key within a table, the database designer designates one of them as the
primary key of the table. For example, the column dept_no is the primary key of
the department table; the columns emp_no and project_no are the primary keys
of the tables employee and project, respectively. Finally, the primary key for the
works_on table is the combination of the columns emp_no, project_no.

Ch01.indd 10 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 1 1

In a table, there are never two identical rows. (This property is only theoretical; Cc

the Database Engine and all other relational database systems generally allow the
existence of identical rows within a table.)

SQL: A Relational Database Language
The SQL Server relational database language is called Transact-SQL. It is a dialect
of the most important database language today: Structured Query Language (SQL).
The origin of SQL is closely connected with the project called System R, which was
designed and implemented by IBM in the early 1980s. This project showed that it
is possible, using the theoretical foundations of the work of E. F. Codd, to build a
relational database system.

In contrast to traditional languages like C, C++, and Java, SQL is a set-oriented
language. (The former are also called record-oriented languages.) This means that SQL
can query many rows from one or more tables using just one statement. This feature is
one of the most important advantages of SQL, allowing the use of this language at a
logically higher level than the level at which traditional languages can be used.

Another important property of SQL is its nonprocedurality. Every program written
in a procedural language (C, C++, Java) describes how a task is accomplished, step by
step. In contrast to this, SQL, as any other nonprocedural language, describes what it is
that the user wants. Thus, the system is responsible for finding the appropriate way to
solve users’ requests.

SQL contains two sublanguages: a data definition language (DDL) and a data
manipulation language (DML). DDL statements are used to describe the schema of
database tables. The DDL contains three generic SQL statements: CREATE object,
ALTER object, and DROP object. These statements create, alter, and remove database
objects, such as databases, tables, columns, and indexes. (These statements are discussed
in detail in Chapter 5.)

In contrast to the DDL, the DML encompasses all operations that manipulate the
data. There are always four generic operations for manipulating the database: retrieval,
insertion, deletion, and modification. The retrieval statement SELECT is described in
Chapter 6, while the INSERT, DELETE, and UPDATE statements are discussed in
detail in Chapter 7.

Database Design
Designing a database is a very important phase in the database life cycle, which
precedes all other phases except the requirements collection and the analysis. If the
database design is created merely intuitively and without any plan, the resulting
database will most likely not meet the user requirements concerning performance.

Ch01.indd 11 1/24/12 4:39:21 PM

 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

Another consequence of a bad database design is superfluous data redundancy, which
in itself has two disadvantages: the existence of data anomalies and the use of an
unnecessary amount of disk space.

Normalization of data is a process during which the existing tables of a database
are tested to find certain dependencies between the columns of a table. If such
dependencies exist, the table is restructured into multiple (usually two) tables, which
eliminates any column dependencies. If one of these generated tables still contains data
dependencies, the process of normalization must be repeated until all dependencies are
resolved.

The process of eliminating data redundancy in a table is based upon the theory of
functional dependencies. A functional dependency means that by using the known value
of one column, the corresponding value of another column can always be uniquely
determined. (The same is true for column groups.) The functional dependencies
between columns A and B is denoted by A ⇒ B, specifying that a value of column A
can always be used to determine the corresponding value of column B. (“B is functionally
dependent on A.”)

Example 1.1 shows the functional dependency between two attributes of the table
employee in the sample database.

 ExAmPLE 1.1

emp_no ⇒ emp_lname

By having a unique value for the employee number, the corresponding last name of
the employee (and all other corresponding attributes) can be determined. This kind of
functional dependency, where a column is dependent upon the primary key of a table, is
called trivial functional dependency.

Another kind of functional dependency is called multivalued dependency. In contrast
to the functional dependency just described, the multivalued dependency is specified
for multivalued attributes. This means that by using the known value of one attribute
(column), the corresponding set of values of another multivalued attribute can be
uniquely determined. The multivalued dependency is denoted by ⇒ ⇒.

Example 1.2 shows the multivalued dependency that holds for two attributes of the
object BOOK.

 ExAmPLE 1.2

ISBN ⇒ ⇒ Authors

The ISBN of a book always determines all of its authors. Therefore, the Authors
attribute is multivalued dependent on the ISBN attribute.

Ch01.indd 12 1/24/12 4:39:21 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 1 3

Normal Forms
Normal forms are used for the process of normalization of data and therefore for the
database design. In theory, there are at least five different normal forms, of which
the first three are the most important for practical use. The third normal form for a
table can be achieved by testing the first and second normal forms at the intermediate
states, and as such, the goal of good database design can usually be fulfilled if all tables
of a database are in the third normal form.

Note
The multivalued dependency is used to test the fourth normal form of a table. Therefore, this kind of dependency
will not be used further in this book.

First Normal Form
First normal form (1NF) means that a table has no multivalued attributes or composite
attributes. (A composite attribute contains other attributes and can therefore be divided
into smaller parts.) All relational tables are by definition in 1NF, because the value of
any column in a row must be atomic—that is, single valued.

Table 1-5 demonstrates 1NF using part of the works_on table from the sample
database. The rows of the works_on table could be grouped together, using the
employee number. The resulting Table 1-6 is not in 1NF because the column project_
no contains a set of values (p1, p3).

Second Normal Form
A table is in second normal form (2NF) if it is in 1NF and there is no nonkey column
dependent on a partial primary key of that table. This means if (A,B) is a combination

emp_no project_no
10102 p1

10102 p3

................ …..............

Table 1-5 Part of the works_on Table

Ch01.indd 13 1/24/12 4:39:21 PM

 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

of two table columns building the key, then there is no column of the table depending
either on only A or only B.

For example, Table 1-7 shows the works_on1 table, which is identical to the works_
on table except for the additional column, dept_no. The primary key of this table is the
combination of columns emp_no and project_no. The column dept_no is dependent
on the partial key emp_no (and is independent of project_no), so this table is not in
2NF. (The original table, works_on, is in 2NF.)

Note
Every table with a one-column primary key is always in 2NF.

Third Normal Form
A table is in third normal form (3NF) if it is in 2NF and there are no functional
dependencies between nonkey columns. For example, the employee1 table (see Table 1-8),
which is identical to the employee table except for the additional column, dept_name,
is not in 3NF, because for every known value of the column dept_no the corresponding
value of the column dept_name can be uniquely determined. (The original table,
employee, as well as all other tables of the sample database are in 3NF.)

emp_no project_no
10102 (p1, p3)

................

Table 1-6 This “Table” Is Not in 1NF

emp_no project_no job enter_date dept_no
10102 p1 Analyst 2006.10.1 d3

10102 p3 Manager 2008.1.1 d3

25348 p2 Clerk 2007.2.15 d3

18316 p2 NULL 2007.6.1 d1

...............

Table 1-7 The works_on1 Table

Ch01.indd 14 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 1 5

Entity-Relationship model
The data in a database could easily be designed using only one table that contains all
data. The main disadvantage of such a database design is its high redundancy of data.
For example, if your database contains data concerning employees and their projects
(assuming each employee works at the same time on one or more projects, and each
project engages one or more employees), the data stored in a single table contains many
columns and rows. The main disadvantage of such a table is that data is difficult to keep
consistent because of its redundancy.

The entity-relationship (ER) model is used to design relational databases by removing
all existing redundancy in the data. The basic object of the ER model is an entity—that
is, a real-world object. Each entity has several attributes, which are properties of the
entity and therefore describe it. Based on its type, an attribute can be

Atomic (or single valued) Cc An atomic attribute is always represented by a single
value for a particular entity. For example, a person’s marital status is always an
atomic attribute. Most attributes are atomic attributes.
Multivalued Cc A multivalued attribute may have one or more values for a
particular entity. For example, Location as the attribute of an entity called
ENTERPRISE is multivalued, because each enterprise can have one or more
locations.
Composite Cc Composite attributes are not atomic because they are assembled
using some other atomic attributes. A typical example of a composite attribute is
a person’s address, which is composed of atomic attributes, such as City, Zip, and
Street.

The entity PERSON in Example 1.3 has several atomic attributes, one composite
attribute, Address, and a multivalued attribute, College_degree.

emp_no emp_fname emp_lname dept_no dept_name
25348 Matthew Smith d3 Marketing

10102 Ann Jones d3 Marketing

18316 John Barrimore d1 Research

29346 James James d2 Accounting

...............

Table 1-8 The employee1 Table

Ch01.indd 15 1/24/12 4:39:22 PM

 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 ExAmPLE 1.3

PERSON (Personal_no, F_name, L_name, Address(City,Zip,Street),{College_degree})

Each entity has one or more key attributes that are attributes (or a combination of
two or more attributes) whose values are unique for each particular entity. In Example 1.3,
the attribute Personal_no is the key attribute of the entity PERSON.

Besides entity and attribute, relationship is another basic concept of the ER model.
A relationship exists when an entity refers to one (or more) other entities. The number
of participating entities defines the degree of a relationship. For example, the relationship
works_on between entities EMPLOYEE and PROJECT has degree two.

Every existing relationship between two entities must be one of the following three
types: 1:1, 1:N, or M:N. (This property of a relationship is also called cardinality ratio.)
For example, the relationship between the entities DEPARTMENT and EMPLOYEE
is 1:N, because each employee belongs to exactly one department, which itself has
one or more employees. Also, the relationship between the entities PROJECT and
EMPLOYEE is M:N, because each project engages one or more employees and each
employee works at the same time on one or more projects.

A relationship can also have its own attributes. Figure 1-1 shows an example of an ER
diagram. (The ER diagram is the graphical notation used to describe the ER model.)

Figure 1-1 Example of an ER diagram

project_no project_name

works_on

Budget

dept_no dept_name Location
PROJECT

EMPLOYEE

N

M

N

1

enter_date

f_namel_nameemployee_no

works_for

DEPARTMENT
Job

Ch01.indd 16 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 1 7

Using this notation, entities are modeled using rectangular boxes, with the entity name
written inside the box. Attributes are shown in ovals, and each attribute is attached to a
particular entity (or relationship) using a straight line. Finally, relationships are modeled
using diamonds, and entities participating in the relationship are attached to it using
straight lines. The cardinality ratio of each entity is written on the corresponding line.

Syntax Conventions
This book uses the conventions shown in Table 1-9 for the syntax of the Transact-SQL
statements and for the indication of the text.

Note
In contrast to brackets and braces, which belong to syntax conventions, parentheses, (), belong to the syntax of
a statement and must always be typed!

Convention Indication
Italics New terms or items of emphasis.

UPPERCASE Transact-SQL keywords—for example, CREATE TABLE. Additional information about the keywords of
the Transact-SQL language can be found in Chapter 5.

lowercase Variables in Transact-SQL statements—for example, CREATE TABLE tablename. (The user must replace
“tablename” with the actual name of the table.)

var1 | var2 Alternative use of the items var1 and var2. (You may choose only one of the items separated by the
vertical bar.)

{ } Alternative use of more items.
Example: { expression | USER | NULL }

[] Optional item(s).
Example: [FOR LOAD]

{ } ... Item(s) that can be repeated any number of times.
Example: {, @param1 typ1} …

bold Name of database object (database itself, tables, columns) in the text.

Default The default value is always underlined.
Example: ALL | DISTINCT

Table 1-9 Syntax Conventions

Ch01.indd 17 1/24/12 4:39:22 PM

 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

Summary
All database systems provide the following features:

Variety of user interfacesCc

Physical data independenceCc

Logical data independenceCc

Query optimizationCc

Data integrityCc

Concurrency controlCc

Backup and recoveryCc

Database security Cc

The next chapter shows you how to install SQL Server 2012.

Exercises
 E.1.1

What does “data independence” mean and which two forms of data independence exist?

 E.1.2

Which is the main concept of the relational model?

 E.1.3

What does the employee table represent in the real world? And what does the row in
this table with the data for Ann Jones represent?

 E.1.4

What does the works_on table represent in the real world (and in relation to the other
tables of the sample database)?

 E.1.5

Let book be a table with two columns: isbn and title. Assuming that isbn is unique
and there are no identical titles, answer the following questions:

Ch01.indd 18 1/24/12 4:39:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 1

 C h a p t e r 1 : R e l a t i o n a l D a t a b a s e S y s t e m s : A n I n t r o d u c t i o n 1 9

Is a. title a key of the table?
Does b. isbn functionally depend on title?
Is the c. book table in 3NF?

 E.1.6

Let order be a table with the following columns: order_no, customer_no, discount.
If the column customer_no is functionally dependent on order_no and the column
discount is functionally dependent on customer_no, answer the following questions
and explain in detail your answers:

Is a. order_no a key of the table?
Is b. customer_no a key of the table?

 E.1.7

Let company be a table with the following columns: company_no, location. Each
company has one or more locations. In which normal form is the company table?

 E.1.8

Let supplier be a table with the following columns: supplier_no, article, city. The key
of the table is the combination of the first two columns. Each supplier delivers several
articles, and each article is delivered by several suppliers. There is only one supplier in
each city. Answer the following questions:

In which normal form is the a. supplier table?
How can you resolve the existing functional dependencies?b.

 E.1.9

Let R(A, B, C) be a relation with the functional dependency B ⇒ C. (The underlined
attributes A and B build the composite key, and the attribute C is functionally
dependent on B.) In which normal form is the relation R?

 E.1.10

Let R(A, B, C) be a relation with the functional dependency C ⇒ B. (The underlined
attributes A and B build the composite key, and the attribute B is functionally
dependent on C.) In which normal form is the relation R?

Ch01.indd 19 1/24/12 4:39:22 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Chapter 2

In This Chapter

c SQL Server Editions
c Planning Phase
c Installing SQL Server

Planning the
Installation and
Installing SQL Server

Ch02.indd 21 1/24/12 4:39:31 PM

 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

This chapter begins by introducing the various SQL Server editions, so that you can
identify which edition is appropriate for your environment. Before you proceed to
the actual installation of this database system, you need to develop an installation

plan. Therefore, the second part of this chapter is dedicated to the planning phase. It first
provides some general recommendations, and then leads you through the planning steps
provided by SQL Server Installation Center, a component of the SQL Server software.
The final part of the chapter describes the actual installation of the SQL Server database
server. Again, the same component, SQL Server Installation Center, is used to install the
system on your computer.

Note
This chapter covers the basic installation of SQL Server.

SQL Server Editions
As you plan your installation, you need to know which SQL Server editions exist so
that you can choose the most appropriate edition. Microsoft supports the following
editions of SQL Server 2012:

Express Edition Cc The lightweight version of SQL Server, designed for use by
application developers. For this reason, the product includes the basic Express
Manager (XM) program and supports Common Language Runtime (CLR)
integration and native XML. Also, you can download SQL Server Management
Express for SQL Server Express to easily manage a database. SQL Server Express
is available as a free download at http://msdn.microsoft.com/express.
Workgroup Edition Cc Designed for small businesses and for use at the
department level. This edition provides relational database support without the
business intelligence (BI) and high-availability capabilities. It supports up to two
processors and a maximum of 2GB of RAM.
Standard Edition Cc Designed for small and medium-sized businesses. It supports
up to four processors as well as 2TB of RAM and includes the full range of BI
functionality, including Analysis Services, Reporting Services, and Integration
Services. This edition does not include many enterprise-based features from
Enterprise Edition (such as failover clustering, for instance).
Web Edition Cc Designed for web-hosting providers. In addition to the Database
Engine, this edition includes Reporting Services. It provides support for up to four
processors and 2TB of RAM.

Ch02.indd 22 1/24/12 4:39:31 PM

http://msdn.microsoft.com/express

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 2 3

Enterprise Edition Cc The special form of the SQL Server system that is intended
for time-critical applications with a huge number of users. In contrast to Standard
Edition, this edition contains additional features that can be useful for very high-
end installations with symmetrical multiprocessors or clusters. The most important
additional features of Enterprise Edition are data partitioning, database snapshots,
and online database maintenance.
Developer Edition Cc Allows developers to build and test any type of application
with SQL Server on 32- and 64-bit platforms. It includes all the functionality
of Enterprise Edition, but is licensed only for use in development, testing, and
demonstration. Each license of Developer Edition entitles one developer to use
the software on as many systems as necessary; additional developers can use the
software by purchasing additional licenses. For rapid deployment into production,
the database system of Developer Edition can easily be upgraded to Enterprise
Edition.
Datacenter Edition Cc A new edition as of SQL Server 2008 R2 that is designed
to support the highest level of scalability. It doesn’t have any memory limitations,
and you can create up to 25 instances. It also supports a maximum of 256 logical
processors.
Parallel Data Warehouse EditionCc Dedicated to data warehousing and supports
data warehouse databases from 10TB to 1PB (petabyte). To manage such huge
databases, it uses MPP (massively parallel processing) architecture, introduced by
Microsoft with its High Performance Computing (HPC) Windows operating
systems.

Planning Phase
The description of the planning phase is divided into two parts. The first part gives
some general recommendations, while the second part discusses how to use SQL Server
Installation Center to plan the system installation.

General Recommendations
During the installation process, you have to make many choices. As a general guideline,
it is best to familiarize yourself with their effects before installing your system. At the
beginning, you should answer the following questions:

Which SQL Server components should be installed?Cc

Where will the root directory be stored?Cc

Ch02.indd 23 1/24/12 4:39:31 PM

 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Should multiple instances of the Database Engine be used?Cc

Which authentication mode for the Database Engine should be used?Cc

The following subsections discuss these topics.

Which SQL Server Components Should Be Installed?
Before you start the installation process, you should know exactly which SQL Server
components you want to install. Figure 2-1 shows a partial list of all the components.
You will see this Feature Selection page again when you install SQL Server later in
this chapter, but knowing ahead of time which components you want to select means
you don’t have to interrupt the installation process to do research. There are two groups
of components on the Feature Selection page: main features and shared features.

Figure 2-1 A preview of the Feature Selection page

Ch02.indd 24 1/24/12 4:39:31 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 2 5

This section introduces only the main components. For a description of the shared
components, refer to SQL Server Books Online.

The first item in the list of the main features is Database Engine Services. The
Database Engine is the relational database system of SQL Server. Parts II and III
of this book describe different aspects of the Database Engine. The first of the two
features under Database Engine Services, SQL Server Replication, allows you to
replicate data from one system to another. In other words, using data replication, you
can achieve a distributed data environment. Detailed information on data replication
can be found in Chapter 18.

The second feature under Database Engine Services is Full-Text Search. The
Database Engine allows you to store structured data in columns of relational tables.
By contrast, the unstructured data is primarily stored as text in file systems. For this
reason, you will need different methods to retrieve information from unstructured data.
Full-Text Search is a component of SQL Server that allows you to store and query
unstructured data. Chapter 28 is dedicated to Full-Text Search.

Besides the Database Engine, SQL Server comprises Analysis Services and
Reporting Services, which are components related to business intelligence (BI).
Analysis Services is a group of services that is used to manage and query data that is
stored in a data warehouse. (A data warehouse is a database that includes all corporate
data that can be uniformly accessed by users.) Part IV of this book describes SQL
Server and business intelligence in general, while Chapter 22 discusses Analysis
Services in particular.

Reporting Services allows you to create and manage reports. This component of
SQL Server is described in detail in Chapter 24.

Where Will the Root Directory Be Stored?
The root directory is where the Setup program stores all program files and those files
that do not change as you use the SQL Server system. By default, the installation
process stores all program files in the subdirectory Microsoft SQL Server, although
you can change this setting during the installation process. Using the default name is
recommended because it uniquely determines the version of the system.

Should Multiple Instances of the Database Engine Be Used?
With the Database Engine, you can install and use several different instances. An
instance is a database server that does not share its system and user databases with other
instances (servers) running on the same computer.

Ch02.indd 25 1/24/12 4:39:31 PM

 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

There are two instance types:

DefaultCc

NamedCc

The default instance operates the same way as the database servers in earlier versions
of SQL Server, where only one database server without instance support existed. The
computer name on which the instance is running specifies solely the name of the default
instance. Any instance of the database server other than the default instance is called
a named instance. To identify a named instance, you have to specify its name as well as
the name of the computer on which the instance is running: for example, NTB11901\
INSTANCE1. On one computer, there can be several named instances (in addition to
the default instance). Additionally, you can configure named instances on a computer
that does not have the default instance.

Although all instances running on a computer do not share most system resources
(SQL Server and SQL Server Agent services, system and user databases, and registry
keys), there are some components that are shared among them:

SQL Server program groupCc

Analysis Services serverCc

Development librariesCc

The existence of only one SQL Server program group on a computer also means
that only one copy of each utility exists, which is represented by an icon in the program
group. (This includes SQL Server Books Online, too.) Therefore, each utility works
with all instances configured on a computer.

You should consider using multiple instances if both of the following are true:

You have different types of databases on your computer.Cc

Your computer is powerful enough to manage multiple instances.Cc

The main purpose of multiple instances is to divide databases that exist in your
organization into different groups. For instance, if the system manages databases that
are used by different users (production databases, test databases, and sample databases),
you should divide them to run under different instances. That way you can encapsulate
your production databases from databases that are used by casual or inexperienced users.
A single-processor machine will not be the right hardware platform to run multiple

Ch02.indd 26 1/24/12 4:39:31 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 2 7

instances of the Database Engine, because of limited resources. For this reason, you
should consider the use of multiple instances only with multiprocessor computers.

Which Authentication Mode for
the Database Engine Should Be Used?
In relation to the Database Engine, there are two different authentication modes:

Windows mode Cc Specifies security exclusively at the operating system level—
that is, it specifies the way in which users connect to the Windows operating
system using their user accounts and group memberships.
Mixed mode Cc Allows users to connect to the Database Engine using Windows
authentication or SQL Server authentication. This means that some user accounts
can be set up to use the Windows security subsystem, while others can use the
SQL Server security subsystem in addition to the Windows security subsystem.

Microsoft recommends the use of Windows mode. (For details, see Chapter 12.)

Planning the Installation
SQL Server contains a tool called Installation Center (see Figure 2-2), which appears
when you start the installation of the software. This tool supports you during the
planning, installation, and maintenance phases of your database system.

To begin the planning phase, insert the SQL Server DVD into your DVD drive.
(This software product can also be distributed as an ISO image file.) The Install Shield
wizard opens and prompts you to specify the location in which to save the extracted
files. When you click Next, the Install Shield wizard extracts all necessary files from the
DVD and completes its task.

The first phase of Installation Center leads you through the process of planning
the installation. As shown in Figure 2-2, when you click Planning, the following tasks,
among others, can be executed:

Hardware and Software RequirementsCc

Security DocumentationCc

Online Release NotesCc

Setup DocumentationCc

System Configuration CheckerCc

Install Upgrade AdvisorCc

Ch02.indd 27 1/24/12 4:39:31 PM

 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Upgrade Advisor analyzes all components of previous releases that are installed and
identifies issues to fix before you upgrade to SQL Server 2012. The supported previous
releases are SQL Server 2005 and 2008 (together with Release 2).

The following subsections describe the first five tasks.

Hardware and Software Requirements
The fact that the SQL Server system runs only on Microsoft operating systems
simplifies decisions concerning hardware and software requirements. The system
administrator has to be concerned only about the hardware and network requirements.

Hardware Requirements Windows operating systems are supported on the Intel
and AMD (Opteron and Athlon 64) hardware platforms. Processor speed should be
1.4 GHz at a minimum.

Figure 2-2 SQL Server Installation Center

Ch02.indd 28 1/24/12 4:39:31 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 2 9

Note
Generally, two SQL Server edition groups exist: 32-bit and 64-bit. The requirements for these two groups differ.
Therefore, the values listed in this section are general values.

Officially, the minimum requirement for main memory is 512MB. However, almost
everybody recognizes that such a minimal configuration will not perform very well, and
as a general guideline, main memory of your computer should be at least 2GB or more.

Hard disk space requirements depend on your system configuration and the
applications you choose to install. The more SQL Server components you want to
install, the more disk space you will need.

Network Requirements To connect to any SQL Server components, you must
have a network protocol enabled. The SQL Server system can serve requests on several
protocols at once. Clients connect to the system using a single protocol. If the client
program does not know which protocol the system is listening on, configure the client
to sequentially attempt multiple protocols.

As a client/server system, SQL Server allows clients to use different network protocols
to communicate with the server, and vice versa. During connectivity installation, the
system administrator must decide which network protocols (as libraries) should be
available to give clients access to the system. The following network protocols can be
selected on the server side:

Shared memoryCc Used by connections to the system from a client running on
the same computer. Shared memory has no configurable properties, and this
protocol is always tried first.
Named PipesCc An alternative network protocol on the Windows platforms.
After the installation process, you can drop the support for Named Pipes and use
another network protocol for communication between the server and clients.
Transmission Control Protocol/Internet Protocol (TCP/IP)Cc Allows the
system to communicate using standard Windows Sockets as the Internet protocol
communication (IPC) method across the TCP/IP protocol.
Virtual Interface Adapter (VIA) protocolCc Works with VIA hardware. For
information about how to use VIA, contact your hardware vendor. (The VIA
protocol is deprecated and will be removed in a future version of SQL Server.)

Note
Shared memory is not supported on failover clusters (see Chapter 16).

Ch02.indd 29 1/24/12 4:39:31 PM

 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Security Documentation
When you click Security Documentation, the system takes you to the Microsoft page
that discusses general considerations concerning security. One of the most important
security measures is to isolate services from each other. To isolate services, run separate
SQL Server services under separate Windows accounts. (Chapter 12 discusses Windows
accounts and other security aspects.) Information about all other security aspects can be
found in Books Online.

Online Release Notes
There are two main sources to get information concerning all the features of the SQL
Server system: Books Online and Online Release Notes. Books Online is the online
documentation that is delivered with all SQL Server components, whereas Online
Release Notes contain only the newest information, which is not necessarily provided
in the Books Online documentation. (The reason is that bugs and specific behavior
issues affecting the system sometimes are detected after Books Online is written
and published.) It is strongly recommended that you read the Online Release Notes
carefully to get a picture of features that were modified shortly before the delivery of
the final release.

Setup Documentation
The Setup documentation includes an overview of SQL Server installation; all help
topics that are relevant during installation; and links to information about planning,
installing, and configuring SQL Server. During the installation process, if you encounter
an issue that isn’t addressed in this chapter, look for coverage of the issue in the help
topics.

System Configuration Checker
One of the most important planning tasks is to check whether all conditions are
fulfilled for a successful installation of the database system. When you click System
Configuration Checker, the component called Setup Support Rules is automatically
started. (The same tool is launched at the beginning of the installation phase, described
next.) Setup Support Rules identifies problems that might occur when you install
SQL Server support files. After finishing this task, the system shows you how many
operations were checked and how many of them failed. All failures have to be corrected
before the installation can continue.

Ch02.indd 30 1/24/12 4:39:31 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 3 1

Installing SQL Server
If you have done an installation of a complex software product before, you probably
recognize that feeling of uncertainty that accompanies starting the installation for the
first time. This feeling comes from the complexity of the product to be installed and the
diversity of questions to be answered during the installation process. Because you may
not completely understand the product, you (or the person who installs the software)
may be less than confident that you can give accurate answers for all the questions
that the Setup program asks to complete its tasks. This section will help you to find
your way through the installation by giving you answers to most of the questions that
you are likely to encounter.

As its name suggests, besides planning, Installation Center supports the installation
of the software, too. Installation Center shows you several options related to the
installation of the database system and its components. After clicking Installation,
choose New SQL Server Stand-Alone Installation or Add Features To An Existing
Installation, which launches a wizard to install SQL Server 2012.

The first page of the wizard, Setup Support Rules (see Figure 2-3), identifies problems
that might occur when you install SQL Server Setup support files. (Again, it is the
same tool that is launched when you click System Configuration Checker during the
planning phase.) Failures must be corrected before Setup can continue. If no problems
are reported, click Next.

On the Installation Type page, choose one of the two radio buttons:

Perform a new installation of SQL ServerCc

Add features to an existing instance of SQL ServerCc

If you select the latter option, use the drop-down list to select the instance of SQL
Server to update. After you have chosen an option, click Next.

On the next page of the wizard, Product Key, enter the 25-character key from the
product packaging. (The alternative is to specify a free edition of the software, SQL
Server Express, for instance.) Click Next to continue. On the License Terms page, click
I Accept the License Terms.

The next page, Setup Role, allows you to choose between installing only the main
components of SQL Server 2012 (Database Engine Services, Analysis Services, and
Reporting Services) and installing additional auxiliary components, such as Power Pivot
for SharePoint. Choose SQL Server Feature Installation and click Next.

Ch02.indd 31 1/24/12 4:39:31 PM

 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

On the Feature Selection page (see Figure 2-4), select the components to install by
checking the corresponding check boxes. Also, toward the bottom of the page, you can
specify the directory in which to store the shared components. After that, click Next to
continue.

Note
All the shared features in Figure 2-4 are grayed out, which means that these features are not selected. For your
own installation, you should decide which of these features should be installed and check their corresponding
check boxes.

Figure 2-3 Summary of Setup Support Rules page

Ch02.indd 32 1/24/12 4:39:31 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 3 3

Note
Components of SQL Server that are selected will be installed one after the other in the order in which they are
listed on the Feature Selection page. The installation process starts with the installation of the Database Engine,
followed by the installation of Analysis Services, and so on. Only the selected components will be installed.

On the next page, Installation Rules, the setup runs rules to determine if the installation
process will be blocked. If all checks are passed (or marked “Not applicable”), click Next to
continue.

Figure 2-4 Feature Selection page

Ch02.indd 33 1/24/12 4:39:31 PM

 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

On the Instance Configuration page (see Figure 2-5), you can choose between
the installation of a default or named instance. (A detailed discussion of these type
of instances can be found in the section “Should Multiple Instances of the Database
Engine Be Used?” earlier in this chapter.) To install the default instance, click Default
Instance. If a default instance is already installed and you select Default Instance, the
Setup program upgrades it and gives you the option to install additional components.
Therefore, you have another opportunity to install components that you skipped in the
previous installation processes.

To install a new named instance, click Named Instance and type a new name in the
given text box. In the lower part of the page, you can see the list of instances already
installed on your system. As you can see from Figure 2-5, the computer on which I
installed the instance already contains an installed instance. (MSSQLSERVER is the
name of the default instance for the Database Engine.) Click Next to continue.

Figure 2-5 Instance Configuration page

Ch02.indd 34 1/24/12 4:39:32 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 3 5

The Disk Space Requirements page shows whether the space available on your disk
is sufficient for the installation of the database system. If so, click Next to continue.

The next page, Server Configuration (see Figure 2-6), allows you to specify
usernames and corresponding passwords for services of all components that will be
installed during the installation process. (You can apply one account for all services, but
this is not recommended, for security reasons.)

To choose the collation of your instance, click the Collation tab of the same page.
(Collation defines the sorting behavior for your instance.) You can either choose the
default collations for the components that will be installed, or click Customize to select
some other collations that are supported by the system. Click Next to continue.

On the Database Engine Configuration page (see Figure 2-7), you choose the
authentication mode for your Database Engine system. As you already know, the

Figure 2-6 Server Configuration (Service Accounts tab)

Ch02.indd 35 1/24/12 4:39:32 PM

 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Database Engine supports Windows authentication mode and Mixed mode. If you
select the Windows Authentication Mode radio button, the Setup process creates the
sa (system administrator) login, which is disabled by default. (For the discussion of
logins, see Chapter 12.) If you choose the Mixed Mode radio button, you must enter
and confirm the system administrator login. Click Add Current User if you want to
add one or more users that will have unrestricted access to the instance of the Database
Engine.

Note
You can change the information concerning account provisioning after installation. In that case, you have to
restart the Database Engine service called MSSQLSERVER.

Figure 2-7 Database Engine Configuration (Account Provisioning tab)

Ch02.indd 36 1/24/12 4:39:32 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 3 7

The other tab of the Database Engine Configuration page, Data Directories (see
Figure 2-8), allows you to specify the locations for all the directories in which Database
Engine–related files are stored. After that, click Next to continue.

What appears for the next step depends on whether or not you chose to install
Analysis Services. (A Configuration page appears for each SQL Server component that
you chose to install.) If you did choose to install it, a page similar to Figure 2-7 will
appear for Analysis Services. Specify users that will have access to Analysis Services and
click Next to continue.

Similarly, what appears for the next step depends on whether or not you decided to
install Reporting Services. If you indicated that Reporting Services should be installed,
the Reporting Services Configuration page (see Figure 2-9) appears. On this page, you

Figure 2-8 Database Engine Configuration (Data Directories tab)

Ch02.indd 37 1/24/12 4:39:32 PM

 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

can decide just to install the report server (without its configuration) or to install and
configure it. The third alternative is to integrate the report server with Microsoft Office
SharePoint Server (a server program that can be used to facilitate collaboration, provide
content management features, and implement business processes). After that, click Next
to continue.

On the Error Reporting page, specify the information, if any, that you would like to
send to Microsoft automatically. Clear the check box if you do not want to take part in
this automatic reporting. Click Next.

Figure 2-9 Reporting Services Configuration page

Ch02.indd 38 1/24/12 4:39:32 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

 C h a p t e r 2 : P l a n n i n g t h e I n s t a l l a t i o n a n d I n s t a l l i n g S Q L S e r v e r 3 9

The next page, Installation Configuration Rules, is similar to the earlier page called
Installation Rules. At the end of this step, the summary of all configuration rules will be
displayed.

The last page, before the installation process actually starts, is the Ready to Install
page. This page allows you to review the summary of all SQL Server components that
will be installed. To start the installation process, click Install. Setup shows you the
progress of your installation process. If the installation process succeeds, click Next.

At the end, the Complete page (see Figure 2-10) appears, with the location of the file
in which the summary log is stored. Click Close to complete the installation process.
After that, you can use all components that you installed during the installation process.

Figure 2-10 Complete page

Ch02.indd 39 1/24/12 4:39:32 PM

 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 2

Summary
The SQL Server Installation Center component can be used both to plan the installation
and to accomplish it. The most important step in the planning phase is the invocation
of System Configuration Checker. This component identifies problems that might
occur when you install SQL Server files.

The installation of SQL Server is straightforward. The most important decision
that you have to make during this phase is which components to install, a decision you
prepared for during the planning phase.

The next chapter describes SQL Server Management Studio. This component of
SQL Server is used by database administrators as well as users to interact with the
system.

Ch02.indd 40 1/24/12 4:39:32 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

In This Chapter

c Introduction to SQL Server
Management Studio

c Using SQL Server
Management Studio with
the Database Engine

c Authoring Activities Using
SQL Server Management
Studio

SQL Server
Management Studio

Chapter 3

Ch03.indd 41 1/24/12 4:39:41 PM

 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

This chapter first introduces SQL Server Management Studio, including how to
connect it to a server, its Registered Servers and Object Explorer components,
and its various user interface panes. After that, the chapter explains in detail

the SQL Server Management Studio functions related to the Database Engine,
including administering and managing databases, which you need to understand to
be able to create and execute any Transact-SQL statements. Finally, the chapter covers
using Query Editor, Solution Explorer, and the debugging tool to perform authoring
activities in SQL Server Management Studio.

Introduction to SQL Server Management Studio
SQL Server 2012 provides various tools that are used for different purposes, such as
system installation, configuration, auditing, and performance tuning. (All these tools
will be discussed in different chapters of this book.) The administrator’s primary
tool for interacting with the system is SQL Server Management Studio. Both
administrators and end users can use this tool to administer multiple servers, develop
databases, and replicate data, among other things.

Note
This chapter is dedicated to the activities of the end user. Therefore, only the functionality of SQL Server
Management Studio with respect to the creation of database objects using the Database Engine is described
in detail. All administrative tasks and all tasks related to Analysis Services and other components that this tool
supports are discussed beginning in Part III.

To open SQL Server Management Studio, choose Start | All Programs | Microsoft
SQL Server 2012 | SQL Server Management Studio.

SQL Server Management Studio comprises several different components that are
used for the authoring, administration, and management of the overall system. The
following are the main components used for these tasks:

Registered ServersCc

Object ExplorerCc

Query EditorCc

Solution ExplorerCc

The first two components in the list are discussed in this section. Query Editor,
and Solution Explorer are explained later in this chapter, in the section “Authoring
Activities Using SQL Server Management Studio.”

Ch03.indd 42 1/24/12 4:39:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 4 3

To get to the main SQL Server Management Studio interface, you first must
connect to a server, as described next.

Connecting to a Server
When you open SQL Server Management Studio, it displays the Connect to Server
dialog box (see Figure 3-1), which allows you to specify the necessary parameters to
connect to a server:

Server Type Cc For purposes of this chapter, choose Database Engine.

Note
With SQL Server Management Studio, you can manage objects of the Database Engine and Analysis Server,
among others. This chapter demonstrates the use of SQL Server Management Studio only with the Database
Engine.

Server Name Cc Select or type the name of the server that you want to use.
(Generally, you can connect SQL Server Management Studio to any of the
installed products on a particular server.)

Figure 3-1 The Connect to Server dialog box

Ch03.indd 43 1/24/12 4:39:41 PM

 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Authentication Cc Choose between the two authentication types:
Windows Authentication Cc Connect to SQL Server using your Windows
account. This option is much simpler and is recommended by Microsoft.
SQL Server Authentication Cc The Database Engine uses its own authentication.

Note
For more information concerning SQL Server Authentication, see Chapter 12.

When you click Connect, the Database Engine connects to the specified server.
After connecting to the database server, the default SQL Server Management
Studio window appears. The default appearance is similar to Visual Studio, so users
can leverage their experience of developing in Visual Studio to use SQL Server
Management Studio more easily. Figure 3-2 shows the SQL Server Management
Window with several panes.

Note
SQL Server Management Studio gives you a unique interface to manage servers and create queries across all
SQL Server components. This means that SQL Server Management Studio offers one interface for the Database
Engine, Analysis Services, Integration Services, and Reporting Services.

Registered Servers
Registered Servers is represented as a pane that allows you to maintain connections to
already used servers (see Figure 3-2). (If the Registered Servers pane isn’t visible, select
its name from the View menu.) You can use these connections to check a server’s status
or to manage its objects. Each user has a separate list of registered servers, which is
stored locally.

You can add new servers to the list of all servers, or remove one or more existing
servers from the list. You also can group existing servers into server groups. Each group
should contain the servers that belong together logically. You can also group servers
by server type, such as Database Engine, Analysis Services, Reporting Services, and
Integration Services.

Ch03.indd 44 1/24/12 4:39:41 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 4 5

Object Explorer
The Object Explorer pane contains a tree view of all the database objects in a server.
(If the Object Explorer pane isn’t visible, select View | Object Explorer.) The tree view
shows you a hierarchy of the objects on a server. Hence, if you expand a tree, the logical
structure of a corresponding server will be shown.

Object Explorer allows you to connect to multiple servers in the same pane. The server
can be any of the existing servers for Database Engine, Analysis Services, Reporting
Services, or Integration Services. This feature is user-friendly, because it allows you to
manage all servers of the same or different types from one place.

Note
Object Explorer has several other features, explained later in this chapter.

Figure 3-2 SQL Server Management Studio

Ch03.indd 45 1/24/12 4:39:42 PM

 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Organizing and Navigating SQL Server
Management Studio’s Panes
You can dock or hide each of the panes of SQL Server Management Studio. By right-
clicking the title bar at the top of the corresponding pane, you can choose between the
following presentation possibilities:

Floating Cc The pane becomes a separate floating pane on top of the rest of SQL
Server Management Studio panes. Such a pane can be moved anywhere around
the screen.
Dockable Cc Enables you to move and dock the pane in different positions. To
move the pane to a different docking position, click and drag its title bar and drop
it in the new position.
Tabbed Document Cc You can create a tabbed grouping using the Designer window.
When this is done, the pane’s state changes from dockable to tabbed document.
Hide Cc Closes the pane. (Alternatively, you can click the × in the upper-right
corner of the pane.) To display a closed pane, select its name from the View menu.
Auto Hide Cc Minimizes the pane and stores it on the left side of the screen. To
reopen (maximize) such a pane, move your mouse over the tabs on the left side of
the screen and click the push pin to pin the pane in the open position.

Note
The difference between the Hide and Auto Hide options is that the former option removes the pane from view in
SQL Server Management Studio, while the latter collapses the pane to the side panel.

To restore the default configuration, choose Window | Reset Window Layout. The
Object Explorer pane appears on the left, while the Object Explorer Details tab appears
on the right side of SQL Server Management Studio. (The Object Explorer Details tab
displays information about the currently selected node of Object Explorer.)

Note
You will find that often there are several ways of accomplishing the same task within SQL Server Management
Studio. This chapter will indicate more than one way to do things, whereas only a single method will be given in
subsequent chapters. Different people prefer different methods (some like to double-click, some like to click the
+/– signs, some like to right-click, others like to use the pull-down menus, and others like to use the keyboard
shortcuts as much as possible). Experiment with the different ways to navigate, and use the methods that feel
most natural to you.

Ch03.indd 46 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 4 7

Within the Object Explorer and Registered Servers panes, a subobject appears only
if you click the plus (+) sign of its direct predecessor in the tree hierarchy. To see the
properties of an object, right-click the object and choose Properties. A minus (–) sign to
the left of an object’s name indicates that the object is currently expanded. To compress
all subobjects of an object, click its minus sign. (Another possibility would be to double-
click the folder, or press the left arrow key while the folder is selected.)

Using SQL Server Management Studio
with the Database Engine
SQL Server Management Studio has two main purposes:

Administration of the database serversCc

Management of database objectsCc

The following sections describe these functions of SQL Server Management Studio.

Administering Database Servers
The administrative tasks that you can perform by using SQL Server Management
Studio are, among others, the following:

Register serversCc

Connect to a serverCc

Create new server groupsCc

Manage multiple serversCc

Start and stop serversCc

The following subsections describe these administrative tasks.

Registering Servers
SQL Server Management Studio separates the activities of registering servers and
exploring databases and their objects. (Both of these activities can be done using
Object Explorer.) Every server (local or remote) must be registered before you can use
its databases and objects. A server can be registered during the first execution of SQL
Server Management Studio or later. To register a database server, right-click the folder
of your database server in Object Explorer and choose Register. (If the Object Explorer
pane doesn’t appear on your screen, select View | Object Explorer.) The New Server

Ch03.indd 47 1/24/12 4:39:42 PM

 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Registration dialog box appears, as shown in Figure 3-3. Choose the name of the server
that you want to register and the authentication mode (Windows Authentication or SQL
Server Authentication). Click Save.

Connecting to a Server
SQL Server Management Studio also separates the tasks of registering a server and
connecting to a server. This means that registering a server does not automatically
connect you to the server. To connect to a server from the Object Explorer window,
right-click the server name and choose Connect.

Creating a New Server Group
To create a new server group in the Registered Servers pane, right-click Local Server
Groups and choose New Server Group. In the New Server Group properties dialog
box, enter a (unique) group name and optionally describe the new group.

Figure 3-3 The New Server Registration dialog box

Ch03.indd 48 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 4 9

Managing Multiple Servers
SQL Server Management Studio allows you to administer multiple database servers
(called instances) on one computer by using Object Explorer. Each instance of the
Database Engine has its own set of database objects (system and user databases) that
are not shared between different instances.

To manage a server and its configuration, right-click the server name in Object
Explorer and choose Properties. The Server Properties dialog box that opens contains
several different pages, such as General, Security, and Permissions.

The General page (see Figure 3-4) shows general properties of the server. The
Security page contains the information concerning the authentication mode of the

Figure 3-4 The Server Properties dialog box: the General page

Ch03.indd 49 1/24/12 4:39:42 PM

 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

server and the login auditing mode. The Permissions page shows all logins and roles
that can access the server. The lower part of the page shows all permissions that can be
granted to the logins and roles.

You can replace the existing server name with a new name. Right-click the server in
the Object Explorer window and choose Register. Now you can rename the server and
modify the existing server description in the Registered Server frame.

Note
Do not rename servers, because changing names can affect other servers that reference them.

Starting and Stopping Servers
A Database Engine server starts automatically by default each time the Windows
operating system starts. To start the server using SQL Server Management Studio,
right-click the selected server in the Object Explorer pane and click Start in the context
menu. The menu also contains Stop and Pause functions that you can use to stop or
pause the activated server, respectively.

Managing Databases Using Object Explorer
The following are the management tasks that you can perform by using SQL Server
Management Studio:

Create databases without using Transact-SQLCc

Modify databases without using Transact-SQLCc

Manage tables without using Transact-SQL Cc

Generate and execute SQL statements (will be described later, in the section Cc

“Query Editor”)

Creating Databases Without Using Transact-SQL
You can create a new database by using Object Explorer or the Transact-SQL language.
(Database creation using Transact-SQL is discussed in Chapter 5.) As the name
suggests, you also use Object Explorer to explore the objects within a server. From the
Object Explorer pane, you can inspect all the objects within a server and manage your
server and databases. The existing tree contains, among other folders, the Databases
folder. This folder has several subfolders, including one for the system databases and
one for each new database that is created by a user. (System and user databases are
discussed in detail in Chapter 15.)

Ch03.indd 50 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 5 1

To create a database using Object Explorer, right-click Databases and select New
Database. In the New Database dialog box (see Figure 3-5), type the name of the new
database in the Database Name field and then click OK. Each database has several
different properties, such as file type, initial size, and so on. Database properties can be
selected from the left pane of the New Database dialog box. There are several different
pages (property groups):

GeneralCc

FilesCc

Figure 3-5 The New Database dialog box

Ch03.indd 51 1/24/12 4:39:42 PM

 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

FilegroupsCc

OptionsCc

Change TrackingCc

PermissionsCc

Extended PropertiesCc

MirroringCc

Transaction Log ShippingCc

Note
For an existing database, the system displays all property groups in the preceding list. For a new database, as
shown in Figure 3-5, there are only three groups: General, Options, and Filegroups.

The General page of the Database Properties dialog box (see Figure 3-6) displays,
among other things, the database name, the owner of the database and its collation.
The properties of the data files that belong to a particular database are listed in the
Files page and comprise the name and initial size of the file, where the database will be
stored, and the type of the file (PRIMARY, for instance). A database can be stored in
multiple files.

Note
SQL Server has dynamic disk space management. This means that databases can be set up to automatically
expand and shrink as needed. If you want to change the Autogrowth property in the Files page, click the
ellipses (…) in the Autogrowth column and make your changes in the Change Autogrowth dialog box.
The Enable Autogrowth check box should be checked to allow the database to autogrow. Each time there is
insufficient space within the file when data is added to the database, the server will request the additional space
from the operating system. The amount (in megabytes) of the additional space is set by the number in the File
Growth frame of the same dialog box. You can also decide whether the file can grow without any restrictions
(the default value) or not. If you restrict the file growth, you have to specify the maximum file size.

The Filegroups page of the Database Properties dialog box displays the name(s) of
the filegroup(s) to which the database file belongs, the art of the filegroup (default or
nondefault), and the allowed operation on the filegroup (read/write or read-only).

The Options page of the Database Properties dialog box enables you to display
and modify all database-level options. There are several groups of options: Automatic,
Containment, Cursor, Miscellaneous, Recovery, Service Broker, and State. For instance,
the following four options exist for State:

Ch03.indd 52 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 5 3

Database Read-Only Cc Allows read-only access to the database. This prohibits
users from modifying any data. (The default value is False.)
Database State Cc Describes the state of the database. (The default value is
Normal.)
Restrict Access Cc Restricts the use of the database to one user at a time. (The
default value is MULTI_USER.)
Encryption Enabled Cc Controls the database encryption state. (The default value
is False.)

Figure 3-6 Database Properties dialog box: General page

Ch03.indd 53 1/24/12 4:39:42 PM

 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

The Extended Properties page displays additional properties of the current database.
Existing properties can be deleted and new properties can be added from this dialog box.

If you choose the Permissions page, the system opens the corresponding dialog box
and displays all users and roles along with their permissions. (For the discussion of
permissions, see Chapter 12.)

The rest of the pages (Change Tracking, Mirroring, and Transaction Log Shipping)
describe the features which are related to data availability and are therefore explained in
detail in Chapter 16.

Modifying Databases Without Using Transact-SQL
Object Explorer can also be used to modify an existing database. Using this component,
you can modify files and filegroups that belong to the database. To add new data files,
right-click the database name and choose Properties. In the Database Properties dialog
box, select Files, click Add, and type the name of the new file. You can also add a
(secondary) filegroup for the database by selecting Filegroups and clicking Add.

Note
Only the system administrator or the database owner can modify the database properties just mentioned.

To delete a database using Object Explorer, right-click the database name and
choose Delete.

Managing Tables Without Using Transact-SQL
After you create a database, your next task is to create all tables belonging to it. As with
database creation, you can create tables by using either Object Explorer or Transact-
SQL. Again, only Object Explorer is discussed here. (The creation of a table and
all other database objects using the Transact-SQL language is discussed in detail in
Chapter 5.)

To create a table using Object Explorer, expand the Databases folder, expand the
database, right-click the Tables subfolder, and then click New Table.

To demonstrate the creation of a table using Object Explorer, the department table
of the sample database will be used as an example. Enter the names of all columns
with their properties. Enter the column names, their data types, and the NULL
property of each column in the two-dimensional matrix, as shown in the top-right
pane of Figure 3-7.

Ch03.indd 54 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 5 5

All data types supported by the system can be displayed (and one of them selected)
by clicking the arrow sign in the Data Type column (the arrow appears after the cell has
been selected). Subsequently, you can type entries in the Length, Precision, and Scale
rows for the chosen data type on the Column Properties tab (see the bottom-right
pane of Figure 3-7). Some data types, such as CHAR, require a value for the Length
row, and some, such as DECIMAL, require a value in the Precision and Scale rows.
On the other hand, data types such as INTEGER do not need any of these entries to
be specified. (The valid entries for a specified data type are highlighted in the list of all
possible column properties.)

The check box in the Allow Nulls column must be checked if you want a table
column to permit NULL values to be inserted into that column. Similarly, if there is a
default value, it should be entered in the Default Value or Binding row of the Column
Properties tab. (A default value is a value that will be inserted in a table column when
there is no explicit value entered for it.)

Figure 3-7 Creating the department table using Object Explorer

Ch03.indd 55 1/24/12 4:39:42 PM

 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

The column dept_no is the primary key of the department table. (For the discussion
of primary keys of the sample database, see Chapter 1.) To specify a column as the
primary key of a table, you must right-click the column and choose Set Primary Key.
Finally, click the × in the right pane with the information concerning the new table.
After that, the system will display the Choose Name dialog box, where you can type the
table name.

To view the properties of an existing table, double-click the folder of the database
to which the table belongs, double-click Tables, and then right-click the name of the
table and choose Properties. Figure 3-8 shows the Table Properties dialog box for the
employee table.

Figure 3-8 Table Properties dialog box for the employee table

Ch03.indd 56 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 5 7

To rename a table, right-click the name of the table in the Tables folder and choose
Rename. To remove a table, right-click the name of the table in the Tables folder in the
database to which the table belongs and select Delete.

Note
You should now create the other three tables of the sample database.

After you have created all four tables of the sample database (employee,
department, project, and works_on), you can use another feature of SQL Server
Management Studio to display the corresponding entity-relationship (ER) diagram of
the sample database. (The process of converting the existing tables of a database into
the corresponding ER diagram is called reverse engineering.)

To see the ER diagram of the sample database, right-click the Database Diagrams
subfolder of the sample database and select New Database Diagram.

Note
If a dialog box opens asking you whether the support objects should be created, click Yes.

The first (and only) step is to select tables that will be added to the diagram. After
adding all four tables of the sample database, the wizard completes the work and
creates the diagram (see Figure 3-9).

The diagram shown in Figure 3-9 is not the final diagram of the sample database
because, although it shows all four tables with their columns (and the corresponding
primary keys), it does not show any relationship between the tables. A relationship
between two tables is based on the primary key of one table and the (possible)
corresponding column(s) of the other table. (For a detailed discussion of these
relationships and referential integrity, see Chapter 5.)

There are exactly three relationships between the existing tables of the sample
database: first, the tables department and employee have a 1:N relationship, because
for each value in the primary key column of the department table (dept_no), there is
one or more corresponding values in the column dept_no of the employee table.
Analogously, there is a relationship between the tables employee and works_on,
because only those values that exist in the primary key of the employee table
(emp_no) appear also in the column emp_no of the works_on table. The third
relationship is between the tables project and works_on, because only values that

Ch03.indd 57 1/24/12 4:39:42 PM

 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

exist in the primary key of the project table (pr_no) appear also in the pr_no column of
the works_on table.

To create each of the three relationships described, you have to redesign the diagram
with the column that corresponds to the primary key column of the other table. (Such a
column is called a foreign key.) To see how to do this, use the employee table and define
its column dept_no as the foreign key of the department table:

Click the created diagram, right-click the graphical form of the 1. employee table in
the detail pane, and select Relationships. In the Foreign Key Relationships dialog
box, click Add.

Figure 3-9 First diagram of the sample database

Ch03.indd 58 1/24/12 4:39:42 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 5 9

In the dialog box, expand the Tables and Columns Specification column and click 2.
the … button.
Select the table with the corresponding primary key (the 3. department table).
Choose the 4. dept_no column of this table as the primary key and the column
with the same name in the employee table as the foreign key and click OK. Click
Close.

Figure 3-10 shows the modified diagram after all three relationships in the sample
database have been created.

Figure 3-10 The final diagram of the sample database

Ch03.indd 59 1/24/12 4:39:43 PM

 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Authoring Activities Using SQL Server
Management Studio
SQL Server Management Studio gives you a complete authoring environment for all
types of queries. You can create, save, load, and edit queries. SQL Server Management
Studio allows you to work on queries without being connected to a particular server.
This tool also gives you the option of developing your queries with different projects.

The authoring capabilities are associated with Query Editor as well as Solution
Explorer, both of which are described in this section. Besides these two components of
SQL Server Management Studio we will describe how you can debug SQL code using
the existing debugger.

Query Editor
To launch the Query Editor pane, click the New Query button in the toolbar of SQL
Server Management Studio. If you expand it to show all the possible queries, it shows
more than just a Database Engine query. By default, you get a new Database Engine
query, but other queries are possible, such as MDX queries, XMLA queries, and other
queries.

Once you open Query Editor, the status bar at the bottom of the pane tells you
whether your query is in a connected or disconnected state. If you are not connected
automatically to the server, the Connect to SQL Server dialog box appears, where you
can type the name of the database server to which you want to connect and select the
authentication mode.

Note
Disconnected editing has more flexibility than connected editing. You can edit queries without having to choose
a server, and you can disconnect a given Query Editor window from one server and connect it to another without
having to open another window. (You can use disconnected editing by clicking the Cancel button in the Connect
to SQL Server dialog box.)

Query Editor can be used by end users for the following tasks:

Generating and executing Transact-SQL statementsCc

Storing the generated Transact-SQL statements in a fileCc

Generating and analyzing execution plans for generated queriesCc

Graphically illustrating the execution plan for a selected queryCc

Ch03.indd 60 1/24/12 4:39:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 6 1

Query Editor contains an internal text editor and a selection of buttons in its toolbar.
The main window is divided into a query pane (upper) and a results pane (lower). Users
enter the Transact-SQL statements (queries) that they want to execute into the query
pane, and after the system has processed the queries, the output is displayed in the
results pane.

The example shown in Figure 3-11 demonstrates a query entered into Query Editor
and the output returned. The first statement in the query pane, USE, specifies the
sample database as the current database. The second statement, SELECT, retrieves all
the rows of the works_on table. Clicking the Query button in the Query Editor toolbar
and then selecting Execute or pressing f5 returns the results of these statements in the
results pane of Query Editor.

Figure 3-11 Query Editor with a query and its results

Ch03.indd 61 1/24/12 4:39:43 PM

 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Note
You can open several different windows—that is, several different connections to one or more Database Engine
instances. You create new connections by clicking the New Query button in the toolbar.

The following additional information concerning the execution of the statement(s) is
displayed in the status bar at the bottom of the Query Editor window:

The status of the current operation (for example, “Query executed successfully”)Cc

Database server nameCc

Current username and server process IDCc

Current database nameCc

Elapsed time for the execution of the last queryCc

The number of retrieved rowsCc

One of the main features of SQL Server Management Studio is that it’s easy to use,
and that also applies to the Query Editor component. Query Editor supports a lot of
features that make coding of Transact-SQL statements easier. First, Query Editor uses
syntax highlighting to improve the readability of Transact-SQL statements. It displays
all reserved words in blue, all variables in black, strings in red, and comments in green.
(For a discussion of reserved words, see the next chapter.)

There is also the context-sensitive help function called Dynamic Help that enables
you to get help on a particular statement. If you do not know the syntax of a statement,
just highlight that statement in the editor and select Help | Dynamic Help. You can
also highlight options of different Transact-SQL statements to get the corresponding
text from Books Online.

Note
SQL Server 2012 supports the SQL Intellisense tool. Intellisense is a form of automated autocompletion. In other
words, this add-in allows you to access descriptions of frequently used elements of Transact-SQL statements
without using the keyboard.

Object Explorer can also help you edit queries. For instance, if you want to see the
corresponding CREATE TABLE statement for the employee table, drill down to
this database object, right-click the table name, select Script Table As, and choose
CREATE to New Query Editor Window. Figure 3-12 shows the Query Editor

Ch03.indd 62 1/24/12 4:39:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 6 3

window with the CREATE TABLE statement. (This capability extends also to other
objects, such as stored procedures and functions.)

Object Explorer is very useful if you want to display the graphical execution plan for
a particular query. (The execution plan is the plan selected by the optimizer to execute
a given query.) If you select Query | Display Estimated Execution Plan, the system
will display the graphical plan instead of the result set for the given query. This topic is
discussed in detail in Chapter 19.

Solution Explorer
Query editing in SQL Server Management Studio is solution-based. If you start a
blank query using the New Query button, it will still be based on a blank solution.
You can see this by choosing View | Solution Explorer right after you open your
blank query.

Figure 3-12 The Query Editor windows with the CREATE TABLE statement

Ch03.indd 63 1/24/12 4:39:43 PM

 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

A solution can have zero, one, or more projects associated with it. A blank solution
does not contain any project. If you want to associate a project with the solution, close
your blank solution, Solution Explorer, and the Query Editor window, and start a new
project by choosing File | New | Project. In the New Project window, choose SQL
Server Scripts. A project is a method of organizing files in a selected location. You can
choose a name for the project and select its location on disk. When you create a new
project, by default you start a new solution. You can add a project to an existing solution
using Solution Explorer.

Once the new project and solution are created, Solution Explorer shows nodes in
each project for Connections, Queries, and Miscellaneous. To open a new Query Editor
window, right-click the Queries node and choose New Query.

SQL Server Debugging
Since SQL Server 2008, you can debug SQL code using the existing debugger. To
start debugging, choose Debug | Start Debugging in the main menu of SQL Server
Management Studio. A batch from Chapter 8 (see Example 8.1) will be used here to
demonstrate how the debugger works. (A batch is a sequence of SQL statements and
procedural extensions that comprises a logical unit and is sent to the Database Engine
for execution of all statements included in the batch.) Figure 3-13 shows a batch that
counts the number of employees working for the p1 project. If the number is 4 or
more, the corresponding message is displayed. Otherwise, first and last names of the
employees will be printed.

You can set the breakpoints shown in Figure 3-13 just by clicking in front of the line
where the execution process should stop. At the beginning, the editor shows a yellow
arrow to the left of the first line of code. You can move the arrow by choosing Debug |
Continue. In that case, all statements up to the first breakpoint are executed, and the
yellow arrow moves to that breakpoint.

In debugger mode, SQL Server Management Studio opens two panes, which are
placed at the bottom of the editor. All the information concerning the debugging
process is displayed in these two panes. Both panes have tabs that you can select to
control which set of information is displayed in the pane. The left pane contains
Autos, Locals and up to four Watch tabs. The right pane contains Call Stack, Threads,
Breakpoints, Command Window, Immediate Window, and Output tabs. For instance,
you can use the Locals tab to view values of variables, the Call Stack tab to review the
call stack, and the Watch tabs to type (or drag) a part of the code of an SQL expression
and to evaluate it. (In Figure 3-13, for instance, the Watch1 tab is activated in the left
pane, and the Breakpoints tab is activated in the right pane.)

To end the debugging process, select the blue square icon in the debugging toolbar
or choose Debug | Stop Debugging.

Ch03.indd 64 1/24/12 4:39:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 6 5

SQL Server 2012 enhances the functionality of the SQL Server Management Studio
Debugger with several new features. You can now do the following:

Specify a breakpoint conditionCc A breakpoint condition is an SQL expression
whose evaluation determines whether the breakpoint is invoked. To specify a
breakpoint condition, right-click the breakpoint glyph and click Condition on the
pop-up menu. In the Breakpoint Condition dialog box, enter a Boolean expression
and choose either Is True, if you want to break when the expression evaluates to
true, or Has Changed, if you want to break, when the value has changed.
Specify a breakpoint hit countCc A hit count is a counter that specifies the
number of times a breakpoint is reached. If the specified hit count is reached, and
any specified breakpoint condition is satisfied, the debugger performs the action
specified for the breakpoint. The action could be any of the following:

Break always (the default action)Cc

Break when the hit count equals a specified valueCc

Figure 3-13 Debugging SQL code

Ch03.indd 65 1/24/12 4:39:43 PM

 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

Break when the hit count equals a multiple of a specified valueCc

Break when the hit count is greater than or equal to a specified valueCc

To specify a hit count, right-click the breakpoint glyph on the Breakpoint window
and click Hit Count on the pop-up menu (see Figure 3-13). In the Breakpoint
Hit Count dialog box, select one of the actions from the preceding list. If you
need to set the hit count to a value, enter an integer in the text box that appears.
Click OK to make the modifications.
Specify a breakpoint filterCc A breakpoint filter limits the breakpoint to operating
only on specified computers, processes, or threads. To specify a breakpoint filter,
choose Breakpoint | Filter. You can then specify the resource that you want to
limit in the Breakpoint Filters dialog box. Click OK to make the modifications.
Specify a breakpoint actionCc A breakpoint When Hit action specifies a custom
task that is performed when the breakpoint is invoked. The default action for
a breakpoint is to break execution when both the hit count and breakpoint
condition have been satisfied. The alternative could be to print a specified message.
To specify a breakpoint action, right-click the breakpoint glyph and then click
When Hit on the pop-up menu. In the When Breakpoint Is Hit dialog box, select
the action you want. Click OK to make the modifications.
Use the QuickWatch windowCc You can use the QuickWatch window to view
the value of a Transact-SQL expression, and then save that expression to a Watch
window. (To select the Quick Watch window, choose Debug | Quick Watch.)
To select an expression in QuickWatch, either select or enter the name of the
expression in the Expression field of the Quick Watch window.
Use the Quick Info pop-upCc When you move the cursor over an SQL identifier,
the Quick Info pop-up displays the name of the expression and its current value.

Summary
This chapter covered the most important SQL Server tool: SQL Server Management
Studio. SQL Server Management Studio is very useful for end users and administrators
alike. It allows many administrative functions to be performed. These are touched on
here but are covered in more detail later in the book. This chapter discussed most of the
important functions of SQL Server Management Studio concerning end users, such as
database and table creation.

Ch03.indd 66 1/24/12 4:39:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 C h a p t e r 3 : S Q L S e r v e r M a n a g e m e n t S t u d i o 6 7

SQL Server Management Studio contains, among others, the following components:

Registered ServersCc Allows you to register SQL Server instances and connect
to them.
Object ExplorerCc Contains a tree view of all the database objects in a server.
Query EditorCc Allows end users to generate, execute, and store Transact-SQL
statements. Additionally, it provides the ability to analyze queries by displaying
the execution plan.
Solution ExplorerCc Allows you to create solutions. A solution can have zero or
more projects associated with it.
DebuggerCc Allows you to debug code.

The next chapter introduces the Transact-SQL language and describes its main
components. After introducing the basic concepts and existing data types, the chapter
also describes system functions that Transact-SQL supports.

Exercises

 E.3.1

Using SQL Server Management Studio, create a database called test. Store the database
in a file named testdate_a in the directory C:\tmp and allocate 10MB of space to it.
Configure the file in which the database is located to grow in increments of 2MB, not
to exceed a total of 20MB.

 E.3.2

Using SQL Server Management Studio, change the transaction log for the test database.
Give the file an initial size of 3MB, with growth of 20 percent. Allow the file for the
transaction log to autogrow.

 E.3.3

Using SQL Server Management Studio, allow only the database owner and system
administrator to use the test database. Is it possible that both users could use the
database at the same time?

Ch03.indd 67 1/24/12 4:39:43 PM

 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 3

 E.3.4

Using SQL Server Management Studio, create all four tables of the sample database
(see Chapter 1) with all their columns.

 E.3.5

Using SQL Server Management Studio, view which tables the AdventureWorks
database contains. After that, choose the Person.Address table and view its properties.

 E.3.6

Using Query Editor, type the following Transact-SQL statement:

CREATE DATABASE test

Explain the error message shown in the result pane.

 E.3.7

Store the Transact-SQL statement in E.3.6 in the file C:\tmp\createdb.sql.

 E.3.8

Using Query Editor, how can you make the test database the current database?

 E.3.9

Using Query Editor, make the AdventureWorks database the current database and
execute the following Transact-SQL statement:

SELECT * FROM Sales.Customer

How can you stop the execution of the statement?

 E.3.10

Using Query Editor, change the output of the SELECT statement (E.3.9) so that the
results appear as the text (and not as the grid).

Ch03.indd 68 1/24/12 4:39:43 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 /
Blind folio 69

Part #

Transact-SQL Language

Part II

Ch04.indd 69 1/24/12 4:39:54 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

In This Chapter

c SQL’s Basic Objects
c Data Types
c Transact-SQL Functions
c Scalar Operators
c NULL Values

SQL Components

Chapter 4

Ch04.indd 71 1/24/12 4:39:54 PM

 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

This chapter introduces the elementary objects and basic operators supported
by the Transact-SQL language. First, the basic language elements, including
constants, identifiers, and delimiters, are described. Then, because every

elementary object has a corresponding data type, data types are discussed in detail.
Additionally, all existing operators and functions are explained. At the end of the
chapter, NULL values are introduced.

SQL’s Basic Objects
The language of the Database Engine, Transact-SQL, has the same basic features as
other common programming languages:

Literal values (also called constants)Cc

DelimitersCc

CommentsCc

IdentifiersCc

Reserved keywordsCc

The following sections describe these features.

Literal Values
A literal value is an alphanumerical, hexadecimal, or numeric constant. A string
constant contains one or more characters of the character set enclosed in two single
straight quotation marks (' ') or double straight quotation marks (" "). (Single quotation
marks are preferred due to the multiple uses of double quotation marks, as discussed in
a moment.) If you want to include a single quotation mark within a string delimited
by single quotation marks, use two consecutive single quotation marks within the
string. Hexadecimal constants are used to represent nonprintable characters and other
binary data. Each hexadecimal constant begins with the characters '0x' followed by an
even number of characters or numbers. Examples 4.1 and 4.2 illustrate some valid and
invalid string constants and hexadecimal constants.

 ExamPLE 4.1

Some valid string constants and hexadecimal constants follow:

'Philadelphia'
"Berkeley, CA 94710"
'9876'
'Apostrophe is displayed like this: can' 't' (note the two consecutive single quotation marks)
0x53514C0D

Ch04.indd 72 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 7 3

 ExamPLE 4.2

The following are not string constants:

'AB'C' (odd number of single quotation marks)
'New York'' (same type of quotation mark—single or double—must be used at each
end of the string)

The numeric constants include all integer, fixed-point, and floating-point values with
and without signs (see Example 4.3).

 ExamPLE 4.3

The following are numeric constants:

130
–130.00
–0.357E5 (scientific notation—nEm means n multiplied by 10m)
22.3E-3

A constant always has a data type and a length, and both depend on the format of
the constant. Additionally, every numeric constant has a precision and a scale factor.
(The data types of the different kinds of literal values are explained later in this
chapter.)

Delimiters
In Transact-SQL, double quotation marks have two meanings. In addition to enclosing
strings, double quotation marks can also be used as delimiters for so-called delimited
identif iers. Delimited identifiers are a special kind of identifier usually used to allow the
use of reserved keywords as identifiers and also to allow spaces in the names of database
objects.

Note
Differentiation between single and double quotation marks was first introduced in the SQL92 standard. In the
case of identifiers, this standard differentiates between regular and delimited identifiers. Two key differences
are that delimited identifiers are enclosed in double quotation marks and are case sensitive. (Transact-SQL also
supports the use of square brackets instead of double quotation marks.) Double quotation marks are used only
for delimiting strings. Generally, delimited identifiers were introduced to allow the specification of identifiers,
which are otherwise identical to reserved keywords. Specifically, delimited identifiers protect you from using
names (identifiers and variable names) that could be introduced as reserved keywords in one of the future SQL
standards. Also, delimited identifiers may contain characters that are normally illegal within identifier names,
such as blanks.

Ch04.indd 73 1/24/12 4:39:54 PM

 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

In Transact-SQL, the use of double quotation marks is defined using the
QUOTED_IDENTIFIER option of the SET statement. If this option is set to ON,
which is the default value, an identifier in double quotation marks will be defined as a
delimited identifier. In this case, double quotation marks cannot be used for delimiting
strings.

Comments
There are two different ways to specify a comment in a Transact-SQL statement. Using
the pair of characters /* and */ marks the enclosed text as a comment. In this case, the
comment may extend over several lines. Furthermore, the characters -- (two hyphens)
indicate that the remainder of the current line is a comment. (The two -- comply with
the ANSI SQL standard, while /* and */ are the extensions of Transact-SQL.)

Identifiers
In Transact-SQL, identifiers are used to identify database objects such as databases,
tables, and indices. They are represented by character strings that may include up to
128 characters and may contain letters, numerals, or the following characters: _, @, #,
and $. Each name must begin with a letter or one of the following characters: _, @,
or #. The character # at the beginning of a table or stored procedure name denotes a
temporary object, while @ at the beginning of a name denotes a variable. As indicated
earlier, these rules don’t apply to delimited identifiers (also known as quoted identifiers),
which can contain, or begin with, any character (other than the delimiters themselves).

Reserved Keywords
Each programming language has a set of names with reserved meanings, which must be
written and used in the defined format. Names of this kind are called reserved keywords.
Transact-SQL uses a variety of such names, which, as in many other programming
languages, cannot be used as object names, unless the objects are specified as delimited
or quoted identifiers.

Note
In Transact-SQL, the names of all data types and system functions, such as CHARACTER and INTEGER, are not
reserved keywords. Therefore, they can be used to denote objects. (Do not use data types and system functions as
object names! Such use makes Transact-SQL statements difficult to read and understand.)

Ch04.indd 74 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 7 5

Data Types
All the data values of a column must be of the same data type. (The only exception
specifies the values of the SQL_VARIANT data type.) Transact-SQL uses different
data types, which can be categorized as follows:

Numeric data typesCc

Character data typesCc

Temporal (date and/or time) data typesCc

Miscellaneous data typesCc

The following sections describe all these categories.

Numeric Data Types
Numeric data types are used to represent numbers. The following table shows the list of
all numeric data types:

Data Type Explanation
INTEGER Represents integer values that can be stored in 4 bytes. The range of values is –2,147,483,648 to

2,147,483,647. INT is the short form for INTEGER.

SMALLINT Represents integer values that can be stored in 2 bytes. The range of values is –32768 to 32767.

TINYINT Represents nonnegative integer values that can be stored in 1 byte. The range of values is 0 to 255.

BIGINT Represents integer values that can be stored in 8 bytes. The range of values is –263 to 263 – 1.

DECIMAL(p,[s]) Describes fixed-point values. The argument p (precision) specifies the total number of digits with
assumed decimal point s (scale) digits from the right. DECIMAL values are stored, depending on the
value of p, in 5 to 17 bytes. DEC is the short form for DECIMAL.

NUMERIC(p,[s]) Synonym for DECIMAL.

REAL Used for floating-point values. The range of positive values is approximately 2.23E – 308 to 1.79E +
308, and the range of negative values is approximately –1.18E – 38 to –1.18E + 38 (the value zero
can also be stored).

FLOAT[(p)] Represents floating point values, like REAL. p defines the precision, with p < 25 as single precision
(stored in 4 bytes) and p >= 25 as double precision (stored in 8 bytes).

MONEY Used for representing monetary values. MONEY values correspond to 8-byte DECIMAL values and are
rounded to four digits after the decimal point.

SMALLMONEY Corresponds to the data type MONEY but is stored in 4 bytes.

Ch04.indd 75 1/24/12 4:39:54 PM

 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Character Data Types
There are two general forms of character data types. They can be strings of single-byte
characters or strings of Unicode characters. (Unicode uses several bytes to specify one
character.) Further, strings can have fixed or variable length. The following character
data types are used:

Data Type Explanation
CHAR[(n)] Represents a fixed-length string of single-byte characters, where n is the number of characters inside

the string. The maximum value of n is 8000. CHARACTER(n) is an additional equivalent form for
CHAR(n). If n is omitted, the length of the string is assumed to be 1.

VARCHAR[(n)] Describes a variable-length string of single-byte characters (0 < n ≤ 8000). In contrast to the CHAR
data type, the values for the VARCHAR data type are stored in their actual length. This data type has
two synonyms: CHAR VARYING and CHARACTER VARYING.

NCHAR[(n)] Stores fixed-length strings of Unicode characters. The main difference between the CHAR and NCHAR
data types is that each character of the NCHAR data type is stored in 2 bytes, while each character of
the CHAR data type uses 1 byte of storage space. Therefore, the maximum number of characters in a
column of the NCHAR data type is 4000.

NVARCHAR[(n)] Stores variable-length strings of Unicode characters. The main difference between the VARCHAR and
the NVARCHAR data types is that each NVARCHAR character is stored in 2 bytes, while each VARCHAR
character uses 1 byte of storage space. The maximum number of characters in a column of the
NVARCHAR data type is 4000.

Note
The VARCHAR data type is identical to the CHAR data type except for one difference: if the content of a CHAR(n)
string is shorter than n characters, the rest of the string is padded with blanks. (A value of the VARCHAR data
type is always stored in its actual length.)

Temporal Data Types
Transact-SQL supports the following temporal data types:

DATETIMECc

SMALLDATETIMECc

DATECc

TIMECc

DATETIME2Cc

DATETIMEOFFSETCc

Ch04.indd 76 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 7 7

The DATETIME and SMALLDATETIME data types specify a date and time,
with each value being stored as an integer value in 4 bytes or 2 bytes, respectively.
Values of DATETIME and SMALLDATETIME are stored internally as two separate
numeric values. The date value of DATETIME is stored in the range 01/01/1753
to 12/31/9999. The analog value of SMALLDATETIME is stored in the range
01/01/1900 to 06/06/2079. The time component is stored in the second 4-byte (or
2-byte for SMALLDATETIME) field as the number of three-hundredths of a second
(DATETIME) or minutes (SMALLDATETIME) that have passed since midnight.

The use of DATETIME and SMALLDATETIME is rather inconvenient if you
want to store only the date part or time part. For this reason, SQL Server introduced
the data types DATE and TIME, which store just the DATE or TIME component
of a DATETIME, respectively. The DATE data type is stored in 3 bytes and has the
range 01/01/0001 to 12/31/9999. The TIME data type is stored in 3–5 bytes and has
an accuracy of 100 nanoseconds (ns).

The DATETIME2 data type stores high-precision date and time data. The data
type can be defined for variable lengths depending on the requirement. (The storage
size is 6–8 bytes). The accuracy of the time part is 100 ns. This data type isn’t aware of
Daylight Saving Time.

All the temporal data types described thus far don’t have support for the time zone.
The data type called DATETIMEOFFSET has the time zone offset portion. For this
reason, it is stored in 6–8 bytes. (All other properties of this data type are analogous to
the corresponding properties of DATETIME2.)

The date value in Transact-SQL is by default specified as a string in a format
like 'mmm dd yyyy' (e.g., 'Jan 10 1993') inside two single quotation marks or double
quotation marks. (Note that the relative order of month, day, and year can be controlled
by the SET DATEFORMAT statement. Additionally, the system recognizes numeric
month values with delimiters of / or –.) Similarly, the time value is specified in the
format ‘hh:mm’ and the Database Engine uses 24-hour time (23:24, for instance).

Note
Transact-SQL supports a variety of input formats for DATETImE values. As you already know, both objects are
identified separately; thus, date and time values can be specified in any order or alone. If one of the values is
omitted, the system uses the default values. (The default value for time is 12:00 Am.)

Examples 4.4 and 4.5 show the different ways date and time values can be written
using the different formats.

Ch04.indd 77 1/24/12 4:39:54 PM

 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 ExamPLE 4.4

The following date descriptions can be used:

'28/5/1959' (with SET DATEFORMAT dmy)
'May 28, 1959'
'1959 MAY 28'

 ExamPLE 4.5

The following time expressions can be used:

'8:45 AM'
'4 pm'

miscellaneous Data Types
Transact-SQL supports several data types that do not belong to any of the data type
groups described previously:

Binary data typesCc

BITCc

Large object data typesCc

CURSOR (discussed in Chapter 8)Cc

UNIQUEIDENTIFIERCc

SQL_VARIANTCc

TABLE (discussed in Chapters 5 and 8)Cc

XML (discussed in Chapter 26)Cc

Spatial (e.g., GEOGRAPHY and GEOMETRY) data types (discussed in Cc

Chapter 27)
HIERARCHYIDCc

TIMESTAMPCc

User-defined data types (discussed in Chapter 5)Cc

The following sections describe each of these data types (other than those designated
as being discussed in another chapter).

Ch04.indd 78 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 7 9

Binary and BIT Data Types
BINARY and VARBINARY are the two binary data types. They describe data objects
being represented in the internal format of the system. They are used to store bit
strings. For this reason, the values are entered using hexadecimal numbers.

The values of the BIT data type are stored in a single bit. Therefore, up to 8 bit
columns are stored in 1 byte. The following table summarizes the properties of these
data types:

Data Type Explanation
BINARY[(n)] Specifies a bit string of fixed length with exactly n bytes (0 < n ≤ 8000).

VARBINARY[(n)] Specifies a bit string of variable length with up to n bytes (0 < n ≤ 8000).

BIT Used for specifying the Boolean data type with three possible values: FALSE, TRUE, and NULL.

Large Object Data Types
Large objects (LOBs) are data objects with the maximum length of 2GB. These objects
are generally used to store large text data and to load modules and audio/video files.
Transact-SQL supports the following LOB data types:

VARCHAR(max)Cc

NVARCHAR(max)Cc

VARBINARY(max)Cc

Starting with SQL Server 2005, you can use the same programming model to access
values of standard data types and LOBs. In other words, you can use convenient system
functions and string operators to work with LOBs.

The Database Engine uses the max parameter with the data types VARCHAR,
NVARCHAR, and VARBINARY to define variable-length columns. When you
use max by default (instead of an explicit value), the system analyzes the length of
the particular string and decides whether to store the string as a convenient value or
as a LOB. The max parameter indicates that the size of column values can reach the
maximum LOB size of the current system.

Although the database system decides how a LOB will be stored, you can override
this default specification using the sp_tableoption system procedure with the
LARGE_VALUE_TYPES_OUT_OF_ROW option. If the option’s value is set to 1,
the data in columns declared using the max parameter will be stored separately from all
other data. If this option is set to 0, the Database Engine stores all values for the row
size < 8060 bytes as regular row data.

Ch04.indd 79 1/24/12 4:39:54 PM

 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Since SQL Server 2008, you can apply the new FILESTREAM attribute to a
VARBINARY(max) column to store large binary data directly in the NTFS file
system. The main advantage of this attribute is that the size of the corresponding LOB
is limited only by the file system volume size. (This storage attribute will be described
in the upcoming “Storage Options” section.)

UNIQUEIDENTIFIER Data Type
As its name implies, a value of the UNIQUEIDENTIFIER data type is a unique
identification number stored as a 16-byte binary string. This data type is closely related
to the globally unique identifier (GUID), which guarantees uniqueness worldwide.
Hence, using this data type, you can uniquely identify data and objects in distributed
systems.

The initialization of a column or a variable of the UNIQUEIDENTIFIER type can
be provided using the functions NEWID and NEWSEQUENTIALID, as well as with
a string constant written in a special form using hexadecimal digits and hyphens. (The
functions NEWID and NEWSEQUENTIALID are described in the section “System
Functions” later in this chapter.)

A column of the UNIQUEIDENTIFIER data type can be referenced using the
keyword ROWGUIDCOL in a query to specify that the column contains ID values.
(This keyword does not generate any values.) A table can have several columns of the
UNIQUEIDENTIFIER type, but only one of them can have the ROWGUIDCOL
keyword.

SQL_VARIANT Data Type
The SQL_VARIANT data type can be used to store values of various data types at the
same time, such as numeric values, strings, and date values. (The only types of values
that cannot be stored are TIMESTAMP values.) Each value of an SQL_VARIANT
column has two parts: the data value and the information that describes the value. (This
information contains all properties of the actual data type of the value, such as length,
scale, and precision.)

Transact-SQL supports the SQL_VARIANT_PROPERTY function, which
displays the attached information for each value of an SQL_VARIANT column. For
the use of the SQL_VARIANT data type, see Example 5.5 in Chapter 5.

Note
Declare a column of a table using the SQL_VARIANT data type only if it is really necessary. A column should have
this data type if its values may be of different types or if determining the type of a column during the database
design process is not possible.

Ch04.indd 80 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 8 1

HIERARCHYID Data Type
The HIERARCHYID data type is used to store an entire hierarchy. (For instance,
you can use this data type to store a hierarchy of all employees or a hierarchy of all
folder lists.) It is implemented as a Common Language Runtime (CLR) user-defined
type that comprises several system functions for creating and operating on hierarchy
nodes. The following functions, among others, belong to the methods of this data
type: GetLevel(), GetAncestor(), GetDescendant(), Read(), and Write(). (The detailed
description of this data type is outside the scope of this book.)

TIMESTAMP Data Type
The TIMESTAMP data type specifies a column being defined as VARBINARY(8) or
BINARY(8), depending on nullability of the column. The system maintains a current
value (not a date or time) for each database, which it increments whenever any row with
a TIMESTAMP column is inserted or updated and sets the TIMESTAMP column to
that value. Thus, TIMESTAMP columns can be used to determine the relative time at
which rows were last changed. (ROWVERSION is a synonym for TIMESTAMP.)

Note
The value stored in a TImESTAmP column isn’t important by itself. This column is usually used to detect whether a
specific row has been changed since the last time it was accessed.

Storage Options
Since SQL Server 2008, there are two different storage options, each of which allows
you to store LOBs and to save storage space:

FILESTREAMCc

Sparse columnsCc

The following subsections describe these options.

FILESTREAM Storage
As you already know, SQL Server supports the storage of LOBs using the
VARBINARY(max) data type. The property of this data type is that binary large
objects (BLOBs) are stored inside the database. This solution can cause performance
problems if the stored files are very large, as in the case of video or audio files. In that
case, it is common to store such files outside the database, in external files.

Ch04.indd 81 1/24/12 4:39:54 PM

 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

The FILESTREAM storage option supports the management of LOBs, which
are stored in the NTFS file system. The main advantage of this type of storage is that
the database system manages data, although the data is stored outside the database.
Therefore, this storage type has the following properties:

You use the CREATE TABLE statement to store FILESTREAM data and use Cc

the data modification statements (SELECT, INSERT, UPDATE, and DELETE)
to query and update such data.
The database system assures the same level of security for FILESTREAM data as Cc

for relational data stored inside the database.

The creation of FILESTREAM data will be described in detail in Chapter 5.

Sparse Columns
The aim of sparse columns as a storage option is quite different from the FILESTREAM
storage support. Whereas FILESTREAM is Microsoft’s solution for the storage of
LOBs outside the database, sparse columns help to minimize data storage space. These
columns provide an optimized way to store column values, which are predominantly
NULL. (NULL values are described at the end of this chapter.) If you use sparse
columns, NULL values require no disk space, but on the other side, non-NULL data
needs an additional 2 to 4 bytes, depending on the data type of the non-NULL values.
For this reason, Microsoft recommends using sparse columns only when the overall
storage space savings will be at least 20 percent.

You specify and access sparse columns in the same way as you specify and access
all other columns of a table. This means that the statements SELECT, INSERT,
UPDATE, and DELETE can be used to access sparse columns in the same way as
you use them for usual columns. (These four SQL statements are described in detail in
Chapters 6 and 7.) The only difference is in relation to creation of a sparse column: you
use the SPARSE option (after the column name) to specify that a particular column is a
sparse column: col_name data_type SPARSE.

If a table has several sparse columns, you can group them in a column set. Therefore,
a column set is an alternative way to store and access all sparse columns in a table. For
more information concerning column sets, see Books Online.

Transact-SQL Functions
Transact-SQL functions can be either aggregate functions or scalar functions. The
following sections describe these function types.

Ch04.indd 82 1/24/12 4:39:54 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 8 3

aggregate Functions
Aggregate functions are applied to a group of data values from a column. Aggregate
functions always return a single value. Transact-SQL supports several groups of
aggregate functions:

Convenient aggregate functionsCc

Statistical aggregate functionsCc

User-defined aggregate functionsCc

Analytic aggregate functionsCc

Statistical and analytic aggregate functions are discussed in Chapter 23. User-defined
aggregates are beyond the scope of this book. That leaves the convenient aggregate
functions, described next:

AVG Cc Calculates the arithmetic mean (average) of the data values contained
within a column. The column must contain numeric values.
MAX Cc and MIN Calculate the maximum and minimum data value of the
column, respectively. The column can contain numeric, string, and date/time
values.
SUM Cc Calculates the total of all data values in a column. The column must
contain numeric values.
COUNT Cc Calculates the number of (non-null) data values in a column. The only
aggregate function that is not applied to columns is COUNT(*). This function
returns the number of rows (whether or not particular columns have NULL
values).
COUNT_BIG Cc Analogous to COUNT, the only difference being that
COUNT_BIG returns a value of the BIGINT data type.

The use of convenient aggregate functions with the SELECT statement can be
found in Chapter 6.

Scalar Functions
In addition to aggregate functions, Transact-SQL provides several scalar functions that
are used in the construction of scalar expressions. (A scalar function operates on a single

Ch04.indd 83 1/24/12 4:39:55 PM

 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

value or list of values, whereas an aggregate function operates on the data from multiple
rows.) Scalar functions can be categorized as follows:

Numeric functionsCc

Date functionsCc

String functionsCc

System functionsCc

Metadata functionsCc

The following sections describe these function types.

Numeric Functions
Numeric functions within Transact-SQL are mathematical functions for modifying
numeric values. The following numeric functions are available:

Function Explanation
ABS(n) Returns the absolute value (i.e., negative values are returned as positive) of the numeric expression n.

Example:
SELECT ABS(–5.767) = 5.767, SELECT ABS(6.384) = 6.384

ACOS(n) Calculates arc cosine of n. n and the resulting value belong to the FLOAT data type.

ASIN(n) Calculates the arc sine of n. n and the resulting value belong to the FLOAT data type.

ATAN(n) Calculates the arc tangent of n. n and the resulting value belong to the FLOAT data type.

ATN2(n,m) Calculates the arc tangent of n/m. n, m, and the resulting value belong to the FLOAT data type.

CEILING(n) Returns the smallest integer value greater than or equal to the specified parameter. Examples:
SELECT CEILING(4.88) = 5
SELECT CEILING(–4.88) = –4

COS(n) Calculates the cosine of n. n and the resulting value belong to the FLOAT data type.

COT(n) Calculates the cotangent of n. n and the resulting value belong to the FLOAT data type.

DEGREES(n) Converts radians to degrees. Examples:
SELECT DEGREES(PI()/2) = 90
SELECT DEGREES(0.75) = 42

EXP(n) Calculates the value en. Example:
SELECT EXP(1) = 2.7183

Ch04.indd 84 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 8 5

Function Explanation
FLOOR(n) Calculates the largest integer value less than or equal to the specified value n. Example:

SELECT FLOOR(4.88) = 4

LOG(n) Calculates the natural (i.e., base e) logarithm of n. Examples:
SELECT LOG(4.67) = 1.54
SELECT LOG(0.12) = –2.12

LOG10(n) Calculates the logarithm (base 10) for n. Examples:
SELECT LOG10(4.67) = 0.67
SELECT LOG10(0.12) = –0.92

PI() Returns the value of the number pi (3.14).

POWER(x,y) Calculates the value xy. Examples:
SELECT POWER(3.12,5) = 295.65
SELECT POWER(81,0.5) = 9

RADIANS(n) Converts degrees to radians. Examples:
SELECT RADIANS(90.0) = 1.57
SELECT RADIANS(42.97) = 0.75

RAND() Returns a random number between 0 and 1 with a FLOAT data type.

ROUND(n, p,[t]) Rounds the value of the number n by using the precision p. Use positive values of p to round on
the right side of the decimal point and use negative values to round on the left side. An optional
parameter t causes n to be truncated. Examples:
SELECT ROUND(5.4567,3) = 5.4570
SELECT ROUND(345.4567,–1) = 350.0000
SELECT ROUND(345.4567,–1,1) = 340.0000

ROWCOUNT_BIG Returns the number of rows that have been affected by the last Transact-SQL statement executed by
the system. The return value of this function has the BIGINT data type.

SIGN(n) Returns the sign of the value n as a number (+1 for positive, –1 for negative, and 0 for zero).
Example:
SELECT SIGN(0.88) = 1.00

SIN(n) Calculates the sine of n. n and the resulting value belong to the FLOAT data type.

SQRT(n) Calculates the square root of n. Example:
SELECT SQRT(9) = 3

SQUARE(n) Returns the square of the given expression. Example:
SELECT SQUARE(9) = 81

TAN(n) Calculates the tangent of n. n and the resulting value belong to the FLOAT data type.

Ch04.indd 85 1/24/12 4:39:55 PM

 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Date Functions
Date functions calculate the respective date or time portion of an expression or return
the value from a time interval. Transact-SQL supports the following date functions:

Function Explanation
GETDATE() Returns the current system date and time. Example:

SELECT GETDATE() = 2011-01-01 13:03:31.390

DATEPART(item,date) Returns the specified part item of a date date as an integer. Examples:
SELECT DATEPART(month, '01.01.2005') = 1 (1 = January)
SELECT DATEPART(weekday, '01.01.2005') = 7 (7 = Sunday)

DATENAME(item,date) Returns the specified part item of the date date as a character string. Example:
SELECT DATENAME(weekday, '01.01.2005') = Saturday

DATEDIFF(item,dat1,dat2) Calculates the difference between the two date parts dat1 and dat2 and returns the
result as an integer in units specified by the value item. Example (returns the age of each
employee):
SELECT DATEDIFF(year, BirthDate, GETDATE()) AS age FROM employee

DATEADD(i,n,d) Adds the number n of units specified by the value i to the given date d. (n could be
negative, too.) Example (adds three days to the start date of employment of every
employee; see the sample database):
SELECT DATEADD(DAY,3,HireDate) AS age FROM employee

String Functions
String functions are used to manipulate data values in a column, usually of a character
data type. Transact-SQL supports the following string functions:

Function Explanation
ASCII(character) Converts the specified character to the equivalent integer (ASCII) code. Returns an integer.

Example:
SELECT ASCII('A') = 65

CHAR(integer) Converts the ASCII code to the equivalent character. Example:
SELECT CHAR(65) = 'A'

CHARINDEX(z1,z2) Returns the starting position where the partial string z1 first occurs in the string z2. Returns 0
if z1 does not occur in z2. Example:
SELECT CHARINDEX('bl', 'table') = 3

DIFFERENCE(z1,z2) Returns an integer, 0 through 4, that is the difference of SOUNDEX values of two strings z1 and
z2. (SOUNDEX returns a number that specifies the sound of a string. With this method, strings
with similar sounds can be determined.) Example:
SELECT DIFFERENCE('spelling', 'telling') = 2 (sounds a little bit similar, 0 = doesn’t sound similar)

Ch04.indd 86 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 8 7

Function Explanation
LEFT(z, length) Returns the first length characters from the string z.

LEN(z) Returns the number of characters, instead of the number of bytes, of the specified string
expression, excluding trailing blanks.

LOWER(z1) Converts all uppercase letters of the string z1 to lowercase letters. Lowercase letters and
numbers, and other characters, do not change. Example:
SELECT LOWER('BiG') = 'big'

LTRIM(z) Removes leading blanks in the string z. Example:
SELECT LTRIM(' String') = 'String'

NCHAR(i) Returns the Unicode character with the specified integer code, as defined by the Unicode
standard.

QUOTENAME(char_string) Returns a Unicode string with the delimiters added to make the input string a valid delimited
identifier.

PATINDEX(%p%,expr) Returns the starting position of the first occurrence of a pattern p in a specified expression
expr, or zeros if the pattern is not found. Examples (the second query returns all first names
from the customers column):
SELECT PATINDEX('%gs%', 'longstring') = 4
SELECT RIGHT(ContactName, LEN(ContactName)-PATINDEX('% %',ContactName)) AS First_
name FROM Customers

REPLACE(str1,str2,str3) Replaces all occurrences of the str2 in the str1 with the str3. Example:
SELECT REPLACE('shave' , 's' , 'be') = behave

REPLICATE(z,i) Repeats string z i times. Example:
SELECT REPLICATE('a',10) = 'aaaaaaaaaa'

REVERSE(z) Displays the string z in the reverse order. Example:
SELECT REVERSE('calculate') = 'etaluclac'

RIGHT(z,length) Returns the last length characters from the string z. Example:
SELECT RIGHT('Notebook',4) = 'book'

RTRIM(z) Removes trailing blanks of the string z. Example:
SELECT RTRIM('Notebook ') = 'Notebook'

SOUNDEX(a) Returns a four-character SOUNDEX code to determine the similarity between two strings.
Example:
SELECT SOUNDEX('spelling') = S145

SPACE(length) Returns a string with spaces of length specified by length. Example:
SELECT SPACE(4) = ' '

STR(f,[len [,d]]) Converts the specified float expression f into a string. len is the length of the string including
decimal point, sign, digits, and spaces (10 by default), and d is the number of digits to the
right of the decimal point to be returned. Example:
SELECT STR(3.45678,4,2) = '3.46'

Ch04.indd 87 1/24/12 4:39:55 PM

 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Function Explanation
STUFF(z1,a,length,z2) Replaces the partial string z1 with the partial string z2 starting at position a, replacing

length characters of z1. Examples:
SELECT STUFF('Notebook',5,0, ' in a ') = 'Note in a book'
SELECT STUFF('Notebook',1,4, 'Hand') = 'Handbook'

SUBSTRING(z,a,length) Creates a partial string from string z starting at the position a with a length of length.
Example:
SELECT SUBSTRING('wardrobe',1,4) = 'ward'

UNICODE Returns the integer value, as defined by the Unicode standard, for the first character of the
input expression.

UPPER(z) Converts all lowercase letters of string z to uppercase letters. Uppercase letters and numbers
do not change. Example:
SELECT UPPER('loWer') = 'LOWER'

System Functions
System functions of Transact-SQL provide extensive information about database
objects. Most system functions use an internal numeric identifier (ID), which is
assigned to each database object by the system at its creation. Using this identifier,
the system can uniquely identify each database object. System functions provide
information about the database system. The following table describes several system
functions. (For the complete list of all system functions, please see Books Online.)

Function Explanation
CAST(a AS type [(length)] Converts an expression a into the specified data type type (if possible). a could be

any valid expression. Example:
SELECT CAST(3000000000 AS BIGINT) = 3000000000

COALESCE(a1,a2,…) Returns for a given list of expressions a1, a2,... the value of the first expression
that is not NULL.

COL_LENGTH(obj,col) Returns the length of the column col belonging to the database object (table or
view) obj. Example:
SELECT COL_LENGTH('customers', 'cust_ID') = 10

CONVERT(type[(length)],a) Equivalent to CAST, but the arguments are specified differently. CONVERT can be
used with any data type.

Ch04.indd 88 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 8 9

Function Explanation
CURRENT_TIMESTAMP Returns the current date and time. Example:

SELECT CURRENT_TIMESTAMP = '2011-01-01 17:22:55.670'

CURRENT_USER Returns the name of the current user.

DATALENGTH(z) Calculates the length (in bytes) of the result of the expression z. Example (returns
the length of each field):
SELECT DATALENGTH(ProductName) FROM products

GETANSINULL(‘dbname’) Returns 1 if the use of NULL values in the database dbname complies with the
ANSI SQL standard. (See also the explanation of NULL values at the end of this
chapter.) Example:
SELECT GETANSINULL('AdventureWorks') = 1

ISNULL(expr, value) Returns the value of expr if that value is not null; otherwise, it returns value.

ISNUMERIC(expression) Determines whether an expression is a valid numeric type.

NEWID() Creates a unique ID number that consists of a 16-byte binary string intended to
store values of the UNIQUEIDENTIFIER data type.

NEWSEQUENTIALID() Creates a GUID that is greater than any GUID previously generated by this function
on a specified computer. (This function can be used only as a default value for a
column.)

NULLIF(expr1,expr2) Returns the NULL value if the expressions expr1 and expr2 are equal. Example
(returns NULL for the project with the project_no = 'p1'):
SELECT NULLIF(project_no, 'p1') FROM projects

SERVERPROPERTY(propertyname) Returns the property information about the database server.

SYSTEM_USER Returns the login ID of the current user. Example:
SELECT SYSTEM_USER = LTB13942\dusan

USER_ID([user_name]) Returns the identifier of the user user_name. If no name is specified, the
identifier of the current user is retrieved. Example:
SELECT USER_ID('guest') = 2

USER_NAME([id]) Returns the name of the user with the identifier id. If no name is specified, the
name of the current user is retrieved. Example:
SELECT USER_NAME(1) = 'dbo'

All string functions can be nested in any order; for example, REVERSE(CURRENT_
USER).

Ch04.indd 89 1/24/12 4:39:55 PM

 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Metadata Functions
Generally, metadata functions return information about the specified database and
database objects. The following table describes several metadata functions. (For the
complete list of all metadata functions, please see Books Online.)

Function Explanation
COL_NAME(tab_id, col_id) Returns the name of a column belonging to the table with the ID

tab_id and column ID col_id. Example:
SELECT COL_NAME(OBJECT_ID('employee') , 3) = 'emp_lname'

COLUMNPROPERTY(id, col, property) Returns the information about the specified column. Example:
SELECT COLUMNPROPERTY(object_id('project'), 'project_no',
'PRECISION') = 4

DATABASEPROPERTYEX(database, property) Returns the named database property value for the specified database
and property. Example (specifies whether the database follows SQL-92
rules for allowing NULL values):
SELECT DATABASEPROPERTYEX('sample', 'IsAnsiNullDefault') = 0

DB_ID([db_name]) Returns the identifier of the database db_name. If no name is
specified, the identifier of the current database is returned. Example:
SELECT DB_ID('AdventureWorks') = 6

DB_NAME([db_id]) Returns the name of the database with the identifier db_id. If no
identifier is specified, the name of the current database is displayed.
Example:
SELECT DB_NAME(6) = 'AdventureWorks'

INDEX_COL(table, i, no) Returns the name of the indexed column in the table table, defined by
the index identifier i and the position no of the column in the index.

INDEXPROPERTY(obj_id, index_name, property) Returns the named index or statistics property value of a specified table
identification number, index or statistics name, and property name.

OBJECT_NAME(obj_id) Returns the name of the database object with the identifier obj_id.
Example:
SELECT OBJECT_NAME(453576654) = 'products'

OBJECT_ID(obj_name) Returns the identifier of the database object obj_name. Example:
SELECT OBJECT_ID('products') = 453576654

OBJECTPROPERTY(obj_id,property) Returns the information about the objects from the current database.

Scalar Operators
Scalar operators are used for operations with scalar values. Transact-SQL supports
numeric and Boolean operators as well as concatenation.

Ch04.indd 90 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 9 1

There are unary and binary arithmetic operators. Unary operators are + and – (as
signs). Binary arithmetic operators are +, –, *, /, and %. (The first four binary operators
have their respective mathematical meanings, whereas % is the modulo operator.)

Boolean operators have two different notations depending on whether they are
applied to bit strings or to other data types. The operators NOT, AND, and OR are
applied to all data types (except BIT). They are described in detail in Chapter 6.

The bitwise operators for manipulating bit strings are listed here, and Example 4.6
shows how they are used:

∼	Cc Complement (i.e., NOT)
&Cc 	 Conjunction of bit strings (i.e., AND)
Cc 	 Disjunction of bit strings (i.e., OR)
∧	Cc Exclusive disjunction (i.e., XOR or Exclusive OR)

 ExamPLE 4.6

~(1001001) = (0110110)
(11001001) | (10101101) = (11101101)
(11001001) & (10101101) = (10001001)
(11001001) ^ (10101101) = (01100100)

The concatenation operator + can be used to concatenate two character strings or bit
strings.

Global Variables
Global variables are special system variables that can be used as if they were scalar
constants. Transact-SQL supports many global variables, which have to be preceded by
the prefix @@. The following table describes several global variables. (For the complete
list of all global variables, see Books Online.)

Variable Explanation
@@CONNECTIONS Returns the number of login attempts since starting the system.

@@CPU_BUSY Returns the total CPU time (in units of milliseconds) used since starting the system.

@@ERROR Returns the information about the return value of the last executed Transact-SQL statement.

@@IDENTITY Returns the last inserted value for the column with the IDENTITY property (see Chapter 6).

@@LANGID Returns the identifier of the language that is currently used by the database system.

@@LANGUAGE Returns the name of the language that is currently used by the database system.

@@MAX_CONNECTIONS Returns the maximum number of actual connections to the system.

Ch04.indd 91 1/24/12 4:39:55 PM

 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

Variable Explanation
@@PROCID Returns the identifier for the stored procedure currently being executed.

@@ROWCOUNT Returns the number of rows that have been affected by the last Transact-SQL statement
executed by the system.

@@SERVERNAME Retrieves information about the local database server. This information contains, among other
things, the name of the server and the name of the instance.

@@SPID Returns the identifier of the server process.

@@VERSION Returns the current version of the database system software.

NULL Values
A NULL value is a special value that may be assigned to a column. This value normally
is used when information in a column is unknown or not applicable. For example,
in the case of an unknown home telephone number for a company’s employee, it is
recommended that the NULL value be assigned to the home_telephone column.

Any arithmetic expression results in a NULL if any operand of that expression is
itself a NULL value. Therefore, in unary arithmetic expressions (if A is an expression
with a NULL value), both +A and –A return NULL. In binary expressions, if one (or
both) of the operands A or B has the NULL value, A + B, A – B, A * B, A / B, and A % B
also result in a NULL. (The operands A and B have to be numerical expressions.)

If an expression contains a relational operation and one (or both) of the operands has
(have) the NULL value, the result of this operation will be NULL. Hence, each of the
expressions A = B, A <> B, A < B, and A > B also returns NULL.

In the Boolean AND, OR, and NOT, the behavior of the NULL values is specified
by the following truth tables, where T stands for true, U for unknown (NULL), and F
for false. In these tables, follow the row and column represented by the values of the
Boolean expressions that the operator works on, and the value where they intersect
represents the resulting value.

AND T U F

T T U F

U U U F

F F F F

OR T U F

T T T T

U T U U

F T U F

NOT

T F

U U

F T

Any NULL value in the argument of aggregate functions AVG, SUM, MAX,
MIN, and COUNT is eliminated before the respective function is calculated (except
for the function COUNT(*)). If a column contains only NULL values, the function

Ch04.indd 92 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 C h a p t e r 4 : S Q L C o m p o n e n t s 9 3

returns NULL. The aggregate function COUNT(*) handles all NULL values the
same as non-NULL values. If the column contains only NULL values, the result of
the function COUNT(DISTINCT column_name) is 0.

A NULL value has to be different from all other values. For numeric data types,
there is a distinction between the value zero and NULL. The same is true for the empty
string and NULL for character data types.

A column of a table allows NULL values if its definition explicitly contains NULL.
On the other hand, NULL values are not permitted if the definition of a column
explicitly contains NOT NULL. If the user does not specify NULL or NOT NULL
for a column with a data type (except TIMESTAMP), the following values are assigned:

NULL Cc If the ANSI_NULL_DFLT_ON option of the SET statement is set
to ON
NOT NULL Cc If the ANSI_NULL_DFLT_OFF option of the SET statement
is set to ON

If the SET statement isn’t activated, a column will contain the value NOT NULL
by default. (The columns of TIMESTAMP data type can be declared only as NOT
NULL.)

Summary
The basic features of Transact-SQL consist of data types, predicates, and functions.
Data types comply with data types of the ANSI SQL92 standard. Transact-SQL
supports a variety of useful system functions.

The next chapter introduces you to Transact-SQL statements in relation to SQL’s
data definition language. This part of Transact-SQL comprises all the statements
needed for creating, altering, and removing database objects.

Exercises
 E.4.1

What is the difference between the numeric data types INT, SMALLINT, and
TINYINT?

 E.4.2

What is the difference between the data types CHAR and VARCHAR? When should
you use the latter (instead of the former) and vice versa?

Ch04.indd 93 1/24/12 4:39:55 PM

 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 4

 E.4.3

How can you set the format of a column with the DATE data type so that its values
can be entered in the form ‘yyyy/mm/dd’?

In the following two exercises, use the SELECT statement in the Query Editor
component window of SQL Server Management Studio to display the result of all
system functions and global variables. (For instance, SELECT host_id() displays the
ID number of the current host.)

 E.4.4

Using system functions, find the ID number of the test database (Exercise 2.1).

 E.4.5

Using the system variables, display the current version of the database system software
and the language that is used by this software.

 E.4.6

Using the bitwise operators &, |, and ^, calculate the following operations with the bit
strings:

(11100101) & (01010111)
(10011011) | (11001001)
(10110111) ^ (10110001)

 E.4.7

What is the result of the following expressions? (A is a numerical expression and B is a
logical expression.)

A + NULL
NULL = NULL
B OR NULL
B AND NULL

 E.4.8

When can you use both single and double quotation marks to define string and
temporal constants?

 E.4.9

What is a delimited identifier and when do you need it?

Ch04.indd 94 1/24/12 4:39:55 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

In This Chapter

c Creating Database Objects
c Modifying Database Objects
c Removing Database Objects

Data Definition
Language

Chapter 5

Ch05.indd 95 1/24/12 4:38:56 PM

 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

This chapter describes all the Transact-SQL statements concerning data
definition language (DDL). The DDL statements are divided into three
groups, which are discussed in turn. The first group includes statements that

create objects, the second group includes statements that modify the structure of
objects, and the third group includes statements that remove objects.

Creating Database Objects
The organization of a database involves many different objects. All objects of a database
are either physical or logical. The physical objects are related to the organization of
the data on the physical device (disk). The Database Engine’s physical objects are files
and filegroups. Logical objects represent a user’s view of a database. Databases, tables,
columns, and views (virtual tables) are examples of logical objects.

The first database object that has to be created is a database itself. The Database
Engine manages both system and user databases. An authorized user can create user
databases, while system databases are generated during the installation of the database
system.

This chapter describes the creation, alteration, and removal of user databases, while
Chapter 15 covers all system databases in detail.

Creation of a Database
Two basic methods are used to create a database. The first method involves using
Object Explorer in SQL Server Management Studio (see Chapter 3). The second
method involves using the Transact-SQL statement CREATE DATABASE. This
statement has the following general form, the details of which are discussed next:

CREATE DATABASE db_name

 [ON [PRIMARY] { file_spec1} ,...]

 [LOG ON {file_spec2} ,...]

 [COLLATE collation_name]

 [FOR {ATTACH | ATTACH_REBUILD_LOG }]

Note
For the syntax of the Transact-SQL statements, the conventions used are those described in the section “Syntax
Conventions” in Chapter 1. According to the conventions, optional items appear in brackets, []. Items written in
braces, { }, and followed by “...” are items that can be repeated any number of times.

Ch05.indd 96 1/24/12 4:38:56 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 9 7

db_name is the name of the database. The maximum size of a database name is
128 characters. (The rules for identifiers described in Chapter 4 apply to database
names.) The maximum number of databases managed by a single system is 32,767.

All databases are stored in files. These files can be explicitly specified by the system
administrator or implicitly provided by the system. If the ON option exists in the
CREATE DATABASE statement, all files containing the data of a database are
explicitly specified.

Note
The Database Engine uses disk files to store data. Each disk file contains data of a single database. Files themselves
can be organized into filegroups. Filegroups provide the ability to distribute data over different disk drives and to
back up and restore subsets of the database (useful for very large databases).

file_spec1 represents a file specification, which includes further options such as
the logical name of the file, the physical name, and the size. The PRIMARY option
specifies the first (and most important) file that contains system tables and other
important internal information concerning the database. If the PRIMARY option is
omitted, the first file listed in the specification is used as the primary file.

A login account of the Database Engine that is used to create a database is called
a database owner. A database can have one owner, who always corresponds to a login
account name. The login account, which is the database owner, has the special name
dbo. This name is always used in relation to a database it owns.

dbo uses the LOG ON option to define one or more files as the physical destination
of the transaction log of the database. If the LOG ON option is not specified, the
transaction log of the database will still be created because every database must have at
least one transaction log file. (The Database Engine keeps a record of each change it
makes to the database. The system keeps all those records, in particular before and after
values, in one or more files called the transaction log. Each database of the system has
its own transaction log. Transaction logs are discussed in detail in Chapter 13.)

With the COLLATE option, you can specify the default collation for the database.
If the COLLATE option is not specified, the database is assigned the default collation
of the model database, which is the same as the default collation of the database system.

The FOR ATTACH option specifies that the database is created by attaching an
existing set of files. If this option is used, you have to explicitly specify the first primary
file. The FOR ATTACH_REBUILD_LOG option specifies that the database is
created by attaching an existing set of operating system files. (Attaching and detaching
a database is described later in this chapter.)

Ch05.indd 97 1/24/12 4:38:56 PM

 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

During the creation of a new database, the Database Engine uses the model database
as a template. The properties of the model database can be changed to suit the personal
conception of the system administrator.

Note
If you have a database object that should exist in each user database, you should create that object in the
model database first.

Example 5.1 creates a simple database without any further specifications. To execute
this statement, type it in the Query Editor window of SQL Server Management Studio
and press f5.

 ExaMplE 5.1

USE master;

CREATE DATABASE sample;

Example 5.1 creates a database named sample. This concise form of the CREATE
DATABASE statement is possible because almost all options of that statement have
default values. The system creates, by default, two files. The logical name of the data file
is sample and its original size is 2MB. Similarly, the logical name of the transaction log
is sample_log and its original size is 1MB. (Both size values, as well as other properties
of the new database, depend on corresponding specifications in the model database.)

Example 5.2 creates a database with explicit specifications for database and transaction
log files.

 ExaMplE 5.2

USE master;

CREATE DATABASE projects

 ON (NAME=projects_dat,

 FILENAME = 'C:\projects.mdf',

 SIZE = 10,

 MAXSIZE = 100,

 FILEGROWTH = 5)

LOG ON

 (NAME=projects_log,

 FILENAME = 'C:\projects.ldf',

 SIZE = 40,

 MAXSIZE = 100,

 FILEGROWTH = 10);

Ch05.indd 98 1/24/12 4:38:56 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 9 9

Example 5.2 creates a database called projects. Because the PRIMARY option is
omitted, the first file is assumed to be the primary file. This file has the logical name
projects_dat and is stored in the file projects.mdf. The original size of this file is
10MB. Additional portions of 5MB of disk storage are allocated by the system, if
needed. If the MAXSIZE option is not specified or is set to UNLIMITED, the file
will grow until the disk is full. (The KB, TB, and MB suffixes can be used to specify
kilobytes, terabytes, or megabytes, respectively—the default is MB.)

There is also a single transaction log file with the logical name projects_log and the
physical name projects.ldf. All options of the file specification for the transaction log
have the same name and meaning as the corresponding options of the file specification
for the data file.

Using the Transact-SQL language, you can apply the USE statement to change the
database context to the specified database. (The alternative way is to select the database
name in the Database pull-down menu in the toolbar of SQL Server Management
Studio.)

The system administrator can assign a default database to a user by using the CREATE
LOGIN statement or the ALTER LOGIN statement (see also Chapter 12). In this
case, the users do not need to execute the USE statement if they want to use their default
database.

Creation of a Database Snapshot
The CREATE DATABASE statement can also be used to create a database snapshot
of an existing database (source database). A database snapshot is transactionally
consistent with the source database as it existed at the time of the snapshot’s creation.

The syntax for the creation of a snapshot is

CREATE DATABASE database_snapshot_name

 ON (NAME = logical_file_name,

 FILENAME = 'os_file_name') [,...n]

 AS SNAPSHOT OF source_database_name

As you can see, if you want to create a database snapshot, you have to add the AS
SNAPSHOT OF clause in the CREATE DATABASE statement. Example 5.3
creates a snapshot of the AdventureWorks database and stores it in the C:\temp data
directory. (You must create this directory before you start the following example. Also,
you have to download and create the AdventureWorks database, if this database does
not exist on your system.) The AdventureWorks database is a sample database of SQL
Server and can be downloaded from Microsoft’s Codeplex page.

Ch05.indd 99 1/24/12 4:38:56 PM

 1 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 ExaMplE 5.3

USE master;

CREATE DATABASE AdventurWorks_snapshot

 ON (NAME = 'AdventureWorks_Data' ,

 FILENAME = 'C:\temp\snapshot_DB.mdf')

 AS SNAPSHOT OF AdventureWorks;

An existing database snapshot is a read-only copy of the corresponding database
that reflects the point in time when the database is copied. (For this reason, you can
have multiple snapshots for an existing database.) The snapshot file (in Example 5.3,
'C:\temp\snapshot_DB.mdf ') contains only the modified data that has changed from
the source database. Therefore, the process of creating a database snapshot must include
the logical name of each data file from the source database as well as new corresponding
physical names (see Example 5.3).

While the snapshot contains only modified data, the disk space needed for each
snapshot is just a small part of the overall space required for the corresponding source
database.

Note
To create snapshots of a database, you need NTFS disk volumes, because only such volumes support the sparse
file technology that is used for storing snapshots.

Database snapshots are usually used as a mechanism to protect data against user
errors.

Attaching and Detaching Databases
All data of a database can be detached and then attached to the same or another
database server. Detaching and attaching a database should be done if you want to
move the database.

You can detach a database from a database server by using the sp_detach_db system
procedure. (The detached database must be in the single-user mode.)

To attach a database, use the CREATE DATABASE statement with the FOR
ATTACH clause. When you attach a database, all data files must be available. If any
data file has a different path from when the database was first created, you must specify
the file’s current path.

Ch05.indd 100 1/24/12 4:38:56 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 0 1

CREaTE TaBlE: a Basic Form
The CREATE TABLE statement creates a new base table with all corresponding
columns and their data types. The basic form of the CREATE TABLE statement is

CREATE TABLE table_name

 (col_name1 type1 [NOT NULL| NULL]

 [{, col_name2 type2 [NOT NULL| NULL]} ...])

Note
Besides base tables, there are also some special kinds of tables, such as temporary tables and views (see
Chapters 6 and 11, respectively).

table_name is the name of the created base table. The maximum number of tables
per database is limited by the number of objects in the database (there can be more
than 2 billion objects in a database, including tables, views, stored procedures, triggers,
and constraints). col_name1, col_name2,... are the names of the table columns. type1,
type2,... are data types of corresponding columns (see Chapter 4).

Note
The name of a database object can generally contain four parts, in the form:
[server_name.[db_name.[schema_name.]]]object_name
object_name is the name of the database object. schema_name is the name of the schema to which the
object belongs. server_name and db_name are the names of the server and database to which the database
object belongs. Table names, combined with the schema name, must be unique within the database. Similarly,
column names must be unique within the table.

The first constraint that will be discussed in this book is the existence and nonexistence
of NULL values within a column. If NOT NULL is specified, the assignment of NULL
values for the column is not allowed. (In that case, the column may not contain NULLs,
and if there is a NULL value to be inserted, the system returns an error message.)

As already stated, a database object (in this case, a table) is always created within
a schema of a database. A user can create a table only in a schema for which she has
ALTER permissions. Any user in the sysadmin, db_ddladmin, or db_owner role can
create a table in any schema. (The ALTER permissions, as well as database and server
roles, are discussed in detail in Chapter 12.)

Ch05.indd 101 1/24/12 4:38:56 PM

 1 0 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

The creator of a table must not be its owner. This means that you can create a table
that belongs to someone else. Similarly, a table created with the CREATE TABLE
statement must not belong to the current database if some other (existing) database
name, together with the schema name, is specified as the prefix of the table name.

The schema to which a table belongs has two possible default names. If a table is
specified without the explicit schema name, the system checks for a table name in
the corresponding default schema. If the object name cannot be found in the default
schema, the system searches in the dbo schema.

Note
You should always specify the table name together with the corresponding schema name. That way you can
eliminate possible ambiguities.

Temporary tables are a special kind of base table. They are stored in the tempdb
database and are automatically dropped at the end of the session. The properties of
temporary tables and examples concerning them are given in Chapter 6.

Example 5.4 shows the creation of all tables of the sample database. (The sample
database should be the current database.)

 ExaMplE 5.4

USE sample;

CREATE TABLE employee (emp_no INTEGER NOT NULL,

 emp_fname CHAR(20) NOT NULL,

 emp_lname CHAR(20) NOT NULL,

 dept_no CHAR(4) NULL);

CREATE TABLE department(dept_no CHAR(4) NOT NULL,

 dept_name CHAR(25) NOT NULL,

 location CHAR(30) NULL);

CREATE TABLE project (project_no CHAR(4) NOT NULL,

 project_name CHAR(15) NOT NULL,

 budget FLOAT NULL);

CREATE TABLE works_on (emp_no INTEGER NOT NULL,

 project_no CHAR(4) NOT NULL,

 job CHAR (15) NULL,

 enter_date DATE NULL);

Ch05.indd 102 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 0 3

Besides the data type and the nullability, the column specification can contain the
following options:

DEFAULT clauseCc

IDENTITY propertyCc

The DEFAULT clause in the column definition specifies the default value of the
column—that is, whenever a new row is inserted into the table, the default value for
the particular column will be used if there is no value specified for it. A constant
value, such as the system functions USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_TIMESTAMP, and NULL, among others, can be
used as the default values.

A column with the IDENTITY property allows only integer values, which are
usually implicitly assigned by the system. Each value, which should be inserted in the
column, is calculated by incrementing the last inserted value of the column. Therefore,
the definition of a column with the IDENTITY property contains (implicitly or
explicitly) an initial value and an increment. This property will be discussed in detail in
the next chapter (see Example 6.42).

To close this section, Example 5.5 shows the creation of a table with a column of the
SQL_VARIANT type.

 ExaMplE 5.5

USE sample;

CREATE TABLE Item_Attributes (

 item_id INT NOT NULL,

 attribute NVARCHAR(30) NOT NULL,

 value SQL_VARIANT NOT NULL,

 PRIMARY KEY (item_id, attribute))

In Example 5.5, the table contains the value column, which is of type SQL_
VARIANT. As you already know from Chapter 4, the SQL_VARIANT data type can
be used to store values of various data types at the same time, such as numeric values,
strings, and date values. Note that in Example 5.5 the SQL_VARIANT data type is
used for the column values, because different attribute values may be of different data
types. For example, the size attribute stores an integer attribute value, and the name
attribute stores a character string attribute value.

Ch05.indd 103 1/24/12 4:38:57 PM

 1 0 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

CREaTE TaBlE and Declarative Integrity Constraints
One of the most important features that a DBMS must provide is a way of maintaining
the integrity of data. The constraints, which are used to check the modification or
insertion of data, are called integrity constraints. The task of maintaining integrity
constraints can be handled by the user in application programs or by the DBMS.
The most important benefits of handling integrity constraints by the DBMS are the
following:

Increased reliability of dataCc

Reduced programming timeCc

Simple maintenanceCc

Using the DBMS to define integrity constraints increases the reliability of data
because there is no possibility that the integrity constraints can be forgotten by a
programmer. (If an integrity constraint is handled by application programs, all programs
concerning the constraint must include the corresponding code. If the code is omitted
in one application program, the consistency of data is compromised.)

An integrity constraint not handled by the DBMS must be defined in every application
program that uses the data involved in the constraint. In contrast, the same integrity
constraint must be defined only once if it is to be handled by the DBMS. Additionally,
application-enforced constraints are usually more complex to code than are database-
enforced constraints.

If an integrity constraint is handled by the DBMS, the modification of the structure
of the constraint must be handled only once, in the DBMS. The modification of a
structure in application programs requires the modification of every program that
involves the corresponding code.

There are two groups of integrity constraints handled by a DBMS:

Declarative integrity constraintsCc

Procedural integrity constraints that are handled by triggers (for the definition of Cc

triggers, see Chapter 13)

The declarative constraints are defined using the DDL statements CREATE
TABLE and ALTER TABLE. They can be column-level constraints or table-level
constraints. Column-level constraints, together with the data type and other column
properties, are placed within the declaration of the column, while table-level constraints
are always defined at the end of the CREATE TABLE or ALTER TABLE statement,
after the definition of all columns.

Ch05.indd 104 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 0 5

Note
There is only one difference between column-level constraints and table-level constraints: a column-level
constraint can be applied only upon one column, while a table-level constraint can cover one or more columns
of a table.

Each declarative constraint has a name. The name of the constraint can be explicitly
assigned using the CONSTRAINT option in the CREATE TABLE statement or the
ALTER TABLE statement. If the CONSTRAINT option is omitted, the Database
Engine assigns an implicit name for the constraint.

Note
Using explicit constraint names is strongly recommended. The search for an integrity constraint can be greatly
enhanced if an explicit name for a constraint is used.

All declarative constraints can be categorized into several groups:

DEFAULT clauseCc

UNIQUE clauseCc

PRIMARY KEY clauseCc

CHECK clauseCc

FOREIGN KEY clause and referential integrityCc

The definition of the default value using the DEFAULT clause was shown earlier in
this chapter (see also Example 5.6). All other constraints are described in detail in the
following sections.

The UNIQUE Clause
Sometimes more than one column or group of columns of the table have unique values
and therefore can be used as the primary key. All columns or groups of columns that
qualify to be primary keys are called candidate keys. Each candidate key is defined using
the UNIQUE clause in the CREATE TABLE or the ALTER TABLE statement.

The UNIQUE clause has the following form:

[CONSTRAINT c_name]

 UNIQUE [CLUSTERED | NONCLUSTERED] ({ col_name1} ,...)

Ch05.indd 105 1/24/12 4:38:57 PM

 1 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

The CONSTRAINT option in the UNIQUE clause assigns an explicit name to
the candidate key. The option CLUSTERED or NONCLUSTERED relates to the
fact that the Database Engine always generates an index for each candidate key of
a table. The index can be clustered—that is, the physical order of rows is specified
using the indexed order of the column values. If the order is not specified, the index
is nonclustered (see also Chapter 10). The default value is NONCLUSTERED.
col_name1 is a column name that builds the candidate key. (The maximum number of
columns per candidate key is 16.)

Example 5.6 shows the use of the UNIQUE clause. (You have to drop the projects
table, via DROP TABLE projects, before you execute the following example.)

 ExaMplE 5.6

USE sample;

CREATE TABLE projects (project_no CHAR(4) DEFAULT 'p1',

 project_name CHAR(15) NOT NULL,

 budget FLOAT NULL

 CONSTRAINT unique_no UNIQUE (project_no));

Each value of the project_no column of the projects table is unique, including
the NULL value. (Just as with any other value with a UNIQUE constraint, if NULL
values are allowed on a corresponding column, there can be at most one row with the
NULL value for that particular column.) If an existing value should be inserted into
the column project_no, the system rejects it. The explicit name of the constraint that is
defined in Example 5.6 is unique_no.

The PRIMARY KEY Clause
The primary key of a table is a column or group of columns whose value is different
in every row. Each primary key is defined using the PRIMARY KEY clause in the
CREATE TABLE or the ALTER TABLE statement.

The PRIMARY KEY clause has the following form:

[CONSTRAINT c_name]

 PRIMARY KEY [CLUSTERED | NONCLUSTERED] ({col_name1} ,...)

All options of the PRIMARY KEY clause have the same meaning as the corresponding
options with the same name in the UNIQUE clause. In contrast to UNIQUE, the
PRIMARY KEY column must be NOT NULL, and its default value is CLUSTERED.

Example 5.7 shows the specification of the primary key for the employee table of
the sample database.

Ch05.indd 106 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 0 7

Note
You have to drop the employee table (DROP TABLE employee) before you execute the following example.

 ExaMplE 5.7

USE sample;

CREATE TABLE employee (emp_no INTEGER NOT NULL,

 emp_fname CHAR(20) NOT NULL,

 emp_lname CHAR(20) NOT NULL,

 dept_no CHAR(4) NULL,

 CONSTRAINT prim_empl PRIMARY KEY (emp_no));

The employee table is re-created and its primary key is defined in Example 5.7. The
primary key of the table is specified using the declarative integrity constraint named
prim_empl. This integrity constraint is a table-level constraint, because it is specified
after the definition of all columns of the employee table.

Example 5.8 is equivalent to Example 5.7, except for the specification of the primary
key of the employee table as a column-level constraint.

Note
Again, you have to drop the employee table (DROP TABLE employee) before you execute the following
example.

 ExaMplE 5.8

USE sample;

CREATE TABLE employee

 (emp_no INTEGER NOT NULL CONSTRAINT prim_empl PRIMARY KEY,

 emp_fname CHAR(20) NOT NULL,

 emp_lname CHAR(20) NOT NULL,

 dept_no CHAR(4) NULL);

In Example 5.8, the PRIMARY KEY clause belongs to the declaration of the
corresponding column, together with its data type and nullability. For this reason, it is
called a column-level constraint.

Ch05.indd 107 1/24/12 4:38:57 PM

 1 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

The CHECK Clause
The check constraint specifies conditions for the data inserted into a column. Each row
inserted into a table or each value updating the value of the column must meet these
conditions. The CHECK clause is used to specify check constraints. This clause can
be defined in the CREATE TABLE or ALTER TABLE statement. The syntax of the
CHECK clause is

[CONSTRAINT c_name]

 CHECK [NOT FOR REPLICATION] expression

expression must evaluate to a Boolean value (true or false) and can reference any
columns in the current table (or just the current column if specified as a column-
level constraint), but no other tables. The CHECK clause is not enforced during a
replication of the data if the option NOT FOR REPLICATION exists. (A database, or
a part of it, is said to be replicated if it is stored at more than one site. Replication can
be used to enhance the availability of data. Chapter 19 describes data replication.)

Example 5.9 shows how the CHECK clause can be used.

 ExaMplE 5.9

USE sample;

CREATE TABLE customer

 (cust_no INTEGER NOT NULL,

 cust_group CHAR(3) NULL,

 CHECK (cust_group IN ('c1', 'c2', 'c10')));

The customer table that is created in Example 5.9 contains the cust_group column
with the corresponding check constraint. The database system returns an error if the
cust_group column, after a modification of its existing values or after the insertion of a
new row, would contain a value different from the values in the set ('c1', 'c2', 'c10').

The FOREIGN KEY Clause
A foreign key is a column or group of columns in one table that contains values that
match the primary key values in the same or another table. Each foreign key is defined
using the FOREIGN KEY clause combined with the REFERENCES clause.

The FOREIGN KEY clause has the following form:

[CONSTRAINT c_name]

 [[FOREIGN KEY] ({col_name1} ,...)]

 REFERENCES table_name ({col_name2},...)

 [ON DELETE {NO ACTION| CASCADE | SET NULL | SET DEFAULT}]

 [ON UPDATE {NO ACTION | CASCADE | SET NULL | SET DEFAULT}]

Ch05.indd 108 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 0 9

The FOREIGN KEY clause defines all columns explicitly that belong to the foreign
key. The REFERENCES clause specifies the table name with all columns that build
the corresponding primary key. The number and the data types of the columns in the
FOREIGN KEY clause must match the number and the corresponding data types of
columns in the REFERENCES clause (and, of course, both of these must match the
number and data types of the columns in the primary key of the referenced table).

The table that contains the foreign key is called the referencing table, and the table
that contains the corresponding primary key is called the parent table or referenced table.
Example 5.10 shows the specification of the foreign key in the works_on table of the
sample database.

Note
You have to drop the works_on table before you execute the following example.

 ExaMplE 5.10

USE sample;

CREATE TABLE works_on (emp_no INTEGER NOT NULL,

 project_no CHAR(4) NOT NULL,

 job CHAR (15) NULL,

 enter_date DATE NULL,

 CONSTRAINT prim_works PRIMARY KEY(emp_no, project_no),

 CONSTRAINT foreign_works FOREIGN KEY(emp_no)

 REFERENCES employee (emp_no));

The works_on table in Example 5.10 is specified with two declarative integrity
constraints: prim_works and foreign_works. Both constraints are table-level constraints,
where the former specifies the primary key and the latter the foreign key of the works_
on table. Further, the constraint foreign_works specifies the employee table as the
parent table and its emp_no column as the corresponding primary key of the column
with the same name in the works_on table.

The FOREIGN KEY clause can be omitted if the foreign key is defined as a
column-level constraint, because the column being constrained is the implicit column
“list” of the foreign key, and the keyword REFERENCES is sufficient to indicate what
kind of constraint this is. The maximum number of FOREIGN KEY constraints in a
table is 63.

A definition of the foreign keys in tables of a database imposes the specification of
another important integrity constraint: the referential integrity, described next.

Ch05.indd 109 1/24/12 4:38:57 PM

 1 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

Referential Integrity
A referential integrity enforces insert and update rules for the tables with the foreign
key and the corresponding primary key constraint. Examples 5.7 and 5.10 specify two
such constraints: prim_empl and foreign_works. The REFERENCES clause
in Example 5.10 determines the employee table as the parent table.

If the referential integrity for two tables is specified, the modification of values in
the primary and the corresponding foreign key are not always possible. The following
subsection discusses when it is possible and when not.

Possible Problems with Referential Integrity
There are four cases in which the modification of the values in the foreign key or in
the primary key can cause problems. All of these cases will be shown using the sample
database. The first two cases affect modifications of the referencing table, while the last
two concern modifications of the parent table.

Case 1 Insert a new row into the works_on table with the employee number 11111.
The insertion of the new row in the referencing table works_on introduces a

new employee number for which there is no matching employee in the parent table
(employee). If the referential integrity for both tables is specified as is done in
Examples 5.7 and 5.10, the Database Engine rejects the insertion of a new row. For readers
who are familiar with the SQL language, the corresponding Transact-SQL statement is

USE sample;

INSERT INTO works_on (emp_no, ...)

 VALUES (11111, ...);

Case 2 Modify the employee number 10102 in all rows of the works_on table. The
new number is 11111.

In Case 2, the existing value of the foreign key in the works_on table should be
replaced using the new value, for which there is no matching value in the parent
table employee. If the referential integrity for both tables is specified as is done in
Examples 5.7 and 5.10, the database system rejects the modification of the rows in
the works_on table. The corresponding Transact-SQL statement is

USE sample;

UPDATE works_on

 SET emp_no = 11111 WHERE emp_no = 10102;

Case 3 Modify the employee number 10102 in the corresponding row of the
employee table. The new number is 22222.

Ch05.indd 110 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 1 1

In Case 3, the existing value of the primary key in the parent table and the foreign
key of the referencing table is modified only in the parent table. The values in the
referencing table are unchanged. Therefore, the system rejects the modification of the
row with the employee number 10102 in the employee table. Referential integrity
requires that no rows in the referencing table (the one with the FOREIGN KEY
clause) can exist unless a corresponding row in the parent table (the one with the
PRIMARY KEY clause) also exists. Otherwise, the rows in the parent table would
be “orphaned.” If the modification described above were permitted, then rows in the
works_on table having the employee number 10102 would be orphaned, and the
system would reject it. The corresponding Transact-SQL statement is

USE sample;

UPDATE employee

 SET emp_no = 22222 WHERE emp_no = 10102;

Case 4 Delete the row of the employee table with the employee number 10102.
Case 4 is similar to Case 3. The deletion would remove the employee for which

matching rows exist in the referencing table. Example 5.11 shows the definition of
tables of the sample database with all existing primary key and foreign key constraints.
(If the employee, department, project, and works_on tables already exist, drop them
first using the DROP TABLE table_name statement.)

 ExaMplE 5.11
USE sample;

CREATE TABLE department(dept_no CHAR(4) NOT NULL,

 dept_name CHAR(25) NOT NULL,

 location CHAR(30) NULL,

 CONSTRAINT prim_dept PRIMARY KEY (dept_no));

CREATE TABLE employee (emp_no INTEGER NOT NULL,

 emp_fname CHAR(20) NOT NULL,

 emp_lname CHAR(20) NOT NULL,

 dept_no CHAR(4) NULL,

 CONSTRAINT prim_emp PRIMARY KEY (emp_no),

 CONSTRAINT foreign_emp FOREIGN KEY(dept_no) REFERENCES department(dept_no));

CREATE TABLE project (project_no CHAR(4) NOT NULL,

 project_name CHAR(15) NOT NULL,

 budget FLOAT NULL,

 CONSTRAINT prim_proj PRIMARY KEY (project_no));

CREATE TABLE works_on (emp_no INTEGER NOT NULL,

 project_no CHAR(4) NOT NULL,

 job CHAR (15) NULL,

Ch05.indd 111 1/24/12 4:38:57 PM

 1 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 enter_date DATE NULL,

 CONSTRAINT prim_works PRIMARY KEY(emp_no, project_no),

 CONSTRAINT foreign1_works FOREIGN KEY(emp_no) REFERENCES employee(emp_no),

 CONSTRAINT foreign2_works FOREIGN KEY(project_no) REFERENCES project(project_no));

The ON DELETE and ON UPDATE Options
The Database Engine can react differently if the values of the primary key of a table
should be modified or deleted. If you try to update values of a foreign key, and those
modifications result in inconsistencies in the corresponding primary key (see Case 1
and Case 2 in the previous section), the database system will always reject the modification
and will display a message similar to the following:

Server: Msg 547, Level 16, State 1, Line 1 UPDATE statement conflicted with
COLUMN FOREIGN KEY constraint 'FKemployee'. The conflict occurred
in database 'sample', table 'employee', column 'dept_no'. The statement has been
terminated.

But if you try to modify the values of a primary key, and these modifications result in
inconsistencies in the corresponding foreign key (see Case 3 and Case 4 in the previous
section), a database system could react very flexibly. Generally, there are four options for
how a database system can react:

NO ACTION Cc Allows you to modify (update or delete) only those values of the
parent table that do not have any corresponding values in the foreign key of the
referencing table.
CASCADE Cc Allows you to modify (update or delete) all values of the
parent table. If this option is specified, a row is updated (i.e., deleted) from the
referencing table (i.e., the one with the foreign key) if the corresponding value
in the primary key has been updated, or the whole row with that value has been
deleted from the parent table (i.e., the one with the primary key).
SET NULL Cc Allows you to modify (update or delete) all values of the parent
table. If you want to update a value of the parent table and this modification
would lead to data inconsistencies in the referencing table, the database system
sets all corresponding values in the foreign key of the referencing table to NULL.
Similarly, if you want to delete the row in the parent table and the deletion of the
value in the primary key would lead to data inconsistencies, the database system
sets all corresponding values in the foreign key to NULL. That way, all data
inconsistencies are omitted.
SET DEFAULT Cc Analogous to the SET NULL option, with one exception: all
corresponding values in the foreign key are set to a default value. (Obviously, the
default value must still exist in the primary key of the parent table after modification.)

Ch05.indd 112 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 1 3

Note
The Transact-SQL language supports the first two directives.

Example 5.12 shows the use of the ON DELETE and ON UPDATE options.

 ExaMplE 5.12

USE sample;

CREATE TABLE works_on1

(emp_no INTEGER NOT NULL,

 project_no CHAR(4) NOT NULL,

 job CHAR (15) NULL,

 enter_date DATE NULL,

 CONSTRAINT prim_works1 PRIMARY KEY(emp_no, project_no),

 CONSTRAINT foreign1_works1 FOREIGN KEY(emp_no)

 REFERENCES employee(emp_no) ON DELETE CASCADE,

 CONSTRAINT foreign2_works1 FOREIGN KEY(project_no)

 REFERENCES project(project_no) ON UPDATE CASCADE);

Example 5.12 creates the works_on1 table that uses the ON DELETE CASCADE
and ON UPDATE CASCADE options. If you load the works_on1 table with the
content shown in Table 1-4, each deletion of a row in the employee table will cause
the additional deletion of all rows in the works_on1 table that have the corresponding
value in the emp_no column. Similarly, each update of a value in the project_no
column of the project table will cause the same modification on all corresponding values
in the project_no column of the works_on1 table.

Creating Other Database Objects
A relational database contains not only base tables that exist in their own right but
also views, which are virtual tables. The data of a base table exists physically—that
is, it is stored on a disk—while a view is derived from one or more base tables. The
CREATE VIEW statement creates a new view from one or more existing tables
(or views) using a SELECT statement, which is an inseparable part of the CREATE
VIEW statement. Since the creation of a view always contains a query, the CREATE
VIEW statement belongs to the data manipulation language (DML) rather than to
the data definition language (DDL). For this reason, the creation and removal of views
is discussed in Chapter 11, after the presentation of all Transact-SQL statements for
data modification.

Ch05.indd 113 1/24/12 4:38:57 PM

 1 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

The CREATE INDEX statement creates a new index on a specified table. The
indices are primarily used to allow efficient access to the data stored on a disk. The
existence of an index can greatly improve the access to data. Indices, together with
the CREATE INDEX statement, are discussed in detail in Chapter 10.

A stored procedure is an additional database object that can be created using the
corresponding CREATE PROCEDURE statement. (A stored procedure is a special
kind of sequence of statements written in Transact-SQL, using the SQL language and
procedural extensions. Chapter 8 describes stored procedures in detail.)

A trigger is a database object that specifies an action as a result of an operation.
This means that when a particular data-modifying action (modification, insertion, or
deletion) occurs on a particular table, the Database Engine automatically invokes one
or more additional actions. The CREATE TRIGGER statement creates a new trigger.
Triggers are described in detail in Chapter 14.

A synonym is a local database object that provides a link between itself and
another object managed by the same or a linked database server. Using the CREATE
SYNONYM statement, you can create a new synonym for the given object.

Example 5. 13 shows the use of this statement.

 ExaMplE 5.13

USE AdventureWorks;

CREATE SYNONYM prod

 FOR AdventureWorks.Production.Product;

Example 5.13 creates a synonym for the Product table in the Production schema of
the AdventureWorks database. This synonym can be used in DML statements, such as
SELECT, INSERT, UPDATE, and DELETE.

Note
The main reason to use synonyms is to omit the use of lengthy names in DML statements. As you already know,
the name of a database object can generally contain four parts. Introducing a (single-part) synonym for an
object that has three or four parts can save you time when typing its name.

A schema is a database object that includes statements for creation of tables, views,
and user privileges. (You can think of a schema as a construct that collects together
several tables, corresponding views, and user privileges.)

Ch05.indd 114 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 1 5

Note
The Database Engine treats the notion of schema the same way it is treated in the ANSI SQL standard. In the SQL
standard, a schema is defined as a collection of database objects that is owned by a single principal and forms
a single namespace. A namespace is a set of objects that cannot have duplicate names. For example, two tables
can have the same name only if they are in separate schemas. (Schema is a very important concept in the security
model of the Database Engine. For this reason, you can find a detailed description of schema in Chapter 12.)

Integrity Constraints and Domains
A domain is the set of all possible legitimate values that columns of a table may contain.
Almost all DBMSs use base data types such as INT, CHAR, and DATE to define
the set of possible values for a column. This method of enforcing “domain integrity” is
incomplete, as can be seen from the following example.

The person table has a column, zip, that specifies the ZIP code of the city in which
the person lives. This column can be defined using the SMALLINT or CHAR(5)
data type. The definition with the SMALLINT data type is inaccurate, because the
SMALLINT data type contains all positive and negative values between –215–1 and 215.
The definition using CHAR(5) is even more inaccurate, because all characters and
special signs can also be used in such a case. Therefore, an accurate definition of ZIP
codes requires defining an interval of positive integers between 00601 and 99950 and
assigning it to the zip column.

CHECK constraints (defined in the CREATE TABLE or ALTER TABLE
statement) can enforce more precise domain integrity because their expressions are
flexible, and they are always enforced when the column is inserted or modified.

The Transact-SQL language provides support for domains by creating alias data
types using the CREATE TYPE statement. The following two sections describe alias
and Common Language Runtime (CLR) data types.

Alias Data Types
An alias data type is a special kind of data type that is defined by users using the
existing base data types. Such a data type can be used with the CREATE TABLE
statement to define one or more columns in a database.

The CREATE TYPE statement is generally used to create an alias data type. The
syntax of this statement to specify an alias data type is as follows:

CREATE TYPE [type_schema_name.] type_name

{ [FROM base_type [(precision [, scale])] [NULL | NOT NULL]]
 | [EXTERNAL NAME assembly_name [.class_name]]}

Ch05.indd 115 1/24/12 4:38:57 PM

 1 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

Example 5.14 shows the creation of an alias data type using the CREATE TYPE
statement.

 ExaMplE 5.14

USE sample;

CREATE TYPE zip

 FROM SMALLINT NOT NULL;

Example 5.14 creates an alias type zip based on the standard data type CHAR(5).
This user-defined data type can now be used as a data type of a table column, as shown
in Example 5.15.

Note
You have to drop the customer table (DROP TABLE customer) before you execute the following example.

 ExaMplE 5.15

USE sample;

CREATE TABLE customer

 (cust_no INT NOT NULL,

 cust_name CHAR(20) NOT NULL,

 city CHAR(20),

 zip_code ZIP,

 CHECK (zip_code BETWEEN 601 AND 99950));

Example 5.15 uses the new zip data type to specify a column of the customer table.
The values of this column have to be constrained to the region between 601 and 99950.
As can be seen from Example 5.15, this can be done using the CHECK clause.

Note
Generally, the Database Engine implicitly converts between compatible columns of different data types. This is
valid for the alias data types, too.

Since version 2008, SQL Server supports the creation of user-defined table types.
Example 5.16 shows how you can use the CREATE TYPE statement to create such
a table type.

Ch05.indd 116 1/24/12 4:38:57 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 1 7

 ExaMplE 5.16

USE sample;

CREATE TYPE person_table_t AS TABLE

 (name VARCHAR(30), salary DECIMAL(8,2));

The user-defined table type called person_table_t has two columns: name and
salary. The main syntactical difference in relation to alias data types is the existence
of the AS TABLE clause, as can be seen in Example 5.16. User-defined table types
are usually used in relation to table-valued parameters (see Chapter 8).

CLR Data Types
The CREATE TYPE statement can also be applied to create a user-defined data type
using .NET. In this case, the implementation of a user-defined data type is defined in
a class of an assembly in the Common Language Runtime (CLR). This means that
you can use one of the .NET languages like C# or Visual Basic to implement the
new data type. Further description of the user-defined data types is outside the scope
of this book.

Modifying Database Objects
The Transact-SQL language supports changing the structure of the following database
objects, among others:

DatabaseCc

TableCc

Stored procedureCc

ViewCc

SchemaCc

TriggerCc

The following two sections describe, in turn, how you can alter a database and a
table. The modification of the structure of each of the last four database objects is
described in Chapters 8, 11, 12, and 14, respectively.

Ch05.indd 117 1/24/12 4:38:57 PM

 1 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

altering a Database
The ALTER DATABASE statement changes the physical structure of a database. The
Transact-SQL language allows you to change the following properties of a database:

Add or remove one or more database filesCc

Add or remove one or more log filesCc

Add or remove filegroupsCc

Modify file or filegroup propertiesCc

Set database optionsCc

Change the name of the database using the Cc sp_rename stored procedure
(discussed a bit later, in the section, “Altering a Table”)

The following subsections describe these different types of database alterations.
In this section, we will also use the ALTER DATABASE statement to show how
FILESTREAM data can be stored in files and filegroups and to explain the notion of
contained databases.

Adding or Removing Database Files, Log Files, or Filegroups
The ALTER DATABASE statement allows the addition and removal of database
files. The clauses ADD FILE and REMOVE FILE specify the addition of a new file
and the deletion of an existing file, respectively. (Additionally, a new file can be assigned
to an existing filegroup using the TO FILEGROUP option.)

Example 5.17 shows how a new database file can be added to the projects database.

 ExaMplE 5.17

USE master;

GO

ALTER DATABASE projects

ADD FILE (NAME=projects_dat1,

 FILENAME = 'C:\projects1.mdf', SIZE = 10,

 MAXSIZE = 100, FILEGROWTH = 5);

The ALTER DATABASE statement in Example 5.17 adds a new file with the
logical name projects_dat1. Its initial size is 10MB, and this file will grow using units
of 5MB until it reaches the upper limit of 100MB. (Log files are added in the same
way as database files. The only difference is that you use the ADD LOG FILE clause
instead of ADD FILE.)

Ch05.indd 118 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 1 9

The REMOVE FILE clause removes one or more files that belong to an existing
database. The file can be a data file or a log file. The file cannot be removed unless it
is empty.

The CREATE FILEGROUP clause creates a new filegroup, while DELETE
FILEGROUP removes an existing filegroup from the system. Again, you cannot
remove a filegroup unless it is empty.

Modifying File or Filegroup Properties
You can use the MODIFY FILE clause to change the following file properties:

Change the logical name of a file using the NEWNAME option of the Cc

MODIFY FILE clause
Increase the value of the SIZE propertyCc

Change the FILENAME, MAXSIZE, or FILEGROWTH propertyCc

Mark the file as OFFLINECc

Similarly, you can use the MODIFY FILEGROUP clause to change the following
filegroup properties:

Change the name of a filegroup using the NAME option of the MODIFY Cc

FILEGROUP clause
Mark the filegroup as the default filegroup using the DEFAULT optionCc

Mark the filegroup as read-only or read-write using the READ_ONLY or Cc

READ_WRITE option, respectively

Setting Database Options
The SET clause of the ALTER DATABASE statement is used to set different
database options. Some options must be set to ON or OFF, but most of them have a list
of possible values. Each database option has a default value, which is set in the model
database. Therefore, you can alter the model database to change the default values of
specific options.

All options that you can set are divided into several groups. The most important
groups are

State optionsCc

Auto optionsCc

SQL optionsCc

Ch05.indd 119 1/24/12 4:38:58 PM

 1 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

The state options control the following:

User access to the database (options are SINGLE_USER, RESTRICTED_Cc

USER, and MULTI_USER)
The status of the database (options are ONLINE, OFFLINE, and Cc

EMERGENCY)
The read/write modus (options are READ_ONLY and READ_WRITE)Cc

The auto options control, among other things, the art of the database shutdown
(the option AUTO_CLOSE) and how index statistics are built (the options AUTO_
CREATE_STATISTICS and AUTO_UPDATE_STATISTICS).

The SQL options control the ANSI compliance of the database and its objects.
All SQL options can be edited using the DATABASEPROPERTYEX function and
modified using the ALTER DATABASE statement. The recovery options FULL,
BULK-LOGGED, and SIMPLE influence the art of database recovery.

Storing FILESTREAM Data
The previous chapter explained what FILESTREAM data is and the reason for
using it. This section discusses how FILESTREAM data can be stored as a part of a
database. Before you can store FILESTREAM data, you have to enable the system for
this task. The following subsection explains how to enable the operating system and the
instance of your database system.

Enabling FIlESTREaM Storage FILESTREAM storage has to be enabled at two
levels:

For the Windows operating systemCc

For the particular server instanceCc

You use SQL Server Configuration Manager to enable FILESTREAM storage
at the OS level. Choose Start | All Programs | SQL Server 2012 | Configuration
Tools | SQL Server Configuration Manager. In the list of services, right-click SQL
Server Services and click Open. After that, right-click the instance on which you
want to enable the FILESTREAM storage and click Properties. In the SQL Server
Properties dialog box, click the FILESTREAM tab (see Figure 5-1). If you want just
to read FILESTREAM data, check the Enable FILESTREAM for Transact-SQL
Access check box. If you want to be able to read as well as write data, also check the

Ch05.indd 120 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 2 1

Enable FILESTREAM for File I/O Streaming Access check box. Enter the name of
the Windows share in the Windows Share Name box. (The Windows share is used
for reading and writing FILESTREAM data using Win32 API. If you use a name to
return the path of a FILESTREAM BLOB, it will use the name of the Windows share
to display the path.)

SQL Server Configuration Manager creates a new share with the specified name on
the host system. Click OK to apply the changes.

Note
You need to be Windows Administrator on a local system and have administrator (sysadmin) rights to enable
FILESTREAM storage. You need also to restart the instance for the changes to take effect.

The next step is to enable FILESTREAM storage for a particular instance. SQL
Server Management Studio will be used to show this task. (You can also use the
sp_configure system procedure with the filestream access level option.) Right-click

Figure 5-1 SQL Server Properties dialog box, FILESTREAM tab

Ch05.indd 121 1/24/12 4:38:58 PM

 1 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

the instance in Object Explorer, click Properties, select Advanced in the left pane (see
Figure 5-2), and set Filestream Access Level to one of the following levels:

DisabledCc FILESTREAM storage is not allowed.
Transact-SQL Access EnabledCc FILESTREAM data can be accessed using
T-SQL statements.
Full Access EnabledCc FILESTREAM data can be accessed using T-SQL as
well as Win32.

Figure 5-2 Server Properties window with Filestream Access Level set to Full Access Enabled

Ch05.indd 122 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 2 3

adding a File to the Filegroup After you enable FILESTREAM storage for
your instance, you can use the ALTER DATABASE statement first to create a
filegroup for FILESTREAM data and then to add a file to that filegroup, as shown
in Example 5.18. (Of course, you can also use the CREATE DATABASE statement
to accomplish this task.)

Note
Before you execute the statement in Example 5.18, change the name of the file in the FILENAME clause.

 ExaMplE 5.18

USE sample;

ALTER DATABASE sample

 ADD FILEGROUP Employee_FSGroup CONTAINS FILESTREAM;

GO

ALTER DATABASE sample

 ADD FILE (NAME= employee_FS,

 FILENAME = 'C:\DUSAN\emp_FS')

 TO FILEGROUP Employee_FSGroup

The first ALTER DATABASE statement in Example 5.18 adds a new
filegroup called Employee_FSGroup to the sample database. The CONTAINS
FILESTREAM option tells the system that this filegroup will contain only
FILESTREAM data. The second ALTER DATABASE statement adds a new file to
the existing filegroup.

Now you can create a table with one or more FILESTREAM columns.
Example 5.19 shows the creation of a table with a FILESTREAM column.

 ExaMplE 5.19

CREATE TABLE employee_info

 (id UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 filestream_data VARBINARY(MAX) FILESTREAM NULL)

The employee_info table in Example 5.19 contains the filestream_data columns,
which must be of the VARBINARY(max) data type. Such a column includes
the FILESTREAM attribute, indicating that a column should store data in the
FILESTREAM filegroup. All tables that store FILESTREAM data require the
existence of a UNIQUE ROWGUILDCOL. For this reason, the employee_info table
has the id column, defined using these two attributes.

Ch05.indd 123 1/24/12 4:38:58 PM

 1 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

To insert data into a FILESTREAM column, you use the standard INSERT
statement, which is described in Chapter 7. Also, to read data from a FILESTREAM
column, you can use the standard SELECT statement, which is described in the next
chapter. The detailed description of read and write operations on FILESTREAM data
are outside the scope of this book.

Contained Databases
One of the significant problems with SQL Server databases is that they cannot be
exported (or imported) easily. As you already know from this chapter, you can attach
and detach a database, but many important parts and properties of the attached
database will be missing. (The main problem in such a case is database security in
general and existing logins in particular, which are usually incomplete or wrong after
the move.)

Microsoft intends to solve such problems by introducing contained databases.
A contained database comprises all database settings and data required to specify
the database and is isolated from the instance of the Database Engine on which it is
installed. In other words, this form of databases has no configuration dependencies on
the instance and can easily be moved from one instance of SQL Server to another.

Generally, there are three forms of databases in relation to containment:

Fully contained databasesCc

Partially contained databasesCc

Noncontained databasesCc

Fully contained databases are those where database objects cannot cross the
application boundary. (An application boundary defines the scope of an application. For
instance, user-defined functions are within the application boundary, while functions
related to server instances are outside it.)

Partially contained databases allow database objects to cross the application
boundary, while noncontained databases do not support the notion of an application
boundary at all.

Note
SQL Server 2012 supports partially contained databases. A future version of SQL Server will support full
containment, too. (All databases in previous versions of SQL Server are noncontained databases.)

Ch05.indd 124 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 2 5

Let’s take a look at how you can create a partially contained database in SQL Server
2012. If a database called my_sample already exists, and it is created as a noncontained
database (using the CREATE DATABASE statement, for instance), you can use
the ALTER DATABASE statement to alter it to partial containment, as shown in
Example 5.20.

 ExaMplE 5.20

EXEC sp_configure 'show advanced options' , 1;

RECONFIGURE WITH OVERRIDE;

EXEC sp_configure 'contained database authentication' , 1;

RECONFIGURE WITH OVERRIDE;

ALTER DATABASE my_sample SET CONTAINMENT = PARTIAL;

EXEC sp_configure 'show advanced options' , 0;

RECONFIGURE WITH OVERRIDE;

The ALTER DATABASE statement modifies the containment of the my_sample
database from noncontained to partially contained. This means that the database
system allows you to create both contained and noncontained database objects for the
my_sample database. (All other statements in Example 5.20 just set the scene for the
ALTER DATABASE statement.)

Note
sp_configure is a system procedure that can be used to, among other things, change advanced configuration
options, such as 'contained database authentication'. To make changes to advanced configuration options,
you first have to set the value of the 'show advanced options' to 1 and reconfigure the system. At the end of
Example 5.20, this option has been set again to its default value (0). The sp_configure system procedure is
discussed in detail in the section “System Procedures” in Chapter 9.

For the my_sample database, you can now create a user that is not tied to a login.
This will be described in detail in the “Managing Authorization and Authentication of
Contained Databases” section of Chapter 12.

altering a Table
The ALTER TABLE statement modifies the schema of a table. The Transact-SQL
language allows the following types of alteration:

Add or drop one or more new columnsCc

Modify column propertiesCc

Ch05.indd 125 1/24/12 4:38:58 PM

 1 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

Add or remove integrity constraintsCc

Enable or disable constraintsCc

Rename tables and other database objectsCc

The following sections describe these types of changes.

Adding or Dropping a New Column
You can use the ADD clause of the ALTER TABLE statement to add a new column to
the existing table. Only one column can be added for each ALTER TABLE statement.
Example 5.21 shows the use of the ADD clause.

 ExaMplE 5.21

USE sample;

ALTER TABLE employee

 ADD telephone_no CHAR(12) NULL;

The ALTER TABLE statement in Example 5.21 adds the column telephone_no
to the employee table. The Database Engine populates the new column either with
NULL or IDENTITY values or with the specified default. For this reason, the new
column must either be nullable or have a default constraint.

Note
There is no way to insert a new column in a particular position in the table. The column, which is added using the
ADD clause, is always inserted at the end of the table.

The DROP COLUMN clause provides the ability to drop an existing column of the
table, as shown in Example 5.22.

 ExaMplE 5.22

USE sample;

ALTER TABLE employee

 DROP COLUMN telephone_no;

The ALTER TABLE statement in Example 5.22 removes the telephone_no column,
which was added to the employee table with the ALTER TABLE statement in
Example 5.21.

Ch05.indd 126 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 2 7

Modifying Column Properties
The Transact-SQL language supports the ALTER COLUMN clause of ALTER
TABLE to modify properties of an existing column. The following column properties
can be modified:

Data typeCc

NullabilityCc

Example 5.23 shows the use of the ALTER COLUMN clause.

 ExaMplE 5.23

USE sample;

ALTER TABLE department

 ALTER COLUMN location CHAR(25) NOT NULL;

The ALTER TABLE statement in Example 5.23 changes the previous properties
(CHAR(30), nullable) of the location column of the department table to new
properties (CHAR(25), not nullable).

Adding or Removing Integrity Constraints
A new integrity constraint can be added to a table using the ALTER TABLE statement
and its option called ADD CONSTRAINT. Example 5.24 shows how you can use the
ADD CONSTRAINT clause in relation to a check constraint.

 ExaMplE 5.24

USE sample;

CREATE TABLE sales

 (order_no INTEGER NOT NULL,

 order_date DATE NOT NULL,

 ship_date DATE NOT NULL);

ALTER TABLE sales

 ADD CONSTRAINT order_check CHECK(order_date <= ship_date);

The CREATE TABLE statement in Example 5.24 creates the sales table with two
columns of the DATE data type: order_date and ship_date. The subsequent ALTER
TABLE statement defines an integrity constraint named order_check, which compares
both of the values and displays an error message if the shipping date is earlier than the
order date.

Ch05.indd 127 1/24/12 4:38:58 PM

 1 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

Example 5.25 shows how you can use the ALTER TABLE statement to additionally
define the primary key of a table.

 ExaMplE 5.25

USE sample;

ALTER TABLE sales

 ADD CONSTRAINT primaryk_sales PRIMARY KEY(order_no);

The ALTER TABLE statement in Example 5.25 declares the primary key for the
sales table.

Each integrity constraint can be removed using the DROP CONSTRAINT clause of
the ALTER TABLE statement, as shown in Example 5.26.

 ExaMplE 5.26

USE sample;

ALTER TABLE sales

DROP CONSTRAINT order_check;

The ALTER TABLE statement in Example 5.26 removes the CHECK constraint
called order_check, specified in Example 5.24.

Note
You cannot use the ALTER TABLE statement to modify a definition of an integrity constraint. In this case, the
constraint must be re-created—that is, dropped and then added with the new definition.

Enabling or Disabling Constraints
As previously stated, an integrity constraint always has a name that can be explicitly
declared using the CONSTRAINT option or implicitly declared by the system. The
name of all (implicitly or explicitly) declared constraints for a table can be viewed using
the system procedure sp_helpconstraint.

A constraint is enforced by default during future insert and update operations.
Additionally, the existing values in the column(s) are checked against the constraint.
Otherwise, a constraint that is created with the WITH NOCHECK option is disabled
in the second case. In other words, if you use the WITH NOCHECK option, the
constraint will be applied only to future insert and update operations. (Both options,
WITH CHECK and WITH NOCHECK, can be applied only with the CHECK and
FOREIGN KEY constraints.)

Example 5.27 shows how you can disable all existing constraints for a table.

Ch05.indd 128 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 2 9

 ExaMplE 5.27

USE sample;

ALTER TABLE sales

 NOCHECK CONSTRAINT ALL;

In Example 5.27, the keyword ALL is used to disable all the constraints on the
sales table.

Note
Use of the NOCHECK option is not recommended. Any constraint violations that are suppressed may cause future
updates to fail.

Renaming Tables and Other Database Objects
The sp_rename system procedure modifies the name of an existing table (and any other
existing database objects, such as databases, views, or stored procedures). Examples 5.28
and 5.29 show the use of this system procedure.

 ExaMplE 5.28

USE sample;

EXEC sp_rename @objname = department, @newname = subdivision

Example 5.28 renames the department table to subdivision.

 ExaMplE 5.29

USE sample;

EXEC sp_rename @objname = 'sales.order_no' , @newname = ordernumber

Example 5.29 renames the order_no column in the sales table. If the object to be
renamed is a column in a table, the specification must be in the form table_name.
column_name.

Note
Do not use the sp_rename system procedure, because changing object names can influence other database
objects that reference them. Drop the object and re-create it with the new name.

Ch05.indd 129 1/24/12 4:38:58 PM

 1 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

Removing Database Objects
All Transact-SQL statements that are used to remove a database object have the
following general form:

DROP object_type object_name

Each CREATE object statement has the corresponding DROP object statement.
The statement

DROP DATABASE database1 {, ...}

removes one or more databases. This means that all traces of the database are removed
from your database system.

One or more tables can be removed from a database with the following statement:

DROP TABLE table_name1 {, ...}

All data, indices, and triggers belonging to the removed table are also dropped.
(In contrast, all views that are defined using the dropped table are not removed.)
Only the user with the corresponding privileges can remove a table.

In addition to DATABASE and TABLE, objects in the DROP statement can be,
among others, the following:

TYPECc

SYNONYMCc

PROCEDURECc

INDEXCc

VIEWCc

TRIGGERCc

SCHEMACc

The statements DROP TYPE and DROP SYNONYM drop a type and a synonym,
respectively. The rest of the statements are described in different chapters: DROP
PROCEDURE in Chapter 8, DROP INDEX in Chapter 10, DROP VIEW in
Chapter 11, DROP SCHEMA in Chapter 12, and DROP TRIGGER in Chapter 14.

Ch05.indd 130 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 3 1

Summary
The Transact-SQL language supports many data definition statements that create,
alter, and remove database objects. The following database objects, among others, can
be created and removed using the CREATE object and the DROP object statement,
respectively:

DatabaseCc

TableCc

SchemaCc

ViewCc

TriggerCc

Stored procedureCc

IndexCc

A structure of all database objects in the preceding list can be altered using
the ALTER object statement. Note that the ALTER TABLE statement is the
only standardized statement from this list. All other ALTER object statements are
Transact-SQL extensions to the SQL standard.

The next chapter addresses the data manipulation statement called SELECT.

Exercises
 E.5.1

Using the CREATE DATABASE statement, create a new database named test_db
with explicit specifications for database and transaction log files. The database file with
the logical name test_db_dat is stored in the file C:\tmp\test_db.mdf and the initial
size is 5MB, the maximum size is unlimited, and the file growth is 8 percent. The log
file called test_db_log is stored in the file C:\tmp\test_db_log.ldf and the initial size is
2MB, the maximum size is 10MB, and the file growth is 500KB.

 E.5.2

Using the ALTER DATABASE statement, add a new log file to the test_db database.
The log file is stored in the file C:\tmp\emp_log.ldf and the initial size of the file is
2MB, with growth of 2MB and an unlimited maximum size.

Ch05.indd 131 1/24/12 4:38:58 PM

 1 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 E.5.3

Using the ALTER DATABASE statement, change the file size of the test_db database
to 10MB.

 E.5.4

In Example 5.4, there are some columns of the four created tables defined with the
NOT NULL specification. For which column is this specification required and for
which is it not required?

 E.5.5

Why are the columns dept_no and project_no in Example 5.4 defined as CHAR
values (and not as numerical values)?

 E.5.6

Create the tables customers and orders with the following columns. (Do not declare
the corresponding primary and foreign keys.)

customers orders
customerid char(5) not null orderid integer not null

companyname varchar(40) not null customerid char(5) not null

contactname char(30) null orderdate date null

address varchar(60) null shippeddate date null

city char(15) null freight money null

phone char(24) null shipname varchar(40) null

fax char(24) null shipaddress varchar(60) null

quantity integer null

 E.5.7

Using the ALTER TABLE statement, add a new column named shipregion to the
orders table. The fields should be nullable and contain integers.

 E.5.8

Using the ALTER TABLE statement, change the data type of the column shipregion
from INTEGER to CHARACTER with length 8. The fields may contain NULL
values.

Ch05.indd 132 1/24/12 4:38:58 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 5

 C h a p t e r 5 : D a t a D e f i n i t i o n L a n g u a g e 1 3 3

 E.5.9

Delete the formerly created column shipregion.

 E.5.10

Describe exactly what happens if a table is deleted with the DROP TABLE statement.

 E.5.11

Re-create the tables customers and orders, enhancing their definition with all primary
and foreign keys constraints.

 E.5.12

Using SQL Server Management Studio, try to insert a new row into the orders table
with the following values:

(10, 'ord01', getdate(), getdate(), 100.0, 'Windstar', 'Ocean', 1).

Why isn’t that working?

 E.5.13

Using the ALTER TABLE statement, add the current system date and time as the
default value to the orderdate column of the orders table.

 E.5.14

Using the ALTER TABLE statement, create an integrity constraint that limits the
possible values of the quantity column in the orders table to values between 1 and 30.

 E.5.15

Display all integrity constraints for the orders table.

 E.5.16

Delete the primary key of the customers table. Why isn’t that working?

 E.5.17

Delete the integrity constraint called prim_empl defined in Example 5.7.

 E.5.18

Rename the city column of the customers table. The new name is town.

Ch05.indd 133 1/24/12 4:38:58 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Chapter 6

In This Chapter

c SELECT Statement:
 Its Clauses and Functions
c Subqueries
c Temporary Tables

c Join Operator
c Correlated Subqueries
c Table Expressions

Queries

Ch06.indd 135 1/25/12 9:25:28 AM

 1 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

In this chapter you will learn how to use the SELECT statement to perform
retrievals. This chapter describes every clause in this statement and gives numerous
examples using the sample database to demonstrate the practical use of each

clause. After that, the chapter introduces aggregate functions and the set operators, as
well as computed columns and temporary tables. The second part of the chapter tells
you more about complex queries. It introduces the join operator, which is the most
important operator for relational database systems, and looks at all its forms. Correlated
subqueries and the EXISTS function are then introduced. The end of the chapter
describes common table expressions, together with the APPLY operator.

SELECT Statement: Its Clauses and Functions
The Transact-SQL language has one basic statement for retrieving information
from a database: the SELECT statement. With this statement, it is possible to query
information from one or more tables of a database (or even from multiple databases).
The result of a SELECT statement is another table, also known as a result set.

The simplest form of the SELECT statement contains a SELECT list with the
FROM clause. (All other clauses are optional.) This form of the SELECT statement
has the following syntax:

SELECT [ALL |DISTINCT] column_list

 FROM {table1 [tab_alias1] } ,...

table1 is the name of the table from which information is retrieved. tab_alias1
provides an alias for the name of the corresponding table. An alias is another name for
the corresponding table and can be used as a shorthand way to refer to the table or as
a way to refer to two logical instances of the same physical table. Don’t worry; this will
become clearer as examples are presented.

column_list contains one or more of the following specifications:

The asterisk symbol (*), which specifies all columns of the named tables in the Cc

FROM clause (or from a single table when qualified, as in table2.*)
The explicit specification of column names to be retrievedCc

The specification Cc column_name [AS] column_heading, which is a way to replace
the name of a column or to assign a new name to an expression
An expressionCc

A system or an aggregate functionCc

Ch06.indd 136 1/25/12 9:25:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 3 7

Note
In addition to the preceding specifications, there are other options that will be presented later in this chapter.

A SELECT statement can retrieve either columns or rows from a table. The first
operation is called SELECT list (or projection), and the second one is called selection.
The combination of both operations is also possible in a SELECT statement.

Note
Before you start to execute queries in this chapter, re-create the entire sample database.

Example 6.1 shows the simplest retrieval form with the SELECT statement.

 ExampLE 6.1

Get full details of all departments:

USE sample;

SELECT dept_no, dept_name, location

 FROM department;

The result is

dept_no dept_name location
d1 Research Dallas

d2 Accounting Seattle

d3 Marketing Dallas

The SELECT statement in Example 6.1 retrieves all rows and all columns from
the department table. If you include all columns of a table in a SELECT list (as in
Example 6.1), you can use * as shorthand, but this notation is not recommended. The
column names serve as column headings of the resulting output.

The simplest form of the SELECT statement just described is not very useful for
queries. In practice, there are always several more clauses in a SELECT statement than

Ch06.indd 137 1/25/12 9:25:28 AM

 1 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

in the statement shown in Example 6.1. The following is the syntax of a SELECT
statement that references a table, with (almost) all possible clauses included:

SELECT select_list

 [INTO new_table_]

 FROM table

 [WHERE search_condition]

 [GROUP BY group_by_expression]

 [HAVING search_condition]

 [ORDER BY order_expression [ASC | DESC]];

Note
The clauses in the SELECT statement must be written in the syntactical order given in the preceding syntax—for
example, the GROUP BY clause must come after the WHERE clause and before the HAVING clause. However,
because the INTO clause is not as significant as the other clauses, it will be discussed later in the chapter, after
the other clauses have been discussed.

The following subsections describe the clauses that can be used in a query, WHERE,
GROUP BY, HAVING, and ORDER BY, as well as aggregate functions, the IDENTITY
property, the new sequences feature, set operators, and the CASE expression.

WHERE Clause
Often, it is necessary to define one or more conditions that limit the selected rows.
The WHERE clause specifies a Boolean expression (an expression that returns a value
of TRUE or FALSE) that is tested for each row to be returned (potentially). If the
expression is true, then the row is returned; if it is false, it is discarded.

Example 6.2 shows the use of the WHERE clause.

 ExampLE 6.2

Get the names and numbers of all departments located in Dallas:

USE sample;

SELECT dept_name, dept_no

 FROM department

 WHERE location = 'Dallas';

The result is

dept_name dept_no
Research d1

Marketing d3

Ch06.indd 138 1/25/12 9:25:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 3 9

In addition to the equal sign, the WHERE clause can contain other comparison
operators, including the following:

<> (or !=) not equal

< less than

> greater than

>= greater than or equal

<= less than or equal

!> not greater than

!< not less than

Example 6.3 shows the use of a comparison operator in the WHERE clause.

 ExampLE 6.3

Get the last and first names of all employees with employee numbers greater than or
equal to 15000:

USE sample;

SELECT emp_lname, emp_fname

 FROM employee

 WHERE emp_no >= 15000;

The result is

emp_lname emp_fname
Smith Matthew

Barrimore John

James James

Moser Sybill

An expression can also be a part of the condition in the WHERE clause, as
Example 6.4 shows.

 ExampLE 6.4

Get the project names for all projects with a budget > 60000 £. The current rate of
exchange is 0.51 £ per $1.

USE sample;

SELECT project_name

 FROM project

 WHERE budget*0.51 > 60000;

Ch06.indd 139 1/25/12 9:25:28 AM

 1 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

project_name
Apollo

Mercury

Comparisons of strings (that is, values of data types CHAR, VARCHAR, NCHAR,
or NVARCHAR) are executed in accordance with the collating sequence in effect
(the “sort order” specified when the Database Engine was installed). If two strings
are compared using ASCII code (or any other code), each of the corresponding (first,
second, third, and so on) characters will be compared. One character is lower in
priority than the other if it appears in the code table before the other one. Two strings
of different lengths are compared after the shorter one is padded at the right with
blanks, so that the length of both strings is equal. Numbers compare algebraically.
Values of temporal data types (such as DATE, TIME, and DATETIME) compare in
chronological order.

Boolean Operators
WHERE clause conditions can either be simple or contain multiple conditions.
Multiple conditions can be built using the Boolean operators AND, OR, and NOT.
The behavior of these operators was described in Chapter 4 using truth tables.

If two conditions are connected by the AND operator, rows are retrieved for which
both conditions are true. If two conditions are connected by the OR operator, all rows
of a table are retrieved in which either the first or the second condition (or both) is true,
as shown in Example 6.5.

 ExampLE 6.5

Get the employee numbers for all employees who work for either project p1 or project
p2 (or both):

USE sample;

SELECT project_no, emp_no

 FROM works_on

 WHERE project_no = 'p1'

 OR project_no = 'p2';

Ch06.indd 140 1/25/12 9:25:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 4 1

The result is

project_no emp_no
p1 10102

p2 25348

p2 18316

p2 29346

p1 9031

p1 28559

p2 28559

p1 29346

The result of Example 6.5 contains some duplicate values of the emp_no column. To
eliminate this redundant information, use the DISTINCT option, as shown here:

USE sample;

SELECT DISTINCT emp_no

 FROM works_on

 WHERE project_no = 'p1'

 OR project_no = 'p2';

In this case, the result is

emp_no
9031

10102

18316

25348

28559

29346

Note that the DISTINCT option can be used only once in a SELECT list, and it
must precede all column names in that list. Therefore, Example 6.6 is wrong.

 ExampLE 6.6 (ExampLE OF an ILLEgaL STaTEmEnT)

USE sample;

SELECT emp_fname, DISTINCT emp_no

Ch06.indd 141 1/25/12 9:25:28 AM

 1 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 FROM employee

 WHERE emp_lname = 'Moser';

The result is

Server: Msg 156, Level 15, State 1, Line 1

Incorrect syntax near the keyword 'DISTINCT'.

Note
When there is more than one column in the SELECT list, the DISTINCT clause displays all rows where the
combination of columns is distinct.

The WHERE clause may include any number of the same or different Boolean
operations. You should be aware that the three Boolean operations have different
priorities for evaluation: the NOT operation has the highest priority, AND is evaluated
next, and the OR operation has the lowest priority. If you do not pay attention to these
different priorities for Boolean operations, you will get unexpected results, as Example 6.7
shows.

 ExampLE 6.7

USE sample;

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_no = 25348 AND emp_lname = 'Smith'

 OR emp_fname = 'Matthew' AND dept_no = 'd1';

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE ((emp_no = 25348 AND emp_lname = 'Smith')

 OR emp_fname ='Matthew') AND dept_no = 'd1';

The result is

emp_no emp_fname emp_lname
25348 Matthew Smith

emp_no emp_fname emp_lname

As the results of Example 6.7 show, the two SELECT statements display two
different result sets. In the first SELECT statement, the system evaluates both AND
operators first (from the left to the right), and then evaluates the OR operator. In the

Ch06.indd 142 1/25/12 9:25:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 4 3

second SELECT statement, the use of parentheses changes the operation execution,
with all expressions within parentheses being executed first, in sequence from left to
right. As you can see, the first statement returned one row, while the second statement
returned zero rows.

The existence of several Boolean operations in a WHERE clause complicates the
corresponding SELECT statement and makes it error prone. In such cases, the use
of parentheses is highly recommended, even if they are not necessary. The readability
of such SELECT statements will be greatly improved, and possible errors can be
avoided. Here is the first SELECT statement from Example 6.7, modified using the
recommended form:

USE sample;

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE (emp_no = 25348 AND emp_lname = 'Smith')

 OR (emp_fname = 'Matthew' AND dept_no = 'd1');

The third Boolean operator, NOT, changes the logical value of the corresponding
condition. The truth table for NOT in Chapter 4 shows that the negation of the TRUE
value is FALSE and vice versa; the negation of the NULL value is also NULL.

Example 6.8 shows the use of the NOT operator.

 ExampLE 6.8

Get the employee numbers and first names of all employees who do not belong to the
department d2:

USE sample

SELECT emp_no, emp_lname

 FROM employee

 WHERE NOT dept_no = 'd2';

The result is

emp_no emp_lname
25348 Smith

10102 Jones

18316 Barrimore

28559 Moser

In this case, the NOT operator can be replaced by the comparison operator <> (not
equal).

Ch06.indd 143 1/25/12 9:25:28 AM

 1 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Note
This book uses the operator <> (instead of !=) to remain consistent with the ANSI SQL standard.

IN and BETWEEN Operators
An IN operator allows the specification of two or more expressions to be used
for a query search. The result of the condition returns TRUE if the value of the
corresponding column equals one of the expressions specified by the IN predicate.

Example 6.9 shows the use of the IN operator.

 ExampLE 6.9

Get all the columns for every employee whose employee number equals 29346, 28559,
or 25348:

USE sample;

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_no IN (29346, 28559, 25348);

The result is

emp_no emp_fname emp_lname
25348 Matthew Smith

29346 James James

28559 Sybill Moser

An IN operator is equivalent to a series of conditions, connected with one or more
OR operators. (The number of OR operators is equal to the number of expressions
following the IN operator minus one.)

The IN operator can be used together with the Boolean operator NOT, as shown in
Example 6.10. In this case, the query retrieves rows that do not include any of the listed
values in the corresponding columns.

 ExampLE 6.10

Get all columns for every employee whose employee number is neither 10102 nor 9031:

USE sample;

SELECT emp_no, emp_fname, emp_lname, dept_no

Ch06.indd 144 1/25/12 9:25:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 4 5

 FROM employee

 WHERE emp_no NOT IN (10102, 9031);

The result is

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

18316 John Barrimore d1

29346 James James d2

2581 Elke Hansel d2

28559 Sybill Moser d1

In contrast to the IN operator, which specifies each individual value, the BETWEEN
operator specifies a range, which determines the lower and upper bounds of qualifying
values. Example 6.11 provides an example.

 ExampLE 6.11

Get the names and budgets for all projects with a budget between $95,000 and
$120,000, inclusive:

USE sample;

SELECT project_name, budget

 FROM project

 WHERE budget BETWEEN 95000 AND 120000;

The result is

project_name budget
Apollo 120000

Gemini 95000

The BETWEEN operator searches for all values in the range inclusively; that is,
qualifying values can be between or equal to the lower and upper boundary values.

The BETWEEN operator is logically equal to two individual comparisons, which are
connected with the Boolean operator AND. Example 6.11 is equivalent to Example 6.12.

 ExampLE 6.12

USE sample;

SELECT project_name, budget

Ch06.indd 145 1/25/12 9:25:28 AM

 1 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 FROM project

 WHERE budget >= 95000 AND budget <= 120000;

Like the BETWEEN operator, the NOT BETWEEN operator can be used to
search for column values that do not fall within the specified range. The BETWEEN
operator can also be applied to columns with character and date values.

The two SELECT statements in Example 6.13 show a query that can be written in
two different, but equivalent, ways.

 ExampLE 6.13

Get the names of all projects with a budget less than $100,000 and greater than
$150,000:

USE sample;

SELECT project_name

 FROM project

 WHERE budget NOT BETWEEN 100000 AND 150000;

The result is

project_name
Gemini

Mercury

Using comparison operators, the query looks different:

USE sample;

SELECT project_name

 FROM project

 WHERE budget < 100000 OR budget > 150000;

Note
Although the English phrasing of the requirements, “Get the names of all projects with budgets that are less than
$100,000 and greater than $150,000,” suggests the use of the AND operator in the second SELECT statement
presented in Example 6.13, the logical meaning of the query demands the use of the OR operator, because if you
use AND instead of OR, you will get no results at all. (The reason is that there cannot be a budget that is at the
same time less than $100,000 and greater than $150,000.) Therefore, the second query in the example shows a
possible problem that can appear between English phrasing of an exercise and its logical meaning.

Ch06.indd 146 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 4 7

Queries Involving NULL Values
A NULL in the CREATE TABLE statement specifies that a special value called
NULL (which usually represents unknown or not applicable values) is allowed in the
column. These values differ from all other values in a database. The WHERE clause
of a SELECT statement generally returns rows for which the comparison evaluates to
TRUE. The concern, then, regarding queries is, how will comparisons involving NULL
values be evaluated in the WHERE clause?

All comparisons with NULL values will return FALSE (even when preceded by
NOT). To retrieve the rows with NULL values in the column, Transact-SQL includes
the operator feature IS NULL. This specification in a WHERE clause of a SELECT
statement has the following general form:

column IS [NOT] NULL

Example 6.14 shows the use of the IS NULL operator.

 ExampLE 6.14

Get employee numbers and corresponding project numbers for employees with
unknown jobs who work on project p2:

USE sample;

SELECT emp_no, project_no

 FROM works_on

 WHERE project_no = 'p2'

 AND job IS NULL;

The result is

emp_no project_no
18316 p2

29346 p2

Because all comparisons with NULL values return FALSE, Example 6.15 shows
syntactically correct, but logically incorrect, usage of NULL.

 ExampLE 6.15

USE sample;

SELECT project_no, job

 FROM works_on

 WHERE job <> NULL;

Ch06.indd 147 1/25/12 9:25:29 AM

 1 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

project_no job

The condition “column IS NOT NULL” is equivalent to the condition “NOT
(column IS NULL).”

The system function ISNULL allows a display of the specified value as substitution
for NULL (see Example 6.16).

 ExampLE 6.16

USE sample;

SELECT emp_no, ISNULL(job, 'Job unknown') AS task

 FROM works_on

 WHERE project_no = 'p1';

The result is

emp_no task
10102 Analyst

9031 Manager

28559 Job unknown

29346 Clerk

Example 6.16 uses a column heading called task for the job column.

LIKE Operator
LIKE is an operator that is used for pattern matching; that is, it compares column
values with a specified pattern. The data type of the column can be any character or
date. The general form of the LIKE operator is

column [NOT] LIKE 'pattern'

pattern may be a string or date constant or expression (including columns of tables)
and must be compatible with the data type of the corresponding column. For the
specified column, the comparison between the value in a row and the pattern evaluates
to TRUE if the column value matches the pattern expression.

Certain characters within the pattern—called wildcard characters—have a specific
interpretation. Two of them are

% (percent sign)Cc Specifies any sequence of zero or more characters
_ (underscore)Cc Specifies any single character

Ch06.indd 148 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 4 9

Example 6.17 shows the use of the wildcard characters % and _.

 ExampLE 6.17

Get the first and last names and numbers of all employees whose first name contains
the letter a as the second character:

USE sample;

SELECT emp_fname, emp_lname, emp_no

 FROM employee

 WHERE emp_fname LIKE '_a%';

The result is

emp_fname emp_lname emp_no
Matthew Smith 25348

James James 29346

In addition to the percent sign and the underscore, Transact-SQL supports other
characters that have a special meaning when used with the LIKE operator. These
characters ([,], and ^) are demonstrated in Examples 6.18 and 6.19.

 ExampLE 6.18

Get full details of all departments whose location begins with a character in the range C
through F:

USE sample;

SELECT dept_nt, dept_name, location

 FROM department

 WHERE location LIKE '[C-F]%';

The result is

dept_no dept_name location
d1 Research Dallas

d3 Marketing Dallas

As shown in Example 6.18, the square brackets, [], delimit a range or list of
characters. The order in which characters appear in a range is defined by the collating
sequence, which is determined during the system installation.

The character ^ specifies the negation of a range or a list of characters. This character
has this meaning only within a pair of square brackets, as shown in Example 6.19.

Ch06.indd 149 1/25/12 9:25:29 AM

 1 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ExampLE 6.19

Get the numbers and first and last names of all employees whose last name does not
begin with the letter J, K, L, M, N, or O and whose first name does not begin with the
letter E or Z:

USE sample;

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_lname LIKE '[^J-O]%'

 AND emp_fname LIKE '[^EZ]%';

The result is

emp_no emp_fname emp_lname
25348 Matthew Smith

18316 John Barrimore

The condition “column NOT LIKE ‘pattern’” is equivalent to the condition “NOT
(column LIKE ‘pattern’).”

Example 6.20 shows the use of the LIKE operator (together with NOT).

 ExampLE 6.20

Get full details of all employees whose first name does not end with the character n:

USE sample;

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_fname NOT LIKE '%n';

The result is

emp_no emp_fname emp_lname
25348 Matthew Smith

29346 James James

2581 Elke Hansel

9031 Elsa Bertoni

28559 Sybill Moser

Any of the wildcard characters (%, _, [,], or ^) enclosed in square brackets stands for
itself. An equivalent feature is available through the ESCAPE option. Therefore, both
SELECT statements in Example 6.21 have the same meaning.

Ch06.indd 150 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 5 1

 ExampLE 6.21

USE sample;

SELECT project_no, project_name

 FROM project

 WHERE project_name LIKE '%[_]%';

SELECT project_no, project_name

 FROM project

 WHERE project_name LIKE '%!_%' ESCAPE '!';

The result is

project_no project_name

project_no project_name

Both SELECT statements search for the underscore as an actual character in the
column project_name. In the first SELECT statement, this search is established
by enclosing the sign _ in square brackets. The second SELECT statement uses a
character (in Example 6.21, the character !) as an escape character. The escape character
overrides the meaning of the underscore as the wildcard character and leaves it to be
interpreted as an ordinary character. (The result contains no rows because there are no
project names that include the underscore character.)

Note
The SQL standard supports the use of only %, _, and the ESCAPE operator. For this reason, if any wildcard
character must stand for itself, using the ESCAPE operator instead of a pair of square brackets is recommended.

gROUp BY Clause
The GROUP BY clause defines one or more columns as a group such that all rows
within any group have the same values for those columns. Example 6.22 shows the
simple use of the GROUP BY clause.

 ExampLE 6.22

Get all jobs of the employees:

USE sample;

SELECT job

 FROM works_on

 GROUP BY job;

Ch06.indd 151 1/25/12 9:25:29 AM

 1 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

job
NULL

Analyst

Clerk

Manager

In Example 6.22, the GROUP BY clause builds different groups for all possible
values (NULL, too) appearing in the job column.

Note
There is a restriction regarding the use of columns in the GROUP BY clause. Each column appearing in the SELECT
list of the query must also appear in the GROUP BY clause. This restriction does not apply to constants and to
columns that are part of an aggregate function. (Aggregate functions are explained in the next subsection.) This
makes sense, because only columns in the GROUP BY clause are guaranteed to have a single value for each group.

A table can be grouped by any combination of its columns. Example 6.23 shows the
grouping of rows of the works_on table using two columns.

 ExampLE 6.23

Group all employees using their project numbers and jobs:

USE sample;

SELECT project_no, job

 FROM works_on

 GROUP BY project_no, job;

The result is

project_no job
p1 Analyst

p1 Clerk

p1 Manager

p1 NULL

p2 NULL

p2 Clerk

p3 Analyst

p3 Clerk

p3 Manager

Ch06.indd 152 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 5 3

The result of Example 6.23 shows that there are nine groups with different
combinations of project numbers and jobs. The only two groups that contain more than
one row are

p2 Clerk 25348, 28559

p2 NULL 18316, 29346

The sequence of the column names in the GROUP BY clause does not need to
correspond to the sequence of the names in the SELECT list.

aggregate Functions
Aggregate functions are functions that are used to get summary values. All aggregate
functions can be divided into several groups:

Convenient aggregate functionsCc

Statistical aggregate functionsCc

User-defined aggregate functionsCc

Analytic aggregate functionsCc

The first three types are described in the following sections, while analytic aggregate
functions are explained in detail in Chapter 23.

Convenient Aggregate Functions
The Transact-SQL language supports six aggregate functions:

MINCc

MAXCc

SUMCc

AVGCc

COUNTCc

COUNT_BIGCc

All aggregate functions operate on a single argument, which can be either a
column or an expression. (The only exception is the second form of the COUNT and
COUNT_BIG functions, COUNT(*) and COUNT_BIG(*).) The result of each
aggregate function is a constant value, which is displayed in a separate column of the
result.

Ch06.indd 153 1/25/12 9:25:29 AM

 1 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The aggregate functions appear in the SELECT list, which can include a GROUP
BY clause. If there is no GROUP BY clause in the SELECT statement, and the
SELECT list includes at least one aggregate function, then no simple columns can
be included in the SELECT list (other than as arguments of an aggregate function).
Therefore, Example 6.24 is wrong.

 ExampLE 6.24 (ExampLE OF an ILLEgaL STaTEmEnT)

USE sample;

SELECT emp_lname, MIN(emp_no)

 FROM employee;

The emp_lname column of the employee table must not appear in the SELECT list
of Example 6.24 because it is not the argument of an aggregate function. On the other
hand, all column names that are not arguments of an aggregate function may appear in
the SELECT list if they are used for grouping.

The argument of an aggregate function can be preceded by one of two keywords:

ALLCc Indicates that all values of a column are to be considered (ALL is the
default value)
DISTINCTCc Eliminates duplicate values of a column before the aggregate
function is applied

mIn and max aggregate Functions The aggregate functions MIN and MAX
compute the lowest and highest values in the column, respectively. If there is a
WHERE clause, the MIN and MAX functions return the lowest or highest of values
from selected rows. Example 6.25 shows the use of the aggregate function MIN.

 ExampLE 6.25

Get the lowest employee number:

USE sample;

SELECT MIN(emp_no) AS min_employee_no

 FROM employee;

The result is

min_employee_no
2581

The result of Example 6.25 is not user friendly. For instance, the name of the
employee with the lowest number is not known. As already shown, the explicit

Ch06.indd 154 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 5 5

specification of the emp_name column in the SELECT list is not allowed. To retrieve
the name of the employee with the lowest employee number, use a subquery, as shown
in Example 6.26, where the inner query contains the SELECT statement of the
previous example.

 ExampLE 6.26

Get the number and the last name of the employee with the lowest employee number:

USE sample;

SELECT emp_no, emp_lname

 FROM employee

 WHERE emp_no =

 (SELECT MIN(emp_no)

 FROM employee);

The result is

emp_no emp_lname
2581 Hansel

Example 6.27 shows the use of the aggregate function MAX.

 ExampLE 6.27

Get the employee number of the manager who was entered last in the works_on table:

USE sample;

SELECT emp_no

 FROM works_on

 WHERE enter_date =

 (SELECT MAX(enter_date)

 FROM works_on

 WHERE job = 'Manager');

The result is

emp_no
10102

The argument of the functions MIN and MAX can also be a string value or a date.
If the argument has a string value, the comparison between all values will be provided

Ch06.indd 155 1/25/12 9:25:29 AM

 1 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

using the actual collating sequence. For all arguments of temporal data types, the
earliest date specifies the lowest value in the column and the latest date specifies the
highest value in the column.

The DISTINCT option cannot be used with the aggregate functions MIN and
MAX. All NULL values in the column that are the argument of the aggregate function
MIN or MAX are always eliminated before MIN or MAX is applied.

SUm aggregate Function The aggregate function SUM calculates the sum of the
values in the column. The argument of the function SUM must be numeric. Example 6.28
shows the use of the SUM function.

 ExampLE 6.28

Calculate the sum of all budgets of all projects:

USE sample;

SELECT SUM(budget) sum_of_budgets

 FROM project;

The result is

sum_of_budgets
401500

The aggregate function in Example 6.28 groups all values of the projects’ budgets
and determines their total sum. For this reason, the query in Example 6.28 (as does
each analog query) implicitly contains the grouping function. The grouping function
from Example 6.28 can be written explicitly in the query, as shown in Example 6.29.

 ExampLE 6.29

SELECT SUM(budget) sum_of_budgets

 FROM project

 GROUP BY();

The use of this syntax for the GROUP BY clause is recommended because it defines
a grouping explicitly. (Chapter 23 describes several other GROUP BY features.)

The use of the DISTINCT option eliminates all duplicate values in the column
before the function SUM is applied. Similarly, all NULL values are always eliminated
before SUM is applied.

aVg aggregate Function The aggregate function AVG calculates the average of the
values in the column. The argument of the function AVG must be numeric. All NULL

Ch06.indd 156 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 5 7

values are eliminated before the function AVG is applied. Example 6.30 shows the use
of the AVG aggregate function.

 ExampLE 6.30

Calculate the average of all budgets with an amount greater than $100,000:

USE sample;

SELECT AVG(budget) avg_budget

 FROM project

 WHERE budget > 100000;

The result is

avg_budget
153250

COUnT and COUnT_BIg aggregate Functions The aggregate function COUNT
has two different forms:

COUNT([DISTINCT] col_name)

COUNT(*)

The first form calculates the number of values in the col_name column. When the
DISTINCT keyword is used, all duplicate values are eliminated before COUNT is
applied. This form of COUNT does not count NULL values for the column.

Example 6.31 shows the use of the first form of the aggregate function COUNT.

 ExampLE 6.31

Count all different jobs in each project:

USE sample;

SELECT project_no, COUNT(DISTINCT job) job_count

 FROM works_on

 GROUP BY project_no;

The result is

project_no job_count
p1 3

p2 1

p3 3

Ch06.indd 157 1/25/12 9:25:29 AM

 1 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

As can be seen from the result of Example 6.31, all NULL values are eliminated
before the function COUNT(DISTINCT job) is applied. (The sum of all values in the
column is 8 instead of 11.)

The second form of the function COUNT, COUNT(*), counts the number of rows
in the table. Or, if there is a WHERE clause in the SELECT statement, COUNT(*)
returns the number of rows for which the WHERE condition is true. In contrast to the
first form of the function COUNT, the second form does not eliminate NULL values,
because this function operates on rows and not on columns. Example 6.32 shows the
use of COUNT(*).

 ExampLE 6.32

Get the number of each job in all projects:

USE sample;

SELECT job, COUNT(*) job_count

 FROM works_on

 GROUP BY job;

The result is

job job_count
NULL 3

Analyst 2

Clerk 4

Manager 2

The COUNT_BIG function is analogous to the COUNT function. The only
difference between them is in relation to their return values: COUNT_BIG always
returns a value of the BIGINT data type, while the COUNT function always returns a
value of the INTEGER data type.

Statistical Aggregate Functions
The following aggregate functions belong to the group of statistical aggregate functions:

VARCc Computes the variance of all the values listed in a column or expression
VARPCc Computes the variance for the population of all the values listed in a
column or expression

Ch06.indd 158 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 5 9

STDEVCc Computes the standard deviation (which is computed as the square
root of the corresponding variance) of all the values listed in a column or
expression
STDEVPCc Computes the standard deviation for the population of all the values
listed in a column or expression

Examples showing statistical aggregate functions will be provided in Chapter 23.

User-Defined Aggregate Functions
The Database Engine also supports the implementation of user-defined aggregate
functions. Using these functions, you can implement and deploy aggregate functions
that do not belong to aggregate functions supported by the system. These functions are
a special case of user-defined functions, which will be described in detail in Chapter 8.

HaVIng Clause
The HAVING clause defines the condition that is then applied to groups of rows.
Hence, this clause has the same meaning to groups of rows that the WHERE clause
has to the content of the corresponding table. The syntax of the HAVING clause is

HAVING condition

where condition contains aggregate functions or constants.
Example 6.33 shows the use of the HAVING clause with the aggregate function

COUNT(*).

 ExampLE 6.33

Get project numbers for all projects employing fewer than four persons:

USE sample;

SELECT project_no

 FROM works_on

 GROUP BY project_no

 HAVING COUNT(*) < 4;

The result is

project_no
p3

Ch06.indd 159 1/25/12 9:25:29 AM

 1 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

In Example 6.33, the system uses the GROUP BY clause to group all rows according
to existing values in the project_no column. After that, it counts the number of rows in
each group and selects those groups with three or fewer rows.

The HAVING clause can also be used without aggregate functions, as shown in
Example 6.34.

 ExampLE 6.34

Group rows of the works_on table by job and eliminate those jobs that do not begin
with the letter M:

USE sample;

SELECT job

 FROM works_on

 GROUP BY job

 HAVING job LIKE 'M%';

The result is

job
Manager

The HAVING clause can also be used without the GROUP BY clause, although
doing so is uncommon in practice. In such a case, all rows of the entire table belong to a
single group.

ORDER BY Clause
The ORDER BY clause defines the particular order of the rows in the result of a query.
This clause has the following syntax:

ORDER BY {[col_name | col_number [ASC | DESC]]} , ...

The col_name column defines the order. col_number is an alternative specification
that identifies the column by its ordinal position in the sequence of all columns in the
SELECT list (1 for the first column, 2 for the second one, and so on). ASC indicates
ascending order and DESC indicates descending order, with ASC as the default value.

Note
The columns in the ORDER BY clause need not appear in the SELECT list. However, the ORDER BY columns must
appear in the SELECT list if SELECT DISTINCT is specified. Also, this clause cannot reference columns from tables
that are not listed in the FROM clause.

Ch06.indd 160 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 6 1

As the syntax of the ORDER BY clause shows, the order criterion may contain more
than one column, as shown in Example 6.35.

 ExampLE 6.35

Get department numbers and employee names for employees with employee numbers
< 20000, in ascending order of last and first names:

USE sample;

SELECT emp_fname, emp_lname, dept_no

 FROM employee

 WHERE emp_no < 20000

 ORDER BY emp_lname, emp_fname;

The result is

emp_fname emp_lname dept_no
John Barrimore d1

Elsa Bertoni d2

Elke Hansel d2

Ann Jones d3

It is also possible to identify the columns in the ORDER BY clause by the ordinal
position of the column in the SELECT list. The ORDER BY clause in Example 6.35
could be written in the following form:

ORDER BY 2,1

The use of column numbers instead of column names is an alternative solution if
the order criterion contains any aggregate function. (The other way is to use column
headings, which then appear in the ORDER BY clause.) However, using column
names rather than numbers in the ORDER BY clause is recommended, to reduce the
difficulty of maintaining the query if any columns need to be added or deleted from the
SELECT list. Example 6.36 shows the use of column numbers.

 ExampLE 6.36

For each project number, get the project number and the number of all employees, in
descending order of the employee number:

USE sample;

SELECT project_no, COUNT(*) emp_quantity

Ch06.indd 161 1/25/12 9:25:29 AM

 1 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 FROM works_on

 GROUP BY project_no

 ORDER BY 2 DESC

The result is

project_no emp_quantity
p1 4

p2 4

p3 3

The Transact-SQL language orders NULL values at the beginning of all values if the
order is ascending and orders them at the end of all values if the order is descending.

Using ORDER BY to Support Paging
If you want to display rows on the current page, you can either implement that in your
application or instruct the database server to do it. In the former case, all rows from
the database are sent to the application, and the application’s task is to retrieve the rows
needed for printing and to display them. In the latter case, only those rows needed for
the current page are selected from the server side and displayed. As you might guess,
server-side paging generally provides better performance, because only the rows needed
for printing are sent to the client.

SQL Server 2012 introduces two new clauses of the SELECT statement, OFFSET
and FETCH, to support server-side paging. Example 6.37 shows the use of these two
clauses.

 ExampLE 6.37

Get the business entity ID, job title, and birthday for all female employees from the
AdventureWorks database in ascending order of job title. Display the third page.
(Ten rows are displayed per page.)

USE AdventureWorks;

SELECT BusinessEntityID, JobTitle, BirthDate

 FROM HumanResources.Employee

 WHERE Gender = 'F'

 ORDER BY JobTitle

 OFFSET 20 ROWS

 FETCH NEXT 10 ROWS ONLY;

Ch06.indd 162 1/25/12 9:25:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 6 3

Note
You can find further examples concerning the OFFSET clause in Chapter 23 (see Examples 23.24 and 23.25).

The OFFSET clause specifies the number of rows to skip before starting to return
the rows. This is evaluated after the ORDER BY clause is evaluated and the rows
are sorted. The FETCH NEXT clause specifies the number of rows to retrieve. The
parameter of this clause can be a constant, an expression, or a result of a query. FETCH
NEXT is analogous to FETCH FIRST.

The main purpose of server-side paging is to implement generic page forms, using
variables. This can be done using a SQL Server batch. The corresponding example can
be found in Chapter 8 (see Example 8.5).

SELECT Statement and IDEnTITY property
The IDENTITY property allows you to specify a counter of values for a specific
column of a table. Columns with numeric data types, such as TINYINT, SMALLINT,
INT, and BIGINT, can have this property. The Database Engine generates values for
such columns sequentially, starting with an initial value. Therefore, you can use the
IDENTITY property to let the system generate unique numeric values for the table
column of your choice.

Each table can have only one column with the IDENTITY property. The table owner
can specify the starting number and the increment value, as shown in Example 6.38.

 ExampLE 6.38

USE sample;

CREATE TABLE product

 (product_no INTEGER IDENTITY(10000,1) NOT NULL,

 product_name CHAR(30) NOT NULL,

 price MONEY);

SELECT $identity

 FROM product

 WHERE product_name = 'Soap';

The result could be

product_no
10005

Ch06.indd 163 1/25/12 9:25:30 AM

 1 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The product table is created first in Example 6.38. This table has the product_no
column with the IDENTITY property. The values of the product_no column are
automatically generated by the system, beginning with 10000 and incrementing by 1 for
every subsequent value: 10000, 10001, 10002, and so on.

Some system functions and variables are related to the IDENTITY property.
Example 6.38 uses the $identity variable. As the result set of Example 6.38 shows, this
variable automatically refers to the column with the IDENTITY property.

To find out the starting value and the increment of the column with the IDENTITY
property, you can use the IDENT_SEED and IDENT_INCR functions, respectively,
in the following way:

SELECT IDENT_SEED('product'), IDENT_INCR('product)'

As you already know, the system automatically sets identity values. If you want to
supply your own values for particular rows, you must set the IDENTITY_INSERT
option to ON before the explicit value will be inserted:

SET IDENTITY_INSERT table_name ON

Note
Because the IDENTITY_INSERT option can be used to specify any values for a column with the IDENTITY property,
IDENTITY does not generally enforce uniqueness. Use the UNIQUE or PRIMARY KEY constraint for this task.

If you insert values after the IDENTITY_INSERT option is set to ON, the system
presumes that the next value is the incremented value of the highest value that exists in
the table at that moment.

CREaTE SEQUEnCE Statement
Using the IDENTITY property has several significant disadvantages, the most important
of which are the following:

You can use it only with the specified table.Cc

You cannot obtain the new value before using it.Cc

You can specify the IDENTITY property only when the column is created.Cc

For these reasons, SQL Server 2012 introduces sequences, which has the same
semantics as the IDENTITY property but don’t have the limitations from the

Ch06.indd 164 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 6 5

preceding list. Therefore, a sequence is an independent database feature that enables you
to specify a counter of values for different database objects, such as columns and variables.

Sequences are created using the CREATE SEQUENCE statement. The CREATE
SEQUENCE statement is specified in the SQL standard and is implemented in other
relational database systems, such as IBM DB2 and Oracle.

Example 6.39 shows how sequences can be specified in SQL Server.

 ExampLE 6.39

USE sample;

CREATE SEQUENCE dbo.Sequence1

 AS INT

 START WITH 1 INCREMENT BY 5

 MINVALUE 1 MAXVALUE 256

 CYCLE;

The values of the sequence called Sequence1 in Example 6.39 are automatically
generated by the system, beginning with 1 and incrementing by 5 for every subsequent
value. Therefore, the START clause specifies the initial value, while the INCREMENT
clause defines the incremental value. (The incremental value can be positive or
negative.)

The following two optional clauses, MINVALUE and MAXVALUE, are
directives, which specify a minimal and maximum value for a sequence object. (Note
that MINVALUE must be less than or equal to the start value, while MAXVALUE
cannot be greater than the upper boundary for the values of the data type used for the
specification of the sequence.) The CYCLE clause specifies that the object should
restart from the minimum value (or maximum value, for descending sequence objects)
when its minimum (or maximum) value is exceeded. The default value for this clause
is NO CYCLE, which means that an exception will be thrown if its minimum or
maximum value is exceeded.

The main property of a sequence is that it is table-independent; that is, it can be
used with any database object, such as a table’s column or variable. (This property
positively affects storage and, therefore, performance. You do not need storage for a
specified sequence; only the last-used value is stored.)

To generate new sequence values, you can use the NEXT VALUE FOR expression.
Example 6.40 shows the use of this expression.

 ExampLE 6.40

USE sample;

SELECT NEXT VALUE FOR dbo.sequence1;

SELECT NEXT VALUE FOR dbo.sequence1;

Ch06.indd 165 1/25/12 9:25:30 AM

 1 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

1

6

You can use the NEXT VALUE FOR expression to assign the results of a sequence
to a variable or to a column. Example 6.41 shows how you can use this expression to
assign the results to a table’s column.

 ExampLE 6.41

USE sample;

CREATE TABLE dbo.table1

 (column1 INT NOT NULL PRIMARY KEY,

 column2 CHAR(10));

 INSERT INTO dbo.table1 VALUES (NEXT VALUE FOR dbo.sequence1, 'A');

 INSERT INTO dbo.table1 VALUES (NEXT VALUE FOR dbo.sequence1, 'B');

Example 6.41 first creates a table called table1 with two columns. The following
two INSERT statements insert two rows in this table. (For the syntax of the INSERT
statement, see Chapter 7.) The first column has values 11 and 16, respectively. (These
two values are subsequent values, following the generated values in Example 6.40.)

Example 6.42 shows how you can use the catalog view called sys.sequences to check
the current value of the sequence, without using it. (Catalog views are described in
detail in Chapter 9.)

 ExampLE 6.42

USE sample;

SELECT current_value

 FROM sys.sequences

 WHERE name = 'Sequence1';

Note
Generally, you use the NEXT VALUE FOR expression in the INSERT statement (see the following chapter) to let the
system insert generated values. You can also use the NEXT VALUE FOR expression as part of a multirow query by
using the OVER clause (see Example 23.8 in Chapter 23).

The ALTER SEQUENCE statement modifies the properties of an existing
sequence. One of the most important uses of this statement is in relation to the
RESTART WITH clause, which “reseeds” a given sequence. Example 6.43 shows the
use of the ALTER SEQUENCE statement to reinitialize (almost) all properties of the
existing sequence called Sequence1.

Ch06.indd 166 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 6 7

 ExampLE 6.43

USE sample;

ALTER SEQUENCE dbo.sequence1

 RESTART WITH 100

 INCREMENT BY 50

 MINVALUE 50

 MAXVALUE 200

 NO CYCLE;

To drop a sequence, use the DROP SEQUENCE statement.

Set Operators
In addition to the operators described earlier in the chapter, three set operators are
supported in the Transact-SQL language:

UNIONCc

INTERSECTCc

EXCEPTCc

UNION Set Operator
The result of the union of two sets is the set of all elements appearing in either or both
of the sets. Accordingly, the union of two tables is a new table consisting of all rows
appearing in either or both of the tables.

The general form of the UNION operator is

select_1 UNION [ALL] select_2 {[UNION [ALL] select_3]}...

select_1, select_2,... are SELECT statements that build the union. If the ALL
option is used, all resulting rows, including duplicates, are displayed. The ALL option
has the same meaning with the UNION operator as it has in the SELECT list, with
one difference: the ALL option is the default in the SELECT list, but it must be
specified with the UNION operator to display all resulting rows, including duplicates.

The sample database in its original form is not suitable for a demonstration of the
UNION operator. For this reason, this section introduces a new table, employee_enh,
which is identical to the existing employee table, up to the additional domicile column.
The domicile column contains the place of residence of every employee.

Ch06.indd 167 1/25/12 9:25:30 AM

 1 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The new employee_enh table has the following form:

emp_no emp_fname emp_lname dept_no domicile
25348 Matthew Smith d3 San Antonio

10102 Ann Jones d3 Houston

18316 John Barrimore d1 San Antonio

29346 James James d2 Seattle

9031 Elke Hansel d2 Portland

2581 Elsa Bertoni d2 Tacoma

28559 Sybill Moser d1 Houston

Creation of the employee_enh table provides an opportunity to show the use of the
INTO clause of the SELECT statement. SELECT INTO has two different parts.
First, it creates the new table with the columns corresponding to the columns listed in
the SELECT list. Second, it inserts the existing rows of the original table into the new
table. (The name of the new table appears with the INTO clause, and the name of the
source table appears in the FROM clause of the SELECT statement.)

Example 6.44 shows the creation of the employee_enh table.

 ExampLE 6.44

USE sample;

SELECT emp_no, emp_fname, emp_lname, dept_no

 INTO employee_enh

 FROM employee;

ALTER TABLE employee_enh

 ADD domicile CHAR(25) NULL;

In Example 6.44, SELECT INTO generates the employee_enh table and inserts all
rows from the initial table (employee) into the new one. Finally, the ALTER TABLE
statement appends the domicile column to the employee_enh table.

After the execution of Example 6.44, the domicile column contains no values. The
values can be added using SQL Server Management Studio (see Chapter 3) or the
following UPDATE statements:

 USE sample;

 UPDATE employee_enh SET domicile = 'San Antonio'

 WHERE emp_no = 25348;

UPDATE employee_enh SET domicile = 'Houston'

 WHERE emp_no = 10102;

Ch06.indd 168 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 6 9

UPDATE employee_enh SET domicile = 'San Antonio'

 WHERE emp_no = 18316;

UPDATE employee_enh SET domicile = 'Seattle'

 WHERE emp_no = 29346;

 UPDATE employee_enh SET domicile = 'Portland'

 WHERE emp_no = 9031;

 UPDATE employee_enh SET domicile = 'Tacoma'

 WHERE emp_no = 2581;

 UPDATE employee_enh SET domicile = 'Houston'

 WHERE emp_no = 28559;

Example 6.45 shows the union of the tables employee_enh and department.

 ExampLE 6.45

USE sample;

SELECT domicile

 FROM employee_enh

UNION

SELECT location

 FROM department;

The result is

domicile
San Antonio

Houston

Portland

Tacoma

Seattle

Dallas

Two tables can be connected with the UNION operator if they are compatible
with each other. This means that both the SELECT lists must have the same number
of columns, and the corresponding columns must have compatible data types. (For
example, INT and SMALLINT are compatible data types.)

The ordering of the result of the union can be done only if the ORDER BY clause
is used with the last SELECT statement, as shown in Example 6.46. The GROUP BY
and HAVING clauses can be used with the particular SELECT statements, but not
with the union itself.

Ch06.indd 169 1/25/12 9:25:30 AM

 1 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ExampLE 6.46

Get the employee number for employees who either belong to department d1 or
entered their project before 1/1/2007, in ascending order of employee number:

USE sample;

SELECT emp_no

 FROM employee

 WHERE dept_no = 'd1'

UNION

SELECT emp_no

 FROM works_on

 WHERE enter_date < '01.01.2007'

ORDER BY 1;

The result is

emp_no
9031

10102

18316

28559

29346

Note
The UNION operator supports the ALL option. When UNION is used with ALL, duplicates are not removed from the
result set.

The OR operator can be used instead of the UNION operator if all SELECT
statements connected by one or more UNION operators reference the same table.
In this case, the set of the SELECT statements is replaced through one SELECT
statement with the set of OR operators.

INTERSECT and EXCEPT Set Operators
The two other set operators are INTERSECT, which specifies the intersection, and
EXCEPT, which defines the difference operator. The intersection of two tables is the
set of rows belonging to both tables. The difference of two tables is the set of all rows,
where the resulting rows belong to the first table but not to the second one. Example 6.47
shows the use of the INTERSECT operator.

Ch06.indd 170 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 7 1

 ExampLE 6.47

USE sample;

SELECT emp_no

 FROM employee

 WHERE dept_no = 'd1'

INTERSECT

SELECT emp_no

 FROM works_on

 WHERE enter_date < '01.01.2008';

The result is

emp_no
18316

28559

Note
Transact-SQL does not support the INTERSECT operator with the ALL option. (The same is true for the EXCEPT
operator.)

Example 6.48 shows the use of the EXCEPT set operator.

 ExampLE 6.48

USE sample;

SELECT emp_no

 FROM employee

 WHERE dept_no = 'd3'

EXCEPT

SELECT emp_no

 FROM works_on

 WHERE enter_date > '01.01.2008';

The result is

emp_no
10102

25348

Ch06.indd 171 1/25/12 9:25:30 AM

 1 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Note
You should be aware that the three set operators have different priorities for evaluation: the INTERSECT operator
has the highest priority, EXCEPT is evaluated next, and the UNION operator has the lowest priority. If you do not
pay attention to these different priorities, you will get unexpected results when you use several set operators
together.

CaSE Expressions
In database application programming, it is sometimes necessary to modify the
representation of data. For instance, a person’s gender can be coded using the values 1,
2, and 3 (for female, male, and child, respectively). Such a programming technique can
reduce the time for the implementation of a program. The CASE expression in the
Transact-SQL language makes this type of encoding easy to implement.

Note
CASE does not represent a statement (as in most programming languages) but an expression. Therefore, the CASE
expression can be used (almost) everywhere where the Transact-SQL language allows the use of an expression.

The CASE expression has two different forms:

Simple CASE expressionCc

Searched CASE expressionCc

The syntax of the simple CASE expression is

CASE expression_1

 {WHEN expression_2 THEN result_1} ...

 [ELSE result_n]

END

A Transact-SQL statement with the simple CASE expression looks for the first
expression in the list of all WHEN clauses that match expression_1 and evaluates the
corresponding THEN clause. If there is no match, the ELSE clause is evaluated.

The syntax of the searched CASE expression is

CASE

 {WHEN condition_1 THEN result_1} ...

 [ELSE result_n]

END

Ch06.indd 172 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 7 3

A Transact-SQL statement with the searched CASE expression looks for the first
expression that evaluates to TRUE. If none of the WHEN conditions evaluates to
TRUE, the value of the ELSE expression is returned. Example 6.49 shows the use of
the searched CASE expression.

 ExampLE 6.49

USE sample;

SELECT project_name,

 CASE

 WHEN budget > 0 AND budget < 100000 THEN 1

 WHEN budget >= 100000 AND budget < 200000 THEN 2

 WHEN budget >= 200000 AND budget < 300000 THEN 3

 ELSE 4

 END budget_weight

 FROM project;

The result is

project_name budget_weight
Apollo 2

Gemini 1

Mercury 2

In Example 6.49, budgets of all projects are weighted, and the calculated weights
(together with the name of the corresponding project) are displayed.

Example 6.50 shows another example with the CASE expression, where the WHEN
clause contains inner queries as part of the expression.

 ExampLE 6.50

USE sample;

SELECT project_name,

 CASE

 WHEN p1.budget < (SELECT AVG(p2.budget) FROM project p2)

 THEN 'below average'

 WHEN p1.budget = (SELECT AVG(p2.budget) FROM project p2)

 THEN 'on average'

 WHEN p1.budget > (SELECT AVG(p2.budget) FROM project p2)

 THEN 'above average'

 END budget_category

 FROM project p1;

Ch06.indd 173 1/25/12 9:25:30 AM

 1 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

project_name budget_category
Apollo below average

Gemini below average

Mercury above average

Subqueries
All previous examples in this chapter contain comparisons of column values with an
expression, constant, or set of constants. Additionally, the Transact-SQL language offers
the ability to compare column values with the result of another SELECT statement.
Such a construct, where one or more SELECT statements are nested in the WHERE
clause of another SELECT statement, is called a subquery. The first SELECT
statement of a subquery is called the outer query—in contrast to the inner query, which
denotes the SELECT statement(s) used in a comparison. The inner query will be
evaluated first, and the outer query receives the values of the inner query.

Note
An inner query can also be nested in an INSERT, UPDATE, or DELETE statement, which will be discussed later in
this book.

There are two types of subqueries:

Self-containedCc

CorrelatedCc

In a self-contained subquery, the inner query is logically evaluated exactly once. A
correlated subquery differs from a self-contained one in that its value depends upon
a variable from the outer query. Therefore, the inner query of a correlated subquery is
logically evaluated each time the system retrieves a new row from the outer query. This
section shows examples of self-contained subqueries. The correlated subquery will be
discussed later in the chapter, together with the join operation.

Ch06.indd 174 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 7 5

A self-contained subquery can be used with the following operators:

Comparison operatorsCc

IN operatorCc

ANY or ALL operatorCc

Subqueries and Comparison Operators
Example 6.51 shows the self-contained subquery that is used with the operator =.

 ExampLE 6.51

Get the first and last names of employees who work in the Research department:

USE sample;

SELECT emp_fname, emp_lname

 FROM employee

 WHERE dept_no =

 (SELECT dept_no

 FROM department

 WHERE dept_name = 'Research');

The result is

emp_fname emp_lname
John Barrimore

Sybill Moser

The inner query of Example 6.51 is logically evaluated first. That query returns the
number of the research department (d1). Thus, after the evaluation of the inner query,
the subquery in Example 6.51 can be represented with the following equivalent query:

USE sample

SELECT emp_fname, emp_lname

 FROM employee

 WHERE dept_no = 'd1';

A subquery can be used with other comparison operators, too. Any comparison
operator can be used, provided that the inner query returns exactly one row. This is

Ch06.indd 175 1/25/12 9:25:30 AM

 1 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

obvious because comparison between particular column values of the outer query and a
set of values (as a result of the inner query) is not possible. The following section shows
how you can handle the case in which the result of an inner query contains a set of
values.

Subqueries and the In Operator
The IN operator allows the specification of a set of expressions (or constants) that are
subsequently used for the query search. This operator can be applied to a subquery for
the same reason—that is, when the result of an inner query contains a set of values.

Example 6.52 shows the use of the IN operator in a subquery.

 ExampLE 6.52

Get full details of all employees whose department is located in Dallas:

USE sample;

SELECT *

 FROM employee

 WHERE dept_no IN

 (SELECT dept_no

 FROM department

 WHERE location = 'Dallas');

The result is

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

10102 Ann Jones d3

18316 John Barrimore d1

28559 Sybill Moser d1

Each inner query may contain further queries. This type of subquery is called a
subquery with multiple levels of nesting. The maximum number of inner queries in
a subquery depends on the amount of memory the Database Engine has for each
SELECT statement. In the case of subqueries with multiple levels of nesting, the
system first evaluates the innermost query and returns the result to the query on the
next nesting level, and so on. Finally, the outermost query evaluates the final outcome.

Example 6.53 shows the query with multiple levels of nesting.

Ch06.indd 176 1/25/12 9:25:30 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 7 7

 ExampLE 6.53

Get the last names of all employees who work on the project Apollo:

USE sample;

SELECT emp_lname

 FROM employee

 WHERE emp_no IN

 (SELECT emp_no

 FROM works_on

 WHERE project_no IN

 (SELECT project_no

 FROM project

 WHERE project_name = 'Apollo'));

The result is

emp_lname
Jones

James

Bertoni

Moser

The innermost query in Example 6.53 evaluates to the project_no value p1. The
middle inner query compares this value with all values of the project_no column in the
works_on table. The result of this query is the set of employee numbers: (10102, 29346,
9031, 28559). Finally, the outermost query displays the corresponding last names for the
selected employee numbers.

Subqueries and anY and aLL Operators
The operators ANY and ALL are always used in combination with one of the
comparison operators. The general syntax of both operators is

column_name operator [ANY | ALL] query

where operator stands for a comparison operator and query is an inner query.
The ANY operator evaluates to TRUE if the result of the corresponding inner query

contains at least one row that satisfies the comparison. The keyword SOME is the
synonym for ANY. Example 6.54 shows the use of the ANY operator.

Ch06.indd 177 1/25/12 9:25:30 AM

 1 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ExampLE 6.54

Get the employee numbers, project numbers, and job names for employees who have
not spent the most time on one of the projects:

USE sample;

SELECT DISTINCT emp_no, project_no, job

 FROM works_on

 WHERE enter_date > ANY

 (SELECT enter_date

 FROM works_on);

The result is

emp_no project_no job
2581 p3 Analyst

9031 p1 Manager

9031 p3 Clerk

10102 p3 Manager

18316 p2 NULL

25348 p2 Clerk

28559 p1 NULL

28559 p2 Clerk

29346 p1 Clerk

29346 p2 NULL

Each value of the enter_date column in Example 6.54 is compared with all values
of this column. For all dates of the column, except the oldest one, the comparison is
evaluated to TRUE at least once. The row with the oldest date does not belong to the
result because the comparison does not evaluate to TRUE in any case. In other words,
the expression “enter_date > ANY (SELECT enter_date FROM works_on)” is true if
there are any (one or more) rows in the works_on table with a value of the enter_date
column less than the value of enter_date for the current row. This will be true for all
but the earliest value of the enter_date column.

The ALL operator evaluates to TRUE if the evaluation of the table column in the
inner query returns all values of that column.

Ch06.indd 178 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 7 9

Note
Do not use ANY and ALL operators! Every query using ANY or ALL can be better formulated with the EXISTS
function, which is explained later in this chapter (see the section “Subqueries and the EXISTS Function”).
Additionally, the semantic meaning of the ANY operator can be easily confused with the semantic meaning of
the ALL operator, and vice versa.

Temporary Tables
A temporary table is a database object that is temporarily stored and managed by the
database system. Temporary tables can be local or global. Local temporary tables have
physical representation—that is, they are stored in the tempdb system database. They
are specified with the prefix # (for example, #table_name).

A local temporary table is owned by the session that created it and is visible only
to that session. Such a table is thus automatically dropped when the creating session
terminates. (If you define a local temporary table inside a stored procedure, it will be
destroyed when the corresponding procedure terminates.)

Global temporary tables are visible to any user and any connection after they are
created, and are deleted when all users that are referencing the table disconnect from
the database server. In contrast to local temporary tables, global ones are specified with
the prefix ##.

Examples 6.55 and 6.56 show how the temporary table project_temp can be created
using two different Transact-SQL statements.

 ExampLE 6.55

USE sample;

CREATE TABLE #project_temp

 (project_no CHAR(4) NOT NULL,

 project_name CHAR(25) NOT NULL);

 ExampLE 6.56

USE sample;

SELECT project_no, project_name

 INTO #project_temp1

 FROM project;

Examples 6.55 and 6.56 are similar. They use two different Transact-SQL statements
to create the local temporary table, #project_temp and #project_temp1, respectively.
However, Example 6.55 leaves it empty, while Example 6.56 populates the temporary
table with the data from the project table.

Ch06.indd 179 1/25/12 9:25:31 AM

 1 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Join Operator
The previous sections of this chapter demonstrated the use of the SELECT statement
to query rows from one table of a database. If the Transact-SQL language supported
only such simple SELECT statements, the attachment of two or more tables to retrieve
data would not be possible. Consequently, all data of a database would have to be
stored in one table. Although the storage of all the data of a database inside one table is
possible, it has one main disadvantage—the stored data are highly redundant.

Transact-SQL provides the join operator, which retrieves data from more than one
table. This operator is probably the most important operator for relational database
systems, because it allows data to be spread over many tables and thus achieves a vital
property of database systems—nonredundant data.

Note
The UNION operator also attaches two or more tables. However, the UNION operator always attaches two or
more SELECT statements, while the join operator “joins” two or more tables using just one SELECT. Further, the
UNION operator attaches rows of tables, while, as you will see later in this section, the join operator “joins”
columns of tables.

The join operator is applied to base tables and views. In this chapter, joins between
base tables are discussed, while joins concerning views will be discussed in Chapter 11.

There are several different forms of the join operator. This section discusses the
following fundamental types:

Natural joinCc

Cartesian product (cross join)Cc

Outer joinCc

Theta join, self-join, and semi-joinCc

Before explaining different join forms, this section describes the different syntax
forms of the join operator.

Two Syntax Forms to Implement Joins
To join tables, you can use two different forms:

Explicit join syntax (ANSI SQL:1992 join syntax)Cc

Implicit join syntax (old-style join syntax)Cc

Ch06.indd 180 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 8 1

The ANSI SQL:1992 join syntax was introduced in the SQL92 standard and
defines join operations explicitly—that is, using the corresponding name for each type
of join operation. The keywords concerning the explicit definition of join are

CROSS JOINCc

[INNER] JOINCc

LEFT [OUTER] JOINCc

RIGHT [OUTER] JOINCc

FULL [OUTER] JOINCc

CROSS JOIN specifies the Cartesian product of two tables. INNER JOIN defines
the natural join of two tables, while LEFT OUTER JOIN and RIGHT OUTER
JOIN characterize the join operations of the same names, respectively. Finally, FULL
OUTER JOIN specifies the union of the right and left outer joins. (All these different
join operations are explained in the following sections.)

The implicit join syntax is “old-style” syntax, where each join operation is defined
implicitly via the WHERE clause, using the so-called join columns (see the second
statement in Example 6.57).

Note
Use of the explicit join syntax is recommended. This syntax enhances the readability of queries. For this reason,
all examples in this chapter concerning the join operation are solved using the explicit syntax forms. In a few
introductory examples, you will see the old-style syntax, too.

natural Join
Natural join is best explained through the use of an example, so check out Example 6.57.

Note
The phrases “natural join” and “equi-join” are often used as synonyms, but there is a slight difference between
them. The equi-join operation always has one or more pairs of columns that have identical values in every row.
The operation that eliminates such columns from the equi-join is called a natural join.

 ExampLE 6.57

Get full details of each employee; that is, besides the employee’s number, first and
last names, and corresponding department number, also get the name of his or her
department and its location, with duplicate columns displayed.

Ch06.indd 181 1/25/12 9:25:31 AM

 1 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The following is the explicit join syntax:

USE sample;

SELECT employee.*, department.*

 FROM employee INNER JOIN department

 ON employee.dept_no = department.dept_no;

The SELECT list in Example 6.57 includes all columns of the employee and
department tables. The FROM clause in the SELECT statement specifies the tables
that are joined as well as the explicit name of the join form (INNER JOIN). The ON
clause is also part of the FROM clause; it specifies the join columns from both tables.
The condition employee.dept_no = department.dept_no specifies a join condition, and
both columns are said to be join columns.

The equivalent solution with the old-style, implicit join syntax is as follows:

USE sample;

SELECT employee.*, department.*

 FROM employee, department

 WHERE employee.dept_no = department.dept_no;

This syntax has two significant differences from the explicit join syntax: the FROM
clause of the query contains the list of tables that are joined, and the corresponding join
condition is specified in the WHERE clause using join columns.

The result is

emp_no emp_fname emp_lname dept_no dept_no dept_name location
25348 Matthew Smith d3 d3 Marketing Dallas

10102 Ann Jones d3 d3 Marketing Dallas

18316 John Barrimore d1 d1 Research Dallas

29346 James James d2 d2 Accounting Seattle

9031 Elsa Bertoni d2 d2 Accounting Seattle

2581 Elke Hansel d2 d2 Accounting Seattle

28559 Sybill Moser d1 d1 Research Dallas

Note
It is strongly recommended that you use * in a SELECT list only when you are using interactive SQL, and avoid its
use in an application program.

Ch06.indd 182 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 8 3

Example 6.57 can be used to show how a join operation works. Note that this is
just an illustration of how you can think about the join process; the Database Engine
actually has several strategies from which it chooses to implement the join operator.
Imagine each row of the employee table combined with each row of the department
table. The result of this combination is a table with 7 columns (4 from the table
employee and 3 from the table department) and 21 rows (see Table 6-1).

In the second step, all rows from Table 6-1 that do not satisfy the join condition
employee.dept_no = department.dept_no are removed. These rows are prefixed in
Table 6-1 with the * sign. The rest of the rows represent the result of Example 6.57.

Table 6-1 Result of the Cartesian Product Between the Tables employee and department

emp_no emp_fname emp_lname dept_no dept_no dept_name location
*25348 Matthew Smith d3 d1 Research Dallas

*10102 Ann Jones d3 d1 Research Dallas

18316 John Barrimore d1 d1 Research Dallas

*29346 James James d2 d1 Research Dallas

*9031 Elsa Bertoni d2 d1 Research Dallas

*2581 Elke Hansel d2 d1 Research Dallas

28559 Sybill Moser d1 d1 Research Dallas

*25348 Matthew Smith d3 d2 Accounting Seattle

*10102 Ann Jones d3 d2 Accounting Seattle

*18316 John Barrimore d1 d2 Accounting Seattle

29346 James James d2 d2 Accounting Seattle

9031 Elsa Bertoni d2 d2 Accounting Seattle

2581 Elke Hansel d2 d2 Accounting Seattle

*28559 Sybill Moser d1 d2 Accounting Seattle

25348 Matthew Smith d3 d3 Marketing Dallas

10102 Ann Jones d3 d3 Marketing Dallas

*18316 John Barrimore d1 d3 Marketing Dallas

*29346 James James d2 d3 Marketing Dallas

*9031 Elsa Bertoni d2 d3 Marketing Dallas

*2581 Elke Hansel d2 d3 Marketing Dallas

*28559 Sybill Moser d1 d3 Marketing Dallas

Ch06.indd 183 1/25/12 9:25:31 AM

 1 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The semantics of the corresponding join columns must be identical. This means both
columns must have the same logical meaning. It is not required that the corresponding
join columns have the same name (or even an identical type), although this will often
be the case.

Note
It is not possible for a database system to check the logical meaning of a column. (For instance, project number
and employee number have nothing in common, although both columns are defined as integers.) Therefore,
database systems can check only the data type and the length of string data types. The Database Engine requires
that the corresponding join columns have compatible data types, such as INT and SMALLINT.

The sample database contains three pairs of columns in which each column of
the pair has the same logical meaning (and they have the same names as well). The
employee and department tables can be joined using the columns employee.dept_no
and department.dept_no. The join columns of the employee and works_on tables
are the columns employee.emp_no and works_on.emp_no. Finally, the project and
works_on tables can be joined using the join columns project.project_no and works_
on.project_no.

The names of columns in a SELECT statement can be qualified. “Qualifying”
a column name means that, to avoid any possible ambiguity about which table the
column belongs to, the column name is preceded by its table name (or the alias of the
table), separated by a period: table_name.column_name.

In most SELECT statements a column name does not need any qualification,
although the use of qualified names is generally recommended for readability. If column
names within a SELECT statement are ambiguous (like the columns employee.dept_
no and department.dept_no in Example 6.57), the qualified names for the columns
must be used.

In a SELECT statement with a join, the WHERE clause can include other
conditions in addition to the join condition, as shown in Example 6.58.

 ExampLE 6.58

Get full details of all employees who work on the project Gemini.
Explicit join syntax:

USE sample;

SELECT emp_no, project.project_no, job, enter_date, project_name, budget

 FROM works_on JOIN project

 ON project.project_no = works_on.project_no

 WHERE project_name = 'Gemini';

Ch06.indd 184 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 8 5

Old-style join syntax:

USE sample;

SELECT emp_no, project.project_no, job, enter_date, project_name, budget

 FROM works_on, project

 WHERE project.project_no = works_on.project_no

 AND project_name = 'Gemini';

Note
The qualification of the columns emp_no, project_name, job, and budget in Example 6.58 is not necessary,
because there is no ambiguity regarding these names.

The result is

emp_no project_no job enter_date project_name budget
25348 p2 Clerk 2007-02-15 Gemini 95000.0

18316 p2 NULL 2007-06-01 Gemini 95000.0

29346 p2 NULL 2006-12-15 Gemini 95000.0

28559 p2 Clerk 2008-02-01 Gemini 95000.0

From this point forward, all examples will be implemented using the explicit join
syntax only.

Example 6.59 shows another use of the inner join.

 ExampLE 6.59

Get the department number for all employees who entered their projects on October 15,
2007:

USE sample;

SELECT dept_no

 FROM employee JOIN works_on

 ON employee.emp_no = works_on.emp_no

 WHERE enter_date = '10.15.2007';

The result is

dept_no
d2

Ch06.indd 185 1/25/12 9:25:31 AM

 1 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Joining More Than Two Tables
Theoretically, there is no upper limit on the number of tables that can be joined using
a SELECT statement. (One join condition always combines two tables!) However, the
Database Engine has an implementation restriction: the maximum number of tables
that can be joined in a SELECT statement is 64.

Example 6.60 joins three tables of the sample database.

 ExampLE 6.60

Get the first and last names of all analysts whose department is located in Seattle:

USE sample;

SELECT emp_fname, emp_lname

 FROM works_on JOIN employee ON works_on.emp_no=employee.emp_no

 JOIN department ON employee.dept_no=department.dept_no

 AND location = 'Seattle'

 AND job = 'analyst';

The result is

emp_fname emp_lname
Elke Hansel

The result in Example 6.60 can be obtained only if you join at least three tables:
works_on, employee, and department. These tables can be joined using two pairs of
join columns:

(works_on.emp_no, employee.emp_no)

(employee.dept_no, department.dept_no)

Example 6.61 uses all four tables from the sample database to obtain the result set.

 ExampLE 6.61

Get the names of projects (with redundant duplicates eliminated) being worked on by
employees in the Accounting department:

USE sample;

SELECT DISTINCT project_name

 FROM project JOIN works_on

 ON project.project_no = works_on.project_no

 JOIN employee ON works_on.emp_no = employee.emp_no

Ch06.indd 186 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 8 7

 JOIN department ON employee.dept_no = department.dept_no

 WHERE dept_name = 'Accounting';

The result is

project_name
Apollo

Gemini

Mercury

Notice that when joining three tables, you use two join conditions (linking two
tables each) to achieve a natural join. When you join four tables, you use three such
join conditions. In general, if you join n tables, you need n – 1 join conditions to avoid
a Cartesian product. Of course, using more than n – 1 join conditions, as well as other
conditions, is certainly permissible to further reduce the result set.

Cartesian product
The previous section illustrated a possible method of producing a natural join. In the
first step of this process, each row of the employee table is combined with each row
of the department table. This intermediate result was made by the operation called
Cartesian product. Example 6.62 shows the Cartesian product of the tables employee
and department.

 ExampLE 6.62

USE sample;

SELECT employee.*, department.*

 FROM employee CROSS JOIN department;

The result of Example 6.62 is shown in Table 6-1. A Cartesian product combines
each row of the first table with each row of the second table. In general, the Cartesian
product of two tables such that the first table has n rows and the second table has
m rows will produce a result with n times m rows (or n*m). Thus, the result set in
Example 6.62 contains 7*3 = 21 rows.

In practice, the use of a Cartesian product is highly unusual. Sometimes users
generate the Cartesian product of two tables when they forget to include the join
condition in the WHERE clause of the old-style join syntax. In this case, the output
does not correspond to the expected result because it contains too many rows. (The
existence of many and unexpected rows in the result is a hint that a Cartesian product
of two tables, rather than the intended natural join, has been produced.)

Ch06.indd 187 1/25/12 9:25:31 AM

 1 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Outer Join
In the previous examples of natural join, the result set included only rows from one
table that have corresponding rows in the other table. Sometimes it is necessary to
retrieve, in addition to the matching rows, the unmatched rows from one or both of the
tables. Such an operation is called an outer join.

Examples 6.63 and 6.64 show the difference between a natural join and the
corresponding outer join. (All examples in this section use the employee_enh table.)

 ExampLE 6.63

Get full details of all employees, including the location of their department, who live
and work in the same city:

USE sample;

SELECT employee_enh.*, department.location

 FROM employee_enh JOIN department

 ON domicile = location;

The result is

emp_no emp_fname emp_lname dept_no domicile location
29346 James James d2 Seattle Seattle

Example 6.63 uses a natural join to display the result set of rows. If you would like
to know all other existing living places of employees, you have to use the (left) outer
join. This is called a left outer join because all rows from the table on the left side of
the operator are returned, whether or not they have a matching row in the table on the
right. In other words, if there are no matching rows in the table on the right side, the
outer join will still return a row from the table on the left side, with NULL in each
column of the other table (see Example 6.64). The Database Engine uses the operator
LEFT OUTER JOIN to specify the left outer join.

A right outer join is similar, but it returns all rows of the table on the right of the
symbol. The Database Engine uses the operator RIGHT OUTER JOIN to specify the
right outer join.

 ExampLE 6.64

Get full details of all employees, including the location of their department, for all cities
that are either the living place only or both the living and working place of employees:

USE sample;

SELECT employee_enh.*, department.location

 FROM employee_enh LEFT OUTER JOIN department

 ON domicile = location;

Ch06.indd 188 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 8 9

The result is

emp_no emp_fname emp_lname dept_no domicile location
25348 Matthew Smith d3 San Antonio NULL

10102 Ann Jones d3 Houston NULL

18316 John Barrimore d1 San Antonio NULL

29346 James James d2 Seattle Seattle

 9031 Elsa Bertoni d2 Portland NULL

 2581 Elke Hansel d2 Tacoma NULL

28559 Sybill Moser d1 Houston NULL

As you can see, when there is no matching row in the table on the right side
(department, in this case), the left outer join still returns the rows from the table on the
left side (employee_enh), and the columns of the other table are populated by NULL
values. Example 6.65 shows the use of the right outer join operation.

 ExampLE 6.65

Get full details of all departments, as well as all living places of their employees, for all
cities that are either the location of a department or the living and working place of an
employee:

USE sample;

SELECT employee_enh.domicile, department.*

 FROM employee_enh RIGHT OUTER JOIN department

 ON domicile =location;

The result is

domicile dept_no dept_name location
Seattle d2 Accounting Seattle

NULL d1 Research Dallas

NULL d3 Marketing Dallas

In addition to the left and right outer joins, there is also the full outer join, which is
defined as the union of the left and right outer joins. In other words, all rows from both
tables are represented in the result set. If there is no corresponding row in one of the
tables, its columns are returned with NULL values. This operation is specified using the
FULL OUTER JOIN operator.

Ch06.indd 189 1/25/12 9:25:31 AM

 1 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Every outer join operation can be simulated using the UNION operator plus the
NOT EXISTS function. Example 6.66 is equivalent to the example with the left outer
join (Example 6.64).

 ExampLE 6.66

Get full details of all employees, including the location of their department, for all cities
that are either the living place only or both the living and working place of employees:

USE sample;

SELECT employee_enh.*, department.location

 FROM employee_enh JOIN department

 ON domicile = location

UNION

SELECT employee_enh.*, 'NULL'

 FROM employee_enh

 WHERE NOT EXISTS

 (SELECT *

 FROM department

 WHERE location = domicile);

The first SELECT statement in the union specifies the natural join of the tables
employee_enh and department with the join columns domicile and location. This
SELECT statement retrieves all cities that are at the same time the living places
and working places of each employee. The second SELECT statement in the union
retrieves, additionally, all rows from the employee_enh table that do not match the
condition in the natural join.

Further Forms of Join Operations
The preceding sections discussed the most important join forms. This section shows
you three other forms:

Theta joinCc

Self-joinCc

Semi-joinCc

The following subsections describe these forms.

Theta Join
Join columns need not be compared using the equality sign. A join operation using a
general join condition is called a theta join. Example 6.67, which uses the employee_
enh table, shows the theta join operation.

Ch06.indd 190 1/25/12 9:25:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 9 1

 ExampLE 6.67

Get all the combinations of employee information and department information where
the domicile of an employee alphabetically precedes any location of departments.

USE sample;

SELECT emp_fname, emp_lname, domicile, location

 FROM employee_enh JOIN department

 ON domicile < location;

The result is

emp_fname emp_lname domicile location
Matthew Smith San Antonio Seattle

Ann Jones Houston Seattle

John Barrimore San Antonio Seattle

Elsa Bertoni Portland Seattle

Sybill Moser Houston Seattle

In Example 6.67, the corresponding values of columns domicile and location
are compared. In every resulting row, the value of the domicile column is ordered
alphabetically before the corresponding value of the location column.

Self-Join, or Joining a Table with Itself
In addition to joining two or more different tables, a natural join operation can also
be applied to a single table. In this case, the table is joined with itself, whereby a single
column of the table is compared with itself. The comparison of a column with itself
means that the table name appears twice in the FROM clause of a SELECT statement.
Therefore, you need to be able to reference the name of the same table twice. This can
be accomplished using at least one alias name. The same is true for the column names in
the join condition of a SELECT statement. In order to distinguish both column names,
you use the qualified names. Example 6.68 joins the department table with itself.

 ExampLE 6.68

Get full details of all departments located at the same location as at least one other
department:

USE sample;

SELECT t1.dept_no, t1.dept_name, t1.location

 FROM department t1 JOIN department t2

Ch06.indd 191 1/25/12 9:25:32 AM

 1 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ON t1.location = t2.location

 WHERE t1.dept_no <> t2.dept_no;

The result is

dept_no dept_name location
d3 Marketing Dallas

d1 Research Dallas

The FROM clause in Example 6.68 contains two aliases for the department table:
t1 and t2. The first condition in the WHERE clause specifies the join columns, while
the second condition eliminates unnecessary duplicates by making certain that each
department is compared with different departments.

Semi-Join
The semi-join is similar to the natural join, but the result of the semi-join is only the
set of all rows from one table where one or more matches are found in the second table.
Example 6.69 shows the semi-join operation.

 ExampLE 6.69

USE sample;

SELECT emp_no, emp_lname, e.dept_no

 FROM employee e JOIN department d

 ON e.dept_no = d.dept_no

 WHERE location = 'Dallas';

The result is

emp_no emp_lname dept_no
25348 Smith d3

10102 Jones d3

18316 Barrimore d1

28559 Moser d1

As can be seen from Example 6.69, the SELECT list of the semi-join contains only
columns from the employee table. This is exactly what characterizes the semi-join
operation. This operation is usually used in distributed query processing to minimize
data transfer. The Database Engine uses the semi-join operation to implement the
feature called star join (see Chapter 25).

Ch06.indd 192 1/25/12 9:25:32 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 9 3

Correlated Subqueries
A subquery is said to be a correlated subquery if the inner query depends on the outer
query for any of its values. Example 6.70 shows a correlated subquery.

 ExampLE 6.70

Get the last names of all employees who work on project p3:

USE sample;

SELECT emp_lname

 FROM employee

 WHERE 'p3' IN

 (SELECT project_no

 FROM works_on

 WHERE works_on.emp_no = employee.emp_no);

The result is

emp_lname
Jones

Bertoni

Hansel

The inner query in Example 6.70 must be logically evaluated many times because
it contains the emp_no column, which belongs to the employee table in the outer
query, and the value of the emp_no column changes every time the Database Engine
examines a different row of the employee table in the outer query.

Let’s walk through how the system might process the query in Example 6.70. First, the
system retrieves the first row of the employee table (for the outer query) and compares
the employee number of that column (25348) with values of the works_on.emp_no
column in the inner query. Since the only project_no for this employee is p2, the inner
query returns the value p2. The single value in the set is not equal to the constant value
p3 in the outer query, so the outer query’s condition (WHERE ‘p3’ IN …) is not met and
no rows are returned by the outer query for this employee. Then, the system retrieves the
next row of the employee table and repeats the comparison of employee numbers in both
tables. The second employee has two rows in the works_on table with project_no values
of p1 and p3, so the result set of the inner query is (p1,p3). One of the elements in the
result set is equal to the constant value p3, so the condition is evaluated to TRUE and the
corresponding value of the emp_lname column in the second row (Jones) is displayed.
The same process is applied to all rows of the employee table, and the final result set with
three rows is retrieved.

More examples of correlated subqueries are shown in the next section.

Ch06.indd 193 1/25/12 9:25:32 AM

 1 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Subqueries and the ExISTS Function
The EXISTS function takes an inner query as an argument and returns TRUE if the
inner query returns one or more rows, and returns FALSE if it returns zero rows. This
function will be explained using examples, starting with Example 6.71.

 ExampLE 6.71

Get the last names of all employees who work on project p1:

USE sample;

SELECT emp_lname

 FROM employee

 WHERE EXISTS

 (SELECT *

 FROM works_on

 WHERE employee.emp_no = works_on.emp_no

 AND project_no = 'p1');

The result is

emp_lname
Jones

James

Bertoni

Moser

The inner query of the EXISTS function almost always depends on a variable from
an outer query. Therefore, the EXISTS function usually specifies a correlated subquery.

Let’s walk through how the Database Engine might process the query in Example 6.71.
First, the outer query considers the first row of the employee table (Smith). Next,
the EXISTS function is evaluated to determine whether there are any rows in the
works_on table whose employee number matches the one from the current row in
the outer query, and whose project_no is p1. Because Mr. Smith does not work on
the project p1, the result of the inner query is an empty set and the EXISTS function
is evaluated to FALSE. Therefore, the employee named Smith does not belong to the
final result set. Using this process, all rows of the employee table are tested, and the
result set is displayed.

Example 6.72 shows the use of the NOT EXISTS function.

Ch06.indd 194 1/25/12 9:25:32 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 9 5

 ExampLE 6.72

Get the last names of all employees who work for departments not located in Seattle:

USE sample;

SELECT emp_lname

 FROM employee

 WHERE NOT EXISTS

 (SELECT *

 FROM department

 WHERE employee.dept_no = department.dept_no

 AND location = 'Seattle');

The result is

emp_lname
Smith

Jones

Barrimore

Moser

The SELECT list of an outer query involving the EXISTS function is not required
to be of the form SELECT * as in the previous examples. The form SELECT column_
list, where column_list is one or more columns of the table, is an alternate form.
Both forms are equivalent, because the EXISTS function tests only the existence (i.e.,
nonexistence) of rows in the result set. For this reason, the use of SELECT * in this
case is safe.

Should You Use Joins or Subqueries?
Almost all SELECT statements that join tables and use the join operator can be
rewritten as subqueries, and vice versa. Writing the SELECT statement using the join
operator is often easier to read and understand and can also help the Database Engine
to find a more efficient strategy for retrieving the appropriate data. However, there are
a few problems that can be easier solved using subqueries, and there are others that can
be easier solved using joins.

Subquery Advantages
Subqueries are advantageous over joins when you have to calculate an aggregate value
on-the-fly and use it in the outer query for comparison. Example 6.73 shows this.

Ch06.indd 195 1/25/12 9:25:32 AM

 1 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ExampLE 6.73

Get the employee numbers and enter dates of all employees with enter dates equal to
the earliest date:

USE sample;

SELECT emp_no, enter_date

 FROM works_on

 WHERE enter_date = (SELECT min(enter_date)

 FROM works_on);

This problem cannot be solved easily with a join, because you would have to write
the aggregate function in the WHERE clause, which is not allowed. (You can solve the
problem using two separate queries in relation to the works_on table.)

Join Advantages
Joins are advantageous over subqueries if the SELECT list in a query contains columns
from more than one table. Example 6.74 shows this.

 ExampLE 6.74

Get the employee numbers, last names, and jobs for all employees who entered their
projects on October 15, 2007:

USE sample;

SELECT employee.emp_no, emp_lname, job

 FROM employee, works_on

 WHERE employee.emp_no = works_on.emp_no

 AND enter_date = '10.15.2007';

The SELECT list of the query in Example 6.74 contains columns emp_no and
emp_lname from the employee table and the job column from the works_on table.
For this reason, the equivalent solution with the subquery would display an error,
because subqueries can display information only from the outer table.

Table Expressions
Table expressions are subqueries that are used where a table is expected. There are two
types of table expressions:

Ch06.indd 196 1/25/12 9:25:32 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 9 7

Derived tablesCc

Common table expressionsCc

The following subsections describe these two forms of table expressions.

Derived Tables
A derived table is a table expression that appears in the FROM clause of a query. You
can apply derived tables when the use of column aliases is not possible because another
clause is processed by the SQL translator before the alias name is known. Example 6.75
shows an attempt to use a column alias where another clause is processed before the
alias name is known.

 ExampLE 6.75 (ExampLE OF an ILLEgaL STaTEmEnT)

Get all existing groups of months from the enter_date column of the works_on table:

USE sample;

SELECT MONTH(enter_date) as enter_month

FROM works_on

GROUP BY enter_month;

The result is

Message 207: Level 16, State 1, Line 4

 The invalid column 'enter_month'

The reason for the error message is that the GROUP BY clause is processed before
the corresponding SELECT list, and the alias name enter_month is not known at the
time the grouping is processed.

By using a derived table that contains the preceding query (without the GROUP BY
clause), you can solve this problem, because the FROM clause is executed before the
GROUP BY clause, as shown in Example 6.76.

 ExampLE 6.76

USE sample;

SELECT enter_month

 FROM (SELECT MONTH(enter_date) as enter_month

 FROM works_on) AS m

GROUP BY enter_month;

Ch06.indd 197 1/25/12 9:25:32 AM

 1 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

The result is

enter_month
1

2

4

6

8

10

11

12

Generally, it is possible to write a table expression any place in a SELECT statement
where a table can appear. (The result of a table expression is always a table or, in a special
case, an expression.) Example 6.77 shows the use of a table expression in a SELECT list.

 ExampLE 6.77

USE sample;

SELECT w.job, (SELECT e.emp_lname

 FROM employee e WHERE e.emp_no = w.emp_no) AS name

 FROM works_on w

 WHERE w.job IN('Manager', 'Analyst');

The result is

job name
Analyst Jones

Manager Jones

Analyst Hansel

Manager Bertoni

Common Table Expressions
A common table expression (CTE) is a named table expression that is supported by
Transact-SQL. There are two types of queries that use CTE:

Nonrecursive queriesCc

Recursive queriesCc

Ch06.indd 198 1/25/12 9:25:32 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 1 9 9

The following sections describe both query types.

Note
Common table expressions are also used by the APPLY operator, which allows you to invoke a table-valued
function for each row returned by an outer table expression of a query. This operator is discussed in Chapter 8.

CTEs and Nonrecursive Queries
The nonrecursive form of a CTE can be used as an alternative to derived tables and
views. Generally, a CTE is defined using the WITH statement and an additional query
that refers to the name used in WITH (see Example 6.79).

Note
The WITH keyword is ambiguous in the Transact-SQL language. To avoid ambiguity, you have to use a semicolon
(;) to terminate the statement preceding the WITH statement.

Examples 6.78 and 6.79 use the AdventureWorks database to show how CTEs
can be used in nonrecursive queries. Example 6.78 uses the “convenient” features, while
Example 6.79 solves the same problem using a nonrecursive query.

 ExampLE 6.78

USE AdventureWorks;

SELECT SalesOrderID

 FROM Sales.SalesOrderHeader

 WHERE TotalDue > (SELECT AVG(TotalDue)

 FROM Sales.SalesOrderHeader

 WHERE YEAR(OrderDate) = '2002')

 AND Freight > (SELECT AVG(TotalDue)

 FROM Sales.SalesOrderHeader

 WHERE YEAR(OrderDate) = '2002')/2.5;

The query in Example 6.78 finds total dues whose values are greater than the average
of all dues and whose freights are greater than 40 percent of the average of all dues.
The main property of this query is that it is space-consuming, because an inner query
has to be written twice. One way to shorten the syntax of the query is to create a view
containing the inner query, but that is rather complicated because you would have to
create the view and then drop it when you are done with the query. A better way is to
write a CTE. Example 6.79 shows the use of the nonrecursive CTE, which shortens
the definition of the query in Example 6.78.

Ch06.indd 199 1/25/12 9:25:32 AM

 2 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 ExampLE 6.79

USE AdventureWorks;

WITH price_calc(year_2002) AS

 (SELECT AVG(TotalDue)

 FROM Sales.SalesOrderHeader

 WHERE YEAR(OrderDate) = '2002')

SELECT SalesOrderID

 FROM Sales.SalesOrderHeader

 WHERE TotalDue > (SELECT year_2002 FROM price_calc)

AND Freight > (SELECT year_2002 FROM price_calc)/2.5;

The syntax for the WITH clause in nonrecursive queries is

WITH cte_name (column_list) AS

 (inner_query)

outer_query

cte_name is the name of the CTE that specifies a resulting table. The list of columns
that belong to the table expression is written in brackets. (The CTE in Example 6.79
is called price_calc and has one column, year_2002.) inner_query in the CTE syntax
defines the SELECT statement, which specifies the result set of the corresponding
table expression. After that, you can use the defined table expression in an outer query.
(The outer query in Example 6.79 uses the CTE called price_calc and its column
year_2002 to simplify the inner query, which appears twice.)

CTEs and Recursive Queries

Note
The material in this subsection is complex. Therefore, you might want to skip it on the first reading of the book
and make a note to yourself to return to it.

You can use CTEs to implement recursion because CTEs can contain references to
themselves. The basic syntax for a CTE for recursive queries is

WITH cte_name (column_list) AS

 (anchor_member

 UNION ALL

 recursive_member)

outer_query

Ch06.indd 200 1/25/12 9:25:32 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 2 0 1

cte_name and column_list have the same meaning as in CTEs for nonrecursive
queries. The body of the WITH clause comprises two queries that are connected with
the UNION ALL operator. The first query will be invoked only once, and it starts to
accumulate the result of the recursion. The first operand of UNION ALL does not
reference the CTE (see Example 6.80). This query is called the anchor query or seed.

The second query contains a reference to the CTE and represents the recursive
portion of it. For this reason it is called the recursive member. In the first invocation of
the recursive part, the reference to the CTE represents the result of the anchor query.
The recursive member uses the query result of the first invocation. After that, the
system repeatedly invokes the recursive part. The invocation of the recursive member
ends when the result of the previous invocation is an empty set.

The UNION ALL operator joins the rows accumulated so far, as well as the
additional rows that are added in the current invocation. (Inclusion of UNION ALL
means that no duplicate rows will be eliminated from the result.)

Finally, outer query defines a query specification that uses the CTE to retrieve all
invocations of the union of both members.

The table definition in Example 6.80 will be used to demonstrate the recursive form
of CTEs.

 ExampLE 6.80

USE sample;

CREATE TABLE airplane

 (containing_assembly VARCHAR(10),

 contained_assembly VARCHAR(10),

 quantity_contained INT,

 unit_cost DECIMAL (6,2));

insert into airplane values ('Airplane', 'Fuselage',1, 10);

insert into airplane values ('Airplane', 'Wings', 1, 11);

insert into airplane values ('Airplane', 'Tail',1, 12);

insert into airplane values ('Fuselage', 'Cockpit', 1, 13);

insert into airplane values ('Fuselage', 'Cabin', 1, 14);

insert into airplane values ('Fuselage', 'Nose',1, 15);

insert into airplane values ('Cockpit', NULL, 1,13);

insert into airplane values ('Cabin', NULL, 1, 14);

insert into airplane values ('Nose', NULL, 1, 15);

insert into airplane values ('Wings', NULL,2, 11);

insert into airplane values ('Tail', NULL, 1, 12);

The airplane table contains four columns. The column containing_assembly
specifies an assembly, while contained_assembly comprises the parts (one by one) that
build the corresponding assembly. (Figure 6-1 shows graphically how an airplane with
its parts could look.)

Ch06.indd 201 1/25/12 9:25:32 AM

 2 0 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

Suppose that the airplane table contains 11 rows, which are shown in Table 6-2.
(The INSERT statements in Example 6.80 insert these rows in the airplane table.)

Example 6.81 shows the use of the WITH clause to define a query that calculates
the total costs of each assembly.

 ExampLE 6.81

USE sample;

WITH list_of_parts(assembly1, quantity, cost) AS

 (SELECT containing_assembly, quantity_contained, unit_cost

 FROM airplane

 WHERE contained_assembly IS NULL

 UNION ALL

 SELECT a.containing_assembly, a.quantity_contained,

Figure 6-1 Presentation of an airplane and its parts

Airplane

Fuselage Wings

Cockpit NoseCabin

Tail

Airplane Fuselage 1 10

Airplane Wings 1 11

Airplane Tail 1 12

Fuselage Cockpit 1 13

Fuselage Cabin 1 14

Fuselage Nose 1 15

Cockpit NULL 1 13

Cabin NULL 1 14

Nose NULL 1 15

Wings NULL 2 11

Tail NULL 1 12

Table 6-2 Content of the airplane Table

Ch06.indd 202 1/25/12 9:25:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 2 0 3

 CAST(l.quantity*l.cost AS DECIMAL(6,2))

 FROM list_of_parts l,airplane a

 WHERE l.assembly1 = a.contained_assembly)

SELECT * FROM list_of_parts;

The WITH clause defines the CTE called list_of_parts, which contains three
columns: assembly, quantity, and cost. The first SELECT statement in Example 6.81
will be invoked only once, to accumulate the results of the first step in the recursion
process.

The SELECT statement in the last row of Example 6.81 displays the following
result:

assembly quantity costs
Cockpit 1 13.00

Cabin 1 14.00

Nose 1 16.500

Wings 2 11.00

Tail 1 12.00

Airplane 1 12.00

Airplane 1 22.00

Fuselage 1 16.500

Airplane 1 16.500

Fuselage 1 14.00

Airplane 1 14.00

Fuselage 1 13.00

Airplane 1 13.00

The first five rows in the preceding output show the result set of the first invocation
of the anchor member of the query in Example 6.81. All other rows are the result of
the recursive member (second part) of the query in the same example. The recursive
member of the query will be invoked twice: the first time for the fuselage assembly and
the second time for the airplane itself.

The query in Example 6.82 will be used to get the costs for each assembly with all its
subparts.

 ExampLE 6.82

USE sample;

WITH list_of_parts(assembly, quantity, cost) AS

 (SELECT containing_assembly, quantity_contained, unit_cost

Ch06.indd 203 1/25/12 9:25:34 AM

 2 0 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 FROM airplane

 WHERE contained_assembly IS NULL

 UNION ALL

 SELECT a.containing_assembly, a.quantity_contained,

 CAST(l.quantity*l.cost AS DECIMAL(6,2))

 FROM list_of_parts l,airplane a

 WHERE l.assembly = a.contained_assembly)

SELECT assembly, SUM(quantity) parts, SUM(cost) sum_cost

 FROM list_of_parts

 GROUP BY assembly;

The output of the query in Example 6.82 is as follows:

assembly parts sum_cost
Airplane 5 76.00

Cabin 1 14.00

Cockpit 1 13.00

Fuselage 3 42.00

Nose 1 16.500

Tail 1 12.00

Wings 2 11.00

There are several restrictions for a CTE in a recursive query:

The CTE definition must contain at least two SELECT statements (an anchor Cc

member and one recursive member) combined by the UNION ALL operator.
The number of columns in the anchor and recursive members must be the same. Cc

(This is the direct consequence of using the UNION ALL operator.)
The data type of a column in the recursive member must be the same as the data Cc

type of the corresponding column in the anchor member.
The FROM clause of the recursive member must refer only once to the name of Cc

the CTE.
The following options are not allowed in the definition part of a recursive Cc

member: SELECT DISTINCT, GROUP BY, HAVING, aggregation functions,
TOP, and subqueries. (Also, the only join operation that is allowed in the query
definition is an inner join.)

Ch06.indd 204 1/25/12 9:25:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 2 0 5

Summary
This chapter covered all the features of the SELECT statement regarding data retrieval
from one or more tables. Every SELECT statement that retrieves data from a table
must contain at least a SELECT list and the FROM clause. The FROM clause
specifies the table(s) from which the data is retrieved. The most important optional
clause is the WHERE clause, containing one or more conditions that can be combined
using the Boolean operators AND, OR, and NOT. Hence, the conditions in the
WHERE clause place the restriction on the selected row.

Exercises

 E.6.1

Get all rows of the works_on table.

 E.6.2

Get the employee numbers for all clerks.

 E.6.3

Get the employee numbers for employees working on project p2 and having employee
numbers lower than 10000. Solve this problem with two different but equivalent
SELECT statements.

 E.6.4

Get the employee numbers for employees who didn’t enter their project in 2007.

 E.6.5

Get the employee numbers for all employees who have a leading job (i.e., Analyst or
Manager) in project p1.

 E.6.6

Get the enter dates for all employees in project p2 whose jobs have not been
determined yet.

 E.6.7

Get the employee numbers and last names of all employees whose first names contain
two letter t’s.

Ch06.indd 205 1/25/12 9:25:34 AM

 2 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 E.6.8

Get the employee numbers and first names of all employees whose last names have a
letter o or a as the second character and end with the letters es.

 E.6.9

Find the employee numbers of all employees whose departments are located in Seattle.

 E.6.10

Find the last and first names of all employees who entered their projects on 04.01.2007.

 E.6.11

Group all departments using their locations.

 E.6.12

What is a difference between the DISTINCT and GROUP BY clauses?

 E.6.13

How does the GROUP BY clause manage the NULL values? Does it correspond to
the general treatment of these values?

 E.6.14

What is the difference between COUNT(*) and COUNT(column)?

 E.6.15

Find the highest employee number.

 E.6.16

Get the jobs that are done by more than two employees.

 E.6.17

Find the employee numbers of all employees who are clerks or work for department d3.

 E.6.18

Why is the following statement wrong?

SELECT project_name

 FROM project

 WHERE project_no =

 (SELECT project_no FROM works_on WHERE Job = 'Clerk')

Ch06.indd 206 1/25/12 9:25:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 C h a p t e r 6 : Q u e r i e s 2 0 7

Write the correct syntax form for the statement.

 E.6.19

What is a practical use of temporary tables?

 E.6.20

What is a difference between global and local temporary tables?

Note
Write all solutions for the following exercises that use a join operation using the explicit join syntax.

 E.6.21

For the project and works_on tables, create the following:
a. Natural join
b. Cartesian product

 E.6.22

If you intend to join several tables in a query (say n tables), how many join conditions
are needed?

 E.6.23

Get the employee numbers and job titles of all employees working on project Gemini.

 E.6.24

Get the first and last names of all employees who work for department Research or
Accounting.

 E.6.25

Get the enter dates of all clerks who belong to the department d1.

 E.6.26

Get the names of projects on which two or more clerks are working.

 E.6.27

Get the first and last names of the employees who are managers and work on project
Mercury.

Ch06.indd 207 1/25/12 9:25:34 AM

 2 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 6

 E.6.28

Get the first and last names of all employees who entered the project at the same time
as at least one other employee.

 E.6.29

Get the employee numbers of the employees living in the same location and belonging
to the same department as one another. (Hint: Use the extended sample database.)

 E.6.30

Get the employee numbers of all employees belonging to the Marketing department.
Find two equivalent solutions using

The join operatorCc

The correlated subqueryCc

Ch06.indd 208 1/25/12 9:25:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

In This Chapter

c INSERT Statement
c UPDATE Statement
c DELETE Statement
c Other T-SQL Modification
 Statements and Clauses

Modification of a
Table’s Contents

Chapter 7

Ch07.indd 209 1/25/12 9:34:28 AM

 2 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

In addition to the SELECT statement, which was introduced in Chapter 6, there
are three other DML statements: INSERT, UPDATE, and DELETE. Like the
SELECT statement, these three modification statements operate either on tables

or on views. This chapter discusses these statements in relation to tables and gives
examples of their use. Additionally, it explains two other statements: TRUNCATE
TABLE and MERGE, as well as the OUTPUT clause. Whereas the TRUNCATE
TABLE statement is a Transact-SQL extension to the SQL standard, MERGE is
a standardized feature in SQL Server. The OUTPUT clause allows you to display
explicitly the inserted (or updated) rows.

INSERT Statement
The INSERT statement inserts rows (or parts of them) into a table. It has two different
forms:

INSERT [INTO] tab_name [(col_list)]

 DEFAULT VALUES | VALUES ({ DEFAULT | NULL | expression } [,...n])

INSERT INTO tab_name | view_name [(col_list)]

 {select_statement | execute_statement}

Using the first form, exactly one row (or part of it) is inserted into the corresponding
table. The second form of the INSERT statement inserts the result set from the
SELECT statement or from the stored procedure, which is executed using the
EXECUTE statement. (The stored procedure must return data, which is then inserted
into the table. The SELECT statement can select values from a different table or
from the same table as the target of the INSERT statement, as long as the types of the
columns are compatible.)

With both forms, every inserted value must have a data type that is compatible with
the data type of the corresponding column of the table. To ensure compatibility, all
character-based values and temporal data must be enclosed in apostrophes, while all
numeric values need no such enclosing.

Inserting a Single Row
In both forms of the INSERT statement, the explicit specification of the column list is
optional. This means that omitting the list of columns is equivalent to specifying a list
of all columns in the table.

The option DEFAULT VALUES inserts default values for all the columns. If a
column is of the data type TIMESTAMP or has the IDENTITY property, the value,
which is automatically created by the system, will be inserted. For other data types, the
column is set to the appropriate non-null default value if a default exists, or NULL,

Ch07.indd 210 1/25/12 9:34:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 1 1

if it doesn’t. If the column is not nullable and has no DEFAULT value, then the INSERT
statement fails and an error will be indicated.

Examples 7.1 through 7.4 insert rows into the four tables of the sample database.
This action shows the use of the INSERT statement to load a small amount of data
into a database.

 ExAMPLE 7.1

Load data into the employee table:

USE sample;

INSERT INTO employee VALUES (25348, 'Matthew', 'Smith','d3');

INSERT INTO employee VALUES (10102, 'Ann', 'Jones','d3');

INSERT INTO employee VALUES (18316, 'John', 'Barrimore', 'd1');

INSERT INTO employee VALUES (29346, 'James', 'James', 'd2');

INSERT INTO employee VALUES (9031, 'Elsa', 'Bertoni', 'd2');

INSERT INTO employee VALUES (2581, 'Elke', 'Hansel', 'd2');

INSERT INTO employee VALUES (28559, 'Sybill', 'Moser', 'd1');

 ExAMPLE 7.2

Load data into the department table:

USE sample;

INSERT INTO department VALUES ('d1', 'Research', 'Dallas');

INSERT INTO department VALUES ('d2', 'Accounting', 'Seattle');

INSERT INTO department VALUES ('d3', 'Marketing', 'Dallas');

 ExAMPLE 7.3

Load data into the project table:

USE sample;

INSERT INTO project VALUES ('p1', 'Apollo', 120000.00);

INSERT INTO project VALUES ('p2', 'Gemini', 95000.00);

INSERT INTO project VALUES ('p3', 'Mercury', 186500.00);

 ExAMPLE 7.4

Load data into the works_on table:

USE sample;

INSERT INTO works_on VALUES (10102,'p1', 'Analyst', '2006.10.1');

INSERT INTO works_on VALUES (10102, 'p3', 'Manager', '2008.1.1');

INSERT INTO works_on VALUES (25348, 'p2', 'Clerk', '2007.2.15');

INSERT INTO works_on VALUES (18316, 'p2', NULL, '2007.6.1');

INSERT INTO works_on VALUES (29346, 'p2', NULL, '2006.12.15');

Ch07.indd 211 1/25/12 9:34:28 AM

 2 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

INSERT INTO works_on VALUES (2581, 'p3', 'Analyst', '2007.10.15');

INSERT INTO works_on VALUES (9031, 'p1', 'Manager', '2007.4.15');

INSERT INTO works_on VALUES (28559, 'p1', 'NULL', '2007.8.1');

INSERT INTO works_on VALUES (28559, 'p2', 'Clerk', '2008.2.1');

INSERT INTO works_on VALUES (9031, 'p3', 'Clerk', '2006.11.15');

INSERT INTO works_on VALUES (29346, 'p1','Clerk', '2007.1.4');

There are a few different ways to insert values into a new row. Examples 7.5 through
7.7 show these possibilities.

 ExAMPLE 7.5

USE sample;

INSERT INTO employee VALUES (15201, 'Dave', 'Davis', NULL);

The INSERT statement in Example 7.5 corresponds to the INSERT statements in
Examples 7.1 through 7.4. The explicit use of the keyword NULL inserts the null value
into the corresponding column.

The insertion of values into some (but not all) of a table’s columns usually requires
the explicit specification of the corresponding columns. The omitted columns must
either be nullable or have a DEFAULT value.

 ExAMPLE 7.6

USE sample;

INSERT INTO employee (emp_no, emp_fname, emp_lname)

 VALUES (15201, 'Dave', 'Davis');

Examples 7.5 and 7.6 are equivalent. The dept_no column is the only nullable
column in the employee table because all other columns in the employee table were
declared with the NOT NULL clause in the CREATE TABLE statement.

The order of column names in the VALUE clause of the INSERT statement can
be different from the original order of those columns, which is determined in the
CREATE TABLE statement. In this case, it is absolutely necessary to list the columns
in the new order.

 ExAMPLE 7.7

USE sample;

INSERT INTO employee (emp_lname, emp_fname, dept_no, emp_no)

 VALUES ('Davis', 'Dave', 'd1', 15201);

Ch07.indd 212 1/25/12 9:34:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 1 3

Inserting Multiple Rows
The second form of the INSERT statement inserts one or more rows selected with a
subquery. Example 7.8 shows how a set of rows can be inserted using the second form
of the INSERT statement.

 ExAMPLE 7.8

Get all the numbers and names for departments located in Dallas, and load the selected
data into a new table:

USE sample;

CREATE TABLE dallas_dept

 (dept_no CHAR(4) NOT NULL,

 dept_name CHAR(20) NOT NULL);

INSERT INTO dallas_dept (dept_no, dept_name)

 SELECT dept_no, dept_name

 FROM department

 WHERE location = 'Dallas';

The new table created in Example 7.8, dallas_dept, has the same columns as the
department table except for the location column. The subquery in the INSERT
statement selects all rows with the value ‘Dallas’ in the location column. The selected
rows will be subsequently inserted in the new table.

The content of the dallas_dept table can be selected with the following SELECT
statement:

SELECT * FROM dallas_dept;

The result is

dept_no dept_name
d1 Research

d3 Marketing

Example 7.9 is another example that shows how multiple rows can be inserted using
the second form of the INSERT statement.

Ch07.indd 213 1/25/12 9:34:28 AM

 2 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 ExAMPLE 7.9

Get all employee numbers, project numbers, and project enter dates for all clerks who
work in project p2, and load the selected data into a new table:

USE sample;

CREATE TABLE clerk_t

 (emp_no INT NOT NULL,

 project_no CHAR(4),

 enter_date DATE);

INSERT INTO clerk_t (emp_no, project_no, enter_date)

 SELECT emp_no, project_no, enter_date

 FROM works_on

 WHERE job = 'Clerk'

 AND project_no = 'p2';

The new table, clerk_t, contains the following rows:

emp_no project_no enter_date
25348 p2 2007-02-15

28559 p2 2008-02-01

The tables dallas_dept and clerk_t (Examples 7.8 and 7.9) were empty before the
INSERT statement inserted the rows. If, however, the table already exists and there are
rows in it, the new rows will be appended.

Note
You can replace both statements (CREATE TABLE and INSERT) in Example 7.9 with the SELECT statement with the
INTO clause (see Example 6.48 in Chapter 6).

Table Value Constructors and INSERT
A table (or row) value constructor allows you to assign several tuples (rows) with a DML
statement such as INSERT or UPDATE. Example 7.10 shows how you can assign
several rows using such a constructor with an INSERT statement.

 ExAMPLE 7.10

USE sample;

 INSERT INTO department VALUES

 ('d4', 'Human Resources', 'Chicago'),

Ch07.indd 214 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 1 5

 ('d5', 'Distribution', 'New Orleans'),

 ('d6', 'Sales', 'Chicago');

The INSERT statement in Example 7.10 inserts three rows at the same time in the
department table using the table value constructor. As you can see from the example,
the syntax of the constructor is rather simple. To use a table value constructor, list the
values of each row inside the pair of parentheses and separate each list from the others
by using a comma.

UPDATE Statement
The UPDATE statement modifies values of table rows. This statement has the
following general form:

UPDATE tab_name

 { SET column_1 = {expression | DEFAULT | NULL} [,...n]

 [FROM tab_name1 [,...n]]

 [WHERE condition]

Rows in the tab_name table are modified in accordance with the WHERE clause.
For each row to be modified, the UPDATE statement changes the values of the
columns in the SET clause, assigning a constant (or generally an expression) to the
associated column. If the WHERE clause is omitted, the UPDATE statement modifies
all rows of the table. (The FROM clause will be discussed later in this section.)

Note
An UPDATE statement can modify data of a single table only.

The UPDATE statement in Example 7.11 modifies exactly one row of the works_
on table, because the combination of the columns emp_no and project_no builds the
primary key of that table and is therefore unique. This example modifies the task of the
employee, which was previously unknown or set to NULL.

 ExAMPLE 7.11

Set the task of employee number 18316, who works on project p2, to be ‘Manager’:

USE sample;

UPDATE works_on

 SET job = 'Manager'

Ch07.indd 215 1/25/12 9:34:29 AM

 2 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 WHERE emp_no = 18316

 AND project_no = 'p2';

Example 7.12 modifies rows of a table with an expression.

 ExAMPLE 7.12

Change the budgets of all projects to be represented in English pounds. The current
rate of exchange is 0.51£ for $1.

USE sample;

UPDATE project

 SET budget = budget*0.51;

In the example, all rows of the project table will be modified because of the omitted
WHERE clause. The modified rows of the project table can be displayed with the
following Transact-SQL statement:

SELECT * FROM project;

The result is

project_no project_name budget
p1 Apollo 61200

p2 Gemini 48450

p3 Mercury 95115

Example 7.13 uses an inner query in the WHERE clause of the UPDATE statement.
Because of the use of the IN operator, more than one row can result from this query.

 ExAMPLE 7.13

Due to her illness, set all tasks on all projects for Mrs. Jones to NULL:

USE sample;

UPDATE works_on

 SET job = NULL

 WHERE emp_no IN

 (SELECT emp_no

 FROM employee

 WHERE emp_lname = 'Jones');

Example 7.13 can also be solved using the FROM clause of the UPDATE
statement. The FROM clause contains the names of tables that are involved in the

Ch07.indd 216 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 1 7

UPDATE statement. All these tables must be subsequently joined. Example 7.14 shows
the use of the FROM clause. This example is identical to the previous one.

Note
The FROM clause is a Transact-SQL extension to the ANSI SQL standard.

 ExAMPLE 7.14

USE sample;

UPDATE works_on

 SET job = NULL

 FROM works_on, employee

 WHERE emp_lname = 'Jones'

 AND works_on.emp_no = employee.emp_no;

Example 7.15 illustrates the use of the CASE expression in the UPDATE statement.
(For a detailed discussion of this expression, refer to Chapter 6.)

 ExAMPLE 7.15

The budget of each project should be increased by a percentage (20, 10, or 5) depending
on its previous amount of money. Those projects with a lower budget will be increased
by the higher percentages.

USE sample;

UPDATE project

 SET budget = CASE

 WHEN budget >0 and budget < 100000 THEN budget*1.2

 WHEN budget >= 100000 and budget < 200000 THEN budget*1.1

 ELSE budget*1.05

 END

DELETE Statement
The DELETE statement deletes rows from a table. This statement has two different forms:

DELETE FROM table_name

 [WHERE predicate];

DELETE table_name

 FROM table_name [,...n]

 [WHERE condition];

Ch07.indd 217 1/25/12 9:34:29 AM

 2 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

All rows that satisfy the condition in the WHERE clause will be deleted. Explicitly
naming columns within the DELETE statement is not necessary (or allowed), because
the DELETE statement operates on rows and not on columns.

Example 7.16 shows an example of the first form of the DELETE statement.

 ExAMPLE 7.16

Delete all managers in the works_on table:

USE sample;

DELETE FROM works_on

 WHERE job = 'Manager';

The WHERE clause in the DELETE statement can contain an inner query, as
shown in Example 7.17.

 ExAMPLE 7.17

Mrs. Moser is on leave. Delete all rows in the database concerning her:

USE sample;

DELETE FROM works_on

 WHERE emp_no IN

 (SELECT emp_no

 FROM employee

 WHERE emp_lname = 'Moser');

DELETE FROM employee

 WHERE emp_lname = 'Moser';

Example 7.17 can also be performed using the FROM clause, as Example 7.18
shows. This clause has the same semantics as the FROM clause in the UPDATE
statement.

 ExAMPLE 7.18

USE sample;

DELETE works_on

 FROM works_on, employee

 WHERE works_on.emp_no = employee.emp_no

 AND emp_lname = 'Moser';

DELETE FROM employee

 WHERE emp_lname = 'Moser';

Ch07.indd 218 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 1 9

The use of the WHERE clause in the DELETE statement is optional. If the WHERE
clause is omitted, all rows of a table will be deleted, as shown in Example 7.19.

 ExAMPLE 7.19

USE sample;

DELETE FROM works_on;

Note
There is a significant difference between the DELETE and the DROP TABLE statements. The DELETE statement
deletes (partially or totally) the contents of a table, whereas the DROP TABLE statement deletes both the contents
and the schema of a table. Thus, after a DELETE statement, the table still exists in the database (although
possibly with zero rows), but after a DROP TABLE statement, the table no longer exists.

Other T-SQL Modification Statements
and Clauses
SQL Server supports two additional modification statements:

TRUNCATE TABLECc

MERGECc

and the OUTPUT clause.
Both statements, together with the OUTPUT clause, will be explained in turn in the

following subsections.

TRUNCATE TABLE Statement
The Transact-SQL language also supports the TRUNCATE TABLE statement. This
statement normally provides a “faster executing” version of the DELETE statement
without the WHERE clause. The TRUNCATE TABLE statement deletes all rows
from a table more quickly than does the DELETE statement because it drops the
contents of the table page by page, while DELETE drops the contents row by row.

Note
The TRUNCATE TABLE statement is a Transact-SQL extension to the SQL standard.

Ch07.indd 219 1/25/12 9:34:29 AM

 2 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

The TRUNCATE TABLE statement has the following form:

TRUNCATE TABLE table_name

tip
If you want to delete all rows from a table, use the TRUNCATE TABLE statement. This statement is significantly
faster than DELETE because it is minimally logged and there are just a few entries in the log during its execution.
(Logging is discussed in detail in Chapter 13.)

MERGE Statement
The MERGE statement combines the sequence of conditional INSERT, UPDATE,
and DELETE statements in a single atomic statement, depending on the existence of
a record. In other words, you can sync two different tables so that the content of the
target table is modified based on differences found in the source table.

The main application area for MERGE is a data warehouse environment (see
Chapter 23), where tables need to be refreshed periodically with new data arriving from
online transaction processing (OLTP) systems. This new data may contain changes
to existing rows in tables and/or new rows that need to be inserted. If a row in the
new data corresponds to an item that already exists in the table, an UPDATE or a
DELETE statement is performed. Otherwise, an INSERT statement is performed.

The alternative way, which you can use instead of applying the MERGE statement,
is to write a sequence of INSERT, UPDATE, and DELETE statements, where, for
each row, the decision is made whether to insert, delete, or update the data. This old
approach has significant performance disadvantages: it requires multiple data scans and
operates on a record-by-record basis.

Examples 7.20 and 7.21 show the use of the MERGE statement.

 ExAMPLE 7.20

USE sample;

CREATE TABLE bonus

 (pr_no CHAR(4),

 bonus SMALLINT DEFAULT 100);

INSERT INTO bonus (pr_no) VALUES ('p1');

Example 7.20 creates the bonus table, which contains one row, (p1, 100). This table
will be used for merging.

Ch07.indd 220 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 2 1

 ExAMPLE 7.21

USE sample;

MERGE INTO bonus B

 USING (SELECT project_no, budget

 FROM project) E

 ON (B.pr_no = E.project_no)

 WHEN MATCHED THEN

 UPDATE SET B.bonus = E.budget * 0.1

 WHEN NOT MATCHED THEN

 INSERT (pr_no, bonus)

 VALUES (E.project_no, E.budget * 0.05);

The MERGE statement in Example 7.21 modifies the data in the bonus table
depending on the existing values in the pr_no column. If a value from the project_no
column of the project table appears in the pr_no column of the bonus table, the
MATCHED branch will be executed and the existing value will be updated. Otherwise,
the NON MATCHED branch will be executed and the corresponding INSERT
statement will insert new rows in the bonus table.

The content of the bonus table after the execution of the MERGE statement is as
follows:

pr_no bonus
p1 12000

p2 4750

p3 9325

From the result set, you can see that a value of the bonus column represents
10 percent of the original value in the case of the UPDATE statement, and 5 percent
in the case of the INSERT statement.

The OUTPUT Clause
The result of the execution of an INSERT, UPDATE, or DELETE statement contains
by default only the text concerning the number of modified rows (“3 rows deleted,”
for instance). If the content of such a result doesn’t fit your needs, you can use the
OUTPUT clause, which displays explicitly the rows that are inserted or updated in the
table or deleted from it.

Ch07.indd 221 1/25/12 9:34:29 AM

 2 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

Note
The OUTPUT clause is also part of the MERGE statement. It returns an output for each modified row in the target
table (see Examples 7.25 and 7.26).

The OUTPUT clause uses the inserted and deleted tables (explained in Chapter 14)
to display the corresponding result. Also, the OUTPUT clause must be used with an
INTO expression to fill a table. For this reason, you use a table variable to store the
result.

Example 7.22 shows how the OUTPUT statement works with a DELETE statement.

 ExAMPLE 7.22

USE sample;

DECLARE @del_table TABLE (emp_no INT, emp_lname CHAR(20));

DELETE employee

OUTPUT DELETED.emp_no, DELETED.emp_lname INTO @del_table

WHERE emp_no > 15000;

SELECT * FROM @del_table

If the content of the employee table is in the initial state, the execution of the
statements in Example 7.22 produces the following result:

emp_no emp_lname
25348 Smith

18316 Barrimore

29346 James

28559 Moser

First, Example 7.22 declares the table variable @del_table with two columns: emp_
no and emp_lname. (Variables are explained in detail in the following chapter.) This
table will be used to store the deleted rows. The syntax of the DELETE statement is
enhanced with the OUTPUT option:

OUTPUT DELETED.emp_no, DELETED.emp_lname INTO @del_table

Using this option, the system stores the deleted rows in the deleted table, which is
then copied in the @del table variable.

Example 7.23 shows the use of the OUTPUT option in an UPDATE statement.

Ch07.indd 222 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 2 3

 ExAMPLE 7.23

USE sample;

DECLARE @update_table TABLE

 (emp_no INT, project_no CHAR(20),old_job CHAR(20),new_job CHAR(20));

UPDATE works_on

SET job = NULL

OUTPUT DELETED.emp_no, DELETED.project_no,

 DELETED.job, INSERTED.job INTO @update_table

WHERE job = 'Clerk';

SELECT * FROM @update_table

The result is

emp_no project_no old_job new_job
25348 p2 Clerk NULL

28559 p2 Clerk NULL

9031 p3 Clerk NULL

29346 p1 Clerk NULL

The following examples show the use of the OUTPUT clause within the MERGE
statement.

Suppose that your marketing department decides to give customers a price reduction
of 20 percent for all bikes that cost more than $500. The SELECT statement in
Example 7.24 selects all products that cost more than $500 and inserts them in the
temp_PriceList temporary table. The consecutive UPDATE statement searches for all
bikes and reduces their price.

 ExAMPLE 7.24

USE AdventureWorks;

SELECT ProductID, Product.Name as ProductName, ListPrice

INTO temp_PriceList

FROM Production.Product

WHERE ListPrice > 500;

UPDATE temp_PriceList

 SET ListPrice = ListPrice * 0.8

 WHERE ProductID IN (SELECT ProductID

 FROM AdventureWorks.Production.Product

 WHERE ProductSubcategoryID IN (SELECT ProductCategoryID

Ch07.indd 223 1/25/12 9:34:29 AM

 2 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 FROM AdventureWorks.Production.ProductSubcategory

 WHERE ProductCategoryID IN (SELECT ProductCategoryID

 FROM AdventureWorks.Production.ProductCategory

 WHERE Name = 'Bikes')));

The CREATE TABLE statement in Example 7.25 creates a new table, temp_
Difference, that will be used to store the result set of the MERGE statement. After
that, the MERGE statement compares the complete list of the products with the new
list (given in the temp_priceList table) and inserts the modified prices for all bicycles
by using the UPDATE SET clause. (Besides the insertion of the new prices for all
bicycles, the statement also changes the ModifiedDate column for all products and sets
it to the current date.) The OUTPUT clause in Example 7.25 writes the old and new
prices in the temporary table called temp_Difference. That way, you can later calculate
the aggregate differences, if needed.

 ExAMPLE 7.25

USE AdventureWorks;

CREATE TABLE temp_Difference

 (old DEC (10,2), new DEC(10,2));

GO

MERGE INTO Production. Product

USING temp_PriceList ON Product.ProductID = temp_PriceList.ProductID

WHEN MATCHED AND Product.ListPrice <> temp_PriceList.ListPrice THEN

UPDATE SET ListPrice = temp_PriceList.ListPrice, ModifiedDate = GETDATE()

WHEN NOT MATCHED BY SOURCE THEN

UPDATE SET ModifiedDate = GETDATE()

OUTPUT DELETED.ListPrice, INSERTED.ListPrice INTO temp_Difference1;

Example 7.26 shows the computation of the overall difference, the result of the
preceding modifications.

 ExAMPLE 7.26

USE AdventureWorks;

SELECT SUM(old) - SUM(new) AS diff

 FROM AdventureWorks.dbo.temp_Difference;

The result is

diff
10773.60

Ch07.indd 224 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 C h a p t e r 7 : M o d i f i c a t i o n o f a Ta b l e ’s C o n t e n t s 2 2 5

Summary
Generally, only three SQL statements can be used to modify a table: INSERT,
UPDATE, and DELETE. These statements are generic insofar as for all types of row
insertion, you use only INSERT, for all types of column modification, you use only
UPDATE, and for all types of row deletion, you use only DELETE.

The nonstandard statement TRUNCATE TABLE is just another form of the
DELETE statement, but the deletion of rows is executed faster with TRUNCATE
TABLE than with DELETE. The MERGE statement is basically an “UPSERT”
statement: it combines the UPDATE and the INSERT statements in one statement.

Chapters 5 through 7 have introduced all SQL statements that belong to DDL
and DML. Most of these statements can be grouped together to build a sequence of
Transact-SQL statements. Such a sequence is the basis for stored procedures, which will
be covered in the next chapter.

Exercises

 E.7.1

Insert the data of a new employee called Julia Long, whose employee number is 11111.
Her department number is not known yet.

 E.7.2

Create a new table called emp_d1_d2 with all employees who work for department d1
or d2, and load the corresponding rows from the employee table. Find two different,
but equivalent, solutions.

 E.7.3

Create a new table of all employees who entered their projects in 2007 and load it with
the corresponding rows from the employee table.

 E.7.4

Modify the job of all employees in project p1 who are managers. They have to work as
clerks from now on.

 E.7.5

The budgets of all projects are no longer determined. Assign all budgets the NULL
value.

Ch07.indd 225 1/25/12 9:34:29 AM

 2 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 7

 E.7.6

Modify the jobs of the employee with the employee number 28559. From now on she
will be the manager for all her projects.

 E.7.7

Increase the budget of the project where the manager has the employee number 10102.
The increase is 10 percent.

 E.7.8

Change the name of the department for which the employee named James works. The
new department name is Sales.

 E.7.9

Change the enter date for the projects for those employees who work in project p1 and
belong to department Sales. The new date is 12.12.2007.

 E.7.10

Delete all departments that are located in Seattle.

 E.7.11

The project p3 has been finished. Delete all information concerning this project in the
sample database.

 E.7.12

Delete the information in the works_on table for all employees who work for the
departments located in Dallas.

Ch07.indd 226 1/25/12 9:34:29 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Chapter 8

In This Chapter

c Procedural Extensions
c Stored Procedures
c User-Defined Functions

Stored Procedures and
User-Defined Functions

Ch08.indd 227 1/25/12 9:39:24 AM

 2 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

This chapter introduces batches and routines. A batch is a sequence of Transact-
SQL statements and procedural extensions. A routine can be either a stored
procedure or a user-defined function (UDF). The beginning of the chapter

introduces all procedural extensions supported by the Database Engine. After that,
procedural extensions are used, together with Transact-SQL statements, to show how
batches can be implemented. A batch can be stored as a database object, as either a
stored procedure or a UDF. Some stored procedures are written by users, and others are
provided by Microsoft and are referred to as system stored procedures. In contrast to user-
defined stored procedures, UDFs return a value to a caller. All routines can be written
either in Transact-SQL or in another programming language such as C# or Visual
Basic. The end of the chapter introduces table-valued parameters.

Procedural Extensions
The preceding chapters introduced Transact-SQL statements that belong to the data
definition language and the data manipulation language. Most of these statements can
be grouped together to build a batch. As previously mentioned, a batch is a sequence
of Transact-SQL statements and procedural extensions that are sent to the database
system for execution together. The number of statements in a batch is limited by
the size of the compiled batch object. The main advantage of a batch over a group
of singleton statements is that executing all statements at once brings significant
performance benefits.

There are a number of restrictions concerning the appearance of different
Transact-SQL statements inside a batch. The most important is that the data definition
statements CREATE VIEW, CREATE PROCEDURE, and CREATE TRIGGER
must each be the only statement in a batch.

Note
To separate DDL statements from one another, use the GO statement.

The following sections describe each procedural extension of the Transact-SQL
language separately.

Block of Statements
A block allows the building of units with one or more Transact-SQL statements. Every
block begins with the BEGIN statement and terminates with the END statement, as
shown in the following example:

Ch08.indd 228 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 2 9

 BEGIN

 statement_1

 statement_2

 …

 END

A block can be used inside the IF statement to allow the execution of more than one
statement, depending on a certain condition (see Example 8.1).

IF Statement
The Transact-SQL statement IF corresponds to the statement with the same name
that is supported by almost all programming languages. IF executes one Transact-
SQL statement (or more, enclosed in a block) if a Boolean expression, which follows
the keyword IF, evaluates to TRUE. If the IF statement contains an ELSE statement,
a second group of statements can be executed if the Boolean expression evaluates to
FALSE.

Note
Before you start to execute batches, stored procedures, and UDFs in this chapter, please re-create the entire
sample database.

 ExamPlE 8.1

USE sample;

IF (SELECT COUNT(*)

 FROM works_on

 WHERE project_no = 'p1'

 GROUP BY project_no) > 3

 PRINT 'The number of employees in the project p1 is 4 or more'

 ELSE BEGIN

 PRINT 'The following employees work for the project p1'

 SELECT emp_fname, emp_lname

 FROM employee, works_on

 WHERE employee.emp_no = works_on.emp_no

 AND project_no = 'p1'

 END

Ch08.indd 229 1/25/12 9:39:24 AM

 2 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Example 8.1 shows the use of a block inside the IF statement. The Boolean
expression in the IF statement,

(SELECT COUNT(*)

 FROM works_on

 WHERE project_no = 'p1'

 GROUP BY project_no) > 3

is evaluated to TRUE for the sample database. Therefore, the single PRINT statement
in the IF part is executed. Notice that this example uses a subquery to return the
number of rows (using the COUNT aggregate function) that satisfy the WHERE
condition (project_no='p1'). The result of Example 8.1 is

The number of employees in the project p1 is four or more

Note
The ELSE part of the IF statement in Example 8.1 contains two statements: PRINT and SELECT. Therefore, the
block with the BEGIN and END statements is required to enclose the two statements. (The PRINT statement is
another statement that belongs to procedural extensions; it returns a user-defined message.)

WHIlE Statement
The WHILE statement repeatedly executes one Transact-SQL statement (or more,
enclosed in a block) while the Boolean expression evaluates to TRUE. In other words,
if the expression is true, the statement (or block) is executed, and then the expression is
evaluated again to determine if the statement (or block) should be executed again. This
process repeats until the expression evaluates to FALSE.

A block within the WHILE statement can optionally contain one of two statements
used to control the execution of the statements within the block: BREAK or CONTINUE.
The BREAK statement stops the execution of the statements inside the block and
starts the execution of the statement immediately following this block. The CONTINUE
statement stops only the current execution of the statements in the block and starts the
execution of the block from its beginning.

Example 8.2 shows the use of the WHILE statement.

 ExamPlE 8.2

USE sample;

WHILE (SELECT SUM(budget)

 FROM project) < 500000

 BEGIN

 UPDATE project SET budget = budget*1.1

Ch08.indd 230 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 3 1

 IF (SELECT MAX(budget)

 FROM project) > 240000

 BREAK

 ELSE CONTINUE

 END

In Example 8.2, the budget of all projects will be increased by 10 percent until the
sum of budgets is greater than $500,000. However, the repeated execution will be
stopped if the budget of one of the projects is greater than $240,000. The execution of
Example 8.2 gives the following output:

(3 rows affected)

(3 rows affected)

(3 rows affected)

Note
If you want to suppress the output, such as that in Example 8.2 (indicating the number of affected rows in SQL
statements), use the SET NOCOUNT ON statement.

local Variables
Local variables are an important procedural extension to the Transact-SQL language.
They are used to store values (of any type) within a batch or a routine. They are “local”
because they can be referenced only within the same batch in which they were declared.
(The Database Engine also supports global variables, which are described in Chapter 4.)

Every local variable in a batch must be defined using the DECLARE statement.
(For the syntax of the DECLARE statement, see Example 8.3.) The definition of
each variable contains its name and the corresponding data type. Variables are always
referenced in a batch using the prefix @. The assignment of a value to a local variable is
done

Using the special form of the SELECT statementCc

Using the SET statementCc

Directly in the DECLARE statement using the = sign (for instance, @extra_Cc

budget MONEY = 1500)

The usage of the first two statements for a value assignment is demonstrated in
Example 8.3.

Ch08.indd 231 1/25/12 9:39:24 AM

 2 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 ExamPlE 8.3

USE sample;

DECLARE @avg_budget MONEY, @extra_budget MONEY

 SET @extra_budget = 15000

 SELECT @avg_budget = AVG(budget) FROM project

 IF (SELECT budget

 FROM project

 WHERE project_no='p1') < @avg_budget

 BEGIN

 UPDATE project

 SET budget = budget + @extra_budget

 WHERE project_no ='p1'

 PRINT 'Budget for p1 increased by @extra_budget'

 END

 ELSE PRINT 'Budget for p1 unchanged'

The result is

Budget for p1 increased by @extra_budget

The batch in Example 8.3 calculates the average of all project budgets and compares
this value with the budget of project p1. If the latter value is smaller than the calculated
value, the budget of project p1 will be increased by the value of the local variable
@extra_budget.

miscellaneous Procedural Statements
The procedural extensions of the Transact-SQL language also contain the following
statements:

RETURNCc

GOTOCc

RAISEERRORCc

WAITFORCc

The RETURN statement has the same functionality inside a batch as the BREAK
statement inside WHILE. This means that the RETURN statement causes the
execution of the batch to terminate and the first statement following the end of the
batch to begin executing.

Ch08.indd 232 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 3 3

The GOTO statement branches to a label, which stands in front of a Transact-SQL
statement within a batch. The RAISEERROR statement generates a user-defined error
message and sets a system error flag. A user-defined error number must be greater than
50000. (All error numbers <= 50000 are system defined and are reserved by the Database
Engine.) The error values are stored in the global variable @@error. (Example 17.3
shows the use of the RAISEERROR statement.)

The WAITFOR statement defines either the time interval (if the DELAY option
is used) or a specified time (if the TIME option is used) that the system has to wait
before executing the next statement in the batch. The syntax of this statement is

WAITFOR {DELAY 'time' | TIME 'time' | TIMEOUT 'timeout' }

The DELAY option tells the database system to wait until the specified amount of
time has passed. TIME specifies a time in one of the acceptable formats for temporal
data. TIMEOUT specifies the amount of time, in milliseconds, to wait for a message
to arrive in the queue. (Example 13.5 shows the use of the WAITFOR statement.)

Exception Handling with TRY, CaTCH, and THROW
Versions of SQL Server previous to SQL Server 2005 required error handling code
after every Transact-SQL statement that might produce an error. (You can handle
errors using the @@error global variable. Example 13.1 shows the use of this variable.)
Starting with SQL Server 2005, you can capture and handle exceptions using two
statements, TRY and CATCH. This section first explains what “exception” means and
then discusses how these two statements work.

An exception is a problem (usually an error) that prevents the continuation of a
program. With such a problem, you cannot continue processing because there is not
enough information needed to handle the problem. For this reason, the existing problem
will be relegated to another part of the program, which will handle the exception.

The role of the TRY statement is to capture the exception. (Because this process
usually comprises several statements, the term “TRY block” typically is used instead of
“TRY statement.”) If an exception occurs within the TRY block, the part of the system
called the exception handler delivers the exception to the other part of the program,
which will handle the exception. This program part is denoted by the keyword CATCH
and is therefore called the CATCH block.

Note
Exception handling using the TRY and CATCH statements is the common way that modern programming
languages like C# and Java treat errors.

Ch08.indd 233 1/25/12 9:39:24 AM

 2 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Exception handling with the TRY and CATCH blocks gives a programmer a lot of
benefits, such as:

Exceptions provide a clean way to check for errors without cluttering codeCc

Exceptions provide a mechanism to signal errors directly rather than using some Cc

side effects
Exceptions can be seen by the programmer and checked during the compilation Cc

process

SQL Server 2012 introduces the third statement in relation to handling errors:
THROW. This statement allows you to throw an exception caught in the exception
handling block. Simply stated, the THROW statement is another return mechanism,
which behaves similarly to the already described RAISEERROR statement.

Example 8.4 shows how exception handling with the TRY/CATCH/THROW
works. It shows how you can use exception handling to insert all statements in a batch
or to roll back the entire statement group if an error occurs. The example is based on
the referential integrity between the department and employee tables. For this reason,
you have to create both tables using the PRIMARY KEY and FOREIGN KEY
constraints, as done in Example 5.11.

 ExamPlE 8.4

USE sample;

BEGIN TRY

 BEGIN TRANSACTION

 insert into employee values(11111, 'Ann', 'Smith','d2');

 insert into employee values(22222, 'Matthew', 'Jones','d4'); --

referential integrity error

 insert into employee values(33333, 'John', 'Barrimore', 'd2');

 COMMIT TRANSACTION

 PRINT 'Transaction committed'

END TRY

BEGIN CATCH

 ROLLBACK

 PRINT 'Transaction rolled back';

 THROW

END CATCH

After the execution of the batch in Example 8.4, all three statements in the batch
won’t be executed at all, and the output of this example is

Ch08.indd 234 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 3 5

Transaction rolled back

Msg 547, Level 16, State 0, Line 4

The INSERT statement conflicted with the FOREIGN KEY constraint

"foreign_emp". The conflict occurred in database "sample", table

"dbo.department", column 'dept_no'.

The execution of Example 8.4 works as follows. The first INSERT statement is
executed successfully. Then, the second statement causes the referential integrity error.
Because all three statements are written inside the TRY block, the exception is “thrown”
and the exception handler starts the CATCH block. CATCH rolls back all statements
and prints the corresponding message. After that the THROW statement returns the
execution of the batch to the caller. For this reason, the content of the employee table
won’t change.

Note
The statements BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK are Transact-SQL statements
concerning transactions. These statements start, commit, and roll back transactions, respectively. See Chapter 13
for the discussion of these statements and transactions generally.

Example 8.5 shows the batch that supports server-side paging (for the description of
server-side paging, see Chapter 6).

 ExamPlE 8.5

USE AdventureWorks;

DECLARE

 @PageSize TINYINT = 20,

 @CurrentPage INT = 4;

SELECT BusinessEntityID, JobTitle, BirthDate

 FROM HumanResources.Employee

 WHERE Gender = 'F'

ORDER BY JobTitle

OFFSET (@PageSize * (@CurrentPage - 1)) ROWS

 FETCH NEXT @PageSize ROWS ONLY;

The batch in Example 8.5 uses the AdventureWorks database and its Employee
table to show how generic server-side paging can be implemented. The @Pagesize
variable is used with the FETCH NEXT statement to specify the number of rows per
page (20, in this case). The other variable, @CurrentPage, specifies which particular
page should be displayed. In this example, the content of the third page will be displayed.

Ch08.indd 235 1/25/12 9:39:24 AM

 2 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Stored Procedures
A stored procedure is a special kind of batch written in Transact-SQL, using the SQL
language and its procedural extensions. The main difference between a batch and a
stored procedure is that the latter is stored as a database object. In other words, stored
procedures are saved on the server side to improve the performance and consistency of
repetitive tasks.

The Database Engine supports stored procedures and system procedures. Stored
procedures are created in the same way as all other database objects—that is, by using
the DDL. System procedures are provided with the Database Engine and can be used
to access and modify the information in the system catalog. This section describes
(user-defined) stored procedures, while system procedures are explained in the next
chapter.

When a stored procedure is created, an optional list of parameters can be defined.
The procedure accepts the corresponding arguments each time it is invoked. Stored
procedures can optionally return a value, which displays the user-defined information
or, in the case of an error, the corresponding error message.

A stored procedure is precompiled before it is stored as an object in the database. The
precompiled form is stored in the database and used whenever the stored procedure is
executed. This property of stored procedures offers an important benefit: the repeated
compilation of a procedure is (almost always) eliminated, and the execution performance
is therefore increased. This property of stored procedures offers another benefit concerning
the volume of data that must be sent to and from the database system. It might take less
than 50 bytes to call a stored procedure containing several thousand bytes of statements.
The accumulated effect of this savings when multiple users are performing repetitive tasks
can be quite significant.

Stored procedures can also be used for the following purposes:

To control access authorizationCc

To create an audit trail of activities in database tablesCc

The use of stored procedures provides security control above and beyond the use of
the GRANT and REVOKE statements (see Chapter 12), which define different access
privileges for a user. This is because the authorization to execute a stored procedure
is independent of the authorization to modify the objects that the stored procedure
contains, as described in the next section.

Stored procedures that audit write and/or read operations concerning a table are
an additional security feature of the database. With the use of such procedures, the
database administrator can track modifications made by users or application programs.

Ch08.indd 236 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 3 7

Creation and Execution of Stored Procedures
Stored procedures are created with the CREATE PROCEDURE statement, which
has the following syntax:

CREATE PROC[EDURE] [schema_name.]proc_name

[({@param1} type1 [VARYING] [= default1] [OUTPUT])] {, …}

[WITH {RECOMPILE | ENCRYPTION | EXECUTE AS 'user_name'}]

[FOR REPLICATION]

AS batch | EXTERNAL NAME method_name

schema_name is the name of the schema to which the ownership of the created
stored procedure is assigned. proc_name is the name of the new stored procedure.
@param1 is a parameter, while type1 specifies its data type. The parameter in a stored
procedure has the same logical meaning as the local variable for a batch. Parameters
are values passed from the caller of the stored procedure and are used within the stored
procedure. default1 specifies the optional default value of the corresponding parameter.
(Default can also be NULL.)

The OUTPUT option indicates that the parameter is a return parameter and can
be returned to the calling procedure or to the system (see Example 8.9 later in this
section).

As you already know, the precompiled form of a procedure is stored in the database
and used whenever the stored procedure is executed. If you want to generate the
compiled form each time the procedure is executed, use the WITH RECOMPILE
option.

Note
The use of the WITH RECOMPILE option destroys one of the most important benefits of the stored procedures:
the performance advantage gained by a single precompilation. For this reason, the WITH RECOMPILE option
should be used only when database objects used by the stored procedure are modified frequently or when the
parameters used by the stored procedure are volatile.

The EXECUTE AS clause specifies the security context under which to execute the
stored procedure after it is accessed. By specifying the context in which the procedure
is executed, you can control which user account the Database Engine uses to validate
permissions on objects referenced by the procedure.

By default, only the members of the sysadmin fixed server role, and the db_owner
and db_ddladmin fixed database roles, can use the CREATE PROCEDURE
statement. However, the members of these roles may assign this privilege to other users

Ch08.indd 237 1/25/12 9:39:24 AM

 2 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

by using the GRANT CREATE PROCEDURE statement. (For the discussion of user
permissions, fixed server roles, and fixed database roles, see Chapter 12.)

Example 8.6 shows the creation of the simple stored procedure for the project table.

 ExamPlE 8.6

USE sample;

GO

CREATE PROCEDURE increase_budget (@percent INT=5)

 AS UPDATE project

 SET budget = budget + budget*@percent/100;

Note
The GO statement is used to separate two batches. (The CREATE PROCEDURE statement must be the first
statement in the batch.)

The stored procedure increase_budget increases the budgets of all projects for a
certain percentage value that is defined using the parameter @percent. The procedure
also defines the default value (5), which is used if there is no argument at the execution
time of the procedure.

Note
It is possible to create stored procedures that reference nonexistent tables. This feature allows you to debug
procedure code without creating the underlying tables first, or even connecting to the target server.

In contrast to “base” stored procedures that are placed in the current database, it is
possible to create temporary stored procedures that are always placed in the temporary
system database called tempdb. You might create a temporary stored procedure to
avoid executing a particular group of statements repeatedly within a connection. You
can create local or global temporary procedures by preceding the procedure name with
a single pound sign (#proc_name) for local temporary procedures and a double pound
sign (##proc_name, for example) for global temporary procedures. A local temporary
stored procedure can be executed only by the user who created it, and only during the
same connection. A global temporary procedure can be executed by all users, but only
until the last connection executing it (usually the creator’s) ends.

The life cycle of a stored procedure has two phases: its creation and its execution.
Each procedure is created once and executed many times. The EXECUTE statement
executes an existing procedure. The execution of a stored procedure is allowed for each

Ch08.indd 238 1/25/12 9:39:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 3 9

user who either is the owner of or has the EXECUTE privilege for the procedure (see
Chapter 12). The EXECUTE statement has the following syntax:

[[EXEC[UTE]] [@return_status =] {proc_name

 | @proc_name_var}

 {[[@parameter1 =] value | [@parameter1=] @variable [OUTPUT]] | DEFAULT}..

 [WITH RECOMPILE]

All options in the EXECUTE statement, other than return_status, have the
equivalent logical meaning as the options with the same names in the CREATE
PROCEDURE statement. return_status is an optional integer variable that stores
the return status of a procedure. The value of a parameter can be assigned using either
a value (value) or a local variable (@variable). The order of parameter values is not
relevant if they are named, but if they are not named, parameter values must be supplied
in the order defined in the CREATE PROCEDURE statement.

The DEFAULT clause supplies the default value of the parameter as defined in
the procedure. When the procedure expects a value for a parameter that does not have
a defined default and either a parameter is missing or the DEFAULT keyword is
specified, an error occurs.

Note
When the EXECUTE statement is the first statement in a batch, the word “EXECUTE” can be omitted from the
statement. Despite this, it would be safer to include this word in every batch you write.

Example 8.7 shows the use of the EXECUTE statement.

 ExamPlE 8.7

USE sample;

EXECUTE increase_budget 10;

The EXECUTE statement in Example 8.7 executes the stored procedure increase_
budget (Example 8.6) and increases the budgets of all projects by 10 percent each.

Example 8.8 shows the creation of a procedure that references the tables employee
and works_on.

 ExamPlE 8.8

USE sample;

GO

CREATE PROCEDURE modify_empno (@old_no INTEGER, @new_no INTEGER)

 AS UPDATE employee

 SET emp_no = @new_no

Ch08.indd 239 1/25/12 9:39:24 AM

 2 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 WHERE emp_no = @old_no

 UPDATE works_on

 SET emp_no = @new_no

 WHERE emp_no = @old_no

The procedure modify_empno in Example 8.8 demonstrates the use of stored
procedures as part of the maintenance of the referential integrity (in this case, between
the employee and works_on tables). Such a stored procedure can be used inside the
definition of a trigger, which actually maintains the referential integrity (see Example 14.3).

Example 8.9 shows the use of the OUTPUT clause.

 ExamPlE 8.9

USE sample;

GO

CREATE PROCEDURE delete_emp @employee_no INT, @counter INT OUTPUT

 AS SELECT @counter = COUNT(*)

 FROM works_on

 WHERE emp_no = @employee_no

 DELETE FROM employee

 WHERE emp_no = @employee_no

 DELETE FROM works_on

 WHERE emp_no = @employee_no

This stored procedure can be executed using the following statements:

DECLARE @quantity INT

EXECUTE delete_emp @employee_no=28559, @counter=@quantity OUTPUT

The preceding example contains the creation of the delete_emp procedure as well as
its execution. This procedure calculates the number of projects on which the employee
(with the employee number @employee_no) works. The calculated value is then
assigned to the @counter parameter. After the deletion of all rows with the assigned
employee number from the employee and works_on tables, the calculated value will be
assigned to the @quantity variable.

Note
The value of the parameter will be returned to the calling procedure if the OUTPUT option is used. In Example 8.9,
the delete_emp procedure passes the @counter parameter to the calling statement, so the procedure returns
the value to the system. Therefore, the @counter parameter must be declared with the OUTPUT option in the
procedure as well as in the EXECUTE statement.

Ch08.indd 240 1/25/12 9:39:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 4 1

The EXECUTE Statement with RESULT SETS Clause
SQL Server 2012 introduces the WITH RESULT SETS clause for the EXECUTE
statement. Using this clause, you can change conditionally the form of the result set of a
stored procedure.

The following two examples help to explain this clause. Example 8.10 is an introductory
example that shows how the output looks when the WITH RESULT SETS clause is
omitted.

 ExamPlE 8.10

USE sample;

GO

CREATE PROCEDURE employees_in_dept (@dept CHAR(4))

 AS SELECT emp_no, emp_lname

 FROM employee

 WHERE dept_no IN (SELECT @dept FROM department

 GROUP BY dept_no)

employees_in_dept is a simple stored procedure that displays the numbers and
family names of all employees working for a particular department. (The department
number is a parameter of the procedure and must be specified when the procedure is
invoked.) The result of this procedure is a table with two columns, named according
to the names of the corresponding columns (emp_no and emp_lname). To change
these names (and their data types, too), SQL Server 2012 supports the new WITH
RESULTS SETS clause. Example 8.11 shows the use of this clause.

 ExamPlE 8.11

USE sample;

EXEC employees_in_dept 'd1'

 WITH RESULT SETS

 (([EMPLOYEE NUMBER] INT NOT NULL,

 [NAME OF EMPLOYEE] CHAR(20) NOT NULL));

The output is

EMPLOYEE NUMBER NAME OF EMPLOYEE
18316 Barrimore

28559 Moser

Ch08.indd 241 1/25/12 9:39:25 AM

 2 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

As you can see, the WITH RESULT SETS clause in Example 8.11 allows you to
change the name and data types of columns displayed in the result set. Therefore, this
new functionality gives you the flexibility to execute stored procedures and place the
output result sets into a new table.

Changing the Structure of Stored Procedures
The Database Engine also supports the ALTER PROCEDURE statement, which
modifies the structure of a stored procedure. The ALTER PROCEDURE statement
is usually used to modify Transact-SQL statements inside a procedure. All options of
the ALTER PROCEDURE statement correspond to the options with the same name
in the CREATE PROCEDURE statement. The main purpose of this statement is to
avoid reassignment of existing privileges for the stored procedure.

Note
The Database Engine supports the CURSOR data type. You use this data type to declare cursors inside a stored
procedure. A cursor is a programming construct that is used to store the output of a query (usually a set of rows)
and to allow end-user applications to display the rows record by record. A detailed discussion of cursors is outside
of the scope of this book.

A stored procedure (or a group of stored procedures with the same name) is removed
using the DROP PROCEDURE statement. Only the owner of the stored procedure
and the members of the db_owner and sysadmin fixed roles can remove the procedure.

Stored Procedures and ClR
SQL Server supports the Common Language Runtime (CLR), which allows you to
develop different database objects (stored procedures, user-defined functions, triggers,
user-defined aggregates, and user-defined types) using C# and Visual Basic. CLR also
allows you to execute these database objects using the common run-time system.

Note
You enable and disable the use of CLR through the clr_enabled option of the sp_configure system procedure.
Execute the RECONFIGURE statement to update the running configuration value.

Example 8.12 shows how you can enable the use of CLR with the sp_configure
system procedure.

Ch08.indd 242 1/25/12 9:39:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 4 3

 ExamPlE 8.12

USE sample;

EXEC sp_configure 'clr_enabled',1

RECONFIGURE

To implement, compile, and store procedures using CLR, you have to execute the
following four steps in the given order:

Implement a stored procedure using C# (or Visual Basic) and compile the 1.
program, using the corresponding compiler.
Use the CREATE ASSEMBLY statement to create the corresponding executable 2.
file.
Store the procedure as a server object using the CREATE PROCEDURE 3.
statement.
Execute the procedure using the EXECUTE statement.4.

Figure 8-1 shows how CLR works. You use a development environment such as
Visual Studio to implement your program. After the implementation, start the C# or

Figure 8-1 The flow diagram for the execution of a CLR stored procedure

Executable code

Procedure as
database object

Object code

Source code

CLR compiler

CREATE
ASSEMBLY

statement

CREATE
PROCEDURE

statement

Ch08.indd 243 1/25/12 9:39:25 AM

 2 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Visual Basic compiler to generate the object code. This code will be stored in a .dll file,
which is the source for the CREATE ASSEMBLY statement. After the execution of
this statement, you get the intermediate code. In the next step you use the CREATE
PROCEDURE statement to store the executable as a database object. Finally, the
stored procedure can be executed using the already-introduced EXECUTE statement.

Examples 8.13 through 8.17 demonstrate the whole process just described.
Example 8.13 shows the C# program that will be used to demonstrate how you apply
CLR to implement and deploy stored procedures.

 ExamPlE 8.13

using System;

using System.Data;

using System.Data.Sql;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

public partial class StoredProcedures

 { [SqlProcedure]

 public static int GetEmployeeCount()

 {

 int iRows;

 SqlConnection conn = new SqlConnection(“Context Connection=true”);

 conn.Open();

 SqlCommand sqlCmd = conn.CreateCommand();

 sqlCmd.CommandText = "select count(*) as 'Employee Count' " + "from

employee";

 iRows = (int)sqlCmd.ExecuteScalar();

 conn.Close();

 return iRows;

 }

};

This program uses a query to calculate the number of rows in the employee table.
The using directives at the beginning of the program specify namespaces, such as
System.Data. These directives allow you to specify class names in the source program
without referencing the corresponding namespace. The StoredProcedures class is
then defined, which is written with a [SqlProcedure] attribute. This attribute tells the
compiler that the class is a stored procedure. Inside that class is defined a method called
GetEmployeeCount(). The connection to the database system is established using the
conn instance of the SQLConnection class. The Open() method is applied to that

Ch08.indd 244 1/25/12 9:39:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 4 5

instance to open the connection. The CreateCommand() method, applied to conn,
allows you to access the SqlCommand instance called sqlCmd.

The following lines of code

 sqlCmd.CommandText =

 "select count(*) as 'Employee Count' " + "from employee";

 iRows = (int)sqlCmd.ExecuteScalar();

use the SELECT statement to find the number of rows in the employee table and
to display the result. The command text is specified by setting the CommandText
property of the SqlCmd instance returned by the call to the CreateCommand()
method. Next, the ExecuteScalar() method of the SqlCommand instance is called.
This returns a scalar value, which is finally converted to the int data type and
assigned to the iRows variable.

Example 8.14 shows the first step in deploying stored procedures using CLR.

 ExamPlE 8.14

csc /target:library GetEmployeeCount.cs

 /reference:"C:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\

MSSQL\Binn\sqlaccess.dll"

Example 8.14 demonstrates how to compile the C# method called
GetEmployeeCount() (Example 8.13). (Actually, this command can be used generally
to compile any C# program, if you set the appropriate name for the source program.) csc
is the command that is used to invoke the C# compiler. You invoke the csc command
at the Windows command line. Before starting the command, you have to specify the
location of the compiler using the PATH environment variable. At the time of writing
this book, the C# compiler (the csc.exe file) can be found in the C:\WINDOWS\
Microsoft.NET\Framework directory. (You should select the appropriate version of the
compiler.)

The /target option specifies the name of the C# program, while the /reference
option defines the .dll file, which is necessary for the compilation process.

Example 8.15 shows the next step in creating the stored procedure. (Before you
execute this example, copy the existing .dll file to the root of the C: drive.)

 ExamPlE 8.15

USE sample;

GO

CREATE ASSEMBLY GetEmployeeCount

 FROM 'C:\GetEmployeeCount.dll' WITH PERMISSION_SET = SAFE

Ch08.indd 245 1/25/12 9:39:25 AM

 2 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

The CREATE ASSEMBLY statement uses the managed code as the source to
create the corresponding object, against which CLR stored procedures, UDFs, and
triggers can be created. This statement has the following syntax:

CREATE ASSEMBLY assembly_name [AUTHORIZATION owner_name]

 FROM { dll_file}

 [WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

assembly_name is the name of the assembly. The optional AUTHORIZATION
clause specifies the name of a role as owner of the assembly. The FROM clause
specifies the path where the assembly being uploaded is located. (Example 8.15 copies
the .dll file generated from the source program from the Framework directory to the
root of the C: drive.)

The WITH PERMISSION_SET clause is a very important clause of the CREATE
ASSEMBLY statement and should always be set. It specifies a set of code access
permissions granted to the assembly. SAFE is the most restrictive permission set. Code
executed by an assembly with this permission cannot access external system resources,
such as files. EXTERNAL_ACCESS allows assemblies to access certain external
system resources, while UNSAFE allows unrestricted access to resources, both within
and outside the database system.

Note
In order to store the information concerning assembly code, a user must have the ability to execute the CREATE
ASSEMBLY statement. The user (or role) executing the statement is the owner of the assembly. It is possible to
assign an assembly to another user by using the AUTHORIZATION clause of the CREATE SCHEMA statement.

The Database Engine also supports the ALTER ASSEMBLY and DROP
ASSEMBLY statements. You can use the ALTER ASSEMBLY statement to refresh
the system catalog to the latest copy of .NET modules holding its implementation.
This statement also adds or removes files associated with the corresponding assembly.
The DROP ASSEMBLY statement removes the specified assembly and all its
associated files from the current database.

Example 8.16 creates the stored procedures based on the managed code implemented
in Example 8.13.

 ExamPlE 8.16

USE sample;

GO

CREATE PROCEDURE GetEmployeeCount

AS EXTERNAL NAME GetEmployeeCount.StoredProcedures.GetEmployeeCount

Ch08.indd 246 1/25/12 9:39:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 4 7

The CREATE PROCEDURE statement in Example 8.16 is different from the
same statement used in Examples 8.6 and 8.8, because it contains the EXTERNAL
NAME option. This option specifies that the code is generated using CLR. The name
in this clause is a three-part name:

assembly_name.class_name.method_name

assembly_nameCc is the name of the assembly (see Example 8.15).
class_nameCc is the name of the public class (see Example 8.13).
method_nameCc , which is optional, is the name of the method, which is specified
inside the class.

Example 8.17 is used to execute the GetEmployeeCount procedure.

 ExamPlE 8.17

USE sample;

DECLARE @ret INT

EXECUTE @ret=GetEmployeeCount

PRINT @ret

The PRINT statement returns the current number of the rows in the employee
table.

User-Defined Functions
In programming languages, there are generally two types of routines:

Stored proceduresCc

User-defined functions (UDFs)Cc

As discussed in the previous major section of this chapter, stored procedures are
made up of several statements that have zero or more input parameters but usually do
not return any output parameters. In contrast, functions always have one return value.
This section describes the creation and use of UDFs.

Ch08.indd 247 1/25/12 9:39:26 AM

 2 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Creation and Execution of User-Defined Functions
UDFs are created with the CREATE FUNCTION statement, which has the
following syntax:

CREATE FUNCTION [schema_name.]function_name

 [({@param } type [= default]) {,...}

 RETURNS {scalar_type | [@variable] TABLE}

 [WITH {ENCRYPTION | SCHEMABINDING}

 [AS] {block | RETURN (select_statement)}

schema_name is the name of the schema to which the ownership of the created
UDF is assigned. function_name is the name of the new function. @param is an
input parameter, while type specifies its data type. Parameters are values passed from
the caller of the UDF and are used within the function. default specifies the optional
default value of the corresponding parameter. (Default can also be NULL.)

The RETURNS clause defines a data type of the value returned by the UDF. This
data type can be any of the standard data types supported by the database system,
including the TABLE data type. (The only standard data type that you cannot use is
TIMESTAMP.)

UDFs are either scalar-valued or table-valued. A scalar-valued function returns
an atomic (scalar) value. This means that in the RETURNS clause of a scalar-valued
function, you specify one of the standard data types. Functions are table-valued if the
RETURNS clause returns a set of rows (see the next subsection).

The WITH ENCRYPTION option encrypts the information in the system
catalog that contains the text of the CREATE FUNCTION statement. In that case,
you cannot view the text used to create the function. (Use this option to enhance the
security of your database system.)

The alternative clause, WITH SCHEMABINDING, binds the UDF to
the database objects that it references. Any attempt to modify the structure of the
database object that the function references fails. (The binding of the function to
the database objects it references is removed only when the function is altered, so the
SCHEMABINDING option is no longer specified.)

Database objects that are referenced by a function must fulfill the following
conditions if you want to use the SCHEMABINDING clause during the creation
of that function:

All views and UDFs referenced by the function must be schema-bound.Cc

All database objects (tables, views, or UDFs) must be in the same database as Cc

the function.

Ch08.indd 248 1/25/12 9:39:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 4 9

block is the BEGIN/END block that contains the implementation of the function.
The final statement of the block must be a RETURN statement with an argument.
(The value of the argument is the value returned by the function.) In the body of a
BEGIN/END block, only the following statements are allowed:

Assignment statements such as SETCc

Control-of-flow statements such as WHILE and IFCc

DECLARE statements defining local data variablesCc

SELECT statements containing SELECT lists with expressions that assign to Cc

variables that are local to the function
INSERT, UPDATE, and DELETE statements modifying variables of the Cc

TABLE data type that are local to the function

By default, only the members of the sysadmin fixed server role and the db_owner
and db_ddladmin fixed database roles can use the CREATE FUNCTION statement.
However, the members of these roles may assign this privilege to other users by using
the GRANT CREATE FUNCTION statement (see Chapter 12).

Example 8.18 shows the creation of the function called compute_costs.

 ExamPlE 8.18

-- This function computes additional total costs that arise

-- if budgets of projects increase

USE sample;

GO

CREATE FUNCTION compute_costs (@percent INT =10)

 RETURNS DECIMAL(16,2)

 BEGIN

 DECLARE @additional_costs DEC (14,2), @sum_budget dec(16,2)

 SELECT @sum_budget = SUM (budget) FROM project

 SET @additional_costs = @sum_budget * @percent/100

 RETURN @additional_costs

 END

The function compute_costs computes additional costs that arise when all budgets
of projects increase. The single input variable, @percent, specifies the percentage
of increase of budgets. The BEGIN/END block first declares two local variables:
@additional_costs and @sum_budget. The function then assigns to @sum_budget
the sum of all budgets, using the SELECT statement. After that, the function
computes total additional costs and returns this value using the RETURN statement.

Ch08.indd 249 1/25/12 9:39:26 AM

 2 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

Invoking User-Defined Functions
Each UDF can be invoked in Transact-SQL statements, such as SELECT, INSERT,
UPDATE, or DELETE. To invoke a function, specify the name of it, followed by
parentheses. Within the parentheses, you can specify one or more arguments. Arguments
are values or expressions that are passed to the input parameters that are defined
immediately after the function name. When you invoke a function, and all parameters
have no default values, you must supply argument values for all of the parameters and
you must specify the argument values in the same sequence in which the parameters are
defined in the CREATE FUNCTION statement.

Example 8.19 shows the use of the compute_costs function (Example 8.18) in a
SELECT statement.

 ExamPlE 8.19

USE sample;

SELECT project_no, project_name

 FROM project

 WHERE budget < dbo.compute_costs(25)

The result is

project_no project_name
p2 Gemini

The SELECT statement in Example 8.19 displays names and numbers of all
projects where the budget is lower than the total additional costs of all projects for a
given percentage.

Note
Each function used in a Transact-SQL statement must be specified using its two-part name—that is,
schema_name.function_name.

Table-Valued Functions
As you already know, functions are table-valued if the RETURNS clause returns
a set of rows. Depending on how the body of the function is defined, table-valued
functions can be classified as inline or multistatement functions. If the RETURNS
clause specifies TABLE with no accompanying list of columns, the function is an inline
function. Inline functions return the result set of a SELECT statement as a variable

Ch08.indd 250 1/25/12 9:39:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 5 1

of the TABLE data type (see Example 8.20). A multistatement table-valued function
includes a name followed by TABLE. (The name defines an internal variable of the
type TABLE.) You can use this variable to insert rows into it and then return the
variable as the return value of the function.

Example 8.20 shows a function that returns a variable of the TABLE data type.

 ExamPlE 8.20

USE sample;

GO

CREATE FUNCTION employees_in_project (@pr_number CHAR(4))

 RETURNS TABLE

 AS RETURN (SELECT emp_fname, emp_lname

 FROM works_on, employee

 WHERE employee.emp_no = works_on.emp_no

 AND project_no = @pr_number)

The employees_in_project function is used to display names of all employees that
belong to a particular project. The input parameter @pr_number specifies a project
number. While the function generally returns a set of rows, the RETURNS clause
contains the TABLE data type. (Note that the BEGIN/END block in Example 8.20
must be omitted, while the RETURN clause contains a SELECT statement.)

Example 8.21 shows the use of the employees_in_project function.

 ExamPlE 8.21

USE sample;

SELECT *

 FROM employees_in_project('p3')

The result is

emp_fname emp_lname
Ann Jones

Elsa Bertoni

Elke Hansel

Table-Valued Functions and APPLY
The APPLY operator is a relational operator that allows you to invoke a table-valued
function for each row of a table expression. This operator is specified in the FROM

Ch08.indd 251 1/25/12 9:39:26 AM

 2 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

clause of the corresponding SELECT statement in the same way as the JOIN operator
is applied. There are two forms of the APPLY operator:

CROSS APPLYCc

OUTER APPLYCc

The CROSS APPLY operator returns those rows from the inner (left) table expression
that match rows in the outer (right) table expression. Therefore, the CROSS APPLY
operator is logically the same as the INNER JOIN operator.

The OUTER APPLY operator returns all the rows from the inner (left) table
expression. (For the rows for which there are no corresponding matches in the outer
table expression, it contains NULL values in columns of the outer table expression.)
OUTER APPLY is logically equivalent to LEFT OUTER JOIN.

Examples 8.22 and 8.23 show how you can use APPLY.

 ExamPlE 8.22

-- generate function

CREATE FUNCTION dbo.fn_getjob(@empid AS INT)

 RETURNS TABLE AS

RETURN

 SELECT job

 FROM works_on

 WHERE emp_no = @empid

 AND job IS NOT NULL AND project_no = 'p1';

The fn_getjob() function in Example 8.22 returns the set of rows from the works_
on table. This result set is “joined” in Example 8.23 with the content of the employee
table.

 ExamPlE 8.23

-- use CROSS APPLY

SELECT E.emp_no, emp_fname, emp_lname, job

 FROM employee as E

 CROSS APPLY dbo.fn_getjob(E.emp_no) AS A

-- use OUTER APPLY

SELECT E.emp_no, emp_fname, emp_lname, job

 FROM employee as E

 OUTER APPLY dbo.fn_getjob(E.emp_no) AS A

Ch08.indd 252 1/25/12 9:39:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 5 3

The result is

emp_no emp_fname emp_lname job
10102 Ann Jones Analyst

29346 James James Clerk

9031 Elsa Bertoni Manager

28559 Sybill Moser NULL

emp_no emp_fname emp_lname job
25348 Matthew Smith NULL

10102 Ann Jones Analyst

18316 John Barrimore NULL

29346 James James Clerk

9031 Elsa Bertoni Manager

2581 Elke Hansel NULL

28559 Sybill Moser NULL

In the first query of Example 8.23, the result set of the table-valued function
fn_getjob() is “joined” with the content of the employee table using the CROSS
APPLY operator. fn_getjob() acts as the right input, and the employee table acts as the
left input. The right input is evaluated for each row from the left input, and the rows
produced are combined for the final output.

The second query is similar to the first one, but uses OUTER APPLY, which
corresponds to the outer join operation of two tables.

Table-Valued Parameters
In all versions previous to SQL Server 2008, it was difficult to send many parameters
to a routine. In that case you had to use a temporary table, insert the values into it, and
then call the routine. Since SQL Server 2008, you can use table-valued parameters to
simplify this task. These parameters are used to deliver a result set to the corresponding
routine.

Example 8.24 shows the use of a table-valued parameter.

 ExamPlE 8.24

USE sample;

GO

CREATE TYPE departmentType AS TABLE

Ch08.indd 253 1/25/12 9:39:26 AM

 2 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 (dept_no CHAR(4),dept_name CHAR(25),location CHAR(30));

GO

CREATE TABLE #dallasTable

 (dept_no CHAR(4),dept_name CHAR(25),location CHAR(30));

GO

CREATE PROCEDURE insertProc

 @Dallas departmentType READONLY

 AS SET NOCOUNT ON

 INSERT INTO #dallasTable (dept_no, dept_name, location)

 SELECT * FROM @Dallas

GO

DECLARE @Dallas AS departmentType;

INSERT INTO @Dallas(dept_no, dept_name, location)

SELECT * FROM department

WHERE location = 'Dallas'

EXEC insertProc @Dallas;

Example 8.24 first defines the type called departmentType as a table. This means
that its type is the TABLE data type, so rows can be inserted in it. In the insertProc
procedure, the @Dallas variable, which is of the departmentType type, is specified.
(The READONLY clause specifies that the content of the table variable cannot be
modified.) In the subsequent batch, data is added to the table variable, and after that
the procedure is executed. The procedure, when executed, inserts rows from the table
variable into the temporary table #dallasTable. The content of the temporary table is as
follows:

dept_no dept_name location
d1 Research Dallas

d3 Marketing Dallas

The use of table-valued parameters gives you the following benefits:

It simplifies the programming model in relation to routines.Cc

It reduces the round trips to the server.Cc

The resulting table can have different numbers of rows.Cc

Ch08.indd 254 1/25/12 9:39:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 5 5

Changing the Structure of UDFs
The Transact-SQL language also supports the ALTER FUNCTION statement, which
modifies the structure of a UDF. This statement is usually used to remove the schema
binding. All options of the ALTER FUNCTION statement correspond to the options
with the same name in the CREATE FUNCTION statement.

A UDF is removed using the DROP FUNCTION statement. Only the owner of
the function (or the members of the db_owner and sysadmin fixed database roles) can
remove the function.

User-Defined Functions and ClR
The discussion in “Stored Procedures and CLR” earlier in the chapter is also valid for
UDFs. The only difference is that you use the CREATE FUNCTION statement
(instead of CREATE PROCEDURE) to store a UDF as a database object. Also,
UDFs are used in a different context from that of stored procedures, because UDFs
always have a return value.

Example 8.25 shows the C# program used to demonstrate how UDFs are compiled
and deployed.

 ExamPlE 8.25

using System;

using System.Data.Sql;

using System.Data.SqlTypes;

public class budgetPercent

{ private const float percent = 10;

 public static SqlDouble computeBudget(float budget)

 { float budgetNew;

 budgetNew = budget * percent;

 return budgetNew;

 }

};

The C# source program in Example 8.25 shows a UDF that calculates the new
budget of a project using the old budget and the percentage increase. (The description
of the C# program is omitted because this program is analog to the program in
Example 8.13.) Example 8.26 shows the CREATE ASSEMBLY statement, which is
necessary if you want to create a database object.

Ch08.indd 255 1/25/12 9:39:26 AM

 2 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 ExamPlE 8.26

USE sample;

GO

CREATE ASSEMBLY computeBudget

FROM 'C:\computeBudget.dll'

WITH PERMISSION_SET = SAFE

The CREATE FUNCTION statement in Example 8.27 stores the computeBudget
assembly as the database object, which can be used subsequently in data manipulation
statements, such as SELECT, as shown in Example 8.28.

 ExamPlE 8.27

USE sample;

GO

CREATE FUNCTION ReturncomputeBudget (@budget Real)

RETURNS FLOAT

AS EXTERNAL NAME computeBudget.budgetPercent.computeBudget

 ExamPlE 8.28

USE sample;

SELECT dbo.ReturncomputeBudget (321.50)

The result is 3215.

Note
You can invoke an existing UDF at several places inside a SELECT statement. Example 8.19 shows its use with the
WHERE clause, Example 8.21 in the FROM clause, and Example 8.28 in the SELECT list.

Summary
A stored procedure is a special kind of batch, written either in the Transact-SQL
language or using the Common Language Runtime (CLR). Stored procedures are used
for the following purposes:

To control access authorizationCc

To create an audit trail of activities in database tablesCc

Ch08.indd 256 1/25/12 9:39:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 8

 C h a p t e r 8 : S t o r e d P r o c e d u r e s a n d U s e r - D e f i n e d F u n c t i o n s 2 5 7

To enforce consistency and business rules with respect to data modificationCc

To improve the performance of repetitive tasksCc

User-defined functions have a lot in common with stored procedures. The main
difference is that UDFs do not support parameters but return a single data value, which
can also be a table.

Microsoft suggests using Transact-SQL as the default language for creating server-
side objects. (CLR is recommended as an alternative only when your program contains
a lot of computation.)

The next chapter discusses the system catalog of the Database Engine.

Exercises
 E.8.1

Create a batch that inserts 3000 rows in the employee table. The values of the emp_no
column should be unique and between 1 and 3000. All values of the columns emp_
lname, emp_fname, and dept_no should be set to ‘Jane’, ‘ Smith’, and ‘ d1’, respectively.

 E.8.2

Modify the batch from E.8.1 so that the values of the emp_no column should be
generated randomly using the RAND function. (Hint: Use the temporal system
functions DATEPART and GETDATE to generate the random values.)

Ch08.indd 257 1/25/12 9:39:26 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

Chapter 9

In This Chapter

c Introduction to the
System Catalog

c General Interfaces
c Proprietary Interfaces

System Catalog

09-Ch09.indd 259 2/6/12 12:45:33 PM

 2 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

This chapter discusses the system catalog of the Database Engine. The
introduction is followed by a description of the structure of several catalog
views, each of which allows you to retrieve metadata. The use of dynamic

management views and dynamic management functions is also covered in the first part
of the chapter. Four alternative ways for retrieving metadata information are discussed
in the second part: system stored procedures, system functions, property functions, and
the information schema.

Introduction to the System Catalog
The system catalog consists of tables describing the structure of objects such as databases,
base tables, views, and indices. (These tables are called system base tables.) The Database
Engine frequently accesses the system catalog for information that is essential for the
system to function properly.

The Database Engine distinguishes the system base tables of the master database
from those of a particular user-defined database. System tables of the master database
belong to the system catalog, while system tables of a particular database form the
database catalog. Therefore, system base tables occur only once in the entire system
(if they belong exclusively to the master database), while others occur once in each
database, including the master database.

In all relational database systems, system base tables have the same logical structure
as base tables. As a result, the same Transact-SQL statements used to retrieve
information in the base tables can also be used to retrieve information in system base
tables.

Note
The system base tables cannot be accessed directly: you have to use existing interfaces to query the information
from the system catalog.

There are several different interfaces that you can use to access the information in
the system base tables:

Catalog views Cc Present the primary interface to the metadata stored in system
base tables. (Metadata is data that describes the attributes of objects in a database
system.)
Dynamic management views (DMVs) and functions (DMFs) Cc Generally used
to observe active processes and the contents of the memory.

09-Ch09.indd 260 2/6/12 12:45:33 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 6 1

Information schema Cc A standardized solution for the access of metadata that
gives you a general interface not only for the Database Engine, but for all existing
relational database systems (assuming that the system supports the information
schema).
System and property functions Cc Allow you to retrieve system information. The
difference between these two function types is mainly in their structure. Also,
property functions can return more information than system functions.
System stored procedures Cc Some system stored procedures can be used to access
and modify the content of the system base tables.

Figure 9-1 shows a simplified form of the Database Engine’s system information and
different interfaces that you can use to access it.

Note
This chapter shows you just an overview of the system catalog and the ways in which you can access metadata.
Particular catalog views, as well as all other interfaces, that are specific for different topics (such as indices,
security, etc.) are discussed in the corresponding chapters.

These interfaces can be grouped in two groups: general interfaces (catalog views,
DMVs and DMFs, and the information schema), and proprietary interfaces in relation
to the Database Engine (system stored procedures and system and property functions).

Figure 9-1 Graphical presentation of different interfaces for the system catalog

System base tables

Catalog views
System

procedures
Information

schema
DMVs and

DMFs

System and
property
functions

System information

09-Ch09.indd 261 2/6/12 12:45:34 PM

 2 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

Note
“General” means that all relational database systems support such interfaces, but use different terminology.
For instance, in Oracle’s terminology, catalog views and DMVs are called “data dictionary views” and “V$ views,”
respectively.

The following section describes general interfaces. Proprietary interfaces are
discussed later in the chapter.

General Interfaces
As already stated, the following interfaces are general interfaces:

Catalog viewsCc

DMVs and DMFsCc

Information schemaCc

Catalog Views
Catalog views are the most general interface to the metadata and provide the most efficient
way to obtain customized forms of this information (see Examples 9.1 through 9.3).

Catalog views belong to the sys schema, so you have to use the schema name when
you access one of the objects. This section describes the three most important catalog
views:

sys.objectsCc

sys.columnsCc

sys.database_principalsCc

Note
You can find the description of other views either in different chapters of this book or in Books Online.

The sys.objects catalog view contains a row for each user-defined object in relation
to the user’s schema. There are two other catalog views that show similar information:
sys.system_objects and sys.all_objects. The former contains a row for each system
object, while the latter shows the union of all schema-scoped user-defined objects and

09-Ch09.indd 262 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 6 3

system objects. (All three catalog views have the same structure.) Table 9-1 lists and
describes the most important columns of the sys.objects catalog view.

The sys.columns catalog view contains a row for each column of an object that has
columns, such as tables and views. Table 9-2 lists and describes the most important
columns of the sys.columns catalog view.

The sys.database_principals catalog view contains a row for each security principal
(that is, user, group, or role in a database). (For a detailed discussion of principals, see
Chapter 12.) Table 9-3 lists and describes the most important columns of the sys.objects
catalog view.

Note
SQL Server 2012 still supports so-called compatibility views for backward compatibility. Each compatibility view
has the same name (and the same structure) as the corresponding system base table of the SQL Server 2000
system. Compatibility views do not expose any of the metadata related to features that are introduced in SQL
Server 2005 and later. They are a deprecated feature and will be removed in a future version of SQL Server.

Querying Catalog Views
As already stated in this chapter, all system tables have the same structure as base tables.
Because system tables cannot be referenced directly, you have to query catalog views,

Table 9-1 Selected Columns of the sys.objects Catalog View

Column Name Description
name Object name

object_id Object identification number, unique within a database

schema_id ID of the schema in which the object is contained

type Object type

Table 9-2 Selected Columns of the sys.columns Catalog View

Column Name Description
object_id ID of the object to which this column belongs

name Column name

column_id ID of the column (unique within the object)

09-Ch09.indd 263 2/6/12 12:45:34 PM

 2 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

which correspond to particular system tables. Examples 9.1 through 9.3 use existing
catalog views to demonstrate how information concerning database objects can be
queried.

 ExamPlE 9.1

Get the table ID, user ID, and table type of the employee table:

USE sample;

SELECT object_id, principal_id, type

 FROM sys.objects

 WHERE name = 'employee';

The result is

object_id principal_id type
530100929 NULL U

The object_id column of the sys.objects catalog view displays the unique ID
number for the corresponding database object. The NULL value in the principal_id
column indicates that the object’s owner is the same as the owner of the schema. U in
the type column stands for the user (table).

 ExamPlE 9.2

Get the names of all tables of the sample database that contain the project_no column:

USE sample;

SELECT sys.objects.name

 FROM sys.objects INNER JOIN sys.columns

 ON sys.objects.object_id = sys.columns.object_id

 WHERE sys.objects.type = 'U'

 AND sys.columns.name = 'project_no';

Table 9-3 Selected Columns of the sys.database_principals Catalog View

Column Name Description
name Name of principal

principal_id ID of principal (unique within the database)

type Principal type

09-Ch09.indd 264 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 6 5

The result is

name
project

works_on

 ExamPlE 9.3

Who is the owner of the employee table?

SELECT sys.database_principals.name

FROM sys.database_principals INNER JOIN sys.objects

ON sys.database_principals.principal_id = sys.objects.schema_id

WHERE sys.objects.name = 'employee'

AND sys.objects.type = 'U';

The result is

name
dbo

Dynamic management Views and Functions
Dynamic management views (DMVs) and functions (DMFs) return server state
information that can be used to observe active processes and therefore to tune system
performance or to monitor the actual system state. In contrast to catalog views, the
DMVs and DMFs are based on internal structures of the system.

Note
The main difference between catalog views and DMVs is in their application: catalog views display the static
information about metadata, while DMVs (and DMFs) are used to access dynamic properties of the system. In
other words, you use DMVs to get insightful information about the database, individual queries, or an individual
user.

DMVs and DMFs belong to the sys schema and their names start with the prefix
dm_, followed by a text string that indicates the category to which the particular DMV
or DMF belongs.

The following list identifies and describes some of these categories:

sys.dm_db_* Cc Contains information about databases and their objects
sys.dm_tran_* Cc Contains information in relation to transactions

09-Ch09.indd 265 2/6/12 12:45:34 PM

 2 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

sys.dm_io_* Cc Contains information about I/O activities
sys.dm_exec_* Cc Contains information related to the execution of user code

Note
Microsoft consecutively increases the number of supported DMVs in each new version of SQL Server. SQL Server
2012 contains 20 new DMVs, so the total number is now 155.

This section introduces two new DMVs:

sys.dm_exec_describe_first_result_setCc

sys.dm_db_uncontained_entitiesCc

The sys.dm_exec_describe_first_result_set view describes the first result set of a
group of result sets. For this reason, you can apply this DMV when several subsequent
queries are declared in a batch or a stored procedure (see Example 9.4). The sys.dm_
db_uncontained_entities view shows any uncontained objects used in the database.
(Uncontained objects are objects that cross the application boundary in a contained
database. For the description of uncontained objects and the application boundary, see
the section “Contained Databases” in Chapter 5.)

 ExamPlE 9.4

USE sample;

GO

CREATE PROC TwoSELECTS

AS

SELECT emp_no, job from works_on where emp_no BETWEEN 1000 and 9999;

SELECT emp_no, emp_lname FROM employee where emp_fname LIKE 'S%';

GO

SELECT is_hidden hidden ,column_ordinal ord,

 name, is_nullable nul, system_type_id id

 FROM sys.dm_exec_describe_first_result_set ('TwoSELECTS', NULL, 0) ;

The result is

hidden ord name nul id
0 1 emp_no 0 56

0 2 job 1 175

09-Ch09.indd 266 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 6 7

The stored procedure in Example 9.4 contains two SELECT statements concerning
the sample database. The subsequent query uses the sys.dm_exec_describe_first_
result_set view to display several properties of the result set of the first query.

Note
Many DMVs and DMFs are discussed in subsequent chapters of the book. For instance, index-related DMVs and
DMFs are explained in the next chapter, while transaction-related DMVs and DMFs are discussed in Chapter 13.

Information Schema
The information schema consists of read-only views that provide information about all
tables, views, and columns of the Database Engine to which you have access. In contrast
to the system catalog that manages the metadata applied to the system as a whole, the
information schema primarily manages the environment of a database.

Note
The information schema was originally introduced in the SQL92 standard. The Database Engine provides information
schema views so that applications developed on other database systems can obtain its system catalog without
having to use it directly. These standard views use different terminology, so when you interpret the column names,
be aware that catalog is a synonym for database and domain is a synonym for user-defined data type.

The following sections provide a description of the most important information
schema views.

Information_schema.tables
The Information_schema.tables view contains one row for each table in the current
database to which the user has access. The view retrieves the information from the
system catalog using the sys.objects catalog view. Table 9-4 lists and describes the four
columns of this view.

Column Description
TABLE_CATALOG The name of the catalog (database) to which the view belongs

TABLE_SCHEMA The name of the schema to which the view belongs

TABLE_NAME The table name

TABLE_TYPE The type of the table (can be BASE TABLE or VIEW)

Table 9-4 The Information_schema.tables View

09-Ch09.indd 267 2/6/12 12:45:34 PM

 2 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

Information_schema.columns
The Information_schema.columns view contains one row for each column in the
current database accessible by the user. The view retrieves the information from the
sys.columns and sys.objects catalog views. Table 9-5 lists and describes the six most
important columns of this view.

Proprietary Interfaces
The previous section describes the use of the general interfaces for accessing system
base tables. You can also retrieve system information using one of the following
proprietary mechanisms of the Database Engine:

System stored proceduresCc

System functionsCc

Property functionsCc

The following sections describe these interfaces.

System Stored Procedures
System stored procedures are used to provide many administrative and end-user tasks,
such as renaming database objects, identifying users, and monitoring authorization and
resources. Almost all existing system stored procedures access system base tables to
retrieve and modify system information.

Column Description
TABLE_CATALOG The name of the catalog (database) to which the column belongs

TABLE_SCHEMA The name of the schema to which the column belongs

TABLE_NAME The name of the table to which the column belongs

COLUMN_NAME The column name

ORDINAL_POSITION The ordinal position of the column

DATA_TYPE The data type of the column

Table 9-5 The Information_schema.columns View

09-Ch09.indd 268 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 6 9

Note
The most important property of system stored procedures is that they can be used for easy and reliable
modification of system base tables.

This section describes two system stored procedures: sp_help and sp_configure.
Depending on the subject matter of the chapters, certain system stored procedures
were discussed in previous chapters, and additional procedures will be discussed in later
chapters of the book.

The sp_help system stored procedure displays information about one or more
database objects. The name of any database object or data type can be used as a
parameter of this procedure. If sp_help is executed without any parameter, information
on all database objects of the current database will be displayed.

The sp_configure system stored procedure displays or changes global configuration
settings for the current server.

Example 9.5 shows the use of the sp_configure system stored procedure.

 ExamPlE 9.5

USE sample;

EXEC sp_configure 'show advanced options' , 1;

RECONFIGURE WITH OVERRIDE;

EXEC sp_configure 'fill factor', 100;

RECONFIGURE WITH OVERRIDE;

Generally, you do not have access to advanced configuration options of SQL Server.
For this reason, the first EXECUTE statement in Example 9.5 tells the system to allow
changes of advanced options. With the next statement, RECONFIGURE WITH
OVERRIDE, these changes will be installed. Now it is possible to change any of
the existing advanced options. Example 9.5 changes the fill factor to 100 and installs
this change. (Fill factor specifies the storage percentage for index pages and will be
described in detail in the next chapter.)

System Functions
System functions are described in Chapter 5. Some of them can be used to access
system base tables. Example 9.6 shows two SELECT statements that retrieve the same
information using different interfaces.

09-Ch09.indd 269 2/6/12 12:45:34 PM

 2 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 ExamPlE 9.6

USE sample;

SELECT object_id

 FROM sys.objects

 WHERE name = 'employee';

SELECT object_id('employee');

The second SELECT statement in Example 9.6 uses the system function object_id
to retrieve the ID of the employee table. (This information can be stored in a variable
and used when calling a command, or a system stored procedure, with the object’s ID as
a parameter.)

The following system functions, among others, access system base tables. The names
of these functions are self-explanatory.

OBJECT_ID(object_name)Cc

OBJECT_NAME(object_id)Cc

USER_ID([user_name])Cc

USER_NAME([user_id])Cc

DB_ID([db_name])Cc

DB_NAME([db_id])Cc

Property Functions
Property functions return properties of database objects, data types, or files. Generally,
property functions can return more information than system functions can return,
because property functions support dozens of properties (as parameters), which you can
specify explicitly.

Almost all property functions return one of the following three values: 0, 1, or
NULL. If the value is 0, the object does not have the specified property. If the value
is 1, the object has the specified property. Similarly, the value NULL specifies that the
existence of the specified property for the object is unknown to the system.

The Database Engine supports, among others, the following property functions:

OBJECTPROPERTY(id, property)Cc

COLUMNPROPERTY(id, column, property)Cc

FILEPROPERTY(filename, property)Cc

TYPEPROPERTY(type, property)Cc

09-Ch09.indd 270 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 C h a p t e r 9 : S y s t e m C a t a l o g 2 7 1

The OBJECTPROPERTY function returns information about objects in the
current database (see Exercise E.9.2). The COLUMNPROPERTY function returns
information about a column or procedure parameter. The FILEPROPERTY
function returns the specified filename and property value for a given filename and
property name. The TYPEPROPERTY function returns information about a data
type. (The description of existing properties for each property function can be found
in Books Online.)

Summary
The system catalog is a collection of system base tables belonging to the master
database and existing user databases. Generally, system base tables cannot be queried
directly by a user. The Database Engine supports several different interfaces that
you can use to access the information from the system catalog. Catalog views are the
most general interface that you can apply to obtain system information. Dynamic
management views (DMVs) and functions (DMFs) are similar to catalog views, but you
use them to access dynamic properties of the system. System stored procedures provide
easy and reliable read and write access to system base tables. It is strongly recommended
to exclusively use system stored procedures for modification of system information.

The information schema is a collection of views defined on system base tables that
provides unified access to the system catalog for all database applications developed
on other database systems. The use of the information schema is recommended if you
intend to port your system from one database system to another.

The next chapter introduces you to database indices.

Exercises
 E.9.1

Using catalog views, find the operating system path and filename of the sample
database.

 E.9.2

Using catalog views, find how many integrity constraints are defined for the employee
table of the sample database.

 E.9.3

Using catalog views, find out if there is any integrity constraint defined for the dept_no
column of the employee table.

09-Ch09.indd 271 2/6/12 12:45:34 PM

 2 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 9

 E.9.4

Using the information schema, display all user tables that belong to the
AdventureWorks database.

 E.9.5

Using the information schema, find all columns of the employee table with their
ordinal positions and the corresponding data types.

09-Ch09.indd 272 2/6/12 12:45:34 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

Chapter 10

In This Chapter

c Introduction
c Transact-SQL and Indices
c Guidelines for Creating
 and Using Indices
c Special Types of Indices

Indices

Ch10.indd 273 1/25/12 9:58:14 AM

 2 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

This chapter describes indices and their role in optimizing the response time
of queries. The first part of the chapter discusses how indices are stored
and the existing forms of them. The main part of the chapter explains

three Transact-SQL statements pertaining to indices: CREATE INDEX, ALTER
INDEX, and DROP INDEX. After that, index fragmentation and its impact on the
performance of the system will be explained. The next part of the chapter gives you
several general recommendations for how and when indices should be created. The final
part of the chapter describes several special types of indices.

Introduction
Database systems generally use indices to provide fast access to relational data. An
index is a separate physical data structure that enables queries to access one or more
data rows fast. Proper tuning of indices is therefore a key for query performance.

An index is in many ways analogous to a book index. When you are looking for
a topic in a book, you use its index to find the page(s) where that topic is described.
Similarly, when you search for a row of a table, the Database Engine uses an index to
find its physical location. However, there are two main differences between a book
index and a database index:

As a book reader, you can decide whether or not to use the book’s index. This Cc

possibility generally does not exist if you use a database system: the system
component called the query optimizer decides whether or not to use an existing
index. (A user can manipulate the use of indices by using index hints, but their
use is recommended only in a few special cases. Index hints are described in
Chapter 19.)
A particular book’s index is edited together with the book and does not change Cc

at all. This means that you can find a topic exactly on the page where it is
determined in the index. By contrast, a database index can change each time the
corresponding data is changed.

If a table does not have an appropriate index, the database system uses the table scan
method to retrieve rows. Table scan means that each row is retrieved and examined in
sequence (from first to last) and returned in the result set if the search condition in the
WHERE clause evaluates to TRUE. Therefore, all rows are fetched according to their
physical memory location. This method is less efficient than an index access, as explained
next.

Indices are stored in additional data structures called index pages. (The structure of
index pages is very similar to the structure of data pages, as you will see in Chapter 15.)

Ch10.indd 274 1/25/12 9:58:14 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 7 5

For each indexed row there is an index entry, which is stored in an index page. Each
index entry consists of the index key plus a pointer. For this reason, each index entry
is significantly shorter than the corresponding row. Therefore, the number of index
entries per (index) page is significantly higher than the number of rows per (data) page.
This index property plays a very important role, because the number of I/O operations
required to traverse the index pages is significantly lower than the number of I/O
operations required to traverse the corresponding data pages. In other words, a table
scan would probably result in many more I/O operations than a corresponding index
access would.

The Database Engine’s indices are constructed using the B+-tree data structure. As its
name suggests, a B+-tree has a treelike structure in which all of the bottommost nodes
(leaf nodes) are the same number of levels away from the top (root node) of the tree.
This property is maintained even when new data is added or deleted from the indexed
column.

Figure 10-1 illustrates the structure of the B+-tree and the direct access to the row
of the employee table with the value 25348 in its emp_no column. (It is assumed that
the employee table has an index on the emp_no column.) You can also see that each
B+-tree consists of a root node, leaf nodes, and zero or more intermediate nodes.

Figure 10-1 B+-tree for the emp_no column of the employee table

2581

9031

– 25348 Smith

10102 Jones

18316 Barrimore

29346 James

9031 Bertoni

2581 Hansel

28559 Moser

9031

18316

– 10102

18316

–

25348

28559

–

29346

–

–

28559

29346

–

18316

29346

–

Ch10.indd 275 1/25/12 9:58:15 AM

 2 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

Searching for the data value 25348 can be executed as follows: Starting from the
root of the B+-tree, a search proceeds for a lowest key value greater than or equal to the
value to be retrieved. Therefore, the value 29346 is retrieved from the root node; then
the value 28559 is fetched from the intermediate level, and the searched value, 25348,
is retrieved at the leaf level. With the help of the respective pointers, the appropriate
row is retrieved. (An alternative, but equivalent, search method would be to search for
smaller or equal values.)

Index access is generally the preferred and obviously advantageous method for
accessing tables with many rows. With index access, it takes only a few I/O operations
to find any row of a table in a very short time, whereas sequential access (i.e., table scan)
requires much more time to find a row physically stored at the end of the table.

The two existing index types, clustered and nonclustered indices, are described next,
after which you will find out how to create an index.

Clustered Indices
A clustered index determines the physical order of the data in a table. The Database
Engine allows the creation of a single clustered index per table, because the rows of the
table cannot be physically ordered more than one way. When using a clustered index, the
system navigates down from the root of the B+-tree structure to the leaf nodes, which
are linked together in a doubly linked list called a page chain. The important property of
a clustered index is that its leaf pages contain data pages. (All other levels of a clustered
index structure are composed of index pages.) If a clustered index is (implicitly or
explicitly) defined for a table, the table is called a clustered table. Figure 10-2 shows the
B+-tree structure of a clustered index.

Figure 10-2 Physical structure of a clustered index

Root node

Leaf nodes

Intermediate
nodes

Abe
...

Zuv

Abe
...
Irc

Ird
...

Rat

Rat
...

Zuv

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Rows of
data

Ch10.indd 276 1/25/12 9:58:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 7 7

A clustered index is built by default for each table for which you define the primary
key using the primary key constraint. Also, each clustered index is unique by default—
that is, each data value can appear only once in a column for which the clustered index
is defined. If a clustered index is built on a nonunique column, the database system will
force uniqueness by adding a 4-byte identifier to the rows that have duplicate values.

Note
Clustered indices allow very fast access in cases where a query searches for a range of values (see Chapter 19).

Nonclustered Indices
A nonclustered index has the same index structure as a clustered index, with two
important differences:

A nonclustered index does not change the physical order of the rows in the table.Cc

The leaf pages of a nonclustered index consist of an index key plus a bookmark.Cc

The physical order of rows in a table will not be changed if one or more nonclustered
indices are defined for that table. For each nonclustered index, the Database Engine
creates an additional index structure that is stored in index pages.

A bookmark of a nonclustered index shows where to find the row corresponding
to the index key. The bookmark part of the index key can have two forms, depending
on the form of the table—that is, the table can be a clustered table or a heap. (In SQL
Server terminology, a heap is a table without a clustered index.) If a clustered index
exists, the bookmark of the nonclustered index shows the B+-tree structure of the table’s
clustered index. If the table has no clustered index, the bookmark is identical to the
row identifier (RID), which contains three parts: the address of the file to which the
corresponding table belongs, the address of the physical block (page) in which the row
is stored, and the offset, which is the position of the row inside the page.

As the preceding discussion indicates, searching for data using a nonclustered index
could proceed in either of two different ways, depending on the form of the table:

Heap Cc Traversal of the nonclustered index structure is followed by the retrieval of
the row using the RID.
Clustered table Cc Traversal of the nonclustured index structure is followed by
traversal of the corresponding clustered index.

Ch10.indd 277 1/25/12 9:58:15 AM

 2 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

In both cases, the number of I/O operations is quite high, so you should design a
nonclustered index with care and only when you are sure that there will be significant
performance gains by using it. Figure 10-3 shows the B+-tree structure of a nonclustered
index.

Transact-SQL and Indices
Now that you are familiar with the physical structure of indices, this section describes
how you can create, alter, and drop indices; obtain index fragmentation information;
and edit index information; all of which will prepare you for the subsequent discussion
of how you can use indices to improve performance of the system.

Creating Indices
The CREATE INDEX statement creates an index for the particular table. The general
form of this statement is

CREATE [UNIQUE] [CLUSTERED |NONCLUSTERED] INDEX index_name

 ON table_name (column1 [ASC | DESC] ,...)

 [INCLUDE (column_name [,...])]

 [WITH

 [FILLFACTOR=n]

 [[,] PAD_INDEX = {ON | OFF}]

 [[,] DROP_EXISTING = {ON | OFF}]

 [[,] SORT_IN_TEMPDB = {ON | OFF}]

Root node

Leaf nodes

Intermediate
nodes

I1
...

I10000

I1
...

I1000

I1001
...

I2000
...

I9001
...

I10000

Row
locator

Row
locator

Row
locator

Row
locator

Row
locator

Row
locator

Row
locator

Row
locator

Row locator = RID or pointer to clustered index log

Row
locator

Figure 10-3 Structure of a nonclustered index

Ch10.indd 278 1/25/12 9:58:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 7 9

 [[,] IGNORE_DUP_KEY = {ON | OFF}]

 [[,] ALLOW_ROW_LOCKS = {ON | OFF}]

 [[,]ALLOW_PAGE_LOCKS = {ON | OFF}]

 [[,] STATISTICS_NORECOMPUTE = {ON | OFF}]

 [[,]ONLINE = {ON | OFF}]]

 [ON file_group | "default"]

index_name identifies the name of the created index. An index can be established
for one or more columns of a single table (table_name). column1 is the name of
the column for which the index is created. (As you can see from the syntax of the
CREATE INDEX statement, you can specify an index for several columns of a table.)
The Database Engine supports indices on views too. Such views, called indexed views,
are discussed in the next chapter.

Note
Each column of a table can be indexed. This means that columns with VARBINARY(max), BIGINT, and SQL_
VARIANT data types can be indexed too.

An index can be either single or composite. A single index has one column, whereas
a composite index is built on more than one column. Each composite index has certain
restrictions concerning its length and number of columns. The maximum size of an
index is 900 bytes, while the index can contain up to 16 columns.

The UNIQUE option specifies that each data value can appear only once in an
indexed column. For a unique composite index, the combination of data values of all
columns in each row must be unique. If UNIQUE is not specified, duplicate values in
the indexed column(s) are allowed.

The CLUSTERED option specifies a clustered index. The NONCLUSTERED
option (the default) specifies that the index does not change the order of the rows in the
table. The Database Engine allows a maximum of 249 nonclustered indices per table.

The Database Engine has been enhanced to support indices with descending order on
column values. The ASC option after the column name specifies that the index is created
on the ascending order of the column’s values, while DESC specifies the descending
order. This gives you more flexibility for using an index. Descending indices should be
used when you create a composite index on columns that have opposite sorting directions.

The INCLUDE option allows you to specify the nonkey columns, which are added
to the leaf pages of the nonclustered index. Column names cannot be repeated in the
INCLUDE list and cannot be used simultaneously as both key and nonkey columns.
To understand the benefit of the INCLUDE option, you have to know what a covering
index is. Significant performance gains can be achieved when all columns in a query

Ch10.indd 279 1/25/12 9:58:15 AM

 2 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

are included in the index, because the query optimizer can locate all the column
values within the index pages without having to access table data. This feature is
called a covering index or covered query. So, if you include additional nonkey columns
in the leaf pages of the nonclustered index, more queries will be covered and their
performance will be significantly better. (Further discussion of this topic, as well as an
example of how the query optimizer handles a covering index, can be found later in this
chapter in the section “Covering Index.”)

FILLFACTOR=n defines the storage percentage for each index page at the time the
index is created. You can set the value of FILLFACTOR from 1 to 100. If the value of
n is set to 100, each index page will be 100 percent filled—that is, the existing index
leaf pages as well as nonleaf pages will have no space for the insertion of new rows.
Therefore, this value is recommended only for static tables. (The default value, 0, also
indicates that the leaf index pages are filled and the intermediate nonleaf pages contain
one free entry each.)

If you set the FILLFACTOR option to a value between 1 and 99, the new index
structure will be created with leaf pages that are not completely full. The bigger the
value of FILLFACTOR, the smaller the space that is left free on an index page. For
instance, setting FILLFACTOR to 60 means that 40 percent of each leaf index page
is left free for future insertion of index rows. (Index rows will be inserted when you
execute either the INSERT or the UPDATE statement.) For this reason, the value 60
could be a reasonable value for tables with rather frequent data modification. For all
values of the FILLFACTOR option between 1 and 99, the intermediate nonleaf pages
contain one free entry each.

Note
The FILLFACTOR value is not maintained—that is, it specifies only how much storage space is reserved with the
existing data at the time the storage percentage is defined. If you want to reestablish the original value of the
FILLFACTOR option, you need to use the ALTER INDEX statement, which is described later in this chapter.

The PAD_INDEX option is tightly connected to the FILLFACTOR option.
The FILLFACTOR option mainly specifies the percentage of space that is left free
on leaf index pages. On the other hand, the PAD_INDEX option specifies that the
FILLFACTOR setting should be applied to the index pages as well as to the data pages
in the index.

The DROP_EXISTING option allows you to enhance performance when re-
creating a clustered index on a table that also has a nonclustered index. See the section
“Rebuilding an Index” later in the chapter for more details.

The SORT_IN_TEMPDB option is used to place into the tempdb system database
the data from intermediate sort operations used while creating the index. This can

Ch10.indd 280 1/25/12 9:58:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 8 1

result in a performance benefit if the tempdb database is placed on another disk drive
from the data itself.

The IGNORE_DUP_KEY option causes the system to ignore the attempt to insert
duplicate values in the indexed column(s). This option should be used only to avoid
the termination of a long transaction in cases where the INSERT statement inserts
duplicate data in the indexed column(s). If this option is activated and an INSERT
statement attempts to insert rows that would violate the uniqueness of the index, the
database system returns a warning rather than causing the entire statement to fail. The
Database Engine does not insert the rows that would add duplicate key values; it merely
ignores those rows and adds the rest. (If this option is not set, the statement as a whole
will be aborted.)

The ALLOW_ROW_LOCKS option specifies that the system uses row locks
when this option is activated (set to ON). Similarly, the ALLOW_PAGE_LOCKS
option specifies that the system uses page locks when this option is set to ON. (For the
description of page and row locks, see Chapter 13.)

The STATISTICS_NORECOMPUTE option specifies that statistics of the
specified index should not be automatically recomputed. (The statistics will be
explained in Chapter 19.) The ON option creates either the specified index on the
default file group (“default”) or on the specified file group (file_group).

If you activate the ONLINE option, you can create, rebuild, or drop an index online.
This option allows concurrent modifications to the underlying table or clustered index
data and any associated indices during index execution. For example, while a clustered
index is being rebuilt, you can continue to make updates to the underlying data and
perform queries against the data.

Note
Before you start to execute queries in this chapter, re-create the entire sample database.

Example 10.1 shows the creation of a nonclustered index.

 ExampLE 10.1

Create an index for the emp_no column of the employee table:

USE sample;

CREATE INDEX i_empno ON employee (emp_no);

Example 10.2 shows the creation of a unique composite index.

Ch10.indd 281 1/25/12 9:58:15 AM

 2 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 ExampLE 10.2

Create a composite index for the columns emp_no and project_no on the works_on
table. The compound values in both columns must be unique. Eighty percent of each
index leaf page should be filled.

USE sample;

CREATE UNIQUE INDEX i_empno_prno

 ON works_on (emp_no, project_no)

 WITH FILLFACTOR= 80;

The creation of a unique index for a column is not possible if the column already
contains duplicate values. The creation of such an index is possible if each existing
data value (including the NULL value) occurs only once. Also, any attempt to insert
or modify an existing data value into a column with an existing unique index will be
rejected by the system.

Obtaining Index Fragmentation Information
During the life cycle of an index, it can become fragmented, meaning the storage of data
in its pages is done inefficiently. There are two forms of index fragmentation: internal
and external. Internal fragmentation specifies the amount of data, which is stored
within each page. External fragmentation occurs when the logical order of the pages is
wrong.

To get information concerning internal index fragmentation, you use the dynamic
management view (DMV) called sys.dm_db_index_physical_stats. This DMV returns
size and fragmentation information for the data and indices of the specified table. For
each index, one row is returned for each level of the B+-tree. Using this DMV, you can
obtain information about the degree of fragmentation of rows on data pages. You can
use this information to decide whether reorganization of the data is necessary.

Example 10.3 shows how you can use the sys.dm_db_index_physical_stats view.
(You need to drop all existing indices on the works_on table before you start the batch.
Example 10.4 shows the use of the DROP INDEX statement.)

 ExampLE 10.3

DECLARE @db_id INT;

DECLARE @tab_id INT;

DECLARE @ind_id INT;

SET @db_id = DB_ID('sample');

SET @tab_id = OBJECT_ID('employee');

SELECT avg_fragmentation_in_percent, avg_page_space_used_in_percent

 FROM sys.dm_db_index_physical_stats

(@db_id, @tab_id, NULL, NULL, NULL)

Ch10.indd 282 1/25/12 9:58:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 8 3

As you can see from Example 10.3, the sys.dm_db_index_physical_stats view has
five parameters. The first three specify the IDs of the current database, table, and index,
respectively. The fourth specifies the partition ID (see Chapter 25), and the last one
specifies the scan level that is used to obtain statistics. (You can always use NULL to
specify the default value of the particular parameter.)

This view has several columns, of which avg_fragmentation_in_percent and avg_
page_space_used_in_percent are the most important. The former specifies the average
fragmentation in percent, while the latter defines the percentage of the used space.

Editing Index Information
After you have viewed the index fragmentation information, as discussed in the
previous section, you can use the following system features to edit that information and
to edit other index information:

sys.indexesCc catalog view
sys.index_columnsCc catalog view
sp_helpindexCc system procedure
OBJECTPROPERTY property functionCc

SQL Server Management StudioCc

sys.dm_db_index_usage_statsCc DMV
sys.dm_db_missing_index_detailsCc DMV

The sys.indexes catalog view contains a row for each index and a row for each table
without a clustered index. The most important columns of this view are object_id,
name, and index_id. object_id is the name of the database object to which the index
belongs, while name and index_id are the name and the ID of that index, respectively.

The sys.index_columns catalog view contains a row per column that is part of an
index or a heap. This information can be used together with the information from the
sys.indexes catalog view to obtain further properties of a specific index.

sp_helpindex displays all indices on a table as well as column statistics. The syntax of
this procedure is

sp_helpindex [@db_object =] 'name',

where db_object is the name of a table.
The OBJECTPROPERTY property function has two properties in relation to

indices: IsIndexed and IsIndexable. The former informs you whether a table or view
has an index, while the latter specifies whether a table or view can be indexed.

Ch10.indd 283 1/25/12 9:58:15 AM

 2 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

To edit information about an existing index using SQL Server Management Studio,
choose the database in the Databases folder and expand Tables. Expand the Indexes
folder. The list of all existing indices for that table is shown. After you double-click one
of the indices, the system shows you the Index Properties dialog box with all properties
of that index. (You can also use Management Studio to create a new index or drop an
existing one.)

The sys.dm_db_index_usage_stats view returns counts of different types of index
operations and the time each type of operation was last performed. Every individual
seek, lookup, or update on the specified index by one query execution is counted as a
use of that index and increments the corresponding counter in this DMV. That way
you can get general information about how often an index is used to determine which
indices are used more heavily than the others.

The sys.dm_db_missing_index_details view returns detailed information about
missing indices. The most important columns of this DMV are index_handle and
object_id. The former identifies a particular missing index, while the latter specifies the
table where the index is missing.

altering Indices
The Database Engine is one of a few database systems that support the ALTER
INDEX statement. This statement can be used for index maintenance activities. The
syntax of the ALTER INDEX statement is very similar to the syntax of the CREATE
INDEX statement. In other words, this statement allows you to change the settings for
the options ALLOW_ROW_LOCKS, ALLOW_PAGE_LOCKS, IGNORE_DUP_
KEY, and STATISTICS_NORECOMPUTE, previously described in relation to the
CREATE INDEX statement.

In addition to the preceding options, the ALTER INDEX statement supports three
other activities:

Rebuilding an index using the REBUILD optionCc

Reorganizing leaf index pages using the REORGANIZE optionCc

Disabling an index using the DISABLE optionCc

The following subsections discuss these options.

Rebuilding an Index
When you perform any data modifications using the INSERT, UPDATE, or
DELETE statement, data fragmentation can occur. If these data are indexed, index

Ch10.indd 284 1/25/12 9:58:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 8 5

fragmentation can occur as well, and the information in the index can get scattered
on different physical pages. Fragmented index data can cause the Database Engine to
perform additional data reads, which decreases the overall performance of the system.
In such a case, you have to rebuild all fragmented indexes.

There are two ways in which you can rebuild an index:

Use the REBUILD option of the ALTER INDEX statementCc

Use the DROP_EXISTING option of the CREATE INDEX statementCc

With the REBUILD option, you can rebuild an index. If you specify ALL instead of
an index name, all indices of the table will be rebuilt. (By allowing indices to be rebuilt
dynamically, you don’t have to drop and re-create them.)

The DROP_EXISTING option of the CREATE INDEX statement allows
you to enhance performance when re-creating a clustered index on a table that also
has nonclustered indices. It specifies that the existing clustered or nonclustered
index should be dropped and the specified index rebuilt. As you already know, each
nonclustered index in a clustered table contains in its leaf nodes the corresponding
values of the table’s clustered index. For this reason, all nonclustered indices must
be rebuilt when a table’s clustered index is dropped. Using the DROP_EXISTING
option, you can prevent the nonclustered indices from being rebuilt twice.

Note
The DROP_EXISTING option is more powerful than REBUILD, because it is more flexible and offers several options,
such as changing the columns that make up the index and changing a nonclustered index to a clustered one.

Reorganizing Leaf Index Pages
The REORGANIZE option of the ALTER INDEX statement specifies that the leaf
pages of the corresponding index structure will be reorganized so that the physical order
of the pages matches the left-to-right logical order of the leaf nodes. Therefore, this
option removes some of the fragmentation from an index, thus improving performance.

Disabling an Index
The DISABLE option disables an existing index. Each disabled index is unavailable for
use until you enable it again. Note that a disabled index won’t be maintained as changes
to the corresponding data are made. For this reason, indices must be completely rebuilt
if you want to use them again. To enable a disabled index, use the REBUILD option of
the ALTER TABLE statement.

Ch10.indd 285 1/25/12 9:58:16 AM

 2 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

Note
If you disable the clustered index of a table, the data won’t be available, because all data pages are stored in the
leaf level of the clustered index.

Removing and Renaming Indices
The DROP INDEX statement removes one or more existing indices from the current
database. Note that removing the clustered index of a table can be a very resource-
intensive operation, because all nonclustered indices will have to be rebuilt. (All the
nonclustered indices use the index key of the clustered index as a pointer in their leaf
index pages.) Example 10.4 shows how the i_empno index can be dropped.

 ExampLE 10.4

Remove the index created in Example 10.1:

USE sample;

DROP INDEX i_empno ON employee;

The DROP INDEX statement has an additional option, MOVE TO, which is
analogous to the ON option of CREATE INDEX. In other words, you can use this
option to specify a location to which to move the data rows that are currently in the leaf
pages of the clustered index. The data is moved to the new location in the form of a
heap. You can specify either a default or named file group as the new location.

Note
The DROP INDEX statement cannot be used to remove indices that are implicitly generated by the system for
integrity constraints, such as PRIMARY KEY or UNIQUE. To remove such indices, you must drop the constraint.

The sp_rename system procedure, which is discussed in Chapter 5, can be used to
rename indices.

Note
You can create, alter, and drop indices using SQL Server Management Studio, too. To manage indices inside
Management Studio, you can use either database diagrams or Object Explorer. The simplest way is to use the
Indexes node of a particular table. The index management with Management Studio is analogous to the table
management with the same tool. (For details, see Chapter 3.)

Ch10.indd 286 1/25/12 9:58:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 8 7

Guidelines for Creating and Using Indices
Although the Database Engine does not have any practical limitations concerning the
number of indices, it is advisable to limit them, for a couple of reasons. First, each index
uses a certain amount of disk space, so it is possible that the total number of index pages
could exceed the number of data pages within a database. Second, in contrast to the
benefits of using an index for retrievals, inserts and updates have a direct impact on the
maintenance of the index. The more indices on the tables, the more index reorganizations
that are necessary. The rule of thumb is to choose indices wisely for frequent queries and
evaluate index usage afterwards.

This section gives some recommendations for creating and using indices.

Note
The following recommendations are general rules of thumb. They ultimately depend on how your database will
be used in production and which queries are used most frequently. An index on a column that is never used will
be counterproductive.

Indices and Conditions in the WHERE Clause
If the WHERE clause in a SELECT statement contains a search condition with
a single column, you should create an index on this column. The use of an index is
especially recommended if the selectivity of the condition is high. The selectivity of a
condition is defined as the ratio of the number of rows satisfying the condition to the
total number of rows in the table. (High selectivity corresponds to a small ratio.) The
most successful processing of a retrieval with the indexed column will be achieved if the
selectivity of a condition is 5 percent or less.

The column should not be indexed if the selectivity of the condition is constantly
80 percent or more. In such a case, additional I/O operations will be needed for the
existing index pages, which would eliminate any time savings gained by index access. In
this particular case, a table scan would be faster, and the query optimizer would usually
choose to use a table scan, rendering the index useless.

If a search condition in a frequently used query contains one or more AND operators,
it is best to create a composite index that includes all the columns of the table specified
in the WHERE clause of the SELECT statement. Example 10.5 shows the creation of
a composite index that includes all the columns specified in the WHERE clause of the
SELECT statement.

 ExampLE 10.5

USE sample;

CREATE INDEX i_works ON works_on(emp_no, enter_date);

SELECT emp_no, project_no, enter_date

Ch10.indd 287 1/25/12 9:58:16 AM

 2 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 FROM works_on

 WHERE emp_no = 29346 AND enter_date='1.4.2006';

The AND operator in this query contains two conditions. As such, both of the columns
appearing in each condition should be indexed using a composite nonclustered index.

Indices and the Join Operator
In the case of a join operation, it is recommended that you index each join column. Join
columns often represent the primary key of one table and the corresponding foreign
key of the other or the same table. If you specify the PRIMARY KEY and FOREIGN
KEY integrity constraints for the corresponding join columns, only a nonclustered
index for the column with the foreign key should be created, because the system will
implicitly create the clustered index for the PRIMARY KEY column.

Example 10.6 shows the creation of indices, which should be used if you have a
query with a join operation and an additional filter.

 ExampLE 10.6

USE sample;

SELECT emp_lname, emp_fname

 FROM employee, works_on

 WHERE employee.emp_no = works_on.emp_no

 AND enter_date = '10.15.2007';

For Example 10.6, the creation of two separate indices for the emp_no column in
both the employee and works_on tables is recommended. Also, an additional index
should be created for the enter_date column.

Covering Index
As you already know, significant performance gains can be achieved when all columns
in the query are included in the index. Example 10.7 shows a covering index.

 ExampLE 10.7

USE AdventureWorks;

GO

DROP INDEX Person.Address.IX_Address_StateProvinceID;

GO

CREATE INDEX i_address_zip

 ON Person.Address (PostalCode)

 INCLUDE (City, StateProvinceID);

Ch10.indd 288 1/25/12 9:58:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 8 9

GO

SELECT City, StateProvinceID

 FROM Person.Address

 WHERE PostalCode = 84407;

Example 10.7 first drops the IX_Address_StateProvinceID index of the Address
table. In the second step, it creates the new index, which additionally includes two other
columns, on the PostalCode column. Finally, the SELECT statement at the end of the
example shows a query covered by the index. For this query, the system does not have
to search for data in data pages, because the optimizer can find all the column values in
the leaf pages of the nonclustered index.

Note
The use of covering indices is recommended because index pages generally contain many more entries than the
corresponding data pages contain. Also, to use this method, the filtered columns must be the first key columns in
the index.

Special Types of Indices
The Database Engine allows you to create the following special types of indices:

Indexed viewsCc

Filtered indicesCc

Indices on computed columnsCc

Partitioned indicesCc

Column store indicesCc

XML indicesCc

Full-text indicesCc

Indexed views are based on views and therefore will be discussed in the next chapter.
Filtered indices are similar to indexed views. You can find their description in Books
Online. Partitioned indices are used with partitioned tables and are described in
Chapter 25. Column store indices are one of the most important new features in SQL
Server 2012 and will also be explained in detail in Chapter 25. Indices in relation
to XML are explained in detail in Chapter 26, while full-text indices are a topic of
Chapter 28.

This section discusses computed columns and indices in relation to them.

Ch10.indd 289 1/25/12 9:58:16 AM

 2 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

A computed column is a column of a table that is used to store the result of a computation
of the table’s data. Such a column can be either virtual or persistent. The following
subsections describe these two forms of computed columns.

Virtual Computed Columns
A computed column without a corresponding clustered index is logical—that is, it is not
physically stored on the hard disk. Hence, it is recomputed each time a row is accessed.

Example 10.8 demonstrates the use of virtual computed columns.

 ExampLE 10.8

USE sample;

CREATE TABLE orders

 (orderid INT NOT NULL,

 price MONEY NOT NULL,

 quantity INT NOT NULL,

 orderdate DATETIME NOT NULL,

 total AS price * quantity,

 shippeddate AS DATEADD (DAY, 7, orderdate));

The orders table in Example 10.8 has two virtual computed columns: total
and shippeddate. The total column is computed using two other columns, price
and quantity, while the shippeddate column is computed using the date function
DATEADD and the column orderdate.

persistent Computed Columns
The Database Engine allows you to build indices on deterministic computed columns,
where the underlying columns have precise data types. (A computed column is called
deterministic if the same values will always be returned for the same table data.)

An indexed computed column can be created only if the following options of the SET
statement are set to ON. (These options guarantee the determinism of the column.)

QUOTED_IDENTIFIERCc

CONCAT_NULL_YIELDS_NULLCc

ANSI_NULLSCc

ANSI_PADDINGCc

ANSI_WARNINGSCc

Ch10.indd 290 1/25/12 9:58:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

 C h a p t e r 1 0 : I n d i c e s 2 9 1

Also, the NUMERIC_ROUNDABORT option must be set to OFF.
If you create a clustered index on a computed column, the values of the column will

physically exist in the corresponding table rows, because leaf pages of the clustered
index contain data rows (see the “Clustered Indices” section earlier in this chapter).

Example 10.9 shows the creation of a clustered index for the computed column total
in Example 10.8.

 ExampLE 10.9

CREATE CLUSTERED INDEX i1 ON orders (total);

After the execution of the CREATE INDEX statement in Example 10.9, the
computed column total will physically exist. This means that all updates to the
underlying columns that build the computed column will cause the modification of the
computed column itself.

Note
There is an alternative way to specify a computed column as persistent, using the PERSISTED option. This option
allows you to specify that the computed column will physically exist in the corresponding table rows, even
if the corresponding clustered index isn’t created. This feature is necessary for computed columns built upon
approximate data types (FLOAT and REAL). (As you already know, you can create an index for a computed column
only if the underlying columns have a precise data type.)

Summary
Indices are used to access data more efficiently. They can affect not only SELECT
statements but also performance of INSERT, UPDATE, and DELETE statements. An
index can be clustered or nonclustered, unique or nonunique, and single or composite.
A clustered index physically sorts the rows of the table in the order of the specified
column(s). A unique index specifies that each value can appear only once in that
column of the table. A composite index is composed of more than one column.

A great feature in relation to indices is the Database Engine Tuning Advisor (DTA),
which will, among other things, analyze a sample of your actual workload (supplied
via either a script file from you or a captured trace file from SQL Server Profiler) and
recommend indices for you to add or delete based on that workload. Use of DTA is
highly recommended. For more information on SQL Server Profiler and DTA, see
Chapter 20.

The next chapter discusses the notion of a view.

Ch10.indd 291 1/25/12 9:58:16 AM

 2 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 10

Exercises
 E.10.1

Create a nonclustered index for the enter_date column of the works_on table. Sixty
percent of each index leaf page should be filled.

 E.10.2

Create a unique composite index for the l_name and f_name columns of the employee
table. Is there any difference if you change the order of the columns in the composite index?

 E.10.3

How can you drop the index that is implicitly created for the primary key of a table?

 E.10.4

Discuss the benefits and disadvantages of an index.
In the following four exercises, create indices that will improve performance of the

queries. (Assume that all tables of the sample database that are used in the following
exercises have a very large number of rows.)

 E.10.5

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_lname = 'Smith'

 E.10.6

SELECT emp_no, emp_fname, emp_lname

 FROM employee

 WHERE emp_lname = 'Hansel'

 AND emp_fname = 'Elke'

 E.10.7

SELECT job

 FROM works_on, employee

 WHERE employee.emp_no = works_on.emp_no

 E.10.8

SELECT emp_lname, emp_fname

 FROM employee, department

 WHERE employee.dept_no = department.dept_no

 AND dept_name = 'Research'

Ch10.indd 292 1/25/12 9:58:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

Chapter 11

In This Chapter

c DDL Statements and Views
c DML Statements and Views
c Indexed Views

Views

Ch11.indd 293 1/25/12 9:59:34 AM

 2 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

This chapter is dedicated exclusively to the database object called a view. The
structure of this chapter corresponds to the structure of Chapters 5 to 7, in
which the DDL and DML statements for base tables were described. The first

section of this chapter covers the DDL statements concerning views: CREATE VIEW,
ALTER VIEW, and DROP VIEW. The second part of the chapter describes the DML
statements SELECT, INSERT, UPDATE, and DELETE with views. The SELECT
statement will be looked at separately from the other three statements. In contrast to
base tables, views cannot be used for modification operations without certain limitations.
These limitations are described at the end of each corresponding section.

The alternative form of a view, called an indexed view, is described in the last major
section of this chapter. This type of index materializes the corresponding query and allows
you to achieve significant performance gains in relation to queries with aggregated data.

DDL Statements and Views
In the previous chapters, base tables were used to describe DDL and DML statements.
A base table contains data stored on the disk. By contrast, views, by default, do not exist
physically—that is, their content is not stored on the disk. (This is not true for so-called
indexed views, which are discussed later in this chapter.) Views are database objects that
are always derived from one or more base tables (or views) using metadata information.
This information (including the name of the view and the way the rows from the base
tables are to be retrieved) is the only information concerning views that is physically
stored. Thus, views are also called virtual tables.

Creating a View
A view is created using the CREATE VIEW statement. The general form of this
statement is

CREATE VIEW view_name [(column_list)]

 [WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}]

 AS select_statement

 [WITH CHECK OPTION]

Note
The CREATE VIEW statement must be the only statement in a batch. (This means that you have to use the GO
statement to separate this statement from other statements in a statement group.)

view_name is the name of the defined view. column_list is the list of names to be
used for columns in a view. If this optional specification is omitted, column names of
the underlying tables are used. select_statement specifies the SELECT statement

Ch11.indd 294 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 2 9 5

that retrieves rows and columns from one or more tables (or views). The WITH
ENCRYPTION option encrypts the SELECT statement, thus enhancing the
security of the database system.

The SCHEMABINDING clause binds the view to the schema of the underlying
table. When SCHEMABINDING is specified, database objects referenced in the
SELECT statement must include the two-part names in the form owner.db_object,
where db_object may be a table, a view, or a user-defined function.

Any attempt to modify the structure of views or tables that are referenced in a view
created with this clause fails. You have to drop the view or change it so that it no longer
has the SCHEMABINDING clause if you want to apply the ALTER or DROP
statement to the referenced objects. (The WITH CHECK OPTION clause is discussed
in detail later in this chapter in the section “INSERT Statement and a View.”)

When a view is created with the VIEW_METADATA option, all of its columns
(except columns with the TIMESTAMP data type) can be updated if the view has
INSERT or UPDATE INSTEAD OF triggers. (Triggers are described in Chapter 14.)

Note
The SELECT statement in a view cannot include the ORDER BY clause or INTO option. Additionally, a temporary
table cannot be referenced in the query.

Views can be used for different purposes:

To restrict the use of particular columns and/or rows of tables. Therefore, views Cc

can be used for controlling access to a particular part of one or more tables (see
Chapter 12).
To hide the details of complicated queries. If database applications need queries Cc

that involve complicated join operations, the creation of corresponding views can
simplify the use of such queries.
To restrict inserted and updated values to certain ranges.Cc

Example 11.1 shows the creation of a view.

 ExaMpLE 11.1

USE sample;

GO

CREATE VIEW v_clerk

 AS SELECT emp_no, project_no, enter_date

 FROM works_on

 WHERE job = 'Clerk';

Ch11.indd 295 1/25/12 9:59:34 AM

 2 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

The query in Example 11.1 retrieves the rows of the works_on table for which the
condition job = 'Clerk' evaluates to TRUE. The v_clerk view is defined as the rows and
columns returned by this query. Table 11-1 shows the works_on table with the rows
that belong to the v_clerk view bolded.

Example 11.1 specifies the selection of rows—that is, it creates a horizontal subset
from the base table works_on. It is also possible to create a view that limits the columns
as well as the rows to be included in the view. Example 11.2 shows the creation of such
a view.

 ExaMpLE 11.2

USE sample;

GO

CREATE VIEW v_without_budget

 AS SELECT project_no, project_name

 FROM project;

The v_without_budget view in Example 11.2 contains all columns of the project
table except the budget column.

Table 11-1 The Base Table works_on

emp_no project_no job enter_date
10102 p1 Analyst 2006.10.1 00:00:00

10102 p3 Manager 2008.1.1 00:00:00

25348 p2 Clerk 2007.2.15 00:00:00

18316 p2 NULL 2007.6.1 00:00:00

29346 p2 NULL 2006.12.15 00:00:00

2581 p3 Analyst 2007.10.15 00:00:00

9031 p1 Manager 2007.4.15 00:00:00

28559 p1 NULL 2007.8.1. 00:00:00

28559 p2 Clerk 2008.2.1 00:00:00

9031 p3 Clerk 2006.11.15 00:00:00

29346 p1 Clerk 2007.1.4 00:00:00

Ch11.indd 296 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 2 9 7

As already stated, specifying column names with a view in the general format of the
CREATE VIEW statement is optional. On the other hand, there are also two cases in
which the explicit specification of column names is required:

If a column of the view is derived from an expression or an aggregate functionCc

If two or more columns of the view have the same name in the underlying tablesCc

Example 11.3 shows the explicit specification of column names in relation to a view.

 ExaMpLE 11.3

USE sample;

GO

CREATE VIEW v_count(project_no, count_project)

 AS SELECT project_no, COUNT(*)

 FROM works_on

 GROUP BY project_no;

The column names of the v_count view in Example 11.3 must be explicitly specified
because the SELECT statement contains the aggregate function COUNT(*), and all
columns in a view must be named.

You can avoid the explicit specification of the column list in the CREATE VIEW
statement if you use column headers, as in Example 11.4.

 ExaMpLE 11.4

USE sample;

GO

CREATE VIEW v_count1

 AS SELECT project_no, COUNT(*) count_project

 FROM works_on

 GROUP BY project_no;

A view can be derived from another existing view, as shown in Example 11.5.

 ExaMpLE 11.5

USE sample;

GO

CREATE VIEW v_project_p2

 AS SELECT emp_no

 FROM v_clerk

 WHERE project_no ='p2';

Ch11.indd 297 1/25/12 9:59:34 AM

 2 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

The v_project_p2 view in Example 11.5 is derived from the v_clerk view (see
Example 11.1). Every query using the v_project_p2 view is converted into the
equivalent query on the underlying base table works_on.

You can also create a view using Object Explorer of SQL Server Management Studio.
Select the database under which you want to create the view, right-click Views, and choose
New View. The corresponding editor appears. Using the editor, you can do the following:

Select underlying tables and columns from these tables for the viewCc

Name the view and define conditions in the WHERE clause of the corresponding Cc

query

altering and Removing Views
The Transact-SQL language supports the nonstandard ALTER VIEW statement,
which is used to modify the definition of the view query. The syntax of ALTER VIEW
is analogous to that of the CREATE VIEW statement.

You can use the ALTER VIEW statement to avoid reassigning existing privileges
for the view. Also, altering an existing view using this statement does not affect
database objects that depend upon the view. Otherwise, if you use the DROP VIEW
and CREATE VIEW statements to remove and re-create a view, any database object
that uses the view will not work properly, at least in the time period between removing
and re-creating the view.

Example 11.6 shows the use of the ALTER VIEW statement.

 ExaMpLE 11.6

USE sample;

GO

ALTER VIEW v_without_budget

 AS SELECT project_no, project_name

 FROM project

 WHERE project_no >= 'p3';

The ALTER VIEW statement in Example 11.6 extends the SELECT statement
of the v_without_budget view (see Example 11.2) with the new condition in the
WHERE clause.

Note
The ALTER VIEW statement can also be applied to indexed views. This statement removes all indices that exist for
such a view.

Ch11.indd 298 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 2 9 9

The DROP VIEW statement removes the definition of the specified view from the
system tables. Example 11.7 shows the use of the DROP VIEW statement.

 ExaMpLE 11.7

USE sample;

GO

DROP VIEW v_count;

If the DROP VIEW statement removes a view, all other views derived from it will
be dropped, too, as demonstrated in Example 11.8.

 ExaMpLE 11.8

USE sample;

GO

DROP VIEW v_clerk;

The DROP VIEW statement in Example 11.8 also implicitly removes the v_project_
p2 view (see Example 11.5). For instance, if you query the v_project_p2 view, you will get
the error: “Invalid object name: 'v_clerk'.”

Note
A view is not automatically dropped if the underlying table is removed. This means that any view from the
removed table must be exclusively removed using the DROP VIEW statement. On the other hand, if a table with
the same logical structure as the removed one is subsequently created, the view can be used again.

Editing Information Concerning Views
sys.objects is the most important catalog view concerning views. As you already know,
this catalog view contains information in relation to all objects of the current database.
All rows of this view that have the value V for the type column contain information
concerning views.

Another catalog view called sys.views displays additional information about existing
views. The most important column of this view is with_check_option, which instructs
you whether or not WITH CHECK OPTION is specified.

Using the system procedure sp_helptext, you can display the query belonging to a
particular view.

DML Statements and Views
Views are retrieved and modified with the same Transact-SQL statements that are used
to retrieve and modify base tables. The following subsections discuss all four DML
statements in relation to views.

Ch11.indd 299 1/25/12 9:59:34 AM

 3 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

View Retrieval
A view is used exactly like any base table of a database. You can think of selecting from a
view as if the statement were transformed into an equivalent operation on the underlying
base table(s). Example 11.9 shows this.

 ExaMpLE 11.9

USE sample;

GO

CREATE VIEW v_d2

 AS SELECT emp_no, emp_lname

 FROM employee

 WHERE dept_no ='d2';

GO

SELECT emp_lname

 FROM v_d2

 WHERE emp_lname LIKE 'J%';

The result is

emp_lname
James

The SELECT statement in Example 11.9 is transformed into the following
equivalent form, using the underlying table of the v_d2 view:

SELECT emp_lname

 FROM employee

 WHERE emp_lname LIKE 'J%'

 AND dept_no ='d2';

The next three sections describe the use of views with the other three DML statements:
INSERT, UPDATE, and DELETE. Data modification with these statements is treated
in a manner similar to a retrieval. The only difference is that there are some restrictions
on a view used for insertion, modification, and deletion of data from the table that it
depends on.

INSERT Statement and a View
A view can be used with the INSERT statement as if it were a base table. When a view
is used to insert rows, the rows are actually inserted into the underlying base table.

Ch11.indd 300 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 0 1

The v_dept view, which is created in Example 11.10, contains the first two columns
of the department table. The subsequent INSERT statement inserts the row into the
underlying table using the values 'd4' and 'Development'. The location column, which
is not referenced by the v_dept view, is assigned a NULL value.

 ExaMpLE 11.10

USE sample;

GO

CREATE VIEW v_dept

 AS SELECT dept_no, dept_name

 FROM department;

GO

INSERT INTO v_dept

 VALUES('d4', 'Development');

Using a view, it is generally possible to insert a row that does not satisfy the conditions
of the view query’s WHERE clause. The option WITH CHECK OPTION is used
to restrict the insertion of only such rows that satisfy the conditions of the query. If this
option is used, the Database Engine tests every inserted row to ensure that the conditions
in the WHERE clause are evaluated to TRUE. If this option is omitted, there is no
check of conditions in the WHERE clause, and therefore every row is inserted into the
underlying table. This could lead to the confusing situation of a row being inserted using
a view but subsequently not being returned by a SELECT statement against that view,
because the WHERE clause is enforced for the SELECT. WITH CHECK OPTION is
also applied to the UPDATE statement.

Examples 11.11 and 11.12 show the difference of applying and not applying WITH
CHECK OPTION, respectively.

 ExaMpLE 11.11

USE sample;

GO

CREATE VIEW v_2006_check

 AS SELECT emp_no, project_no, enter_date

 FROM works_on

 WHERE enter_date BETWEEN '01.01.2006' AND '12.31.2006'

 WITH CHECK OPTION;

GO

INSERT INTO v_2006_check

 VALUES (22334, 'p2', '1.15.2007');

Ch11.indd 301 1/25/12 9:59:34 AM

 3 0 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

In Example 11.11, the system tests whether the inserted value of the enter_date
column evaluates to TRUE for the condition in the WHERE clause of the SELECT
statement. The attempted insert fails because the condition is not met.

 ExaMpLE 11.12

USE sample;

GO

CREATE VIEW v_2006_nocheck

 AS SELECT emp_no, project_no, enter_date

 FROM works_on

 WHERE enter_date BETWEEN '01.01.2006' AND '12.31.2006';

GO

INSERT INTO v_2006_nocheck

 VALUES (22334, 'p2', '1.15.2007');

SELECT *

 FROM v_2006_nocheck;

The result is

emp_no project_no enter_date
10102 p1 2006-10-01

29346 p2 2006-12-15

 9031 p3 2006-11-15

Because Example 11.12 does not use WITH CHECK OPTION, the INSERT
statement is executed and the row is inserted into the underlying works_on table.
Notice that the subsequent SELECT statement does not display the inserted row
because it cannot be retrieved using the v_2006_nocheck view.

The insertion of rows into the underlying tables is not possible if the corresponding
view contains any of the following features:

The FROM clause in the view definition involves two or more tables and the Cc

column list includes columns from more than one table
A column of the view is derived from an aggregate functionCc

The SELECT statement in the view contains the GROUP BY clause or the Cc

DISTINCT option
A column of the view is derived from a constant or an expressionCc

Ch11.indd 302 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 0 3

Example 11.13 shows a view that cannot be used to insert rows in the underlying
base table.

 ExaMpLE 11.13

USE sample;

GO

CREATE VIEW v_sum(sum_of_budget)

 AS SELECT SUM(budget)

 FROM project;

GO

SELECT *

 FROM v_sum;

Example 11.13 creates the v_sum view, which contains an aggregate function in
its SELECT statement. Because the view in the example represents the result of an
aggregation of many rows (and not a single row of the project table), it does not make
sense to try to insert a row into the underlying table using this view.

UpDaTE Statement and a View
A view can be used with the UPDATE statement as if it were a base table. When
a view is used to modify rows, the content of the underlying base table is actually
modified.

Example 11.14 creates a view that is then used to modify the works_on table.

 ExaMpLE 11.14

USE sample;

GO

CREATE VIEW v_p1

 AS SELECT emp_no, job

 FROM works_on

 WHERE project_no = 'p1';

GO

UPDATE v_p1

 SET job = NULL

 WHERE job = 'Manager';

Ch11.indd 303 1/25/12 9:59:34 AM

 3 0 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

You can think of updating the view in Example 11.14 as if the UPDATE statement
were transformed into the following equivalent statement:

UPDATE works_on

 SET job = NULL

 WHERE job = 'Manager'

 AND project_no = 'p1'

WITH CHECK OPTION has the same logical meaning for the UPDATE statement
as it has for the INSERT statement. Example 11.15 shows the use of WITH CHECK
OPTION with the UPDATE statement.

 ExaMpLE 11.15

USE sample;

GO

CREATE VIEW v_100000

 AS SELECT project_no, budget

 FROM project

 WHERE budget > 100000

 WITH CHECK OPTION;

GO

UPDATE v_100000

 SET budget = 93000

 WHERE project_no = 'p3';

In Example 11.15, the Database Engine tests whether the modified value of the
budget column evaluates to TRUE for the condition in the WHERE clause of the
SELECT statement. The attempted modification fails because the condition is not
met—that is, the value 93000 is not greater than the value 100000.

The modification of columns in the underlying tables is not possible if the
corresponding view contains any of the following features:

The FROM clause in the view definition involves two or more tables and the Cc

column list includes columns from more than one table
A column of the view is derived from an aggregate functionCc

The SELECT statement in the view contains the GROUP BY clause or the Cc

DISTINCT option
A column of the view is derived from a constant or an expressionCc

Ch11.indd 304 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 0 5

Example 11.16 shows a view that cannot be used to modify row values in the
underlying base table.

ExaMpLE 11.16

USE sample;

GO

CREATE VIEW v_uk_pound (project_number, budget_in_pounds)

 AS SELECT project_no, budget*0.65

 FROM project

 WHERE budget > 100000;

GO

SELECT *

 FROM v_uk_pound;

The result is

project_number budget_in_pounds
p1 78000

p3 121225

The v_uk_pound view in Example 11.16 cannot be used with an UPDATE
statement (nor with an INSERT statement) because the budget_in_pounds column is
calculated using an arithmetic expression, and therefore does not represent an original
column of the underlying table.

DELETE Statement and a View
A view can be used to delete rows of a table that it depends on, as shown in Example 11.17.

 ExaMpLE 11.17

USE sample;

GO

CREATE VIEW v_project_p1

 AS SELECT emp_no, job

 FROM works_on

 WHERE project_no = 'p1';

GO

DELETE FROM v_project_p1

 WHERE job = 'Clerk';

Ch11.indd 305 1/25/12 9:59:34 AM

 3 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

Example 11.17 creates a view that is then used to delete rows from the works_on table.
The deletion of rows in the underlying tables is not possible if the corresponding

view contains any of the following features:

The FROM clause in the view definition involves two or more tables and the Cc

column list includes columns from more than one table
A column of the view is derived from an aggregate functionCc

The SELECT statement in the view contains the GROUP BY clause or the Cc

DISTINCT option

In contrast to the INSERT and UPDATE statements, the DELETE statement
allows the existence of a constant or an expression in a column of the view that is used
to delete rows from the underlying table.

Example 11.18 shows a view that can be used to delete rows, but not to insert rows
or modify column values.

 ExaMpLE 11.18

USE sample;

GO

CREATE VIEW v_budget (budget_reduction)

 AS SELECT budget*0.9

 FROM project;

GO

DELETE FROM v_budget;

The DELETE statement in Example 11.18 deletes all rows of the project table,
which is referenced by the v_budget view.

Indexed Views
As you already know from the previous chapter, there are several special index types.
One of them is the indexed view, which will be described next.

A view always contains a query that acts as a filter. Without indices created for a
particular view, the Database Engine builds dynamically the result set from each query
that references a view. (“Dynamically” means that if you modify the content of a table,
the corresponding view will always show the new information.) Also, if the view contains
computations based on one or more columns of the table, the computations are performed
each time you access the view.

Ch11.indd 306 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 0 7

Building dynamically the result set of a query can decrease performance, if the view
with its SELECT statement processes many rows from one or more tables. If such a view
is frequently used in queries, you could significantly increase performance by creating a
clustered index on the view (see the next section). Creating a clustered index means that
the system materializes the dynamic data into the leaf pages on an index structure.

The Database Engine allows you to create indices on views. Such views are called
indexed or materialized views. When a unique clustered index is created on a view, the
view is executed and the result set is stored in the database in the same way a table with
a clustered index is stored. This means that the leaf nodes of the clustered index’s B+-
tree contain data pages (see also the description of the clustered table in Chapter 10).

Note
Indexed views are implemented through syntax extensions to the CREATE INDEX and CREATE VIEW statements. In
the CREATE INDEX statement, you specify the name of a view instead of a table name. The syntax of the CREATE
VIEW statement is extended with the SCHEMABINDING clause. For more information on extensions to this
statement, see the description at the beginning of this chapter.

Creating an Indexed View
Creating an indexed view is a two-step process:

Create the view using the CREATE VIEW statement with the 1.
SCHEMABINDING clause.
Create the corresponding clustered index.2.

Example 11.19 shows the first step, the creation of a typical view that can be indexed
to gain performance. (This example assumes that works_on is a very large table.)

 ExaMpLE 11.19

USE sample;

GO

CREATE VIEW v_enter_month

 WITH SCHEMABINDING

 AS SELECT emp_no, DATEPART(MONTH, enter_date) AS enter_month

 FROM dbo.works_on;

The works_on table in the sample database contains the enter_date column, which
represents the starting date of an employee in the corresponding project. If you want to
retrieve all employees that entered their projects in a specified month, you can use the

Ch11.indd 307 1/25/12 9:59:34 AM

 3 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

view in Example 11.19. To retrieve such a result set using index access, the Database
Engine cannot use a table index, because an index on the enter_date column would
locate the values of that column by the date, and not by the month. In such a case,
indexed views can help, as Example 11.20 shows.

 ExaMpLE 11.20

USE sample;

GO

CREATE UNIQUE CLUSTERED INDEX

 c_workson_deptno ON v_enter_month (enter_month, emp_no);

To make a view indexed, you have to create a unique clustered index on the column(s)
of the view. (As previously stated, a clustered index is the only index type that contains
the data values in its leaf pages.) After you create that index, the database system allocates
storage for the view, and then you can create any number of nonclustered indices because
the view is treated as a (base) table.

An indexed view can be created only if it is deterministic—that is, the view always
displays the same result set. In that case, the following options of the SET statement
must be set to ON:

QUOTED_IDENTIFIERCc

CONCAT_NULL_YIELDS_NULLCc

ANSI_NULLSCc

ANSI_PADDINGCc

ANSI_WARNINGSCc

Also, the NUMERIC_ROUNDABORT option must be set to OFF.
There are several ways to check whether the options in the preceding list are

appropriately set, as discussed in the upcoming section “Editing Information Concerning
Indexed Views.”

To create an indexed view, the view definition has to meet the following
requirements:

All referenced (system and user-defined) functions used by the view have to Cc

be deterministic—that is, they must always return the same result for the same
arguments.
The view must reference only base tables.Cc

Ch11.indd 308 1/25/12 9:59:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 0 9

The view and the referenced base table(s) must have the same owner and belong Cc

to the same database.
The view must be created with the SCHEMABINDING option. Cc

SCHEMABINDING binds the view to the schema of the underlying base tables.
The referenced user-defined functions must be created with the Cc

SCHEMABINDING option.
The SELECT statement in the view cannot contain the following clauses and Cc

options: DISTINCT, UNION, TOP, ORDER BY, MIN, MAX, COUNT, SUM
(on a nullable expression), subqueries, derived tables, or OUTER.

The Transact-SQL language allows you to verify all of these requirements by using
the IsIndexable parameter of the objectproperty property function, as shown in
Example 11.21. If the value of the function is 1, all requirements are met and you can
create the clustered index.

 ExaMpLE 11.21

USE sample;

SELECT objectproperty(object_id('v_enter_month'), 'IsIndexable');

Modifying the Structure of an Indexed View
To drop the unique clustered index on an indexed view, you have to drop all
nonclustered indices on the view, too. After you drop its clustered index, the view is
treated by the system as a convenient view.

Note
If you drop an indexed view, all indices on that view are dropped.

If you want to change a standard view to an indexed one, you have to create a unique
clustered index on it. To do so, you must first specify the SCHEMABINDING option
for that view. You can drop the view and re-create it, specifying the SCHEMABINDING
clause in the CREATE SCHEMA statement, or you can create another view that has the
same text as the existing view but a different name.

Note
If you create a new view with a different name, you must ensure that the new view meets all the requirements
for an indexed view that are described in the preceding section.

Ch11.indd 309 1/25/12 9:59:35 AM

 3 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

Editing Information Concerning Indexed Views
You can use the sessionproperty property function to test whether one of the options
of the SET statement is activated (see the earlier section “Creating an Indexed View”
for a list of the options). If the function returns 1, the setting is ON. Example 11.22
shows the use of the function to check how the QUOTED_IDENTIFIER option
is set.

 ExaMpLE 11.22

SELECT sessionproperty ('QUOTED_IDENTIFIER');

The easier way is to use the dynamic management view called sys.dm_exec_sessions,
because you can retrieve values of all options discussed above using only one query. (Again,
if the value of a column is 1, the corresponding option is set to ON.) Example 11.23
returns the values for the first four SET statement options from the list in “Creating an
Indexed View.” (The global variable @@spid is described in Chapter 4.)

 ExaMpLE 11.23

USE sample;

SELECT quoted_identifier, concat_null_yields_null, ansi_nulls, ansi_padding

 FROM sys.dm_exec_sessions

 WHERE session_id = @@spid;

The sp_spaceused system procedure allows you to check whether the view is
materialized—that is, whether or not it uses the storage space. The result of Example
11.24 shows that the v_enter_month view uses storage space for the data as well as
for the defined index.

 ExaMpLE 11.24

USE sample;

EXEC sp_spaceused 'v_enter_month';

The result is

name rows reserved data index_size unused
v_enter_month 11 16KB 8KB 8KB 0KB

Ch11.indd 310 1/25/12 9:59:35 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 1 1

Benefits of Indexed Views
Besides possible performance gains for complex views that are frequently referenced in
queries, the use of indexed views has two other advantages:

The index of a view can be used even if the view is not explicitly referenced in the Cc

FROM clause.
All modifications to data are reflected in the corresponding indexed view.Cc

Probably the most important property of indexed views is that a query does not have
to explicitly reference a view to use the index on that view. In other words, if the query
contains references to columns in the base table(s) that also exist in the indexed views,
and the optimizer estimates that using the indexed view is the best choice, it chooses
the view indices in the same way it chooses table indices when they are not directly
referenced in a query.

When you create an indexed view, the result set of the view (at the time the index
is created) is stored on the disk. Therefore, all data that is modified in the base table(s)
will also be modified in the corresponding result set of the indexed view.

Besides all the benefits that you can gain by using indexed views, there is also
a (possible) disadvantage: indices on indexed views are usually more complex to
maintain than indices on base tables, because the structure of a unique clustered
index on an indexed view is more complex than a structure of the corresponding
index on a base table.

The following types of queries can achieve significant performance benefits if a view
that is referenced by the corresponding query is indexed:

Queries that process many rows and contain join operations or aggregate Cc

functions
Join operations and aggregate functions that are frequently performed by one or Cc

several queries

If a query references a standard view and the database system has to process many
rows using the join operation, the optimizer will usually use a suboptimal join method.
However, if you define a clustered index on that view, the performance of the query
could be significantly enhanced, because the optimizer can use an appropriate method.
(The same is true for aggregate functions.)

Ch11.indd 311 1/25/12 9:59:35 AM

 3 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

If a query that references a standard view does not process many rows, the use of an
indexed view could still be beneficial if the query is used very frequently. (The same is
true for groups of queries that join the same tables or use the same type of aggregates.)

Note
Since SQL Server 2008 R2, Microsoft offers an alternative solution to indexed views called filtered indices. Filtered
indices are a special form of nonclustered indices, where the index is narrowed using a condition in the particular
query. Using a filtered index has several advantages over using an indexed view.

Summary
Views can be used for different purposes:

To restrict the use of particular columns and/or rows of tables—that is, to control Cc

access to a particular part of one or more tables
To hide the details of complicated queriesCc

To restrict inserted and updated values to certain rangesCc

Views are created, retrieved, and modified with the same Transact-SQL statements
that are used to create, retrieve, and modify base tables. The query on a view is always
transformed into the equivalent query on an underlying base table. An update operation
is treated in a manner similar to a retrieval. The only difference is that there are some
restrictions on a view used for insertion, modification, and deletion of data from a
table that it depends on. Even so, the way in which the Database Engine handles the
modification of rows and columns is more systematic than the way in which other
relational database systems handle such modification.

Indexed views are used to increase performance of certain queries. When a unique
clustered index is created on a view, the view becomes indexed—that is, its result set is
physically stored in the same way a base table is stored.

The following chapter explains in detail the security issues of the Database Engine.

Exercises

 E.11.1

Create a view that comprises the data of all employees who work for the department d1.

Ch11.indd 312 1/25/12 9:59:35 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 C h a p t e r 1 1 : V i e w s 3 1 3

 E.11.2

For the project table, create a view that can be used by employees who are allowed to
view all data of this table except the budget column.

 E.11.3

Create a view that comprises the first and last names of all employees who entered their
projects in the second half of the year 2007.

 E.11.4

Solve Exercise E.11.3 so that the original columns f_name and l_name have new
names in the view: first and last, respectively.

 E.11.5

Use the view in E.11.1 to display full details of every employee whose last name begins
with the letter M.

 E.11.6

Create a view that comprises full details of all projects on which the employee named
Smith works.

 E.11.7

Using the ALTER VIEW statement, modify the condition in the view in E.11.1. The
modified view should comprise the data of all employees who work for department d1,
department d2, or both.

 E.11.8

Delete the view created in E.11.3. What happens with the view created in E.11.4?

 E.11.9

Using the view from E.11.2, insert the details of the new project with the project
number p2 and the name Moon.

 E.11.10

Create a view (with the WITH CHECK OPTION clause) that comprises the first
and last names of all employees whose employee number is less than 10,000. After that,
use the view to insert data for a new employee named Kohn with the employee number
22123, who works for the department d3.

Ch11.indd 313 1/25/12 9:59:35 AM

 3 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 11

 E.11.11

Solve Exercise E.11.10 without the WITH CHECK OPTION clause and find the
differences in relation to the insertion of the data.

 E.11.12

Create a view (with the WITH CHECK OPTION clause) with full details from the
works_on table for all employees who entered their projects during the years 2007 and
2008. After that, modify the entering date of the employee with the employee number
29346. The new date is 06/01/2006.

 E.11.13

Solve Exercise E.11.12 without the WITH CHECK OPTION clause and find the
differences in relation to the modification of the data.

Ch11.indd 314 1/25/12 9:59:35 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

Chapter 12

In This Chapter

c Authentication
c Schemas
c Database Security
c Roles

c Authorization
c Change Tracking
c Data Security and Views

Security System of the
Database Engine

Ch12.indd 315 1/25/12 10:01:22 AM

 3 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

This chapter begins with a brief overview of the most important concepts of
database security. It then discusses the specific features of the security system
of the Database Engine.

The following are the most important database security concepts:

AuthenticationCc

EncryptionCc

AuthorizationCc

Change trackingCc

Authentication requires evaluation of the following question: “Does this user have
a legitimate right to access the system?” Therefore, this security concept specifies the
process of validating user credentials to prevent unauthorized users from using a system.
Authentication can be checked by requesting the user to provide, for example:

Something the user is acquainted with (usually a password)Cc

Something the user owns, such as a magnetic card or badgeCc

Physical characteristics of the user, such as a signature or fingerprintsCc

Authentication is most commonly confirmed using a name and a password. This
information is evaluated by the system to determine whether you are the user who has a
legitimate right to access the system. This process can be strengthened using encryption.

Data encryption is the process of scrambling information so that it is incomprehensible
until it is decrypted by the intended recipient. Several methods can be used to encrypt
data, as discussed in the section “Encryption” a bit later in this chapter.

Authorization is the process that is applied after the identity of a user is verified
through authentication. During this process, the system determines which resources the
particular user can use.

Change tracking means that actions of unauthorized users are followed and documented
on your system. In other words, all insert, update, and delete operations that are applied
to database objects are documented. After that, they can be viewed by the authorized
users. (This process is useful to protect the system against users with elevated privileges.)

Before I describe these four concepts in the following sections, I will give you a concise
definition of the security model that SQL Server uses. The security model comprises three
different categories, which interact among themselves:

PrincipalsCc Subjects that have permission to access a particular entity. Typical
principals are Windows user accounts and SQL Server logins. In addition to these

Ch12.indd 316 1/25/12 10:01:22 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 1 7

principals, there are also Windows groups and SQL Server roles. A Windows
group is a collection of Windows user accounts and groups. Assigning a user
account membership to a group gives the user all the permissions granted to the
group. Similarly, a role is a collection of logins.
SecurablesCc The resources to which the database authorization system regulates
access. Most securables build a hierarchy, meaning that some of them can be
contained within others. Most of them have a certain number of permissions that
apply to them. (Securables will be discussed in detail later in this chapter.)
PermissionsCc Every securable has associated permissions that can be granted to
a principal. Permissions are discussed in the section “Authorization” later in this
chapter. (The list of all permissions with their corresponding securables can be
found later in this chapter, in Table 12-3.)

Authentication
The Database Engine’s security system includes two different security subsystems:

Windows securityCc

SQL Server securityCc

Windows security specifies security at the operating system level—that is, the method
by which users connect to Windows using their Windows user accounts. (Authentication
using this subsystem is also called Windows authentication.)

SQL Server security specifies the additional security necessary at the system level—
that is, how users who have already logged on to the operating system can subsequently
connect to the database server. SQL Server security defines a SQL Server login (also
called “login”) that is created within the system and is associated with a password. Some
SQL Server logins are identical to the existing Windows user accounts. (Authentication
using this subsystem is called SQL Server authentication.)

Based on these two security subsystems, the Database Engine can operate in one of
the following authentication modes:

Windows modeCc

Mixed modeCc

Windows mode requires users to use Windows user accounts exclusively to log in to
the system. The system accepts the user account, assuming it has already been validated
at the operating system level. This kind of connection to a database system is called a

Ch12.indd 317 1/25/12 10:01:22 AM

 3 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

trusted connection, because the system trusts that the operating system already validated
the account and the corresponding password.

Mixed mode allows users to connect to the Database Engine using Windows
authentication or SQL Server authentication. This means that some user accounts
can be set up to use the Windows security subsystem, while others can be set up to
use both the SQL Server security subsystem and the Windows security subsystem.

Note
SQL Server authentication is provided for backward compatibility only. For this reason, use Windows
authentication instead.

Implementing an Authentication Mode
You use SQL Server Management Studio to choose one of the existing authentication
modes. (Chapter 3 discusses the SQL Server Management Studio interface in depth.)
To set up Windows mode, right-click the server and click Properties. In the Server
Properties dialog box, choose the Security page and click Windows Authentication
Mode. To choose Mixed mode, the only difference is that you have to click SQL
Server and Windows Authentication Mode in the Server Properties dialog box.

After a user successfully connects to the Database Engine, the user’s access to database
objects is independent of whether Windows authentication or SQL Server authentication
is used.

Before you learn how to set database server security, you need to understand
encryption policies and mechanisms, discussed next.

Encrypting Data
Encryption is a process of obfuscating data, thereby enhancing the data security. Generally,
the concrete encryption procedure is carried out using an algorithm. The most important
algorithm for encryption is called RSA. (It is an acronym for Rivers, Shamir, and
Adelman, the last names of the three men who invented it.)

The Database Engine secures data with hierarchical encryption layers and a key
management infrastructure. Each layer secures the layer beneath it, using a combination
of certificates, asymmetric keys, and symmetric keys (see Figure 12-1).

The service master key in Figure 12-1 specifies the key that rules all other keys and
certificates. The service master key is created automatically when you install the Database
Engine. This key is encrypted using the Windows Data Protection API (DPAPI).

The important property of the service master key is that it is managed by the system.
Although the system administrator can perform several maintenance tasks, the only

Ch12.indd 318 1/25/12 10:01:22 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 1 9

task he or she should perform is to back up the service master key, so that it can be
restored if it becomes corrupted.

As you can see in Figure 12-1, the database master key is the root encryption object
for all keys, certificates, and data at the database level. Each database has a single
database master key, which is created using the CREATE MASTER KEY statement
(see Example 12.1). Because the database master key is protected by the service master
key, it is possible for the system to automatically decrypt the database master key.

Once the database master key exists, users can use it to create keys. There are three
forms of user keys:

Symmetric keysCc

Asymmetric keysCc

CertificatesCc

The following subsections describe the user keys.

Figure 12-1 The Database Engine hierarchical encryption layers

Service
Master Key
encrypted

with DPAPI

Windows
level

SQL Server
level

Database
level

Service
Master Key

Database
Master Key

Asymmetric
Keys

Symmetric
Keys

Data

Certificates

Symmetric
Keys

Data

Symmetric
Keys

Data

Ch12.indd 319 1/25/12 10:01:23 AM

 3 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

Symmetric Keys
An encryption system that uses symmetric keys is one in which the sender and receiver
of a message share a common key. Thus, this single key is used for both encryption and
decryption.

Using symmetric keys has several benefits and one disadvantage. One advantage of
using symmetric keys is that they can protect a significantly greater amount of data than
can the other two types of user keys. Also, using this key type is significantly faster than
using an asymmetric key.

On the other hand, in a distributed environment, using this type of key can make it
almost impossible to keep encryption secure, because the same key is used to decrypt and
encrypt data on both ends. So, the general recommendation is that symmetric keys should
be used only with applications in which data is stored as encrypted text at one place.

The Transact-SQL language supports several statements and system functions related to
symmetric keys. The CREATE SYMMETRIC KEY statement creates a new symmetric
key, while the DROP SYMMETRIC KEY statement removes an existing symmetric
key. Each symmetric key must be opened before you can use it to encrypt data or protect
another new key. Therefore, you use the OPEN SYMMETRIC KEY statement to
open a key.

After you open a symmetric key, you need to use the EncryptByKey system function
for encryption. This function has two input parameters: the ID of the key and text,
which has to be encrypted. For decryption, you use the DecryptByKey function.

Note
See Books Online for detailed descriptions of all Transact-SQL statements related to symmetric keys as well as
the system functions EncryptByKey and DecryptByKey.

Asymmetric Keys
If you have a distributed environment or if a symmetric key does not keep your encryption
secure, use asymmetric keys. An asymmetric key consists of two parts: a private key and the
corresponding public key. Each key can decrypt data encrypted by the other key. Because
of the existence of a private key, asymmetric encryption provides a higher level of security
than does symmetric encryption.

The Transact-SQL language supports several statements and system functions
related to asymmetric keys. The CREATE ASYMMETRIC KEY statement creates a
new asymmetric key, while the ALTER ASYMMETRIC KEY statement changes the
properties of an asymmetric key. The DROP ASYMMETRIC KEY statement drops
an existing asymmetric key.

Ch12.indd 320 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 2 1

After you create an asymmetric key, use the EncryptByAsymKey system function to
encrypt data. This function has two input parameters: the ID of the key and text, which
has to be encrypted. For decryption, use the DecryptByAsymKey function.

Note
See Books Online for detailed descriptions of all Transact-SQL statements related to asymmetric keys as well as
the system functions EncryptByAsymKey and DecryptByAsymKey.

Certificates
A public key certificate, usually simply called a certificate, is a digitally signed statement
that binds the value of a public key to the identity of the person, device, or service that
holds the corresponding private key. Certificates are issued and signed by a certification
authority (CA). The entity that receives a certificate from a CA is the subject of that
certificate.

Note
There is no significant functional difference between certificates and asymmetric keys. Both use the RSA
algorithm. The main difference is that asymmetric keys are generated outside the server.

Certificates contain the following information:

The subject’s public key valueCc

The subject’s identifier informationCc

Issuer identifier informationCc

The digital signature of the issuerCc

A primary benefit of certificates is that they relieve hosts of the need to maintain
a set of passwords for individual subjects. When a host, such as a secure web server,
designates an issuer as a trusted authority, the host implicitly trusts that the issuer has
verified the identity of the certificate subject.

Note
Certificates provide the highest level of encryption in the Database Engine security model. The encryption
algorithms for certificates are very processor-intensive. For this reason, use certificates sparingly.

Ch12.indd 321 1/25/12 10:01:23 AM

 3 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

The most important statement related to certificates is the CREATE CERTIFICATE
statement. Example 12.1 shows the use of this statement.

 ExAMplE 12.1

USE sample;

CREATE MASTER KEY

ENCRYPTION BY PASSWORD = 'p1s4w9d16!'

GO

CREATE CERTIFICATE cert01

 WITH SUBJECT = 'Certificate for dbo';

If you want to create a certificate without the ENCRYPTION BY option, you first
have to create the database master key. (Each CREATE CERTIFICATE statement
that does not include this option is protected by the database master key.) For this
reason, the first statement in Example 12.1 is the CREATE MASTER KEY statement.
After that, the CREATE CERTIFICATE statement is used to create a new certificate,
cert01, which is owned by dbo in the sample database, if the current user is dbo.

Editing User Keys
The most important catalog views in relation to encryption are the following:

sys.symmetric_keysCc

sys.asymmetric_keysCc

sys.certificatesCc

sys.database_principalsCc

The first three catalog views provide information about all symmetric keys, all
asymmetric keys, and all the certificates installed in the current database, respectively. The
sys.database_principals catalog view provides information about each of the principals
in the current database. (You can join the last catalog view with any of the three others to
see information about who owns a particular key.)

Example 12.2 shows how the existing certificates can be retrieved. (In a similar way,
you can get information concerning symmetric and asymmetric keys.)

 ExAMplE 12.2

select p.name, c.name, certificate_id

 from sys.database_principals p, sys.certificates c

 where p.principal_id = p.principal_id

Ch12.indd 322 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 2 3

A part of the result is

public cert01 256

dbo cert01 256

guest cert01 256

INFORMATION_SCHEMA cert01 256

sys cert01 256

db_owner cert01 256

db_accessadmin cert01 256

db_securityadmin cert01 256

SQL Server Extensible Key Management
Another step in achieving greater key security is the use of Extensible Key Management
(EKM). EKM has the following main goals:

Enhanced key security through a choice of encryption providerCc

General key management across your enterpriseCc

EKM allows third-party vendors to register their devices in the Database Engine.
Once the devices are registered, SQL Server logins can use the encryption keys stored
on these modules as well as leverage advanced encryption features that these modules
support. EKM also allows data protection from database administrators (except members
of the sysadmin group). That way, you can protect the system against users with elevated
privileges. Data can be encrypted and decrypted using Transact-SQL cryptographic
statements, and SQL Server uses the external EKM device as the key store.

Methods of Data Encryption
SQL Server supports two methods of data encryption:

Column-level encryptionCc

Transparent Data EncryptionCc

Column-level encryption allows the encryption of particular data columns. Several
pairs of complementary functions are used to implement column-level encryption. I
will not discuss this encryption method further because its implementation is a complex
manual process that requires the modification of your application.

Ch12.indd 323 1/25/12 10:01:23 AM

 3 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

Transparent Data Encryption (TDE) introduces a new database option that encrypts
the database files automatically, without needing to alter any applications. That way,
you can prevent the database access of unauthorized persons, even if they obtain the
database files or database backup files.

Encryption of the database file is performed at the page level. The pages in an
encrypted database are encrypted before they are written to disk and decrypted when
they are read into memory.

TDE, like most other encryption methods, is based on an encryption key. It uses a
symmetric key, which secures the encrypted database.

For a particular database, TDE can be implemented in four steps:

Create a database master key using the CREATE MASTER KEY statement. 1.
(Example 12.1 shows the use of the statement.)
Create a certificate using the CREATE CERTIFICATE statement (see 2.
Example 12.1).
Create an encryption key using the CREATE DATABASE ENCRYPTION 3.
KEY statement.
Configure the database to use encryption. (This step can be implemented by setting 4.
the SET ENCRPYTION clause of the ALTER DATABASE statement to ON.)

Setting Up the Database Engine Security
The security of the Database Engine can be set up using

SQL Server Management StudioCc

T-SQL statementsCc

The following subsections discuss these two alternatives.

Managing Security Using Management Studio
To create a new login using SQL Server Management Studio, expand the server,
expand Security, right-click Logins, and click New Login. The Login dialog box (see
Figure 12-2) appears. First, you have to decide between Windows authentication and
SQL Server authentication. If you choose Windows authentication, the login name
must be a valid Windows name, which is written in the form domain\user_name.
If you choose SQL Server authentication, you have to type the new login name and
the corresponding password. Optionally, you may also specify the default database
and language for the new login. (The default database is the database that the user
is automatically connected to immediately after logging in to the Database Engine.)
After that, the user can log in to the system under the new account.

Ch12.indd 324 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 2 5

Managing Security Using Transact-SQL Statements
The three Transact-SQL statements that are used to manage security of the Database
Engine are CREATE LOGIN, ALTER LOGIN, and DROP LOGIN.

The CREATE LOGIN statement creates a new SQL Server login. The syntax is as
follows:

CREATE LOGIN login_name

{ WITH option_list1 |

FROM {WINDOWS [WITH option_list2 [,...]]

| CERTIFICATE certname | ASYMMETRIC KEY key_name }}

Figure 12-2 Login dialog box

Ch12.indd 325 1/25/12 10:01:23 AM

 3 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

login_name specifies the name of the login that is being created. As you can see
from the syntax of the statement, you can use the WITH clause to specify one or more
options for the login or use the FROM clause to define a certificate, asymmetric key, or
Windows user account associated with the corresponding login.

option_list1 contains several options. The most important one is the PASSWORD
option, which specifies the password of the login (see Example 12.3). (The other
possible options are DEFAULT_DATABASE, DEFAULT_LANGUAGE, and
CHECK_EXPIRATION.)

As you can see from the syntax of the CREATE LOGIN statement, the FROM
clause contains one of the following options:

WINDOWSCc Specifies that the login will be mapped to an existing Windows
user account (see Example 12.4). This clause can be specified with other
suboptions, such as DEFAULT_DATABASE and DEFAULT_LANGUAGE.
CERTIFICATECc Specifies the name of the certificate to be associated with this
login.
ASYMMETRIC KEYCc Specifies the name of the asymmetric key to be
associated with this login. (The certificate and the asymmetric key must already
exist in the master database.)

The following examples show the creation of different login forms. Example 12.3
specifies the login called mary, with the password you1know4it9!

 ExAMplE 12.3

USE sample;

CREATE LOGIN mary WITH PASSWORD = 'you1know4it9!';

Example 12.4 creates the login called pete, which will be mapped to a Windows user
account with the same name.

 ExAMplE 12.4

USE sample;

CREATE LOGIN [NTB11901\pete] FROM WINDOWS;

Note
You have to alter the username and the computer name (in the form domain\username) according to your
environment.

Ch12.indd 326 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 2 7

The second security statement supported by Transact-SQL is ALTER LOGIN, which
changes the properties of a particular login. Using the ALTER LOGIN statement, you
can change the current password and its expiration properties, credentials, default database,
and default language. You can also enable or disable the specified login.

Finally, the DROP LOGIN statement drops an existing login. A login cannot be
dropped if it references (owns) other objects.

Schemas
The Database Engine uses schemas in its security model to simplify the relationship
between users and objects, and thus schemas have a very big impact on how you
interact with the Database Engine. This section describes the role of schemas in
Database Engine security. The first subsection describes the relationship between
schemas and users; the second subsection discusses all three Transact-SQL
statements related to schema creation and modification.

User-Schema Separation
A schema is a collection of database objects that is owned by a single person and forms
a single namespace. (Two tables in the same schema cannot have the same name.)
The Database Engine supports named schemas using the notion of a principal. As
you already know, a principal can be either of the following:

An indivisible principalCc

A group principalCc

An indivisible principal represents a single user, such as a login or Windows user
account. A group principal can be a group of users, such as a role or Windows group.
Principals are ownerships of schemas, but the ownership of a schema can be transferred
easily to another principal and without changing the schema name.

The separation of database users from schemas provides significant benefits, such as:

One principal can own several schemas.Cc

Several indivisible principals can own a single schema via membership in roles or Cc

Windows groups.
Dropping a database user does not require the renaming of objects contained by Cc

that user’s schema.

Ch12.indd 327 1/25/12 10:01:23 AM

 3 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

Each database has a default schema, which is used to resolve the names of objects
that are referred to without their fully qualified names. The default schema specifies the
first schema that will be searched by the database server when it resolves the names of
objects. The default schema can be set and changed using the DEFAULT_SCHEMA
option of the CREATE USER or ALTER USER statement. If DEFAULT_
SCHEMA is left undefined, the database user will have dbo as its default schema. (All
default schemas are described in detail in the section “Default Database Schemas” later
in this chapter.)

DDl Schema-Related Statements
There are three Transact-SQL schema-related statements:

CREATE SCHEMACc

ALTER SCHEMACc

DROP SCHEMACc

The following subsections describe in detail these statements.

CREATE SCHEMA
Example 12.5 shows how schemas can be created and used to control database security.

Note
Before you start Example 12.5, you have to create database users peter and mary. For this reason, first execute
the Transact-SQL statements in Example 12.7, located in the section “Managing Database Security Using
Transact-SQL Statements.”

 ExAMplE 12.5

USE sample;

GO

CREATE SCHEMA my_schema AUTHORIZATION peter

GO

CREATE TABLE product

 (product_no CHAR(10) NOT NULL UNIQUE,

 product_name CHAR(20) NULL,

 price MONEY NULL);

Ch12.indd 328 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 2 9

GO

CREATE VIEW product_info

 AS SELECT product_no, product_name

 FROM product;

GO

GRANT SELECT TO mary;

DENY UPDATE TO mary;

Example 12.5 creates the my_schema schema, which comprises the product table
and the product_info view. The database user called peter is the database-level
principal that owns the schema. (You use the AUTHORIZATION option to define
the principal of a schema. The principal may own other schemas and may not use the
current schema as his or her default schema.)

Note
The two other statements concerning permissions of database objects, GRANT and DENY, are discussed in detail
later in this chapter. In Example 12.5, GRANT grants the SELECT permissions for all objects created in the schema,
while DENY denies the UPDATE permissions for all objects of the schema.

The CREATE SCHEMA statement can create a schema, create the tables and
views it contains, and grant, revoke, or deny permissions on a securable in a single
statement. As you already know, securables are resources to which the SQL Server
authorization system regulates access. There are three main securable scopes: server,
database, and schema, which contain other securables, such as logins, database users,
tables, and stored procedures.

The CREATE SCHEMA statement is atomic. In other words, if any error occurs
during the execution of a CREATE SCHEMA statement, none of the Transact-SQL
statements specified in the schema will be executed.

Database objects that are created in a CREATE SCHEMA statement can be
specified in any order, with one exception: a view that references another view must be
specified after the referenced view.

A database-level principal could be a database user, role, or application role. (Roles
and application roles are discussed in the “Roles” section later in the chapter.) The
principal that is specified in the AUTHORIZATION clause of the CREATE
SCHEMA statement is the owner of all objects created within the schema. Ownership
of schema-contained objects can be transferred to any other database-level principal
using the ALTER AUTHORIZATION statement.

The user needs the CREATE SCHEMA permission on the database to execute the
CREATE SCHEMA statement. Also, to create the objects specified within the CREATE
SCHEMA statement, the user needs the corresponding CREATE permissions.

Ch12.indd 329 1/25/12 10:01:23 AM

 3 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

ALTER SCHEMA
The ALTER SCHEMA statement transfers an object between different schemas of
the same database. The syntax of the ALTER SCHEMA statement is as follows:

ALTER SCHEMA schema_name TRANSFER object_name

Example 12.6 shows the use of the ALTER SCHEMA statement.

 ExAMplE 12.6

USE AdventureWorks;

ALTER SCHEMA HumanResources TRANSFER Person.Contact;

Example 12.6 alters the schema called HumanResources of the AdventureWorks
database by transferring into it the Contact table from the Person schema of the same
database.

The ALTER SCHEMA statement can only be used to transfer objects between
different schemas in the same database. (Single objects within a schema can be altered
using the ALTER TABLE statement or the ALTER VIEW statement.)

DROP SCHEMA
The DROP SCHEMA statement removes a schema from the database. You can
successfully execute the DROP SCHEMA statement for a schema only if the schema
does not contain any objects. If the schema contains any objects, the DROP SCHEMA
statement will be rejected by the system.

As previously stated, the system allows you to change the ownership of a schema
by using the ALTER AUTHORIZATION statement. This statement modifies the
ownership of an entity.

Note
The Transact-SQL language does not support the CREATE AUTHORIZATION and DROP AUTHORIZATION
statements. You specify the ownership of an entity by using the CREATE SCHEMA statement.

Database Security
A Windows user account or a SQL Server login allows a user to log in to the system. A
user who subsequently wants to access a particular database of the system also needs a
database user account to work with the database. Therefore, users must have a database
user account for each database they want to use. The database user account can be
mapped from the existing Windows user accounts, Windows groups (of which the user
is a member), logins, or roles.

Ch12.indd 330 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 3 1

To manage database security, you can use

SQL Server Management StudioCc

Transact-SQL statementsCc

The following subsections describes both ways to manage database security.

Managing Database Security Using Management Studio
To add users to a database using SQL Server Management Studio, expand the server,
expand the Databases folder, expand the database, and expand Security. Right-click
Users and click New User. In the Database User dialog box (see Figure 12-3), enter a

Figure 12-3 Database User dialog box

Ch12.indd 331 1/25/12 10:01:23 AM

 3 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

username and choose a corresponding login name. Optionally, you can choose a default
schema for this user.

Managing Database Security Using
Transact-SQl Statements
The CREATE USER statement adds a user to the current database. The syntax of this
statement is

CREATE USER user_name

 [FOR {LOGIN login |CERTIFICATE cert_name |ASYMMETRIC KEY key_name}]

 [WITH DEFAULT_SCHEMA = schema_name]

user_name is the name that is used to identify the user inside the database. login
specifies the login for which the user is being created. cert_name and key_name specify
the corresponding certificate and asymmetric key, respectively. Finally, the WITH
DEFAULT SCHEMA option specifies the first schema that will be searched by the
server when it resolves the names of objects for this database user.

Example 12.7 demonstrates the use of the CREATE USER statement.

 ExAMplE 12.7

USE sample;

CREATE USER peter FOR LOGIN [NTB11901\pete];

CREATE USER mary FOR LOGIN mary WITH DEFAULT_SCHEMA =

my_schema;

Note
To execute the first statement successfully, create the Windows account named pete and change the server
(domain) name.

The first CREATE USER statement creates the database user called peter for
the Windows login called pete. pete will use dbo as its default schema because the
DEFAULT SCHEMA option is omitted. (Default schemas will be described in the
section “Default Database Schemas” later in this chapter.)

The second CREATE USER statement creates a new database user with the name
mary. This user has my_schema as her default schema. (The DEFAULT_SCHEMA
option can be set to a schema that does not currently exist in the database.)

Ch12.indd 332 1/25/12 10:01:23 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 3 3

Note
Each database has its own specific users. Therefore, the CREATE USER statement must be executed once for
each database where a user account should exist. Also, a SQL Server login can have only a single corresponding
database user for a given database.

The ALTER USER statement modifies a database username, changes its default
schema, or remaps a user to another login. Similar to the CREATE USER statement,
it is possible to assign a default schema to a user before the creation of the schema.

The DROP USER statement removes a user from the current database. Users that
own securables (that is, database objects) cannot be dropped from the database.

Default Database Schemas
Each database within the system has the following default database schemas:

guestCc

dboCc

INFORMATION_SCHEMACc

sysCc

The Database Engine allows users without user accounts to access a database using
the guest schema. (After creation, each database contains this schema.) You can apply
permissions to the guest schema in the same way as you apply them to any other
schema. Also, you can drop and add the guest schema from any database except the
master and tempdb system databases.

Each database object belongs to one and only one schema, which is the default
schema for that object. The default schema can be defined explicitly or implicitly. If
the default schema isn’t defined explicitly during the creation of an object, that object
belongs to the dbo schema. Also, the login that is the owner of a database always has
the special username dbo when using the database it owns.

The INFORMATION_SCHEMA schema contains all information schema views
(see Chapter 11). The sys schema, as you may have already guessed, contains system
objects, such as catalog views.

Roles
When several users need to perform similar activities in a particular database (and there
is no corresponding Windows group), you can add a database role, which specifies a
group of database users that can access the same objects of the database.

Ch12.indd 333 1/25/12 10:01:23 AM

 3 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

Members of a database role can be any of the following:

Windows groups and user accountsCc

SQL Server loginsCc

Other rolesCc

The security architecture in the Database Engine includes several “system” roles that
have special implicit permissions. There are two types of predefined roles (in addition
to user-defined roles):

Fixed server rolesCc

Fixed database rolesCc

Beside these two, the following sections also describe the following types of roles:

Application rolesCc

User-defined server rolesCc

User-defined database rolesCc

The following sections describe in detail these role types.

Fixed Server Roles
Fixed server roles are defined at the server level and therefore exist outside of databases
belonging to the database server. Table 12-1 lists all existing fixed server roles.

Table 12-1 Fixed Server Roles

Fixed Server Role Description
sysadmin Performs any activity in the database system

serveradmin Configures server settings

setupadmin Installs replication and manages extended procedures

securityadmin Manages logins and CREATE DATABASE permissions and reads audits

processadmin Manages system processes

dbcreator Creates and modifies databases

diskadmin Manages disk files

Ch12.indd 334 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 3 5

Managing Fixed Server Roles
You can add members to and delete members from a fixed server roles in two ways:

Using Management StudioCc

Using T-SQL statementsCc

To add a login to a fixed server role using SQL Server Management Studio, expand
the server, expand Security, and expand Server Roles. Right-click the role to which you
want to add a login and then click Properties. On the Members page of the Server Role
Properties dialog box (see Figure 12-4), click Add. Search for the login you want to add.
Such a login is then a member of the role and inherits all credentials assigned to that role.

Figure 12-4 Server Role Properties dialog box

Ch12.indd 335 1/25/12 10:01:24 AM

 3 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

The Transact-SQL statements CREATE SERVER ROLE and DROP SERVER
ROLE are used, respectively, to add members to and delete members from a fixed
server role. There ALTER SERVER ROLE statement modifies the membership
of a server role. Example 12.9, later in the chapter, shows the use of the CREATE
SERVER ROLE and ALTER SERVER ROLE statements.

Note
You cannot add, remove, or rename fixed server roles. Additionally, only the members of fixed server roles can
execute the system procedures to add or remove logins to or from the role.

The sa Login
The sa login is the login of the system administrator. In versions previous to SQL Server
2005, in which roles did not exist, the sa login was granted all possible permissions for
system administration tasks. Now, the sa login is included just for backward compatibility.
This login is always a member of the sysadmin fixed server role and cannot be removed
from the role.

Note
Use the sa login only when there is not another way to log in to the database system.

Fixed Database Roles
Fixed database roles are defined at the database level and therefore exist in each database
belonging to the database server. Table 12-2 lists all of the fixed database roles. Members

Table 12-2 Fixed Database Roles

Fixed Database Role Description
db_owner Users who can perform almost all activities in the database

db_accessadmin Users who can add or remove users

db_datareader Users who can see data from all user tables in the database

db_datawriter Users who can add, modify, or delete data in all user tables in the database

db_ddladmin Users who can perform all DDL operations in the database

db_securityadmin Users who can manage all activities concerning security permissions in the database

db_backupoperator Users who can back up the database

db_denydatareader Users who cannot see any data in the database

db_denydatawriter Users who cannot change any data in the database

Ch12.indd 336 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 3 7

of the fixed database role can perform different activities. Use Books Online to learn
which activities are allowed for each of the fixed database roles.

Besides the fixed database roles listed in Table 12-2, there is a special fixed database
role called public, which is explained next.

public Role
The public role is a special fixed database role to which every legitimate user of a
database belongs. It captures all default permissions for users in a database. This
provides a mechanism for giving all users without appropriate permissions a set of
(usually limited) permissions. The public role maintains all default permissions for
users in a database and cannot be dropped. This role cannot have users, groups, or roles
assigned to it because they belong to the role by default. (Example 12.19, later in the
chapter, shows the use of the public role.)

By default, the public role allows users to do the following:

View system tables and display information from the Cc master system database
using certain system procedures
Execute statements that do not require permissions—for example, PRINTCc

Assigning a User to a Fixed Database Role
To assign a user to a fixed database role using SQL Server Management Studio, expand
the server, expand Databases, expand the database, expand Security, expand Roles,
and then expand Database Roles. Right-click the role to which you want to add a user
and then click Properties. In the Database Role Properties dialog box, click Add and
browse for the user(s) you want to add. Such an account is then a member of the role and
inherits all credentials assigned to that role.

Application Roles
Application roles allow you to enforce security for a particular application. In other
words, application roles allow the application itself to accept the responsibility of user
authentication, instead of relying on the database system. For instance, if clerks in your
company may change an employee’s data only using the existing application (and not
Transact-SQL statements or any other tool), you can create an application role for the
application.

Application roles differ significantly from all other role types. First, application
roles have no members, because they use the application only and therefore do not
need to grant permissions directly to users. Second, you need a password to activate
an application role.

Ch12.indd 337 1/25/12 10:01:24 AM

 3 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

When an application role is activated for a session by the application, the session loses
all permissions applied to the logins, user accounts and groups, or roles in all databases for
the duration of the session. Because these roles are applicable only to the database in which
they exist, the session can gain access to another database only by virtue of permissions
granted to the guest user account in the other database. For this reason, if there is no guest
user account in a database, the session cannot gain access to that database.

The next two subsections describe the management of application roles.

Managing Application Roles Using Management Studio
To create an application role using SQL Server Management Studio, expand the server,
expand Databases, and then expand the database and its Security folder. Right-click
Roles, click New, and then click New Application Role. In the Application Role dialog
box, enter the name of the new role. Additionally, you must enter the password and
may enter the default schema for the new role.

Managing Application Roles Using T-SQL
You can create, modify, and delete application roles using the Transact-SQL statements
CREATE APPLICATION ROLE, ALTER APPLICATION ROLE, and DROP
APPLICATION ROLE.

The CREATE APPLICATION ROLE statement creates an application role for
the current database. This statement has two options: one to specify the password and
one to define the default schema—that is, the first schema that will be searched by the
server when it resolves the names of objects for this role.

Example 12.8 adds a new application role called weekly_reports to the sample database.

 ExAMplE 12.8

USE sample;

CREATE APPLICATION ROLE weekly_reports

WITH PASSWORD ='x1y2z3w4!',

 DEFAULT_SCHEMA =my_schema;

The ALTER APPLICATION ROLE statement changes the name, password, or
default schema of an existing application role. The syntax of this statement is similar to
the syntax of the CREATE APPLICATION ROLE statement. To execute the ALTER
APPLICATION ROLE statement, you need the ALTER permission on the role.

The DROP APPLICATION ROLE statement removes the application role from
the current database. If the application role owns any objects (securables), it cannot be
dropped.

Ch12.indd 338 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 3 9

Activating Application Roles
After a connection is started, it must execute the sp_setapprole system procedure to
activate the permissions that are associated with an application role. This procedure has
the following syntax:

sp_setapprole [@rolename =] 'role' ,

 [@password =] 'password'

 [,[@encrypt =] 'encrypt_style']

role is the name of the application role defined in the current database, password
specifies the corresponding password, and encrypt_style defines the encryption style
specified for the password.

When you activate an application role using sp_setapprole, you need to know the
following:

After the activation of an application role, you cannot deactivate it in the current Cc

database until the session is disconnected from the system.
An application role is always database bound—that is, its scope is the current Cc

database. If you change the current database within a session, you are allowed to
perform other activities based on the permissions in that database.

Note
The design of application roles in SQL Server 2012 is suboptimal, because it is not uniform. To create and delete
application roles, you use Transact-SQL. After that, the activation of application roles is done by a system
procedure.

User-Defined Server Roles
SQL Server 2012 introduces user-defined server roles. You can create and delete such
roles using T-SQL statements CREATE SERVER ROLE and DROP SERVER
ROLE, respectively. To add or delete members from a role, use the ALTER SERVER
ROLE statement. Example 12.9 shows the use of the CREATE SERVER ROLE
and ALTER SERVER ROLE statements. It creates a user-defined server role called
programadmin and adds a new member to it.

 ExAMplE 12.9

USE master;

GO

CREATE SERVER ROLE programadmin;

ALTER SERVER ROLE programadmin ADD MEMBER mary;

Ch12.indd 339 1/25/12 10:01:24 AM

 3 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

User-Defined Database Roles
Generally, user-defined database roles are applied when a group of database users needs to
perform a common set of activities within a database and no applicable Windows group
exists. These roles are created and deleted using either SQL Server Management Studio or
the Transact-SQL statements CREATE ROLE, ALTER ROLE, and DROP ROLE.

The following two subsections describe the management of user-defined database roles.

Managing User-Defined Database Roles
Using Management Studio
To create a user-defined role using SQL Server Management Studio, expand the server,
expand Databases, and then expand the database and its Security folder. Right-click
Roles, click New, and then click New Database Role. In the Database Role dialog box
(see Figure 12-5), enter the name of the new role. Click Add to add members to the
new role. Choose the members (users and/or other roles) of the new role and click OK.

Figure 12-5 Database Role dialog box

Ch12.indd 340 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 4 1

Managing User-Defined Database Roles Using T-SQL
The CREATE ROLE statement creates a new user-defined database role in the
current database. The syntax of this statement is

CREATE ROLE role_name [AUTHORIZATION owner_name]

role_name is the name of the user-defined role to be created. owner_name specifies
the database user or role that will own the new role. (If no user is specified, the role will
be owned by the user that executes the CREATE ROLE statement.)

The ALTER ROLE statement changes the name of a user-defined database role.
Similarly, the DROP ROLE statement drops a role from the database. Roles that own
database objects (securables) cannot be dropped from the database. To drop such a role,
you must first transfer the ownership of those objects.

Example 12.10 shows how you can create and add members to a user-defined role.

 ExAMplE 12.10

USE sample;

CREATE ROLE marketing AUTHORIZATION peter;

GO

ALTER ROLE marketing ADD MEMBER 'peter';

ALTER ROLE marketing ADD MEMBER 'mary';

Example 12.10 first creates the user-defined role called marketing, and then, using
the ADD MEMBER clause of the ALTER ROLE statement, adds two members,
peter and mary, to the role.

Authorization
Only authorized users are able to execute statements or perform operations on an entity.
If an unauthorized user attempts to do either task, the execution of the Transact-SQL
statement or the operation on the database object will be rejected.

There are three Transact-SQL statements related to authorization:

GRANTCc

DENYCc

REVOKECc

Before you read about these three statements, I will repeat the most important facts
concerning the security model of the Database Engine. The model separates the world

Ch12.indd 341 1/25/12 10:01:24 AM

 3 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

into principals and securables. Every securable has associated permissions that can be
granted to a principal. Principals, such as individuals, groups, or applications, can access
securables. Securables are the resources to which the authorization subsystem regulates
access. There are three securable classes: server, database, and schema, which contain
other securables, such as login, database users, tables, and stored procedures.

GRANT Statement
The GRANT statement grants permissions to securables. The syntax of the GRANT
statement is

GRANT {ALL [PRIVILEGES]} | permission_list

 [ON [class::] securable] TO principal_list [WITH GRANT OPTION]

 [AS principal]

The ALL clause indicates that all permissions applicable to the specified securable
will be granted to the specified principal. (For the list of specific securables, see Books
Online.) permission_list specifies either statements or objects (separated by commas) for
which the permissions are granted. class specifies either a securable class or a securable
name for which permission will be granted. ON securable specifies the securable for
which permissions are granted (see Example 12.15 later in this section). principal_list
lists all accounts (separated by commas) to which permissions are granted. principal and
the components of principal_list can be a Windows user account, a login or user account
mapped to a certificate, a login mapped to an asymmetric key, a database user, a database
role, or an application role.

Table 12-3 lists and describes all the permissions and lists the corresponding securables
to which they apply.

Note
Table 12-3 shows only the most important permissions. The security model of the Database Engine is
hierarchical. Hence, there are many granular permissions that are not listed in the table. You can find the
description of these permissions in Books Online.

The following examples demonstrate the use of the GRANT statement. To begin,
Example 12.11 demonstrates the use of the CREATE permission.

 ExAMplE 12.11

USE sample;

GRANT CREATE TABLE, CREATE PROCEDURE

 TO peter, mary;

Ch12.indd 342 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 4 3

Table 12-3 Permissions with Corresponding Securables

Permission Applies To Description
SELECT Tables + columns, synonyms,

views + columns, table-valued
functions

Provides the ability to select (read) rows. You can
restrict this permission to one or more columns by
listing them. (If the list is omitted, all columns of the
table can be selected.)

INSERT Tables + columns, synonyms, views
+ columns

Provides the ability to insert rows.

UPDATE Tables + columns, synonyms, views
+ columns

Provides the ability to modify column values. You can
restrict this permission to one or more columns by
listing them. (If the list is omitted, all columns of the
table can be modified.)

DELETE Tables + columns, synonyms,
views + columns

Provides the ability to delete rows.

REFERENCES User-defined functions (SQL and
CLR), tables + columns, synonyms,
views + columns

Provides the ability to reference columns of the foreign
key in the referenced table when the user has no
SELECT permission for the referenced table.

EXECUTE Stored procedures (SQL and CLR),
user-defined functions (SQL and
CLR), synonyms

Provides the ability to execute the specified stored
procedure or user-defined functions.

CONTROL Stored procedures (SQL and CLR),
user-defined functions (SQL and
CLR), synonyms

Provides ownership-like capabilities; the grantee
effectively has all defined permissions on the
securable. A principal that has been granted CONTROL
also has the ability to grant permissions on the
securable. CONTROL at a particular scope implicitly
includes CONTROL on all the securables under that
scope (see Example 12.16).

ALTER Stored procedures (SQL and CLR),
user-defined functions (SQL and
CLR), tables, views

Provides the ability to alter the properties (except
ownership) of a particular securable. When granted on
a scope, it also bestows the ability to ALTER, CREATE, or
DROP any securable contained within that scope.

TAKE OWNERSHIP Stored procedures (SQL and CLR),
user-defined functions (SQL and CLR),
tables, views, synonyms

Provides the ability to take ownership of the securable
on which it is granted.

VIEW DEFINITION Stored procedures (SQL and CLR),
user-defined functions (SQL and CLR),
tables, views, synonyms

Controls the ability of the grantee to see the metadata
of the securable (see Example 12.15).

CREATE (Server securable) n/a Provides the ability to create the server securable.

CREATE (DB securable) n/a Provides the ability to create the database securable.

Ch12.indd 343 1/25/12 10:01:24 AM

 3 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

In Example 12.11, the users peter and mary can execute the Transact-SQL statements
CREATE TABLE and CREATE PROCEDURE. (As you can see from this example,
the GRANT statement with the CREATE permission does not include the ON option.)

Example 12.12 allows the user mary to create user-defined functions in the sample
database.

 ExAMplE 12.12

USE sample;

GRANT CREATE FUNCTION TO mary;

Example 12.13 shows the use of the SELECT permission within the GRANT
statement.

 ExAMplE 12.13

USE sample;

GRANT SELECT ON employee

 TO peter, mary;

In Example 12.13, the users peter and mary can read rows from the employee table.

Note
When a permission is granted to a Windows user account or a login, this account (login) is the only one affected
by the permission. On the other hand, if a permission is granted to a group or role, the permission affects all
users belonging to the group (role).

Example 12.14 shows the use of the UPDATE permission within the GRANT
statement.

 ExAMplE 12.14

USE sample;

GRANT UPDATE ON works_on (emp_no, enter_date) TO peter;

After the GRANT statement in Example 12.14 is executed, the user peter can modify
values of two columns of the works_on table: emp_no and enter_date.

Example 12.15 shows the use of the VIEW DEFINITION permission, which controls
the ability of users to read metadata.

 ExAMplE 12.15

USE sample;

GRANT VIEW DEFINITION ON OBJECT::employee TO peter;

GRANT VIEW DEFINITION ON SCHEMA::dbo TO peter;

Ch12.indd 344 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 4 5

Example 12.15 shows two GRANT statements for the VIEW DEFINITION
permission. The first one allows the user peter to see metadata about the employee
table of the sample database. (OBJECT is one of the base securables, and you can use
this clause to give permissions for specific objects, such as tables, views, and stored
procedures.) Because of the hierarchical structure of securables, you can use a “higher”
securable to extend the VIEW DEFINITION (or any other base) permission. The
second statement in Example 12.15 gives the user peter access to metadata of all the
objects of the dbo schema of the sample database.

Note
In versions previous to SQL Server 2005, it is possible to query information on all database objects, even if these
objects are owned by another user. The VIEW DEFINITION permission now allows you to grant or deny access to
different pieces of your metadata and hence to decide which part of metadata is visible to other users.

Example 12.16 shows the use of the CONTROL permission.

 ExAMplE 12.16

USE sample;

GRANT CONTROL ON DATABASE::sample TO peter;

In Example 12.16, the user peter effectively has all defined permissions on the
securable (in this case, the sample database). A principal that has been granted
CONTROL also implicitly has the ability to grant permissions on the securable; in other
words, the CONTROL permission includes the WITH GRANT OPTION clause
(see Example 12.17). The CONTROL permission is the highest permission in relation
to several base securables. For this reason, CONTROL at a particular scope implicitly
includes CONTROL on all the securables under that scope. Therefore, the CONTROL
permission of user peter on the sample database implies all permissions on this database,
all permissions on all assemblies in the database, all permissions on all schemas in the
sample database, and all permissions on objects within the sample database.

By default, if user A grants a permission to user B, then user B can use the permission
only to execute the Transact-SQL statement listed in the GRANT statement. The
WITH GRANT OPTION gives user B the additional capability of granting the privilege
to other users, as shown in Example 12.17.

 ExAMplE 12.17

USE sample;

GRANT SELECT ON works_on TO mary

 WITH GRANT OPTION;

Ch12.indd 345 1/25/12 10:01:24 AM

 3 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

In Example 12.17, the user mary can use the SELECT statement to retrieve rows
from the works_on table and also may grant this privilege to other users of the sample
database.

DENY Statement
The DENY statement prevents users from performing actions. This means that the
statement removes existing permissions from user accounts or prevents users from
gaining permissions through their group/role membership that might be granted in
the future. This statement has the following syntax:

DENY {ALL [PRIVILEGES] } | permission_list

 [ON [class::] securable] TO principal_list

[CASCADE] [AS principal]

All options of the DENY statement have the same logical meaning as the options
with the same name in the GRANT statement. DENY has an additional option,
CASCADE, which specifies that permissions will be denied to user A and any other
users to whom user A passed this permission. (If the CASCADE option is not specified
in the DENY statement, and the corresponding object permission was granted with the
WITH GRANT OPTION, an error is returned.)

The DENY statement prevents the user, group, or role from gaining access to the
permission granted through their group or role membership. This means that if a user
belongs to a group (or role) and the granted permission for the group is denied to the
user, this user will be the only one of the group who cannot use this permission. On the
other hand, if a permission is denied for a whole group, all members of the group will
be denied the permission.

Note
You can think of the GRANT statement as a “positive” and the DENY statement as a “negative” user authorization.
Usually, the DENY statement is used to deny already existing permissions for groups (roles) to a few members of
the group.

Examples 12.18 and 12.19 show the use of the DENY statement.

 ExAMplE 12.18

USE sample;

DENY CREATE TABLE, CREATE PROCEDURE

 TO peter;

The DENY statement in Example 12.18 denies two previously granted statement
permissions to the user peter.

Ch12.indd 346 1/25/12 10:01:24 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 4 7

 ExAMplE 12.19

USE sample;

GRANT SELECT ON project

 TO PUBLIC;

DENY SELECT ON project

 TO peter, mary;

Example 12.19 shows the negative authorization of some users of the sample
database. First, the retrieval of all rows of the project table is granted to all users of the
sample database. After that, this permission is denied to two users: peter and mary.

Note
Permissions denied at a higher scope of the Database Engine security model override granted permissions at
a lower scope. For instance, if SELECT permission is denied on the level of the sample database, and SELECT is
granted on the employee table, the result is that SELECT is denied to the employee table as well as all other tables.

REVOKE Statement
The REVOKE statement removes one or more previously granted or denied
permissions. This statement has the following syntax:

REVOKE [GRANT OPTION FOR]

 { [ALL [PRIVILEGES]] | permission_list]}

 [ON [class::] securable]

 FROM principal_list [CASCADE] [AS principal]

The only new option in the REVOKE statement is GRANT OPTION FOR. (All
other options have the same logical meaning as the options with the same names in the
GRANT or DENY statement.) GRANT OPTION FOR is used to remove the effects
of the WITH GRANT OPTION in the corresponding GRANT statement. This
means that the user will still have the previously granted permissions but will no longer
be able to grant the permission to other users.

Note
The REVOKE statement revokes “positive” permissions specified with the GRANT statement as well as “negative”
permissions generated by the DENY statement. Therefore, its function is to neutralize the specified (positive or
negative) permissions.

Example 12.20 shows the use of the REVOKE statement.

Ch12.indd 347 1/25/12 10:01:25 AM

 3 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 ExAMplE 12.20

USE sample;

REVOKE SELECT ON project FROM public;

The REVOKE statement in Example 12.20 revokes the granted permission for the
public role. At the same time, the existing “negative” permissions for the users peter
and mary are not revoked (as in Example 12.19), because the explicitly granted or
denied permissions are not affected by revoking roles or groups.

Managing permissions Using Management Studio
Database users can perform activities that are granted to them. In this case, there is a
corresponding entry in the sys.database_permissions catalog view (that is, the value
of the state column is set to G for grant). A negative entry in the table prevents a
user from performing activities. The entry D (deny) in the state column overrides a
permission that was granted to a user explicitly or implicitly using a role to which the
user belongs. Therefore, the user cannot perform this activity in any case. In the last
case (value R), the user has no explicit privileges but can perform an activity if a role to
which the user belongs has the appropriate permission.

To manage permissions for a user or role using Management Studio, expand the
server and expand Databases. Right-click the database and click Properties. Choose
the Permissions page and click the Search button. In the Database Properties dialog
box, shown in Figure 12-6, you can select one or more object types (users and/or roles)
to which you want to grant or deny permissions. To grant a permission, check the
corresponding box in the Grant column and click OK. To deny a permission, check
the corresponding box in the Deny column. (The With Grant column specifies that
the user has the additional capability of granting the privilege to other users.) Blanks
in these columns mean no permission.

To manage permissions for a single database object using SQL Server Management
Studio, expand the server, expand Databases, expand the database, and then expand
Tables, Views, or Synonyms, depending on the database object for which you want to
manage permissions. Right-click the object, choose Properties, and select the Permissions
page. (Figure 12-7 shows the Table Properties dialog box for the department table.)
Click the Search button to open the Select Users or Roles dialog box. Click Object Types
and select one or more object types (users, database roles, application roles). After that,
click Browse and check all objects to which permissions should be granted. To grant a
permission, check the corresponding box in the Grant column. To deny a permission,
check the corresponding box in the Deny column.

Ch12.indd 348 1/25/12 10:01:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 4 9

Managing Authorization and Authentication
of Contained Databases
As you already know from Chapter 5, contained databases have no configuration
dependencies on the server instance where they are created and can therefore be easily
moved from one instance of the Database Engine to another one. In this section you
will learn how to authenticate users for contained databases. Each user that belongs
to a contained database is not tied to a login, because such a user has no external
dependencies and can be attached elsewhere.

Example 12.21 shows the creation of such a user.

Figure 12-6 Managing statement permissions using SQL Server Management Studio

Ch12.indd 349 1/25/12 10:01:25 AM

 3 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 ExAMplE 12.21

USE my_sample;

CREATE USER my_login WITH PASSWORD = 'x1y2z3w4?';

Example 12.21 creates a user my_login that is not tied to a login. (The my_sample
database is a contained database that was created in Example 5.20.) If you try to create
such a user in a convenient database, you get the following error:

Msg 33233, Level 16, State 1, Line 1

You can only create a user with a password in a contained database.

Figure 12-7 Managing object permissions for the department table

Ch12.indd 350 1/25/12 10:01:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 5 1

The system stored procedure sp_migrate_user_to_contained converts a database
user that is mapped to a SQL Server login to a contained database user with a password.
sp_migrate_user_to_contained separates the user from the original SQL Server login,
so that settings such as password and default language can be administered separately
for the contained database. This system stored procedure removes dependencies on the
instance of the Database Engine and can be used before moving the contained database
to a different server instance.

Example 12.22 shows the use of this system stored procedure.

 ExAMplE 12.22

USE my_sample;

EXEC sp_migrate_user_to_contained

@username = 'mary_a',

@rename = N'keep_name',

@disablelogin = N'do_not_disable_login' ;

Example 12.22 migrates a SQL Server login named mary_a to a contained database
user with a password. The example does not change the username and retains the login
as enabled.

Note
The SQL Server login mary_a must be created before the system procedure in Example 12.22 is executed. To
create this login, use the CREATE LOGIN statement (see Example 12.3).

Also, you can use the dynamic management view called sys.dm_db_uncontained_
entities to learn which parts of your database cannot be moved to a different server instance.

Change Tracking
Change tracking refers to documenting all insert, update, and delete activities that are
applied to tables of the database. These changes can then be viewed to find out who
accessed the data and when they accessed it. There are two ways to do it:

Using triggersCc

Using change data capture (CDC)Cc

You can use triggers to create an audit trail of activities in one or more tables of the
database. The section “AFTER Triggers” in Chapter 14 and Example 14.1 show how
triggers can be used to track such changes. Therefore, the focus of this section is CDC.

Ch12.indd 351 1/25/12 10:01:25 AM

 3 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

CDC is a tracking mechanism that you can use to see changes as they happen. The
primary goal of CDC is to audit who changed what data and when, but it can also be
used to support concurrency updates. (If an application wants to modify a row, CDC
can check the change tracking information to make sure that the row hasn’t been
changed since the last time the application modified the row. This check is called a
concurrency update.)

Note
CDC is available only in the Enterprise and Developer editions.

Before a capture instance can be created for individual tables, the database that
contains the tables must be enabled for CDC, which you do with the system stored
procedure sys.sp_cdc_enable_db, as shown in Example 12.23. (Only members of the
sysadmin fixed server role can execute this procedure.)

 ExAMplE 12.23

USE sample;

EXECUTE sys.sp_cdc_enable_db

To determine whether the sample database is enabled for CDC, you can retrieve
the value of the column is_cdc_enabled in the sys.databases catalog view. The value 1
indicates the activation of CDC for the particular database.

When a database is enabled for CDC, the cdc schema, cdc user, metadata tables, and
other system objects are created for the database. The cdc schema contains the CDC
metadata tables as well as the individual tracking tables that serve as a repository for CDC.

Once a database has been enabled for CDC, you can create a target table that will capture
changes for a particular source table. You enable the table by using the stored procedure
sys.sp_cdc_enable_table. Example 12.24 shows the use of this system stored procedure.

Note
The SQLServerAgent service must be running before you enable tables for CDC.

 ExAMplE 12.24

USE sample;

EXECUTE sys.sp_cdc_enable_table

 @source_schema = N'dbo', @source_name = N'works_on',

 @role_name = N'cdc_admin';

Ch12.indd 352 1/25/12 10:01:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 5 3

The sys.sp_cdc_enable_table system procedure in Example 12.24 enables CDC for
the specified source table in the current database. When a table is enabled for CDC, all
DML statements are read from the transaction log and captured in the associated change
table. The @source_schema parameter specifies the name of the schema in which the
source table belongs. @source_name is the name of the source table on which you enable
CDC. The @role_name parameter specifies the name of the database role used to allow
access to data.

Creating a capture instance also creates a tracking table that corresponds to the source
table. You can specify up to two capture instances for a source table. Example 12.25
changes the content of the source table (works_on).

 ExAMplE 12.25

USE sample;

INSERT INTO works_on VALUES (10102, 'p2', 'Analyst', NULL);

INSERT INTO works_on VALUES (9031, 'p2', 'Analyst', NULL);

INSERT INTO works_on VALUES (29346, 'p3', 'Clerk', NULL);

By default, at least one table-valued function is created to access the data in the
associated change table. This function allows you to query all changes that occur within
a defined interval. The function name is the concatenation of cdc.fn_cdc_get_all_
changes_ and the value assigned to the @capture_instance parameter. In this case, the
suffix of the parameter is dbo_works_on, as Example 12.26 shows.

 ExAMplE 12.26

USE sample;

SELECT *

FROM cdc.fn_cdc_get_all_changes_dbo_works_on

 (sys.fn_cdc_get_min_lsn('dbo_works_on'), sys.fn_cdc_get_max_lsn(),

'all');

The following output shows part of the result of Example 12.26:

__$start_lsn __$update_mask emp_no project_no job enter_date
0x0000001C000001EF0003 0x0F 10102 p2 Analyst NULL

0x0000001D000000100003 0x0F 9031 p2 Analyst NULL

0x0000001D000000110003 0x0F 29346 p3 Clerk NULL

Example 12.26 shows all changes that happened after the execution of the three
INSERT statements. If you want to track all changes in a certain time interval, you can
use a batch similar to the one shown in Example 12.27.

Ch12.indd 353 1/25/12 10:01:25 AM

 3 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 ExAMplE 12.27

USE sample;

 DECLARE @from_lsn binary(10), @to_lsn binary(10);

 SELECT @from_lsn =

 sys.fn_cdc_map_time_to_lsn('smallest greater than', GETDATE() - 1);

 SELECT @to_lsn =

 sys.fn_cdc_map_time_to_lsn('largest less than or equal', GETDATE());

 SELECT * FROM

 cdc.fn_cdc_get_all_changes_dbo_works_on (@from_lsn, @to_lsn, 'all');

The only difference between Example 12.27 and Example 12.26 is that Example 12.27
uses two parameters (@from_lsn and @to_lsn) to define the beginning and end of the
time interval. (The assignment of time boundaries is done using the sys.fn_cdc_map_
time_to_lsn() function.)

Data Security and Views
As already stated in Chapter 11, views can be used for the following purposes:

To restrict the use of particular columns and/or rows of tablesCc

To hide the details of complicated queriesCc

To restrict inserted and updated values to certain rangesCc

Restricting the use of particular columns and/or rows means that the view mechanism
provides itself with the control of data access. For example, if the employee table also
contains the salaries of each employee, then access to these salaries can be restricted using
a view that accesses all columns of the table except the salary column. Subsequently,
retrieval of data from the table can be granted to all users of the database using the view,
while only a small number of (privileged) users will have the same permission for all data
of the table.

The following three examples show the use of views to restrict the access to data.

 ExAMplE 12.28

USE sample;

GO

CREATE VIEW v_without_budget

 AS SELECT project_no, project_name

 FROM project;

Ch12.indd 354 1/25/12 10:01:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 5 5

Using the v_without_budget view, as shown in Example 12.28, it is possible to divide
users into two groups: the group of privileged users who can access the budget of all
projects, and the group of common users who can access all rows from the projects table
but not the data from the budget column.

 ExAMplE 12.29

USE sample;

GO

ALTER TABLE employee

 ADD user_name CHAR(60) DEFAULT SYSTEM_USER;

GO

CREATE VIEW v_my_rows

 AS SELECT emp_no, emp_fname, emp_lname, dept_no

 FROM employee

 WHERE user_name = SYSTEM_USER;

The schema of the employee table is modified in Example 12.29 by adding the
new column user_name. Every time a new row is inserted into the employee table,
the system login is inserted into the user_name column. After the creation of the
corresponding views, every user, who uses this view, can retrieve only the rows that he or
she inserted into the table.

 ExAMplE 12.30

USE sample;

GO

CREATE VIEW v_analyst

 AS SELECT employee.emp_no, emp_fname, emp_lname

 FROM employee, works_on

 WHERE employee.emp_no = works_on.emp_no

 AND job = 'Analyst';

The v_analyst view in Example 12.30 represents a horizontal and a vertical subset (in
other words, it limits the rows and columns that can be accessed) of the employee table.

Summary
The following are the most important concepts of database system security:

AuthenticationCc

EncryptionCc

Ch12.indd 355 1/25/12 10:01:25 AM

 3 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

AuthorizationCc

Change trackingCc

Authentication is the process of validating user credentials to prevent unauthorized
users from using a system. It is most commonly enforced by requiring a username
and password. Data encryption is the process of scrambling information so that it
is incomprehensible until it is decrypted by the intended recipient. Several different
methods can be used to encrypt data.

During the authorization process, the system determines which resources the particular
user can use. The Database Engine supports authorization with the following Transact-
SQL statements: GRANT, DENY, and REVOKE. Change tracking means that actions
of unauthorized users are followed and documented on your system. This process is useful
to protect the system against users with elevated privileges.

The next chapter discusses the features concerning the Database Engine as a multiuser
software system and describes the notions of optimistic and pessimistic concurrency.

Exercises
 E.12.1

What is a difference between Windows mode and Mixed mode?

 E.12.2

What is a difference between a SQL Server login and a database user account?

 E.12.3

Create three logins called ann, burt, and chuck. The corresponding passwords are
a1b2c3d4e5!, d4e3f2g1h0!, and f102gh285!, respectively. The default database is
the sample database. After creating the logins, check their existence using the system
catalog.

 E.12.4

Create three new database usernames for the logins in E.12.3. The new names are
s_ann, s_burt, and s_charles.

 E.12.5

Create a new user-defined database role called managers and add three members (see
E.12.4) to the role. After that, display the information for this role and its members.

Ch12.indd 356 1/25/12 10:01:25 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 12

 C h a p t e r 1 2 : S e c u r i t y S y s t e m o f t h e D a t a b a s e E n g i n e 3 5 7

 E.12.6

Using the GRANT statement, allow the user s_burt to create tables and the user s_ann
to create stored procedures in the sample database.

 E.12.7

Using the GRANT statement, allow the user s_charles to update the columns lname
and fname of the employee table.

 E.12.8

Using the GRANT statement, allow the users s_burt and s_ann to read the values
from the columns emp_lname and emp_fname of the employee table. (Hint: Create
the corresponding view first.)

 E.12.9

Using the GRANT statement, allow the user-defined role managers to insert new
rows in the project table.

 E.12.10

Revoke the SELECT rights from the user s_burt.

 E.12.11

Using Transact-SQL, do not allow the user s_ann to insert the new rows in the project
table either directly or indirectly (using roles).

 E.12.12

Discuss the difference between the use of views and Transact-SQL statements
GRANT, DENY, and REVOKE in relation to security.

 E.12.13

Display the existing information about the user s_ann in relation to the sample database.
(Hint: Use the system procedure sp_helpuser.)

Ch12.indd 357 1/25/12 10:01:25 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

Chapter 13

In This Chapter

c Concurrency Models
c Transactions
c Locking
c Isolation Levels
c Row Versioning

Concurrency Control

Ch13.indd 359 1/25/12 5:47:03 PM

 3 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

As you already know, data in a database is generally shared between many user
application programs. The situation in which several user application programs
 read and write the same data at the same time is called concurrency. Thus, each

DBMS must have some kind of control mechanism to solve concurrency problems.
A high level of concurrency is possible in a database system that can manage many

active user applications without them interfering with each other. Conversely, a database
system in which different active applications interfere with each other supports a low
level of concurrency.

This chapter begins by describing the two concurrency control models that the Database
Engine supports. The next section explains how concurrency problems can be solved
using transactions. This discussion includes an introduction to the four properties of
transactions, known as ACID properties, an overview of the Transact-SQL statements
related to transactions, and an introduction to transaction logs. The third major section
addresses locking and the three general lock properties: lock modes, lock resources, and
lock duration. Deadlock, an important problem that can arise as a consequence of locking,
is also introduced.

The behavior of transactions depends on the selected isolation level. The five isolation
levels are introduced, including whether each belongs to the pessimistic or the optimistic
concurrency model. The differences between existing isolation levels and their practical
meaning will be explained too.

The end of the chapter introduces row versioning, which is how the Database Engine
implements the optimistic concurrency model. The two isolation levels related to this
model—SNAPSHOT and READ COMMITTED SNAPSHOT—are discussed, as
well as use of the tempdb system database as a version store.

Concurrency Models
The Database Engine supports two different concurrency models:

Pessimistic concurrencyCc

Optimistic concurrencyCc

Pessimistic concurrency uses locks to block access to data that is used by another process
at the same time. In other words, a database system that uses pessimistic concurrency
assumes that a conflict between two or more processes can occur at any time and therefore
locks resources (row, page, table), as they are required, for the duration of a transaction. As
you will see in the section “Locking,” pessimistic concurrency issues shared locks on data
being read so that no other process can modify that data. Also, pessimistic concurrency

Ch13.indd 360 1/25/12 5:47:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 6 1

issues exclusive locks for data being modified so that no other processes can read or modify
that data.

Optimistic concurrency works on the assumption that a transaction is unlikely to modify
data that another transaction is modifying at the same time. The Database Engine supports
optimistic concurrency so that older versions of data rows are saved, and any process that
reads the same data uses the row version that was active when it started reading data. For
that reason, a process that modifies the data can do so without any limitation, because all
other processes that read the same data access the saved versions of the data. The only
conflict scenario occurs when two or more write operations use the same data. In that case,
the system displays an error so that the client application can handle it.

Note
The notion of optimistic concurrency is generally defined in a broader sense. Optimistic concurrency control works
on the assumption that resource conflicts between multiple users are unlikely, and allows transactions to execute
without using locks. Only when a user is attempting to change data are resources checked to determine if any
conflicts have occurred. If a conflict occurs, the application must be restarted.

Transactions
A transaction specifies a sequence of Transact-SQL statements that is used by database
programmers to package together read and write operations, so that the database system
can guarantee the consistency of data. There are two forms of transactions:

ImplicitCc Specifies any single INSERT, UPDATE, or DELETE statement as a
transaction unit
ExplicitCc Generally, a group of Transact-SQL statements, where the beginning
and the end of the group are marked using statements such as BEGIN
TRANSACTION, COMMIT, and ROLLBACK

The notion of a transaction is best explained through an example. In the sample
database, the employee Ann Jones should be assigned a new employee number. The
employee number must be modified in two different tables at the same time. The
row in the employee table and all corresponding rows in the works_on table must be
modified at the same time. (If only one of these tables is modified, data in the sample
database would be inconsistent, because the values of the primary key in the employee
table and the corresponding values of the foreign key in the works_on table for Ann
Jones would not match.) Example 13.1 shows the implementation of this transaction
using Transact-SQL statements.

Ch13.indd 361 1/25/12 5:47:03 PM

 3 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 ExaMpLE 13.1

USE sample;

BEGIN TRANSACTION /* The beginning of the transaction */

UPDATE employee

 SET emp_no = 39831

 WHERE emp_no = 10102

 IF (@@error <> 0)

 ROLLBACK /* Rollback of the transaction */

UPDATE works_on

 SET emp_no = 39831

 WHERE emp_no = 10102

 IF (@@error <> 0)

 ROLLBACK

COMMIT /*The end of the transaction */

The consistent state of data used in Example 13.1 can be obtained only if both
UPDATE statements are executed or neither of them is executed. The global variable
@@error is used to test the execution of each Transact-SQL statement. If an error occurs,
@@error is set to a negative value and the execution of all statements is rolled back. (The
Transact-SQL statements BEGIN TRANSACTION, COMMIT, and ROLLBACK
are defined in the upcoming section “Transact-SQL Statements and Transactions.”)

Note
The Transact-SQL language supports exception handling. Instead of using the global variable @@error, used in
Example 13.1, you can use TRY and CATCH statements to implement exception handling in a transaction. The use
of these statements is discussed in Chapter 8.

The next section explains the ACID properties of transactions. These properties
guarantee that the data used by application programs will be consistent.

properties of Transactions
Transactions have the following properties, which are known collectively by the
acronym ACID:

AtomicityCc

ConsistencyCc

IsolationCc

DurabilityCc

Ch13.indd 362 1/25/12 5:47:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 6 3

The atomicity property guarantees the indivisibility of a set of statements that
modifies data in a database and is part of a transaction. This means that either all data
modifications in a transaction are executed or, in the case of any failure, all already
executed changes are undone.

Consistency guarantees that a transaction will not allow the database to contain
inconsistent data. In other words, the transactional transformations on data bring the
database from one consistent state to another.

The isolation property separates concurrent transactions from each other. In other
words, an active transaction can’t see data modifications in a concurrent and incomplete
transaction. This means that some transactions might be rolled back to guarantee isolation.

Durability guarantees one of the most important database concepts: persistence of
data. This property ensures that the effects of the particular transaction persist even if a
system error occurs. For this reason, if a system error occurs while a transaction is active,
all statements of that transaction will be undone.

Transact-SQL Statements and Transactions
There are six Transact-SQL statements related to transactions:

BEGIN TRANSACTIONCc

BEGIN DISTRIBUTED TRANSACTIONCc

COMMIT [WORK]Cc

ROLLBACK [WORK]Cc

SAVE TRANSACTIONCc

SET IMPLICIT_TRANSACTIONSCc

The BEGIN TRANSACTION statement starts the transaction. It has the following
syntax:

BEGIN TRANSACTION [{transaction_name | @trans_var }

 [WITH MARK ['description']]]

transaction_name is the name assigned to the transaction, which can be used only
on the outermost pair of nested BEGIN TRANSACTION/COMMIT or BEGIN
TRANSACTION/ROLLBACK statements. @trans_var is the name of a user-defined
variable containing a valid transaction name. The WITH MARK option specifies
that the transaction is to be marked in the log. description is a string that describes
the mark. If WITH MARK is used, a transaction name must be specified. (For more
information on transaction log marking for recovery, see Chapter 16.)

Ch13.indd 363 1/25/12 5:47:03 PM

 3 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

The BEGIN DISTRIBUTED TRANSACTION statement specifies the start of a
distributed transaction managed by the Microsoft Distributed Transaction Coordinator
(MS DTC). A distributed transaction is one that involves databases on more than one
server. For this reason, there is a need for a coordinator that will coordinate execution of
statements on all involved servers. The server executing the BEGIN DISTRIBUTED
TRANSACTION statement is the transaction coordinator and therefore controls the
completion of the distributed transaction. (See Chapter 18 for a discussion of distributed
transactions.)

The COMMIT WORK statement successfully ends the transaction started with the
BEGIN TRANSACTION statement. This means that all modifications made by the
transaction are stored on the disk. The COMMIT WORK statement is a standardized
SQL statement. (The WORK clause is optional.)

Note
The Transact-SQL language also supports the COMMIT TRANSACTION statement, which is functionally equivalent
to COMMIT WORK, with the exception that the former accepts a user-defined transaction name. COMMIT
TRANSACTION is an extension of Transact-SQL in relation to the SQL standard.

In contrast to the COMMIT statement, the ROLLBACK WORK statement
reports an unsuccessful end of the transaction. Programmers use this statement if they
assume that the database might be in an inconsistent state. In this case, all executed
modification operations within the transaction are rolled back. The ROLLBACK
WORK statement is a standardized SQL statement. (The WORK clause is optional.)

Note
Transact-SQL also supports the ROLLBACK TRANSACTION statement, which is functionally equivalent to
ROLLBACK WORK, with the exception that ROLLBACK TRANSACTION accepts a user-defined transaction name.

The SAVE TRANSACTION statement sets a savepoint within a transaction.
A savepoint marks a specified point within the transaction so that all updates that
follow can be canceled without canceling the entire transaction. (To cancel an entire
transaction, use the ROLLBACK statement.)

Note
The SAVE TRANSACTION statement actually does not commit any modification operation; it only creates a
target for the subsequent ROLLBACK statement with the label with the same name as the SAVE TRANSACTION
statement.

Example 13.2 shows the use of the SAVE TRANSACTION statement.

Ch13.indd 364 1/25/12 5:47:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 6 5

 ExaMpLE 13.2

BEGIN TRANSACTION;

INSERT INTO department (dept_no, dept_name)

 VALUES ('d4', 'Sales');

SAVE TRANSACTION a;

INSERT INTO department (dept_no, dept_name)

 VALUES ('d5', 'Research');

SAVE TRANSACTION b;

INSERT INTO department (dept_no, dept_name)

 VALUES ('d6', 'Management');

ROLLBACK TRANSACTION b;

INSERT INTO department (dept_no, dept_name)

 VALUES ('d7', 'Support');

ROLLBACK TRANSACTION a;

COMMIT TRANSACTION;

The only statement in Example 13.2 that is executed is the first INSERT statement.
The third INSERT statement is rolled back by the ROLLBACK b statement, while
the other two INSERT statements are rolled back by the ROLLBACK a statement.

Note
The SAVE TRANSACTION statement, in combination with the IF or WHILE statement, is a useful transaction
feature for the execution of parts of an entire transaction. On the other hand, the use of this statement is
contrary to the principle of operational databases that a transaction should be as short as possible, because long
transactions generally reduce data availability.

As you already know, each Transact-SQL statement always belongs either implicitly
or explicitly to a transaction. The Database Engine provides implicit transactions
for compliance with the SQL standard. When a session operates in the implicit
transaction mode, selected statements implicitly issue the BEGIN TRANSACTION
statement. This means that you do nothing to start an implicit transaction. However,
the end of each implicit transaction must be explicitly committed or rolled back using the
COMMIT or ROLLBACK statement. (If you do not explicitly commit the transaction,
the transaction and all the data changes it contains are rolled back when the user
disconnects.)

To enable an implicit transaction, you have to enable the IMPLICIT_
TRANSACTIONS clause of the SET statement. This statement sets the implicit
transaction mode for the current session. When a connection is in the implicit

Ch13.indd 365 1/25/12 5:47:03 PM

 3 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

transaction mode and the connection is not currently in a transaction, executing any
of the following statements starts a transaction:

ALTER TABLE FETCH REVOKE

CREATE TABLE GRANT SELECT

DELETE INSERT TRUNCATE TABLE

DROP TABLE OPEN UPDATE

In other words, if you have a sequence of statements from the preceding list, each
statement will represent a single transaction.

The beginning of an explicit transaction is marked with the BEGIN TRANSACTION
statement. The end of an explicit transaction is marked with the COMMIT or
ROLLBACK statement. Explicit transactions can be nested. In this case, each pair of
statements BEGIN TRANSACTION/COMMIT or BEGIN TRANSACTION/
ROLLBACK is used inside one or more such pairs. (The nested transactions are usually
used in stored procedures, which themselves contain transactions and are invoked inside
another transaction.) The global variable @@trancount contains the number of active
transactions for the current user.

BEGIN TRANSACTION, COMMIT, and ROLLBACK can be specified using
a name assigned to the transaction. (The named ROLLBACK statement corresponds
either to a named transaction or to the SAVE TRANSACTION statement with the
same name.) You can use a named transaction only in the outermost statement pair
of nested BEGIN TRANSACTION/COMMIT or BEGIN TRANSACTION/
ROLLBACK statements.

Transaction Log
Relational database systems keep a record of each change they make to the database
during a transaction. This is necessary in case an error occurs during the execution
of the transaction. In this situation, all previously executed statements within the
transaction have to be rolled back. As soon as the system detects the error, it uses
the stored records to return the database to the consistent state that existed before
the transaction was started.

The Database Engine keeps all stored records, in particular the before and after values,
in one or more files called the transaction log. Each database has its own transaction log.
Thus, if it is necessary to roll back one or more modification operations executed on the
tables of the current database, the Database Engine uses the entries in the transaction log
to restore the values of columns that the database had before the transaction was started.

The transaction log is used to roll back or restore a transaction. If an error occurs and
the transaction does not completely execute, the system uses all existing before values

Ch13.indd 366 1/25/12 5:47:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 6 7

from the transaction log (called before images) to roll back all modifications since the
start of the transaction. The process in which before images from the transaction log are
used to roll back all modifications is called the undo activity.

Transaction logs also store after images. After images are modified values, which are
used to roll forward all modifications since the start of the transaction. This process is
called the redo activity and is applied during recovery of a database. (For further details
concerning transaction logs and recovery, see Chapter 16.)

Every entry written into the log is uniquely identified using the log sequence number
(LSN). All log entries that are part of the particular transaction are linked together, so
that all parts of a transaction can be located for undo and redo activities.

Locking
Concurrency can lead to several negative effects, such as the reading of nonexistent
data or loss of modified data. Consider this real-world example illustrating one of these
negative effects, called dirty read: User U1 in the personnel department gets notice of an
address change for the employee Jim Smith. U1 makes the address change, but when
viewing the bank account information of Mr. Smith in the consecutive dialog step, he
realizes that he modified the address of the wrong person. (The enterprise employs
two persons with the name Jim Smith.) Fortunately, the application allows the user
to cancel this change by clicking a button. U1 clicks the button, knowing that he has
committed no error.

At the same time, user U2 in the technical department retrieves the data of the latter
Mr. Smith to send the newest technical document to his home, because the employee
seldom comes to the office. As the employee’s address was wrongly changed just before
U2 retrieved the address, U2 prints out the wrong address label and sends the document
to the wrong person.

To prevent problems like these in the pessimistic concurrency model, every DBMS
must have mechanisms that control the access of data by all users at the same time. The
Database Engine, like all relational DBMSs, uses locks to guarantee the consistency
of the database in case of multiuser access. Each application program locks the data it
needs, guaranteeing that no other program can modify the same data. When another
application program requests the modification of the locked data, the system either
stops the program with an error or makes a program wait.

Locking has several different aspects:

Lock durationCc

Lock modesCc

Lock granularityCc

Ch13.indd 367 1/25/12 5:47:03 PM

 3 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

Lock duration specifies a time period during which a resource holds the particular
lock. Duration of a lock depends on, among other things, the mode of the lock and the
choice of the isolation level.

The next two sections describe lock modes and lock granularity.

Note
The following discussion concerns the pessimistic concurrency model. The optimistic concurrency model is
handled using row versioning, and will be explained at the end of this chapter.

Lock Modes
Lock modes specify different kinds of locks. The choice of which lock mode to apply
depends on the resource that needs to be locked. The following three lock types are
used for row- and page-level locking:

Shared (S)Cc

Exclusive (X)Cc

Update (U)Cc

A shared lock reserves a resource (page or row) for reading only. Other processes
cannot modify the locked resource while the lock remains. On the other hand, several
processes can hold a shared lock for a resource at the same time—that is, several
processes can read the resource locked with the shared lock.

An exclusive lock reserves a page or row for the exclusive use of a single transaction.
It is used for DML statements (INSERT, UPDATE, and DELETE) that modify
the resource. An exclusive lock cannot be set if some other process holds a shared
or exclusive lock on the resource—that is, there can be only one exclusive lock for
a resource. Once an exclusive lock is set for the page (or row), no other lock can be
placed on the same resource.

Note
The database system automatically chooses the appropriate lock mode according to the operation type (read
or write).

An update lock can be placed only if no other update or exclusive lock exists. On the
other hand, it can be placed on objects that already have shared locks. (In this case,
the update lock acquires another shared lock on the same object.) If a transaction that

Ch13.indd 368 1/25/12 5:47:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 6 9

modifies the object is committed, the update lock is changed to an exclusive lock if
there are no other locks on the object. There can be only one update lock for an object.

Note
Update locks prevent certain common types of deadlocks. (Deadlocks are described at the end of this section.)

Table 13-1 shows the compatibility matrix for shared, exclusive, and update locks.
The matrix is interpreted as follows: suppose transaction T1 holds a lock as specified in
the first column of the matrix, and suppose some other transaction, T2, requests a lock
as specified in the corresponding column heading. In this case, “yes” indicates that a
lock of T2 is possible, whereas “no” indicates a conflict with the existing lock.

Note
The Database Engine also supports other lock forms, such as latches and spinlocks. The description of these lock
forms can be found in Books Online.

At the table level, there are five different types of locks:

Shared (S)Cc

Exclusive (X)Cc

Intent shared (IS)Cc

Intent exclusive (IX)Cc

Shared with intent exclusive (SIX)Cc

Shared and exclusive locks correspond to the row-level (or page-level) locks with
the same names. Generally, an intent lock shows an intention to lock the next-lower
resource in the hierarchy of the database objects. Therefore, intent locks are placed at

Shared Update Exclusive
Shared Yes Yes No

Update Yes No No

Exclusive No No No

Table 13-1 Compatibility Matrix for Shared, Exclusive, and Update Locks

Ch13.indd 369 1/25/12 5:47:04 PM

 3 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

a level in the object hierarchy above that which the process intends to lock. This is an
efficient way to tell whether such locks will be possible, and it prevents other processes
from locking the higher level before the desired locks can be attained.

Table 13-2 shows the compatibility matrix for all kinds of table locks. The matrix is
interpreted exactly as the matrix in Table 13-1.

Lock Granularity
Lock granularity specifies which resource is locked by a single lock attempt. The
Database Engine can lock the following resources:

RowCc

PageCc

Index key or range of index keysCc

TableCc

ExtentCc

Database itselfCc

Note
The system automatically chooses the appropriate lock granularity.

A row is the smallest resource that can be locked. The support of row-level locking
includes both data rows and index entries. Row-level locking means that only the row
that is accessed by an application will be locked. Hence, all other rows that belong to
the same page are free and can be used by other applications. The Database Engine can
also lock the page on which the row that has to be locked is stored.

Table 13-2 Compatibility Matrix for All Kinds of Table Locks

S X IS SIX IX
S Yes No Yes No No

X No No No No No

IS Yes No Yes Yes Yes

SIX No No Yes No No

IX No No Yes No Yes

Ch13.indd 370 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 7 1

Note
For clustered tables, the data pages are stored at the leaf level of the (clustered) index structure and are therefore
locked with index key locks instead of row locks.

Locking is also done on disk units, called extents, that are 64K in size (see Chapter 15).
Extent locks are set automatically when a table (or index) grows and the additional disk
space is needed.

Lock granularity affects concurrency. In general, the more granular the lock, the
more concurrency is reduced. This means that row-level locking maximizes concurrency
because it leaves all but one row on the page unlocked. On the other hand, system
overhead is increased because each locked row requires one lock. Page-level locking (and
table-level locking) restricts the availability of data but decreases the system overhead.

Lock Escalation
If many locks of the same granularity are held during a transaction, the Database
Engine automatically upgrades these locks into a table lock. This process of converting
many page-, row-, or index-level locks into one table lock is called lock escalation. The
escalation threshold is the boundary at which the database system applies the lock
escalation. Escalation thresholds are determined dynamically by the system and require
no configuration. (Currently, the threshold boundary is 5000 locks.)

The general problem with lock escalation is that the database server decides when to
escalate a particular lock, and this decision might be suboptimal for applications with
different requirements. You can use the ALTER TABLE statement to change the lock
escalation mechanism. This statement supports the TABLE option with the following
syntax:

SET (LOCK_ESCALATION = { TABLE | AUTO | DISABLE })

The TABLE option is the default value and specifies that lock escalation will be
done at table-level granularity. The AUTO option allows the Database Engine to select
the lock escalation granularity that is appropriate for the table schema. Finally, the
DISABLE option allows you to disable lock escalation in most cases. (There are some
cases in which the Database Engine must take a table lock to protect data integrity.)

Example 13.3 disables the lock escalation for the employee table.

 ExaMpLE 13.3

USE sample;

ALTER TABLE employee SET (LOCK_ESCALATION = DISABLE);

Ch13.indd 371 1/25/12 5:47:04 PM

 3 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

affecting Locks
You can use either locking hints or the LOCK_TIMEOUT option of the SET statement
to affect locks. The following subsections describe these features.

Locking Hints
Locking hints specify the type of locking used by the Database Engine to lock table data.
Table-level locking hints can be used when finer control of the types of locks acquired
on a resource is required. (Locking hints override the current transaction isolation level
for the session.)

All locking hints are written as a part of the FROM clause in the SELECT statement.
You can use the following locking hints:

UPDLOCKCc Places update locks for each row of the table during the read
operation. All update locks are held until the end of the transaction.
TABLOCK (TABLOCKX)Cc Places a shared (or exclusive) table lock on the
table. All locks are held until the end of the transaction.
ROWLOCKCc Replaces the existing shared table lock with shared row locks for
each qualifying row of the table.
PAGLOCKCc Replaces a shared table lock with shared page locks for each page
containing qualifying rows.
NOLOCKCc Synonym for READUNCOMMITTED (see the description of
isolation-level hints later in this chapter).
HOLDLOCKCc Synonym for REPEATABLEREAD (see the description of
isolation-level hints later in this chapter).
XLOCKCc Specifies that exclusive locks are to be taken and held until the
transaction completes. If XLOCK is specified with ROWLOCK, PAGLOCK, or
TABLOCK, the exclusive locks apply to the appropriate level of granularity.
READPASTCc Specifies that the Database Engine does not read rows that are
locked by other transactions.

Note
All these options can be combined in any order if the combination makes sense. (For example, the combination of
TABLOCK and PAGLOCK does not make sense, because both options are applied to different resources.)

Ch13.indd 372 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 7 3

LOCK_TIMEOUT Option
If you don’t want your process to wait without any time limitations, you can use the
LOCK_TIMEOUT option of the SET statement. This option specifies the number
of milliseconds a transaction will wait for a lock to be released. For instance, if you want
your processes to wait eight seconds, you write the following statement:

SET LOCK_TIMEOUT 8000

If the particular resource cannot be granted to your process within this time period, the
statement will be aborted with the corresponding error message.

The value of –1 (the default value) indicates no time-out; in other words, the
transaction won’t wait at all. (The READPAST locking hint provides an alternative
to the LOCK_TIMEOUT option.)

Displaying Lock Information
The most important utility to display lock information is a dynamic management
view called sys.dm_tran_locks. This view returns information about currently active
lock manager resources. Each row represents a currently active request for a lock that
has been granted or is waiting to be granted. The columns of this view relate to two
groups: resource and request. The resource group describes the resource on which the
lock request is being made, and the request group describes the lock request. The most
important columns of this view are as follows:

resource_typeCc Represents the resource type
resource_database_idCc Specifies the ID of the database under which this
resource is scoped
request_modeCc Specifies the mode of the request
request_statusCc Specifies the current status of the request

Example 13.4 displays all the locks that are in a wait state.

 ExaMpLE 13.4

USE AdventureWorks;

SELECT resource_type, DB_NAME(resource_database_id) as db_name,

 request_session_id, request_mode, request_status

 FROM sys.dm_tran_locks

 WHERE request_status = 'WAIT;'

Ch13.indd 373 1/25/12 5:47:04 PM

 3 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

Deadlock
A deadlock is a special concurrency problem in which two transactions block the
progress of each other. The first transaction has a lock on some database object that
the other transaction wants to access, and vice versa. (In general, several transactions
can cause a deadlock by building a circle of dependencies.) Example 13.5 shows the
deadlock situation between two transactions.

Note
The parallelism of processes cannot be achieved naturally using the small sample database, because every
transaction in it is executed very quickly. Therefore, Example 13.5 uses the WAITFOR statement to pause both
transactions for ten seconds to simulate the deadlock.

 ExaMpLE 13.5

USE sample;

BEGIN TRANSACTION

UPDATE works_on

 SET job = 'Manager'

 WHERE emp_no = 18316

 AND project_no = 'p2'

WAITFOR DELAY '00:00:10'

UPDATE employee

 SET emp_lname = 'Green'

 WHERE emp_no = 9031

COMMIT

BEGIN TRANSACTION

UPDATE employee

 SET dept_no = 'd2'

 WHERE emp_no = 9031

WAITFOR DELAY '00:00:10'

DELETE FROM works_on

 WHERE emp_no = 18316

 AND project_no = 'p2'

COMMIT

If both transactions in Example 13.5 are executed at the same time, the deadlock
appears and the system returns the following output:

Server: Msg 1205, Level 13, State 45

Transaction (Process id 56) was deadlocked with another process and

has been chosen as deadlock victim. Rerun your command.

As the output of Example 13.5 shows, the database system handles a deadlock by
choosing one of the transactions as a “victim” (actually, the one that closed the loop
in lock requests) and rolling it back. (The other transaction is executed after that.)
A programmer can handle a deadlock by implementing the conditional statement
that tests for the returned error number (1205) and then executes the rolled-back
transaction again.

You can affect which transaction the system chooses as the “victim” by using the
DEADLOCK_PRIORITY option of the SET statement. There are 21 different

Ch13.indd 374 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 7 5

priority levels, from –10 to 10. The value LOW corresponds to –5, NORMAL (the
default value) corresponds to 0, and HIGH corresponds to 5. The “victim” session is
chosen according to the session’s deadlock priority.

Isolation Levels
In theory, each transaction should be fully isolated from other transactions. But, in such
a case, data availability is significantly reduced, because read operations in a transaction
block write operations in other transactions, and vice versa. If data availability is an
important issue, this property can be loosened using isolation levels. Isolation levels
specify the degree to which data being retrieved in a transaction is protected from
changes to the same data by other transactions. Before you are introduced to the existing
isolation levels, the following section takes a look at scenarios that can arise if locking
isn’t used and, hence, there is no isolation between transactions.

Concurrency problems
If locking isn’t used, and thus no isolation exists between transactions, the following
four problems may appear:

Lost updateCc

Dirty reads (discussed earlier, in the “Locking” section)Cc

Nonrepeatable readsCc

PhantomsCc

The lost update concurrency problem occurs when no isolation is provided to a
transaction from other transactions. This means that several transactions can read the
same data and modify it. The changes to the data by all transactions, except those by
the last transaction, are lost.

The nonrepeatable read concurrency problem occurs when one process reads data several
times, and another process changes the same data between two read operations of the first
process. Therefore, the values read by both read operations of the first process are different.

The phantom concurrency problem is similar to the nonrepeatable read concurrency
problem, because two subsequent read operations can display different values, but in
this case, the reason for this behavior lies in the different number of rows being read the
first time and the second time. (Additional rows, called phantoms, are inserted by other
transactions.)

Ch13.indd 375 1/25/12 5:47:04 PM

 3 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

The Database Engine and Isolation Levels
Using isolation levels, you can specify which of the concurrency problems discussed in
the preceding section may occur and which you want to avoid. The Database Engine
supports the following five isolation levels, which control how your read operations
are executed:

READ UNCOMMITTEDCc

READ COMMITTEDCc

REPEATABLE READCc

SERIALIZABLECc

SNAPSHOTCc

READ UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE are
available only in the pessimistic concurrency model, whereas SNAPSHOT is available
only in the optimistic concurrency model. READ COMMITTED is available in both
models. The four isolation levels available in the pessimistic concurrency model are
described next. SNAPSHOT is described in the next section, “Row Versioning.”

READ UNCOMMITTED
READ UNCOMMITTED provides the simplest form of isolation between
transactions, because it does not isolate the read operations from other transactions
at all. When a transaction retrieves a row at this isolation level, it acquires no locks
and respects none of the existing locks. The data that is read by such a transaction
may be inconsistent. In this case, a transaction reads data that is updated from
some other active transaction. If the latter transaction rolls back later, the former
transaction reads data that never really existed.

Of the four concurrency problems described in the preceding section, READ
UNCOMMITTED allows dirty reads, nonrepeatable reads, and phantoms.

Note
The READ UNCOMMITTED isolation level is usually very undesirable and should be used only when the accuracy
of the data read is not important or the data is seldom modified.

READ COMMITTED
As you already know, the READ COMMITTED isolation level has two forms. The
first form applies to the pessimistic concurrency model, while the second form applies

Ch13.indd 376 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 7 7

to the optimistic concurrency model. This section discusses the former. The second
form, READ COMMITTED SNAPSHOT, is discussed in the following section,
“Row Versioning.”

A transaction that reads a row and uses the READ COMMITTED isolation level
tests only whether an exclusive lock is placed on the row. If no such lock exists, the
transaction fetches the row. (This is done using a shared lock.) This action prevents the
transaction from reading data that is not committed and that can be subsequently rolled
back. After reading the data values, the data can be changed by some other transaction.

Shared locks used by this isolation level are released immediately after the data is
processed. (Generally, all locks are released at the end of the transaction.) For this reason,
the access to the concurrent data is improved, but nonrepeatable reads and phantoms can
still happen.

Note
The READ COMMITTED isolation level is the default isolation level of the Database Engine.

REPEATABLE READ
In contrast to the READ COMMITTED isolation level, REPEATABLE READ
places shared locks on all data that is read and holds these locks until the transaction
is committed or rolled back. Therefore, in this case, the execution of a query several
times inside a transaction will always display the same result. The disadvantage of this
isolation level is that concurrency is further reduced, because the time interval during
which other transactions cannot update the same data is significantly longer than in the
case of READ COMMITTED.

This isolation level does not prevent another transaction from inserting new rows,
which are included in subsequent reads, so phantoms can appear.

SERIALIZABLE
SERIALIZABLE is the strongest isolation level, because it prevents all four concurrency
problems already discussed. It acquires a range lock on all data that is read by the
corresponding transaction. Therefore, this isolation level also prevents the insertion of new
rows by another transaction until the former transaction is committed or rolled back.

Note
The SERIALIZABLE isolation level is implemented using a key-range locking method. This method locks individual
rows and the ranges between them. A key-range lock acquires locks for index entries rather than locks for the
particular pages or the entire table. In this case, any modification operation of another transaction cannot be
executed, because the necessary changes of index entries are not possible.

Ch13.indd 377 1/25/12 5:47:04 PM

 3 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

As a conclusion to the discussion of all four isolation levels above, you have to
know that each isolation level in the preceding description reduces the concurrency
more than the previous one. Thus, the isolation level READ UNCOMMITTED
reduces concurrency the least. On the other hand, it also has the smallest isolation
from concurrent transactions. SERIALIZABLE reduces concurrency the most, but
guarantees full isolation between concurrent transactions.

Setting and Editing Isolation Levels
You can set an isolation level by using the following:

The TRANSACTION ISOLATION LEVEL clause of the SET statementCc

Isolation-level hintsCc

The TRANSACTION ISOLATION LEVEL option of the SET statement provides
five constant values, which have the same names and meanings as the standard isolation
levels just described. The FROM clause of the SELECT statement supports several hints
for isolation levels:

READUNCOMMITTEDCc

READCOMMITTEDCc

REPEATABLEREADCc

SERIALIZABLECc

These hints correspond to the isolation levels with the same name (but with a space
in the name). The specification of isolation levels in the FROM clause of the SELECT
statement overrides the current value set by the SET TRANSACTION ISOLATION
LEVEL statement.

The DBCC USEROPTIONS statement returns, among other things, information
about the isolation level. Look at the value of the ISOLATION LEVEL option of this
statement to find out the isolation level of your process.

Row Versioning
The Database Engine supports an optimistic concurrency control mechanism based
on row versioning. When data is modified using row versioning, logical copies of the
data are maintained for all data modifications performed in the database. Every time a
row is modified, the database system stores a before image of the previously committed

Ch13.indd 378 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 7 9

row in the tempdb system database. Each version is marked with the transaction
sequence number (XSN) of the transaction that made the change. (The XSN is used to
identify all operations to be managed under the corresponding transaction.) The newest
version of a row is always stored in the database and chained in the linked list to the
corresponding version stored in tempdb. An old row version in the tempdb database
might contain pointers to other, even older versions. Each row version is kept in the
tempdb database as long as there are operations that might require it.

Row versioning isolates transactions from the effects of modifications made by other
transactions without the need for requesting shared locks on rows that have been read.
This significant reduction in the total number of locks acquired by this isolation level
significantly increases availability of data. However, exclusive locks are still needed:
transactions using the optimistic isolation level called SNAPSHOT request exclusive
locks when they modify rows.

Row versioning is used, among other things, to

Support the READ COMMITTED SNAPSHOT isolation levelCc

Support the SNAPSHOT isolation levelCc

Build the Cc inserted and deleted tables in triggers

The following subsections describe the SNAPSHOT and READ COMMITTED
SNAPSHOT isolation levels, while Chapter 14 discusses in detail the inserted and
deleted tables.

REaD COMMITTED SNapSHOT Isolation Level
READ COMMITTED SNAPSHOT is a slight variation of the READ COMMITTED
isolation level discussed in the previous section. It is a statement-level isolation, which means
that any other transaction will read the committed values as they exist at the beginning of
the statement. In the case of updates, this isolation level reverts from row versions to actual
data to select rows to update and uses update locks on the data rows selected. Actual data
rows that have to be modified acquire exclusive locks.

The main advantage of READ COMMITTED SNAPSHOT is that read operations
do not block updates, and updates do not block read operations. On the other hand,
updates block other updates, because exclusive locks are set before an update operation
is executed.

You use the SET clause of the ALTER DATABASE statement to enable the READ
COMMITTED SNAPSHOT isolation level. After activation, no further changes are
necessary. Any transaction specified with the READ COMMITTED isolation level
will now run under READ COMMITTED SNAPSHOT.

Ch13.indd 379 1/25/12 5:47:04 PM

 3 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

SNapSHOT Isolation Level
The SNAPSHOT isolation level is a transaction-level isolation, which means that any
other transaction will read the committed values as they exist just before the snapshot
transaction starts. Also, the snapshot transaction will return the initial value until it
completes, even if another transaction changed it in the meantime. Therefore, only after
the snapshot transaction ends will the other transaction read a modified value.

Transactions running under the SNAPSHOT isolation level acquire exclusive locks
on data before performing the modification only to enforce constraints. Otherwise,
locks are not acquired on data until the data is to be modified. When a data row meets
the update criteria, the snapshot transaction verifies that the data row has not been
modified by a concurrent transaction that committed after the transaction began. If the
data row has been modified in a concurrent transaction, an update conflict occurs and
the snapshot transaction is terminated. The update conflict is handled by the database
system, and no way exists to disable the update conflict detection.

Enabling the SNAPSHOT isolation level is a two-step process. First, on the database
level, enable the ALLOW_SNAPSHOT_ISOLATION database option (using SQL
Server Management Studio, for instance). Second, for each session that will use this
isolation level, set the SET TRANSACTION ISOLATION LEVEL statement to
SNAPSHOT. When these options are set, versions are built for all rows that are modified
in the database.

READ COMMITTED SNAPSHOT vs. SNAPSHOT
The most important difference between the two optimistic isolation levels is that
SNAPSHOT can result in update conflicts when a process sees the same data for the
duration of its transaction and is not blocked. By contrast, the READ COMMITTED
SNAPSHOT isolation level does not use its own XSN when choosing row versions.
Each time a statement is started, such a transaction reads the latest XSN issued for that
instance of the database system and selects the row based on that number.

Another difference is that the READ COMMITTED SNAPSHOT isolation
level allows other transactions to modify the data before the row versioning transaction
completes. This can lead to a conflict if another transaction modified the data between the
time the row versioning transaction performs a read and subsequently tries to execute the
corresponding write operation. (For an application based on the SNAPSHOT isolation
level, the system detects the possible conflicts and sends the corresponding error message.)

Ch13.indd 380 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 C h a p t e r 1 3 : C o n c u r r e n c y C o n t r o l 3 8 1

Summary
Concurrency in multiuser database systems can lead to several negative effects, such as
the reading of nonexistent data or loss of modified data. The Database Engine, like all
other DBMSs, solves this problem by using transactions. A transaction is a sequence
of Transact-SQL statements that logically belong together. All statements inside a
transaction build an atomic unit. This means that either all statements are executed or,
in the case of failure, all statements are canceled.

The locking mechanism is used to implement transactions. The effect of the lock
is to prevent other transactions from changing the locked object. Locking has the
following aspects: lock modes, lock granularity, and lock duration. Lock mode specifies
different kinds of locks, the choice of which depends on the resource that needs to
be locked. Lock duration specifies a time period during which a resource holds the
particular lock.

The Database Engine provides a mechanism called a trigger that enforces, among
other things, general integrity constraints. This mechanism is discussed in detail in the
next chapter.

Exercises

 E.13.1

What is a purpose of transactions?

 E.13.2

What is the difference between a local and a distributed transaction?

 E.13.3

What is the difference between implicit and explicit transaction mode?

 E.13.4

What kinds of locks are compatible with an exclusive lock?

 E.13.5

How can you test the successful execution of each T-SQL statement?

Ch13.indd 381 1/25/12 5:47:04 PM

 3 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 13

 E.13.6

When should you use the SAVE TRANSACTION statement?

 E.13.7

Discuss the difference between row-level and page-level locking.

 E.13.8

Can a user explicitly influence the locking behavior of the system?

 E.13.9

What is a difference between basic lock types (shared and exclusive) and an intent lock?

 E.13.10

What does lock escalation mean?

 E.13.11

Discuss the difference between the READ UNCOMMITTED and SERIALIZABLE
isolation levels.

 E.13.12

What is deadlock?

 E.13.13

Which process is used as a victim in a deadlock situation? Can a user influence the
decision of the system?

Ch13.indd 382 1/25/12 5:47:04 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

Chapter 14

In This Chapter

c Introduction
c Application Areas

for DML Triggers
c DDL Triggers and Their

Application Areas
c Triggers and CLR

Triggers

Ch14.indd 383 1/25/12 10:09:53 AM

 3 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

This chapter is dedicated to a mechanism called a trigger. The beginning of
the chapter describes Transact-SQL statements for creating, deleting, and
modifying triggers. After that, examples of different application areas for DML

triggers are given. Each example is created using one of three statements, INSERT,
UPDATE, or DELETE. The second part of the chapter covers DDL triggers, which
are based on DDL statements such as CREATE TABLE. Again, examples of different
application areas related to DDL triggers are given. The end of the chapter discusses the
implementation of triggers using CLR (Common Language Runtime).

Introduction
A trigger is a mechanism that is invoked when a particular action occurs on a particular
table. Each trigger has three general parts:

A nameCc

The actionCc

The executionCc

The maximum size of a trigger name is 128 characters. The action of a trigger can
be either a DML statement (INSERT, UPDATE, or DELETE) or a DDL statement.
Therefore, there are two trigger forms: DML triggers and DDL triggers. The execution
part of a trigger usually contains a stored procedure or a batch.

Note
The Database Engine allows you to create triggers using either Transact-SQL or CLR programming languages
such as C# and Visual Basic. This section describes the use of Transact-SQL to implement triggers. The
implementation of triggers using CLR programming languages is shown at the end of the chapter.

Creating a DML Trigger
A trigger is created using the CREATE TRIGGER statement, which has the
following form:

CREATE TRIGGER [schema_name.]trigger_name

 ON {table_name | view_name}

 [WITH dml_trigger_option [,…]]

 {FOR | AFTER | INSTEAD OF} { [INSERT] [,] [UPDATE] [,] [DELETE]}

 [WITH APPEND]

 {AS sql_statement | EXTERNAL NAME method_name}

Ch14.indd 384 1/25/12 10:09:53 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 8 5

Note
The preceding syntax covers only DML triggers. DDL triggers have a slightly different syntax, which will be shown
later in this chapter.

schema_name is the name of the schema to which the trigger belongs. trigger_
name is the name of the trigger. table_name is the name of the table for which the
trigger is specified. (Triggers on views are also supported, as indicated by the inclusion
of view_name.)

AFTER and INSTEAD OF are two additional options that you can define for
a trigger. (The FOR clause is a synonym for AFTER.) AFTER triggers fire after
the triggering action occurs. INSTEAD OF triggers are executed instead of the
corresponding triggering action. AFTER triggers can be created only on tables, while
INSTEAD OF triggers can be created on both tables and views. Examples showing the
use of these two trigger types are provided later in this chapter.

The INSERT, UPDATE, and DELETE options specify the trigger action. (The
trigger action is the type of Transact-SQL statement that activates the trigger.) These
three statements can be written in any possible combination. The DELETE statement
is not allowed if the IF UPDATE option is used.

As you can see from the syntax of the CREATE TRIGGER statement, the AS
sql_statement specification is used to determine the action(s) of the trigger. (You can
also use the EXTERNAL NAME option, which is explained later in this chapter.)

Note
The Database Engine allows you to create multiple triggers for each table and for each action (INSERT, UPDATE,
and DELETE). By default, there is no defined order in which multiple triggers for a given modification action are
executed. (You can define the order by using the first and last triggers, as described later in this chapter.)

Only the database owner, DDL administrators, and the owner of the table on which
the trigger is defined have the authority to create a trigger for the current database.
(In contrast to the permissions for other CREATE statements, this permission is not
transferable.)

Modifying a Trigger’s Structure
Transact-SQL also supports the ALTER TRIGGER statement, which modifies the
structure of a trigger. The ALTER TRIGGER statement is generally used to modify
the body of the trigger. All clauses and options of the ALTER TRIGGER statement
correspond to the clauses and options with the same names in the CREATE TRIGGER
statement.

Ch14.indd 385 1/25/12 10:09:53 AM

 3 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

The DROP TRIGGER statement removes one or more existing triggers from the
current database.

The following section describes deleted and inserted tables, which play a significant
role in a triggered action.

Using deleted and inserted Virtual Tables
When creating a triggered action, you usually must indicate whether you are referring
to the value of a column before or after the triggering action changes it. For this
reason, two virtual tables with special names are used to test the effect of the triggering
statement:

deletedCc Contains copies of rows that are deleted from the triggered table
insertedCc Contains copies of rows that are inserted into the triggered table

The structure of these tables is equivalent to the structure of the table for which the
trigger is specified.

The deleted table is used if the DELETE or UPDATE clause is specified in
the CREATE TRIGGER statement. The inserted table is used if the INSERT or
UPDATE clause is specified in the CREATE TRIGGER statement. This means
that for each DELETE statement executed in the triggered action, the deleted table
is created. Similarly, for each INSERT statement executed in the triggered action,
the inserted table is created.

An UPDATE statement is treated as a DELETE, followed by an INSERT. Therefore,
for each UPDATE statement executed in the triggered action, the deleted and inserted
tables are created (in this sequence).

The materialization of inserted and deleted tables is done using row versioning,
which is discussed in detail in Chapter 13. When DML statements such as INSERT,
UPDATE, and DELETE are executed on a table with corresponding triggers, all
changes to the table are always versioned. When the trigger needs the information from
the deleted table, it accesses the data from the version store. In the case of the inserted
table, the trigger accesses the most recent versions of the rows.

Note
Row versioning uses the tempdb database as the version store. For this reason, you must expect significant
growth of this system database if your database contains many triggers that are often used.

Ch14.indd 386 1/25/12 10:09:53 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 8 7

Application Areas for DML Triggers
The first part of the chapter introduced how you can create a DML trigger and modify
its structure. This trigger form can be used to solve different problems. This section
describes several application areas for DML triggers (AFTER triggers and INSTEAD
OF triggers).

AFTER Triggers
As you already know, AFTER triggers fire after the triggering action has been processed.
You can specify an AFTER trigger by using either the AFTER or FOR reserved keyword.
AFTER triggers can be created only on base tables.

AFTER triggers can be used to perform the following actions, among others:

Create an audit trail of activities in one or more tables of the database Cc

(see Example 14.1)
Implement business rules (see Example 14.2)Cc

Enforce referential integrity (see Examples 14.3 and 14.4)Cc

Creating an Audit Trail
Chapter 12 discussed how you can capture data changes using the mechanism called
CDC (change data capture). DML triggers can also be used to solve the same problem.
Example 14.1 shows how triggers can create an audit trail of activities in one or more
tables of the database.

 ExAMpLE 14.1

/* The audit_budget table is used as an audit trail of activities in the

project table */

USE sample;

GO

CREATE TABLE audit_budget

 (project_no CHAR(4) NULL,

 user_name CHAR(16) NULL,

 date DATETIME NULL,

 budget_old FLOAT NULL,

 budget_new FLOAT NULL);

Ch14.indd 387 1/25/12 10:09:53 AM

 3 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

GO

CREATE TRIGGER modify_budget

 ON project AFTER UPDATE

 AS IF UPDATE(budget)

 BEGIN

 DECLARE @budget_old FLOAT

 DECLARE @budget_new FLOAT

 DECLARE @project_number CHAR(4)

 SELECT @budget_old = (SELECT budget FROM deleted)

 SELECT @budget_new = (SELECT budget FROM inserted)

 SELECT @project_number = (SELECT project_no FROM deleted)

 INSERT INTO audit_budget VALUES

 (@project_number,USER_NAME(),GETDATE(),@budget_old, @budget_new)

 END

Example 14.1 shows how triggers can be used to implement an audit trail of the activity
within a table. This example creates the audit_budget table, which stores all modifications
of the budget column of the project table. Recording all the modifications of this column
will be executed using the modify_budget trigger.

Every modification of the budget column using the UPDATE statement activates
the trigger. In doing so, the values of the rows of the deleted and inserted tables are
assigned to the corresponding variables @budget_old, @budget_new, and @project_
number. The assigned values, together with the username and the current date, will be
subsequently inserted into the audit_budget table.

Note
Example 14.1 assumes that only one row will be updated at a time. Therefore, it is a simplification of a general
case in which a trigger handles multirow updates. The implementation of such a general (and complicated)
trigger is beyond the introductory level of this book.

If the following Transact-SQL statement is executed,

UPDATE project

 SET budget = 200000

 WHERE project_no = 'p2';

the content of the audit_budget table is as follows:

project_no user_name date budget_old budget_new
p2 Dbo 2011-01-31 14:00:05 95000 200000

Ch14.indd 388 1/25/12 10:09:53 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 8 9

Implementing Business Rules
Triggers can be used to create business rules for an application. Example 14.2 shows the
creation of such a trigger.

 ExAMpLE 14.2

-- The trigger total_budget is an example of using a trigger to implement

-- a business rule

USE sample;

GO

CREATE TRIGGER total_budget

 ON project AFTER UPDATE

 AS IF UPDATE (budget)

 BEGIN

 DECLARE @sum_old1 FLOAT

 DECLARE @sum_old2 FLOAT

 DECLARE @sum_new FLOAT

 SELECT @sum_new = (SELECT SUM(budget) FROM inserted)

 SELECT @sum_old1 = (SELECT SUM(p.budget)

 FROM project p WHERE p.project_no

 NOT IN (SELECT d.project_no FROM deleted d))

 SELECT @sum_old2 = (SELECT SUM(budget) FROM deleted)

 IF @sum_new > (@sum_old1 + @sum_old2) *1.5

 BEGIN

 PRINT 'No modification of budgets'

 ROLLBACK TRANSACTION

 END

 ELSE

 PRINT 'The modification of budgets executed'

 END

Example 14.2 creates the rule controlling the modification of the budget for the
projects. The total_budget trigger tests every modification of the budgets and executes
only such UPDATE statements where the modification does not increase the sum of
all budgets by more than 50 percent. Otherwise, the UPDATE statement is rolled back
using the ROLLBACK TRANSACTION statement.

Enforcing Integrity Constraints
As previously stated in Chapter 5, a DBMS handles two types of integrity constraints:

Declarative integrity constraints, defined by using the CREATE TABLE and Cc

ALTER TABLE statements
Procedural integrity constraints (handled by triggers)Cc

Ch14.indd 389 1/25/12 10:09:53 AM

 3 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

Generally, you should use declarative integrity constraints, because they are supported by
the system and you do not have to implement them. The use of triggers is recommended
only for cases where declarative integrity constraints do not exist.

Example 14.3 shows how you can enforce the referential integrity for the employee
and works_on tables using triggers.

 ExAMpLE 14.3

USE sample;

GO

CREATE TRIGGER workson_integrity

 ON works_on AFTER INSERT, UPDATE

 AS IF UPDATE(emp_no)

 BEGIN

 IF (SELECT employee.emp_no

 FROM employee, inserted

 WHERE employee.emp_no = inserted.emp_no) IS NULL

 BEGIN

 ROLLBACK TRANSACTION

 PRINT 'No insertion/modification of the row'

 END

 ELSE PRINT 'The row inserted/modified'

 END

The workson_integrity trigger in Example 14.3 checks the referential integrity for
the employee and works_on tables. This means that every modification of the emp_no
column in the referenced works_on table is checked, and any violation of the constraint
is rejected. (The same is true for the insertion of new values into the emp_no column.)
The ROLLBACK TRANSACTION statement in the second BEGIN block rolls back
the INSERT or UPDATE statement after a violation of the referential constraint.

The trigger in Example 14.3 checks case 1 and case 2 for referential integrity between the
employee and works_on tables (see the definition of referential integrity in Chapter 5).
Example 14.4 introduces the trigger that checks for the violation of integrity constraints
between the same tables in case 3 and case 4.

 ExAMpLE 14.4

USE sample;

GO

CREATE TRIGGER refint_workson2

 ON employee AFTER DELETE, UPDATE

 AS IF UPDATE (emp_no)

Ch14.indd 390 1/25/12 10:09:53 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 9 1

 BEGIN

 IF (SELECT COUNT(*)

 FROM WORKS_ON, deleted

 WHERE works_on.emp_no = deleted.emp_no) > 0

 BEGIN

 ROLLBACK TRANSACTION

 PRINT 'No modification/deletion of the row'

 END

 ELSE PRINT 'The row is deleted/modified'

 END

INSTEAD OF Triggers
A trigger with the INSTEAD OF clause replaces the corresponding triggering action.
It is executed after the corresponding inserted and deleted tables are created, but
before any integrity constraint or any other action is performed.

INSTEAD OF triggers can be created on tables as well as on views. When a
Transact-SQL statement references a view that has an INSTEAD OF trigger, the
database system executes the trigger instead of taking any action against any table. The
trigger always uses the information in the inserted and deleted tables built for the view
to create any statements needed to build the requested event.

There are certain requirements on column values that are supplied by an INSTEAD
OF trigger:

Values cannot be specified for computed columns.Cc

Values cannot be specified for columns with the TIMESTAMP data type.Cc

Values cannot be specified for columns with an IDENTITY property, unless the Cc

IDENTITY_INSERT option is set to ON.

These requirements are valid only for INSERT and UPDATE statements that reference
a base table. An INSERT statement that references a view that has an INSTEAD OF
trigger must supply values for all non-nullable columns of that view. (The same is true
for an UPDATE statement: an UPDATE statement that references a view that has
an INSTEAD OF trigger must supply values for each view column that does not allow
nulls and that is referenced in the SET clause.)

Example 14.5 shows the different behavior during insertion of values for computed
columns using a table and its corresponding view.

Ch14.indd 391 1/25/12 10:09:54 AM

 3 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 ExAMpLE 14.5

CREATE VIEW all_orders

 AS SELECT orderid, price, quantity, orderdate, total, shippeddate

 FROM orders;

GO

CREATE TRIGGER tr_orders

 ON all_orders INSTEAD OF INSERT

 AS BEGIN

 INSERT INTO orders

 SELECT orderid, price, quantity, orderdate

 FROM inserted

 END

Example 14.5 uses the orders table from Chapter 10 with two computed columns
(see Example 10.8). The all_orders view retrieves all rows from this table. This view
is used to specify a value for a view column that maps to a computed column in a
base table. That way, an INSTEAD OF trigger can be used, which, in the case of an
INSERT statement, is replaced by a batch that inserts the values into the base table
via the all_orders view. (An INSERT statement that refers directly to the base table
cannot supply a value for a computed column.)

First and Last Triggers
The Database Engine allows multiple triggers to be created for each table or view
and for each modification action (INSERT, UPDATE, and DELETE) on them.
Additionally, you can specify the order of multiple triggers defined for a given action.
Using the system stored procedure sp_settriggerorder, you can specify that one of
the AFTER triggers associated with a table be either the first AFTER trigger or the
last AFTER trigger executed for each triggering action. This system procedure has a
parameter called @order that can contain three values:

firstCc Specifies that the trigger is the first AFTER trigger fired for a modification
action.
lastCc Specifies that the trigger is the last AFTER trigger fired for a triggering
action.
noneCc Specifies that there is no specific order in which the trigger should be
fired. (This value is generally used to reset a trigger from being either first or last.)

Ch14.indd 392 1/25/12 10:09:54 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 9 3

Note
If you use the ALTER TRIGGER statement to modify the structure of a trigger, the order of that trigger (first or last)
will be dropped.

Example 14.6 shows the use of the system stored procedure sp_settriggerorder.

 ExAMpLE 14.6

EXEC sp_settriggerorder @triggername = 'modify_budget',

 @order = 'first', @stmttype='update'

Note
There can be only one first and one last AFTER trigger on a table. The sequence in which all other AFTER triggers
fire is undefined.

To display the order of a trigger, you can use the following:

sp_helptriggerCc

OBJECTPROPERTY functionCc

The system procedure sp_helptrigger contains the order column, which displays
the order of the specified trigger. Using the OBJECTPROPERTY function, you can
specify either ExecIsFirstTrigger or ExecIsLastTrigger as the value of the second
parameter of this function. The first parameter is always the identification number of
the database object. The OBJECTPROPERTY function displays 1 if the particular
property is TRUE.

Note
Because an INSTEAD OF trigger is fired before data modifications are made to the underlying table, INSTEAD OF
triggers cannot be specified as first or last triggers.

DDL Triggers and Their Application Areas
The first part of this chapter described DML triggers, which specify an action that is
performed by the server when a modification of the table using an INSERT, UPDATE,
or DELETE statement is executed. The Database Engine allows you to define triggers

Ch14.indd 393 1/25/12 10:09:54 AM

 3 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

for DDL statements, such as CREATE DATABASE, DROP TABLE, and ALTER
TABLE. The syntax for DDL triggers is

CREATE TRIGGER [schema_name.]trigger_name

 ON {ALL SERVER | DATABASE }

 [WITH {ENCRYPTION | EXECUTE AS clause_name]

 {FOR | AFTER } { event_group | event_type | LOGON}

 AS {batch | EXTERNAL NAME method_name}

As you can see from the preceding syntax, DDL triggers are created the same
way DML triggers are created. (The ALTER TRIGGER and DROP TRIGGER
statements are used to modify and drop DDL triggers, too.) Therefore, this section
describes only those options of CREATE TRIGGER that are new in the syntax for
DDL triggers.

When you define a DDL trigger, you first must decide on the scope of your trigger.
The DATABASE clause specifies that the scope of a DDL trigger is the current database.
The ALL SERVER clause specifies that the scope of a DDL trigger is the current server.

After specifying the trigger’s scope, you have to decide whether the trigger fires to a
single DDL statement or a group of statements. event_type specifies a DDL statement
that, after execution, causes a trigger to fire. event_group defines a name of a predefined
group of Transact-SQL language events. The DDL trigger fires after execution of any
Transact-SQL language event belonging to event_group. You can find the list of all
event groups and types in Books Online. The LOGON keyword specifies a logon trigger
(see Example 14.8, later in this section).

Besides the similarities that exist between DML and DDL triggers, there are several
significant differences. The main difference between these two trigger forms is that a
DDL trigger can be used to define as its scope an entire database or even an entire server,
not just a single object. Also, DDL triggers do not support INSTEAD OF triggers. As
you might have guessed, inserted and deleted tables are not necessary, because DDL
triggers do not change a table’s content.

The two different forms of DDL triggers, database-level and server-level, are
described next.

Database-Level Triggers
Example 14.7 shows how you can implement a DDL trigger whose scope is the current
database.

 ExAMpLE 14.7

USE sample;

GO

Ch14.indd 394 1/25/12 10:09:54 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 9 5

CREATE TRIGGER prevent_drop_triggers

 ON DATABASE FOR DROP_TRIGGER

 AS PRINT 'You must disable "prevent_drop_triggers" to drop any trigger'

 ROLLBACK

The trigger in Example 14.7 prevents all users from deleting any trigger that belongs to
the sample database. The DATABASE clause specifies that the prevent_drop_triggers
trigger is a database-level trigger. The DROP_TRIGGER keyword is a predefined event
type that prevents a deletion of any trigger.

Server-Level Triggers
Server-level triggers respond to changes on the server. You use the ALL SERVER clause to
implement server-level triggers. Depending on the action, there are two different flavors of
server-level triggers: conventional DDL triggers and logon triggers. The triggering action
of conventional DDL triggers is based on DDL statements, while the triggering action of
logon triggers is a logon event.

Example 14.8 shows a server-level trigger that is at the same time a logon trigger.

 ExAMpLE 14.8

USE master;

GO

CREATE LOGIN login_test WITH PASSWORD = 'login_test§$!',

 CHECK_EXPIRATION = ON;

GO

GRANT VIEW SERVER STATE TO login_test;

GO

CREATE TRIGGER connection_limit_trigger

ON ALL SERVER WITH EXECUTE AS 'login_test'

FOR LOGON AS

BEGIN

IF ORIGINAL_LOGIN()= 'login_test' AND

 (SELECT COUNT(*) FROM sys.dm_exec_sessions

 WHERE is_user_process = 1 AND

 original_login_name = 'login_test') > 1

 ROLLBACK;

END;

Example 14.8 first creates the SQL Server login called login_test. This login is
subsequently used in a server-level trigger. For this reason, it requires server permission
VIEW SERVER STATE, which is given to it with the GRANT statement. After that,

Ch14.indd 395 1/25/12 10:09:54 AM

 3 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

the connection_limit_trigger trigger is created. This trigger belongs to logon triggers,
because of the LOGON keyword. The use of the sys.dm_exec_sessions view allows
you to check if there is already a session established using the login_test login. In
that case, the ROLLBACK statement is executed. That way, the login_test login can
establish only one session at a time.

Triggers and CLR
Triggers, as well as stored procedures and user-defined functions, can be implemented
using the Common Language Runtime (CLR). The following steps are necessary if you
want to implement, compile, and store CLR triggers:

Implement a trigger using C# or Visual Basic and compile the program using the Cc

corresponding compiler (see Examples 14.9 and 14.10).
Use the CREATE ASSEMBLY statement to create the corresponding executable Cc

file (see Example 14.11).
Create the trigger using the CREATE TRIGGER statement (see Example 14.12).Cc

The following examples demonstrate these steps. Example 14.9 shows the C# source
program that will be used to implement the trigger from Example 14.1.

Note
Before you can create the CLR trigger in the following examples, you first have to drop the prevent_drop_
triggers trigger (see Example 14.7) and then drop the modify_budget trigger (see Example 14.1) by using the
DROP TRIGGER statement.

 ExAMpLE 14.9

using System;

using System.Data;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

public class StoredProcedures

{

 public static void Modify_Budget()

 {

 SqlTriggerContext context = SqlContext.TriggerContext;

 if(context.IsUpdatedColumn(2)) //Budget

Ch14.indd 396 1/25/12 10:09:54 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 9 7

 {

 float budget_old;

 float budget_new;

 string project_number;

 SqlConnection conn = new SqlConnection("context connection=true");

 conn.Open();

 SqlCommand cmd = conn.CreateCommand();

 cmd.CommandText = "SELECT budget FROM DELETED";

 budget_old = (float)Convert.ToDouble(cmd.ExecuteScalar());

 cmd.CommandText = "SELECT budget FROM INSERTED";

 budget_new = (float)Convert.ToDouble(cmd.ExecuteScalar());

 cmd.CommandText = "SELECT project_no FROM DELETED";

 project_number = Convert.ToString(cmd.ExecuteScalar());

 cmd.CommandText = @"INSERT INTO audit_budget

 VALUES(@project_number, USER_NAME(), GETDATE(),

 @budget_old, @budget_new)";

 cmd.Parameters.AddWithValue("@project_number",project_number);

 cmd.Parameters.AddWithValue("@budget_old",budget_old);

 cmd.Parameters.AddWithValue("@budget_new",budget_new);

 cmd.ExecuteNonQuery();

 }

 }

}

The Microsoft.SQLServer.Server namespace comprises all client classes that a
C# program needs. SqlTriggerContext and SqlFunction are examples of the classes
that belong to this namespace. Also, the System.Data.SqlClient namespace contains
classes such as SQLConnection und SQLCommand, which are used to establish
the connection and communication between the client and a database server. The
connection is established using the connection string "context connection = true":

SqlConnection conn = new SqlConnection("context connection=true");

After that, the StoredProcedure class is defined, which is used to implement
triggers. The Modify_Budget() method implements the trigger with the same name.

The instance of the SQLTriggerContext class called context allows the program
to access the virtual table that is created during the execution of the trigger. The table
stores the data that caused the trigger to fire. The IsUpdatedColumn() method of the
SQLTriggerContext class allows you to find out whether the specified column of the
table is modified.

The C# program contains two other important classes: SQLConnection and
SQLCommand. An instance of SQLConnection is generally used to establish the

Ch14.indd 397 1/25/12 10:09:54 AM

 3 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

connection to a database, while an instance of SQLCommand allows you to execute
an SQL statement.

The following statements use the Parameters property of the SQLCommand
class to display parameters and the AddWithValue() method to insert the value in the
specified parameter:

cmd.Parameters.AddWithValue("@project_number",project_number);

cmd.Parameters.AddWithValue("@budget_old",budget_old);

cmd.Parameters.AddWithValue("@budget_new",budget_new);

Example 14.10 shows the execution of the csc command. Using this command, you
can compile the C# program in Example 14.9.

 ExAMpLE 14.10

csc /target:library Example14_9.cs

/reference:"c:\Program Files\Microsoft

SQLServer\MSSQL11.MSSQLSERVER\MSSQL\Binn\sqlaccess.dll"

You can find the detailed description of the csc command in Chapter 8.

Note
You enable and disable the use of CLR through the clr_enabled option of the sp_configure system procedure.
Execute the RECONFIGURE statement to update the running configuration value (see Example 8.9).

Example 14.11 shows the next step in creating the modify_budget trigger. (Use
SQL Server Management Studio to execute this statement.)

 ExAMpLE 14.11

CREATE ASSEMBLY Example14_9 FROM

 'C:\Programs\Microsoft SQL Server\assemblies\Example14_9.dll'

 WITH PERMISSION_SET=EXTERNAL_ACCESS

The CREATE ASSEMBLY statement uses the managed code as the source to
create the corresponding object, against which the CLR trigger is created. The WITH
PERMISSION SET clause in this example specifies that access permissions are set to
the value EXTERNAL_ACCESS, which does not allow assemblies to access external
system resources, except a few of them.

Example 14.12 creates the modify_budget trigger using the CREATE TRIGGER
statement.

Ch14.indd 398 1/25/12 10:09:54 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 3 9 9

 ExAMpLE 14.12

CREATE TRIGGER modify_budget ON project

 AFTER UPDATE AS

 EXTERNAL NAME Example14_9.StoredProcedures.Modify_Budget

The CREATE TRIGGER statement in Example 14.12 differs from the statement
used in Examples 14.1 to 14.5 because it uses the EXTERNAL NAME option.
This option specifies that the code is generated using CLR. The name in this clause
is a three-part name. The first part is the name of the corresponding assembly
(Example14_9), the second part (StoredProcedures) is the name of the public class
defined in Example 14.9, and the third part (Modify_Budget) is the name of the
method, which is specified inside the class.

Example 14.13 shows how the trigger in Example 14.3 can be implemented using
the C# language.

Note
You have to drop the trigger called workson_integrity (see Example 14.3) using the DROP TRIGGER statement
before you can create the CLR trigger in Example 14.13.

 ExAMpLE 14.13

using System;

using System.Data;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

public class StoredProcedures

{

 public static void WorksOn_Integrity()

 {

 SqlTriggerContext context = SqlContext.TriggerContext;

 if(context.IsUpdatedColumn(0)) //Emp_No

 {

 SqlConnection conn = new SqlConnection("context connection=true");

 conn.Open();

 SqlCommand cmd = conn.CreateCommand();

 cmd.CommandText = "SELECT employee.emp_no

 FROM employee, inserted

 WHERE employee.emp_no = inserted.emp_no";

 SqlPipe pipe = SqlContext.Pipe;

 if(cmd.ExecuteScalar() == null)

Ch14.indd 399 1/25/12 10:09:54 AM

 4 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 { System.Transactions.Transaction.Current.Rollback();

 pipe.Send("No insertion/modification of the row");

 }

 else

 pipe.Send("The row inserted/modified");

 }

 }

}

Only the two new features used in Example 14.13 require description. The SqlPipe
class belongs to the Microsoft.SQLServer.Server namespace and allows you to send
messages to the caller, such as:

pipe.Send("No insertion/modification of the row");

To set (or get) the current transaction inside a trigger, you use the Current property
of the Transaction class. Example 14.13 uses the Rollback() method to roll back the
whole transaction after violation of the integrity constraint.

Example 14.14 shows the creation of the assembly and the corresponding trigger
based on the C# program in Example 14.13. (Compilation of the C# program using the
csc command as the intermediate step is necessary, but it is omitted here because it is
analog to the same command in Example 14.10.)

 ExAMpLE 14.14

CREATE ASSEMBLY Example14_13 FROM

 'C:\Programs\Microsoft SQL Server\assemblies\Example14_13.dll'

WITH PERMISSION_SET=EXTERNAL_ACCESS

GO

CREATE TRIGGER workson_integrity ON works_on

AFTER INSERT, UPDATE AS

EXTERNAL NAME Example14_13.StoredProcedures.WorksOn_Integrity

Summary
A trigger is a mechanism that resides in the database server and comes in two flavors:
DML triggers and DDL triggers. DML triggers specify one or more actions that are
automatically performed by the database server when a modification of the table using
an INSERT, UPDATE, or DELETE statement is executed. (A DML trigger cannot be
used with the SELECT statement.) DDL triggers are based on DDL statements. They
come in two different forms, depending on the scope of the trigger. The DATABASE

Ch14.indd 400 1/25/12 10:09:54 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 14

 C h a p t e r 1 4 : Tr i g g e r s 4 0 1

clause specifies that the scope of a DDL trigger is the current database. The ALL
SERVER clause specifies that the scope of a DDL trigger is the current server.

This chapter is the last chapter of the second part of the book. The next chapter
starts the third part and discusses the system environment of the Database Engine.

Exercises

 E.14.1

Using triggers, define the referential integrity for the primary key of the department
table, the dept_no column, which is the foreign key of the works_on table.

 E.14.2

With the help of triggers, define the referential integrity for the primary key of the
project table, the project_no column, which is the foreign key of the works_on table.

 E.14.3

Using CLR, implement the trigger from Example 14.4.

Ch14.indd 401 1/25/12 10:09:54 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 /
Blind folio 403

Part #

SQL Server: System
Administration

Part III

Ch15.indd 403 1/25/12 10:12:26 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

In This Chapter

c System Databases
c Disk Storage
c Utilities and the DBCC

Command
c Policy-Based Management

System Environment
of the Database Engine

Chapter 15

Ch15.indd 405 1/25/12 10:12:26 AM

 4 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

This chapter describes several features of the Database Engine that belong to
the system environment. First, the chapter provides a detailed description of
the system databases that are created during the installation process. It then

discusses data storage by examining several types of disk pages and describing how
different data types are stored on the disk. Next, the chapter presents the bcp, sqlcmd,
and sqlservr system utilities and the DBCC system command. The final major section
of the chapter introduces Policy-Based Management, a new technology as of SQL
Server 2008.

System Databases
During the installation of the Database Engine, the following system databases are
generated:

masterCc

modelCc

tempdbCc

msdbCc

Note
There is another, “hidden” system database, called the resource database, which is used to store system objects,
such as system stored procedures and functions. The content of this database is generally used for system
upgrades.

The following sections describe each of the system databases in turn.

master Database
The master database is the most important system database of the Database Engine.
It comprises all system tables that are necessary for your work. For example, the master
database contains information about all other databases managed by the Database
Engine, system connections to clients, and user authorizations.

Because of the importance of this system database, you should always keep a current
backup copy of it. Also, the master database is modified each time you perform an
operation such as creating user databases or user tables. For this reason, you should
back it up after the execution of such operations. (The section “Backing Up the master
Database” in Chapter 16 explains when it is necessary to back up the master database.)

Ch15.indd 406 1/25/12 10:12:26 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 0 7

model Database
The model database is used as a template when user-defined databases are created. It
contains the subset of all system tables of the master database, which every user-defined
database needs. The system administrator can change the properties of the model database
to adapt it to the specific needs of their system.

Note
Because the model database is used as a model each time you create a new database, you can extend it with
certain database objects and/or permissions. After that, all new databases will inherit the new properties. Use
the ALTER DATABASE statement to extend or modify the model database, the same way as you modify user
databases.

tempdb Database
The tempdb database provides the storage space for temporary tables and other
temporary objects that are needed. For example, the system stores intermediate results of
the calculation of each complex expression in the tempdb database. The tempdb database
is used by all the databases belonging to the entire system. Its content is destroyed every
time the system is restarted.

The system stores three different elements in the tempdb database:

User objectsCc

Internal objectsCc

Version storeCc

Private and global temporary tables, which are created by users, are stored in the
tempdb database. The other objects stored in this system database are table variables
and table-valued functions. All user objects stored in tempdb are treated by the system
in the same way as any other database object. This means that entries concerning a
temporary object are stored in the system catalog and you can retrieve information
about it using the sys.objects catalog view.

Internal objects are similar to user objects, except that they are not visible using
catalog views or other tools to retrieve metadata. There are three types of internal
objects: work files, work tables, and sort units. Work files are created when the system
retrieves information using particular operators. Work tables are created by the system
when certain operations, such as spooling and recovering databases and tables by the
DBCC command, are executed. Finally, sort units are created when a sort operation is
executed.

Ch15.indd 407 1/25/12 10:12:26 AM

 4 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Optimistic concurrency (see Chapter 13) uses the tempdb database as a place to store
versions of rows. Hence, the tempdb database grows each time the system performs the
following operations, among others:

A trigger is executedCc

An INSERT, UPDATE, or DELETE statement is executed in a database that Cc

allows snapshot isolation

Note
Because of optimistic concurrency, the tempdb database is heavily used by the system. For this reason, make
sure that tempdb is large enough and monitor its space regularly. (The use of the tempdb database for
optimistic concurrency is described in Chapter 13.)

msdb Database
The msdb database is used by the component called SQL Server Agent to schedule
alerts and jobs. This system database contains task scheduling, exception handling, alert
management, and system operator information; for example, the msdb database holds
information for all the operators, such as e-mail addresses and pager numbers, and
history information about all the backups and restore operations. For more information
how this system database can be restored, see Chapter 16.

Disk Storage
The storage architecture of the Database Engine contains several units for storing
database objects:

PageCc

ExtentCc

FileCc

FilegroupCc

Note
Files and filegroups will not be discussed in this chapter. They are described in Chapter 5.

Ch15.indd 408 1/25/12 10:12:27 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 0 9

The main unit of data storage is the page. The size of a page is always 8KB. Each
page has a 96-byte header used to store the system information. Data rows are placed
on the page immediately after the header.

The Database Engine supports different page types. The most important are

Data pagesCc

Index pagesCc

Note
Data and index pages are actually physical parts of a database where the corresponding tables and indices are
stored. The content of a database is stored in one or more files, and each file is divided into page units. Therefore,
each table or index page (as a database physical unit) can be uniquely identified using a database ID, database
file ID, and a page number.

When you create a table or index, the system allocates a fixed amount of space to
contain the data belonging to the table or index. When the space fills, the space for
additional storage must be allocated. The physical unit of storage in which space is
allocated to a table (index) is called an extent. An extent comprises eight contiguous
pages, or 64KB. There are two types of extents:

Uniform extentsCc

Mixed extentsCc

Uniform extents are owned by a single table or index, while mixed extents are shared
by up to eight tables or indices. The system always allocates pages from mixed extents
first. After that, if the size of the table (index) is greater than eight pages, it switches to
uniform extents.

Properties of Data Pages
All types of data pages have a fixed size (8KB) and consist of the following three parts:

Page headerCc

Space reserved for dataCc

Row offset tableCc

Ch15.indd 409 1/25/12 10:12:27 AM

 4 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Note
This chapter does not include a separate discussion of the properties of index pages because index pages are
almost identical to data pages.

The following sections describe these parts.

Page Header
Each page has a 96-byte page header used to store the system information, such as page
ID, the ID of the database object to which the page belongs, and the previous and next
page in a page chain. As you may have already guessed, the page header is stored at the
beginning of each page. Table 15-1 shows the information stored in the page header.

Table 15-1 Information Contained in the Page Header

Page Header
Information Description
pageId Database file ID plus the page ID

level For index pages, the level of the page (leaf level is level 0, first intermediate level is level 1, and so on)

flagBits Additional information concerning the page

nextPage Database file ID plus the page ID of the next page in the chain (if a table has a clustered index)

prevPage Database file ID plus the page ID of the previous page in the chain (if a table has a clustered index)

objId ID of the database object to which the page belongs

lsn Log sequence number (see Chapter 13)

slotCnt Total number of slots used on this page

indexId Index ID of the page (0, if the page is a data page)

freeData Byte offset of the first available free space on the page

pminlen Number of bytes in fixed-length part of rows

freeCnt Number of free bytes on page

reservedCnt Number of bytes reserved by all transactions

xactReserved Number of bytes reserved by the most recently started transaction

xactId ID of the most recently started transaction

tornBits One bit per sector for detecting torn page write

Ch15.indd 410 1/25/12 10:12:27 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 1 1

Space Reserved for Data
The part of the page reserved for data has a variable length that depends on the number
and length of rows stored on the page. For each row stored on the page, there is an entry
in the space reserved for data and an entry in the row offset table at the end of the page.
(A data row cannot span two or more pages, except for values of VARCHAR(max) and
VARBINARY(max) data that are stored in their own specific pages.) Each row is stored
subsequently after already-stored rows, until the page is filled. If there is not enough space
for a new row of the same table, it is stored on the next page in the chain of pages.

For all tables that have only fixed-length columns, the same number of rows is stored
at each page. If a table has at least one variable-length column (a VARCHAR column,
for instance), the number of rows per page may differ and the system then stores as
many rows per page as will fit on it.

Row Offset Table
The last part of a page is tightly connected to a space reserved for data, because each row
stored on a page has a corresponding entry in the row offset table (see Figure 15-1). The
row offset table contains 2-byte entries consisting of the row number and the offset byte
address of the row on the page. (The entries in the row offset table are in reverse order from

Figure 15-1 The structure of a data page

Page header

Row 0

Row 1

Row 2

Row 3

3 2 1 0 Row offset table

Ch15.indd 411 1/25/12 10:12:27 AM

 4 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

the sequence of the rows on the page.) Suppose that each row of a table is fixed-length,
36 bytes in length. The first table row is stored at byte offset 96 of a page (because of the
page header). The corresponding entry in the row offset table is written in the last 2 bytes
of a page, indicating the row number (in the first byte) and the row offset (in the second
byte). The next row is stored subsequently in the next 36 bytes of the page. Therefore, the
corresponding entry in the row offset table is stored in the third- and fourth-to-last bytes of
the page, indicating again the row number (1) and the row offset (132).

Types of Data Pages
Data pages are used to store data of a table. There are two types of data pages, each of
which is used to store data in a different format:

In-row data pagesCc

Row-overflow data pagesCc

In-Row Data Pages
There is nothing special to say about in-row data pages: they are pages in which it
is convenient to store data and index information. All data that doesn’t belong to
large objects is always stored in-row. Also, VARCHAR(max), NVARCHAR(max),
VARBINARY(max), and XML values can be stored in-row, if the large value types out
of row option of the sp_tableoption system procedure is set to 0. In this case, all such
values are stored directly in the data row, up to a limit of 8000 bytes and as long as the
value can fit in the record. If the value does not fit in the record, a pointer is stored
in-row and the rest is stored out of row in the storage space for large objects.

Row-Overflow Data
Values of the VARCHAR(MAX), NVARCHAR(MAX), and VARBINARY(MAX)
columns can be stored outside of the actual data page. As you already know, 8KB is
the maximum size of a row on a data page, but you can exceed this size limit if you
use columns of such large data types. In this case, the system stores the values of these
columns in extra pages, which are called row-overflow pages.

The storage in row-overflow pages is done only under certain circumstances. The
primary factor is the length of the row: if the row needs more than 8060 bytes, some of
the column’s values will be stored on overflow pages. (A value of a column cannot be
split between the actual data page and a row-overflow page.)

As an example of how content of a table with large values is stored, Example 15.1
creates such a table and inserts a row into it.

Ch15.indd 412 1/25/12 10:12:27 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 1 3

 ExaMPlE 15.1

USE sample;

CREATE TABLE mytable

 (col1 VARCHAR(1000),

 col2 VARCHAR(3000),

 col3 VARCHAR(3000),

 col4 VARCHAR(3000));

 INSERT INTO mytable

 SELECT REPLICATE('a', 1000), REPLICATE('b', 3000),

 REPLICATE('c', 3000), REPLICATE('d', 3000);

The CREATE TABLE statement in Example 15.1 creates the mytable table. The
subsequent INSERT statement inserts a new row in the table. The length of the inserted
row is 10,000 bytes. For this reason, the row doesn’t fit in a page.

The query in Example 15.2 uses several catalog views to display information concerning
page type description.

 ExaMPlE 15.2

USE sample;

SELECT rows, type_desc AS page_type, total_pages AS pages

 FROM sys.partitions p JOIN sys.allocation_units a ON

 p.partition_id = a.container_id

 WHERE object_id = object_id('mytable');

The result is

rows page_type pages
1 IN_ROW_DATA 2

1 ROW_OVERFLOW_DATA 2

In Example 15.2, the sys.partition and sys.allocation_units catalog views are joined
together to display the information in relation to the mytable table and the storage of
its row(s). The sys.partition view contains one row for each partition of each table or
index. (Nonpartitioned tables, such as mytable, have only one partition unit.)

A set of pages of one particular data page type is called an allocation unit. Different
allocation units can be displayed using the type_desc column of the sys.allocation_
units catalog view. As you can see from the result of Example 15.2, for the single row
of the mytable table, two convenient pages plus two row-overflow pages are allocated
(or reserved) by the system.

Ch15.indd 413 1/25/12 10:12:27 AM

 4 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Note
The performance of a system can significantly degrade if your queries access many row-overflow data pages.

Parallel Processing of Tasks
The Database Engine can execute different database tasks in parallel. The following
tasks can be parallelized:

Bulk loadCc

BackupCc

Query executionCc

IndicesCc

The Database Engine allows data to be loaded in parallel using the bcp utility. (For
the description of the bcp utility, see the next section.) The table into which the data
is loaded must not have any indices, and the load operation must not be logged. (Only
applications using the ODBC or OLE DB–based APIs can perform parallel data loads
into a single table.)

The Database Engine can back up databases or transaction logs to multiple devices
(tape or disk) using parallel striped backup. In this case, database pages are read by
multiple threads one extent at a time (see also Chapter 16).

The Database Engine provides parallel queries to enhance the query execution.
With this feature, the independent parts of a SELECT statement can be executed
using several native threads on a computer. Each query that is planned for the parallel
execution contains an exchange operator in its query execution plan. (An exchange
operator is an operator in a query execution plan that provides process management,
data redistribution, and flow control.) For such a query, the database system generates a
parallel query execution plan. Parallel queries significantly improve the performance of
the SELECT statements that process very large amounts of data.

On computers with multiple processors, the Database Engine automatically uses more
processors to perform index operations, such as creation and rebuilding of an index. The
number of processors employed to execute a single index statement is determined by the
configuration option max degree of parallelism as well as the current workload. If the
database system detects that the system is busy, the degree of parallelism is automatically
reduced before the statement is executed.

Ch15.indd 414 1/25/12 10:12:27 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 1 5

Utilities and the DBCC Command
Utilities are components that provide different features such as data reliability, data
definition, and statistics maintenance functions. The following utilities are described next:

bcpCc

sqlcmdCc

sqlservrCc

Following the description of these utilities, the DBCC command is described.

bcp Utility
bcp (Bulk Copy Program) is a useful utility that copies database data to/from a data file.
Therefore, bcp is often used to transfer a large amount of data into a Database Engine
database from another relational DBMS using a text file, or vice versa.

The syntax of the bcp utility is

bcp [[db_name.]schema_name.]table_name {IN | OUT | QUERYOUT | FORMAT}

 file_name [{–option parameter} ...]

db_name is the name of the database to which the table (table_name) belongs. IN
or OUT specifies the direction of data transfer. The IN option copies data from the
file_name file into the table_name table, and the OUT option copies rows from the
table_name table into the file_name file. The FORMAT option creates a format file
based on the options specified. If this option is used, the option –f must also be used.

Note
The IN option appends the content of the file to the content of the database table, whereas the OUT option
overwrites the content of the file.

Data can be copied as either SQL Server–specific text or ASCII text. Copying data
as SQL Server–specific text is referred to as working in native mode, whereas copying
data as ASCII text is referred to as working in character mode. The parameter –n
specifies native mode, and the parameter –c specifies character mode. Native mode is
used to export and import data from one system managed by the Database Engine to
another system managed by the Database Engine, and character mode is commonly
used to transfer data between a Database Engine instance and other database systems.

Ch15.indd 415 1/25/12 10:12:28 AM

 4 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Example 15.3 shows the use of the bcp utility. (You have to execute this statement
from a command line of your Windows operating system.)

 ExaMPlE 15.3

bcp AdventureWorks.Person.Address out "address.txt" –T –c

The bcp command in Example 15.3 exports the data from the address table of the
AdventureWorks database in the output file address.txt. The option –T specifies that
the trusted connection is used. (Trusted connection means that the system uses integrated
security instead of the SQL Server authentication.) The option –c specifies character
mode; thus, the data is stored in the ASCII file.

Note
Be aware that the BULK INSERT statement is an alternative to bcp. It supports all of the bcp options (although
the syntax is a bit different) and offers much greater performance. BULK INSERT is described in Chapter 7.

To import data from a file to a database table, you must have INSERT and SELECT
permissions on the table. To export data from a table to a file, you must have SELECT
permission on the table.

sqlcmd Utility
sqlcmd allows you to enter Transact-SQL statements, system procedures, and script files
at the command prompt. The general form of this utility is

sqlcmd {option [parameter]} ...

where option is the specific option of the utility, and parameter specifies the value of
the defined option. The sqlcmd utility has many options, the most important of which
are described in Table 15-2.

Example 15.4 shows the use of sqlcmd.

 ExaMPlE 15.4

sqlcmd –S NTB11901 –i C:\ms0510.sql –o C:\ms0510.rpt

Note
Before you execute Example 15.4, you have to change the server name and make sure the input file is available.

Ch15.indd 416 1/25/12 10:12:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 1 7

In Example 15.4, a user of the database system named NTB11900 executes the batch
stored in the file ms0510.sql and stores the result in the output file ms0510.rpt. Depending
on the authentication mode, the system prompts for the username and password (SQL
Server authentication) or just executes the statement (Windows authentication).

One of the most important options of the sqlcmd utility is the –A option. As you already
know from Table 15-2, this option allows you to start a dedicated administration connection
(DAC) to an instance of the Database Engine. Usually, you make the connection to an
instance of the Database Engine with SQL Server Management Studio. But, there are
certain extraordinary situations in which users cannot connect to the instance. In that
case, the use of the DAC can help.

Table 15-2 Most Important Options of the sqlcmd Utility

Option Description
–S server_name[\instance_name] Specifies the name of the database server and the instance to which the connection

is made. If this option is omitted, the connection is made to the database server set
with the environment variable SQLSERVER. If this environment variable is not set, the
connection is established to the local machine.

–U login_id Specifies the SQL Server login. If this option is omitted, the value of the environment
variable SQLCMDUSER is used.

–P password Specifies a password corresponding to the login. If neither the –U option nor the –P
option is specified, sqlcmd attempts to connect by using Windows authentication
mode. Authentication is based on the account of the user who is running sqlcmd.

–c command_end Specifies the batch terminator. (The default value is GO.) This option can be used to set
the command terminator to a semicolon (;), which is the default terminator for almost
all other database systems.

–i input_file Specifies the name of the file that contains a batch or a stored procedure. The file must
contain (at least one) command terminator. The sign < can be used instead of –i.

–o output_file Specifies the name of the file that receives the result from the utility. The sign > can
be used instead of –o.

–E Uses a trusted connection (see Chapter 12) instead of requesting a password.

–A Starts the dedicated administrator connection (DAC), which is described following
this table.

–L Shows a list of all database instances found on the network.

–t seconds Specifies the number of seconds. The time interval defines how long the utility should
wait before it considers the connection to the server to be a failure.

–? Specifies a standard request for all options of the sqlcmd utility.

–d dbname Specifies which database should be the current database when sqlcmd is started.

Ch15.indd 417 1/25/12 10:12:28 AM

 4 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

DAC is a special connection that can be used by DBAs in case of extreme server
resource depletion. Even when there are not enough resources for other users to connect,
the Database Engine will attempt to free resources for the DAC. That way, administrators
can troubleshoot problems on an instance, without having to take down that instance.

The sqlcmd utility supports several specific commands that can be used within the
utility, in addition to Transact-SQL statements. Table 15-3 describes the most important
commands of the sqlcmd utility.

Example 15.5 shows the use of the exit command of the sqlcmd utility.

 ExaMPlE 15.5

1>USE sample;

2>SELECT * FROM project

3>:EXIT(SELECT @@rowcount)

This example displays all rows from the project table and the number 3, if the project
table contains three rows.

sqlservr Utility
The most convenient way to start an instance of the Database Engine is automatically
with the boot process of the computer. However, certain circumstances might require
different handling of the system. Therefore, the Database Engine offers, among others,
the sqlservr utility for starting an instance.

Table 15-3 Most Important Commands of the sqlcmd Utility

Command Description
:ED Starts the text editor. This editor can be used to edit the current batch or the last executed batch. The

editor is defined by the SQLCMDEDITOR environment variable. For instance, if you want to set the text
editor to Microsoft WordPad, type SET SQLCMDEDITOR=wordpad.

:!! Executes operating system commands. For example, :!! dir lists all files and directories in the current
directory.

:r filename Parses additional Transact-SQL statements and sqlcmd commands from the file specified by
filename into the statement cache. It is possible to issue multiple :r commands. Hence, you can use
this command to chain scripts with the sqlcmd utility.

:List Prints the content of the statement cache.

:QUIT Ends the session started by sqlcmd.

:EXIT [(statement)] Allows you to use the result of a SELECT statement as the return value from sqlcmd.

Ch15.indd 418 1/25/12 10:12:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 1 9

Note
You can also use SQL Server Management Studio or the net command to start or stop an instance of the
Database Engine.

The sqlservr utility is invoked using the following command:

sqlservr option_list

option_list contains all options that can be invoked using the application. Table 15-4
describes the most important options.

DBCC Command
The Transact-SQL language supports the DBCC (Database Console Commands)
statement that act as a command for the Database Engine. Depending on the options
used with DBCC, the DBCC commands can be divided into the following groups:

MaintenanceCc

InformationalCc

ValidationCc

MiscellaneousCc

Note
This section discusses only the validation commands. Other commands will be discussed in relation to their
application. For instance, DBCC SHOW_STATISTICS is discussed in detail in Chapter 19, while the description of
DBCC USEROPTIONS can be found in Chapter 13.

Table 15-4 Most Important Options of the sqlservr Utility

Option Description
–f Indicates that the instance is started with the minimal configuration.

–m Indicates that the instance is started in single-user mode. Use this option if you have problems
with the system and want to perform maintenance on it (this option must be used to restore the
master database).

–s instance_name Specifies the instance of the Database Engine. If no named instance is specified, sqlservr starts
the default instance of the Database Engine.

Ch15.indd 419 1/25/12 10:12:28 AM

 4 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Validation Commands
The validation commands do consistency checking of the database. The following
commands belong to this group:

DBCC CHECKALLOCCc

DBCC CHECKTABLECc

DBCC CHECKCATALOGCc

DBCC CHECKDBCc

The DBCC CHECKALLOC command validates whether every extent indicated
by the system has been allocated, as well as that there are no allocated extents that
are not indicated by the system. Therefore, this command performs cross-referencing
checks for extents.

The DBCC CHECKTABLE command checks the integrity of all the pages and
structures that make up the table or indexed view. All performed checks are both
physical and logical. The physical checks control the integrity of the physical structure
of the page. The logical checks control, among other things, whether every row in the
base table has a matching row in each nonclustered index, and vice versa, and whether
indices are in their correct sort order. Using the PHYSICAL_ONLY option, you can
validate only the physical structure of the page. This option causes a much shorter
execution time of the command and is therefore recommended for frequent use on
production systems.

The DBCC CHECKCATALOG command checks for catalog consistency within
the specified database. It performs many cross-referencing checks between tables in
the system catalog. After the DBCC CATALOG command finishes, a message is
written to the error log. If the DBCC command successfully executes, the message
indicates a successful completion and the amount of time that the command ran. If
the DBCC command stops because of an error, the message indicates the command
was terminated, a state value, and the amount of time the command ran.

If you want to check the allocation and the structural and logical integrity of all the
objects in the specified database, use DBCC CHECKDB. (As a matter of fact, this
command performs all checks previously described, in the given order.)

Note
All DBCC commands that validate the system use the snapshot technology (see Chapter 13) to provide the
transactional consistency. In other words, the validation operations do not interfere with the other, ongoing
database operations, because they use versions of current rows for validation.

Ch15.indd 420 1/25/12 10:12:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 2 1

Policy-Based Management
The Database Engine supports Policy-Based Management, a system for managing one
or more server instances, databases, or other database objects. Before you learn how this
framework works, though, you need to understand some key terms and concepts of it.

Key Terms and Concepts
The following is a list of the key terms regarding Policy-Based Management, which is
followed by a description of the concepts related to these terms:

Managed targetCc

Target setCc

FacetCc

ConditionCc

PolicyCc

CategoryCc

The system manages entities called managed targets, which may be server instances,
databases, tables, or indices. All managed targets that belong to an instance form a
hierarchy. A target set is the set of managed targets that results from applying filters to
the target hierarchy. For instance, if your managed target is a table, a target set could
comprise all indices that belong to that table.

A facet is a set of logical properties that models the behavior or characteristics for
certain types of managed targets. The number and characteristics of the properties are
built into the facet and can be added or removed only by the maker of the facet. Some
facets can be applied only to certain types of managed targets.

A condition is a Boolean expression that specifies a set of allowed states of a managed
target with regard to a facet. Again, some conditions can be applied only to certain types
of managed targets.

A policy is a condition and its corresponding behavior. A policy can contain only one
condition. Policies can be enabled or disabled. They are managed by users through the
use of categories.

A policy belongs to one and only one category. A category is a group of policies that
is introduced to give a user more flexibility in cases where third-party software is hosted.
Database owners can subscribe a database to a set of categories. Only policies from the
database’s subscribed categories can govern that database. All databases implicitly subscribe
to the default policy category.

Ch15.indd 421 1/25/12 10:12:28 AM

 4 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Using Policy-Based Management
This section presents an example that shows how you can use Policy-Based Management.
This example will create a policy whose condition is that the index fill factor will be
60 percent for all databases of the instance. (For a description of the FILLFACTOR
option, see Chapter 10.)

The following are the three main steps to implement Policy-Based Management:

Create a condition based on a facet.1.
Create a policy.2.
Categorize the policy.3.

Generally, to create a policy, open SQL Server Management Studio, expand the
server and then expand Management | Policy Management.

The first step is to create a condition. Right-click Conditions and choose New
Condition. In the Create New Condition dialog box (see Figure 15-2), type the condition

Figure 15-2 The Create New Condition dialog box

Ch15.indd 422 1/25/12 10:12:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 2 3

name in the Name field (SetFillFactor in this example), and choose Server Configuration
in the Facet drop-down list. (Setting a fill factor for all databases of an instance is server-
bound and thus belongs to the server configuration.) In the Field column of the Expression
area, choose @FillFactor from the drop-down menu and choose = as the operator. Finally,
enter 60 in the Value field. Click OK.

The next step is to create a policy based on the condition. In the Policy Management
folder, right-click Policies and choose New Policy. In the Name field of the Create New
Policy dialog box (see Figure 15-3), type the name for the new policy (PolicyFillFactor60
in this example). In the Check Condition drop-down list, choose the condition that you
have created (SetFillFactor). (This condition can be found under the node called Server
Configurations.) Choose On Demand from the Evaluation Mode drop-down list.

Figure 15-3 The Create New Policy dialog box

Ch15.indd 423 1/25/12 10:12:28 AM

 4 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

Note
Policy administrators can run policies on demand, or enable automated policy execution by using one of the
existing execution modes.

After you create a policy, you should categorize it. To categorize a policy, click the
Description page in the Create New Policy dialog box (see Figure 15-4). You can place
policies in the Default category or in a more specific category. (You can also create your
own category by clicking the New button.)

The process described in this section can be applied in the same way to dozens of
different policies in relation to servers, databases, and database objects.

Figure 15-4 Description page of the Create New Policy dialog box

Ch15.indd 424 1/25/12 10:12:28 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 15

 C h a p t e r 1 5 : S y s t e m E n v i r o n m e n t o f t h e D a t a b a s e E n g i n e 4 2 5

Summary
This chapter described several features of the system environment of the Database Engine:

System databasesCc

Disk storageCc

Utilities and commandsCc

Policy-Based ManagementCc

The system databases contain system information and high-level information about
the whole database system. The most important of them is the master database.

The main unit of disk storage is the page. The size of pages is 8KB. The most important
page type is the data page. (The form of an index page is almost identical to that of a data
page.)

The Database Engine supports many utilities and commands. This chapter discussed
three utilities (sqlcmd, sqlservr, and bcp) and the DBCC validation commands.

Policy-Based Management is a framework supported by the system since SQL
Server 2008. It allows you to define and enforce policies for configuring and managing
databases and database objects across the enterprise.

The next chapter discusses how you can prevent the loss of data, using backup and
recovery.

Exercises
 E.15.1

If you create a temporary database, where will its data be stored?

 E.15.2

Change the properties of the model database so that its size is 4MB.

 E.15.3

Name all key terms of Policy-Based Management and discuss their roles and how they
relate to one another.

 E.15.4

Name all groups for which you can specify a condition.

 E.15.5

Generate a policy that disables the use of the Common Language Runtime (CLR).

Ch15.indd 425 1/25/12 10:12:28 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Chapter 16

In This Chapter

c Reasons for Data Loss
c Introduction to Backup

Methods
c Performing Database

Backup

c Performing Database
Recovery

c System Availability
c Maintenance Plan Wizard

Backup, Recovery, and
System Availability

Ch16.indd 427 1/25/12 10:16:43 AM

 4 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

This chapter first covers two of the most important tasks related to system
administration: backup and recovery. Backup refers to the process of making
copies of the database(s) and/or transaction logs to separate media that can

later be used for recovery, if necessary. Recovery is the process of using the backup
media to replace uncommitted, inconsistent, or lost data.

System availability refers to keeping the downtime of the database system as low
as possible. In this chapter we will describe in detail the following options available
for system availability: failover clustering, database mirroring, log shipping and high
availability and disaster recovery (HADR). Also, the benefits and disadvantages of each
option will be discussed.

At the end of the chapter, Maintenance Plan Wizard is discussed. The wizard provides
you with the set of basic tasks needed to maintain a database. Therefore, it can be used,
among other things, to backup and restore user databases.

Reasons for Data Loss
Performing backups is a precautionary measure that you have to take to prevent data
loss. The reasons for data loss can be divided into the following groups:

Program errorsCc

Administrator (human) errorsCc

Computer failures (system crash)Cc

Disk failuresCc

Catastrophes (fire, flood, earthquake) or theftCc

During execution of a program, conditions may arise that abnormally terminate the
program. Such program errors affect only the database application and usually have no
impact on the entire database system. Because these errors are based on faulty program
logic, the database system cannot recover in such situations. The recovery should therefore
be done by the programmer, who has to handle such exceptions using the COMMIT and
ROLLBACK statements (see Chapter 13).

Another source of data loss is human error. Users with sufficient permissions (DBA,
for instance) may accidentally lose or corrupt data (people have been known to drop the
wrong table, update or delete data incorrectly, and so on). Of course, ideally, this would
never happen, and you can establish practices that make it unlikely that production data
will be compromised in this way, but you have to recognize that people make mistakes,
and data can be affected. The best that you can do is to try to avoid it, and be prepared
to recover when it happens.

Ch16.indd 428 1/25/12 10:16:43 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 2 9

A computer failure may occur as a result of various different hardware or software
errors. A hardware crash is an example of a system failure. In this case, the contents
of the computer’s main memory may be lost. A disk failure occurs either when a read/
write head of the disk crashes or when the I/O system discovers corrupted disk blocks
during I/O operations.

In the case of catastrophes or theft, the system must have enough information available
to recover from the failure. This is normally done by means of media that offer the needed
recovery information on a piece of hardware that is stored separately and thus has not
been damaged or lost by the catastrophe or theft.

For most of the errors just described, backups, discussed next, can provide a recovery
solution.

Introduction to Backup Methods
Database backup is the process of dumping data (from a database, a transaction log, or a
file) into backup devices that the system creates and maintains. A backup device can be a
disk file or a tape. The Database Engine provides both static and dynamic backups. Static
backup means that during the backup process, the only active session supported by the
system is the one that creates the backup. In other words, user processes are not allowed
during backup. Dynamic backup means that a database backup can be performed without
stopping the database server, removing users, or even closing the files. (The users will not
even know that the backup process is in progress.)

The Database Engine provides four different backup methods:

Full database backupCc

Differential backupCc

Transaction log backupCc

File (or filegroup) backupCc

The following sections describe these backup methods.

Full Database Backup
A full database backup captures the state of the database at the time the backup is
started. During the full database backup, the system copies the data as well as the
schema of all tables of the database and the corresponding file structures. If the full
database backup is executed dynamically, the database system records any activity that
takes place during the backup. Therefore, even all uncommitted transactions in the
transaction log are written to the backup media.

Ch16.indd 429 1/25/12 10:16:43 AM

 4 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Differential Backup
A differential backup creates a copy of only the parts of the database that have changed
since the last full database backup. (As in a full database backup, any activity that takes place
during a differential backup is backed up too.) The advantage of a differential backup is
speed. It minimizes the time required to back up a database, because the amount of data to
be backed up is considerably smaller than in the case of a full database backup. (Remember
that a full database backup includes a copy of all database pages.)

Transaction Log Backup
A transaction log backup considers only the changes recorded in the log. This form of
backup is therefore not based on physical parts (pages) of the database, but rather on
logical operations—that is, changes executed using the DML statements INSERT,
UPDATE, and DELETE. Again, because the amount of data is smaller, this process
can be performed significantly quicker than a full database backup and quicker than a
differential backup.

Note
It does not make sense to back up a transaction log unless a full database backup has been performed at
least once.

There are two main reasons to perform a transaction log backup: first, to store the
data that has changed since the last transaction log backup or full database backup on
a secure medium; second (and more importantly), to properly close the transaction log
up to the beginning of the active portion of it. (The active portion of the transaction log
contains all uncommitted transactions.)

Using a full database backup and a valid chain of all closed transaction logs, it is
possible to propagate a database copy on a different computer. This database copy can
then be used to replace the original database in case of a failure. (The same scenario can
be established using a full database backup and the last differential backup.)

The Database Engine does not allow you to store the transaction log in the same file
in which the database is stored. One reason for this is that if the file is damaged, the use
of the transaction log to restore all changes since the last backup will not be possible.

Using a transaction log to record changes in the database is a common feature used
by nearly all existing relational DBMSs. Nevertheless, situations may arise in which it
becomes helpful to switch this feature off. For example, the execution of a heavy load
can last for hours. Such a program runs much faster when the logging is switched off.
On the other hand, switching off the logging process is dangerous, as it destroys the

Ch16.indd 430 1/25/12 10:16:43 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 3 1

valid chain of transaction logs. To ensure successful database recovery, it is strongly
recommended that you perform a full database backup after the successful end of the
load.

One of the most common system failures occurs because the transaction log is filled
up. Be aware that such a problem may cause a complete standstill of the system. If the
storage used for the transaction log fills up to 100 percent, the system must stop all
running transactions until the transaction log storage is freed again. This problem can
be avoided only by making frequent backups of the transaction log: each time you close
a portion of the actual transaction log and store it to a different storage media, that
portion of the log becomes reusable, and the system thus regains disk space.

Note
A differential backup and a transaction log backup both minimize the time required to back up the database.
But there is one significant difference between them: the transaction log backup contains all changes of a row
that has been modified several times since the last backup, whereas a differential backup contains only the last
modification of that row.

Some differences between log backups and differential backups are worth noting.
The benefit of differential backups is that you save time in the restore process, because
to recover a database completely, you need a full database backup and only the latest
differential backup. If you use log backups for the same scenario, you have to apply a full
database backup and all existing log backups to bring the database to a consistent state.
A disadvantage of differential backups is that you cannot use them to recover data to a
specific point in time, because they do not store intermediate changes to the database.

File or Filegroup Backup
File (or filegroup) backup allows you to back up specific database files (or filegroups)
instead of the entire database. In this case, the Database Engine backs up only files you
specify. Individual files (or filegroups) can be restored from a database backup, allowing
recovery from a failure that affects only a small subset of the database files. You can use
either a database backup or a filegroup backup to restore individual files or filegroups.
This means that you can use database and transaction log backups as your backup
procedure and still be able to restore individual files (or filegroups) from the database
backup.

Note
File backup is also called file-level backup. This type of backup is recommended only when a database that
should be backed up is very large and there is not enough time to perform a full database backup.

Ch16.indd 431 1/25/12 10:16:43 AM

 4 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Performing Database Backup
You can perform backup operations using the following:

Transact-SQL statementsCc

SQL Server Management StudioCc

Each of these backup methods is described in the following sections.

Backing Up Using Transact-SQL Statements
All types of backup operations can be executed using two Transact-SQL statements:

BACKUP DATABASECc

BACKUP LOGCc

Before these two Transact-SQL statements are described, the existing types of
backup devices will be explained.

Types of Backup Devices
The Database Engine allows you to back up databases, transaction logs, and files to the
following backup devices:

DiskCc

TapeCc

Note
There is also another form of backup device called a network share. I will not describe it separately because it is
simply a special form of a disk drive that specifies a network drive to use for backups.

Disk files are the most common media used for storing backups. Disk backup devices
can be located on a server’s local hard disk or on a remote disk on a shared network
resource. The Database Engine allows you to append a new backup to a file that already
contains backups from the same or different databases. By appending a new backup set
to existing media, the previous contents of the media remain intact, and the new backup
is written after the end of the last backup on the media. (The backup set includes all

Ch16.indd 432 1/25/12 10:16:43 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 3 3

stored data of the object you chose to back up.) By default, the Database Engine always
appends new backups to disk files.

CautioN
Do not back up to a file on the same physical disk where the database or its transaction log is stored! If the disk
with the database crashes, the backup that is stored on the same disk will also be damaged.

Tape backup devices are generally used in the same way as disk devices. However,
when you back up to a tape, the tape drive must be attached locally to the system. The
advantage of tape devices relative to disk devices is their simple administration and
operation.

Note
Always verify the backup on a network to ensure that there are no possible network errors.

BACKUP DATABASE Statement
The BACKUP DATABASE statement is used to perform a full database backup or a
differential database backup. This statement has the following syntax:

BACKUP DATABASE {db_name | @variable}

 TO device_list

 [MIRROR TO device_list2]

 [WITH | option_list]

db_name is the name of the database that should be backed up. (The name of the
database can also be supplied using a variable, @variable.) device_list specifies one or
more device names, where the database backup will be stored. device_list can be a list
of names of disk files or tapes. The syntax for a device is

{ logical_device_name | @logical_device_name_var }

 | { DISK | TAPE } = { 'physical_device_name' | @physical_device_

name_var }

where the device name can be either a logical name (or a variable) or a physical name
beginning with the DISK or TAPE keyword. (The TAPE option will be removed in a
future version of SQL Server.)

The MIRROR TO option indicates that the accompanying set of backup devices
is a mirror within a mirrored media set. The backup devices must be identical in type
and number to the devices specified in the TO clause. In a mirrored media set, all the

Ch16.indd 433 1/25/12 10:16:43 AM

 4 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

backup devices must have the same properties. (See also the description of mirrored
media in the section “Database Mirroring” later in this chapter.)

option_list comprises several options that can be specified for the different backup
types. The most important options are the following:

DIFFERENTIALCc

NOSKIP/SKIPCc

NOINIT/INITCc

NOFORMAT/FORMATCc

UNLOAD/NOUNLOADCc

MEDIANAME and MEDIADESCRIPTIONCc

BLOCKSIZECc

COMPRESSIONCc

The first option, DIFFERENTIAL, specifies a differential database backup. All
other clauses in the list concern full database backups.

The SKIP option disables the backup set expiration and name checking, which is
usually performed by BACKUP DATABASE to prevent overwrites of backup sets. The
NOSKIP option, which is the default, instructs the BACKUP statement to check the
expiration date and name of all backup sets before allowing them to be overwritten.

The INIT option is used to overwrite any existing data on the backup media. This
option does not overwrite the media header, if one exists. If there is a backup that has
not yet expired, the backup operation fails. In this case, use the combination of SKIP
and INIT options to overwrite the backup device. The NOINIT option, which is the
default, appends a backup to existing backups on the media.

The FORMAT option is used to write a header on all of the files (or tape volumes)
that are used for a backup. Therefore, use this option to initialize a backup medium.
When you use the FORMAT option to back up to a tape device, the INIT option and
the SKIP option are implied. Similarly, the INIT option is implied if the FORMAT
option is specified for a file device. NOFORMAT, which is the default, specifies that
the backup operation processes the existing media header and backup sets on the media
volumes.

The UNLOAD and NOUNLOAD options are performed only if the backup medium
is a tape device. The UNLOAD option, which is the default, specifies that the tape is
automatically rewound and unloaded from the tape device after the backup is completed.
Use the NOUNLOAD option if the database system should not rewind (and unload) the
tape from the tape device automatically.

Ch16.indd 434 1/25/12 10:16:43 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 3 5

MEDIADESCRIPTION and MEDIANAME specify the description and the name
of the media set, respectively. The BLOCKSIZE option specifies the physical block size,
in bytes. The supported sizes are 512, 1024, 2048, 4096, 8192, 16384, 32768, and 65536
(64KB) bytes. The default is 65536 bytes for tape devices and 512 bytes otherwise.

The Database Engine supports backup compression. To specify backup compression,
use the COMPRESSION option of the BACKUP DATABASE statement. Example
16.1 backs up the sample database and compresses the backup file.

 ExAMPLE 16.1

USE master;

BACKUP DATABASE sample

 TO DISK = 'C:\sample.bak'

 WITH INIT, COMPRESSION;

Note
If you get the “Access Denied” error for the C: \directory, change the storage location of the sample.bak file to
another directory (tmp, for instance).

If you want to know whether the particular backup file is compressed, use the output
of the RESTORE HEADERONLY statement, which is described later in this chapter.

BACKUP LOG Statement
The BACKUP LOG statement is used to perform a backup of the transaction log. This
statement has the following syntax:

BACKUP LOG {db_name | @variable}

 TO device_list

 [MIRROR TO device_list2]

 [WITH option_list]

db_name, @variable, device_list, and device_list2 have the same meanings as the
parameters with the same names in the BACKUP DATABASE statement. option_list
has the same options as the BACKUP DATABASE statement and also supports the
specific log options NO_TRUNCATE, NORECOVERY, and STANDBY.

You should use the NO_TRUNCATE option if you want to back up the transaction
log without truncating it—that is, this option does not clear the committed transactions in
the log. After the execution of this option, the system writes all recent database activities
in the transaction log. Therefore, the NO_TRUNCATE option allows you to recover data
right up to the point of the database failure.

Ch16.indd 435 1/25/12 10:16:43 AM

 4 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

The NORECOVERY option backs up the tail of the log and leaves the database in
the restoring state. NORECOVERY is useful when failing over to a secondary database
or when saving the tail of the log before a restore operation. The STANDBY option backs
up the tail of the log and leaves the database in a read-only and standby state. (The restore
operation and the standby state are explained later in this chapter.)

Backing Up Using Management Studio
Before you can perform a database or transaction log backup, you must specify (or
create) backup devices. SQL Server Management Studio allows you to create disk
devices and tape devices in a similar manner. In both cases, expand the server, expand
Server Objects, right-click Backup Devices, and choose New Backup Device. In the
Backup Device dialog box (see Figure 16-1), enter the name of either the disk device

Figure 16-1 The Backup Device dialog box

Ch16.indd 436 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 3 7

(if you clicked File) or the tape device (if you clicked Tape). In the former case, you
can click the ... button on the right side of the field to display existing backup device
locations. In the latter case, if Tape cannot be activated, then no tape devices exist on
the local computer.

After you specify backup devices, you can do a database backup. Expand the server,
expand Databases, right-click the database, and choose Tasks | Back Up. The Back
Up Database dialog box appears (see Figure 16-2). On the General page of the dialog
box, choose the backup type in the Backup Type drop-down list (Full, Differential, or
Transaction Log), enter the backup set name in the Name field, and optionally enter a
description of this set in the Description field. In the same dialog box, you can choose
an expiration date for the backup.

Figure 16-2 The Back Up Database dialog box, General page

Ch16.indd 437 1/25/12 10:16:44 AM

 4 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

In the Destination frame, select an existing device by clicking Add. (The Remove
button allows you to remove one or more backup devices from the list of devices to be
used.)

On the Options page (see Figure 16-3), to append to an existing backup on the
selected device, click the Append to the Existing Backup Set radio button. Choosing
the Overwrite All Existing Backup Sets radio button in the same frame overwrites any
existing backups on the selected backup device.

For verification of the database backup, click Verify Backup when Finished in the
Reliability frame. On the Options page, you can also choose to back up to a new media
set by clicking the Back Up to a New Media Set, and Erase All Existing Backup Sets
radio button and then entering the media set name and description.

Figure 16-3 The Back Up Database dialog box, Options page

Ch16.indd 438 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 3 9

For creation and verification of a differential database backup or transaction log backup,
follow the same steps, but choose the corresponding backup type in the Backup Type field
on the General page.

After you have chosen all your options, click OK. The database or the transaction
log is then backed up. You can display the name, physical location, and the type of the
backup devices by selecting the server, expanding the Server Objects folder, expanding
the Backup Devices folder, and then selecting the particular file.

Scheduling Backups with Management Studio
A well-planned timetable for the scheduling of backup operations will help you avoid
system shortages when users are working. SQL Server Management Studio supports
this planning by offering an easy-to-use graphical interface for scheduling backups.
Scheduling backups using SQL Server Management Studio is explained in detail in
the following chapter.

Determining Which Databases to Back Up
The following databases should be backed up regularly:

The Cc master database
All production databasesCc

Backing Up the master Database
The master database is the most important system database because it contains information
about all of the databases in the system. Therefore, you should back up the master database
on a regular basis. Additionally, you should back up the master database anytime certain
statements and stored procedures are executed, because the Database Engine modifies the
master database automatically.

Note
You can perform full database backups of the master database only. (The system does not support differential,
transaction log, and file backups for the master database.)

Many activities cause the modification of the master database. Some of them are
listed here:

The creation, alteration, and removal of a databaseCc

The alteration of the transaction logCc

Ch16.indd 439 1/25/12 10:16:44 AM

 4 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Note
Without a backup of the master database, you must completely rebuild all system databases, because if the
master database is damaged, all references to the existing user-defined databases are lost.

Backing Up Production Databases
You should back up each production database on a regular basis. Additionally, you
should back up any production database when the following activities are executed:

After creating itCc

After creating indicesCc

After clearing the transaction logCc

After performing nonlogged operationsCc

Always make a full database backup after it has been created, in case a failure occurs
between the creation of the database and the first regular database backup. Remember
that backups of the transaction log cannot be applied without a full database backup.

Backing up the database after creation of one or more indices saves time during
the restore process, because the index structures are backed up together with the data.
Backing up the transaction log after creation of indices does not save time during the
restore process at all, because the transaction log records only the fact that an index was
created (and does not record the modified index structure).

Backing up the database after clearing the transaction log is necessary because the
transaction log no longer contains a record of database activity, which is used to recover the
database. All operations that are not recorded to the transaction log are called nonlogged
operations. Therefore, all changes made by these operations cannot be restored during the
recovery process.

Performing Database Recovery
Whenever a transaction is submitted for execution, the Database Engine is responsible
either for executing the transaction completely and recording its changes permanently in
the database or for guaranteeing that the transaction has no effect at all on the database.
This approach ensures that the database is consistent in case of a failure, because failures
do not damage the database itself, but instead affect transactions that are in progress at the

Ch16.indd 440 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 4 1

time of the failure. The Database Engine supports both automatic and manual recovery,
which are discussed next in turn.

Automatic Recovery
Automatic recovery is a fault-tolerant feature that the Database Engine executes every
time it is restarted after a failure or shutdown. The automatic recovery process checks to
see if the restoration of databases is necessary. If it is, each database is returned to its last
consistent state using the transaction log.

During automatic recovery, the Database Engine examines the transaction log
from the last checkpoint to the point at which the system failed or was shut down.
(A checkpoint is the most recent point at which all data changes are written permanently
to the database from memory. Therefore, a checkpoint ensures the physical consistency
of the data.) The transaction log contains committed transactions (transactions that
are successfully executed, but their changes have not yet been written to the database)
and uncommitted transactions (transactions that are not successfully executed before
a shutdown or failure occurred). The Database Engine rolls forward all committed
transactions, thus making permanent changes to the database, and undoes the part of
the uncommitted transactions that occurred before the checkpoint.

The Database Engine first performs the automatic recovery of the master database,
followed by the recovery of all other system databases. Then, all user-defined databases
are recovered.

Manual Recovery
A manual recovery of a database specifies the application of the full backup of your
database and subsequent application of all transaction logs in the sequence of their
creation. (Alternatively, you can use the full database backup together with the last
differential backup of the database.) After this, the database is in the same (consistent)
state as it was at the point when the transaction log was backed up for the last time.

When you recover a database using a full database backup, the Database Engine first
re-creates all database files and places them in the corresponding physical locations.
After that, the system re-creates all database objects.

The Database Engine can process certain forms of recovery dynamically (in other
words, while an instance of the database system is running). Dynamic recovery improves
the availability of the system, because only the data being restored is unavailable. Dynamic
recovery allows you to restore either an entire database file or a filegroup. (Microsoft calls
dynamic recovery “online restore.”)

Ch16.indd 441 1/25/12 10:16:44 AM

 4 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Is My Backup Set Ready for Recovery?
After executing the BACKUP statement, the selected device (tape or disk) contains all
data of the object you chose to back up. The stored data is called a backup set. Before you
start a recovery process, you should be sure that

The backup set contains the data you want to restoreCc

The backup set is usableCc

The Database Engine supports a set of Transact-SQL statements that allows you to
confirm that the backup set is usable and contains the proper data. The following four
statements, among others, belong to it:

RESTORE LABELONLYCc

RESTORE HEADERONLYCc

RESTORE FILELISTONLYCc

RESTORE VERIFYONLYCc

The following subsection describes these statements.

RESTORE LABELONLY This statement is used to display the header information
of the media (disk or tape) used for a backup process. The output of the RESTORE
LABELONLY statement is a single row that contains the summary of the header
information (name of the media, description of the backup process, and date of a
backup process).

Note
RESTORE LABELONLY reads just the header file, so use this statement if you want to get a quick look at what your
backup set contains.

RESTORE HEADERONLY Whereas the RESTORE LABELONLY statement gives
you concise information about the header file of your backup device, the RESTORE
HEADERONLY statement gives you information about backups that are stored
on a backup device. This statement displays a one-line summary for each backup
on a backup device. In contrast to RESTORE LABELONLY, using RESTORE
HEADERONLY can be time consuming if the device contains several backups.

The output of RESTORE HEADERONLY contains a Compressed column,
which tells you whether the backup file is compressed (value 1) or not.

Ch16.indd 442 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 4 3

RESTORE FILELISTONLY The RESTORE FILELISTONLY statement returns a
result set with a list of the database and log files contained in the backup set. You can
display information about only one backup set at a time. For this reason, if the specified
backup device contains several backups, you have to specify the position of the backup
set to be processed.

You should use RESTORE FILELISTONLY if you don’t know exactly either which
backup sets exist or where the files of a particular backup set are stored. In both cases,
you can check all or part of the devices to make a global picture of existing backups.

RESTORE VERIFYONLY After you have found your backup, you can do the next step:
verify the backup without using it for the restore process. You can do the verification
with the RESTORE VERIFYONLY statement, which checks the existence of all
backup devices (tapes or files) and whether the existing information can be read.

In contrast to the previous three statements, RESTORE VERIFYONLY supports
two specific options:

LOADHISTORYCc Causes the backup information to be added to the backup
history tables
STATSCc Displays a message each time another percentage of the reading process
completes, and is used to gauge progress (the default value is 10)

Restoring Databases and Logs Using Transact-SQL Statements
All restore operations can be executed using two Transact-SQL statements:

RESTORE DATABASECc

RESTORE LOGCc

The RESTORE DATABASE statement is used to perform the restore process for a
database. The general syntax of this statement is

RESTORE DATABASE {db_name | @variable}

 [FROM device_list]

 [WITH option_list]

db_name is the name of the database that will be restored. (The name of the database
can be supplied using a variable, @variable.) device_list specifies one or more names of
devices on which the database backup is stored. (If you do not specify the FROM clause,
only the process of automatic recovery takes place, not the restore of a backup, and you
must specify either the RECOVERY, NORECOVERY, or STANDBY option. This

Ch16.indd 443 1/25/12 10:16:44 AM

 4 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

action can take place if you want to switch over to a standby server.) device_list can be
a list of names of disk files or tapes. option_list comprises several options that can be
specified for the different backup forms. The most important options are

RECOVERY/NORECOVERY/STANDBYCc

CHECKSUM/NO_CHECKSUMCc

REPLACECc

PARTIALCc

STOPATCc

STOPATMARKCc

STOPBEFOREMARKCc

The RECOVERY option instructs the Database Engine to roll forward any committed
transaction and to roll back any uncommitted transaction. After the RECOVERY option is
applied, the database is in a consistent state and is ready for use. This option is the default.

Note
Use the RECOVERY option either with the last transaction log to be restored or to restore with a full database
backup without subsequent transaction log backups.

With the NORECOVERY option, the Database Engine does not roll back
uncommitted transactions because you will be applying further backups. After the
NORECOVERY option is applied, the database is unavailable for use.

Note
Use the NORECOVERY option with all but the last transaction log to be restored.

The STANDBY option is an alternative to the RECOVERY and NORECOVERY
options and is used with the standby server. (The standby server is discussed later, in
the section “Using a Standby Server.”) In order to access data stored on the standby
server, you usually recover the database after a transaction log is restored. On the other
hand, if you recover the database on the standby server, you cannot apply additional
logs from the production server for the restore process. In that case, you use the
STANDBY option to allow users read access to the standby server. Additionally, you

Ch16.indd 444 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 4 5

allow the system to restore additional transaction logs. The STANDBY option implies
the existence of the undo file that is used to roll back changes when additional logs
are restored.

The CHECKSUM option initiates the verification of both the backup checksums
and page checksums, if present. If checksums are absent, RESTORE proceeds without
verification. The NO_CHECKSUM option explicitly disables the validation of checksums
by the restore operation.

The REPLACE option replaces an existing database with data from a backup
of a different database. In this case, the existing database is first destroyed, and the
differences regarding the names of the files in the database and the database name are
ignored. (If you do not use the REPLACE option, the database system performs a
safety check that guarantees an existing database is not replaced if the names of files
in the database, or the database name itself, differ from the corresponding names in
the backup set.)

The PARTIAL option specifies a partial restore operation. With this option you
can restore a portion of a database, consisting of its primary filegroup and one or more
secondary filegroups, which are specified in an additional option called FILEGROUP.
(The PARTIAL option is not allowed with the RESTORE LOG statement.)

The STOPAT option allows you to restore a database to the state it was in at the
exact moment before a failure occurred by specifying a point in time. The Database
Engine restores all committed transactions that were recorded in the transaction log
before the specified point in time. If you want to restore a database by specifying a point
in time, execute the RESTORE DATABASE statement using the NORECOVERY
clause. After that, execute the RESTORE LOG statement to apply each transaction
log backup, specifying the name of the database, the backup device from which the
transaction log backup will be restored, and the STOPAT clause. (If the backup of a log
does not contain the requested time, the database will not be recovered.)

The STOPATMARK and STOPBEFOREMARK options specify to recover to a
mark. This topic is described a bit later, in the section “Recovering to a Mark.”

The RESTORE DATABASE statement is also used to restore a database from a
differential backup. The syntax and the options for restoring a differential backup are
the same as for restoring from a full database backup. During a restoration from a
differential backup, the Database Engine restores only that part of the database that has
changed since the last full database backup. Therefore, restore the full database backup
before you restore a differential backup!

The RESTORE LOG statement is used to perform a restore process for a transaction
log. This statement has the same syntax form and the same options as the RESTORE
DATABASE statement.

Ch16.indd 445 1/25/12 10:16:44 AM

 4 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Restoring Databases and Logs Using Management Studio
To restore a database from a full database backup, expand the server, choose Databases,
right-click the database, and choose Tasks | Restore | Database. The Restore Database
dialog box appears (see Figure 16-4). On the General page, select databases to which
and from which you want to restore. Then check the backup set that you want to use
for your backup process.

Note
If you restore from the log backup, do not forget the sequence of restoring different types of backups. First restore
the full database backup. Then restore all corresponding transaction logs in the sequence of their creation.

Figure 16-4 The Restore Database dialog box, General page

Ch16.indd 446 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 4 7

To select the appropriate restore options, choose the Options page (see Figure 16-5)
of the Restore Database dialog box. In the upper part of the window, choose one or
more restore types. In the lower part of the window, you can choose one of the three
existing options. Choosing the first option, Leave the Database Ready to Use by Rolling
Back Uncommitted Transactions, instructs the Database Engine to roll forward any
committed transaction and to roll back any uncommitted transaction. After applying
this option, the database is in a consistent state and is ready for use. This option is
equivalent to the RECOVERY option of the RESTORE DATABASE statement.

Note
Use this option only with the last transaction log to be restored or with a full database restore when no
subsequent transaction logs need to be applied.

Figure 16-5 The Restore Database dialog box, Options page

Ch16.indd 447 1/25/12 10:16:44 AM

 4 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

If you click the second option, Leave the Database Non-operational, and Do
Not Roll Back Uncommitted Transactions, the Database Engine does not roll back
uncommitted transactions because you will be applying further backups. After you
apply this option, the database is unavailable for use, and additional transaction logs
should be restored. This option is equivalent to the NORECOVERY option of the
RESTORE DATABASE statement.

Note
Use this option with all but the last transaction log to be restored or with a differential database restore.

Choosing the third option, Leave the Database in Read-only Mode, specifies the file
(in the Standby File text box) that is subsequently used to roll back the recovery effects.
This option is equivalent to the STANDBY option in the RESTORE DATABASE
statement.

The process of a database restoration from a differential database backup is equivalent
to the process of a restoration from a full database backup. In this case, you have to check
Differential Database Backup as the backup type in the Restore Database dialog box. The
only difference to restoration with the full database backup is that only the first option in
the lower half of the Options page (Leave the Database Ready to Use by Rolling Back
Uncommitted Transactions) can be applied to the restoration from a differential database
backup.

Note
If you restore from a differential backup, first restore the full database backup before you restore the
corresponding differential one. In contrast to transaction log backups, only the latest differential backup is
applied, because it includes all changes since the full backup.

To restore a database with a new name, expand Databases, right-click the database,
and choose Tasks | Restore | Database. On the General page of the Restore Database
dialog box, in the To Database drop-down box enter the name of the database you want
to create, and in the From Database drop-down box enter the name of the database
whose backup is used.

Recovering to a Mark
The Database Engine allows you to use the transaction log to recover to a specific mark.
Log marks correspond to a specific transaction and are inserted only if the transaction
commits. This allows the marks to be tied to a particular amount of work and provides
the ability to recover to a point that includes or excludes this work.

Ch16.indd 448 1/25/12 10:16:44 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 4 9

Note
If a marked transaction spans multiple databases on the same database server, the marks are recorded in the
logs of all the affected databases.

The BEGIN TRANSACTION statement supports the WITH MARK clause to
insert marks into the logs. Because the name of the mark is the same as its transaction,
a transaction name is required. (The description option specifies a textual description
of the mark.)

The transaction log records the mark name, description, database, user, date and time
information, and the log sequence number (LSN). To allow their reuse, the transaction
names are not required to be unique. The date and time information is used along with
the name to uniquely identify the mark.

You can use the RESTORE LOG statement (with either the STOPATMARK
clause or the STOPBEFOREMARK clause) to specify recovering to a mark. The
STOPATMARK clause causes the recovery process to roll forward to the mark and
include the transaction that contains the mark. If you specify the STOPBEFOREMARK
clause, the recovery process excludes the transaction that contains the mark.

Both clauses just described support AFTER datetime. If this option is omitted, recovery
stops at the first mark with the specified name. If the option is specified, recovery stops at
the first mark with the specified name exactly at or after datetime.

Restoring the master Database
The corruption of the master system database can be devastating for the whole system
because it comprises all system tables that are necessary to work with the database system.
The restore process for the master database is quite different from the same process for
user-defined databases.

A damaged master database makes itself known through different failures. These
failures include the following:

Inability to start the MSSQLSERVER processCc

An input/output errorCc

Execution of the DBCC command points to such a failureCc

Two different ways exist to restore the master database. The easier way, which is
available only if you can start your database system, is to restore the master database
from the full database backup. If you can’t start your system, then you must go the more
difficult route and use the sqlservr command.

Ch16.indd 449 1/25/12 10:16:45 AM

 4 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

To restore your master database, start your instance in single-user mode. Of the
two ways to do it, my favorite is to use the command window and execute the sqlservr
command (from the command prompt) with the option –m. Although the use of this
command is more difficult, this approach allows you to restore the master database in
the most cases. In the second step, you restore the master database together with all
other databases using the last full database backup.

Note
If there have been any changes to the master database since the last full database backup, you will need to
re-create those changes manually.

Restoring Other System Databases
The restore process for all system databases other than master is similar. Therefore,
I will explain this process using the msdb database. The msdb database needs to be
restored from a backup when either the master database has been rebuilt or the msdb
database itself has been damaged. If the msdb database is damaged, restore it using the
existing backups. If there have been any changes after the msdb database backup was
created, re-create those changes manually. (You can find the description of the msdb
system database in Chapter 15.)

Note
You cannot restore a database that is being accessed by users. Therefore, when restoring the msdb database, the
SQL Server Agent service should be stopped. (SQL Server Agent accesses the msdb database.)

Recovery Models
A recovery model allows you to control to what extent you are ready to risk losing
committed transactions if a database is damaged. It also determines the speed and size of
your transaction log backups. Additionally, the choice of a recovery model has an impact
on the size of the transaction log and therefore on the time period needed to back up the
log. The Database Engine supports three recovery models:

FullCc

Bulk-loggedCc

SimpleCc

The following sections describe these recovery models.

Ch16.indd 450 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 5 1

Full Recovery Model
During full recovery, all operations are written to the transaction log. Therefore, this
model provides complete protection against media failure. This means that you can
restore your database up to the last committed transaction that is stored in the log file.
Additionally, you can recover data to any point in time (prior to the point of failure). To
guarantee this, such operations as SELECT INTO and the execution of the bcp utility
are fully logged too.

Besides point-in-time recovery, the full recovery model allows you also to recover to
a log mark. Log marks correspond to a specific transaction and are inserted only if the
transaction commits.

The full recovery model also logs all operations concerning the CREATE INDEX
statement, implying that the process of data recovery now includes the restoration of
index creations. That way, the re-creation of the indices is faster, because you do not
have to rebuild them separately.

The disadvantage of this recovery model is that the corresponding transaction log
may be very voluminous and the files on the disk containing the log will be filled up
very quickly. Also, for such a voluminous log, you will need significantly more time for
backup.

Note
If you use the full recovery model, the transaction log must be protected from media failure. For this reason,
using RAID 1 to protect transaction logs is strongly recommended. (RAID 1 is explained in the section “Using RAID
Technology” later in this chapter.)

Bulk-Logged Recovery Model
Bulk-logged recovery supports log backups by using minimal space in the transaction
log for certain large-scale or bulk operations. The logging of the following operations is
minimal and cannot be controlled on an operation-by-operation basis:

SELECT INTOCc

CREATE INDEX (including indexed views)Cc

bcpCc utility and BULK INSERT

Although bulk operations are not fully logged, you do not have to perform a full
database backup after the completion of such an operation. During bulk-logged recovery,
transaction log backups contain both the log and the results of a bulk operation. This
simplifies the transition between full and bulk-logged recovery models.

Ch16.indd 451 1/25/12 10:16:45 AM

 4 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

The bulk-logged recovery model allows you to recover a database to the end of a
transaction log backup (that is, up to the last committed transaction). Additionally,
you can restore your database to any point in time if you haven’t performed any bulk
operations. The same is true for the restore operation to a named log mark.

The advantage of the bulk-logged recovery model is that bulk operations are performed
much faster than under the full recovery model, because they are not fully logged. On
the other side, the Database Engine backs up all the modified extents, together with the
log itself. Therefore, the log backup needs a lot more space than in the case of the full
recovery. (The time to restore a log backup is significantly increased, too.)

Simple Recovery Model
In the simple recovery model, the transaction log is truncated whenever a checkpoint
occurs. Therefore, you can recover a damaged database only by using the full database
backup or the differential backup, because they do not require log backups. Backup
strategy for this model is very simple: restore the database using existing database backups
and, if differential backups exist, apply the most recent one.

Note
The simple recovery model doesn’t mean that there is no logging at all. The log content won’t be used for backup
purposes, but it is used at the checkpoint time, where all the transactions in the log are committed or rolled back.

The advantages of the simple recovery model are that the performance of all bulk
operations is very high and requirements for the log space are very small. On the other
hand, this model requires the most manual work because all changes since the most
recent database (or differential) backup must be redone. Point-in-time and page restore
are not allowed with this recovery model. Also, file restore is available only for read-only
secondary filegroups.

Note
Do not use the simple recovery model for production databases.

Changing and Editing a Recovery Model
You can change the recovery model by using the RECOVERY option of the ALTER
DATABASE statement. The part of the syntax of the ALTER DATABASE statement
concerning recovery models is

 SET RECOVERY [FULL | BULK_LOGGED | SIMPLE]

Ch16.indd 452 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 5 3

There are two ways in which you can edit the current recovery model of your database:

Using the Cc databasepropertyex property function
Using the Cc sys.databases catalog view

If you want to display the current model of your database, use the recovery value for
the second parameter of the databaseproperty function. Example 16.2 shows the query
that displays the recovery model for the sample database. (The function displays one of
the values FULL, BULK_LOGGED, or SIMPLE.)

 ExAMPLE 16.2

SELECT databasepropertyex('sample', 'recovery')

The recovery_model_desc column of the sys.databases catalog view displays the
same information as the databasepropertyex function, as Example 16.3 shows.

 ExAMPLE 16.3

SELECT name, database_id, recovery_model_desc AS model

 FROM sys.databases

 WHERE name = 'sample'

The result is

name database_id model
sample 7 FULL

System Availability
Ensuring the availability of your database system and databases is one of the most
important issues today. There are several techniques that you can use to ensure their
availability, which can be divided in two groups: those that are components of the
Database Engine and those that are not implemented in the database server. The
following two techniques are not part of the Database Engine:

Using a standby serverCc

Using RAID technologyCc

Ch16.indd 453 1/25/12 10:16:45 AM

 4 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

The following techniques belong to the database system:

Failover clusteringCc

Database mirroringCc

Log shippingCc

High availability and disaster recovery (HADR)Cc

ReplicationCc

The following sections describe these techniques, other than replication, which is
discussed in Chapter 18.

Using a Standby Server
A standby server is just what its name implies—another server that is standing by in
case something happens to the production server (also called the primary server). The
standby server contains files, databases (system and user-defined), and user accounts
identical to those on the production server.

A standby server is implemented by initially restoring a full database backup of the
database and applying transaction log backups to keep the database on the standby
server synchronized with the production server. To set up a standby server, set the read
only database option to true. This option prevents users from performing any write
operations in the database.

The general steps to use a copy of a production database are as follows:

Restore the production database using the RESTORE DATABASE statement Cc

with the STANDBY clause.
Apply each transaction log to the standby server using the RESTORE LOG Cc

statement with the STANDBY clause.
When applying the final transaction log backup, use the RESTORE LOG Cc

statement with the RECOVERY clause. (This final statement recovers the database
without creating a file with before images, making the database available for write
operations, too.)

After the database and transaction logs are restored, users can work with an exact
copy of the production database. Only the noncommitted transactions at the time of
failure will be permanently lost.

Ch16.indd 454 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 5 5

Note
If the production server fails, user processes are not automatically brought to the standby server. Additionally,
all user processes need to restart any tasks with the uncommitted transactions due to the failure of the
production server.

Using RAID Technology
RAID (redundant array of inexpensive disks) is a special disk configuration in which
multiple disk drives build a single logical unit. This process allows files to span multiple
disk devices. RAID technology provides improved reliability at the cost of performance
decrease. Generally, there are six RAID levels, 0 through 5. Only three of these levels,
levels 0, 1, and 5, are significant for database systems.

RAID can be hardware or software based. Hardware-based RAID is more costly
(because you have to buy additional disk controllers), but it usually performs better.
Software-based RAID can be supported usually by the operating system. Windows
operating systems provide RAID levels 0, 1, and 5. RAID technology has impacts on
the following features:

Fault toleranceCc

PerformanceCc

The benefits and disadvantages of each RAID level in relation to these two features
are explained next.

RAID provides protection from hard disk failure and accompanying data loss with
three methods: disk striping, mirroring, and parity. These three methods correspond to
RAID levels 0, 1, and 5, respectively.

RAID 0 (Disk Striping)
RAID 0 specifies disk striping without parity. Using RAID 0, the data is written
across several disk drives in order to allow data access more readily, and all read and
write operations can be speeded up. For this reason, RAID 0 is the fastest RAID
configuration. The disadvantage of disk striping is that it does not offer fault tolerance
at all. This means that if one disk fails, all the data on that array become inaccessible.

Ch16.indd 455 1/25/12 10:16:45 AM

 4 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

RAID 1 (Mirroring)
Mirroring is the special form of disk striping that uses the space on a disk drive to
maintain a duplicate copy of all files. Therefore, RAID 1, which specifies disk mirroring,
protects data against media failure by maintaining a copy of the database (or a part of
it) on another disk. If there is a drive loss with mirroring in place, the files for the lost
drive can be rebuilt by replacing the failed drive and rebuilding the damaged files. The
hardware configurations of mirroring are more expensive, but they provide additional
speed. (Also, hardware configurations of mirroring implement some caching options that
provide better throughput.) The advantage of the Windows solution for mirroring is that
it can be configured to mirror disk partitions, while the hardware solutions are usually
implemented on the entire disk.

In contrast to RAID 0, RAID 1 is much slower, but the reliability is higher. Also,
RAID 1 costs much more than RAID 0 because each mirrored disk drive must be
doubled. It can sustain at least one failed drive and may be able to survive failure of up
to half the drives in the set of mirrored disks without forcing the system administrator
to shut down the server and recover from file backup. (RAID 1 is the best-performing
RAID option when fault tolerance is required.)

Mirroring also has performance impacts in relation to read and write operations.
When mirroring is used, write operations decrease performance, because each such
operation costs two disk I/O operations, one to the original and one to the mirrored
disk drive. On the other hand, mirroring increases performance of read operations,
because the system will be able to read from either disk drive, depending on which
one is least busy at the time.

RAID 5 (Parity)
Parity is implemented by calculating recovery information about data written to disk
and writing that parity information on the other drives that form the RAID array. If a
drive fails, a new drive is inserted into the RAID array and the data on that failed drive
is recovered by taking the recovery information (parity) written on the other drives and
using this information to regenerate the data from the failed drive.

The advantage of parity is that you need one additional disk drive to protect any
number of existing disk drives. The disadvantages of parity concern performance and
fault tolerance. Due to the additional costs associated with calculating and writing
parity, additional disk I/O operations are required. (Read I/O operation costs are the
same for mirroring and parity.) Also, using parity, you can sustain only one failed
drive before the array must be taken offline and recovery from backup media must be
performed. Because disk striping with parity requires additional costs associated with
calculating and writing parity, RAID 5 requires four disk I/O operations, whereas
RAID 0 requires only one operation and RAID 1 two operations.

Ch16.indd 456 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 5 7

Database Mirroring
As you already know, mirroring can be supported through hardware or software. The
advantage of the software support for mirroring is that it can be configured to mirror
disk partitions, while the hardware solutions are usually implemented on the entire disk.
This section discusses the Windows solution for database mirroring and how you can
set it up.

To set up database mirroring, use two servers with a database that will be mirrored
from one server to the other. The former is called the principal server, while the latter is
called the mirrored server. (The copy of the database on the mirrored server is called the
mirrored database.)

Database mirroring allows continuous streaming of the transaction log from the
principal server to the mirrored server. The copy of the transaction log activity is
written to the log of the mirrored database, and the transactions are executed on
it. If the principal server becomes unavailable, applications can reconnect to the
database on the mirrored server without waiting for recovery to finish. Unlike failover
clustering, the mirrored server is fully cached and ready to accept workloads because
of its synchronized state. It is possible to implement up to four mirrored backup sets.
(To implement mirroring, use the MIRROR TO option of either the BACKUP
DATABASE statement or the BACKUP LOG statement.)

There is also the third server, called the witness server. It determines which server
is the principal server and which is the mirrored server. This server is only needed
when automatic failover is required. (To enable automatic failover, you must turn on
the synchronous operating mode—that is, set the SAFETY option of the ALTER
DATABASE statement to FULL.)

Another performance issue in relation to database mirroring is the possibility to
automatically compress the data sent to the mirror. The Database Engine compresses
the stream data if at least a 12.5 percent compression ratio can be achieved. That way,
the system reduces the consumption of log data that is sent from the principal server to
mirrored server(s).

Failover Clustering
Failover clustering is a process in which the operating system and database system
work together to provide availability in the event of failures. A failover cluster consists
of a group of redundant servers, called nodes, that share an external disk system. When
a node within the cluster fails, the instance of the Database Engine on that machine
shuts down. Microsoft Cluster Service transfers resources from a failing machine to an
equally configured target node automatically. The transfer of resources from one node
to the other node in a cluster occurs very quickly.

Ch16.indd 457 1/25/12 10:16:45 AM

 4 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

The advantage of failover clustering is that it protects your system against hardware
failures, because it provides a mechanism to automatically restart the database system
on another node of the cluster. On the other hand, this technology has a single point
of failure in the set of disks, which cluster nodes share and cannot protect from data
errors. Another disadvantage of this technology is that it does not increase performance
or scalability. In other words, an application cannot scale any further on a cluster than it
can on one node.

In summary, failover clustering provides server redundancy, but it doesn’t provide data
file redundancy. On the other side, database mirroring doesn’t provide server redundancy,
but provides both database redundancy and data file redundancy.

Log Shipping
Log shipping allows the transaction logs from one database to be constantly sent and
used by another database. This allows you to have a warm standby server and also provides
a way to offload data from the source machine to read-only destination computers. The
target database is an exact copy of the primary database, because the former receives all
changes from the latter. You have the ability to make the target database a new primary
database if the primary server, which hosts the original database, becomes unavailable.
When the primary server becomes available again, you can reverse the server roles again.

Log shipping does not support automatic failover. Therefore, if the source database
server fails, you must recover the target database yourself, either manually or through
custom code.

In summary, log shipping is similar to database mirroring in that it provides database
redundancy. On the other hand, database mirroring significantly extends the capabilities
of log shipping because it allows you to update the target database through a direct
connection and in real time.

High-Availability and Disaster Recovery (HADR)
Database mirroring as a technique to achieve high availability has several drawbacks:

Read-only queries cannot by executed against the mirror.Cc

The technique can be applied only on two instances of SQL Server.Cc

The technique mirrors only the objects inside the database; objects such as logins Cc

cannot be protect using mirroring.

To overcome these drawbacks of database mirroring, SQL Server 2012 introduces a
new technique called high availability and disaster recovery (HADR). HADR allows
you to maximize availability for your databases. Before I explain how HADR works, I
will discuss the concept of availability groups, replicas, and modes.

Ch16.indd 458 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 5 9

Availability Groups, Replicas, and Modes
An availability group comprises a set of failover servers called availability replicas. Each
availability replica has a local copy of each of the databases in the availability group.
One of these replicas, called the primary replica, maintains the primary copy of each
database. The primary replica makes these databases, called primary databases, available
to users for read-write access. For each primary database, another availability replica,
known as a secondary replica, maintains a failover copy of the database, known as a
secondary database.

Availability replicas can be hosted only by instances of SQL Server 2012 that reside
on Windows Server Failover Clustering (WSFC) nodes. The SQL Server instances
can be either failover cluster instances or stand-alone instances. The server instance on
which the primary replica is located is known as the primary location. An instance on
which a secondary replica is located is known as a secondary location. The instances that
host availability replicas for a given availability group must reside on separate WSFC
nodes.

The availability mode is a property that is set independently for each availability
replica. The availability mode of a secondary replica determines whether the primary
replica waits to commit transactions on a database until the secondary replica has
written the records in the corresponding transaction logs to disk.

Each replica within an availability group is assigned one of the following roles:

Primary roleCc

Secondary roleCc

Resolving roleCc

The current primary replica has the primary role. (At a given time, only one replica
can have this role.) Each secondary replica has the secondary role. The resolving role
indicates that the current status of an availability replica is changing.

Within a session, the primary and secondary roles are potentially interchangeable, in
a process known as role switching. Role switching involves a failover that transfers the
primary role to the secondary replica. The process transitions the role of the secondary
replica to primary and vice versa. The database of the new primary replica becomes the
new primary database. When the former primary replica becomes available, its database
becomes a secondary database.

Configuration of HADR
The configuration of HADR is very complex, because, as a prerequisite, you have to
create a two-node cluster, the description of which is beyond the scope of this book. For
this reason, I will give just a brief description of the necessary steps.

Ch16.indd 459 1/25/12 10:16:45 AM

 4 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

To configure HADR, you have to execute the following steps (in the given order):

Install the database instances on both nodes.1.
Enable the HADR feature on both instances. Choose SQL Server Configuration 2.
Manager | SQL Server Services, right-click the instance, and choose Properties.
On the SQL HADR tab, check Enable SQL HADR Service.
Create an availability group in the primary instance. Expand the Management 3.
folder in Management Studio, right-click Availability Groups, and choose New
Availability Group.
Start data synchronization. Click the Start Data Synchronization button on the 4.
Results page of the New Availability Group dialog box.
Test the availability groups. Create a table on the primary replica, using the ON 5.
PRIMARY clause in the CREATE TABLE statement, and insert some rows.
Test the failover. Choose Management | Availability Groups | AVG | Availability 6.
Replicas, right-click the secondary replica, and choose Force Failover. After that,
the roles of the secondary and primary replicas should be interchanged.

Note
The detailed description of HADR can be found in Books Online and at the following URLs: www.brentozar
.com/archive/2010/11/sql-server-denali-database-mirroring-rocks/ and www.7388.info/index.php/article/
sql/2011-01-17/5235.html.

Maintenance Plan Wizard
The Maintenance Plan Wizard provides you with the set of basic tasks needed to
maintain a database. It ensures that your database performs well, is regularly backed up,
and is free of inconsistencies.

Note
To create or manage maintenance plans, you have to be a member of the sysadmin fixed server role.

To start the Maintenance Plan Wizard, expand the server in SQL Server Management
Studio, expand Management, right-click Maintenance Plans, and choose Maintenance
Plan Wizard. As you can see on the starting page of the Maintenance Plan Wizard, you
can perform the following administration tasks:

Check database integrityCc

Perform index maintenanceCc

Ch16.indd 460 1/25/12 10:16:45 AM

http://www.brentozar.com/archive/2010/11/sql-server-denali-database-mirroring-rocks
http://www.7388.info/index.php/article/sql/2011-01-17/5235.html
http://www.brentozar.com/archive/2010/11/sql-server-denali-database-mirroring-rocks
http://www.7388.info/index.php/article/sql/2011-01-17/5235.html

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 6 1

Update database statisticsCc

Perform database backupsCc

Note
I will show you how to use the Maintenance Plan Wizard to perform database backups. All other tasks can be
performed in a similar manner.

Click Next on the starting page, and the next wizard page, Select Plan Properties
(see Figure 16-6), enables you to select properties for your plan, enter the plan’s name,
and, optionally, describe the plan. Also, you can choose between separate schedules
for each task or a single schedule for the entire plan. This example will perform the
backup of the sample database, so name the plan Backup-sample and choose the
Single Schedule for the Entire Plan radio button. The Schedule field allows you to
create a schedule for the execution of the plan or to execute it on demand. (Chapter 17
describes in detail how you can create such a schedule. For purposes of this example,
leave the Schedule field set to Not Scheduled (On Demand).)

Click Next, and the wizard enables you to choose between full, differential, and
transaction log backups. (For the description of these options, see “Introduction to

Figure 16-6 The Select Plan Properties wizard page

Ch16.indd 461 1/25/12 10:16:45 AM

 4 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

Backup Methods” at the beginning of this chapter.) Check Back Up Database (Full)
and click Next, which opens the Select Maintenance Task Order page.You can then
specify the order in which the tasks should be performed. (In this case, there is no order,
because there is only one task to be performed.) Click Next, and the Back Up Database
Full page appears.

The next page, Define Back Up Database (Full) Task, enables you to specify several
different options, as shown in Figure 16-7. First, select the database(s) on which the task

Figure 16-7 The Define Back Up Database (Full) Task wizard page

Ch16.indd 462 1/25/12 10:16:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 6 3

should be performed. Then, select a destination for the backup files. The destination
includes the media type and their location. (You can also specify an expiration date for
your backup set.)

The next option, Create a Backup File for Every Database, allows you to create a
separate file for each database you have specified in the Database(s) drop-down list box.
Click this radio button, because this is the preferred way to maintain the backup of several
databases. Check the last option, Verify Backup Integrity, so that the Database Engine
checks the integrity of the backup files. Click Next to continue.

The Select Report Options wizard page allows you to write a report to a specific
file and/or send an e-mail message. An e-mail message can be sent only to an existing
operator. (Chapter 17 describes in detail how you can create an operator.)

To complete the wizard, click Finish. The wizard performs the task and creates a
corresponding report.

To view the history of an existing maintenance plan, expand Management, expand
Maintenance Plans, right-click the name of the plan, and choose View History. The
Log File Viewer with the history of the selected plan is shown.

Summary
The system administrator or database owner should periodically make a backup copy
of the database and its transaction log. The Database Engine enables you to make two
kinds of backup copies of the database: full and differential. A full backup captures the
state of the database at the time the statement is issued and copies it to the backup
media (file or tape device). A differential backup copies the parts of the database that
have changed since the last full database backup. The benefit of the differential backup
is that it completes more rapidly than the full database backup for the same database.
(There is also a transaction log backup, which copies transaction logs to a backup
media.)

The Database Engine performs automatic recovery each time a system failure occurs
that does not cause any media failure. (Automatic recovery is also performed when the
system is started after each shutdown of the system.) During automatic recovery, any
committed transaction found in the transaction log is written to the database, and any
uncommitted transaction is rolled back. After any media failure, it may be necessary to
manually recover the database from the archived copy of it and its transaction logs. To
recover a database, a full database backup and only the latest differential backup must
be used. If you use transaction logs to restore a database, use the full database backup
first and then apply all existing transaction logs in the sequence of their creation to
bring the database to the consistent state that it was in before the last transaction log
backup was created.

Ch16.indd 463 1/25/12 10:16:45 AM

 4 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

The Database Engine supports several proprietary techniques that are used to
enhance the availability of database systems and databases:

Failover clusteringCc

Database mirroringCc

Log shippingCc

High availability and disaster recovery (HADR)Cc

In relation to these techniques, there are three important issues:

Server redundancyCc

Database redundancyCc

Data file redundancyCc

Server redundancy means that an application runs on two or more servers in such
a way to provide fault tolerance. (Clustering is one of the most important server
redundancy technologies.) Database redundancy means that a fault tolerance is
guaranteed for a database with all its applications. (Data file redundancy is defined
similarly.)

Failover clustering provides server redundancy, but doesn’t provide database and
data file redundancy. Log shipping provides database redundancy, but doesn’t provide
server redundancy. The disadvantage of log shipping is that it doesn’t provide automatic
failover.

Database mirroring doesn’t provide server redundancy, but provides both database
redundancy and data file redundancy. Database mirroring significantly extends the
capabilities of log shipping, because it allows you to update the target database through
a direct connection and in real time.

HADR is similar to database mirroring, but supports clustering, too. Thus, HADR
provides server redundancy as well as database and data file redundancy. The primary
goal of HADR is to support database availability while also giving you the benefits of
disaster recovery.

The Maintenance Plan Wizard is a general tool, which you can use for set of basic
tasks needed to maintain a database. It ensures that your database regularly backed up,
and therefore free of inconsistencies. (We describe it in this chapter, because the wizard
is usually used in relation to backup and restore operations.)

The next chapter describes all the system features that allow you to automate system
administration tasks.

Ch16.indd 464 1/25/12 10:16:46 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 16

 C h a p t e r 1 6 : B a c k u p , R e c o v e r y, a n d S y s t e m A v a i l a b i l i t y 4 6 5

Exercises
 E.16.1

Discuss the differences between the differential backup and transaction log backup.

 E.16.2

When should you back up your production database?

 E.16.3

How can you make a differential backup of the master database?

 E.16.4

Discuss the use of different RAID technologies with regard to fault tolerance of a
database and its transaction log.

 E.16.5

What are the main differences between manual and automatic recovery?

 E.16.6

Which statement should you use to verify your backup, without using it for the restore
process?

 E.16.7

Discuss the advantages and disadvantages of the three recovery models.

 E.16.8

Discuss the similarities and differences between failover clustering, database mirroring,
and log shipping.

Ch16.indd 465 1/25/12 10:16:46 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Chapter 17

In This Chapter

c Starting SQL Server Agent
c Creating Jobs and

Operators
c Alerts

Automating System
Administration Tasks

Ch17.indd 467 1/25/12 10:18:20 AM

 4 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

One of the most important advantages of the Database Engine in relation to
other relational DBMSs is its capability to automate administrative tasks and
hence to reduce costs. The following are examples of some important tasks

that are performed frequently and therefore could be automated:

Backing up the database and transaction logCc

Transferring dataCc

Dropping and re-creating indicesCc

Checking data integrityCc

You can automate all these tasks so that they occur on a regular schedule. For
example, you can set the database backup task to occur every Friday at 8:00 p.m. and the
transaction log backup task to occur daily at 10:00 p.m.

The components of the Database Engine that are used in automation processes
include the following:

SQL Server service (MSSQLSERVER)Cc

Windows Application logCc

SQL Server Agent serviceCc

Why does the Database Engine need these three components to automate processes?
In relation to automation of administration tasks, the MSSQLSERVER service is
needed to write events to the Windows Application log. Some events are written
automatically, and some must be raised by the system administrator (see the detailed
explanation later in this chapter).

The Windows Application log is where all application and system messages of
Windows operating systems and messages of their components are written. The role of
the Windows Application log in the automation process is to notify SQL Server Agent
about existing events.

SQL Server Agent is another service that connects to the Windows Application log
and the MSSQLSERVER service. The role of SQL Server Agent in the automation
process is to take an action after a notification through the Windows Application log.
The action can be performed in connection with the MSSQLSERVER service or some
other application. Figure 17-1 shows how these three components work together.

Ch17.indd 468 1/25/12 10:18:20 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 6 9

Starting SQL Server Agent
SQL Server Agent executes jobs and fires alerts. As you will see in the upcoming
sections, jobs and alerts are defined separately and can be executed independently.
Nevertheless, jobs and alerts may also be complementary processes, because a job can
invoke an alert and vice versa.

Consider an example: A job is executed to inform the system administrator about an
unexpected filling of the transaction log that exceeds a tolerable limit. When this event
occurs, the associated alert is invoked and, as a reaction, the system administrator may
be notified by e-mail or pager.

Another critical event is a failure in backing up the transaction log. When this
happens, the associated alert may invoke a job that truncates the transaction log. This
reaction will be appropriate if the reason for the backup failure is an overflow (filling
up) of the transaction log. In other cases (for example, the target device for the backup
copy is full), such a truncation will have no effect. This example shows the close
connection that may exist between events that have similar symptoms.

SQL Server Agent allows you to automate different administrative tasks. Before you
can do this, the process has to be started. To start SQL Server Agent, right-click SQL
Server Agent and choose Start.

As already stated, the invocation of an alert can also include the notification of
one or more operators by e-mail using Database Mail. Database Mail is an enterprise
solution for sending e-mail messages from the Database Engine. Using Database Mail,
your applications can send e-mail messages to users. The messages may contain query
results, and may also include files from any resource on your network.

SQL Server Agent service
Notifies Takes an action

Takes an action

Writes an event
Windows Application log

Application

MSSQL Server

Figure 17-1 SQL Server automation components

Ch17.indd 469 1/25/12 10:18:20 AM

 4 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Creating Jobs and Operators
Generally, there are three steps to follow if you want to create a job:

Create a job and its steps.1.
Create a schedule of the job execution if the job is not to be executed on demand.2.
Notify operators about the status of the job.3.

The following sections explain these steps using an example.

Creating a Job and Its Steps
A job may contain one or more steps. There are different ways in which a job step can
be defined. The following list contains some of them.

Using Transact-SQL statements Cc Many job steps contain Transact-SQL
statements. For example, if you want to automate database or transaction log
backups, you use the BACKUP DATABASE statement or BACKUP LOG
statement, respectively.
Using the operating system (CmdExec) Cc Some jobs may require the execution
of a SQL Server utility, which usually will be started with the corresponding
command. For example, if you want to automate the data transfer from your
database server to a data file, or vice versa, you could use the bcp utility.
Invoking a program Cc As another alternative, it may be necessary to execute a
program that has been developed using Visual Basic or some other programming
language. In this case, you should always include the path drive letter in the
Command text box when you start such a program. This is necessary because SQL
Server Agent has to find the executable file.

If the job contains several steps, it is important to determine which actions should be
taken in case of a failure. Generally, the Database Engine starts the next job step if the
previous one was successfully executed. However, if a job step fails, any job steps that
follow will not be executed. Therefore, you should always specify how often each step
should be retried in the case of failure. And, of course, it will be necessary to eliminate
the reason for the abnormal termination of the job step. (Obviously, a repeated job
execution will always lead to the same error if the cause is not repaired.)

Ch17.indd 470 1/25/12 10:18:20 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 7 1

Note
The number of attempts depends on the type and content of the executed job step (batch, command, or
application program).

You can create a job using the following:

SQL Server Management StudioCc

System stored procedures (Cc sp_add_job and sp_add_jobstep)

SQL Server Management Studio is used in this example, which creates a job that
backs up the sample database. To create this job, connect to an instance of the Database
Engine in Object Explorer and then expand that instance. Expand SQL Server Agent,
right-click Jobs, and choose New Job. (SQL Server Agent must be running.) The New
Job dialog box appears (see Figure 17-2). On the General page, enter a name for the
job in the Name box. (The name of the job for backing up the sample database will be
backup_sample.)

For the Owner field, click the ellipsis (…) button and choose the owner responsible
for performing the job. In the Category drop-down list, choose the category to which
the job belongs. You can add a description of the job in the Description box, if you wish.

Note
If you have to manage several jobs, categorizing them is recommended. This is especially useful if your jobs are
executed in a multiserver environment.

Check the Enabled check box to enable the job.

Note
All jobs are enabled by default. SQL Server Agent disables jobs if the job schedule is defined either at a specific
time that has passed or on a recurring basis with an end date that has also passed. In both cases, you must re-
enable the job manually.

Ch17.indd 471 1/25/12 10:18:20 AM

 4 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Each job must have one or more steps. Therefore, in addition to defining job
properties, you must create at least one step before you can save the job. To define one
or more steps, click the Steps page in the New Job dialog box and click New. The New
Job Step dialog box appears, as shown in Figure 17-3. Enter a name for the job step.
(It is called backup in the example.) In the Type drop-down list, choose Transact-SQL
script (T-SQL), because the backup of the sample database will be executed using the
Transact-SQL statement BACKUP DATABASE.

In the Database drop-down list, choose the master database, because this system
database must be the current database if you want to back up a database.

Figure 17-2 The New Job dialog box

Ch17.indd 472 1/25/12 10:18:20 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 7 3

You can either enter the Transact-SQL statement directly in the Command box
or invoke it from a file. In the former case, enter the following statements, after you
change the path for the backup file:

EXEC sp_addumpdevice 'disk', 'backup_file1', 'C:\sample_backup'

BACKUP DATABASE sample TO backup_file1

As you probably guessed, the sp_addumpdevice system procedure adds a backup
device to an instance of the Database Engine. To invoke the Transact-SQL statement
from a file, click Open and select the file. The syntax of the statement(s) can be checked
by clicking Parse.

Creating a Job Schedule
Each created job can be executed on demand (that is, manually by the user) or by using
one or more schedules. A scheduled job can occur at a specific time or on a recurring
schedule.

Figure 17-3 The New Job Step dialog box, General page

Ch17.indd 473 1/25/12 10:18:20 AM

 4 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Note
Each job can have multiple schedules. For example, the backup of the transaction log of a production database
can be executed with two different schedules, depending on the time of day. This means that during peak
business hours, you can execute the backup more frequently than during non-peak hours.

To create a schedule for an existing job using SQL Server Management Studio,
select the Schedules page in the Job Properties dialog box and click New. (The Job
Properties dialog box is the same dialog box as shown in Figure 17-2). If the Job
Properties dialog box is not active, expand SQL Server Agent, expand Jobs, and click
the job you want to process.

Note
If you get the warning, “The On Access action of the last step will be changed from Get Next Step to Quit with
Success,” click Yes.

The New Job Schedule dialog box appears (see Figure 17-4).

Figure 17-4 The New Job Schedule dialog box

Ch17.indd 474 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 7 5

For the sample database, set the schedule for the backup to be executed every Friday
at 8:00 p.m. To do this, enter the name in the Name dialog box and choose Recurring
in the Schedule Type drop-down list. In the Frequency section, choose Weekly in the
Occur drop-down list, and check Friday. In the Daily Frequency section, click the
Occurs Once At radio button, and enter the time (20:00:00). In the Duration section,
choose the start date in the Start Date drop-down list, and then click the End Date
radio button and choose the end date in the corresponding drop-down list. (If the job
should be scheduled without the end date, click No End Date.)

Notifying Operators About the Job Status
When a job completes, several methods of notification are possible. For example, you
can instruct the system to write a corresponding message to the Windows Application
log, hoping that the system administrator reads this log from time to time. A better
choice is to explicitly notify one or more operators using e-mail, pager, and/or the net
send command.

Before an operator can be assigned to a job, you have to create an entry for it. To
create an operator using SQL Server Management Studio, expand SQL Server Agent,
right-click Operators, and choose New Operator. The New Operator dialog box
appears (see Figure 17-5). On the General page, enter the name of the operator in the
Name box. Specify one or more methods of notifying the operator (via e-mail, pager, or
the net send address). In the Pager on Duty Schedule section, enter the working hours
of the operator.

To notify one or more operators after the job finishes (successfully or unsuccessfully),
return to the Job Properties dialog box of the job, select the Notifications page (see
Figure 17-6), and check the corresponding boxes. (Besides e-mail, pager, or the net
send command notification, in this dialog box you also have the option of writing the
message to the Windows Application log and/or deleting the job.)

Viewing the Job History Log
The Database Engine stores the information concerning all job activities in the
sysjobhistory system table of the msdb system database. Therefore, this table represents
the job history log of your system. You can view the information in this table using
SQL Server Management Studio. To do this, expand SQL Server Agent, expand Jobs,
right-click the job, and choose View History. The Log File Viewer dialog box shows the
history log of the job.

Ch17.indd 475 1/25/12 10:18:21 AM

 4 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Figure 17-5 The New Operator dialog box

Figure 17-6 The Job Properties dialog box, Notifications page

Ch17.indd 476 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 7 7

Each row of the job history log is displayed in the details pane, which contains,
among other information, the following:

Date and time when the job step occurredCc

Whether the job step completed successfully or unsuccessfullyCc

Operators who were notifiedCc

Duration of the jobCc

Errors or messages concerning the job stepCc

By default, the maximum size of the job history log is 1000 rows, while the number
of rows for a particular job is limited to 100. (The job history log is automatically
cleared when the maximum size of rows is reached.) If you want to store the
information about each job, and your system has several jobs, increase the size of the
job history log and/or the number of rows per job. Using SQL Server Management
Studio, right-click SQL Server Agent and choose Properties. In the SQL Server
Agent Properties dialog box, select the History page and enter the new values for the
maximum job history log size and maximum job history rows per job. You can also
check Automatically Remove Agent History and specify a time interval after which
logs should be deleted.

Alerts
The information about execution of jobs and system error messages is stored in the
Windows Application log. SQL Server Agent reads this log and compares the stored
messages with the alerts defined for the system. If there is a match, SQL Server Agent
fires the alert. Therefore, alerts can be used to respond to potential problems (such as
filling up the transaction log), different system errors, or user-defined errors. Before
explaining how you create alerts, this section discusses system error messages and two
logs, the SQL Server Agent error log and the Windows Application log, which are used
to capture all system messages (and thus most of the errors).

Error Messages
System errors are grouped in four different groups. The Database Engine provides
extensive information about each error. The information is structured and includes the
following:

A unique error message numberCc

An additional number between 0 and 25, which represents the error’s severity levelCc

Ch17.indd 477 1/25/12 10:18:21 AM

 4 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

A line number, which identifies the line where the error occurredCc

The error textCc

Note
The error text not only describes the detected error but also may recommend how to resolve the problem, which
can be very helpful to the user.

Example 17.1 queries a nonexistent table in the sample database.

 ExAMpLE 17.1

USE sample;

SELECT * FROM authors;

The result is

Msg 208, Level 16, State 1, Line 2

Invalid object name 'authors'.

To view the information concerning error messages, use the sys.messages catalog
view. The three most important columns of this view are message_id, severity, and text.

Each unique error number has a corresponding error message. (The error message
is stored in the text column, and the corresponding error number is stored in the
message_id column of the sys.messages catalog view.) In Example 17.1, the message
concerning the nonexistent or incorrectly spelled database object corresponds to error
number –208.

The severity level of an error (the severity column of the sys.messages catalog view)
is represented in the form of a number between 0 and 25. The levels between 0 and 10
are simply informational messages, where nothing needs to be fixed. All levels from 11
through 16 indicate different program errors and can be resolved by the user. The values
17 and 18 indicate software and hardware errors that generally do not terminate the
running process. All errors with a severity level of 19 and greater are fatal system errors.
The connection of the program generating such an error is closed, and its process will
then be removed.

The messages relating to program errors (that is, the levels between 11 and 16) are
shown on the screen only. All system errors (errors with a severity level of 19 or greater)
will also be written to the log.

In order to resolve an error, you usually need to read the detailed description of the
corresponding error. You can also find detailed error descriptions in Books Online.

Ch17.indd 478 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 7 9

System error messages are written to the SQL Server Agent error log and to the
Windows Application log. The following two sections describe these two components.

SQL Server Agent Error Log
SQL Server Agent creates an error log that records warnings and errors by default. The
following warnings and errors are displayed in the log:

Warning messages that provide information about potential problemsCc

Error messages that usually require intervention by a system administratorCc

The system maintains up to ten SQL Server Agent error logs. The current log is
called Current, while all other logs have an extension that indicates the relative age of
the log. For example, Archive #1 indicates the newest archived error log.

The SQL Server Agent error log is an important source of information for the system
administrator. With it, he or she can trace the progress of the system and determine
which corrective actions to take.

To view the SQL Server Agent error logs from SQL Server Management Studio,
expand the instance in Object Explorer, expand SQL Server Agent, and expand Error
Logs. Click one of the files to view the desired log. The log details appear in the details
pane of the Log File Viewer dialog box.

Windows Application Log
The Database Engine also writes system messages to the Windows Application log.
The Windows Application log is the location of all operating system messages for the
Windows operating systems, and it is where all application messages are stored. You can
view the Windows Application log using the Event Viewer.

Viewing errors in the Windows Application log has some advantages compared
to viewing them in the SQL Server Agent error log. The most important is that the
Windows Application log provides an additional component for the search for desired
strings.

To view information stored in the Windows Application log, choose Start |
Control Panel | Administrative Tools | Event Viewer. In the Event Viewer window,
you can choose between system, security, and application messages. For SQL Server
system messages, click Application. SQL Server events are identified by the entry
MSSQLSERVER.

Ch17.indd 479 1/25/12 10:18:21 AM

 4 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Defining Alerts to Handle Errors
An alert can be defined to raise a response to a particular error number or to the group
of errors that belongs to a specific severity code. Furthermore, the definition of an alert
for a particular error is different for system errors and user-defined errors. (The creation
of alerts on user-defined errors is described later in this chapter.)

The rest of this section shows how you can create alerts using SQL Server Management
Studio.

Creating Alerts on System Errors
Example 13.5, in which one transaction was deadlocked by another transaction, will
be used to show how to create an alert about a system error number. If a transaction
is deadlocked by another transaction, the victim must be executed again. This can be
done, among other ways, by using an alert.

To create the deadlock (or any other) alert, expand SQL Server Agent, right-click
Alerts, and choose New Alert. In the New Alert dialog box (see Figure 17-7), enter
the name of the alert in the Name box, choose SQL Server Event Alert in the Type
drop-down list, and choose <all databases> from the Database Name drop-down list.
Click the Error Number radio button, and enter 1205. (This error number indicates a
deadlock problem, where the current process was selected as the “victim.”)

The second step defines the response for the alert. In the same dialog box, click the
Response page (see Figure 17-8). First check Execute Job, and then choose the job to
execute when the alert occurs. (The example here defines a new job called deadlock_
all_db that restarts the victim transaction.) Check Notify Operators, and then, in the
Operator List pane, select operators and choose the methods of their notifications
(e-mail, pager, and/or the net send command).

Note
In the preceding example, it is assumed that the victim process will be terminated. Actually, after receiving the
deadlock error 1205, the program resubmits the failed transaction on its own.

Creating Alerts on Error Severity Levels
You can also define an alert that will raise a response on error severity levels. As you
already know, each system error has a corresponding severity level that is a number
between 0 and 25. The higher the severity level is, the more serious the error. Errors
with severity levels 20 through 25 are fatal errors. Errors with severity levels 19 through
25 are written to the Windows Application log.

Ch17.indd 480 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 8 1

Note
Always define an operator to be notified when a fatal error occurs.

As an example of how you can create alerts in relation to severity levels, here’s how you
use SQL Server Management Studio to create the particular alert for severity level 25.
First, expand SQL Server Agent, right-click Alerts, and choose New Alert. In the Name
box, enter a name for this alert (for example, Severity 25 errors). In the Type drop-down

Figure 17-7 The New Alert dialog box, General page

Ch17.indd 481 1/25/12 10:18:21 AM

 4 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

list, choose SQL Server event alert. In the Database Name drop-down list, choose the
sample database. Click the Severity radio button and choose 025 – Fatal Error.

On the Response page, enter one or more operators to be notified via e-mail, pager,
and/or the net send command when an error of severity level 25 occurs.

Creating Alerts on User-Defined Errors
In addition to creating alerts on system errors, you can create alerts on customized error
messages for individual database applications. Using such messages (and alerts), you can
define solutions to problems that might occur in an application.

The following steps are necessary if you want to create an alert on a user-defined
message:

Create the error message.1.
Raise the error from a database application.2.
Define an alert on the error message.3.

Figure 17-8 The New Alert dialog box, Response page

Ch17.indd 482 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 8 3

An example is the best way to illustrate the creation of such an alert: the alert is fired
if the shipping date of a product is earlier than the order date. (For the definition of the
sales table, see Chapter 5.)

Note
Only the first two steps are described here, because an alert on a user-defined message is defined similarly to an
alert on a system error message.

Creating an Error Message To create a user-defined error message, you can use
either SQL Server Management Studio or the sp_addmessage stored procedure.
Example 17.2 creates the error message for the example using the sp_addmessage
stored procedure.

 ExAMpLE 17.2

 sp_addmessage @msgnum=50010, @severity=16,

@msgtext='The shipping date of a product is earlier than the order date',

@lang='us_english', @with_log='true'

The sp_addmessage stored procedure in Example 17.2 creates a user-defined error
message with error number 50010 (the @msgnum parameter) and severity level 16 (the
@severity parameter). All user-defined error messages are stored in the sysmessages
system table of the master database and can be viewed by using the sys.messages
catalog view. The error number Example 17.2 is 50010 because all user-defined errors
must be greater than 50000. (All error message numbers less than 50000 are reserved
for the system.)

For each user-defined error message, you can optionally use the @lang parameter
to specify the language in which the message is displayed. This specification may be
necessary if multiple languages are installed on your computer. (When the @lang
parameter is omitted, the session language is the default language.)

By default, user-defined messages are not written to the Windows Application log.
On the other hand, you must write the message to this log if you want to raise an alert
on it. If you set the @with_log parameter of the sp_addmessage system procedure to
TRUE, the message will be written to the log.

Raising an Error Using Triggers To raise an error from a database application,
you invoke the RAISERROR statement. This statement returns a user-defined error
message and sets a system flag in the @@error global variable. (You can also handle
error messages using TRY/CATCH blocks.)

Ch17.indd 483 1/25/12 10:18:21 AM

 4 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

Example 17.3 creates the trigger t_date_comp, which returns a user-defined error of
50010 if the shipping date of a product is earlier than the order date.

Note
To execute Example 17.3, the table sales must exist (see Example 5.21).

 ExAMpLE 17.3

USE sample;

GO

CREATE TRIGGER t_date_comp

 ON sales

 FOR INSERT AS

 DECLARE @order_date DATE

 DECLARE @shipped_date DATE

SELECT @order_date=order_date, @shipped_date=ship_date FROM INSERTED

 IF @order_date > @shipped_date

 RAISERROR (50010, 16, -1)

Now, if you insert the following row in the sales table, the shipping date of a product
is earlier than the order date:

INSERT INTO sales vALUES (1, '01.01.2007', '01.01.2006')

the system will return the user-defined error message:

Msg 50010, Level 16, State 1, Procedure t_date_comp, Line 8

Summary
The Database Engine allows you to automate and streamline many administrator tasks,
such as database backups, data transfers, and index maintenance. For the execution of
such tasks, SQL Server Agent must be running.

To automate a task, you have to execute several steps:

Create a jobCc

Create operatorsCc

Create alertsCc

Ch17.indd 484 1/25/12 10:18:21 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 17

 C h a p t e r 1 7 : A u t o m a t i n g S y s t e m A d m i n i s t r a t i o n Ta s k s 4 8 5

Job and task are synonymous, so when you create a job, you create the particular
task that you want to automate. The easiest way to create a job is to use SQL Server
Management Studio, which allows you to define one or more job steps and create an
execution schedule.

When a job (successfully or unsuccessfully) completes, you can notify one or more
persons, using operators. Again, the general way to create an operator is to use SQL
Server Management Studio.

Alerts are defined separately and can also be executed independently of jobs. An alert
can handle individual system errors, user-defined errors, or groups of errors belonging
to one of 25 severity levels.

The next chapter discusses data replication.

Exercises
 E.17.1

Name several administrative tasks that could be automated.

 E.17.2

You want to back up the transaction log of your database every hour during peak
business hours and every four hours during nonpeak hours. What should you do?

 E.17.3

You want to test performance of your production database in relation to locks and
want to know whether the lock wait time is more than 30 seconds. How could you be
notified automatically when this event occurs?

 E.17.4

Specify all parts of a SQL Server error message.

 E.17.5

Which are the most important columns of the sys.messages catalog view concerning
errors?

Ch17.indd 485 1/25/12 10:18:21 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Chapter 18

In This Chapter

c Distributed Data and
Methods for Distributing

c SQL Server Replication:
An Overview

c Managing Replication

Data Replication

Ch18.indd 487 1/25/12 10:19:31 AM

 4 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Today, market forces require most companies to set up their computers (and
the applications running on them) so that they focus on business and on
customers. As a result, data used by these applications must be available ad hoc

at different locations and at different times. Such a data environment is provided by
several distributed databases that include multiple copies of the same information.

The traveling salesperson represents a good example of how a distributed data
environment is used. During the day, the salesperson usually uses a laptop to query
all necessary information from the database (prices and availability of products,
for example) to inform customers on the spot. Afterwards, in the hotel room, the
salesperson again uses the laptop—this time to transmit data (about the sold products)
to headquarters.

From this scenario, you can see that a distributed data environment has several
benefits compared to centralized computing:

It is directly available to the people who need it, when they need it.Cc

It allows local users to operate autonomously.Cc

It reduces network traffic.Cc

It makes nonstop processing cheaper.Cc

On the other hand, a distributed data environment is much more complex than
the corresponding centralized model and therefore requires more planning and
administration.

The introductory part of this chapter discusses distributed transactions and compares
them with data replication, which is the topic of this chapter. After that, the chapter
introduces replication elements and explains the existing replication types. The last part
of the chapter describes three wizards that are used to manage replication.

Distributed Data and Methods for Distributing
There are two general methods for distributing data on multiple database servers:

Distributed transactionsCc

Data replicationCc

A distributed transaction is a transaction in which all updates to all locations (where
the distributed data is stored) are gathered together and executed synchronously.
Distributed database systems use a method called two-phase commit to implement
distributed transactions.

Ch18.indd 488 1/25/12 10:19:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 8 9

Each database involved in a distributed transaction has its own recovery technique,
which is used in case of error. (Remember that all statements inside a transaction
are executed in their entirety or are cancelled.) A global recovery manager (called a
coordinator) coordinates the two phases of distributed processing.

In the first phase of this process, the coordinator checks whether all participating
sites are ready to execute their part of the distributed transaction. The second phase
consists of the actual execution of the transaction at all participating sites. During this
process, any error at any site causes the coordinator to stop the transaction. In this case,
it sends a message to each local recovery manager to undo the part of the transaction
that is already executed at that site.

Note
The Microsoft Distributed Transaction Coordinator (DTC) supports distributed transactions using two-phase
commit.

During the data replication process, copies of the data are distributed from a source
database to one or more target databases located on separate computers. Because of this,
data replication differs from distributed transactions in two ways: timing and delay in
time.

In contrast to the distributed transaction method, in which all data is distributed on
all participating sites at the same time, data replication allows sites to have different
data at the same time. Additionally, data replication is an asynchronous process. This
means that there is a certain delay during which all copies of data are matched on all
participating sites. (This delay can last from a couple of seconds to several days or
weeks.)

Data replication is, in most cases, a better solution than distributed transactions
because it is more reliable and cheaper. Experience with two-phase commit has shown
that administration becomes very difficult if the number of participating sites increases.
Also, the increased number of participating sites decreases the reliability, because the
probability that a local part of a distributed transaction will fail increases with the
increased number of nodes. (If one local part fails, the entire distributed transaction will
fail, too.)

Another reason to use data replication instead of centralized data is performance:
clients at the site where the data is replicated experience improved performance because
they can access data locally rather than using a network to connect to a central database
server.

Ch18.indd 489 1/25/12 10:19:31 AM

 4 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

SQL Server Replication: An Overview
Generally, replication is based on one of two different concepts:

Using transaction logsCc

Using triggersCc

As already stated in Chapter 16, the Database Engine keeps all values of modified
rows (“before” as well as “after” values) in system files called transaction logs. If selected
rows need to be replicated, the system starts a new process that reads the data from the
transaction log and sends it to one or more target databases.

The other method is based on triggers. The modification of a table that contains data
to be replicated fires the corresponding trigger, which in turn creates a new table with
the data and starts a replication process.

Both concepts have their benefits and disadvantages. The log-based replication is
characterized by improved performance, because the process that reads data from the
transaction log runs asynchronously and has little effect on the performance of the
overall system. On the other hand, the implementation of log-based replication is very
complex for companies, because the database system not only has to manage additional
processes and buffers but also has to solve the concurrency problems between system
and replication processes that access the transaction log.

Note
The Database Engine uses both concepts: the transaction log method for transactional replication and triggers
for merge replication. (Transactional and merge replications are described in detail later in this chapter.)

Publishers, Distributors, and Subscribers
The Database Engine replication is based on the so-called publisher–subscriber metaphor.
This metaphor describes the different roles servers can play in a replication process. One
or more servers publish data that other servers can subscribe to. In between there exists a
distributor that stores the changes and forwards them further (to the subscribers). Hence,
a node can have one (or more) different roles in a replication scenario:

Publisher (or publishing server) Cc Maintains its source databases, makes data
available for replication, and sends the modified data to the distributor

Ch18.indd 490 1/25/12 10:19:31 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 9 1

Distributor (or distribution server) Cc Receives all changes to the replicated data
from the publisher and stores and forwards them to the appropriate subscribers
Subscriber (or subscription server) Cc Receives and maintains published data

A database server can play many roles in a replication process. For example, a
server can act as the publisher and the distributor at the same time. This scenario is
appropriate for a process with few replications and few subscribers. If there are a lot
of subscribers for the publishing information, the distributor can be located on its
own server. Figure 18-1 shows a simple scenario in which one instance is both the
publishing and distribution server and three other instances are subscription servers.
(The section “Replication Models” later in this chapter discusses in detail possible
replication scenarios.)

Note
You can replicate only user-defined databases.

Figure 18-1 Central publisher with the distributor

 Publisher/Distributor

Subscriber

Subscriber

Subscriber

Ch18.indd 491 1/25/12 10:19:39 AM

 4 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Publications and Articles
The unit of data to be published is called a publication. An article contains data from
a table and/or one or more stored procedures. A table article can be a single table or
a subset of data in a table. A stored procedure article can contain one or more stored
procedures that exist at the publication time in the database.

A publication contains one or more articles. Each publication can contain data only
from one database.

Note
A publication is the basis of a subscription. This means that you cannot subscribe directly to an article, because
an article is always part of a publication.

A f ilter is the process that restricts information, producing a subset. Therefore, a
publication contains one or more of the following items that specify types of table
articles:

TableCc

Vertical filterCc

Horizontal filterCc

A combination of vertical and horizontal filtersCc

A vertical filter contains a subset of the columns in a table. A horizontal filter
contains a subset of rows in a table.

Publications are tightly connected to subscriptions. A subscription can be initiated in
two different ways:

Using a push subscriptionCc

Using a pull subscriptionCc

With a push subscription, all the administration of setting up subscriptions is
performed on the publisher during the definition of a publication. (Besides the
publisher, the distributor also creates and manages push subscriptions.) Push
subscriptions simplify and centralize administration, because the usual replication
scenario contains one publisher and many subscribers. The benefit of a push
subscription is higher security, because the initialization process is managed at one
place. On the other hand, the performance of the distributor can suffer because the
overall distribution of subscriptions runs at once.

Ch18.indd 492 1/25/12 10:19:40 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 9 3

With a pull subscription, the subscriber initiates and manages the subscription. The
pull subscription is more selective than the push subscription, because the subscriber
can select publications to subscribe to. In contrast to the push subscription, the pull
subscription should be used for publications with low security and a high number of
subscribers.

Note
The downloading of data from the Internet is a typical form of pull subscription.

There is a special type of pull subscription called anonymous subscription. Generally,
information concerning subscribers is kept on the distribution server. If the workload
on this server should be reduced (because of too many subscribers, for instance), it is
possible to allow subscribers to initiate their own (“anonymous”) subscriptions.

The Distribution Database
The distribution database is a system database that is installed on the distribution
server when the replication process is initiated. This database holds all replicated
transactions from the publisher that need to be forwarded to the subscribers.

In many cases, a single distribution database is sufficient. However, if multiple
publishing servers communicate with a single distribution server, you can create a
distribution database for each publishing server. Doing so ensures that the data flowing
through each distribution database is distinct.

Agents
During the data replication process, the Database Engine uses several agents to manage
different tasks. The system supports, among others, the following agents:

Snapshot agentCc

Log Reader agentCc

Distribution agentCc

Merge agentCc

The following subsections describe these agents.

Ch18.indd 493 1/25/12 10:19:40 AM

 4 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Snapshot Agent
The Snapshot agent generates the schema and data of the published tables and stores
them on the distribution server. The schema of a table and the corresponding data file
build the synchronization set that represents the snapshot of the table at a particular
time. (A snapshot is essentially what it sounds like: a snapshot of the data to be
replicated.) The status of the synchronization of that set is recorded in the distribution
database. Whether the Snapshot agent creates new snapshot files each time it runs
depends on the type of replication and options chosen.

Log Reader Agent
If the transaction log of the system is used to replicate data, all transactions that contain
the data to be replicated are marked for replication. A component called the Log
Reader agent searches for marked transactions and copies them from the transaction
log on the publisher to the distribution server. These transactions are stored in the
distribution database. Each database that uses the transaction log for replication has its
own Log Reader agent running on the distribution server.

Distribution Agent
After the transactions and snapshots are stored in the distribution database, they have
to be moved to the subscribers. This task is handled by the Distribution agent, which
moves transactions and snapshots to subscribers, where they are applied to the target
tables in the subscription databases.

The task of the Distribution agent is different for pull and push subscriptions.
For push subscriptions, the agent pushes out the changes to the subscriber. For pull
subscriptions, the agents pulls the transactions from the distribution server. (All actions
that change data on the publisher are applied to the subscriber in chronological order.)

Merge Agent
As you already know, the Snapshot agent prepares files containing the table schema and
data and stores them at the distributor site. If both the publisher and subscribers can
update replicated data, then a synchronization job is necessary that sends all changed
data to the other sites. This job is performed by the Merge agent. In other words, the
Merge agent can send replicated data to the subscribers and to the publisher. Before the
send process is started, the Merge agent also stores the appropriate information that is
used to track possible conflicts.

Ch18.indd 494 1/25/12 10:19:40 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 9 5

Replication Types
The Database Engine provides the following replication types, which are discussed in
the following subsections:

TransactionalCc

Peer-to-peerCc

SnapshotCc

MergeCc

Transactional Replication
In transactional replication, the transaction log of the system is used to replicate data.
All transactions that contain the data to be replicated are marked for replication.
The Log Reader agent searches for marked transactions and copies them from the
transaction log on the publisher to the distribution database. The Distribution agent
moves transactions to subscribers, where they are applied to the target tables in the
subscription databases.

Note
All tables published using transactional replication must explicitly contain a primary key. The primary key is
required to uniquely identify the rows of the published table, because a row is the transfer unit in transactional
replication.

Transactional replication can replicate tables (or parts of tables) and one or more
stored procedures. The use of stored procedures by transactional replication increases
performance, because the amount of data to be sent over a network is usually significantly
smaller. Instead of replicated data, only the stored procedure is sent to the subscribers,
where it is executed. You can configure the delay of synchronization time between the
publisher on one side and subscribers on the other during a transactional replication.
(All these changes are propagated by the Log Reader and Distribution agents.)

Note
Before transactional replication can begin, a copy of the entire database must be transferred to each subscriber;
this is performed by executing a snapshot.

Ch18.indd 495 1/25/12 10:19:40 AM

 4 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

A special form of transactional replication is peer-to-peer transactional replication,
which will be discussed next.

Peer-to-Peer Transactional Replication
Peer-to-peer is another form of transactional replication, in which each server is at the
same time a publisher, distributor, and subscriber for the same data. In other words, all
servers contain the same data, but each server is responsible for the modification of its
own partition of data. (Note that data partitions on different servers can intersect.)

Peer-to-peer transactional replication is best explained through an example. Suppose
that a company has several branch offices in different cities and that each office
server has the same data set as all other servers. On the other hand, the entire data is
partitioned in subsets, and each office server can update only its own subset of data.
When data is modified on one of the office servers, the changes are replicated to all
other servers (subscribers) in the peer-to-peer network. (Users in each office can read
data without any restrictions.)

The benefits of this replication form are

The entire system scales well.Cc

The entire system provides high availability.Cc

A system that supports peer-to-peer transactional replication scales well because
each server serves only local users. (Users can update only the data partition that
belongs to their local server. For read operations, all data is stored locally, too.)

The high availability is based on the fact that if one or more servers go offline, all
other servers can continue to operate, because all data they need for read and write
operations is stored locally. When an offline server is online again, the replication
process restarts and the server receives all data modifications that have happened at the
other sites.

Conflict Detection in Peer-to-Peer Replication With peer-to-peer replication, you
can change data at any node. Therefore, data changes at different nodes could conflict
with each other. (If a row is modified at more than one node, it can cause a conflict.)

The Database Engine supports the option to enable conflict detection across a
configured topology. With this option enabled, a conflicting change is treated as a
critical error that causes the failure of the Distribution agent. In the event of a conflict,
the scenario remains in an inconsistent state until the conflict is resolved and the data is
made consistent on all participating servers.

Ch18.indd 496 1/25/12 10:19:40 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 9 7

Note
You can enable conflict detection using the system procedures sp_addpublication and sp_configure_
peerconflictdetection.

Conflicts in peer-to-peer replication are detected by the stored procedures that apply
changes to each node, based on a hidden column in each published table. This hidden
column stores an identifier that combines a unique ID that you specify for each node
and the version of the row. The procedures are executed by the Distribution agent
and they apply insert, update, and delete operations from other peers. If one of the
procedures detects a conflict when it reads the hidden column value, it raises an error.

Note
The hidden column can be accessed only by a user that is logged in through the dedicated administrator
connection (DAC). For the description of DAC, see Chapter 15.

When a conflict occurs in peer-to-peer transactional replication, the “Peer-to-peer
conflict detection alert” is raised. You should configure this alert so that you are notified
when a conflict occurs. (The previous chapter explains how alerts can be configured and
discusses the ways to notify operators.) Books Online describes several approaches for
handling the conflicts that occur.

Note
You should try to avoid conflicts in a peer-to-peer replication, even if conflict detection is enabled.

Snapshot Replication
The simplest type of replication, snapshot replication, copies the data to be published
from the publisher to all subscribers. (The difference between snapshot replication
and transactional replication is that the former sends all the published data to the
subscribers and the latter sends only the changes of data to the subscribers.)

Note
Transactional and snapshot replications are one-way replications, meaning the only changes to the replicated
data are made at the publishing server. Therefore, the data at all subscription servers is read-only, except for the
changes made by replication processes.

Ch18.indd 497 1/25/12 10:19:40 AM

 4 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

In contrast to transactional replication, snapshot replication requires no primary
key for tables. The reason is obvious: the unit of transfer in snapshot replication is a
snapshot file and not a row of a table. Another difference between these two replication
types concerns a delay in time: snapshot replication is replicated periodically, which
means the delay is significant because all published data (changed and unchanged) is
transferred from the publisher to the subscribers.

Note
Snapshot replication does not use the distribution database directly. However, the distribution database
contains status information and other details that are used by snapshot replication.

Merge Replication
In transactional and snapshot replication, the publisher sends the data, and a subscriber
receives it. (There is no possibility that a subscriber sends replicated data to the
publisher.) Merge replication allows the publisher and subscribers to update data to be
replicated. Because of that, conflicts can arise during a replication process.

When you use the merge replication scenario, the system makes three important
changes to the schema of the publication database:

It identifies a unique column for each replicated row.Cc

It adds several system tables.Cc

It creates triggers for tables in which data is replicated.Cc

The Database Engine creates or identifies a unique column in the table
with the replicated data. If the base table already contains a column with the
UNIQUEIDENTIFIER data type and the ROWGUIDCOL property, the system
uses that column to identify each replicated row. If there is no such column in the table,
the system adds the column rowguid of the UNIQUEIDENTIFIER data type with
the ROWGUIDCOL property.

Note
UNIQUEIDENTIFIER columns may contain multiple occurrences of a value. The ROWGUIDCOL property additionally
indicates that the values of the column of the UNIQUEIDENTIFIER data type uniquely identify rows in the table.
Therefore, a column of the data type UNIQUEIDENTIFIER with the ROWGUIDCOL property contains unique values
for each row across all networked computers in the world and thus guarantees the uniqueness of replicated rows
across multiple copies of the table on the publisher and subscribers.

Ch18.indd 498 1/25/12 10:19:40 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 4 9 9

The addition of new system tables provides the way to detect and resolve any update
conflict. The Database Engine stores all changes concerning the replicated data in the
merge system tables msmerge_contents and msmerge_tombstone and joins them
with the table that contains replicated data to resolve the conflict.

The Database Engine creates triggers on tables that contain replicated data on all
sites to track changes to the data in each replicated row. These triggers determine
the changes made to the table, and they record them in the msmerge_contents and
msmerge_tombstone system tables.

Conflict detection is done by the Merge agent using the column lineage of the
msmerge_contents system table when a conflict is detected. The resolution of it can be
either priority based or custom based.

Priority-based resolution means that any conflict between new and old values in the
replicated row is resolved automatically based on assigned priorities. (The special case
of the priority-based method specifies the “first wins” method, where the timely first
change of the replicated row is the winner.) The priority-based method is the default.
The custom-based method uses customized triggers based on business rules defined by
the database administrator to resolve conflicts.

Replication Models
The previous section introduced different replication types that the Database Engine
uses to distribute data between different nodes. The replication types (transactional,
snapshot, peer-to-peer, and merge) provide the functionality for maintaining replicated
data. Replication models are used by a company to design its own data replication. Each
replication model can be implemented using one or more existing replication types.
Both the replication type and replication model are usually specified at the same time.

Depending on requirements, several replication models can be used. The basic ones
are as follows:

Central publisher with distributorCc

Central publisher with a remote distributorCc

Central subscriber with multiple publishersCc

Multiple publishers with multiple subscribersCc

The following sections describe these models.

Ch18.indd 499 1/25/12 10:19:40 AM

 5 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Central Publisher with Distributor
In the central publisher with distributor model, there is one publisher and usually one
distributor, which are hosted on one instance of the Database Engine (see Figure 18-1).
The publisher creates publications that are distributed by the distributor to several
subscribers. The publications designed by this model and received at a subscriber are
usually read-only.

The advantage of this model is its simplicity. For this reason, the model is usually used
to create a copy of a database, which is then used for interactive queries and simple report
generation. (Another situation for using this model is to maintain a remote copy of a
database, which could be used by remote systems in the case of communication breakdown.)

On the other hand, if your instance of the Database Engine is tuned such that all
system resources are maximized, you should choose another data replication model.

Central Publisher with a Remote Distributor
If the amount of publishing data is not very large, the publisher and distributor
can reside on one server. Otherwise, using two separate servers for publishing and
distribution is recommended because of performance issues. (If there is a heavy load of
data to be published, the distributor is usually the bottleneck.) Figure 18-2 shows the
replication model with the central publisher and a separate distributor.

Publisher Distributor

Subscriber

Subscriber

Subscriber

Figure 18-2 Central publisher with a remote distributor

Ch18.indd 500 1/25/12 10:19:45 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 5 0 1

Note
This scenario can be used as a starting point to increase a number of publishing servers and/or subscribing
servers.

Central Subscriber with Multiple Publishers
The scenario described at the beginning of this chapter of the traveling salesperson
who transmits data to headquarters is a typical example of the central subscriber
with multiple publishers. The data is gathered at a centralized subscriber, and several
publishers send their data.

For this model, you can use either the peer-to-peer transactional or merge replication
type, depending on the use of replicated data. If publishers publish (and therefore
update) the same data to the subscriber, merge replication should be used. If each
publisher has its own data to publish, peer-to-peer transactional replication should be
used. (In this case, published tables will be filtered horizontally, and each publisher will
be the owner of a particular table fragment.)

Multiple Publishers with Multiple Subscribers
The replication model in which some or all of the servers participating in data
replication play the role of the publisher and the subscriber is known as multiple
publishers with multiple subscribers. In most cases, this model includes several
distributors that are usually placed at each publisher (see Figure 18-3).

Figure 18-3 Multiple publishers with multiple subscribers

Publisher/
distributor/
subscriber

Publisher/
distributor/
subscriber

Publisher/
distributor/
subscriber

Ch18.indd 501 1/25/12 10:19:48 AM

 5 0 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

This model can be implemented using merge replication only, because publications
are modified at each publishing server. (The only other way to implement this model is
to use the distributed transactions with two-phase commit.)

Managing Replication
All servers that participate in a replication must be registered. (Server registration is
described in Chapter 3.) After registering servers, the distribution server, publishing
server(s), and subscription server(s) must be set up. The following sections describe
configuration of these processes using the corresponding wizards.

Note
You should create a dedicated account for replication instead of using the administrator account.

Configuring the Distribution and Publication Servers
Before you install publishing databases, you must install the distribution server and
configure the distribution database. You can set up a distribution server by using the
Configure Distribution Wizard. This wizard allows you to configure the distributor and
the distribution database and to enable publisher(s). With the wizard you can

Configure your server to be a distributor that can be used by other publishersCc

Configure your server to be a publisher that acts as its own distributorCc

Configure your server to be a publisher that uses another server as its distributorCc

This section shows a scenario for data replication of the sample database using the
following computers: NTB00716 and NTB01101. The former will be used as a publisher
and distributor, while the latter will be the subscriber. The first step is to use the Configure
Distribution Wizard to set up the NTB00716 server to be a publisher that acts as its own
distributor. (Additionally, the wizard will create the distribution database.)

Note
You can also use the system procedures sp_adddistributor and sp_adddistributiondb to set up the
distribution server and the distribution database. sp_adddistributor sets up the distribution server by creating
a new row in the sysservers system table. sp_adddistributiondb creates a new distribution database and
installs the distribution schema.

Ch18.indd 502 1/25/12 10:19:48 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 5 0 3

To start the wizard, start SQL Server Management Studio, expand the instance,
right-click Replication, and select Configure Distribution. The Configure Distribution
Wizard appears. On the Distributor page, choose the NTB00716 server as the
distribution server and click Next. After that, select the folder in which snapshots
from publisher(s) that use the distribution server will be stored and click Next. On
the Distribution Database page, select the name of the distribution database and log
files and click Next. On the Publishers page, enable the publisher(s) (the NTB00716
server in this example), choose whether to finish the configuration process immediately
or generate the script file to start the distribution configuration later, and then click
Next. Figure 18-4 shows the summary of all steps that you have made to configure the
NTB00716 server as the distributor and publisher.

Note
The existing publishing and distribution on a server can be disabled using the Disable Publishing and
Distribution Wizard. To start the wizard, right-click Replication and choose Disable Publishing and Distribution.

Figure 18-4 Complete the Wizard page for the distributor and publisher(s)

Ch18.indd 503 1/25/12 10:19:48 AM

 5 0 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

After you configure the distribution and publishing servers, you must set up the
publishing process. This is done with the New Publication Wizard, explained in the
following section.

Setting Up Publications
You can use the New Publication Wizard to

Select the data and database objects you want to replicateCc

Filter the published data so the subscribers receive only the data they needCc

Assume that you want to publish the data of the employee table from the
NTB00716 server to the NTB01101 server using the snapshot replication type. In this
case, the entire employee table is the publication unit.

To create a publication, expand the server node of the publishing server (NTB00716),
expand the Replication folder, right-click the Local Publications folder, and choose
New Publication. The New Publication Wizard appears. On the first two pages, choose
the database to publish (sample) and the publication type (in this case, the snapshot
publication) and click Next. Then select at least one object for publication and click
Next (in this example, select the entire employee table). The New Publication Wizard
also allows you to filter (horizontally or vertically) the data that you want to publish. The
snapshot of the selected data can be initialized immediately and/or scheduled to run
periodically. (For our example, we will create the snapshot immediately.)

On the Agent Security page, specify the security settings for the Snapshot agent. To
do this, click the Security Settings button and type the Windows user account under
which the Snapshot agent process will run. (The user account must be entered in the
form domain_name\account_name.) Click Next. In the Wizard Actions page, you can
decide to finish the configuration process immediately or generate the script file to start
the publication creation later. Figure 18-5 shows the summary of all steps made to set
up the employee table as a publication unit.

The last step is to configure the subscription servers, discussed in the following
section.

Configuring Subscription Servers
A task that concerns subscribers but has to be performed at the publisher is enabling
the publisher to subscribe. Use SQL Server Management Studio to enable a subscriber
at the publishing server. First expand the publishing server, expand Replication, right-
click Local Subscriptions, and choose New Subscriptions. The New Subscription
Wizard appears. You can use the wizard to

Ch18.indd 504 1/25/12 10:19:48 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

 C h a p t e r 1 8 : D a t a R e p l i c a t i o n 5 0 5

Create one or more subscriptions to a publicationCc

Specify where and when to run agents that synchronize the subscriptionCc

On the Publication page, choose the publication for which you want to create one
or more subscriptions and then click Next. (In this example, choose the replicate_
employee publication, which was already generated with the New Publication Wizard.)

On the Distribution Agent Location page, you must choose between the push and
pull subscriptions. A push subscription means that the synchronization of subscriptions
is administered centrally. For this replication, check Run All Agents at the Distributor.
To specify the pull subscription, check Run Each Agent at Its Subscriber. Click Next.
(Because our subscription is pushed from the central publisher, we choose the first option.)

On the Subscribers page, you must specify all subscription servers. If the subscription
servers have not been added, click Add SQL Server Subscriber, select all servers to
which data will be replicated, and click Next. Before you finish the process, the wizard
shows you the summary of the subscription configuration.

Figure 18-5 Complete the Wizard page for the publication unit

Ch18.indd 505 1/25/12 10:19:48 AM

 5 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 18

Summary
Data replication is the preferred method for data distribution because it is cheaper than
using distributed transactions. The Database Engine allows you to choose one of four
possible replication types (snapshot, transactional, merge, and peer-to-peer replication),
depending on the physical model you use. Theoretically, any replication model can use
any of the replication types, although each (basic) model has a corresponding type that
is used in most cases.

A publication is the smallest unit of replication. A single database can have many
publications with different replication types. (Otherwise, each publication corresponds
to only one database.)

To configure the replication process, you must first set up the distribution server and
the distribution system database and configure the publishing server(s). In the next
step, you have to define one or more publications. Finally, you have to configure the
subscription server(s). The Database Engine supports these steps with three different
wizards: the Configure Distribution Wizard, New Publication Wizard, and New
Subscription Wizard.

The next two chapters discuss the overall performance of the system. Chapter 19
explains how the query optimizer of the Database Engine works, while Chapter 20
discusses performance tuning. These chapters close the third part of the book.

Exercises
 E.18.1

Why do you need a primary key for data replication? Which replication type requires a
primary key?

 E.18.2

How can you limit network traffic and/or database size?

 E.18.3

Update conflicts are not recommended. How can you minimize them?

 E.18.4

When does the system use the Log Reader agent, the Merge agent, and the Snapshot
agent, respectively?

Ch18.indd 506 1/25/12 10:19:48 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Chapter 19

In This Chapter

c Phases of Query Processing
c How Query Optimization

Works

c Tools for Editing the
Optimizer Strategy

c Optimization Hints

Query Optimizer

19-Ch19.indd 507 2/6/12 12:45:01 PM

 5 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

The question that generally arises when the Database Engine (or any other
relational database system) executes a query is how the data that is necessary
for the query can be accessed and processed in the most efficient manner.

The component of a database system that is responsible for the processing is called the
query optimizer.

The task of the query optimizer (or just optimizer) is to consider a variety of possible
execution strategies for querying the data in relation to a given query and to select the
most efficient strategy. The selected strategy is called the execution plan of the query.
The optimizer makes its decisions using considerations such as how big the tables are
that are involved in the query, what indices exist, and what Boolean operator(s) (AND,
OR, NOT) are used in the WHERE clause. Generally, these considerations are called
statistics.

The beginning of the chapter introduces the phases of query processing and then
explains in depth how the third phase, query optimization, works. This lays the foundation
for the practical examples presented in the subsequent sections. Following that, you are
introduced to the different tools that you can use to edit how the query optimizer does
its work. The end of the chapter presents optimization hints that you can give to the
optimizer in special situations where it cannot find the optimal solution.

Phases of Query Processing
The task of the optimizer is to work out the most efficient execution plan for a given
query. This task is done using the following four phases (see Figure 19-1).

Figure 19-1 Phases in processing a query

Phase 1 : Parsing

SELECT emp_Iname, emp_fname FROM employee
WHERE emp_no = 28559

Phase 2 : Query Compilation

Phase 3 : Query Optimization

Phase 4 : Query Execution

emp_Iname

Moser

emp_fname

Sybill

19-Ch19.indd 508 2/6/12 12:45:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 0 9

Note
This chapter refers to using the query optimizer for queries in SELECT statements. The query optimizer is also
used for INSERT, UPDATE, and DELETE statements. The INSERT statement can contain a subquery, while the
UPDATE and DELETE statements often have a WHERE clause that has to be processed.

Parsing1. The query’s syntax is validated and the query is transformed in a
tree. After that, the validation of all database objects referenced by the query is
checked. (For instance, the existence of all columns referenced in the query is
checked and their IDs are determined.) After the validation process, the final
query tree is formed.
Query compilation2. The query tree is compiled by the query optimizer.
Query optimization3. The query optimizer takes as input the compiled query
tree generated in the previous step and investigates several access strategies before
it decides how to process the given query. To find the most efficient execution
plan, the query optimizer first makes the query analysis, during which it searches
for search arguments and join operations. The optimizer then selects which
indices to use. Finally, if join operations exist, the optimizer selects the join order
and chooses one of the join processing techniques. (These optimization phases are
discussed in detail in the following section.)
Query execution4. After the execution plan is generated, it is permanently stored
and executed.

Note
For some statements, parsing and optimization can be avoided if the Database Engine knows that there is only
one viable plan. (This process is called trivial plan optimization.) An example of a statement for which a trivial
plan optimization can be used is the simple form of the INSERT statement.

How Query Optimization Works
As you already know from the previous section, the query optimization phase can be
divided into the following phases:

Query analysisCc

Index selectionCc

Join order selectionCc

Join processing techniquesCc

The following sections describe these phases. Also, at the end of this section, plan
caching will be introduced.

19-Ch19.indd 509 2/6/12 12:45:01 PM

 5 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Query Analysis
During the query analysis, the optimizer examines the query for search arguments, the
use of the OR operator, and the existence of join criteria, in that order. Because the use
of the OR operator and the existence of join criteria are self-explanatory, only search
arguments are discussed.

A search argument is the part of a query that restricts the intermediate result set of
the query. The main purpose of search arguments is to allow the use of existing indices
in relation to the given expression. The following are examples of search arguments:

emp_fname = 'Moser'Cc

salary >= 50000Cc

emp_fname = 'Moser' AND salary >= 50000Cc

There are several expression forms that cannot be used by the optimizer as search
arguments. To the first group belongs all expressions with the NOT (<>) operator. Also,
if you use the expression on the left side of the operator, the existing expression cannot
be used as a search argument.

The following are examples of expressions that are not search arguments:

NOT IN ('d1', 'd2')Cc

emp_no <> 9031Cc

budget * 0.59 > 55000Cc

The main disadvantage of expressions that cannot be used as search arguments is
that the optimizer cannot use existing indices in relation to the expression to speed
up the performance of the corresponding query. In other words, the only access the
optimizer uses in this case is the table scan.

Index Selection
The identification of search arguments allows the optimizer to decide whether one or more
existing indices will be used. In this phase, the optimizer checks each search argument to
see if there are indices in relation to the corresponding expression. If an index exists, the
optimizer decides whether or not to use it. This decision depends mainly on the selectivity
of the corresponding expression. The selectivity of an expression is defined as the ratio of
the number of rows satisfying the condition to the total number of rows in the table.

19-Ch19.indd 510 2/6/12 12:45:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 1 1

The optimizer checks the selectivity of an expression with the indexed column by
using statistics that are created in relation to the distribution of values in a column.
The query optimizer uses this information to determine the optimal query plan by
estimating the cost of using an index to execute the query.

The following sections discuss in detail selectivity of an expression with the indexed
column and statistics. (Because statistics exist in relation to both indices and columns,
they are discussed separately in two sections.)

Note
The Database Engine automatically creates (index and column) statistics if the database option called
AUTO_CREATE_STATISTICS is activated. (This option is described later in this chapter.)

Selectivity of an Expression with the Indexed Column
As you already know, the optimizer uses indices to improve query execution time.
When you query a table that doesn’t have indices, or if the optimizer decides not to
use an existing index, the system performs a table scan. During the table scan, the
Database Engine sequentially reads the table’s data pages to find the rows that belong
to the result set. Index access is an access method in which the database system reads and
writes data pages using an existing index. Because index access significantly reduces the
number of I/O read operations, it often outperforms table scan.

The Database Engine uses a nonclustered index to search for data in one of two
ways. If you have a heap (a table without a clustered index), the system first traverses
the nonclustered index structure and then retrieves a row using the row identifier. If
you have a clustered table, however, the traversal of the nonclustered index structure
is followed by the traversal of the index structure of the table’s clustered index. On
the other hand, the use of a clustered index to search for data is always unique: the
Database Engine starts from the root of the corresponding B+-tree and usually after
three or four read operations reaches the leaf nodes, where the data is stored. For
this reason, the traversing of the index structure of a clustered index is almost always
significantly faster than the traversing of the index structure of the corresponding
nonclustered index.

From the preceding discussion, you can see that the answer to which access method
(index scan or table scan) is faster isn’t straightforward and depends on the selectivity
and the index type.

Tests that I performed showed that a table scan often starts to perform better than
a nonclustered index access when at least 10 percent of the rows are selected. In this
case, the optimizer’s decision of when to switch from nonclustered index access to

19-Ch19.indd 511 2/6/12 12:45:01 PM

 5 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

a table scan must not be correct. (If you think that the optimizer forces a table scan
prematurely, you can use the INDEX query hint to change its decision, as discussed
later in this chapter.)

For several reasons, the clustered index usually performs better than the nonclustered
index. When the system scans a clustered index, it doesn’t need to leave the B+-tree
structure to scan data pages, because the pages already exist at the leaf level of the tree.
Also, a nonclustered index requires more I/O operations than a corresponding clustered
index. Either the nonclustered index needs to read data pages after traversing the
B+-tree or, if a clustered index for another table’s column(s) exists, the nonclustered
index needs to read the clustered index’s B+-tree structure.

Therefore, you can expect a clustered index to perform significantly better than a
table scan even when selectivity is poor (that is, the percentage of returned rows is high,
because the query returns many rows). The tests that I performed showed that when the
selectivity of an expression is 75 percent or less, the clustered index access is generally
faster than the table scan.

Index Statistics
Index statistics are generally created when an index for the particular column(s) is
created. The creation of index statistics for an index means that the Database Engine
creates a histogram based on up to 200 values of the column. (Therefore, up to 199
intervals are built.) The histogram specifies, among other things, how many rows
exactly match each interval, the average number of rows per distinct value inside the
interval, and the density of values.

Note
Index statistics are always created for one column. If your index is a composite (multicolumn) index, the system
generates statistics for the first column in the index.

If you want to create index statistics explicitly, you can use the following tools:

sp_createstatsCc system procedure
SQL Server Management StudioCc

The sp_createstats system procedure creates single-column statistics for all columns
of all user tables in the current database. The new statistic has the same name as the
column where it is created.

To use SQL Server Management Studio for index statistics creation, expand the
server, expand the Databases folder, expand the database, expand the Tables folder,

19-Ch19.indd 512 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 1 3

expand the table, right-click Statistics, and choose New Statistics. The New Statistics
on Table dialog box appears. In the dialog box, specify first the name for the new
statistics. After that, click the Add button, select column(s) of the table to which to add
the statistics, and click OK. Finally, click OK in the New Statistics on Table dialog box.

As the data in a column changes, index statistics become out of date. The out-of-date
statistics can significantly influence the performance of the query. The Database Engine
can automatically update index statistics if the database option AUTO_UPDATE_
STATISTICS is activated (set to ON). In that case, any out-of-date statistics required
by a query for optimization are automatically updated during query optimization.

There is also another database option, AUTO_CREATE_STATISTICS, that
builds any missing statistics required by a query for optimization. Both options can be
activated (or deactivated) using either the ALTER DATABASE statement or SQL
Server Management Studio.

Column Statistics
As you already know from the previous section, the Database Engine creates statistics
for every existing index. The system can create statistics for nonindexed columns
too. These statistics are called column statistics. Together with index statistics, column
statistics are used to optimize execution plans. The Database Engine creates statistics
for a nonindexed column that is a part of the condition in the WHERE clause.

There are several situations in which the existence of column statistics can help the
optimizer to make the right decision. One of them is when you have a composite index
on two or more columns. For such an index, the system generates statistics only for the
first column in the index. The existence of column statistics for the second column (and
all other columns) of the composite index can help the optimizer to choose the optimal
execution plan.

The Database Engine supports two catalog views in relation to column statistics
(these views can be used to edit the information concerning index statistics, too):

sys.statsCc

sys.stats_columnsCc

The sys.stats view contains a row for each statistic of a table or a view. Besides the
name column, which specifies the name of the statistics, this catalog view has, among
others, two other columns:

auto_created Cc Statistics created by the optimizer
user_created Cc Statistics explicitly created by the user

19-Ch19.indd 513 2/6/12 12:45:02 PM

 5 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

The sys.stats_columns view contains additional information concerning columns
that are part of the sys.stats view. (To ascertain this additional information, you have to
join both views.)

Join Order Selection
Generally, the order in which two or more joined tables are written in the FROM
clause of a SELECT statement doesn’t influence the decision made by the optimizer in
relation to their processing order.

As you will see in the next section, many different factors influence the decision of
the optimizer regarding which table will be accessed first. On the other hand, you can
influence the join order selection by using the FORCE ORDER hint (discussed in
detail later in the chapter).

Join Processing Techniques
The join operation is the most time-consuming operation in query processing. The
Database Engine supports the following three different join processing techniques, so
the optimizer can choose one of them depending on the statistics for both tables:

Nested loopCc

Merge joinCc

Hash joinCc

The following subsections describe these techniques.

Nested Loop
Nested loop is the processing technique that works by “brute force.” In other words, for
each row of the outer table, each row from the inner table is retrieved and compared.
The pseudo-code in Algorithm 19.1 demonstrates the nested loop processing technique
for two tables.

 AlgOrITHm 19.1

(A and B are two tables.)

for each row in the outer table A do:

 read the row

 for each row in the inner table B do:

 read the row

 if A.join_column = B.join_column then

19-Ch19.indd 514 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 1 5

 accept the row and add it to the resulting set

 end if

 end for

end for

In Algorithm 19.1, every row selected from the outer table (table A) causes the
access of all rows of the inner table (table B). After that, the comparison of the values
in the join columns is performed and the row is added to the result set if the values in
both columns are equal.

The nested loop technique is very slow if there is no index for the join column of the
inner table. Without such an index, the Database Engine would have to scan the outer
table once and the inner table n times, where n is the number of rows of the outer table.
Therefore, the query optimizer usually chooses this method if the join column of the
inner table is indexed, so the inner table does not have to be scanned for each row in the
outer table.

Merge Join
The merge join technique provides a cost-effective alternative to constructing an index
for nested loop. The rows of the joined tables must be physically sorted using the values
of the join column. Both tables are then scanned in order of the join columns, matching
the rows with the same value for the join columns. The pseudo-code in Algorithm 19.2
demonstrates the merge join processing technique for two tables.

 AlgOrITHm 19.2

a. Sort the outer table A in ascending order using the join column

b. Sort the inner table B in ascending order using the join column

for each row in the outer table A do:

 read the row

 for each row from the inner table B with a value less than or equal

to the join column do:

 read the row

 if A.join_column = B.join_column then

 accept the row and add it to the resulting set

 end if

 end for

end for

The merge join processing technique has a high overhead if the rows from both
tables are unsorted. However, this method is preferable when the values of both join
columns are sorted in advance. (This is always the case when both join columns are
primary keys of corresponding tables, because the Database Engine creates by default
the clustered index for the primary key of a table.)

19-Ch19.indd 515 2/6/12 12:45:02 PM

 5 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Hash Join
The hash join technique is usually used when there are no indices for join columns.
In the case of the hash join technique, both tables that have to be joined are considered
as two inputs: the build input and the probe input. (The smaller table usually represents
the build input.) The process works as follows:

The value of the join column of a row from the build input is stored in a hash 1.
bucket depending on the number returned by the hashing algorithm.
Once all rows from the build input are processed, the processing of the rows from 2.
the probe input starts.
Each value of the join column of a row from the probe input is processed using 3.
the same hashing algorithm.
The corresponding rows in each bucket are retrieved and used to build the result set.4.

Note
The hash join technique requires no index. Therefore, this method is highly applicable for ad hoc queries, where
indices cannot be expected. Also, if the optimizer uses this processing technique, it could be a hint that you
should create additional indices for one or both join columns.

Plan Caching
The Database Engine uses a set of memory caches as a storage space for data and for
execution plans of queries. The first time such a query is executed, the compiled version
of the query is stored in the memory. (The part of memory used to store compiled
query plans is called the plan cache.) When the same query is executed for the second
time, the Database Engine checks whether an existing plan is stored in the plan cache.
If so, the plan is used, and the recompilation of the query does not take place.

Note
The process of plan caching for stored procedures is analogous.

Influencing Execution Plans
There are several ways in which you can influence execution plans. This section
describes two of them:

The Cc optimize for ad hoc workloads option
DBCC FREEPROCCACHECc

19-Ch19.indd 516 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 1 7

optimize for ad hoc workloads is an advanced configuration option that prevents
the system from placing an execution plan in cache on the first execution of the
corresponding statement. In other words, the Database Engine places only a stub of the
execution plan instead of the entire plan. This stub contains the minimum information,
which is necessary for the system to find matches with the future queries. The idea
behind this is to reduce the uncontrolled growth of the plan cache. (Keep in mind
that the execution plan for the simple query with a couple of indexed columns in the
SELECT list needs about 20KB of memory. The plan cache for complicated queries
can be significantly larger.)

DBCC FREEPROCCACHE removes all plans from the plan cache. This command
can be useful for testing purposes. In other words, if you want to determine which plans
are cached (in other words, when particular query plans are reused), you can clear the
cache using this command. (You can also use the command to remove a specific plan
from the plan cache by specifying the parameter for the plan handle.)

Displaying Information Concerning the Plan Cache
To display information concerning the plan cache, you can use the following dynamic
management views:

sys.dm_exec_cached_plansCc

sys.dm_exec_query_statsCc

sys.dm_exec_sql_textCc

All these views will be described in the section “Dynamic Management Views and
Query Optimizer” later in the chapter.

Tools for Editing the Optimizer Strategy
The Database Engine supports several tools that enable you to edit what the query
optimizer is doing. You can use the following tools, among others:

SET statement (to display textual or XML execution plans)Cc

Management Studio (to display graphical execution plans)Cc

Dynamic management views and functionsCc

SQL Server Profiler (discussed in detail in Chapter 20)Cc

The following sections describe the first three tools.

19-Ch19.indd 517 2/6/12 12:45:02 PM

 5 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Note
Almost all examples in this chapter use the AdventureWorks database. If your system doesn’t contain this
database, the introductory part of the book describes how you can download it.

SET Statement
To understand the different options of the SET statement, you have to know that there
are three different forms for how the execution plan of a query can be displayed:

Textual formCc

Using XMLCc

Graphical formCc

The first two forms use the SET statement, so these two forms are discussed in the
following subsections. (The graphical form of execution plans is discussed a bit later, in
the section “Management Studio and Graphical Execution Plans.”)

Textual Execution Plan
The phrase “textual execution plan” means that the execution plan of a query is displayed
in text form. Therefore, the output of a textual execution plan is returned in the form
of rows. The Database Engine uses vertical bars to show the dependencies between the
operations taking place. Textual execution plans can be displayed using the following
options of the SET statement:

SHOWPLAN_TEXTCc

SHOWPLAN_ALLCc

Users running a query can display the textual execution plan for the query by activating
(setting the option to ON) either SHOWPLAN_TEXT or SHOWPLAN_ALL,
before they enter the corresponding SELECT statement. The SHOWPLAN_ALL
option displays the same detailed information about the selected execution plan for
the query as SHOWPLAN_TEXT with the addition of an estimate of the resource
requirements for that statement.

Example 19.1 shows the use of the SET SHOWPLAN_TEXT option.

19-Ch19.indd 518 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 1 9

Note
Once you activate the SET SHOWPLAN_TEXT option, all consecutive Transact-SQL statements will not be executed
until you deactivate this option with SET SHOWPLAN_TEXT OFF. (The SET SHOWPLAN_XML statement is another
statement with the same property.)

 ExAmPlE 19.1

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM HumanResources.Employee e JOIN Person.Address a

 ON e.BusinessEntityID = a.AddressID

 AND e.BusinessEntityID = 10;

GO

SET SHOWPLAN_TEXT OFF;

The following textual plan shows the output of Example 19.1:

 |--Nested Loops(Inner Join)

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[Person].[Address].[PK_Address_AddressID] AS

[a]), SEEK:([a].[AddressID]=(10)) ORDERED FORWARD)

 |--Compute Scalar

(DEFINE:([e].[OrganizationLevel]=[AdventureWorks].[HumanResources]

.[Employee].[OrganizationLevel] as [e].[OrganizationLevel]))

 |--Compute Scalar

(DEFINE:([e].[OrganizationLevel]=[AdventureWorks].[HumanResources]

.[Employee].[OrganizationNode] as [e].[OrganizationNode].GetLevel()))

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[HumanResources].[Employee].[PK_Employee_

BusinessEntityID] AS [e]), SEEK:([e].[BusinessEntityID]=(10)) ORDERED

FORWARD)

Before we discuss the execution plan of Example 19.1, you need to understand how
to read its textual form. The indentation of operators determines the operator execution:
the operator that is indented the furthest is executed first. If two or more operators have
the same indentation, they are processed from the top downward. Now, if you take a look
at the output of Example 19.1, you will see that there are three operators, Nested Loops,
Compute Scalar, and Clustered Index Seek. (All operators are preceded by a bar, |.) The
Clustered Index Seek operator for the Employee table is executed first. After that, the
Compute Scalar operator is applied to the Employee table and the Clustered Index
Seek operator is applied to the Address table. At the end, both tables (Employee and
Address) are joined using the nested loop processing techniques.

19-Ch19.indd 519 2/6/12 12:45:02 PM

 5 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Note
The Compute Scalar operator evaluates an expression to produce a computed scalar value. This may then be
referenced elsewhere in the query, as in the case above. Also, each Clustered Index Seek operator seeks for the rows
using the corresponding clustered indices of the tables.

Note
Index access has two forms: index scan and index seek. Index scan processes the entire leaf level of an index tree,
while index seek returns index values (or rows) from one or more ranges of an index.

XML Execution Plan
The phrase “XML execution plan” means that the execution plan of a query is displayed
as an XML document. (For more information about XML, see Chapter 26.) The most
important advantage of using XML execution plans is that such plans can be ported
from one system to another, allowing you to use it in another environment. (How to
save execution plans in a file is explained a bit later.)

The SET statement has two options in relation to XML:

SHOWPLAN_XMLCc

STATISTICS XMLCc

The SHOWPLAN_XML option returns information as a set of XML documents.
In other words, if you activate this option, the Database Engine returns detailed
information about how the statements are going to be executed in the form of a well-
formed XML document, without executing them. Each statement is reflected in
the output by a single document. Each document contains the text of the statement,
followed by the details of the execution steps.

Example 19.2 shows how the SHOWPLAN_XML option can be used.

 ExAmPlE 19.2

SET SHOWPLAN_XML ON;

GO

USE AdventureWorks;

SELECT * FROM HumanResources.Employee e JOIN Person.Address a

 ON e.BusinessEntityID = a.AddressID

 AND e.BusinessEntityID = 10;

GO

SET SHOWPLAN_XML OFF;

19-Ch19.indd 520 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 2 1

The main difference between the SHOWPLAN_XML and STATISTICS XML
options is that the output of the latter is generated at run time. For this reason,
STATISTICS XML includes the result of the SHOWPLAN_XML option as well as
additional run-time information.

To save an XML execution plan in a file, in the Results pane, right-click the SQL
Server XML Showplan that contains the query plan and choose Save Results As. In the
Save <Grid or Text> Results dialog box, in the Save As Type box, click All Files (*.*).
In the File Name box, provide a name with the .sqlplan suffix, and then click Save.

To open a saved XML execution plan, choose File | Open in Management Studio
and then click File. In the Open File dialog box, set Files of Type to Execution Plan
Files (*.sqlplan) to generate a filtered list of saved XML plans. Select the plan and click
Open.

Note
You can also open the saved execution plan by double-clicking it. After that, the plan will be opened in SQL
Server Management Studio and its graphical form will be displayed.

Other Options of the SET Statement
The SET statement has many other options, which are used in relation to locking,
transaction, and date/time statements. Concerning statistics, the Database Engine
supports the following three options of the SET statement:

STATISTICS IOCc

STATISTICS TIMECc

STATISTICS PROFILECc

The STATISTICS IO option causes the system to display statistical information
concerning the amount of disk activity generated by the query—for example, the
number of read and write I/O operations processed with the query. The STATISTICS
TIME option causes the system to display the processing, optimization, and execution
time of the query.

When the STATISTICS PROFILE option is activated, each executed query returns
its regular result set, followed by an additional result set that shows the profile of the
query execution.

Example 19.3 shows the use of the STATISTICS PROFILE option of the SET
statement.

19-Ch19.indd 521 2/6/12 12:45:02 PM

 5 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 ExAmPlE 19.3

SET STATISTICS PROFILE ON;

GO

USE AdventureWorks;

SELECT * FROM HumanResources.Employee e JOIN Person.Address a

 ON e.BusinessEntityID = a.AddressID

 AND e.BusinessEntityID = 10;

GO

SET STATISTICS PROFILE OFF;

The result of Example 19.3, which is not shown because of its length, contains the
output of the SET STATISTICS IO and SET SHOWPLAN_ALL statements.

management Studio and graphical Execution Plans
A graphical execution plan is the best way to display the execution plan of a query if
you are a beginner or want to take a look at different plans in a short time. This form of
display uses icons to represent operators in the query plan.

As an example of how graphical execution plans can be initiated and what they look
like, Figure 19-2 shows the graphical execution plan for the query in Example 19.1.
To display an execution plan in the graphical form, write the query in Query Editor
of SQL Server Management Studio and click the Display Estimated Execution Plan
button in the toolbar of Management Studio. (The alternative way is to choose Query |
Display Estimated Execution Plan.)

If you take a look at Figure 19-2, you will see that there is one icon for each operator
of the execution plan. If you move the mouse over one of the icons, its detailed information
appears, including the estimated I/O and CPU costs, estimated number of rows and
their size, and the cost of the operator. The arrows between the icons represent the
data flow. (You can also click an arrow, in which case the related information, such as
estimated number of rows and estimated row size, will be displayed.)

To “read” the graphical execution plan of a query, you have to follow the flow of
information from right to left and from top to bottom. (It is analogous to the flow of
information in a textual execution plan.)

Note
The thickness of arrows in the graphical execution plan is related to the number of rows returned by the
corresponding operator. The thicker the arrow, the more rows that will be returned.

19-Ch19.indd 522 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 2 3

As its name suggests, clicking the Display Estimated Execution Plan button displays
the estimated plan of the query, without executing it. There is another button, Include
Actual Execution Plan, that executes the query and additionally displays its execution
plan. The actual execution plan contains additional information in relation to the
estimated one, such as the actual number of processed rows and the actual number of
executions for each operator.

Examples of Execution Plans
This section presents several queries related to the AdventureWorks database, together
with their execution plans. These examples demonstrate the topics already discussed,
enabling you to see how the query optimizer works in practice.

Example 19.4 introduces a new table (new_addresses) in the sample database.

Figure 19-2 Graphical execution plan for the query in Example 19.1

19-Ch19.indd 523 2/6/12 12:45:02 PM

 5 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 ExAmPlE 19.4

USE sample;

SELECT * into new_addresses

 FROM AdventureWorks.Person.Address;

GO

CREATE INDEX i_stateprov on new_addresses(StateProvinceID)

Example 19.4 copies the content of the Address table from the Person schema of
the AdventureWorks database into the new_addresses table of the sample database.
This is necessary because the former table contains several indices, which hinders
direct use of the Address table of the AdventureWorks database to show specific
properties of the query optimizer. (Besides that, the example creates an index on the
StateProvinceID column of that table.)

Example 19.5 shows a query with high selectivity and shows the textual plan that the
optimizer chooses in such a case.

 ExAmPlE 19.5

-- high selectivity

SET SHOWPLAN_TEXT ON;

GO

USE sample;

SELECT * FROM new_addresses a

 WHERE a.StateProvinceID = 32;

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.5 is

 |--Nested Loops(Inner Join, OUTER REFERENCES:([Bmk1000]))

 |--Index Seek(OBJECT:([sample].[dbo].[new_addresses].[i_stateprov]

AS [a]), SEEK:([a].[StateProvinceID]=(32)) ORDERED FORWARD)

 |--RID Lookup(OBJECT:([sample].[dbo].[new_addresses] AS [a]),

 SEEK:([Bmk1000]=[Bmk1000]) LOOKUP ORDERED FORWARD)

Note
The Nested Loops operator in the output is displayed even though the query in Example 19.5 accesses only one
table. Since SQL Server 2005, this operator is always shown when there are two operators that are “joined”
together (like the RID Lookup and Index Seek operators in Example 19.5).

19-Ch19.indd 524 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 2 5

The filter in Example 19.5 selects only one row from the new_addresses table.
(The total count of rows in this table is 19614.) For this reason, the selectivity of the
expression in the WHERE clause is very high (1/19614). In such a case, as you can see
from the output of Example 19.5, the existing index on the StateProvinceID column
is used by the optimizer.

Example 19.6 shows the same query as in Example 19.5, but with another filter.

 ExAmPlE 19.6

-- low selectivity

SET SHOWPLAN_TEXT ON;

GO

USE sample;

SELECT * FROM new_addresses a

 WHERE a.StateProvinceID = 9;

GO

SET SHOWPLAN_TEXT OFF;

The textual plan of Example 19.6 is

 |--Table Scan(OBJECT:([sample].[dbo].[new_addresses] AS [a]),

 WHERE:([sample].[dbo].[new_addresses].[StateProvinceID] as [a].

[StateProvinceID]=(9)))

Although the query in Example 19.6 differs from the query in Example 19.5 only
by a value on the right side of the condition in the WHERE clause, the execution plan
that the optimizer chooses differs significantly. In this case, the existing index won’t
be used, because the selectivity of the filter is low. (The ratio of the number of rows
satisfying the condition to the total number of rows in the table is 4564/19614 = 0.23,
or 23 percent.)

Example 19.7 shows the use of the clustered index.

 ExAmPlE 19.7

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM HumanResources.Employee

 WHERE HumanResources.Employee.BusinessEntityID = 10;

GO

SET SHOWPLAN_TEXT OFF;

19-Ch19.indd 525 2/6/12 12:45:02 PM

 5 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

The textual output of Example 19.7 is

 |--Compute Scalar

(DEFINE:([AdventureWorks].[HumanResources].[Employee].[OrganizationLevel]

=[AdventureWorks].[HumanResources].[Employee].[OrganizationLevel]))

 |--Compute Scalar

(DEFINE:([AdventureWorks].[HumanResources].[Employee]

.[OrganizationLevel]=[AdventureWorks].[HumanResources].[Employee]

.[OrganizationNode].GetLevel()))

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[HumanResources].[Employee]

.[PK_Employee_BusinessEntityID]),SEEK:([AdventureWorks].[HumanResources]

.[Employee].[BusinessEntityID]=CONVERT_IMPLICIT(int,[@1],0)) ORDERED

FORWARD)

The query in Example 19.7 uses the PK_Employee_BusinessEntityID clustered index.
This clustered index is created implicitly by the system because the BusinessEntityID
column is the primary key of the Employee table. (For the description of the Compute
Scalar operator see Example 19.1.)

Example 19.8 shows the use of the nested loop technique.

 ExAmPlE 19.8

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM HumanResources.Employee e JOIN

 Person.Address a

 ON e.BusinessEntityID = a.AddressID

 AND e.BusinessEntityID = 10;

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.8 is

 |--Nested Loops(Inner Join)

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[Person].[Address].[PK_Address_AddressID] AS

[a]), SEEK:([a].[AddressID]=(10)) ORDERED FORWARD)

 |--Compute Scalar

(DEFINE:([e].[OrganizationLevel]=[AdventureWorks].[HumanResources]

.[Employee].[OrganizationLevel] as [e].[OrganizationLevel]))

19-Ch19.indd 526 2/6/12 12:45:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 2 7

 |--Compute Scalar

(DEFINE:([e].[OrganizationLevel]=[AdventureWorks].[HumanResources]

.[Employee].[OrganizationNode] as [e].[OrganizationNode].GetLevel()))

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[HumanResources].[Employee]

.[PK_Employee_BusinessEntityID] AS [e]),SEEK:([e]

.[BusinessEntityID]=(10)) ORDERED FORWARD)

The query in Example 19.8 uses the nested loop technique even though the join
columns of the tables are at the same time their primary keys. For this reason, one could
expect that the merge join technique would be used. The query optimizer decides to use
nested loop because there is an additional filter (e.EmployeeID = 10) that reduces the
result set of the query to a single row.

Example 19.9 shows the use of the hash join technique.

 ExAmPlE 19.9

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM Person.Address a JOIN Person.StateProvince s

 ON a.StateProvinceID = s.StateProvinceID;

GO

SET SHOWPLAN_TEXT OFF;

The textual output of the query in Example 19.9 is

 |--Hash Match(Inner Join, HASH:([s].[StateProvinceID])=([a].

[StateProvinceID]))

 |--Clustered Index

Scan (OBJECT:([AdventureWorks].[Person].[StateProvince].

[PK_StateProvince_StateProvinceID] AS [s]))

 |--Clustered Index Scan

(OBJECT:([AdventureWorks].[Person].[Address].[PK_Address_AddressID] AS

[a]))

Although both join columns in the ON clause are primary keys of the particular
tables (Address and StateProvince), the query optimizer doesn’t choose the merge join
method. The reason is that all (19,614) rows of the Address table belong to the result
set. In such a case, the use of the hash join method is more beneficial than the other
two processing techniques.

19-Ch19.indd 527 2/6/12 12:45:02 PM

 5 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Dynamic management Views and Query Optimizer
There are many dynamic management views (and functions) that are directly related to
query optimization. In this section, the following DMVs are discussed:

sys.dm_exec_query_optimizer_infoCc

sys.dm_exec_query_planCc

sys.dm_exec_query_statsCc

sys.dm_exec_sql_textCc

sys.dm_exec_text_query_planCc

sys.dm_exec_procedure_statsCc

sys.dm_exec_cached_plansCc

sys.dm_exec_query_optimizer_info
The sys.dm_exec_query_optimizer_info view is probably the most important DMV
in relation to the work of the query optimizer because it returns detailed statistics
about its operation. You can use this view when tuning a workload to identify query
optimization problems or improvements.

The sys.dm_exec_query_optimizer_info view contains three columns: counter,
occurrence, and value. The counter column specifies the name of the optimizer event,
while the occurrence column displays the cumulative number of occurrences of these
events. The value of the value column contains additional information concerning
events. (Not all events deliver a value value.)

Using this view, you can, for example, display the total number of optimizations, the
elapsed time value, and the final cost value to compare the query optimizations of the
current workload and any changes observed during the tuning process.

Example 19.10 shows the use of the sys.dm_exec_query_optimizer_info view.

 ExAmPlE 19.10

USE sample;

SELECT counter, occurrence, value

 FROM sys.dm_exec_query_optimizer_info

 WHERE value IS NOT NULL

 AND counter LIKE 'search 1%';

19-Ch19.indd 528 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 2 9

The result is

counter occurrence value
search 1 117 1

search 1 time 95 0.0120736842105263

search 1 tasks 117 513.982905982906

The counter column displays the phases of the optimization process. Therefore,
Example 19.11 investigates how many times optimization Phase 1 is executed. (There
are three optimization phases, Phase 0, Phase 1, and Phase 2, which are specified by the
values search 0, search 1, and search 2, respectively.)

Note
Because of its complexity, the optimization process is broken into three phases. The first phase (Phase 0)
considers only nonparallel execution plans. If the cost of Phase 0 isn’t optimal, Phase 1 will be executed, in which
both nonparallel plans and parallel plans are considered. Phase 2 takes into account only parallel plans.

sys.dm_exec_query_plan
As you already know, execution plans for batches and Transact-SQL statements are
placed in the cache. That way, they can be used anytime by the optimizer. You can
examine the cache using several DMVs. One of these is the sys.dm_exec_query_plan
view, which returns all execution plans that are stored in the cache of your system. (The
execution plans are displayed in XML format.)

Note
Books Online contains several useful examples of this DMV.

Each query plan stored in the cache is identified by a unique identifier called a
plan handle. The sys.dm_exec_query_plan view requires a plan handle to retrieve
the execution plan for a particular Transact-SQL query or batch. This handle can be
displayed using the sys.dm_exec_query_stats DMV, which is discussed next.

19-Ch19.indd 529 2/6/12 12:45:03 PM

 5 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

sys.dm_exec_query_stats
The sys.dm_exec_query_stats view returns aggregate performance statistics for cached
query plans. The view contains one row per query statement within the cached plan,
and the lifetime of the rows is tied to the plan itself.

Example 19.11 shows the use of the sys.dm_exec_query_stats view.

 ExAmPlE 19.11

SELECT ecp.objtype AS Object_Type ,

(SELECT t. text FROM sys.dm_exec_sql_text(qs.sql_handle) AS t) AS

 Adhoc_Batch ,qs. execution_count AS Counts ,

qs. total_worker_time AS Total_Worker_Time ,

(qs. total_worker_time / qs. execution_count) AS Avg_Worker_Time ,

(qs. total_physical_reads / qs. execution_count) AS Avg_Physical_Reads ,

(qs. total_logical_writes / qs. execution_count) AS Avg_Logical_Writes ,

(qs. total_logical_reads / qs. execution_count) AS Avg_Logical_Reads ,

qs. total_clr_time AS Total_CLR_Time ,

(qs. total_clr_time / qs. execution_count) AS Avg_CLR_Time ,

qs. total_elapsed_time AS Total_Elapsed_Time ,

(qs. total_elapsed_time / qs. execution_count) AS Avg_Elapsed_Time ,

qs. last_execution_time AS Last_Exec_Time ,

qs. creation_time AS Creation_Time

 FROM sys.dm_exec_query_stats AS qs

 JOIN sys.dm_exec_cached_plans ecp ON qs.plan_handle = ecp.plan_handle

 ORDER BY Counts DESC;

Example 19.11 joins the sys.dm_exec_query_stats and sys.dm_exec_cached_plans
views to return execution plans for all cached plans, which are ordered by the count of
their execution times.

sys.dm_exec_sql_text and sys.dm_exec_text_query_plan
The previous view, sys.dm_exec_query_stats, can be used with several other DMVs
to display different properties of queries. In other words, each DMV that needs the
plan handle to identify the query will be “joined” with the sys.dm_exec_query_stats
view to display the required information. One such view is sys.dm_exec_sql_text. This
view returns the text of the SQL batch that is identified by the specified handle. Books
Online shows a very useful example that “joins” the sys.dm_exec_sql_text and sys.
dm_exec_query_stats views to return the text of SQL queries that are being executed
in batches, and then provides statistical information about them.

In contrast to the sys.dm_exec_sql_text view, sys.dm_exec_text_query_plan returns
the execution plan of the batch in XML format. Similar to the previous views, this one

19-Ch19.indd 530 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 3 1

is specified by the plan handle. (The plan specified by the plan handle can either be
cached or currently executing.)

sys.dm_exec_procedure_stats
This DMV is similar to the sys.dm_exec_query_stats view. It returns aggregate
performance statistics for cached stored procedures. The view contains one row per
stored procedure, and the lifetime of the row is as long as the stored procedure remains
cached. When a stored procedure is removed from the cache, the corresponding row is
eliminated from this view.

sys.dm_exec_cached_plans
This view returns a row for each query plan that is cached by the Database Engine for
faster query execution. You can use this view to find cached query plans, cached query
text, the amount of memory taken by cached plans, and the reuse count of the cached
plans.

The most important columns of this view are cacheobjtype and usecount. The
former specifies the type of object in the cache, while the latter determines the number
of times this cache object has been used since its inception.

Optimization Hints
In most cases, the query optimizer chooses the fastest execution plan. However, there
are some special situations in which the optimizer, for some particular reasons, cannot
find the optimal solution. In such cases, you should use optimization hints to force it to
use a particular execution plan that could perform better.

Optimization hints are optional parts in a SELECT statement that instruct the
query optimizer to execute one specific behavior. In other words, by using optimization
hints, you do not allow the query optimizer to search and find the way to execute a
query because you tell it exactly what to do.

Why Use Optimization Hints
You should use optimization hints only temporarily and for testing. In other words,
avoid using them as a permanent part of a query. There are two reasons for this
statement. First, if you force the optimizer to use a particular index and later define an
index that results in better performance of the query, the query and the application to
which it belongs cannot benefit from the new index. Second, Microsoft continuously
strives to make the query optimizer better. If you bind a query to a specific execution

19-Ch19.indd 531 2/6/12 12:45:03 PM

 5 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

plan, the query cannot benefit from new and improved features in the subsequent
versions of SQL Server.

There are two reasons why the optimizer sometimes does not choose the fastest
execution plan:

The query optimizer is not perfectCc

The system does not provide the optimizer with the appropriate informationCc

Note
Optimization hints can help you only if the execution plan chosen by the optimizer is not optimal. If the system
does not provide the optimizer with the appropriate information, use the AUTO_CREATE_STATISTICS and
AUTO_UPDATE_STATISTICS database options to create or modify existing statistics.

Types of Optimization Hints
The Database Engine supports the following types of optimization hints:

Table hintsCc

Join hintsCc

Query hintsCc

Plan guidesCc

The following sections describe these hints.

Note
The examples that follow demonstrate the use of optimization hints, but they don’t give you any recommendations about
using them in any particular query. (In most cases shown in these examples, the use of hints would be counterproductive.)

Table Hints
You can apply table hints to a single table. The following table hints are supported:

INDEXCc

NOEXPANDCc

FORCESEEKCc

The INDEX hint is used to specify one or more indices that are then used in a query.
This hint is specified in the FROM clause of the query. You can use this hint to force
index access if the optimizer for some reason chooses to perform a table scan for a

19-Ch19.indd 532 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 3 3

given query. (Also, the INDEX hint can be used to prevent the optimizer from using a
particular index.)

Examples 19.12 and 19.13 show the use of the INDEX hint.

 ExAmPlE 19.12

SET SHOWPLAN_TEXT ON;

GO

USE sample;

SELECT * FROM new_addresses a WITH (INDEX(i_stateprov))

 WHERE a.StateProvinceID = 9;

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.12 is

 |--Nested Loops(Inner Join, OUTER REFERENCES:([Bmk1000],

[Expr1004]) WITH UNORDERED PREFETCH)

 |--Index Seek(OBJECT:([sample].[dbo].[new_addresses].[i_stateprov] AS [a]),

 SEEK:([a].[StateProvinceID]=(9)) ORDERED FORWARD)

 |--RID Lookup(OBJECT:([sample].[dbo].[new_addresses] AS [a]),

 SEEK:([Bmk1000]=[Bmk1000]) LOOKUP ORDERED FORWARD)

Example 19.12 is identical to Example 19.6, but contains the additional INDEX hint.
This hint forces the query optimizer to use the i_stateprov index. Without this hint, the
optimizer chooses the table scan, as you can see from the output of Example 19.6.

The other form of the INDEX query hint, INDEX(0), forces the optimizer to not
use any of the existing nonclustered indices. Example 19.13 shows the use of this hint.

 ExAmPlE 19.13

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM Person.Address a

 WITH(INDEX(0))

 WHERE a.StateProvinceID = 32;

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.13 is

|--Clustered Index Scan

(OBJECT:([AdventureWorks].[Person].[Address].[PK_Address_AddressID] AS [a]),

 WHERE:([AdventureWorks].[Person].[Address].[StateProvinceID] as

 [a].[StateProvinceID]=(32)))

19-Ch19.indd 533 2/6/12 12:45:03 PM

 5 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

Note
If a clustered index exists, INDEX(0) forces a clustered index scan and INDEX(1) forces a clustered index scan or
seek. If no clustered index exists, INDEX(0) forces a table scan and INDEX(1) is interpreted as an error.

The execution plan of the query in Example 19.13 shows that the optimizer uses
the clustered index scan, because of the INDEX(0) hint. Without this hint, the query
optimizer itself would choose the nonclustered index scan. (You can check this by
removing the hint in the query.)

The NOEXPAND hint specifies that any indexed view isn’t expanded to access
underlying tables when the query optimizer processes the query. The query optimizer
treats the view like a table with the clustered index. (For a discussion of indexed views,
see Chapter 11.)

The FORCESEEK table hint forces the optimizer to use only an index seek operation
as the access path to the data in the table (or view) referenced in the query. You can use this
table hint to override the default plan chosen by the query optimizer, to avoid performance
issues caused by an inefficient query plan. For example, if a plan contains table or index
scan operators, and the corresponding tables cause a high number of reads during the
execution of the query, forcing an index seek operation may yield better query performance.
This is especially true when inaccurate cardinality or cost estimations cause the optimizer
to favor scan operations at plan compilation time.

Note
The FORCESEEK hint can be applied to both clustered and nonclustered indices.

Join Hints
Join hints instruct the query optimizer how join operations in a query should be performed.
They force the optimizer either to join tables in the order in which they are specified in
the FROM clause of the SELECT statement or to use the join processing techniques
explicitly specified in the statement. The Database Engine supports several join hints:

FORCE ORDERCc

LOOPCc

HASHCc

MERGECc

19-Ch19.indd 534 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 3 5

The FORCE ORDER hint forces the optimizer to join tables in the order in which
they are specified in a query. Example 19.14 shows the use of this join hint.

 ExAmPlE 19.14

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT e.BusinessEntityID, e.LoginID, d.DepartmentID

 FROM HumanResources.Employee e, HumanResources.Department d,

 HumanResources.EmployeeDepartmentHistory h

 WHERE d.DepartmentID = h.DepartmentID

 AND h.BusinessEntityID = e.BusinessEntityID

 AND h.EndDate IS NOT NULL

 OPTION(FORCE ORDER);

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.14 is

 |--Merge Join(Inner Join, MERGE:([d].[DepartmentID],

[e].[BusinessEntityID])=([h].[DepartmentID], [h].[BusinessEntityID]),

RESIDUAL:([AdventureWorks].[HumanResources].[Department].[DepartmentID] as

[d].[DepartmentID]=[AdventureWorks].[HumanResources]

.[EmployeeDepartmentHistory].[DepartmentID] as [h].[DepartmentID] AND

[AdventureWorks].[HumanResources].[EmployeeDepartmentHistory]

.[BusinessEntityID] as [h].[BusinessEntityID]=[AdventureWorks]

.[HumanResources].[Employee].[BusinessEntityID] as [e].[BusinessEntityID]))

 |--Sort(ORDER BY:([d].[DepartmentID] ASC, [e].[BusinessEntityID] ASC))

 | |--Nested Loops(Inner Join)

 | |--Index Scan

(OBJECT:([AdventureWorks].[HumanResources].[Employee].[AK_Employee_LoginID]

AS [e]))

 | |--Clustered Index Scan

(OBJECT:([AdventureWorks].[HumanResources].[Department].[PK_Department_

DepartmentID] AS [d]))

 |--Sort(ORDER BY:([h].[DepartmentID] ASC, [h].[BusinessEntityID] ASC))

 |--Clustered Index Scan

(OBJECT:([AdventureWorks].[HumanResources].[EmployeeDepartmentHistory]

.[PK_EmployeeDepartmentHistory_BusinessEntityID_StartDate_DepartmentID] AS

[h]), WHERE:([AdventureWorks].[HumanResources].[EmployeeDepartmentHistory]

.[EndDate] as [h].[EndDate] IS NOT NULL))

As you can see from the textual output of Example 19.14, the optimizer performs
the join operation in the order in which the tables appear in the query. This means that

19-Ch19.indd 535 2/6/12 12:45:03 PM

 5 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

the EmployeeDepartmentHistory table will be processed first, then the Department
table, and finally the Employee table. (If you execute the query without the FORCE
ORDER hint, the query optimizer will process the tables in the opposite order: first
Employee, then Department, and then EmployeeDepartmentHistory.)

Note
Keep in mind that this does not necessarily mean that the new execution plan performs better than that chosen
by the optimizer.

The query hints LOOP, MERGE, and HASH force the optimizer to use the nested
loop technique, merge join technique, and hash join technique, respectively. These three
join hints can be used only when the join operation conforms to the SQL standard—
that is, when the join is explicitly indicated with the JOIN keyword in the FROM
clause of a SELECT statement.

Example 19.15 shows a query that uses the merge join technique because the hint
with the same name is explicitly defined in the SELECT statement. (You can apply the
other two hints, HASH and LOOP, in the same way.)

 ExAmPlE 19.15

SET SHOWPLAN_TEXT ON;

GO

USE AdventureWorks;

SELECT * FROM Person.Address a JOIN Person.StateProvince s

 ON a.StateProvinceID = s.StateProvinceID

 OPTION (MERGE JOIN);

GO

SET SHOWPLAN_TEXT OFF;

The textual output of Example 19.15 is

 |--Merge Join(Inner Join, MERGE:([s].[StateProvinceID])=([a]

.[StateProvinceID]), RESIDUAL:([AdventureWorks].[Person].[StateProvince]

.[StateProvinceID] as [s].[StateProvinceID]=[AdventureWorks].[Person]

.[Address].[StateProvinceID] as [a].[StateProvinceID]))

 |--Clustered Index Scan

(OBJECT:([AdventureWorks].[Person].[StateProvince].[PK_StateProvince_

StateProvinceID] AS [s]), ORDERED FORWARD)

 |--Nested Loops(Inner Join, OUTER REFERENCES:([a].[AddressID],

[Expr1004]) WITH ORDERED PREFETCH)

 |--Index Scan

19-Ch19.indd 536 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 3 7

(OBJECT:([AdventureWorks].[Person].[Address].[IX_Address_StateProvinceID]

AS [a]), ORDERED FORWARD)

 |--Clustered Index Seek

(OBJECT:([AdventureWorks].[Person].[Address].[PK_Address_AddressID]

AS [a]), SEEK:([a].[AddressID]=[AdventureWorks].[Person].[Address]

.[AddressID] as [a].[AddressID]) LOOKUP ORDERED FORWARD)

As you can see from the output of Example 19.15, the query optimizer is forced to
use the merge join processing technique. (If the hint is removed, the query optimizer
chooses the hash join technique.)

The specific join hint can be written either in the FROM clause of a query or using
the OPTION clause at the end of it. The use of the OPTION clause is recommended
if you want to write several different hints together. Example 19.16 is identical to
Example 19.15, but specifies the join hint in the FROM clause of the query. (Note that
in this case the INNER keyword is required.)

 ExAmPlE 19.16

USE AdventureWorks;

SELECT * FROM Person.Address a INNER MERGE JOIN Person.StateProvince s

 ON a.StateProvinceID = s.StateProvinceID;

Query Hints
There are several query hints, which are used for different purposes. This section
discusses the following query hints:

FAST Cc n
OPTIMIZE FORCc

OPTIMIZE FOR UNKNOWNCc

USE PLANCc

The FAST n hint specifies that the query is optimized for fast retrieval of the first n
rows. After the first n rows are returned, the query continues execution and produces its
full result set.

Note
This query can be very helpful if you have a very complex query with many result rows, requiring a lot of time for
processing. Generally, a query is processed completely and then the system displays the result. This query hint
forces the system to display the first n rows immediately after their processing.

19-Ch19.indd 537 2/6/12 12:45:03 PM

 5 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

The OPTIMIZE FOR hint forces the query optimizer to use a particular value for a
local variable when the query is compiled and optimized. The value is used only during
query optimization, and not during query execution. This query hint can be used when
you create plan guides, which are discussed in the next section.

Example 19.17 shows the use of the OPTIMIZE FOR query hint.

 ExAmPlE 19.17

DECLARE @city_name nvarchar(30)

SET @city_name = 'Newark'

SELECT * FROM Person.Address

 WHERE City = @city_name

 OPTION (OPTIMIZE FOR (@city_name = 'Seattle'));

Although the value of the @city_name variable is set to Newark, the OPTIMIZE
FOR hint forces the optimizer to use the value Seattle for the variable when optimizing
the query.

The OPTIMIZE FOR UNKNOWN hint instructs the query optimizer to use
statistical data instead of the initial values for all local variables when the query is
compiled and optimized, including parameters created with forced parameterization.
(Forced parameterization means that any literal value that appears in a SELECT,
INSERT, UPDATE, or DELETE statement, submitted in any form, is converted to
a parameter during query compilation. That way, all queries with a different parameter
value will be able to reuse the cached query plan instead of having to recompile the
statement each time when the parameter value is different.)

The USE PLAN hint takes a plan stored as an XML document as the parameter
and advises the Database Engine to use the specified execution plan for the query.
(For the storage of an execution plan as an XML document, see the description of
the SHOWPLAN_XML option of the SET statement earlier in this chapter, in the
section “XML Execution Plan.”)

Plan Guides
As you know from the previous section, hints are explicitly specified in the SELECT
statement to influence the work of the query optimizer. Sometimes you cannot or do
not want to change the text of the SELECT statement directly. In that case, it is still
possible to influence the execution of queries by using plan guides. In other words, plan
guides allow you to use a particular optimization hint without changing the syntax of
the SELECT statement.

19-Ch19.indd 538 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

 C h a p t e r 1 9 : Q u e r y O p t i m i z e r 5 3 9

Note
The main purpose of plan guides is to avoid hard-coding of hints in cases where it is not recommended or not
possible (for third-party application code, for instance).

Plan guides are created using the sp_create_plan_guide system procedure. This
procedure creates a plan guide for associating query hints or actual query plans with
queries in a database. Another system procedure, sp_control_plan_guide, enables,
disables, or drops an existing plan guide.

Note
There are no Transact-SQL DDL statements for creation and deletion of plan guides. A subsequent SQL Server
version will hopefully support such statements.

The Database Engine supports three types of plan guides:

SQL Cc Matches queries that execute in the context of stand-alone Transact-SQL
statements and batches that are not part of a database object
OBJECT Cc Matches queries that execute in the context of routines and DML
triggers
TEMPLATE Cc Matches stand-alone queries that are parameterized to a
specified form

Example 19.18 shows how you can create the optimization hint from Example 19.15,
without the modification of the corresponding SELECT statement.

 ExAmPlE 19.18

sp_create_plan_guide @name = N'Example_19_15',

@stmt = N'SELECT * FROM Person.Address a JOIN Person.StateProvince s

 ON a.StateProvinceID = s.StateProvinceID',

@type = N'SQL',

@module_or_batch = NULL,

@params = NULL,

@hints = N'OPTION (HASH JOIN)'

19-Ch19.indd 539 2/6/12 12:45:03 PM

 5 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 19

As you can see from Example 19.18, the sp_create_plan_guide system procedure
has several parameters. The @name parameter specifies the name of the new plan
guide. The @stmt parameter comprises the T-SQL statement, while the @type
parameter specifies the type of the plan guide (SQL, OBJECT, or TEMPLATE). The
optimization hint is specified in the @hints parameter. (You can also use SQL Server
Management Studio to create plan guides.)

To edit information related to plan guides, use the sys.plan_guides catalog view. This
view contains a row for each plan guide in the current database. The most important
columns are plan_guide_id, name, and query_text. The plan_guide_id column specifies
the unique identifier of the plan guide, while the name column defines its name. The
query_text column specifies the text of the query on which the plan guide is created.

Summary
The query optimizer is the part of the Database Engine that decides how to best perform
a query. It generates several query execution plans for the given query and selects the plan
with the lowest cost.

The query optimization phase can be divided into the following phases: query analysis,
index selection, and join order selection. During the query analysis phase, the optimizer
examines the query for search arguments, the use of the OR operator, and the existence
of join criteria, in that order. The identification of search arguments allows the optimizer
to decide whether one or more existing indices will be used.

The order in which two or more joined tables are written in the FROM clause of a
SELECT statement doesn’t influence the optimizer’s decision regarding their processing
order. The Database Engine supports three different join processing techniques that can
be used by the optimizer. Which technique the optimizer chooses, depends on existing
statistics for joined tables.

The Database Engine supports many tools that can be used to edit execution plans. The
most important are textual and graphical display of the plan and dynamic management
views.

You can influence the work of the optimizer by using optimization hints. The
Database Engine supports many optimization hints, which can be grouped as follows:
table hints, join hints, and query hints.

Plan guides allow you to influence the optimization process of queries, without
modifying a particular SELECT statement, as in the case of query hints.

The next chapter discusses performance tuning.

19-Ch19.indd 540 2/6/12 12:45:03 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Chapter 20

In This Chapter

c Factors That Affect
Performance

c Monitoring Performance

c Choosing the Right Tool
for Monitoring

c Other Performance Tools
of SQL Server

Performance Tuning

Ch20.indd 541 1/25/12 10:32:01 AM

 5 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Improving the performance of a database system requires many decisions, such as
where to store data and how to access the data. This task is different from other
administrative tasks because it comprises several different steps that concern all

aspects of software and hardware. If the database system is not performing optimally,
the system administrator must check many factors and possibly tune software (operating
system, database system, database applications) and hardware.

The performance of the Database Engine (and any other relational DBMS) is
measured by two criteria:

Response timeCc

ThroughputCc

Response time measures the performance of an individual transaction or program.
Response time is treated as the length of time from the moment a user enters a
command or statement until the time the system indicates that the command
(statement) has completed. To achieve optimum response time of an overall system,
almost all existing commands and statements (90 to 95 percent of them) must not cross
the specified response time limit.

Throughput measures the overall performance of the system by counting the number
of transactions that can be handled by the Database Engine during the given time
period. (The throughput is typically measured in transactions per second.) Therefore,
there is a direct relation between response time of the system and its throughput: when
the response time of a system degrades (for example, because many users concurrently
use the system), the throughput of the system degrades too.

This chapter discusses performance issues and the tools for tuning the database
system that are relevant to daily administration of the system. In the first part of
the chapter the factors that affect performance are described. After that, some
recommendations are given for how to choose the right tool for the administration job.
At the end of the chapter, tools for monitoring the database system are presented.

Factors That Affect Performance
Factors affecting performance fall into three general categories:

Database applicationsCc

Database systemCc

System resourcesCc

These factors in turn can be affected by several other factors, as discussed in the
following sections.

Ch20.indd 542 1/25/12 10:32:01 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 4 3

Database Applications and Performance
The following factors can affect the performance of database applications:

Application-code efficiencyCc

Physical designCc

Application-Code Efficiency
Applications introduce their own load on the system software and on the Database
Engine. For this reason, they can contribute to performance problems if you make
poor use of system resources. Most performance problems in application programs are
caused by the improper choice of Transact-SQL statements and their sequence in an
application program.

The following list gives some of the ways you can improve overall performance by
modifying code in an application:

Use clustered indicesCc

Do not use the NOT IN predicateCc

Clustered indices generally improve performance. Performance of a range query is
the best if you use a clustered index for the column in the filter. When you retrieve only
a few rows, there is no significant difference between the use of a nonclustered index
and a clustered index.

The NOT IN predicate is not optimizable; in other words, the query optimizer
cannot use it as a search argument (the part of a query that restricts the intermediate
result set of the query). Therefore, the expression with the NOT IN predicate always
results in a table scan.

Note
More hints on how code modification can improve overall performance are given in Chapter 19.

Physical Design
During physical database design, you choose the specific storage structures and access
paths for the database files. In this design step, it is sometimes recommended that you
denormalize some of the tables in the database to achieve good performance for various
database applications. Denormalizing tables means coupling together two or more
normalized tables, resulting in some redundant data.

Ch20.indd 543 1/25/12 10:32:01 AM

 5 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

To demonstrate the process of denormalization, consider this example: Table 20-1
shows two tables from the sample database, department and employee, that are
normalized. (For more information on data normalization, see Chapter 1.) Data in
those two tables can be specified using just one table, dept_emp (see Table 20-2), which
shows the denormalized form of data stored in the tables department and employee.
In contrast to the tables department and employee, which do not contain any data
redundancies, the dept_emp table contains a lot of redundancies, because two columns
of this table (dept_name and location) are dependent on the dept_no column.

emp_no emp_fname emp_lname dept_no
25348 Matthew Smith d3

10102 Ann Jones d3

18316 John Barrimore d1

29346 James James d2

2581 Elke Hansel d2

28559 Sybill Moser d1

9031 Elsa Bertoni d2

dept_no dept_name location
d1 Research Dallas

d2 Accounting Seattle

d3 Marketing Dallas

Table 20-1 The employee and department Tables

emp_no emp_fname Emp_lname dept_no dept_name Location
25348 Matthew Smith d3 Marketing Dallas

10102 Ann Jones d3 Marketing Dallas

18316 John Barrimore d1 Research Dallas

29346 James James d2 Accounting Seattle

2581 Elke Hansel d2 Accounting Seattle

28559 Sybill Moser d1 Research Dallas

9031 Elsa Bertoni d2 Accounting Seattle

Table 20-2 The dept_emp Table

Ch20.indd 544 1/25/12 10:32:01 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 4 5

Data denormalization has two benefits and two disadvantages. First the benefits: If
you have a column that is dependent on another column of the table (such as the dept_
name column in the dept_emp table, which is dependent on the dept_no column)
for data often required by queries, you can avoid the use of the join operation, which
would affect the performance of applications. Second, denormalized data requires fewer
tables than normalized data.

On the other hand, a denormalized table requires additional amounts of disk space,
and data modification is difficult because of data redundancy.

Another option in the physical database design that contributes to good performance
is the creation of indices. Chapter 10 gives several guidelines for the creation of indices,
and examples are given later in this chapter.

The Database Engine and Performance
The Database Engine can substantially affect the performance of an entire system. The
two most important components of the Database Engine that affect performance are

Query optimizerCc

LocksCc

Query Optimizer
The optimizer formulates several query execution plans for fetching the data rows
that are required to process a query and then decides which plan should be used. The
decision concerning the selection of the most appropriate execution plan includes
which indices should be used, how to access tables, and the order of joining tables. All
of these decisions can significantly affect the performance of database applications. The
optimizer is discussed in detail in the previous chapter.

Locks
The database system uses locks as the mechanism for protecting one user’s work from
another’s. Therefore, locks are used to control the access of data by all users at the same
time and to prevent possible errors that can arise from the concurrent access of the
same data.

Locking affects the performance of the system through its granularity—that is, the
size of the object that is being locked and the isolation level. Row-level locking provides
the best system performance, because it leaves all but one row on the page unlocked and
hence allows more concurrency than page- or table-level locking.

Ch20.indd 545 1/25/12 10:32:01 AM

 5 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Isolation levels affect the duration of the lock for SELECT statements. Using
the lower isolation levels, such as READ UNCOMMITTED and READ
COMMITTED, the data availability, and hence the concurrency, of the data can be
improved. (Locking and isolation levels are explained in detail in Chapter 13.)

System Resources and Performance
The Database Engine runs on the Windows operating system, which itself uses
underlying system resources. These resources have a significant impact on the
performance of both the operating system and the database system. Performance of any
database system depends on four main system resources:

Central processing unit (CPU)Cc

MemoryCc

Disk I/OCc

NetworkCc

The CPU, together with memory, is the key component for marking the speed of a
computer. It is also the key to the performance of a system, because it manages other
resources of the system and executes all applications. It executes user processes and
interacts with other resources of your system. Performance problems in relation to the
CPU can occur when the operating system and user programs are making too many
requests on it. Generally, the more CPU power available for your computer, the better
the overall system is likely to perform.

The Database Engine dynamically acquires and frees memory as needed. Performance
problems concerning memory can occur only if there is not enough of it to do the
required work. When this occurs, many memory pages are written to a pagefile. (The
notion of a pagefile is explained in detail later in this chapter.) If the process of writing
to a pagefile happens very often, the performance of the system can degrade. Therefore,
similar to the CPU rule, the more memory available for your computer, the better the
system is likely to perform.

There are two issues concerning disk I/O: disk speed and disk transfer rate. The disk
speed determines how fast read and write operations to disk are executed. The disk
transfer rate specifies how much data can be written to disk during a time unit (usually
measured in seconds). Obviously, the faster the disk, the larger the amount of data being
processed. Also, more disks are generally better than a single disk when many users are
using the database system concurrently. (In this case, access to data is usually spread
across many disks, thus improving the overall performance of the system.)

Ch20.indd 546 1/25/12 10:32:01 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 4 7

For a client/server configuration, a database system sometimes performs poorly if there
are many client connections. In that case, the amount of data that needs to be transferred
across the network possibly exceeds the network capacity. To avoid such a performance
bottleneck, the following general recommendations should be taken into account:

If a database server sends any rows to an application, only the rows needed by the Cc

application should be sent.
If a long-lasting user application executes strictly on the client side, move it to the Cc

server side (by executing it as a stored procedure, for example).

All four of these system resources are dependent on each other. This means that
performance problems in one resource can cause performance problems in the other
resources. Similarly, an improvement concerning one resource can significantly increase
performance of some other (or even all) resources. For example:

If you increase the number of CPUs, each CPU can share the load evenly and Cc

therefore can remedy the disk I/O bottleneck. On the other hand, the inefficient
use of the CPU is often the result of a preexisting heavy load on disk I/O and/or
memory.
If more memory is available, there is more chance of finding a page needed Cc

by the application (rather than reading the page from disk), which results in a
performance gain. By contrast, reading from the disk drive instead of drawing
from the immensely faster memory slows the system down considerably, especially
if there are many concurrent processes.

The following sections describe in detail disk I/O and memory.

Disk I/O
One purpose of a database is to store, retrieve, and modify data. Therefore, the Database
Engine, like any other database system, must perform a lot of disk activity. In contrast
to other system resources, a disk subsystem has two moving parts: the disk itself and
the disk head. The rotation of the disk and the movement of the disk head need a great
deal of time; therefore, disk reads and writes are two of the highest-cost operations that
a database system performs. (For instance, access to a disk is significantly slower than
memory access.)

The Database Engine stores the data in 8KB pages. The buffer cache of RAM is
also divided into 8KB pages. The system reads data in units of pages. Reads occur not
only for data retrieval, but also for any modification operations such as UPDATE and
DELETE because the database system must read the data before it can be modified.

Ch20.indd 547 1/25/12 10:32:01 AM

 5 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

If the needed page is in the buffer cache, it will be read from memory. This I/O
operation is called logical I/O or logical read. If it is not in memory, the page is read from
disk and put in the buffer cache. This I/O operation is called physical I/O or physical
read. The buffer cache is shared because the Database Engine uses the architecture with
only one memory address space. Therefore, many users can access the same page. A
logical write occurs when data is modified in the buffer cache. Similarly, a physical write
occurs when the page is written from the buffer cache to disk. Therefore, more logical
write operations can be made on one page before it is written to disk.

The Database Engine has a few components that have great impact on performance
because they significantly consume the I/O resources:

Read aheadCc

CheckpointCc

Read ahead is described in the following section, while checkpoint is explained in
detail in Chapter 16.

Read Ahead The optimal behavior of a database system would be to read data and
never have to wait for a disk read request. The best way to perform this task is to know
the next several pages that the user will need and to read them from the disk into the
buffer pool before they are requested by the user process. This mechanism is called read
ahead, and it allows the system to optimize performance by processing large amounts of
data effectively.

The component of the Database Engine called Read Ahead Manager manages
the read-ahead processes completely internally, so a user has no way to influence this
process. Instead of using the usual 8KB pages, the Database Engine uses 64KB blocks
of data as the unit for read-ahead reads. That way, the throughput for I/O requests is
significantly increased. The read-ahead mechanism is used by the database system to
perform large table scans and index range scans. Table scans are performed using the
information that is stored in index allocation map (IAM) pages to build a serial list
of the disk addresses that must be read. (IAM pages are allocation pages containing
information about the extents that a table or index uses.) This allows the database
system to optimize its I/O as large, sequential reads in disk order. Read Ahead Manager
reads up to 2MB of data at a time. Each extent is read with a single operation.

Note
The Database Engine provides multiple serial read-ahead operations at once for each file involved in the table
scan. This feature can take advantage of striped disk sets.

Ch20.indd 548 1/25/12 10:32:02 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 4 9

For index ranges, the Database Engine uses the information in the intermediate level of
index pages immediately above the leaf level to determine which pages to read. The system
scans all these pages and builds a list of the leaf pages that must be read. During this
operation, the contiguous pages are recognized and read in one operation. When there are
many pages to be retrieved, the Database Engine schedules a block of reads at a time.

The read-ahead mechanism can also have negative impacts on performance if too
many pages for a process are read and the buffer cache is unnecessarily filled up. The
only thing you can do in this case is create the indices you will actually need.

There are several performance counters and dynamic management views that are
related to read-ahead activity. They are explained in detail later in this chapter.

Memory
Memory is a crucial resource component, not only for the running applications but also
for the operating system. When an application is executed, it is loaded into memory and
a certain amount of memory is allocated to the application. (In Microsoft terminology,
the total amount of memory available for an application is called its address space.)

Microsoft Windows supports virtual memory. This means that the total amount of
memory available to applications is the amount of physical memory (or RAM) in the
computer plus the size of the specific file on the disk drive called pagefile. (The name
of the pagefile on Windows is pagefile.sys.) Once data is moved out of its location
in RAM, it resides in the pagefile. If the system is asked to retrieve data that is not in
the proper RAM location, it will load the data from the location where it is stored and
produce a so-called page fault.

Note
pagefile.sys should be placed on a different drive from the drive on which files used by the Database Engine are
placed, because the paging process can have a negative impact on disk I/O activities.

For an entire application, only a portion of it resides in RAM. (Recently referenced
pages can usually be found in RAM.) When the information the application needs is
not in RAM, the operating system must page (that is, read the page from the pagefile
into RAM). This process is called demand paging. The more the system has to page, the
worse the performance is.

Note
When a page in RAM is required, the oldest page of the address space for an application is moved to the pagefile to
make room for the new page. The replacement of pages is always limited to the address space of the current application.
Therefore, there is no chance that pages in the address space of other running applications will be replaced.

Ch20.indd 549 1/25/12 10:32:03 AM

 5 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

As you already know, a page fault occurs if the application makes a request for
information and the data page that contains that information is not in the proper RAM
location of the computer. The information may either have been paged out to the pagefile
or be located somewhere else in RAM. Therefore, there are two types of page fault:

Hard page fault Cc The page has been paged out (to the pagefile) and has to be
brought into RAM from the disk drive.
Soft page fault Cc The page is found in another location in RAM.

Soft page faults consume only RAM resources. Therefore, they are better for performance
than hard page faults, which cause disk reads and writes to occur.

Note
Page faults are normal in a Windows operating system environment because the operating system requires
pages from the running applications to satisfy the need for memory of the starting applications. However,
excessive paging (especially with hard page faults) is a serious performance problem because it can cause disk
bottlenecks and start to consume the additional power of the processor.

Monitoring Performance
All the factors that affect performance can be monitored using different components.
These components can be grouped in the following categories:

Counters of Performance MonitorCc

Dynamic management views (DMVs) and catalog viewsCc

DBCC commandsCc

System stored proceduresCc

This section first gives an overview of Performance Monitor and then describes all
components for monitoring performance in relation to the four factors: CPU, memory,
disk access, and network.

Performance Monitor: An Overview
Performance Monitor is a Windows graphical tool that provides the ability to monitor
Windows activities and database system activities. The benefit of this tool is that it is
tightly integrated with the Windows operating system and therefore displays reliable
values concerning different performance issues. Performance Monitor provides a lot

Ch20.indd 550 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 5 1

of performance objects, and each performance object contains several counters. These
counters can be monitored locally or over the network.

Performance Monitor supports three different presentation modes:

Graphic mode Cc Displays the selected counters as colored lines, with the X axis
representing time and the Y axis representing the value of the counter. (This is the
default display mode.)
Histogram mode Cc Displays the selected counters as colored horizontal bars that
represent the data sampling values.
Report mode Cc Displays the values of counters textually.

To start Performance Monitor, choose Start | Administrative Tools | Performance
Monitor. The starting window of Performance Monitor, shown in Figure 20-1, contains

Figure 20-1 Performance Monitor

Ch20.indd 551 1/25/12 10:32:03 AM

 5 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

one default counter: % Processor Time (Object: Processor). This counter is very
important, but you will need to display the values of several other counters.

To add a counter for monitoring, click the plus sign in the toolbar of Performance
Monitor, select the performance object to which the counter belongs, choose the
counter, and click Add. To remove a counter, highlight the line in the bottom area and
click Delete. (The following sections describe, among other things, the most important
counters in relation to the CPU, memory, I/O, and network.)

Monitoring the CPU
This section contains two subsections related to monitoring the CPU. The first
subsection describes several Performance Monitor counters, while the second discusses
catalog views and DMVs that you can use for the same purpose.

Monitoring the CPU Using Counters
The following counters are related to monitoring the CPU:

% Processor Time (Object: Processor)Cc

% Interrupt Time (Object: Processor)Cc

Interrupts/sec (Object: Processor)Cc

Processor Queue Length (Object: System)Cc

The % Processor Time counter displays system-wide CPU usage and acts as the
primary indicator of processor activity. The lower the value of this counter, the better
CPU usage that can be achieved. You should try to reduce CPU usage if the value of
the counter is constantly greater than 90. (CPU usage of 100 percent is acceptable only
if it happens for short periods of time.)

The % Interrupt Time counter shows you the percentage of time that the CPU
spends servicing hardware interrupts. The values of this counter are important if at least
one piece of hardware is trying to get processor time.

The Interrupts/sec counter displays the number of times per second the processor
receives hardware interrupts for service requests from peripheral devices. This number
generally may be high in environments with high disk utilization or networking demands.

The Processor Queue Length counter indicates how many threads are waiting for
execution. If this counter is consistently higher than 5 when the processor utilization
approaches 100 percent, then there are more active threads available than the machine’s
processors are able to handle.

Ch20.indd 552 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 5 3

Monitoring the CPU Using Views
The following catalog views and DMVs are used, among others, to monitor CPU usage:

sys.sysprocessesCc

sys.dm_exec_requestsCc

sys.dm_exec_query_statsCc

The sys.sysprocesses catalog view can be useful if you want to identify processes that
use the most processor time. Example 20.1 shows the use of this catalog view.

 ExAMPLE 20.1

USE master;

SELECT spid, dbid, uid, cpu

 FROM master.dbo.sysprocesses

 order by cpu DESC;

The view contains information about processes that are running on an instance. These
processes can be client processes or system processes. The view belongs to the master
system database. The most important columns of the view are spid (session ID), dbid
(ID of the current database), uid (ID of the user who executes the current command),
and cpu (cumulative CPU time for the process).

The sys.dm_exec_requests dynamic management view provides the same information
as the sys.sysprocesses catalog view, but the names of the corresponding columns are
different. Example 20.2 displays the same information as Example 20.1.

 ExAMPLE 20.2

SELECT session_id, database_id, user_id, cpu_time, sql_handle

 FROM sys.dm_exec_requests

 order by cpu_time DESC;

The sql_handle column of the view points to the area in which the entire batch is
stored. If you want to reduce the information to only one statement, you have to use the
columns statement_start_offset and statement_end_offset to shorten the result. (All
other column names are self-explanatory.)

Note
This DMV is especially worthwhile if you want to identify long-running queries.

Ch20.indd 553 1/25/12 10:32:03 AM

 5 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Another DMV that can be used to display the information of such cached Transact-
SQL statements and stored procedures using the most CPU time is sys.dm_exec_
query_stats. (You can find the description of this DMV in Chapter 19.) Example 20.3
shows the use of this view.

 ExAMPLE 20.3

SELECT TOP 20 SUM(total_worker_time) AS cpu_total,

 SUM(execution_count) AS exec_ct, COUNT(*) AS all_stmts, plan_handle

 FROM sys.dm_exec_query_stats

 GROUP BY plan_handle

 ORDER BY cpu_total;

The total_worker_time column of the sys.dm_exec_query_stats view displays the
total amount of CPU time that was consumed by executions of cached SQL statements
and stored procedures since it was compiled. The execution_count column displays
the number of times that the cached plans have been executed since they were last
compiled. (The TOP clause reduces the number of the displayed rows according to the
parameter and the ORDER BY clause. This clause is described in detail in Chapter 23.)

Monitoring Memory
This section contains three subsections related to monitoring memory. The first
subsection describes several Performance Monitor counters, the second discusses
DMVs you can use for the same purpose, and the last is devoted to using the DBCC
MEMORYSTATUS command.

Monitoring Memory Using Counters
The following Performance Monitor counters are used to monitor memory:

Buffer Cache Hit Ratio (Object: Memory)Cc

Pages/sec (Object: Memory)Cc

Page Faults/sec (Object: Memory)Cc

The Buffer Cache Hit Ratio counter displays the percentage of pages that did not
require a read from disk. The higher this ratio, the less often the system has to go to the
hard disk to fetch data, and performance overall is boosted. Note that there is no ideal
value for this counter because it is application specific.

Ch20.indd 554 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 5 5

Note
This counter is different from most other counters, because it is not a real-time measurement, but rather an
average value of all the days since the last restart of the Database Engine.

The Pages/sec counter displays the amount of paging (that is, the number of pages
read or written to disk per second). The counter is an important indicator of the types
of faults that cause performance problems. If the value of this counter is too high, you
should consider adding more physical memory.

The Page Faults/sec counter displays the average number of page faults per second.
This counter includes both soft page and hard page faults. As you already know, page
faults occur when a system process refers to a virtual memory page that is not currently
within the working set in the physical memory. If the requested page is on the standby
list or a page currently shared with another process, a soft page fault is generated and the
memory reference is resolved without physical disk access. However, if the referenced
page is currently in the paging file, a hard page fault is generated and the data must be
fetched from the disk.

Monitoring Memory Using Dynamic Management Views
The following DMVs are related to memory:

sys.dm_os_memory_clerksCc

sys.dm_os_memory_objectsCc

The sys.dm_os_memory_clerks view returns the set of all memory clerks that are
active in the current instance. You can use this view to find memory allocations by
different memory types. Example 20.4 shows the use of this view.

 ExAMPLE 20.4

SELECT type, SUM(pages_kb)

 FROM sys.dm_os_memory_clerks

 WHERE pages_kb != 0

 GROUP BY type

 ORDER BY 2 DESC;

The type column of the sys.dm_os_memory_clerks view describes the type of
memory clerk. The pages_kb column specifies the amount of memory allocated by
using the single page allocator of a memory node.

Ch20.indd 555 1/25/12 10:32:03 AM

 5 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Note
The Database Engine memory manager consists of a three-layer hierarchy. At the bottom of the hierarchy are
memory nodes. The next level consists of memory clerks, memory caches, and memory pools. The last layer
consists of memory objects. These objects are generally used to allocate memory.

The sys.dm_os_memory_objects view returns memory objects that are currently
allocated by the database system. This DMV is primarily used to analyze memory usage
and to identify possible memory leaks, as shown in Example 20.5.

 ExAMPLE 20.5

SELECT type , SUM(pages_in_bytes) AS total_memory

 FROM sys.dm_os_memory_objects

 GROUP BY type

 ORDER BY total_memory DESC;

Example 20.5 groups all memory objects according to their type and then uses the
values of the pages_in_bytes column to display the total memory of each group.

Monitoring Memory Using the DBCC
MEMORYSTATUS Command
The DBCC MEMORYSTATUS command provides a snapshot of the current
memory status of the Database Engine. The command’s output is useful in
troubleshooting issues that relate to the memory consumption of the Database Engine
or to specific out-of-memory errors (many of which automatically print this output in
the error log).

The output of this command has several parts, including the “Process/System
Counts” part, which delivers important information concerning the total amount of
memory (the Working set parameter) and the actual memory used by the Database
Engine (the Available Physical Memory parameter).

Monitoring the Disk System
This section contains two subsections that discuss monitoring the disk system. The first
subsection describes several Performance Monitor counters, while the second describes
the corresponding DMVs that you can use to monitor the disk system.

Ch20.indd 556 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 5 7

Monitoring the Disk System Using Counters
The following counters are related to monitoring the disk system:

% Disk Time (Object: Physical Disk)Cc

Current Disk Queue Length (Object: Physical Disk)Cc

Disk Read Bytes/sec (Object: Physical Disk)Cc

Disk Write Bytes/sec (Object: Physical Disk)Cc

% Disk Time (Object: Logical Disk)Cc

Current Disk Queue Length (Object: Logical Disk)Cc

Disk Read Bytes/sec (Object: Logical Disk)Cc

Disk Write Bytes/sec (Object: Logical Disk)Cc

As you can see from the preceding list, the names of the Performance Monitor
counters for the Physical Disk object and the Logical Disk object are the same. (The
difference between physical and logical objects is explained in Chapter 5.) These
counters have the same purpose for each of the objects as well, so the following
descriptions explain the counters only for the Physical Disk object.

The % Disk Time counter displays the amount of time that the hard disk actually
has to work. It provides a good relative measure of how busy your disk system is, and it
should be used over a longer period of time to indicate a potential need for more I/O
capacity.

The Current Disk Queue Length counter tells you how many I/O operations are
waiting for the disk to become available. This number should be as low as possible.

The Disk Read Bytes/sec counter shows the rate at which bytes were transferred
from the hard disk during read operations, while Disk Write Bytes/sec provides the
rate at which bytes were transferred to the hard disk during write operations.

Monitoring the Disk System Using DMVs
The following DMVs can be useful to display information concerning the disk system:

sys.dm_os_wait_statsCc

sys.dm_io_virtual_file_statsCc

Ch20.indd 557 1/25/12 10:32:03 AM

 5 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

The sys.dm_os_wait_stats view returns information about the waits encountered
by threads that are in execution. Use this view to diagnose performance issues with the
Database Engine and with specific queries and batches. Example 20.6 shows the use of
this view.

 ExAMPLE 20.6

SELECT wait_type, waiting_tasks_count, wait_time_ms

 FROM sys.dm_os_wait_stats

 ORDER BY wait_type;

The most important columns of this view are wait_type and waiting_tasks_count.
The former displays the names of the wait types, while the latter displays the number of
waits on the corresponding wait type.

The second view, sys.dm_io_virtual_file_stats, displays the file activity within a
database allocation. Example 20.7 shows the use of this view.

 ExAMPLE 20.7

SELECT database_id, file_id, num_of_reads,

 num_of_bytes_read, num_of_bytes_written

 FROM sys.dm_io_virtual_file_stats (NULL, NULL);

The columns of the sys.dm_io_virtual_file_stats view are self-explanatory. As
you can see from Example 20.7, this view has two parameters. The first, database_id,
specifies the unique ID number of the database, while the second, file_id, specifies the
ID of the file. (When NULL is specified, all databases, i.e., all files in the instance of
the Database Engine are returned.)

Monitoring the Network Interface
This section comprises three subsections related to monitoring the network interface. The
first subsection describes several Performance Monitor counters, the second discusses the
corresponding DMV, and the last one describes the sp_monitor system procedure.

Monitoring the Network Interface Using Counters
The following Performance Monitor counters are related to monitoring the network:

Bytes Total/sec (Object: Network Interface)Cc

Bytes Received/sec (Object: Network Interface)Cc

Bytes Sent/sec (Object: Network Interface)Cc

Ch20.indd 558 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 5 9

The Bytes Total/sec counter monitors the number of bytes that are sent and
received over the network per second. (This includes both the Database Engine and
non–Database Engine network traffic.) Assuming your server is a dedicated database
server, the vast majority of the traffic measured by this counter should be from the
Database Engine. A consistently low value for this counter indicates that network
problems may be interfering with your application.

To find out how much data is being sent back and forth from your server to the
network, use the Bytes Received/sec and Bytes Sent/sec counters. The former displays
the rate at which network data (in bytes) are received, while the latter checks the
outbound rate. These counters will help you to find out how busy your actual server is
over the network.

Monitoring the Network Interface Using a DMV
The sys.dm_exec_connections view returns information about the connections
established to the instance of the Database Engine and the details of each connection.
Examples 20.8 and 20.9 show the use of this view.

 ExAMPLE 20.8

SELECT net_transport, auth_scheme

 FROM sys.dm_exec_connections

 WHERE session_id=@@SPID;

Example 20.8 displays the basic information about the current connection: network
transport protocol and authentication mechanism. The condition in the WHERE
clause reduces the output to the current session. (The @@spid global variable, which is
described in Chapter 4, returns the identifier of the current server process.)

 ExAMPLE 20.9

SELECT num_reads, num_writes

 FROM sys.dm_exec_connections;

Two important columns of this DMV, which are used in Example 20.9, are num_
reads and num_writes. The former displays the number of packet reads that have
occurred over the current connection, while the latter provides information about the
number of packet writes that have occurred over this connection.

Monitoring the Network Interface Using a System Procedure
The sp_monitor system procedure can be very useful to monitor data concerning the
network interface because it displays the information in relation to packets sent and

Ch20.indd 559 1/25/12 10:32:03 AM

 5 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

received as a running total. This system procedure also displays statistics, such as the
number of seconds the CPU has been doing system activities, the number of seconds
the system has been idle, and the number of logins (or attempted logins) to the system.

Choosing the Right Tool for Monitoring
The choice of an appropriate tool depends on the performance factors to be monitored
and the type of monitoring. The type of monitoring can be

Real timeCc

Delayed (by saving information in the file, for example)Cc

Real-time monitoring means that performance issues are investigated as they are
happening. If you want to display the actual values of one or a few performance factors,
such as the number of users or number of attempted logins, use dynamic management
views because of their simplicity. In fact, dynamic management views can only be used
for real-time monitoring. Therefore, if you want to trace performance activities during
a specific time period, you have to use a tool such as SQL Server Profiler (see the next
section).

Probably the best all-around tool for monitoring is Performance Monitor because
of its many options. First, you can choose the performance activities you want to track
and then display them simultaneously. Second, Performance Monitor allows you to
set thresholds on specific counters (performance factors) to generate alerts that notify
operators. This way, you can react promptly to any performance bottlenecks. Third, you
can report performance activities and investigate the resulting chart log files later.

The following sections describe SQL Server Profiler and the Database Engine
Tuning Advisor.

SQL Server Profiler
SQL Server Profiler is a graphical tool that lets system administrators monitor and
record database and server activities, such as login, user, and application information.
SQL Server Profiler can display information about several server activities in real
time, or it can create filters to focus on particular events of a user, types of commands,
or types of Transact-SQL statements. Among others, you can monitor the following
events using SQL Server Profiler:

Login connections, attempts, failures, and disconnectionsCc

CPU use of a batchCc

Ch20.indd 560 1/25/12 10:32:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 6 1

Deadlock problemsCc

All DML statements (SELECT, INSERT, UPDATE, and DELETE)Cc

The start and/or end of a stored procedureCc

The most useful feature of SQL Server Profiler is the ability to capture activities
in relation to queries. These activities can be used as input for the Database Engine
Tuning Advisor, which allows you to select indices and indexed views for one or more
queries. For this reason, the following section discusses the features of SQL Server
Profiler together with the Database Engine Tuning Advisor.

Database Engine Tuning Advisor
The Database Engine Tuning Advisor is part of the overall system and allows you to
automate the physical design of your databases. As mentioned earlier, the Database
Engine Tuning Advisor is tightly connected to SQL Server Profiler, which can display
information about several server activities in real time, or it can create filters to focus on
particular events of a user, types of commands, or Transact-SQL statements.

The specific feature of SQL Server Profiler that is used by the Database Engine
Tuning Advisor is its ability to watch and record batches executed by users and to
provide performance information, such as CPU use of a batch and corresponding I/O
statistics, as explained next.

Providing Information for the Database Engine Tuning Advisor
The Database Engine Tuning Advisor is usually used together with SQL Server
Profiler to automate tuning processes. You use SQL Server Profiler to record into
a trace file information about the workload being examined. (As an alternative to a
workload file, you can use any file that contains a set of Transact-SQL statements. In
this case, you do not need SQL Server Profiler.) The Database Engine Tuning Advisor
can then read the file and recommend several physical objects, such as indices, indexed
views, and partitioning schema, that should be created for the given workload.

Example 20.10 creates two new tables, orders and order_details. These tables will be
used to demonstrate the recommendation of physical objects by the Database Engine
Tuning Advisor.

Note
If your sample database already contains the orders table, you have to drop it using the DROP TABLE statement.

Ch20.indd 561 1/25/12 10:32:04 AM

 5 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 ExAMPLE 20.10

USE sample;

CREATE TABLE orders

 (orderid INTEGER NOT NULL,

 orderdate DATE,

 shippeddate DATE,

 freight money);

CREATE TABLE order_details

 (productid INTEGER NOT NULL,

 orderid INTEGER NOT NULL,

 unitprice money,

 quantity INTEGER);

To demonstrate the use of the Database Engine Tuning Advisor, many more rows
are needed in both tables. Examples 20.11 and 20.12 insert 3000 rows in the orders
table and 30,000 rows in the order_details table, respectively.

 ExAMPLE 20.11

-- This batch inserts 3000 rows in the table orders

USE sample;

declare @i int, @order_id integer

 declare @orderdate datetime

 declare @shipped_date datetime

 declare @freight money

 set @i = 1

 set @orderdate = getdate()

 set @shipped_date = getdate()

 set @freight = 100.00

 while @i < 3001

 begin

 insert into orders (orderid, orderdate, shippeddate, freight)

 values(@i, @orderdate, @shipped_date, @freight)

 set @i = @i+1

 end

 ExAMPLE 20.12

-- This batch inserts 30000 rows in order_details and modifies some of them

USE sample;

declare @i int, @j int

 set @i = 3000

Ch20.indd 562 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 6 3

 set @j = 10

 while @j > 0

 begin

 if @i > 0

 begin

 insert into order_details (productid, orderid, quantity)

 values (@i, @j, 5)

 set @i = @i – 1

 end

 else begin

 set @j = @j – 1

 set @i = 3000

 end

 end

 go

 update order_details set quantity = 3

 where productid in (1511, 2678)

The query in Example 20.13 will be used as an input file for SQL Server Profiler.
(Assume that no indices are created for the columns that appear in the SELECT
statement.) First start SQL Server Profiler. Choose All Programs | Microsoft SQL
Server 2012 | Performance Tools | SQL Server Profiler. On the File menu, choose New
Trace. After connecting to the server, the Trace Properties dialog box appears. Type a
name for the trace and select an output .trc file for the Profiler information (in the Save
to File field). Click Run to start the capture and use SQL Server Management Studio
to execute the query in Example 20.13.

 ExAMPLE 20.13

USE sample;

SELECT orders.orderid, orders.shippeddate

 FROM orders

 WHERE orders.orderid between 806 and 1600

 and not exists (SELECT order_details.orderid

 FROM order_details

 WHERE order_details.orderid = orders.orderid);

Finally, stop SQL Server Profiler by choosing File | Stop Trace and selecting the
corresponding trace.

Ch20.indd 563 1/25/12 10:32:04 AM

 5 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Working with the Database Engine Tuning Advisor
The Database Engine Tuning Advisor analyzes a workload and recommends the
physical design of one or more databases. The analysis will include recommendations to
add, remove, or modify the physical database structures, such as indices, indexed views,
and partitions. The Database Engine Tuning Advisor will recommend a set of physical
database structures that will optimize the tasks included in the workload.

To use the Database Engine Tuning Advisor, shown in Figure 20-2, choose Start |
All Programs | Microsoft SQL Server 2012 | Performance Tools | Database Engine
Tuning Advisor. (The alternative way is to start SQL Server Profiler and choose Tools |
Database Engine Tuning Advisor.)

In the Session Name field, type the name of the session for which the Database
Engine Tuning Advisor will create tuning recommendations. In the Workload frame,

Figure 20-2 Database Engine Tuning Advisor: General tab

Ch20.indd 564 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 6 5

choose either File or Table. If you choose File, enter the name of the trace file. If you
choose Table, you must enter the name of the table that is created by SQL Server
Profiler. (Using SQL Server Profiler, you can capture and save data about each workload
to a file or to a SQL Server table.)

Note
Running SQL Server Profiler can place a heavy burden on a busy instance of the Database Engine.

In the Select Databases and Tables to Tune frame, choose one or more databases
and/or one or more tables that you want to tune. (The Database Engine Tuning
Advisor can tune a workload that involves multiple databases. This means that the tool
can recommend indices, indexed views, and partitioning schema on any of the databases
in the workload.)

To choose options for tuning, click the Tuning Options tab (see Figure 20-3). Most
of the options on this tab are divided into three groups:

Physical Design Structures (PDS) to use in database Cc Allows you to choose
which physical structures (indices and/or indexed views) should be recommended
by the Database Engine Tuning Advisor, after tuning the existing workload. (The
Evaluate Utilization of Existing PDS Only option causes the Database Engine
Tuning Advisor to analyze the existing physical structures and recommend which
of them should be deleted.)
Partitioning strategy to employCc Allows you to choose whether or not
partitioning recommendations should be made. If you opt for partitioning
recommendations, you can also choose the type of partitioning, full or aligned.
(Partitioning is discussed in detail in Chapter 25.)
Physical Design Structures (PDS) to keep in databaseCc Enables you to decide
which, if any, existing structures should remain intact in the database after the
tuning process.

For large databases, tuning physical structures usually requires a significant amount
of time and resources. Instead of starting an exhaustive search for possible indexes, the
Database Engine Tuning Advisor offers (by default) the restrictive use of resources.
This operation mode still gives very accurate results, although the number of resources
tuned is significantly reduced.

Ch20.indd 565 1/25/12 10:32:04 AM

 5 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

During the specification of tuning options, you can define additional customization
options by clicking Advanced Options, which opens the Advanced Tuning Options
dialog box (see Figure 20-4). Checking the check box at the top of the dialog box
enables you to define the maximum space for recommendations. Increase the maximum
space to 20MB if you intend to start an exhaustive search. (For large databases, selection
of physical structures usually requires a significant amount of resources. Instead of
starting an exhaustive search, the Database Engine Tuning Advisor offers you the
option to restrict the space used for tuning.)

Of all index tuning options, one of the most interesting is the second option in this
dialog box, which enables you to determine the maximum number of columns per
index. A single-column index or a composite index built on two columns can be used
several times for a workload with many queries and requires less storage space than a
composite index built on four or more columns. (This applies in the case where you use

Figure 20-3 Database Engine Tuning Advisor: Tuning Options tab

Ch20.indd 566 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 6 7

a workload file on your own instead of using SQL Server Profiler’s trace for the specific
workload.) On the other hand, a composite index built on four or more columns may
be used as a covering index to enable index-only access for some of the queries in the
workload. (For more information on covering indices, see Chapter 10.)

After you select options in the Advanced Tuning Options dialog box, click OK to
close it. You can then start the analysis of the workload. To start the tuning process,
choose Actions | Start Analysis. After you start the tuning process for the trace file
of the query in Example 20.13, the Database Engine Tuning Advisor creates tuning
recommendations, which you can view by clicking the Recommendations tab, as shown
in Figure 20-5. As you can see, the Database Engine Tuning Advisor recommends the
creation of two indices.

The Database Engine Tuning Advisor recommendations concerning physical
structures can be viewed using a series of reports that provide information about very
interesting options. These reports enable you to see how the Database Engine Tuning
Advisor evaluated the workload. To see these reports, click the Reports tab in the
Database Engine Tuning Advisor dialog box after the tuning process is finished. You
can see the following reports, among others:

Index Usage Report (recommended configuration)Cc Displays information about
the expected usage of the recommended indexes and their estimated sizes
Index Usage Report (current configuration)Cc Presents the same information
about expected usage for the existing configuration
Index Detail Report (recommended configuration)Cc Displays information
about the names of all recommended indices and their types

Figure 20-4 Advanced Tuning Options dialog box

Ch20.indd 567 1/25/12 10:32:04 AM

 5 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Index Detail Report (current configuration)Cc Presents the same information for
the actual configuration, before the tuning process was started
Table Access ReportCc Displays information about the costs of all queries in the
workload (using tables in the database)
Workload Analysis Report Cc Provides information about the relative frequencies
of all data modification statements (costs are calculated relative to the most
expensive statement with the current index configuration)

There are three ways in which you can apply recommendations: immediately,
scheduled, or after saving to the file. If you choose Actions | Apply Recommendations,
the recommendations will be applied immediately. Similarly, if you choose Actions |
Save Recommendations, the recommendations will be saved to the file. (This alternative

Figure 20-5 Database Engine Tuning Advisor: Recommendations tab

Ch20.indd 568 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 6 9

is useful if you generate the script with one (test) system and intend to use the tuning
recommendation with another (production) system.) The third option, Actions |
Evaluate Recommendations, is used to evaluate the recommendations produced by the
Database Engine Tuning Advisor.

Other Performance Tools of SQL Server
SQL Server supports two additional performance tools:

Performance Data CollectorCc

Resource GovernorCc

The following sections describe these tools.

Performance Data Collector
Generally, it is very hard for DBAs to track down performance problems. The reason
for this is that DBAs usually are not there at the exact time a problem occurs, and thus
they have to react to an existing problem by first tracking it down.

Microsoft has included an entire infrastructure called Performance Data Collector to
solve the problem. Performance Data Collector is a component that is installed as a part
of an instance of the Database Engine and can be configured to run either on a defined
schedule or nonstop. The tool has three tasks:

To collect different sets of data related to performanceCc

To store this data in the management data warehouse (MDW)Cc

To allow a user to view collected data using predefined reportsCc

To use Performance Data Collector, you have to configure the MDW first. To do
this using SQL Server Management Studio, expand the server, expand Management,
right-click Data Collection, and click Configure Management Data Warehouse. The
Configure Management Data Warehouse Wizard appears. The wizard has two tasks: to
create the MDW and to set up data collection. After you complete these tasks, you can
run Performance Data Collector and view the reports it generates.

Creating the MDW
After you click Next on the Welcome screen of the wizard, the Select Configuration
Task wizard screen appears. Choose the Create or Upgrade a Management Data

Ch20.indd 569 1/25/12 10:32:04 AM

 5 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Warehouse option and click Next. On the Configure Data Warehouse Storage
screen (see Figure 20-6), choose a server and database to host your management data
warehouse and click Next. On the Map Login and Users screen, map existing logins
and users to management data warehouse roles (see Figure 20-7). This activity has to
be performed explicitly because no user is a member of a management data warehouse
role by default. Click Next when you are finished. On the Complete the Wizard screen,
verify the configuration and click Finish.

Setting Up Data Collection
After setting up the MDW, you have to start data collection. Restart the Configure
Management Data Warehouse Wizard and this time choose Set Up Data Collection on
the Select Configuration Task screen. Click Next. On the Configure Management Data
Warehouse Storage screen (see Figure 20-8), specify the server name and the name of
the data warehouse that you created in the prior section, and then specify where you
want collected data to be cached locally before it is uploaded to the MDW. Click Next.
On the Complete the Wizard screen, click Finish. The wizard finishes its work, giving
you a summary of the executed tasks.

Figure 20-6 Configuring MDW storage by selecting a server and database

Ch20.indd 570 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 7 1

Figure 20-7 Mapping logins and users to management data warehouse roles

Figure 20-8 Configure Management Data Warehouse Storage

Ch20.indd 571 1/25/12 10:32:04 AM

 5 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

Viewing Reports
Once Performance Data Collector is configured and active, the system will start
collecting performance information and uploading the data to the MDW. Also, three
new reports (Server Activity History, Disk Usage Summary, and Query Statistics
History) will be created for viewing data collected by Performance Data Collector. To
open the reports, right-click Data Collection, click Reports, and choose one of these
reports under Management Data Warehouse.

The first report, Server Activity History, displays performance statistics for system
resources described in this chapter. The second report, Disk Usage Summary, displays
the starting size and average daily growth of data and log files. The last report, Query
Statistics History, displays query execution statistics.

Resource Governor
One of the biggest problems in relation to performance tuning is trying to manage
resources with the competing workloads on a shared database server. You can solve this
problem using either server virtualization or several instances. In both cases, it is not
possible for an instance to ascertain whether the other instances (or virtual machines)
are using memory and the CPU. Resource Governor manages such a situation by
enabling one instance to reserve a portion of a system resource for a particular process.

Generally, Resource Governor enables DBAs to define resource limits and priorities
for different workloads. That way, consistent performance for processes can be achieved.

Resource Governor has two main components:

Workload groupsCc

Resource poolsCc

When a process connects to the Database Engine, it is classified and then assigned
to a workload group based on that classification. (The classification is done using either
a built-in classifier or a user-defined function.) One or more workload groups are then
assigned to specific resource pools (see Figure 20-9).

Note
Only CPU and memory can be managed by Resource Governor. In other words, the tool doesn’t support I/O and
network system resources.

Ch20.indd 572 1/25/12 10:32:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 7 3

As you can see in Figure 20-9, there are two different workload groups:

Internal groupCc

Default groupCc

The internal group is used to execute certain system functions, while the default
group is used when the process doesn’t have a defined classification. (You cannot

Session 1 of n

Classi�cationUser-de�ned classi�er
function

Group 1

Pool 1

Pool 2

Internal
group

Default
group

Default
pool

Internal
pool

Group 2

Application 1

Group 3

Application 3

Group 4

Application 4

Figure 20-9 Architecture of Resource Governor

Ch20.indd 573 1/25/12 10:32:05 AM

 5 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

modify the classification for the internal group. However, monitoring of the workload
of the internal group is possible.)

Note
The internal and default groups are predefined workload groups. In addition to them, the tool allows the
specification of 18 additional (user-defined) workload groups.

A resource pool represents the allocation of system resources of the Database Engine.
Each resource pool has two different parts, which specify the minimum and maximum
resource reservation. While minimum allocations of all pool resources cannot overlap, the
sum of them cannot exceed 100 percent of all system resources. On the other hand, the
maximum value of a resource pool can be set between its minimal value and 100 percent.

Analogous to workload groups, there are two predefined resource pools: the internal
pool and the default pool. The internal pool contains the system resources, which are
used by the internal processes of the system. The default pool contains both the default
workload group and user-defined groups.

Creation of Workload and Resource Groups
The following steps are necessary to create workload and resource groups:

Create resource pools.1.
Create workload groups and assign them to pools.2.
For each workload group, define and register the corresponding classification function.3.

Note
Resource Governer can be managed using SQL Server Management Studio or Transact-SQL statements. This
section describes how the preceding steps can be executed using SSMS. The corresponding T-SQL statements will
be mentioned, without any further explanation.

Before you create new resource pools, you have to check whether Resource
Governor is enabled. To do this, start Management Studio, expand the server, expand
Management, right-click Resource Governor, and click Enable. (Alternatively, you can
use the ALTER RESOURCE GOVERNOR T-SQL statement.)

Note
Resource pools and workload groups can be created in one dialog box, as described next.

Ch20.indd 574 1/25/12 10:32:05 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 7 5

To create a new resource pool, in Management Studio, expand the instance, expand
Management, expand Resource Governor, right-click Resource Pools, and click New
Resource Pool. The Resource Governor Properties dialog box appears (see Figure 20-10).

Generally, when you create a new resource pool, you have to specify its name and the
minimum and maximum boundaries for CPU and memory. Therefore, in the Resource
Pools table of the Resource Governor Properties dialog box, click the first column
of the first empty row and type the name of the new pool. After that, specify the
minimum and maximum values for CPU and memory.

You can specify a corresponding workload group in the same dialog box (see
Figure 20-10). In the Workload Groups table, double-click the empty cell in the Name
column and type the name of the corresponding group. Optionally, you can specify
several different properties for that workload group. Click OK to exit the dialog box.

Note
To create a new resource pool using T-SQL, use the CREATE RESOURCE POOL statement. To create a new workload
group, use the CREATE WORKLOAD GROUP statement.

Figure 20-10 Resource Governor Properties dialog box

Ch20.indd 575 1/25/12 10:32:05 AM

 5 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

After you specify the new pool and its corresponding workload group, you have to
create a classification function. This function is a user-defined function that is used
to create any association between a workload group and users. (An example of such a
function can be found in the description of the ALTER RESOURCE GOVERNOR
statement in Books Online.)

Monitoring Configuration of Resource Governor
The following two DMVs can be used to monitor workload groups and resource pools:

sys.dm_resource_governor_workload_groupsCc

sys.dm_resource_governor_resource_poolsCc

The sys.dm_resource_governor_workload_groups view displays the information
concerning workload groups. The total_query_optimization_count column of this
view displays the cumulative count of query optimizations in this workload group; if the
value is too high, it may indicate memory pressure.

The sys.dm_resource_governor_resource_pools view displays the information
concerning resource pools. The total_cpu_usage_ms and used_memory_kb columns
specify the total usage of CPU and the used memory, respectively, and indicate how
your resource pools consume these two system resources.

Summary
Performance issues can be divided into proactive and reactive response areas. Proactive
issues concern all activities that affect performance of the overall system and that will
affect future systems of an organization. Proper database design and proper choice of
the form of Transact-SQL statements in application programs belong to the proactive
response area. Reactive performance issues concern activities that are undertaken after
the performance bottleneck occurs. SQL Server offers a variety of tools (graphical
components, Transact-SQL statements, and stored procedures) that can be used to view
and trace performance problems of a SQL Server system.

Of all components, Performance Monitor and dynamic management views are the
best tools for monitoring because you can use them to track, display, report, and trace
any performance bottlenecks.

The next chapter starts the Analysis Services part of the book. It introduces general
terms and concepts that you need to know about this important topic.

Ch20.indd 576 1/25/12 10:32:05 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 20

 C h a p t e r 2 0 : P e r f o r m a n c e Tu n i n g 5 7 7

Exercises

 E.20.1

Discuss the differences between SQL Server Profiler and the Database Engine Tuning
Advisor.

 E.20.2

Discuss the differences between Performance Data Collector and Resource Governor.

Ch20.indd 577 1/25/12 10:32:05 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 /
Blind folio 579

SQL Server and
Business Intelligence

Part IV

ch21.indd 579 1/25/12 10:39:15 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

In This Chapter

c Online Transaction
Processing vs. Business
Intelligence

c Data Warehouses
and Data Marts

c Data Warehouse Design
c Cubes and Their

Architectures
c Data Access

Business Intelligence:
An Introduction

Chapter 21

ch21.indd 581 1/25/12 10:39:15 AM

 5 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

The goal of this chapter is to introduce you to an important area of database
technology: business intelligence (BI). The first part of the chapter explains
the difference between the online transaction processing world on one side

and the BI world on the other side. A data store for a BI process can be either a data
warehouse or a data mart. Both types of data store are discussed, and their differences
are listed in the second part of the chapter. The design of data in BI and the need for
creation of aggregate tables are explained at the end of the chapter.

Online Transaction Processing vs.
Business Intelligence
From the beginning, relational database systems were used almost exclusively to
capture primary business data, such as orders and invoices, using processing based on
transactions. This focus on business data has its benefits and its disadvantages. One
benefit is that the poor performance of early database systems improved dramatically,
to the point that today many database systems can execute thousands of transactions
per second (using appropriate hardware). On the other hand, the focus on transaction
processing prevented people in the database business from seeing another natural
application of database systems: using them to filter and analyze needed information
out of all the existing data in an enterprise or department.

Online Transaction Processing
As already stated, performance is one of the main issues for systems that are based upon
transaction processing. These systems are called online transaction processing (OLTP)
systems. A typical example of an operation performed by an OLTP system is to process
the withdrawal of money from a bank account using a teller machine. OLTP systems
have some important properties, such as:

Short transactions—that is, high throughput of dataCc

Many (possibly hundreds or thousands of) usersCc

Continuous read and write operations based on a small number of rowsCc

Data of medium size that is stored in a databaseCc

The performance of a database system will increase if transactions in the database
application programs are short. The reason is that transactions use locks (see Chapter 13) to
prevent possible negative effects of concurrency issues. If transactions are long lasting,

ch21.indd 582 1/25/12 10:39:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 8 3

the number of locks and their duration increases, decreasing the data availability for
other transactions and thus their performance.

Large OLTP systems usually have many users working on the system simultaneously.
A typical example is a reservation system for an airline company which must process
thousands of requests for travel arrangements in a single country, or all over the world,
almost immediately. In this type of system, most users expect that their response-time
requirements will be fulfilled by the system and the system will be available during
working hours (or 24 hours a day, seven days a week).

Users of an OLTP system execute their DML statements continuously—that is, they
use both read and write operations at the same time and steadily. (Because data of an
OLTP system is continuously modified, that data is highly dynamic.) All operations
(or results of them) on a database usually include only a small amount of data, although
it is possible that the database system must access many rows from one or more tables
stored in the database.

In recent years, the amount of data stored in an operational database (that is, a database
managed by an OLTP system) has increased steadily. Today, there are many databases
that store several or even dozens of gigabytes of data. As you will see, this amount of data
is still relatively small in relation to data warehouses.

Business Intelligence Systems
Business intelligence is the process of integrating enterprise-wide data into a single data
store from which end users can run ad hoc queries and reports to analyze the existing
data. In other words, the goal of BI is to keep data that can be accessed by users who
make their business decisions on the basis of the analysis. These systems are often
called analytic or informative systems because, by accessing data, users get the necessary
information for making better business decisions.

The goals of BI systems are different from the goals of OLTP systems. The
following is a query that is typical for a BI system: “What is the best-selling product
category for each sales region in the third quarter of the year 2011?” Therefore, a BI
system has very different properties from those listed for an OLTP system in the
preceding section. The most important properties of a BI system are as follows:

Periodic write operations (load) with queries based on a huge number of rowsCc

Small number of usersCc

Large size of data stored in a databaseCc

ch21.indd 583 1/25/12 10:39:15 AM

 5 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

Other than loading data at regular intervals (usually daily), BI systems are mostly
read-only systems. (Therefore, the nature of the data in such a system is static.) As
will be explained in detail later in this chapter, data is gathered from different sources,
cleaned (made consistent), and loaded into a database called a data warehouse (or
data mart). The cleaned data is usually not modified—that is, users query data using
SELECT statements to obtain the necessary information (and modification operations
are very seldom).

Because BI systems are used to gain information, the number of users that simultaneously
use such a system is relatively small in relation to the number of users that simultaneously
use an OLTP system. Users of a BI system usually generate reports that display different
factors concerning the finances of an enterprise (or department), or they execute complex
queries to compare data.

Note
Another difference between OLTP and BI systems that actually affects the user’s behavior is the daily schedule—
that is, when those systems are available for use during a day. An OLTP system can be used nonstop (if it is
designed for such a use), whereas a BI system can be used only as soon as data is made consistent and is loaded
into the database.

In contrast to databases in OLTP systems that store only current data, BI systems
must also track historical data. (Remember that BI systems make comparisons between
data gathered in different time periods.) For this reason, the amount of data stored in a
data warehouse is very large.

Data Warehouses and Data Marts
A data warehouse can be defined as a database that includes all corporate data and that
can be uniformly accessed by users. That’s the concise definition; explaining the notion
of a data warehouse is much more involved. An enterprise usually has a large amount
of data stored at different times and in different databases (or data files) that are
managed by distinct DBMSs. These DBMSs need not be relational: some enterprises
still have databases managed by hierarchical or network database systems. A special
team of software specialists examines source databases (and data files) and converts
them into a target store: the data warehouse. Additionally, the converted data in a data
warehouse must be consolidated, because it holds the information that is the key to
the corporation’s operational processes. (Consolidation of data means that all equivalent
queries executed upon a data warehouse at different times provide the same result.) The
data consolidation in a data warehouse is provided in several steps:

ch21.indd 584 1/25/12 10:39:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 8 5

Data assembly from different sources (also called extraction)Cc

Data cleaning (in other words, transformation process)Cc

Quality assurance of dataCc

Data must be carefully assembled from different sources. In this process, data is
extracted from the sources, converted to an intermediate schema, and moved to a
temporary work area. For data extraction, you need tools that extract exactly the data
that must be stored in the data warehouse.

Data cleaning ensures the integrity of data that has to be stored in the target database.
For example, data cleaning must be done on incorrect entries in data fields, such as
addresses, or incompatible data types used to define the same date fields in different
sources. For this process, the data cleaning team needs special software. An example
will help explain the process of data cleaning more clearly. Suppose that there are two
data sources that store personal data about employees and that both databases have the
attribute Gender. In the first database, this attribute is defined as CHAR(6), and the
data values are “female” and “male.” The same attribute in the second database is declared
as CHAR(1), with the values “f ” and “m.” The values of both data sources are correct,
but for the target data source you must clean the data—that is, represent the values of
the attribute in a uniform way.

The last part of data consolidation—quality assurance of data—involves a data
validation process that specifies the data as the end user should view and access it.
Because of this, end users should be closely involved in this process. When the process
of data consolidation is finished, the data will be loaded in the data warehouse.

Note
The whole process of data consolidation is called ETL (extraction, transformation, loading). Microsoft provides a
component called SQL Server Integration Services (SSIS) to support users during the ETL process.

By their nature (as a store for the overall data of an enterprise), data warehouses
contain huge amounts of data. (Some data warehouses contain dozens of terabytes or even
petabytes of data.) Also, because they must encompass the enterprise, implementation
usually takes a lot of time, which depends on the size of the enterprise. Because of these
disadvantages, many companies start with a smaller solution called a data mart.

Data marts are data stores that include all data at the department level and therefore
allow users to access data concerning only a single part of their organization. For
example, the marketing department stores all data relevant to marketing in its own data

ch21.indd 585 1/25/12 10:39:15 AM

 5 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

mart, the research department puts the experimental data in the research data mart, and
so on. Because of this, a data mart has several advantages over a data warehouse:

Narrower application areaCc

Shorter development time and lower costCc

Easier data maintenanceCc

Bottom-up developmentCc

As already stated, a data mart includes only the information needed by one part of an
organization, usually a department. Therefore, the data that is intended for use by such
a small organizational unit can be more easily prepared for the end user’s needs.

The average development time for a data warehouse is two years and the average cost
is $5 million. On the other hand, costs for a data mart average $200,000, and such a
project takes about three to five months. For these reasons, development of a data mart
is preferred, especially if it is the first BI project in your organization.

The fact that a data mart contains significantly smaller amounts of data than a data
warehouse helps you to reduce and simplify all tasks, such as data extraction, data cleaning,
and quality assurance of data. It is also easier to design a solution for a department than
to design one for the entire organization. (For more information on BI design and a
dimensional model, see the next section of this chapter.)

If you design and develop several data marts in your organization, it is possible to
unite them all in one big data warehouse. This bottom-up process has several advantages
over designing a data warehouse at once. First, each data mart may contain identical
target tables that can be unified in a corresponding data warehouse. Second, some tasks
are logically enterprise-wide, such as the gathering of financial information by the
accounting department. If the existing data marts will be linked together to build a data
warehouse for an enterprise, a global repository (that is, the data catalog that contains
information about all data stored in sources and in the target database) is required.

Note
Be aware that building a data warehouse by linking data marts can be very troublesome because of possible
significant differences in the structure and design of existing data marts. Different parts of an enterprise may use
different data models and have different instructions for data representation. For this reason, at the beginning
of this bottom-up process, it is strongly recommended that you make a single view of all data that will be valid
at the enterprise level; do not allow departments to design data separately.

ch21.indd 586 1/25/12 10:39:15 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 8 7

Data Warehouse Design
Only a well-planned and well-designed database will allow you to achieve good
performance. Relational databases and data warehouses have a lot of differences that
require different design methods. Relational databases are designed using the well-
known entity-relationship (ER) model, while the dimensional model is used for the
design of data warehouses and data marts.

Using relational databases, data redundancy is removed using normal forms (see
Chapter 1). The normalization process divides each table of a database that includes
redundant data into two separate tables. The process of normalization should be
finished when all tables of a database contain only nonredundant data.

The highly normalized tables are advantageous for OLTP because all transactions can
be made as simple and short as possible. On the other hand, BI processes are based on
queries that operate on a huge amount of data and are neither simple nor short. Therefore,
the highly normalized tables do not suit the design of data warehouses, because the goal
of BI systems is significantly different: there are few concurrent transactions, and each
transaction accesses a very large number of records. (Imagine the huge amount of data
belonging to a data warehouse that is stored in hundreds of tables. Most queries will join
dozens of large tables to retrieve data. Such queries cannot be performed well, even if you
use hardware with parallel processors and a database system with the best query optimizer.)

Data warehouses cannot use the ER model because this model is suited to design
databases with nonredundant data. The logical model used to design data warehouses is
called a dimensional model.

Note
There is another important reason why the ER model is not suited to the design of data warehouses: the use of
data in a data warehouse is unstructured. This means the queries are partly executed ad hoc, allowing a user to
analyze data in totally different ways. (On the other hand, OLTP systems usually have database applications that
are hard-coded and therefore contain queries that are not modified often.)

In dimensional modeling, every particular model is composed of one table that stores
measures and several other tables that describe dimensions. The former is called the
fact table, and the latter are called dimension tables. Examples of data stored in a fact
table include inventory sales and expenditures. Dimension tables usually include time,
account, product, and employee data. Figure 21-1 shows an example of the dimensional
model.

ch21.indd 587 1/25/12 10:39:15 AM

 5 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

Each dimension table usually has a single-part primary key and several other attributes
that describe this dimension closely. On the other hand, the primary key of the fact table
is the combination of the primary keys of all dimension tables (see Figure 21-1). For this
reason, the primary key of the fact table is made up of several foreign keys. (The number
of dimensions also specifies the number of foreign keys in the fact table.) As you can see
in Figure 21-1, the tables in a dimensional model build a star-like structure. Therefore,
this model is often called star schema.

Another difference in the nature of data in a fact table and the corresponding
dimension tables is that most nonkey columns in a fact table are numeric and additive,
because such data can be used to execute necessary calculations. (Remember that a
typical query on a data warehouse fetches thousands or even millions of rows at a time,
and the only useful operation upon such a huge amount of rows is to apply an aggregate
function, such as sum, maximum, or average). For example, columns like Units_of_
product_sold, Total_sales, Profit, or Dollars_cost are typical columns in the fact
table. (Numerical columns of the fact table that do not build the primary key of the
table are called measures.)

On the other hand, columns of dimension tables are strings that contain textual
descriptions of the dimension. For instance, columns such as Address, Location, and

Figure 21-1 Example of the dimensional model: star schema

REGION SALES_PERSON

QUARTER_ID
MONTH

DAY

SALES_PERSON_ID
LAST_NAME
FIRST_NAME

ADDRESS

REGION_ID
ADDRESS

ZIP

Fact table

REGION_ID
SALES_PERSON_ID

QUARTER_ID
TOTAL_SALES

PROFIT

QUARTER

ch21.indd 588 1/25/12 10:39:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 8 9

Name often appear in dimension tables. (These columns are usually used as headers
in reports.) Another consequence of the textual nature of columns of dimension tables
and their use in queries is that each dimension table contains many more indices than
the corresponding fact table. (A fact table usually has only one unique index composed
of all columns belonging to the primary key of that table.) Table 21-1 summarizes the
differences between fact and dimension tables.

Note
Sometimes it is necessary to have multiple fact tables in a data warehouse. If you have different sets of
measures, each set has to be tied to a different fact table.

Columns of dimension tables are usually highly denormalized, which means that a
lot of columns depend on each other. The denormalized structure of dimension tables
has one important purpose: all columns of such a table are used as column headers in
reports. If the denormalization of data in a dimension table is not desirable, a dimension
table can be decomposed into several subtables. This is usually necessary when columns
of a dimension table build hierarchies. (For example, the product dimension could
have columns such as Product_id, Category_id, and Subcategory_id that build three
hierarchies, with the primary key, Product_id, as the root.) This structure, in which
each level of a base entity is represented by its own table, is called a snowflake schema.
Figure 21-2 shows the snowflake schema of the product dimension.

The extension of a star schema into a corresponding snowflake schema has some
benefits (reduction of used disk space, for example) and one main disadvantage: the
snowflake schema requires more join operations to get information from lookup tables,
which negatively impacts performance. For this reason, the performance of queries based
on the snowflake schema is generally slow. Therefore, the design using the snowflake
schema is recommended only in a few very specialized cases.

Fact Table Dimension Table
Usually one in a dimensional model Many (12–20)

Contains most rows of a data warehouse Contains relatively small amount of data

Composite primary key (contains all primary keys of dimension tables) One column of a table builds the primary key

Non-key columns are numeric and additive Columns are descriptive and therefore textual

Table 21-1 The Differences Between Fact and Dimension Tables

ch21.indd 589 1/25/12 10:39:16 AM

 5 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

Cubes and Their Architectures
BI systems support different types of data storage. Some of these data storage types are
based on a multidimensional database that is also called a cube. A cube is a subset of
data from the data warehouse that can be organized into multidimensional structures.
To define a cube, you first select a fact table from the dimensional schema and identify
numerical columns (measures) of interest within it. Then you select dimension tables
that provide descriptions for the set of data to be analyzed. To demonstrate this,
consider how the cube for car sales analysis might be defined. For example, the fact
table may include the measures Cars_sold, Total_sales, and Costs, while the tables
Models, Quarters, and Regions specify dimension tables. The cube in Figure 21-3
shows all three dimensions: Models, Regions, and Quarters.

In each dimension there are discrete values called members. For instance, the Regions
dimension may contain the following members: ALL, North America, South America,
and Europe. (The ALL member specifies the total of all members in a dimension.)

Additionally, each cube dimension can have a hierarchy of levels that allows users to
ask questions at a more detailed level. For example, the Regions dimension can include
the following level hierarchies: Country, Province, and City. Similarly, the Quarters
dimension can include Month, Week, and Day as level hierarchies.

Note
Cubes and multidimensional databases are managed by special systems called multidimensional database
systems (MDBMSs). SQL Server’s MDBMS is called Analysis Services.

Brand code

Brand name

Brand manager

Product codeProduct code

Category code

Category name

Subcategory code

Line manager

Subcategory code

Subcategory name

Product name

Product color

Brand code

Category code

Time code

Account code

Revenue

units sold

cost

net profit

Figure 21-2 The snowflake schema

ch21.indd 590 1/25/12 10:39:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 9 1

The physical storage of a cube is described after the following discussion of
aggregation.

Aggregation
Data is stored in the fact table in its most detailed form so that corresponding reports
can make use of it. On the other hand (as stated earlier), a typical query on a fact table
fetches thousands or even millions of rows at a time, and the only useful operation
upon such a huge amount of rows is to apply an aggregate function (sum, maximum, or
average). This different use of data can reduce performance of ad hoc queries if they are
executed on low-level (atomic) data, because time- and resource-intensive calculations
will be necessary to perform each aggregate function.

For this reason, low-level data from the fact table should be summarized in advance
and stored in intermediate tables. Because of their “aggregated” information, such tables
are called aggregate tables, and the whole process is called aggregation.

Note
An aggregate row from the fact table is always associated with one or more aggregate dimension table rows.
For example, the dimensional model in Figure 21-1 could contain the following aggregate rows: monthly sales
aggregates by salespersons by region and region-level aggregates by salespersons by day.

Cars_sold

Total_sales

Costs

Models

Falcon

Crow

Eagle

North
America

South
America

Asia

Regions

3rd quarter

2nd quarter

1st quarter

Quarters

Figure 21-3 Cube with dimensions Models, Quarters, and Regions

ch21.indd 591 1/25/12 10:39:16 AM

 5 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

An example will show why low-level data should be aggregated. An end user may
want to start an ad hoc query that displays the total sales of the organization for the
last month. This would cause the server to sum all sales for each day in the last month.
If there are an average of 500 sales transactions per day in each of 500 stores of the
organization, and data is stored at the transaction level, this query would have to read
7,500,000 (500 × 500 × 30 days) rows and build the sum to return the result. Now
consider what happens if the data is aggregated in a table that is created using monthly
sales by store. In this case, the table will have only 500 rows (the monthly total for each
of 500 stores), and the performance gain will be dramatic.

How Much to Aggregate?
Concerning aggregation, there are two extreme solutions: no aggregation at all, and
exhaustive aggregation for every possible combination of queries that users will need.
From the preceding discussion, it should be clear that no aggregation at all is out of the
question, because of performance issues. (The data warehouse without any aggregation
table probably cannot be used at all as a production data store.) The opposite solution is
also not acceptable, for several reasons:

Enormous amount of disk space needed to store additional dataCc

Overwhelming maintenance of aggregate tablesCc

Initial data load too longCc

Storing additional data that is aggregated at every possible level consumes an
additional amount of disk space that increases the initial disk space by a factor of six
or more (depending on the amount of the initial disk space and the number of queries
that users will need). The creation of tables to hold the aggregates for all existing
combinations is an overwhelming task for the system administrator. Finally, building
aggregates at initial data load can have devastating results if this load already lasts for a
long time and the additional time is not available.

From this discussion you can see that aggregate tables should be carefully planned
and created. During the planning phase, keep these two main considerations in mind
when determining what aggregates to create:

Where is the data concentrated?Cc

Which aggregates would most improve performance?Cc

ch21.indd 592 1/25/12 10:39:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 9 3

The planning and creation of aggregate tables is dependent on the concentration
of data in the columns of the base fact table. In a data warehouse, where there is no
activity on a given day, the corresponding row is not stored at all. So if the system loads
a large number of rows, as compared to the number of all rows that can be loaded,
aggregating by that column of the base fact table improves performance enormously. In
contrast, if the system loads few rows, as compared to the number of all rows that can
be loaded, aggregating by that column is not efficient.

Here is another example to demonstrate the preceding discussion. For products in
the grocery store, only a few of them (say, 15 percent) are actually sold on a given day.
If we have a dimensional model with three dimensions, Product, Store, and Time, only
15 percent of the combination of the three corresponding primary keys for the particular
day and for the particular store will be occupied. The daily product sales data will thus
be sparse. In contrast, if all or many products in the grocery store are sold on a given day
(because of a special promotion, for example), the daily product sales data will be dense.

To find out which dimensions are sparse and which are dense, you have to build
rows from all possible combinations of tables and evaluate them. Usually the Time
dimension is dense, because there are always entries for each day. Given the dimensions
Product, Store, and Time, the combination of the Store and Time dimensions is
dense, because for each day there will certainly be data concerning selling in each store.
On the other hand, the combination of the Store and Product dimensions is sparse
(for the reasons previously discussed). In this case, the dimension Product is generally
sparse, because its appearance in combination with other dimensions is sparse.

The choice of aggregates that would most improve performance depends on end
users. Therefore, at the beginning of a BI project, you should interview end users to
collect information on how data will be queried, how many rows will be retrieved by
these queries, and other criteria.

Physical Storage of a Cube
Online analytical processing (OLAP) systems usually use one of the following three
different architectures to store multidimensional data:

Relational OLAP (ROLAP)Cc

Multidimensional OLAP (MOLAP)Cc

Hybrid OLAP (HOLAP)Cc

ch21.indd 593 1/25/12 10:39:16 AM

 5 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

Generally, these three architectures differ in the way in which they store leaf-level
data and precomputed aggregates. (Leaf-level data is the finest grain of data that is
defined in the cube’s measure group. Therefore, the leaf-level data corresponds to the
data of the cube’s fact table.)

In ROLAP, the precomputed data isn’t stored. Instead, queries access data from the
relational database and its tables in order to bring back the data required to answer the
question. MOLAP is a type of storage in which the leaf-level data and its aggregations
are stored using a multidimensional cube.

Although the logical content of these two storage types is identical for the same
data warehouse, and both ROLAP and MOLAP analytic tools are designed to
allow analysis of data through the use of the dimensional data model, there are some
significant differences between them. The advantages of ROLAP storage type are as
follows:

Data is not duplicatedCc

Materialized (that is, indexed) views can be used for aggregation (summaries)Cc

If the data should also be stored in a multidimensional database, a certain amount of
data must be duplicated. Therefore, the ROLAP storage type does not need additional
storage to copy the leaf-level data. Also, the calculation of aggregation can be executed
very quickly with ROLAP if the corresponding summary tables are generated using
indexed views.

On the other hand, MOLAP also has several advantages over ROLAP:

Aggregates are stored in a multidimensional formCc

Query response is generally fasterCc

Using MOLAP, many aggregates are precomputed and stored in a multidimensional
cube. That way the system does not have to calculate the result of such an aggregate
each time it is needed. In the case of MOLAP, the database engine and the database
itself are usually optimized to work together, so the query response may be faster than
in ROLAP.

HOLAP storage is a combination of the MOLAP and ROLAP storage types.
Precomputed data is stored as in the case of the MOLAP storage, while the leaf-
level data is left in the relational database. (Therefore, for queries using aggregation,
HOLAP is identical to MOLAP.) The advantage of HOLAP storage is that the leaf-
level data is not duplicated.

ch21.indd 594 1/25/12 10:39:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

 C h a p t e r 2 1 : B u s i n e s s I n t e l l i g e n c e : A n I n t r o d u c t i o n 5 9 5

Data Access
Data in a data warehouse can be accessed using three general techniques:

ReportingCc

OLAPCc

Data miningCc

Reporting is the simplest form of data access. A report is just a presentation of a
query result in a tabular form. (Reporting is discussed in detail in Chapter 24.) With
OLAP, you analyze data interactively; that is, it allows you to perform comparisons and
calculations along any dimension in a data warehouse.

Note
Transact-SQL supports all standardized functions and constructs in relation to SQL/OLAP. This topic will be
discussed in detail in Chapter 23.

Data mining is used to explore and analyze large quantities of data in order to
discover significant patterns. This discovery is not the only task of data mining: using
this technique, you must be able to turn the existing data into information and turn the
information into action. In other words, it is not enough to analyze data; you have to
apply the results of data mining meaningfully and take action upon the given results.
(Data mining, as the most complex of the three techniques, will not be covered in this
introductory book.)

Summary
At the beginning of a BI project, the main question is what to build: a data warehouse
or a data mart. Probably the best answer is to start with one or more data marts that can
later be united in a data warehouse. Most of the existing tools in the BI market support
this alternative.

In contrast to operational databases that use ER models for their design, the design
of data warehouses is best done using a dimensional model. These two models show
significant differences. If you are already acquainted with the ER model, the best way
to learn and use the dimensional model is to forget everything about the ER model and
start modeling from scratch.

ch21.indd 595 1/25/12 10:39:16 AM

 5 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 21

After this introductory discussion of general considerations about the BI process, the
next chapter discusses the server part of Microsoft Analysis Services.

Exercises

 E.21.1

Discuss the differences between operative and analytic systems.

 E.21.2

Discuss the differences between the ER and dimensional models.

 E.21.3

At the beginning of a project with a data warehouse, there is the so-called ETL
(extracting, transforming, loading) process. Explain the three subprocesses.

 E.21.4

Discuss the differences between a fact table and corresponding dimension tables.

 E.21.5

Discuss the benefits of the three storage types (MOLAP, ROLAP, and HOLAP).

 E.21.6

Why is it necessary to aggregate data stored in a fact table?

ch21.indd 596 1/25/12 10:39:16 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

Chapter 22

In This Chapter

c SSAS Terminology
c Developing a

Multidimensional Cube
Using BIDS

c Retrieving and Delivering
Data

c Security of SQL Server
Analysis Services

SQL Server Analysis
Services

22-Ch22.indd 597 2/6/12 1:32:22 PM

 5 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

SQL Server Analysis Services (SSAS) is a group of services that is used to
manage data that is stored in a data warehouse or data mart. SSAS organizes
data from a data warehouse into multidimensional cubes (see Chapter 21) with

aggregates to allow the execution of sophisticated reports and complex queries. The key
features of SSAS are

Ease of useCc

Support of different architecturesCc

Support of several APIsCc

SSAS offer wizards for almost every task that is executed during the design and
implementation of a data warehouse. For example, the Data Source Wizard allows
you to specify one or more data sources, while the Cube Wizard is used to create a
multidimensional cube where aggregate data is stored. Additionally, ease of use is
guaranteed by Business Intelligence Development Studio (BIDS). You can use this tool
to develop databases and other data warehouse objects. This means that BIDS offers
one interface for developing SSAS projects as well as SQL Server Integration Services
(SSIS) and Reporting Services (SSRS) projects.

In contrast to most other data warehouse systems, SSAS allow you to use the
architecture that is most appropriate for your needs. You can choose between the three
architectures (MOLAP, ROLAP, and HOLAP) discussed in detail in Chapter 21.

SSAS provides many different APIs that can be used to retrieve and deliver
data. One of these is OLE DB for OLAP interface that allows you to access SSAS
cubes. Several APIs are described later in this chapter, in the section “Retrieving and
Delivering Data.”

Security aspects of SSAS are discussed at the end of the chapter.

SSAS Terminology
The following are the most important terms related to SSAS:

CubeCc

DimensionCc

MemberCc

HierarchyCc

CellCc

22-Ch22.indd 598 2/6/12 1:32:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 5 9 9

LevelCc

Measure groupCc

PartitionCc

A cube is a multidimensional structure that contains all or part of the data
from a data warehouse. Although the term “cube” implies three dimensions, a
multidimensional cube generally can have many more dimensions. Each cube contains
all other components in the preceding list.

A dimension is a set of logically related attributes (stored together in a dimension
table) that closely describes measures (stored in the fact table). For instance, Time,
Product, and Customer are the typical dimensions that are part of many BI
applications. (These three dimensions from the AdventureWorksDW database are used
in the example in the following section that demonstrates how to create and process a
multidimensional cube using BIDS.)

Note
One important dimension of a cube is the Measures dimension, which includes all measures defined in the
fact table.

Each discrete value in a dimension is called a member. For instance, the members of
a Product dimension could be Computers, Disks, and CPUs. Each member can be
calculated, meaning that its value is calculated at run time using an expression that is
specified during the definition of the member. (Because calculated members are not
stored on the disk, they allow you to add new members without increasing the size of a
corresponding cube.)

Hierarchies specify groupings of multiple members within each dimension. They are
used to refine queries concerning data analysis.

Cells are parts of a multidimensional cube that are identified by coordinates (x-, y-,
and z-coordinates, if the cube is three-dimensional). This means that a cell is a set
containing members from each dimension. For instance, consider the three-dimensional
cube in Chapter 21 (see Figure 21-3) that represents car sales for a single region within
a quarter. The cells with the following coordinates belong, among others, to the cube:

First quarter, South America, FalconCc

Third quarter, Asia, EagleCc

22-Ch22.indd 599 2/6/12 1:32:22 PM

 6 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

When you define hierarchies, you define them in terms of their levels. In other
words, levels describe the hierarchy from the highest (most summarized) level to the
lowest (most detailed) level of data. The following list displays the possible hierarchy
levels for the Time dimension:

Quarter (Q1, Q2, Q3, Q4)Cc

Month (January, February, …)Cc

Day (Day1, Day2, …)Cc

As you already know from Chapter 21, measures are numerical values, such as price
or quantity, that appear in a fact table but do not build its primary key. A measure
group is a set of measures that together build a logical unit for business purposes. Each
measure group is built on the fly, using corresponding metadata information.

A cube can be divided into one or more partitions. Partitions are used by SSAS to
manage and store data and aggregations for a measure group in a cube. Every measure
group has at least one partition, which is created when the measure group is defined.
Partitions are a powerful and flexible means of managing large cubes.

Developing a Multidimensional Cube Using BIDS
The main component of SSAS is Business Intelligence Development Studio (BIDS), a
management tool that provides one development platform for different BI applications.
Built on Visual Studio, BIDS supports an integrated platform for system developers in
the business intelligence area.

You can use BIDS not only to create and manage cubes, but also to design
capabilities for SQL Server Reporting Services and SQL Server Integration Services.
(SSRS is discussed in Chapter 24, while the description of SSIS is beyond the scope of
this book.)

Note
The user interface of BIDS is similar to the interface of SQL Server Management Studio. However, these two tools
differ in their deployment: you should use BIDS to develop BI projects, while the goal of SQL Server Management
Studio is mainly to operate and maintain database objects in relation to business intelligence.

The following steps are necessary to create and process a multidimensional cube
using Business Intelligence Development Studio:

Create a BI project.1.
Identify data sources.2.

22-Ch22.indd 600 2/6/12 1:32:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 0 1

Specify data source views.3.
Create a cube.4.
Design storage aggregation.5.
Process the cube.6.
Browse the cube.7.

The following sections describe in detail these steps.

Create a BI Project
The first step in building an analytic application is to create a new project in BIDS.
To start BIDS, choose Start | All Programs | Microsoft SQL Server 2012 | SQL
Server Business Intelligence Development Studio. Next, choose File | New | Project.
In the New Project dialog box, in the Installed Templates pane (see Figure 22-1),
select Analysis Services (under the Business Intelligence folder) and select Analysis
Services Multidimensional and Data Mining Project. Type the name of the project

Figure 22-1 The New Project dialog box

22-Ch22.indd 601 2/6/12 1:32:22 PM

 6 0 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

and its location in the Name and Location text boxes, respectively. For purposes of this
example, name the project BI_Project, as shown in Figure 22-1. Click OK to create the
new project.

The new project is always created in a new solution. A solution is the largest
management unit in BIDS and always comprises one or more projects. (In this example,
the solution has the same name as the project.)

Note
If the Solution Explorer pane, which allows you to view and manage objects in a solution or a project, is not
visible, choose View | Solution Explorer to view it.

Identify Data Sources
To identify data sources, right-click the Data Sources folder in the Solution Explorer
pane and choose New Data Source. The Data Source Wizard appears, which
guides you through the process of creating a data source. (This example uses the
AdventureWorksDW sample database as the data source.)

First, on the Select How to Define the Connection page, make sure that the Create a
Data Source Based on an Existing or New Connection radio button is activated and click
New. In the Connection Manager dialog box (see Figure 22-2), select Native OLE
DB/SQL Server Native Client 11.0 in the Provider drop-down list and select the name
of your database server in the Server Name drop-down list. (The choice of Native OLE
DB/SQL Server Native Client 11.0 allows you to make a connection to an existing
database of an instance of the Database Engine.) In the same dialog box, choose Use
Windows Authentication and, from the Select or Enter a Database Name drop-down
list, choose the AdventureWorksDW database. Before you click OK, click the Test
Connection button to test the connection to the database. (The Select How to Define the
Connection page appears only when you connect to the data source for the first time.)

The next step of the wizard is the Impersonation Information page. These settings
determine which user account SSAS uses when connecting to the underlying source
of data using Windows authentication. Which setting is appropriate depends on how
this data source is being used. Click the Use a Specific Windows User Name and
Password radio button and type your username and password in the corresponding
fields. Click Next.

Finally, on the Completing the Wizard page, give the new data source a name (for
this example, call it BI_Source) and click Finish. The new data source appears in the
Solution Explorer pane in the Data Sources folder.

22-Ch22.indd 602 2/6/12 1:32:22 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 0 3

After identifying data sources in general, you have to determine exactly which data
you want to select from the data source. In our example, it means that you have to select
tables from the AdventureWorksDW database, which will be used to build a cube.
This step involves specifying data source views, discussed next.

Specify Data Source Views
To create data source views, right-click the Data Source Views folder in the Solution
Explorer pane and choose New Data Source View. The Data Source View Wizard guides

Figure 22-2 The Connection Manager dialog box

22-Ch22.indd 603 2/6/12 1:32:23 PM

 6 0 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

you through the steps that are necessary to create a data source view. (This example
creates a view called BI_View, which is based on the Customer and Project entities.)

First, on the Select a Data Source page, select an existing relational data source (for
this example, select BI_Source) and click Next. On the next wizard page, Select Tables
and Views, choose tables that belong to your cube either as dimension tables or fact
tables. To choose a table, select its name in the Available Objects pane and click the
> button to move it to the Included Objects pane. For this example, choose the tables
for customers and products (Dim Customer and Dim Product, respectively) in the
AdventureWorksDW database. These tables will be used to build cube dimensions.
They build the set of dimension tables used for your star schema.

Next, on the same wizard page, you need to specify one or more fact tables that
correspond to the preceding dimension tables. (One fact table, together with the
corresponding dimension tables, creates a star schema.) To do so, click the Add Related
Tables button below the Included Objects pane. This instructs the system to find tables
that are related to the Dim Customer and Dim Product tables. (To find related tables,
the system searches all primary key/foreign key relationships that exist in the database.)

The system finds several fact tables and adds them to the Included Objects pane. Of
these tables, you need only one, Fact Internet Sales, to build the star schema. Besides
the corresponding fact tables, the system also searches for and adds other tables that
are created separately for a hierarchy level of the corresponding dimension. One such
table to keep is Dim Product Subcategory, which incarnates a hierarchy level called
Subcategory of the Product dimension. Also keep the Dim Date table, because the
Time dimension is almost always a part of a cube.

Thus, for your star schema, you need the following five tables (as shown in Figure 22-3):

Fact Internet SalesCc

Dim CustomerCc

Dim DateCc

Dim ProductCc

Dim Product SubcategoryCc

Exclude all other system-chosen tables that appear in the right pane by selecting
them and clicking the < button.

After restructuring the tables, click Next. On the Completing the Wizard page, the
wizard will be completed by choosing a name for a new source view (BI_View).

22-Ch22.indd 604 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 0 5

After you click Finish, the Data Source View Designer displays a graphical
representation of the tables in the data schema you have defined, as shown in
Figure 22-4. (Data Source View Designer is a tool that is used to show a graphical
representation of the data schema you have defined.)

Note
Using drag and drop, I changed the design of the source view in Figure 22-4 so that the tables have the
convenient form of the star schema. When you take a look at the figure, you will see that the fact table is in the
middle and the corresponding dimension tables build the circle around it. (Figure 22-4 actually has the form of
a snowflake schema, because the Dim Product Subcategory table presents the hierarchy level of the Product
dimension.)

Data Source View Designer offers several useful functions. To inspect the objects
you have in your source view, move your mouse pointer to the cross-arrow icon in the

Figure 22-3 The Select Tables and Views wizard page

22-Ch22.indd 605 2/6/12 1:32:23 PM

 6 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

bottom-right corner. When the pointer changes to a cross-arrow icon, click the icon
and hold it. The Navigation window appears. Now you can navigate from one part of
the diagram to another part. (This is especially useful when you have a diagram with
dozens of entities.) To view the data in a table, right-click the table and choose Explore
Data. The content of the table appears in a separate window.

You can also create named queries, which are queries that are persistently stored and
therefore can be accessed like any table. To create such a query, click Data Source View

Figure 22-4 Data Source View Designer with the selected tables

22-Ch22.indd 606 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 0 7

in the menu bar and then select the New Named Query icon. The Create Named Query
dialog box allows you to create any query in relation to selected tables.

Create a Cube
Before you create a cube, you must specify one or more data sources and create a data
source view, as previously described. After that, you can use the Cube Wizard to create
a cube.

To create a cube, right-click the Cubes folder of the BI_Project project in the
Solution Explorer pane and choose New Cube. The welcome page of the Cube Wizard
appears. Click Next. On the Select Creation Method page, choose Use Existing Tables,
because the data source view exists and can be used to build a cube. Click Next.

On the Select Measure Group Tables page, you select measures from the fact
table(s). Therefore, select the only fact table, Fact Internet Sales, and click Next. The
wizard chooses all possible measures from the selected fact table and presents them on
the Select Measures page. Check only the Total Product Costs column of the Fact
Internet Sales table as the single measure (see Figure 22-5). Click Next.

Figure 22-5 The Select Measures wizard page

22-Ch22.indd 607 2/6/12 1:32:23 PM

 6 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

On the Select New Dimensions page, select all three dimensions (Dim Date,
Dim Product, and Dim Customer) to be created, based on the available tables. The
final page, Completing the Wizard, shows the summary of all selected measures and
dimensions. Click Finish to finish creating the cube called BI_Cube.

Design Storage Aggregation
As you already know from Chapter 21, basic data from the fact table can be summarized
in advance and stored in persistent tables. This process is called aggregation, and it can
significantly enhance the response time of queries, because scanning millions of rows to
calculate the aggregation on the fly can take a very long time.

There is a tradeoff between storage requirements and the percentage of possible
aggregations that are calculated and stored. Creating all possible aggregations in a cube
and storing all of them on the disk results in the fastest possible response time for all
queries, because the response to each query is almost immediate. The disadvantage of
this approach is that the storage and processing time required for the aggregations can
be substantial.

On the other hand, if no aggregations are calculated and stored, you do not need any
additional disk storage, but response time for queries concerning aggregate functions
will be slow because each aggregate has to be calculated on the fly.

SSAS provides the Aggregation Design Wizard to help you design aggregations
optimally. To start the wizard, you have first to start the Cube Designer. (The Cube
Designer is used to edit various properties of an existing cube, including the measure
groups and measures, cube dimensions and dimension relationships.) To start it, right-
click the cube in Solution Explorer and select Open or View Designer from the context
menu. Now, click the Aggregations tab in the main menu of the Cube Designer. In the
table that appears in the Cube Designer (Fact Internet Sales), right-click the cell under
the Aggregations column and choose Design Aggregations. That starts the Aggregation
Design Wizard.

In the first step of the wizard, Review Aggregation Usage, you review aggregation
usage settings. In this step, you can include or exclude the attributes that appear on the
page. Leave the settings as they are and click Next.

The next step is to specify the number of members in each attribute. You do this on
the Specify Object Counts page. For each selected cube object, you have to enter the
estimated count value or partition count value, before the wizard starts to create and
store the selected aggregations. If you click the Count button, the wizard automatically
performs the object counts and displays the obtained counts. (Figure 22-6 shows the
Specify Objects Counts page after clicking the Count button.) Click Next.

22-Ch22.indd 608 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 0 9

In the second-to-last step, the Set Aggregation Options page, choose one of the four
options to specify up to what point (or not at all) aggregations should be designed:

Estimated storage reaches __ MBCc Specifies the maximum amount of disk
storage that should be used for precomputed aggregations. The larger the amount,
the more precomputed aggregations that will be created.
Performance gain reaches __ %Cc Specifies the performance gain that you want
to achieve. The higher the percentage of precomputed aggregations, the better the
performance.
I click StopCc Enables you to decide when to stop the design process.
Do not design aggregation (0%)Cc Specifies that no precomputed aggregations
should be created.

Note
Generally, you should choose one of the first two alternatives. I prefer the second one, because it is very difficult
to estimate the amount of storage for different star schemas and different sets of queries. A value between
80 percent and 90 percent is optimal in most cases.

Figure 22-6 The Specify Object Counts wizard page

22-Ch22.indd 609 2/6/12 1:32:23 PM

 6 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

Figure 22-7 shows the result of choosing the second option with the value set to
80 percent and clicking the Start button. The system created six aggregations and uses
243.4KB for them.

Click the Next button to go to the Completing the Wizard page. On this page, you
can choose whether to process aggregations immediately (Deploy and process now) or
later (Save the aggregations but do not process them). Choose the second option and
click Finish.

Process the Cube
If you chose the Save the Aggregations But Do Not Process Them option as the final
step in the preceding section, as recommended, you now have to process the cube. (A
cube must be processed when you first create it and each time you modify it. If a cube
has a lot of data and precomputed aggregations, processing the cube can be very time
consuming.) To process the cube, right-click the name of your cube in the Cubes folder
of Solution Explorer and select Process. The system starts processing the cube and
displays the progress of this activity (see Figure 22-8).

Figure 22-7 The Set Aggregation Options wizard page (after clicking Start)

22-Ch22.indd 610 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 1 1

Browse the Cube
To browse a cube, right-click the cube name (in the Cubes folder of the Solution-
Explorer) and choose Browse. The Browse view appears. You can add any dimension to
the query by right-clicking the dimension name in the left pane and choosing Add to
Query. You can also add a measure from that pane in the same way. (Adding measures
first is recommended.) Figure 22-9 shows the tabular representation of the total product
costs for Internet sales for different customers and products.

The approach is different if you want to calculate values of measures for particular
dimensions and their hierarchies. For example, suppose that you want to deliver for
customers with customer IDs 11008 and 11741 total product costs for all products
they have ordered in the time period 2006/03/01 through 2006/08/31. In this case,
you first drop the measure (Total Product Cost) from the left pane into the editing
pane, and then you choose values in the pane above it to restrict the conditions for

Figure 22-8 The Process Progress window

22-Ch22.indd 611 2/6/12 1:32:23 PM

 6 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

each dimension (see Figure 22-10). First, in the Dimension column, choose the Dim
Customer table, and in the Hierarchy column, choose the primary key of this table
(Customer Key). In the Operator column, choose Equal, and in the Filter Expression
column, choose both values 11008 and 11741 one after the other.

In the same way, choose the conditions for the Dim Product dimension table. The
only difference is that all product values should be included. For this reason, in the
Filter Expression column you should choose the root of the dimension. (The root of
each dimension is specified by All.) Finally, the table’s column OrderDate is chosen for

Figure 22-9 Total product costs for Internet sales for different customers and products

22-Ch22.indd 612 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 1 3

the Dim Date dimension table, and with the corresponding key. The Operator column
in this case is Range (Inclusive) and the Filter Expression column allows you to type
the beginning and end of the time period. As you can see in Figure 22-10, the total
product costs for the both customers are 2171.2942.

Retrieving and Delivering Data
Now that you have seen how to build and browse the cube using BIDS, you are ready
to learn how to retrieve data from a cube and deliver it to users. The primary goal of
Development Studio is to develop BI projects, not to retrieve and deliver data to users.
For this task, there are many other interfaces, such as:

PowerPivot for ExcelCc

Multidimensional Expressions (MDX)Cc

Figure 22-10 The total product costs as a crosstab

22-Ch22.indd 613 2/6/12 1:32:23 PM

 6 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

SQL Server Management StudioCc

OLE DB for OLAPCc

Third-party toolsCc

ADOMD.NETCc

PowerPivot for Excel and MDX are discussed separately in the following two
subsections, while the other interfaces in the list are briefly described here. (The reason
I give more attention to these two interfaces than the others is that PowerPoint for
Excel is the most important interface for end-users, while MDX is a tool that is used by
many third-party SSAS solutions.)

To browse a cube in SQL Server Management Studio, start it and connect to the
SSAS server on which you deployed your cube. After that, expand the Database folder
and expand Cube. You’ll see all cubes that you have created for this database. Right-
click the cube you want to use and choose Browse. As shown in Figures 22-9 and 22-
10, the interface is the same as you saw earlier for SSAS. Thus, you can browse data in
the same way as described in the section “Browse the Cube.”

Note
The most important thing to note when using Management Studio for multidimensional analysis is that you
do not connect to the Database Engine. The Database Engine manages relational data, while SSAS stores and
manages multidimensional cubes. For this reason, connect to your SSAS server.

OLE DB for OLAP is an industry standard for multidimensional data processing,
published by Microsoft. It is a set of entities and interfaces that extends the ability
of OLE DB to provide access to multidimensional data stores. OLE DB for OLAP
enables users to perform data analysis through interactive access to a variety of
possible views of the underlying data. Many independent software vendors use the
specification of OLE DB for OLAP to implement different interfaces that allow users
to access cubes created by SSAS. Additionally, using OLE DB for OLAP, the vendors
can implement OLAP applications that can uniformly access both relational and
nonrelational data stored in diverse information sources, regardless of location or type.

ADOMD (ActiveX Data Objects Multidimensional) is a Microsoft .NET
Framework data provider that is designed to communicate with SSAS. With this
interface, you can access and manipulate objects in a multidimensional cube, enabling
web-based OLAP application development. This interface uses the XML for Analysis
protocol to communicate with analytical data sources. Commands are usually sent in
MDX. By using ADOMD.NET, you can also view and work with metadata.

22-Ch22.indd 614 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 1 5

Querying Data Using PowerPivot for Excel
PowerPivot for Excel is a tool that allows you to analyze data using what is probably the
most popular Microsoft tool for such purpose: Microsoft Excel. It is a user-friendly way
to perform data analysis using features such as PivotTable, PivotChart views, and slices.

Note
To work with PowerPivot, you need Microsoft Office 2010. You can also use SharePoint 2010, but this chapter
discusses only PowerPivot for Excel.

Before you learn how to use this tool, take a look at the advantages of PowerPivot:

Familiar Excel tools and features for delivering data are available.Cc

Very large data sets can be loaded from virtually any source.Cc

New analytical capabilities, such as Data Analysis Expressions (DAX), are Cc

available.

As you will see in a moment, you can use the same sources that you use for SSAS in
almost the same way for PowerPivot. (You will use a cube similar to the one you created
in the previous section to learn how to deliver data from a cube. You will use this cube
afterward for different exercises.)

Data Analysis Expressions (DAX) is a new PowerPivot language that allows you
to define custom calculations in PowerPivot tables and in Excel PivotTables. DAX
comprises some of the functions that are used in Excel formulas, and additional
operations that are designed to work with relational data.

Working with PowerPivot for Excel
Your first step is to import data from one or more data sources in Excel. Open Excel
2010 and click the PowerPivot tab. In the PowerPivot ribbon, click the PowerPivot
Window tab. This opens the PowerPivot for Excel window. Your task is to create a
cube similar to the one you already created using SSAS. So, create and process a cube
according to the steps described in the previous section and with the table design
shown in Figure 22-11.

The following list shows the tables you should choose (see also Figure 22-11):

Fact Internet SalesCc

Fact Reseller SalesCc

22-Ch22.indd 615 2/6/12 1:32:23 PM

 6 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

Dim CustomerCc

Dim DateCc

Dim ProductCc

Dim Product SubcategoryCc

Figure 22-11 Data Source View Designer with the tables that you have to select

22-Ch22.indd 616 2/6/12 1:32:23 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 1 7

To choose these tables, use the same data source (BI_Source) as for the BI_Cube
cube and create a new source view. After that, use the Cube Wizard to create the new
cube (called BI_Cube2). In the wizard step called Select Measure Group Tables, choose
the following measures from both fact tables (Fact Internet Sales and Fact Reseller
Sales): Sales Amount, Total Product Costs, and Freight.

The next task after creating the BI_Cube2 cube is to connect to the cube. To do this,
click From Other Sources on the Get External Data tab of the PowerPivot for Excel
ribbon and choose SQL Server Analysis Services. This opens the Table Import Wizard
with the Connect to a Data Source page displayed, as shown in Figure 22-12. Click Next.

Figure 22-12 The Connect to a Data Source wizard page

22-Ch22.indd 617 2/6/12 1:32:23 PM

 6 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

Note
You can choose as a data source Microsoft databases (Access or SQL Server), third-party databases (Oracle,
Teradata, etc.), as well as nondatabase data sources.

On the next wizard page, Connect to Microsoft SQL Server Analysis Services,
you need to enter the cube information. In the Friendly Connection Name box (see
Figure 22-13), type a name for your connection (PowerPivot_Project, for instance),
enter the server name in the Server or File Name field, and choose how you want to log
on to the server. Finally, type the name of an existing cube (BI_Cube2) in the Database
Name field. (You can also choose the name of the cube from the list of existing cube
names that appears for the particular server.) Click Next.

Figure 22-13 The Connect to Microsoft SQL Server Analysis Services wizard page

22-Ch22.indd 618 2/6/12 1:32:24 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 1 9

In the next step, you specify an MDX query to select data to import from the data
source. You can type (or paste) such a query and click the Validate button, or leave the
creation of a query to the Query Designer. (MDX will be described in a moment.)

Click the Design button to graphically create your query. The window of the Table
Import Wizard appears (see Figure 22-14). Now you can choose measures from existing
fact tables and fields from dimension tables, which you need for your calculations.
As shown in Figure 22-14, drag and drop the Sales Amount measure from the Fact
Reseller Sales fact table and the Date Key and Product Key measures from the Due
Date and Dim Product dimension tables, respectively. Click OK.

The system shows you the corresponding MDX query, which you can now save if
you want. Click Finish to end your task. The summary field shows you the success (or
failure) of the process.

The PowerPivot for Excel window shows you the selected data (see Figure 22-15).
Now you can use one of Excel’s presentation forms to present your data. This example
explains how you can create cross tabs (pivot tables) from your data to present the data

Figure 22-14 The Table Import Wizard window

22-Ch22.indd 619 2/6/12 1:32:24 PM

 6 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

in Excel. In the PivotTable for Excel ribbon, click PivotTable on the Reports tab. The
Create PivotTable dialog box appears. Choose New Worksheet and click OK. The new
sheet appears in Excel.

In the right pane, called PowerPivot Field List, you can choose the columns that
will be presented in the sheet. (If the Field List doesn’t appear, click Field List on the
ribbon.) In this example, the measure and the two columns from the dimension tables
are checked. Now, you can present data in the sheet by dragging and dropping it into
the Row Labels, Column Labels, or Values box. In Figure 22-16, the key column of the
Dim Product dimension table is dropped in the Row Labels area, while the key column
of the Dim Date dimension table is dropped in the Column Labels area. (The measure
is dropped in the Values area.).

Figure 22-15 PowerPivot for Excel showing the selected data

22-Ch22.indd 620 2/6/12 1:32:24 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 2 1

Note
The data presented in Figure 22-16 shows the calculation using the COUNT aggregate function. If you want to
modify the form of calculation (to add the values, for instance), right-click a blank area in the Values box and
choose the appropriate function (in this case, SUM).

Querying Data Using Multidimensional Expressions
Multidimensional Expressions (MDX) is a language that you can use to query
multidimensional data stored in OLAP cubes. (MDX can also be used to create
cubes.) In MDX, the SELECT statement specifies a result set that contains a subset

Figure 22-16 Presenting data in an Excel sheet

22-Ch22.indd 621 2/6/12 1:32:24 PM

 6 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

of multidimensional data that has been returned from a cube. To specify a result set, an
MDX query must contain the following information:

One or more axes that you use to specify the result set. You can specify up to 128 Cc

axes in an MDX query. You use the ON COLUMNS clause to specify the first
axis and the ON ROWS clause for the second. If you have more than two axes,
the alternative syntax is to use the numbers: ON AXIS(0) for the first axis, ON
AXIS(1) for the second one, and so on.
The set of members or tuples to include on each axis of the MDX query. This is Cc

written in the SELECT list.
The name of the cube that sets the context of the MDX query, specified in the Cc

FROM clause of the query.
The set of members or tuples to include on the “slicer axis,” specified in the Cc

WHERE clause (see Examples 22.1 and 22.2).

Note
The semantic meaning of the WHERE clause in SQL is different from its semantic meaning in MDX. In SQL it
means filtering of rows by specified criteria. The WHERE clause in MDX means slicing the multidimensional
query. While these concepts are somewhat similar, they are not equivalent.

Example 22.1 will be used to explain the syntax of the language. You can execute
your MDX queries directly in SQL Server Management Studio. Use the MDX Query
Editor to design and execute statements and scripts written in the MDX language.
First, type scripts in the query editor pane. Then, to execute the scripts, press F5 or click
Execute on the toolbar.

 ExAMPLE 22.1

Display for each customer total product costs that are due on March 1, 2007:

SELECT [Measures].MEMBERS ON COLUMNS,

 [Dim Customer].[Customer Key].MEMBERS ON ROWS

FROM BI_Cube

WHERE ([Due Date].[Date Key].[20070301])

Example 22.1 queries data from the BI_Cube cube. The SELECT list of the first
query axis displays all members of the Measures dimension. In other words, it displays
the values of the Total Product Costs column, because the only existing measure in

22-Ch22.indd 622 2/6/12 1:32:24 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 2 3

this cube is Total Product Costs. The second query axis displays all members of the
Customer Key column of the Dim Customer dimension.

The FROM clause indicates that the data source in this case is the BI_Cube cube.
The WHERE clause “slices” through the Due Date dimension according to the key
values using the single date value 2007/03/01.

Example 22.2 shows another MDX query.

 ExAMPLE 22.2

Calculate for the customer with the customer key 11741 and for the product with the
product key 7 the total product costs that are due in March 2007:

SELECT [Measures].MEMBERS ON COLUMNS
 FROM BI_Cube
WHERE ({[Due Date].[Date Key].[20070301]:[Due Date].[Date key].[20070331]},
 [Dim Customer].[Customer Key].[11741],
 [Dim Product].[Product Key].[7])

The SELECT list in the query in Example 22.2 contains only the members of the
Measures dimension. For this reason, the query displays the value of the Total Product
Costs column. The WHERE clause in Example 22.2 is more complex than in Example
22.1. First, there are three slices, which are separated using commas. Only one member
of the Customer dimension and one member of the Product dimension are used
for slicing, while from the Due Date dimension, the dates from 2007/03/01 through
2007/03/31 are sliced. (As you can see from the query, the : sign is used to specify a
range of dates.)

Note
MDX is a very complex language. This section provided only a concise description of the language. Use Books
Online to learn more about this language. Also, I highly recommend “MDX for Everyone” by Mosha Pasumansky,
one of the founders of the MDX language. You can find this article at www.mosha.com/msolap/articles/
MDXForEveryone.htm.

Security of SQL Server Analysis Services
SQL Server Analysis Services security issues correspond to the security issues of
the Database Engine. This means that SSAS supports the same general features—
authorization and authentication—that the Database Engine does, but in a restricted
form.

22-Ch22.indd 623 2/6/12 1:32:24 PM

http://www.mosha.com/msolap/articles/MDXForEveryone.htm
http://www.mosha.com/msolap/articles/MDXForEveryone.htm

 6 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

Authorization defines which user has legitimate access to SSAS. This issue is tightly
connected to the operating system authorization. In other words, SSAS imposes user
authorization based on the access rights granted to the user by the Windows operating
system.

You can limit the number of users that can perform administrative functions for
SSAS. You can also specify which end users can access data and delineate the types of
operations they can perform. Additionally, you can control their access at different levels
of data, such as the cube, dimension, and cube cell level. This is done using roles.

As you already know, a database role specifies a group of database users that can
access the same objects of the database. Each role is defined at the SSAS database level
and then assigned to cubes. After that, individual users or other roles are assigned to
that role.

To create a role, right-click the Roles folder in the Solution Explorer pane and
choose New Role. Change the default name of the role in the Properties window.
After that, in the main window, shown in Figure 22-17, you can use the various tabs
to specify different controls for the role. On the Membership tab, you can specify all
users who should be members of the role. (Figure 22-17 shows several users added to
the BI_Role role.) The Data Sources and Cubes tabs specify the data sources—that is,
cubes that can be used by the role’s members. Authorization for the specific cell can be
assigned using the Cell Data tab. The Dimensions and Dimensions Data tabs specify
which dimensions (dimensional data) can be accessed.

Figure 22-17 Creation of a new role for SSAS

22-Ch22.indd 624 2/6/12 1:32:24 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 22

 C h a p t e r 2 2 : S Q L S e r v e r A n a l y s i s S e r v i c e s 6 2 5

Summary
With its SQL Server Analysis Services, Microsoft offers a set of data warehousing
components that can be used for entry- and intermediate-level data analysis. The main
component of SSAS is Business Intelligence Development Studio (BIDS), which
is based on Visual Studio and gives users an easy way to design and develop data
warehouses and data marts.

SSAS is wizard oriented, with wizards for almost every task that is executed during
the design and implementation of a data warehouse. The Data Source Wizard allows
you to specify one or more data sources, while the Cube Wizard is used to create a
multidimensional cube where aggregate data is stored. To import tables you can use
the Table Import Wizard, and the Aggregation Design Wizard is used to to help you
design and create aggregations optimally.

To deliver analytic data to users, you can use any of several different interfaces. The
most important are SQL Server Management Studio, MDX, and OLE DB for OLAP.

The next chapter describes SQL/OLAP extensions in Transact-SQL.

Exercises
 E.22.1

Using SQL Server Management Studio and the BI_Cube2 cube, find the amount of
sales for all products for a customer with the customer number 11111.

 E.22.2

Using SQL Server Management Studio and the BI_Cube2 cube, find the total product
costs for all customers and for the product with the product number 14.

22-Ch22.indd 625 2/6/12 1:32:24 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Chapter 23

In This Chapter

c Window Construct
c Extensions of GROUP BY
c OLAP Query Functions
c Standard and Nonstandard

Analytic Functions

Business Intelligence
and Transact-SQL

Ch23.indd 627 1/25/12 12:18:26 PM

 6 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Have you ever tried to write a Transact-SQL query that computes the
percentage change in values between the last two quarters? Or one that
implements cumulative sums or sliding aggregations? If you have ever tried,

you know how difficult these tasks are. Today, you don’t have to implement them
anymore. The SQL:1999 standard has adopted a set of online analytical processing
(OLAP) functions that enable you to easily perform these calculations as well as many
others that used to be very complex for implementation. This part of the SQL standard
is called SQL/OLAP. Therefore, SQL/OLAP comprises all functions and operators
that are used for data analysis.

Using OLAP functions has several advantages for users:

Users with standard knowledge of the SQL language can easily specify the Cc

calculations they need.
Database systems, such as the Database Engine, can perform these calculations Cc

much more efficiently.
Because there is a standard specification of these functions, they’re now much Cc

more economical for tool and application vendors to exploit.
Almost all the analytic functions proposed by the SQL:1999 standard are Cc

implemented in enterprise database systems in the same way. For this reason, you
can port queries in relation to SQL/OLAP from one system to another, without
any code changes.

The Database Engine offers many extensions to the SELECT statement that can be
used primarily for analytic operations. Some of these extensions are defined according
to the SQL:1999 standard and some are not. The following sections describe both
standard and nonstandard SQL/OLAP functions and operators.

The most important extension of Transact-SQL concerning data analysis is the
window construct, which will be described next.

Window Construct
A window (in relation to SQL/OLAP) defines a partitioned set of rows to which
a function is applied. The number of rows that belong to a window is dynamically
determined in relation to the user’s specifications. The window construct is specified
using the OVER clause.

Ch23.indd 628 1/25/12 12:18:26 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 2 9

The standardized window construct has three main parts:

PartitioningCc

OrderingCc

Aggregation groupingCc

Note
The Database Engine doesn’t support aggregation grouping yet, so this feature is not discussed here.

Before you delve into the window construct and its parts, take a look at the table
that will be used for the examples. Example 23.1 creates the project_dept table, shown
in Table 23-1, which is used in this chapter to demonstrate Transact-SQL extensions
concerning SQL/OLAP.

dept_name emp_cnt budget date_month
Research 5 50000 01.01.2007

Research 10 70000 02.01.2007

Research 5 65000 07.01.2007

Accounting 5 10000 07.01.2007

Accounting 10 40000 02.01.2007

Accounting 6 30000 01.01.2007

Accounting 6 40000 02.01.2008

Marketing 6 100000 01.01.2008

Marketing 10 180000 02.01.2008

Marketing 3 100000 07.01.2008

Marketing NULL 120000 01.01.2008

Table 23-1 Content of the project_dept Table

Ch23.indd 629 1/25/12 12:18:26 PM

 6 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 ExAmPLE 23.1

USE sample;

CREATE TABLE project_dept

 (dept_name CHAR(20) NOT NULL,

 emp_cnt INT,

 budget FLOAT,

 date_month DATE);

The project_dept table contains several departments and their employee counts as
well as budgets of projects that are controlled by each department. Example 23.2 shows
the INSERT statements that are used to insert the rows shown in Table 23-1.

 ExAmPLE 23.2

USE sample;

INSERT INTO project_dept VALUES

 ('Research', 5, 50000, '01.01.2007');

INSERT INTO project_dept VALUES

 ('Research', 10, 70000, '02.01.2007');

INSERT INTO project_dept VALUES

 ('Research', 5, 65000, '07.01.2007');

INSERT INTO project_dept VALUES

 ('Accounting', 5, 10000, '07.01.2007');

INSERT INTO project_dept VALUES

 ('Accounting', 10, 40000, '02.01.2007');

INSERT INTO project_dept VALUES

 ('Accounting', 6, 30000, '01.01.2007');

INSERT INTO project_dept VALUES

 ('Accounting', 6, 40000, '02.01.2008');

INSERT INTO project_dept VALUES

 ('Marketing', 6, 100000, '01.01.2008');

INSERT INTO project_dept VALUES

 ('Marketing', 10, 180000, '02.01.2008');

INSERT INTO project_dept VALUES

 ('Marketing', 3, 100000, '07.01.2008');

INSERT INTO project_dept VALUES

 ('Marketing', NULL, 120000, '01.01.2008');

Partitioning
Partitioning allows you to divide the result set of a query into groups, so that each row
from a partition will be displayed separately. If no partitioning is specified, the entire
set of rows comprises a single partition. Although the partitioning looks like a grouping

Ch23.indd 630 1/25/12 12:18:26 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 3 1

using the GROUP BY clause, it is not the same thing. The GROUP BY clause
collapses the rows in a partition into a single row, whereas the partitioning within the
window construct simply organizes the rows into groups without collapsing them.

The following two examples show the difference between partitioning using the
window construct and grouping using the GROUP BY clause. Suppose that you want
to calculate several different aggregates concerning employees in each department.
Example 23.3 shows how the OVER clause with the PARTITION BY clause can be
used to build partitions.

 ExAmPLE 23.3

Using the window construct, build partitions according to the values in the dept_name
column and calculate the sum and the average for the Accounting and Research
departments:
USE sample;
SELECT dept_name, budget,
 SUM(emp_cnt) OVER(PARTITION BY dept_name) AS emp_cnt_sum,
 AVG(budget) OVER(PARTITION BY dept_name) AS budget_avg
 FROM project_dept
 WHERE dept_name IN ('Accounting', 'Research');

The result is

dept_name budget emp_cnt_sum budget_avg
Accounting 10000 27 30000

Accounting 40000 27 30000

Accounting 30000 27 30000

Accounting 40000 27 30000

Research 50000 20 61666.6666666667

Research 70000 20 61666.6666666667

Research 65000 20 61666.6666666667

Example 23.3 uses the OVER clause to define the corresponding window construct.
Inside it, the PARTITION BY option is used to specify partitions. (Both partitions
in Example 23.3 are grouped using the values in the dept_name column.) Finally, an
aggregate function is applied to the partitions. (Example 23.3 calculates two aggregates,
the sum of the values in the emp_cnt column and the average value of budgets.) Again,
as you can see from the result of the example, the partitioning organizes the rows into
groups without collapsing them.

Example 23.4 shows a similar query that uses the GROUP BY clause.

Ch23.indd 631 1/25/12 12:18:26 PM

 6 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 ExAmPLE 23.4

Group the values in the dept_name column for the Accounting and Research
departments and calculate the sum and the average for these two groups:

USE sample;

SELECT dept_name, SUM(emp_cnt) AS cnt, AVG(budget) AS budget_avg

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY dept_name;

The result is

dept_name cnt budget_avg
Accounting 27 30000

Research 20 61666.6666666667

As already stated, when you use the GROUP BY clause, each group collapses in one row.

Note
There is another significant difference between the OVER clause and the GROUP BY clause. As can be seen from
Example 23.3, when you use the OVER clause, the corresponding SELECT list can contain any column name from
the table. This is obvious, because partitioning organizes the rows into groups without collapsing them. (If you
add the budget column in the SELECT list of Example 23.4, you will get an error.)

Ordering and Framing
The ordering within the window construct is like the ordering in a query. First, you
use the ORDER BY clause to specify the particular order of the rows in the result set.
Second, it includes a list of sort keys and indicates whether they should be sorted in
ascending or descending order. The most important difference is that ordering inside a
window is applied only within each partition.

In contrast to SQL Server 2008, SQL Server 2012 supports ordering inside a window
construct for aggregate functions. In other words, the OVER clause for aggregate functions
can contain now the ORDER BY clause, too. Example 23.5 shows this.

 ExAmPLE 23.5

Using the window construct, partition the rows of the project_dept table using the
values in the dept_name column and sort the rows in each partition using the values in
the budget column:

Ch23.indd 632 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 3 3

USE sample;

SELECT dept_name, budget, emp_cnt,

 SUM(budget) OVER(PARTITION BY dept_name ORDER BY budget) AS sum_dept

 FROM project_dept;

The query in Example 23.5, which is generally called “cumulative aggregations,” or in
this case “cumulative sums,” uses the ORDER BY clause to specify ordering within the
particular partition. This functionality can be extended using framing. Framing means
that the result can be further narrowed using two boundary points that restrict the set
of rows to a subset (see the following example).

 ExAmPLE 23.6

USE sample;

SELECT dept_name, budget, emp_cnt,

 SUM(budget) OVER(PARTITION BY dept_name ORDER BY budget

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

 AS sum_dept

 FROM project_dept;

Example 23.6 uses two clauses: UNBOUNDED PRECEDING and CURRENT
ROW to specify the boundary points of the selected rows. For the query in the example
this means that based on the order of the budget values the displayed subset of rows
is with no low boundary point and until the current row. (The result set contains all
together 11 rows.)

The frame bounds used in Example 23.6 are not the only ones you can use. The
UNBOUNDED FOLLOWING clause means that the specified frame does not
have an upper boundary point. Also, both boundary points can be specified using
an offset from the current row. In other words, you can use the n PRECEDING or
n FOLLOWING clauses to specify n rows before or n rows after the current one,
respectively. Therefore, the following frame specifies all together three rows: the current
row, the previous one, and the next one:

ROWS BETWEEN 1 PRECEDING and 1 FOLLOWING

SQL Server 2012 also introduces two new functions related to framing: LEAD and
LAG. LEAD has the ability to compute an expression on the next rows (rows that
are going to come after the current row). In other words, the LEAD function returns
the next nth row value in an order. The function has three parameters: The first one
specifies the name of the column to compute the leading row, the second one is the
index of the leading row relative to the current row, and the last one is the value to
return if the offset points to a row outside of the partition range. (The semantics of the
LAG function is similar: it returns the previous nth row value in an order.)

Ch23.indd 633 1/25/12 12:18:27 PM

 6 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Example 23.6 uses the ROWS clause to limit the rows within a partition by physically
specifying the number of rows preceding or following the current row. Alternatively,
SQL Server 2012 supports the RANGE clause, which logically limits the rows within
a partition. In other words, when you use the ROWS clause, the exact number of rows
will be specified based on the defined frame. On the other hand, the RANGE clause
does not define the exact number of rows, because the specified frame can contain
duplicates, too.

You can use several columns from a table to build different partitioning schemas in a
query, as shown in Example 23.7.

 ExAmPLE 23.7

Using the window construct, build two partitions for the Accounting and Research
departments: one using the values of the budget column and the other using the values
of the dept_name column. Calculate the sums for the former partition and the averages
for the latter partition.

USE sample;

SELECT dept_name, CAST(budget AS INT) AS budget,

 SUM(emp_cnt) OVER(PARTITION BY budget) AS emp_cnt_sum,

 AVG(budget) OVER(PARTITION BY dept_name) AS budget_avg

 FROM project_dept

WHERE dept_name IN ('Accounting', 'Research');

The result is

dept_name budget emp_cnt_sum budget_avg
Accounting 10000 5 30000

Accounting 30000 6 30000

Accounting 40000 16 30000

Accounting 40000 16 30000

Research 50000 5 61666.6666666667

Research 65000 5 61666.6666666667

Research 70000 10 61666.6666666667

The query in Example 23.7 has two different partitioning schemas: one over the
values of the budget column and one over the values of the dept_name column.
The former is used to calculate the number of employees in relation to the departments
with the same budget. The latter is used to calculate the average value of budgets of
departments grouped by their names.

Ch23.indd 634 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 3 5

Example 23.8 shows how you can use the NEXT VALUE FOR expression of
the CREATE SEQUENCE statement to control the order in which the values are
generated using the OVER clause. (For the description of the CREATE SEQUENCE
statement, see Chapter 6.)

 ExAmPLE 23.8

USE sample;

CREATE SEQUENCE Seq START WITH 1 INCREMENT BY 1;

GO

CREATE TABLE T1 (col1 CHAR(10), col2 CHAR(10));

GO

INSERT INTO dbo.T1(col1, col2)

 SELECT NEXT VALUE FOR Seq OVER(ORDER BY dept_name ASC), budget

 FROM (SELECT dept_name, budget

 FROM project_dept

 ORDER BY budget, dept_name DESC

 OFFSET 0 ROWS FETCH FIRST 5 ROWS ONLY) AS D;

The content of the T1 table is as follows:

col1 col2
1 10000

2 30000

3 40000

4 40000

5 50000

The first two statements create the Seq sequence and the auxiliary table T1. The
following INSERT statement uses a subquery to filter the five departments with the
highest budget, and generates sequence values for them. This is done using OFFSET/
FETCH, which is described in Chapter 6. (You can find several other examples concerning
OFFSET/FETCH in the subsection with the same name later in this chapter.)

Extensions of GROUP BY
Transact-SQL extends the GROUP BY clause with the following operators and functions:

CUBECc

ROLLUPCc

Ch23.indd 635 1/25/12 12:18:27 PM

 6 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Grouping functionsCc

Grouping setsCc

The following sections describe these operators and functions.

CUBE Operator
This section looks at the differences between grouping using the GROUP BY clause
alone and grouping using GROUP BY in combination with the CUBE and ROLLUP
operators. The main difference is that the GROUP BY clause defines one or more
columns as a group such that all rows within any group have the same values for those
columns. CUBE and ROLLUP provide additional summary rows for grouped data.
These summary rows are also called multidimensional summaries.

The following two examples demonstrate these differences. Example 23.9 applies
the GROUP BY clause to group the rows of the project_dept table using two criteria:
dept_name and emp_cnt.

 ExAmPLE 23.9

Using GROUP BY, group the rows of the project_dept table that belong to the
Accounting and Research departments using the dept_name and emp_cnt columns:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_of_budgets

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY dept_name, emp_cnt;

The result is

dept_name emp_cnt sum_of_budgets
Accounting 5 10000

Research 5 115000

Accounting 6 70000

Accounting 10 40000

Research 10 70000

Example 23.10 and its result set shows the difference when you additionally use the
CUBE operator.

Ch23.indd 636 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 3 7

 ExAmPLE 23.10

Group the rows of the project_dept table that belong to the Accounting and Research
departments using the dept_name and emp_cnt columns and additionally display all
possible summary rows:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_of_budgets

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY CUBE (dept_name, emp_cnt);

The result is

dept_name emp_cnt sum_of_budgets
Accounting 5 10000

Research 5 115000

NULL 5 125000

Accounting 6 70000

NULL 6 70000

Accounting 10 40000

Research 10 70000

NULL 10 110000

Accounting NULL 120000

Research NULL 185000

NULL NULL 305000

The main difference between the last two examples is that the result set of Example 23.9
displays only the values in relation to the grouping, while the result set of Example 23.10
contains, additionally, all possible summary rows. (Because the CUBE operator displays
every possible combination of groups and summary rows, the number of rows is the same,
regardless of the order of columns in the GROUP BY clause.) The placeholder for the
values in the unneeded columns of summary rows is displayed as NULL. For example, the
following row from the result set

NULL NULL 305000

Ch23.indd 637 1/25/12 12:18:27 PM

 6 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

shows the grand total (that is, the sum of all budgets of all existing projects in the table),
while the row

NULL 5 125000

shows the sum of all budgets for all projects that employ exactly five employees.

Note
The syntax of the CUBE operator in Example 23.10 corresponds to the standardized syntax of that operator.
Because of its backward compatibility, the Database Engine also supports the old-style syntax:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_of_budgets

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY dept_name, emp_cnt

 WITH CUBE;

ROLLUP Operator
In contrast to CUBE, which returns every possible combination of groups and
summary rows, the group hierarchy using ROLLUP is determined by the order
in which the grouping columns are specified. Example 23.11 shows the use of the
ROLLUP operator.

 ExAmPLE 23.11

Group the rows of the project_dept table that belong to the Accounting and Research
departments using the dept_name and emp_cnt columns and additionally display
summary rows for the dept_name column:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_of_budgets

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY ROLLUP (dept_name, emp_cnt);

The result is

dept_name emp_cnt sum_of_budgets
Accounting 5 10000

Accounting 6 70000

Ch23.indd 638 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 3 9

dept_name emp_cnt sum_of_budgets
Accounting 10 40000

Accounting NULL 120000

Research 5 115000

Research 10 70000

Research NULL 185000

NULL NULL 305000

As you can see from the result of Example 23.11, the number of retrieved rows in
this example is smaller than the number of displayed rows in the example with the
CUBE operator. The reason is that the summary rows are displayed only for the first
column in the GROUP BY ROLLUP clause.

Note
The syntax used in Example 23.11 is the standardized syntax. The old-style syntax for ROLLUP is similar to the
syntax for CUBE, which is shown in the second part of Example 23.10.

Grouping Functions
As you already know, NULL is used in combination with CUBE and ROLLUP to
specify the placeholder for the values in the unneeded columns. In such a case, it isn’t
possible to distinguish NULL in relation to CUBE and ROLLUP from the NULL
value. Transact-SQL supports the following two standardized grouping functions that
allow you to resolve the problem with the ambiguity of NULL:

GROUPINGCc

GROUPING_IDCc

The following subsections describe in detail these two functions.

GROUPING Function
The GROUPING function returns 1 if the NULL in the result set is in relation to
CUBE or ROLLUP, and 0 if it represents the group of NULL values.

Example 23.12 shows the use of the GROUPING function.

Ch23.indd 639 1/25/12 12:18:27 PM

 6 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 ExAmPLE 23.12

Using the GROUPING function, clarify which NULL values in the result of the
following SELECT statement display summary rows:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_b, GROUPING(emp_cnt) gr

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Marketing')

 GROUP BY ROLLUP (dept_name, emp_cnt);

The result is

dept_name emp_cnt sum_b gr
Accounting 5 10000 0

Accounting 6 70000 0

Accounting 10 40000 0

Accounting NULL 120000 1

Marketing NULL 120000 0

Marketing 3 100000 0

Marketing 6 100000 0

Marketing 10 180000 0

Marketing NULL 500000 1

NULL NULL 620000 1

If you take a look at the grouping column (gr), you will see that some values are 0
and some are 1. The value 1 indicates that the corresponding NULL in the emp_cnt
column specifies a summary value, while the value 0 indicates that NULL stands for
itself, i.e., it is the NULL value.

GROUPING_ID Function
The GROUPING_ID function computes the level of grouping. GROUPING_ID
can be used only in the SELECT list, HAVING clause, or ORDER BY clause when
GROUP BY is specified.

Example 23.13 shows the use of the GROUPING_ID function.

 ExAmPLE 23.13
USE sample;
SELECT dept_name, YEAR(date_month), SUM(budget),
GROUPING_ID (dept_name, YEAR(date_month)) AS gr_dept
 FROM project_dept
 GROUP BY ROLLUP (dept_name, YEAR(date_month));

Ch23.indd 640 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 4 1

The result is

dept_name date_month budget gr_dept
Accounting 2007 80000 0

Accounting 2008 40000 0

Accounting NULL 120000 1

Marketing 2008 500000 0

Marketing NULL 500000 1

Research 2007 185000 0

Research NULL 185000 1

NULL NULL 805000 3

The GROUPING_ID function is similar to the GROUPING function, but
becomes very useful for determining the summarization of multiple columns, as is the
case in Example 23.13.The function returns an integer that, when converted to binary,
is a concatenation of the 1s and 0s representing the summarization of each column
passed as the parameter of the function. (For example, the value 3 of the gr_dept
column in the last row of the result means that summarization is done over both the
dept_name and date_month columns. The binary value (11)2 is equivalent to the value
3 in the decimal system.)

Grouping Sets
Grouping sets are an extension to the GROUP BY clause that lets users define several
groups in the same query. You use the GROUPING SETS operator to implement
grouping sets. Example 23.14 shows the use of this operator.

 ExAmPLE 23.14

Calculate the sum of budgets for the Accounting and Research departments using the
combination of values of the dept_name and emp_cnt columns first, and after that
using the values of the single column dept_name:

USE sample;

SELECT dept_name, emp_cnt, SUM(budget) sum_budgets

 FROM project_dept

 WHERE dept_name IN ('Accounting', 'Research')

 GROUP BY GROUPING SETS ((dept_name, emp_cnt),(dept_name));

Ch23.indd 641 1/25/12 12:18:27 PM

 6 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

The result is

dept_name emp_cnt sum_budgets
Accounting 5 10000

Accounting 6 70000

Accounting 10 40000

Accounting NULL 120000

Research 5 115000

Research 10 70000

Research NULL 185000

As you can see from the result set of Example 23.14, the query uses two different
groupings to calculate the sum of budgets: first using the combination of values of
the dept_name and emp_cnt columns, and second using the values of the single
column dept_name. The first three rows of the result set display the sum of budgets
for three different groupings of the first two columns (Accounting, 5; Accounting, 6;
and Accounting, 10). The fourth row displays the sum of budgets for all Accounting
departments. The last three rows displays the similar results for the Research
department.

You can use the series of grouping sets to replace the ROLLUP and CUBE
operators. For instance, the following series of grouping sets

GROUP BY GROUPING SETS ((dept_name, emp_cnt), (dept_name), ())

is equivalent to the following ROLLUP clause:

GROUP BY ROLLUP (dept_name, emp_cnt)

Also,

GROUP BY GROUPING SETS ((dept_name, emp_cnt), (emp_cnt, dept_name),

(dept_name), ())

is equivalent to the following CUBE clause:

GROUP BY CUBE (dept_name, emp_cnt)

OLAP Query Functions
Transact-SQL supports two groups of functions that are categorized as OLAP query
functions:

Ch23.indd 642 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 4 3

Ranking functionsCc

Statistical aggregate functionsCc

The following subsections describe these functions.

Note
The GROUPING function, discussed previously, also belongs to the OLAP functions.

Ranking Functions
Ranking functions return a ranking value for each row in a partition group. Transact-
SQL supports the following ranking functions:

RANKCc

DENSE_RANKCc

ROW_NUMBERCc

Example 23.15 shows the use of the RANK function.

 ExAmPLE 23.15

Find all departments with a budget not greater than 30000, and display the result set in
descending order:

USE sample;

SELECT RANK() OVER(ORDER BY budget DESC) AS rank_budget,

 dept_name, emp_cnt, budget

 FROM project_dept

 WHERE budget <= 30000;

The result is

rank_budget dept_name emp_cnt budget
1 Accounting 6 30000

2 Accounting 5 10000

Example 23.15 uses the RANK function to return a number (in the first column of
the result set) that specifies the rank of the row among all rows. The example uses the

Ch23.indd 643 1/25/12 12:18:27 PM

 6 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

OVER clause to sort the result set by the budget column in the descending order.
(In this example, the PARTITION BY clause is omitted. For this reason, the whole
result set will belong to only one partition.)

Note
The RANK function uses logical aggregation. In other words, if two or more rows in a result set are tied (have
a same value in the ordering column), they will have the same rank. The row with the subsequent ordering
will have a rank that is one plus the number of ranks that precede the row. For this reason, the RANK function
displays “gaps” if two or more rows have the same ranking.

Example 23.16 shows the use of the two other ranking functions, DENSE_RANK
and ROW_NUMBER.

 ExAmPLE 23.16

Find all departments with a budget not greater than 40000, and display the dense rank
and the sequential number of each row in the result set:

USE sample;

SELECT DENSE_RANK() OVER(ORDER BY budget DESC) AS dense_rank,

 ROW_NUMBER() OVER(ORDER BY budget DESC) AS row_number,

 dept_name, emp_cnt, budget

 FROM project_dept

 WHERE budget <= 40000;

The result is

dense_rank row_number dept_name emp_cnt budget
1 1 Accounting 10 40000

1 2 Accounting 6 40000

2 3 Accounting 6 30000

3 4 Accounting 5 10000

The first two columns in the result set of Example 23.16 show the values for the
DENSE_RANK and ROW_NUMBER functions, respectively. The output of the
DENSE_RANK function is similar to the output of the RANK function (see
Example 23.15). The only difference is that the DENSE_RANK function returns no
“gaps” if two or more ranking values are equal and thus belong to the same ranking.

The use of the ROW_NUMBER function is obvious: it returns the sequential
number of a row within a result set, starting at 1 for the first row.

Ch23.indd 644 1/25/12 12:18:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 4 5

In the last two examples, the OVER clause is used to determine the ordering of
the result set. As you already know, this clause can also be used to divide the result set
produced by the FROM clause into groups (partitions), and then to apply an aggregate
or ranking function to each partition separately.

Example 23.17 shows how the RANK function can be applied to partitions.

 ExAmPLE 23.17

Using the window construct, partition the rows of the project_dept table according to
the values in the date_month column. Sort the rows in each partition and display them
in ascending order.

USE sample;

SELECT date_month, dept_name, emp_cnt, budget,

 RANK() OVER(PARTITION BY date_month ORDER BY emp_cnt desc) AS rank

 FROM project_dept;

The result is

date_month dept_name emp_cnt budget rank
2007-01-01 Accounting 6 30000 1

2007-01-01 Research 5 50000 2

2007-02-01 Research 10 70000 1

2007-02-01 Accounting 10 40000 1

2007-07-01 Research 5 65000 1

2007-07-01 Accounting 5 10000 1

2008-01-01 Marketing 6 100000 1

2008-01-01 Marketing NULL 120000 2

2008-02-01 Marketing 10 180000 1

2008-02-01 Accounting 6 40000 2

2008-07-01 Marketing 3 100000 1

The result set of Example 23.17 is divided (partitioned) into eight groups according
to the values in the date_month column. After that the RANK function is applied
to each partition. If you take a closer look and compare the previous example with
Example 23.5, you will see that the last example works, while Example 23.5 displays
an error, although both examples use the same window construct. As previously stated,
Transact-SQL currently supports the OVER clause for aggregate functions only with
the PARTITION BY clause, but in the case of ranking functions, the system supports
general SQL standard syntax with the PARTITION BY and ORDER BY clauses.

Ch23.indd 645 1/25/12 12:18:28 PM

 6 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Statistical Aggregate Functions
Chapter 6 introduced statistical aggregate functions. There are four of them:

VARCc Computes the variance of all the values listed in a column or expression.
VARPCc Computes the variance for the population of all the values listed in a
column or expression.
STDEVCc Computes the standard deviation of all the values listed in a column
or expression. (The standard deviation is computed as the square root of the
corresponding variance.)
STDEVPCc Computes the standard deviation for the population of all the values
listed in a column or expression.

You can use statistical aggregate functions with or without the window construct.
Example 23.18 shows how the functions VAR and STDEV can be used with the
window construct.

 ExAmPLE 23.18

Using the window construct, calculate the variance and standard deviation of budgets in
relation to partitions formed using the values of the dept_name column:

USE sample;
SELECT dept_name, budget,
 VAR(budget) OVER(PARTITION BY dept_name) AS budget_var,
 STDEV(budget) OVER(PARTITION BY dept_name) AS budget_stdev
 FROM project_dept
 WHERE dept_name in ('Accounting', 'Research');

The result is

dept_name budget budget_var budget_stdev
Accounting 10000 200000000 14142.135623731

Accounting 40000 200000000 14142.135623731

Accounting 30000 200000000 14142.135623731

Accounting 40000 200000000 14142.135623731

Research 50000 108333333,333333 10408.3299973306

Research 70000 108333333,333333 10408.3299973306

Research 65000 108333333,333333 10408.3299973306

Ch23.indd 646 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 4 7

Example 23.18 uses the statistical aggregate functions VAR and STDEV to calculate
the variance and standard deviation of budgets in relation to partitions formed using
the values of the dept_name column.

Standard and Nonstandard Analytic Functions
The Database Engine contains the following standard and nonstandard OLAP
functions:

TOPCc

OFFSET/FETCHCc

NTILECc

PIVOT and UNPIVOTCc

The second function, OFFSET/FETCH, is specified in the SQL standard, while
the three others are Transact-SQL extensions. The following sections describe these
analytic functions and operators.

TOP Clause
The TOP clause specifies the first n rows of the query result that are to be retrieved.
This clause should always be used with the ORDER BY clause, because the result
of such a query is always well defined and can be used in table expressions. (A table
expression specifies a sample of a grouped result table.) A query with TOP but without
the ORDER BY clause is nondeterministic, meaning that multiple executions of the
query with the same data must not always display the same result set.

Example 23.19 shows the use of this clause.

 ExAmPLE 23.19

Retrieve the four projects with the highest budgets:

USE sample;

SELECT TOP (4) dept_name, budget

 FROM project_dept

 ORDER BY budget DESC;

Ch23.indd 647 1/25/12 12:18:28 PM

 6 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

The result is

dept_name budget
Marketing 180000

Marketing 120000

Marketing 100000

Marketing 100000

As you can see from Example 23.19, the TOP clause is part of the SELECT list and
is written in front of all column names in the list.

Note
You should write the input value of TOP inside parentheses, because the system supports any self-contained
expression as input.

The TOP clause is a nonstandard Transact-SQL implementation used to display the
ranking of the top n rows from a table. A query equivalent to Example 23.19 that uses
the window construct and the RANK function is shown in Example 23.20.

 ExAmPLE 23.20

Retrieve the four projects with the highest budgets:

USE sample;

SELECT dept_name, budget

 FROM (SELECT dept_name, budget,

 RANK() OVER (ORDER BY budget DESC) AS rank_budget

 FROM project_dept) part_dept

 WHERE rank_budget <= 4;

The TOP clause can also be used with the additional PERCENT option. In that case,
the first n percent of rows are retrieved from the result set. The additional option WITH
TIES specifies that additional rows will be retrieved from the query result if they have the
same value in the ORDER BY column(s) as the last row that belongs to the displayed set.
Example 23.21 shows the use of the PERCENT and WITH TIES options.

Ch23.indd 648 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 4 9

 ExAmPLE 23.21

Retrieve the top 25 percent of rows with the smallest number of employees:

USE sample;

SELECT TOP (25) PERCENT WITH TIES emp_cnt, budget

 FROM project_dept

ORDER BY emp_cnt ASC;

The result is

emp_cnt budget
NULL 120000

3 100000

5 50000

5 65000

5 10000

The result of Example 23.21 contains five rows, because there are three projects with
five employees.

You can also use the TOP clause with UPDATE, DELETE, and INSERT
statements. Example 23.22 shows the use of this clause with the UPDATE statement.

 ExAmPLE 23.22

Find the three projects with the highest budget amounts and reduce them by
10 percent:

USE sample;

UPDATE TOP (3) project_dept

 SET budget = budget * 0.9

 WHERE budget in (SELECT TOP (3) budget

 FROM project_dept

 ORDER BY budget desc);

Example 23.23 shows the use of the TOP clause with the DELETE statement.

Ch23.indd 649 1/25/12 12:18:28 PM

 6 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 ExAmPLE 23.23

Delete the four projects with the smallest budget amounts:

USE sample;

DELETE TOP (4)

 FROM project_dept

 WHERE budget IN

 (SELECT TOP (4) budget FROM project_dept

 ORDER BY budget ASC);

In Example 23.23, the TOP clause is used first in the subquery, to find the four
projects with the smallest budget amounts, and then in the DELETE statement, to
delete these projects.

OFFSET/FETCH
Chapter 6 showed how OFFSET/FETCH can be used for server-side paging. This
application of OFFSET/FETCH is only one of many. Generally, OFFSET/FETCH
allows you to filter several rows according to the given order. Additionally, you can
specify how many rows of the result set should be skipped and how many of them
should be returned. For this reason, OFFSET/FETCH is similar to the TOP clause.
However, there are certain differences:

OFFSET/FETCH is a standardized way to filter data, while the TOP clause is an Cc

extension of Transact-SQL. For this reason, it is possible that OFFSET/FETCH
will replace the TOP clause in the future.
OFFSET/FETCH is more flexible than TOP insofar as it allows skipping of Cc

rows using the OFFSET clause. (The Database Engine doesn’t allow you to use
the FETCH clause without OFFSET. In other words, even when no rows are
skipped, you have to set OFFSET to 0.)
The TOP clause is more flexible than OFFSET/FETCH insofar as it can be used Cc

in DML statements INSERT, UPDATE, and DELETE (see Examples 23.22
and 23.23).

Examples 23.24 and 23.25 show how you can use OFFSET/FETCH with the
ROW_NUMBER() ranking function. (Before you execute the following examples,
repopulate the project_dept table. First delete all the rows, and then execute the
INSERT statements from Example 23.2.)

Ch23.indd 650 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 5 1

 ExAmPLE 23.24

USE sample;

 SELECT date_month, budget, ROW_NUMBER()

 OVER (ORDER BY date_month DESC, budget DESC) as row_no

 FROM project_dept

 ORDER BY date_month DESC, budget DESC

 OFFSET 5 ROWS FETCH NEXT 4 ROWS ONLY;

The result is

date_month Budget row_no
2007-07-01 65000 6

2007-07-01 10000 7

2007-02-01 70000 8

2007-02-01 40000 9

Example 23.24 displays the rows of the project_dept table in relation to the date_
month and budget columns. (The first five rows of the result set are skipped and the
next four are displayed.) Additionally, the row number of these rows is returned. The
row number of the first row in the result set starts with 6 because row numbers are
assigned to the result set before the filtering. (OFFSET/FETCH is part of the ORDER
BY clause and therefore is executed after the SELECT list, which includes the ROW_
NUMBER function. In other words, the values of ROW_NUMBER are determined
before OFFSET/FETCH is applied.)

If you want to get the row numbers starting with 1, you need to modify the
SELECT statement. Example 23.25 shows the necessary modification.

 ExAmPLE 23.25

 USE sample;

SELECT *, ROW_NUMBER()

 OVER (ORDER BY date_month DESC, budget DESC) as row_no

 FROM (SELECT date_month, budget

 FROM project_dept

 ORDER BY date_month DESC, budget DESC

 OFFSET 5 ROWS FETCH NEXT 4 ROWS ONLY) c;

The result of Example 23.25 is identical to the result of Example 23.24 except
that row numbers start with 1. The reason is that in Example 23.25 the query with
OFFSET/FETCH is written as a table expression inside the outer query with the
ROW_NUMBER() function in the SELECT list. That way, the values of ROW_
NUMBER() are determined before OFFSET/FETCH is executed.

Ch23.indd 651 1/25/12 12:18:28 PM

 6 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

NTILE Function
The NTILE function belongs to the ranking functions. It distributes the rows in a
partition into a specified number of groups. For each row, the NTILE function returns
the number of the group to which the row belongs. For this reason, this function is
usually used to arrange rows into groups.

Note
The NTILE function breaks down the data based only on the count of values.

Example 23.26 shows the use of the NTILE function.

 ExAmPLE 23.26

USE sample;

SELECT dept_name, budget,

 CASE NTILE(3) OVER (ORDER BY budget ASC)

 WHEN 1 THEN 'Low'

 WHEN 2 THEN 'Medium'

 WHEN 3 THEN 'High'

 END AS groups

 FROM project_dept;

The result is

dept_name budget groups
Accounting 10000 Low

Accounting 30000 Low

Accounting 40000 Low

Accounting 40000 Low

Research 50000 Medium

Research 65000 Medium

Research 70000 Medium

Marketing 100000 Medium

Marketing 100000 High

Marketing 120000 High

Marketing 180000 High

Ch23.indd 652 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 5 3

Pivoting Data
Pivoting data is a method that is used to transform data from a state of rows to a state
of columns. Additionally, some values from the source table can be aggregated before
the target table is created.

There are two operators for pivoting data:

PIVOTCc

UNPIVOTCc

The following subsections describe these operators in detail.

PIVOT Operator
PIVOT is a nonstandard relational operator that is supported by Transact-SQL.
You can use it to manipulate a table-valued expression into another table. PIVOT
transforms such an expression by turning the unique values from one column in the
expression into multiple columns in the output, and it performs aggregations on any
remaining column values that are desired in the final output.

To demonstrate how the PIVOT operator works, let us use a table called project_
dept_pivot, which is derived from the project_dept table specified at the beginning
of this chapter. The new table contains the budget column from the source table and
two additional columns: month and year. The year column of the project_dept_pivot
table contains the years 2007 and 2008, which appear in the date_month column of the
project_dept table. Also, the month columns of the project_dept_pivot table (january,
february, and july) contain the summaries of budgets corresponding to these months in
the project_dept table.

Example 23.27 creates the project_dept_pivot table.

 ExAmPLE 23.27

USE sample;

SELECT budget, month(date_month) as month, year(date_month) as year

 INTO project_dept_pivot

FROM project_dept;

The content of the new table is given in Table 23-2.
Suppose that you get a task to return a row for each year, a column for each month,

and the budget value for each year and month intersection. Table 23-3 shows the
desired result.

Ch23.indd 653 1/25/12 12:18:28 PM

 6 5 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

Example 23.28 demonstrates how you can solve this problem using the standard
SQL language.

 ExAmPLE 23.28

USE sample;

SELECT year,

 SUM(CASE WHEN month = 1 THEN budget END) AS January,

 SUM(CASE WHEN month = 2 THEN budget END) AS February,

 SUM(CASE WHEN month = 7 THEN budget END) AS July

 FROM project_dept_pivot

 GROUP BY year;

budget Month year
50000 1 2007

70000 2 2007

65000 7 2007

10000 7 2007

40000 2 2007

30000 1 2007

40000 2 2008

100000 1 2008

180000 2 2008

100000 7 2008

120000 1 2008

Table 23-2 Content of the project_dept_pivot Table

Year January February July
2007 80000 110000 75000

2008 220000 220000 100000

Table 23-3 Budgets for each year and month

Ch23.indd 654 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 5 5

The process of pivoting data can be divided into three steps:

Group the dataCc Generate one row in the result set for each distinct “on rows”
element. In Example 23.28, the “on rows” element is the year column and it
appears in the GROUP BY clause of the SELECT statement.
Manipulate the dataCc Spread the values that will be aggregated to the columns
of the target table. In Example 23.28, the columns of the target table are all
distinct values of the month column. To implement this step, you have to apply
a CASE expression for each of the different values of the month column: 1
(January), 2 (February), and 7 (July).
Aggregate the dataCc Aggregate the data values in each column of the target
table. Example 23.28 uses the SUM function for this step.

Example 23.29 solves the same problem as Example 23.28 using the PIVOT
operator.

 ExAmPLE 23.29

USE sample;

SELECT year, [1] as January, [2] as February, [7] July FROM

 (SELECT budget, year, month from project_dept_pivot) p2

 PIVOT (SUM(budget) FOR month IN ([1],[2],[7])) AS P;

The SELECT statement in Example 23.29 contains an inner query, which is
embedded in the FROM clause of the outer query. The PIVOT clause is part of the
inner query. It starts with the specification of the aggregation function: SUM (of
budgets). The second part specifies the pivot column (month) and the values from
that column to be used as column headings—the first, second, and seventh months of
the year. The value for a particular column in a row is calculated using the specified
aggregate function over the rows that match the column heading.

The most important advantage of using the PIVOT operator in relation to the
standard solution is its simplicity in the case in which the target table has many
columns. In this case, the standard solution is verbose because you have to write one
CASE expression for each column in the target table.

UNPIVOT Operator
The UNPIVOT operator performs the reverse operation of PIVOT, by rotating
columns into rows. Example 23.30 shows the use of this operator.

Ch23.indd 655 1/25/12 12:18:28 PM

 6 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 ExAmPLE 23.30

USE sample;

CREATE TABLE project_dept_pvt (year int, January float, February float,

July float);

INSERT INTO project_dept_pvt VALUES (2007, 80000, 110000, 75000);

INSERT INTO project_dept_pvt VALUES (2008, 50000, 80000, 30000);

--UNPIVOT the table

SELECT year, month, budget

FROM

 (SELECT year, January, February, July

 FROM project_dept_pvt) p

 UNPIVOT (budget FOR month IN (January, February, July)

)AS unpvt;

The result is

year month budget
2007 January 80000

2007 February 110000

2007 July 75000

2008 January 50000

2008 February 80000

2008 July 30000

Example 23.30 uses the project_dept_pvt table to demonstrate the UNPIVOT
relational operator. UNPIVOT’s first input is the column name (budget), which holds
the normalized values. After that, the FOR option is used to determine the target
column name (month). Finally, as part of the IN option, the selected values of the
target column name are specified.

Note
UNPIVOT is not the exact reverse of PIVOT, because any NULL values in the table being transformed cannot be
used as column values in the output.

Ch23.indd 656 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 C h a p t e r 2 3 : B u s i n e s s I n t e l l i g e n c e a n d Tr a n s a c t - S Q L 6 5 7

Summary
SQL/OLAP extensions in Transact-SQL support data analysis facilities. There are four
main parts of SQL/OLAP that are supported by the Database Engine:

Window constructCc

Extensions of the GROUP BY clauseCc

OLAP query functionsCc

Standard and nonstandard analytic functionsCc

The window construct is the most important extension. In combination with ranking
and aggregate functions, it allows you to easily calculate analytic functions, such as
cumulative and sliding aggregates, as well as rankings. There are several extensions to
the GROUP BY clause that are described in the SQL standard and supported by the
Database Engine: the CUBE, ROLLUP, and GROUPING SETS operators as well as
the grouping functions GROUPING and GROUPING_ID.

The most important analytic query functions are ranking functions: RANK,
DENSE_RANK, and ROW_NUMBER. Transact-SQL supports several nonstandard
analytic functions and operators, TOP, NTILE, PIVOT, and UNPIVOT, as well as a
standard one, OFFSET/FETCH.

The next chapter describes Reporting Services, a business intelligence component of
SQL Server.

Exercises
 E.23.1

Find the average number of the employees in the Accounting department. Solve this
problem:

a. using the window construct
b. using the GROUP BY clause

 E.23.2

Using the window construct, find the department with the highest budget for the years
2007 and 2008.

Ch23.indd 657 1/25/12 12:18:28 PM

 6 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 23

 E.23.3

Find the sum of employees according to the combination of values in the departments
and budget amounts. All possible summary rows should be displayed, too.

 E.23.4

Solve E.23.3 using the ROLLUP operator. What is the difference between this result
set and the result set of E.23.3?

 E.23.5

Using the RANK function, find the three departments with the highest number of
employees.

 E.23.6

Solve E.23.5 using the TOP clause.

 E.23.7

Calculate the ranking of all departments for the year 2008 according to the number
of employees. Display the values for the DENSE_RANK and ROW_NUMBER
functions, too.

Ch23.indd 658 1/25/12 12:18:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Chapter 24

In This Chapter

c Introduction to Data
Reports

c SQL Server Reporting
Services Architecture

c Configuration of SQL
Server Reporting Services

c Creating Reports
c Managing Reports

SQL Server
Reporting Services

Ch24.indd 659 1/25/12 5:56:49 PM

 6 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

This chapter describes Microsoft’s enterprise reporting tool called SQL Server
Reporting Services. After first introducing the general structure of a report, the
chapter explains the main components of Reporting Services and describes the

configuration of an installed instance of Reporting Services. After that, you’ll see how
you can create reports using Business Intelligence Development Studio. Two examples
are provided, one without parameters and the other with parameters, to explain each
step in the creation process. The processing of a report is then explained. Finally,
different ways to deliver a designed and deployed report are shown.

Introduction to Data Reports
A report is one of the interfaces through which users can interact with database
systems. Using reports, the data is visualized and displayed to users. The data can be
displayed in many different formats.

Generally, data reports have the following properties:

A report can be used only to display data.Cc In contrast to forms-based interfaces,
which can be used both to read and modify data, a report is a read-only user
interface. You can use reports to view data statically or dynamically.
A report generator supports many different layouts and file formats.Cc A report presents
data in a preformatted form. In other words, you use a report layout to compose
items that correspond to result values of the report query. (You can generally
design your report either in graphical or tabular form.)
A report is always based on a corresponding SELECT statement.Cc Because reports can
be used only to display data, each report is based on a SELECT statement, which
retrieves data. The difference between the result of a retrieval operation and the
corresponding report is that the latter uses various styles and formats to display
data, while a result set of each SELECT statement has a static form, which is
arranged by the system.
A report can use parameters, which are part of a particular query and whose values are Cc

set at run time. You can use parameters, as a part of your query, to add flexibility
to reports. The values of such parameters are passed from a user or an application
program to the query.
There are always one or more sources that provide input data for the report. Cc Each report
contains a query which retrieves data. This data is stored in one or more sources
that are usually relational databases, but can be files, too.

Ch24.indd 660 1/25/12 5:56:49 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 6 1

Concerning its structure, each report has the following two instruction sets, which
together specify the content of the report:

Data definitionCc Specifies data sources and a dataset. (For the detailed
description of data sources and datasets, see the section “Planning Data Sources
and Datasets” later in the chapter.) The content of the dataset can be defined using
Query Designer. (Query Designer is a graphical tool that allows you to build a
query used in your report. This tool is especially helpful for users who do not know
the syntax of the SELECT statement and need help to create a report’s query.)
Report layoutCc Enables you to present selected data to users. You can specify
which column values correspond to which fields and the form and location of
headings and page numbers.

Now that you’ve had this general introduction to reports, you are ready to look at the
architecture of SQL Server Reporting Services.

SQL Server Reporting Services Architecture
SQL Server Reporting Services (SSRS) is a Microsoft software system that you can
use to generate reports. You can use this system to develop and maintain reports of any
kind.

SSRS includes three main components, which represent a server layer, a metadata
layer, and an application layer, respectively:

Reporting Services Windows serviceCc

Report catalogCc

Report ManagerCc

These components are described in the following sections, after a brief introduction
to the Report Definition Language.

When the information concerning data definition and report layout is gathered,
SSRS stores it using the Report Definition Language (RDL). RDL is an XML-based
language that is used exclusively for storing report definitions and layouts. RDL is
an open schema language, meaning that developers can extend the language with
additional XML attributes and elements. (For descriptions of XML in general and
XML elements and attributes in particular, see Chapter 26.) RDL is usually generated
under Visual Studio, although it may also be used programmatically.

Ch24.indd 661 1/25/12 5:56:49 PM

 6 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

A typical RDL file contains three main sections. The first concerns page style, the
second section specifies field definitions, and the last section defines parameters.

Note
It is not necessary for you to use RDL to develop reports. The language is important only when you want to create
your own RDL files.

Reporting Services Windows Service
As its name implies, Reporting Services Windows service is implemented as a Windows
component that comprises two important services in relation to the report server. The
first one, Reporting Services Web service, is the application used for the implementation
of the Report Manager web site, while the second one, Reporting Services Windows
service, allows you to use it as a programmatic interface for reports. (Report Manager
will be explained later in this chapter.)

Note
Both services, Reporting Services Windows service and Reporting Services Web service, work together and
constitute a single report server instance.

As you can see from Figure 24-1, Reporting Services Windows service includes the
following components:

Report processorCc

Data providersCc

RenderersCc

Request handlerCc

The report processor manages the execution of a report. It retrieves the definition of
the report, which is done in RDL, and determines what is needed for the report. Also,
it manages the work of other components that are used to produce a report. The report
processor also retrieves data from data sources. After that, it selects a data provider that
knows how to extract information from the data source. The task of the data provider
is to connect to the data source, get the information for the report, and return it to the
processor in the form of corresponding datasets.

When data providers deliver the data for the report, the report processor can begin
to process the report’s layout. To generate the layout, the processor has to know the

Ch24.indd 662 1/25/12 5:56:49 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 6 3

format of the report (HTML or PDF, for instance). The renderers are used to build the
corresponding format.

The request handler receives requests for reports and sends them to the report
processor. It also delivers the completed report. (The different forms of report delivery
will be discussed later in the chapter.)

The Report Catalog
The report catalog contains two databases that are used to store the definitions of all
existing reports that belong to a particular service. The stored information includes
report names, descriptions, data source connection information, credential information,
parameters, and execution properties. The report catalog also stores security settings and
information concerning scheduling and delivering data.

SQL Server Reporting Services uses two databases, the Report Server database
and the Report Server temporary database, to separate persistent data storage from
temporary storage requirements. The databases are created together and bound by
name. By default, the database names are reportserver and reportservertempdb,
respectively. The former is used to store the report catalog, while the latter is used as
temporary storage for cached reports, and work tables that are generated by the report.

Report Manager
Report Manager is a web-based report access and management tool that runs using a
browser. This section only lists tasks that you can accomplish using this tool. Subsequent
sections of the chapter will describe how you can use the tool for specific tasks.

Output

Report

catalog

Report server

Request

handler

Data

sources

Data

providers
Renderers

Report processor

Figure 24-1 Components of Reporting Services Windows service

Ch24.indd 663 1/25/12 5:56:50 PM

 6 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Report Manager can be used to do the following:

View, print, subscribe to, and search for reports. The use of Report Manager to Cc

create subscriptions will be explained in the section “Standard Subscriptions” later
in this chapter.
Determine security issues related to access to items and operations.Cc

Configure parameters of a report and its execution properties.Cc

Create report models that connect to data sources.Cc

Create shared data sources to make data source connections more manageable. Cc

(For a description of shared data sources, see the section “Planning Data Sources
and Datasets” later in this chapter.)
Create data-driven subscriptions that roll out reports to a large recipient list. Cc

(Data-driven subscriptions are described in the section with the same name later
in this chapter.)
Launch Report Builder to create reports that you can save and run on the report Cc

server.

The next section explains how you can configure an installed instance of SSRS.

Configuration of SQL Server Reporting Services
You use Reporting Services Configuration Manager (RSCM) to configure an already
installed instance of Reporting Services. As you already know from Chapter 2, which
explained how to install SSRS, during the installation phase you had the option to
install and configure the report server or to install it without configuring it at that time.

If you chose the Install, But Do Not Configure the Report Server option during
the installation phase (see Figure 2-9), you must use RSCM to configure the report
server before you can use it. If you installed the report server by using the default
configuration installation option, you can use RSCM to verify or modify the settings
that were specified during the installation process.

Note
RSCM is installed automatically when you install SSRS, and you can use it to configure local and remote report
servers.

To start Reporting Services Configuration Manager, choose Start | All Programs |
Microsoft SQL Server 2012 | Configuration Tools | Reporting Services Configuration

Ch24.indd 664 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 6 5

Manager. In the Reporting Services Configuration Connection dialog box, you can select
the report server instance you want to configure. In the Server Name field, specify the
name of the computer on which the report server instance is installed. (If your instance is
installed on a remote computer, click Find to find the instance and to connect to it.) In
the Report Server Instance drop-down list box, choose from the drop-down list the SQL
Server Reporting Services instance that you want to configure. Click Connect.

Now you can perform the following tasks:

Configure the Report Server service accountCc The initially configured account
can be modified using RSCM.
Create and configure URLsCc Reporting Services and Report Manager are
ASP.NET applications accessed through URLs. You can configure a single URL
or multiple URLs for both applications.
Create and configure the report server databaseCc Use this page to create or
change the report server database or update database connection credentials.
Specify e-mail settingsCc Specify a Simple Mail Transfer Protocol (SMTP) server
and an e-mail account to use report server e-mail.
Configure the unattended execution accountCc This account is used for remote
connections during scheduled operations or when user credentials are not
available.
Backup encryption keysCc This process is necessary if you move the report server
installation to another computer.

Now that you are familiar with the components of SQL Server Reporting Services as
well as its configuration, you will learn how to create, deploy, and deliver reports.

Creating Reports
SQL Server Reporting Services gives you two tools to use to create reports:

Business Intelligence Development Studio (BIDS)Cc A development tool that
you use during the development phase. It is tightly integrated with Visual Studio
and allows you to develop and test reports before their deployment.
Report BuilderCc A stand-alone tool that enables you to do ad hoc reporting
without knowing anything about the structure of a particular database or how to
create queries using SQL.

Ch24.indd 665 1/25/12 5:56:50 PM

 6 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Note
This book discusses the first option only, creating reports using BIDS. The reason is that Report Builder generally
is used not to create new reports but to modify existing ones. For the description of Report Builder, see Books
Online.

To start Development Studio, choose Start | All Programs | Microsoft SQL
Server 2012 | SQL Server Business Intelligence Development Studio. The first step
in building a report is to create a new project to which the report belongs. To build a
project, choose File | New | Project. In the New Project dialog box, select the Business
Intelligence folder. Type the name of the project and its location in the Name and
Location text boxes, respectively. The project in this example is called Project1, as you
can see in Figure 24-2.

Figure 24-2 The New Project dialog box

Ch24.indd 666 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 6 7

In the middle pane of the New Project dialog box, you will see two project templates
related to reports. The Report Server Project template creates an empty report and
leaves you alone to do the rest of the work. The Report Server Project Wizard guides
you during the creation phase of a new report.

Note
Generally, SQL Server Reporting Services reports are built using Report Designer, a collection of graphical query
and design tools. It provides the Report Data pane, which you can use to organize data used in your report,
and tabbed views for Design and Preview so that you can design a report interactively. Report Designer also
comprises Query Designer, mentioned earlier in the chapter, to help you specify data for retrieval, and the
Expression dialog box, to specify report data to use in the report layout. Report Designer is hosted in BIDS.

In the following section, you will use the Report Server Project Wizard to create
a report. Therefore, select the Report Server Project Wizard icon and click OK. This
leads you to the welcome page of the wizard.

Creating Reports with the Report Server Project Wizard
The Report Server Project Wizard welcome page introduces the major steps that it
takes you through to create a report:

Select a data source from which to retrieve data.1.
Design a query to execute against the data source.2.
Choose the report type.3.
Specify the report layout.4.
Choose the report style.5.

These steps (and others not listed on the welcome page) are described in the
upcoming subsections, followed by a quick summary of how to preview the result set
and deploy the report. First, though, you will learn how to plan your data sources and
datasets.

Planning Data Sources and Datasets
Before you create a report, you should prepare your data sources for use. You use these
sources to create the corresponding tables and/or views, which will be used to retrieve
the particular result set. For this reason, the environment in which you prepare data
sources is SQL Server Management Studio, with its Transact-SQL capabilities, rather
than SSRS.

Ch24.indd 667 1/25/12 5:56:50 PM

 6 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

During the planning phase, you have to work with both data sources and datasets.
The differences between these two concepts are described next, followed by a
description of how you can use both of them.

Data Sources vs. Datasets The most important difference between data sources
and datasets is that data sources are not included in your report. A data source just
delivers information for your report. This information can be stored either in a file or
in a database. The task of SSRS is to generate datasets from the given data sources
using the set of instructions. This set includes, among other things, the information
concerning the type of the source, the name of the database (if the data source is stored
in a database) or the file path, and optionally the connection information to the source.

During the execution of a report, SSRS uses this information to generate a new
format, called a dataset. Therefore, a dataset is just an abstraction of underlying data
sources and is used as a direct input for the corresponding report.

Using Data Sources To include data in a report, you must first create data connections
(a synonym for data sources). A data connection includes the data source type, connection
information, and the login for connecting. (Creation of data connections is described in
the upcoming section “Selecting a Data Source.”)

There are two types of data sources: embedded and shared. An embedded data
source is defined in the report and used only by that report. In other words, when you
want to modify an embedded data source, you have to change the properties of that
data source using Report Manager. A shared data source is defined independently from
a report and can be used by multiple reports. Shared data sources are useful when you
have data sources that are often used.

Note
It is recommended that you use shared data sources as much as possible. They make reports easier to manage
and report access more secure.

Using Datasets As you already know, each dataset is an abstraction of corresponding
data sources and therefore specifies the fields from the data source that you plan to use
in the report. All datasets that you create for a report definition appear in the Datasets
window.

Since SQL Server 2008 R2, SSRS has supported shared datasets. Simply put, a shared
dataset is a dataset that allows several reports to share a query to provide a consistent set
of data for multiple reports. Shared datasets are tightly connected to shared data sources.
In other words, you use shared data sources to generate shared datasets.

Ch24.indd 668 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 6 9

The query of a shared dataset can include parameters. You can configure a shared
dataset to cache query results for specific parameter combinations on first use or by
specifying a schedule.

You can use either Business Intelligence Development Studio or Report Builder
to create a shared dataset. To create a shared dataset using BIDS, open the Solution
Explorer window, right-click the Shared Datasets folder, and click Add New Dataset.
In the Dataset Properties window, select a corresponding data source and use the text
window to type (or paste) your SELECT statement.

Selecting a Data Source
The data source contains information about the connection to the source database.
Click Next on the welcome page of the Report Server Project Wizard to select the data
source. On the Select the Data Source page, type the name of the new data source in
the Name field. (In this example, call the data source Source1.)

The Type drop-down list on the Select Data Source page allows you to choose one
of the different data source types. SSRS can create reports from different relational
databases (SQL Server, Teradata, and Oracle, among others) or multidimensional
databases (Analysis Services). OLE DB, ODBC, and XML data sources can be used,
too. After you choose a type, click Edit. The Connection Properties dialog box appears,
as shown in Figure 24-3.

Type either localhost or the name of your database server as the server name. Below
that, choose either Use Windows Authentication or Use SQL Server Authentication.
Click the Select or Enter a Database Name radio button and choose from the drop-
down list one of the databases as the data source. Before you click OK, click the Test
Connection button to test the connection to the database. Clicking Next takes you back
to the Select the Data Source page. Click Next to continue the wizard.

Designing a Query
The next step is to design a query that should be executed against the selected data
source. On the Design the Query page, you can either type (or paste) an existing query
or use the Query Builder component to create a query from scratch.

Note
Query Builder corresponds to the similar Access component that you can use to design queries even if you have
no knowledge of the SQL language. This component is generally known as QBE (query by example).

For this first report, use the query given in Example 24.1.

Ch24.indd 669 1/25/12 5:56:50 PM

 6 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 ExAMPLE 24.1

SELECT dept_name, emp_lname, emp_fname, job, enter_date

 FROM department d JOIN employee e ON d.dept_no = e.dept_no

 JOIN works_on w ON w.emp_no = e.emp_no

 WHERE YEAR(enter_date) = 2007

 ORDER BY dept_name;

The query in Example 24.1 selects data for employees who entered their job in 2007.
The result set of the query is then sorted by department names. After that, click Next.

Note
SSRS checks the names of the tables and columns listed in the query. If the system finds any syntax errors, it
displays the corresponding message in the new window.

Figure 24-3 The Connection Properties dialog box

Ch24.indd 670 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 7 1

Choosing the Report Type
The next step in creating a report is to select the report type. You can choose between
two report types:

TabularCc Creates a report in tabular form. Columns of the table correspond
to the columns from the SELECT list, while the number of rows in the table
depends on the result set of the query.
MatrixCc Creates a report in matrix form, which is similar to table form but
provides functionality of crosstabs. Unlike the tabular report type, which has
a static set of columns, the matrix report type can be dynamic.

Note
You should use the matrix report type whenever you want to create queries that contain aggregate functions,
such as AVG or SUM.

The query in Example 24.1 does not contain any aggregate functions. Therefore,
choose the tabular report type and click Next.

Designing the Data in the Table
The Design the Table page (see Figure 24-4) allows you to decide where selected columns
will be placed in your report. The Design the Table page contains two groups of fields:

Available fieldsCc

Displayed fieldsCc

The page also has three views:

PageCc

GroupCc

DetailsCc

Available fields are the columns from the SELECT list of your query. Each column
can be moved to one of the views. To move a field to the Page, Group, or Details view,
select the field and then click the Page, Group, or Details button, respectively. A
displayed f ield is an available field that is assigned to one of the existing views.

Page view lists all columns that appear at the page level, and Group view lists
columns that are used to group the resulting set of the query. Details view is used to

Ch24.indd 671 1/25/12 5:56:50 PM

 6 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

display columns that appear in the detail section of the table. Figure 24-4 shows the
Design the Table page with the design of the tabular representation for the resulting set
of Example 24.1. In this example, the dept_name column will appear at the page level,
while the job column will be used to group the selected rows. When you have chosen
how to group the data in the table, click Next.

Note
The order of the columns can be important, especially for the Group view. To change the order of the columns,
select a column and click the up or down button to the right.

Specifying the Report Layout
The next step is to specify the layout of your report. The Choose the Table Layout page
has several options:

SteppedCc

BlockCc

Figure 24-4 The Design the Table page

Ch24.indd 672 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 7 3

Include subtotalsCc

Enable drilldownCc

If you choose Stepped, the report will contain one column for each field, with
grouping fields appearing in headers to the left of columns from the detail field. In this
case, the group footer will not be created. If you include subtotals with this layout type,
the subtotal is placed in the group header rows.

The Block option creates a report that contains one column for each field, with
group fields appearing in the first detail row for each group. This layout type has group
footers only if the Include Subtotals option is activated.

The Enable Drilldown option hides the inner groups of the report and enables a
visibility toggle. (You can choose Enable drilldown only if you select the Stepped option.)

To continue, choose Stepped and Include Subtotals and click Next.

Choosing the Report Style
The next step is to choose a style for your report. The Choose the Table Style page
allows you to select a template to apply styles such as font, color, and border style to the
report. There are several different style templates, such as Forest, Corporate, and Bold.
Chose Bold and click Next.

Choosing the Deployment Location and Completing the Wizard
After choosing a report style, there is still one intermediate step if you are creating a
report for the first time. In this step, called Choose the Deployment Location, you must
choose the URL of the virtual directory of the report server and the deployment folder
for your reports. For a report server running in native mode, use the path to the report
server where the project is deployed (for example, http://localhost/ReportServer). For
a report server running in SharePoint integrated mode, use the URL of the SharePoint
site to which the project is deployed (for example, http://localhost). Click Next.

Note
SSRS supports two modes of deployment for report server instances: native mode and SharePoint integrated
mode. In native mode, which is the default, a report server is a stand-alone application server that provides
all viewing, management, processing, and delivery of reports. In SharePoint integrated mode, a report server
becomes part of a SharePoint web application deployment. Users of SharePoint Server can store reports
in SharePoint libraries and access them from the same SharePoint sites they use to access other business
documents.

Ch24.indd 673 1/25/12 5:56:50 PM

http://localhost/ReportServer

 6 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Finally, you complete the wizard’s work by providing a name for the report. Also, you
can take a look at the report summary, where all your previous steps during the creation
of the report are documented. Click Finish to finish the wizard.

Previewing the Result Set
When you finish the creation of your report using the wizard, there are two tabs in the
Report Designer pane that you can use to view the created report in different forms. (If
the Report Designer pane isn’t visible, click View | Designer.) The tabs correspond to
the following views:

DesignCc

PreviewCc

The Design tab allows you to view and modify the layout of your report. The Design
mode consists of the following sections: body, page, header, and page footer. You can use
the Toolbox and Properties windows to manipulate items in the report. To view these
windows, select Toolbox or Properties Window in the View menu. Use the Toolbox
window to select items to place them in one of the sections. Each item on the report
design surface contains properties that can be managed using the Properties window.
Figure 24-5 shows the layout of the report.

To preview the report, click the Preview tab. The report runs automatically, using
already specified properties. Figure 24-6 shows the preview for the report that was
defined in the previous steps.

Figure 24-5 The layout of the report

Ch24.indd 674 1/25/12 5:56:50 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 7 5

Deploying the Report
Before you can use or distribute a report, you have to deploy it. To do so, right-click the
created report and choose Deploy. The deployment process contains several steps, which
are shown in the Output pane:

------ Build started: Project: Project1, Configuration: Debug ------
Build complete -- 0 errors, 0 warnings
------ Deploy started: Project: Project1, Configuration: Debug ------
Deploying to http://localhost/ReportServer
Deploying data source '/Project1/sample'.
Deploying report '/Project1/Report1'.
Deploy complete -- 0 errors, 0 warnings
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========
========== Deploy: 1 succeeded, 0 failed, 0 skipped ==========

Creating Parameterized Reports
A parameterized report is one that uses input parameters to complete report processing.
The parameters are then used to execute a query that selects specific data for the report.
If you design or deploy a parameterized report, you need to understand how parameter
selections affect the report.

Parameters in SQL Server Reporting Services are used to filter data. They are
specified using the known syntax for variables (@year, for instance). If a parameter is

Figure 24-6 The preview of the report

Ch24.indd 675 1/25/12 5:56:51 PM

 6 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

specified in a query, a value must be provided to complete the SELECT statement or
stored procedure that retrieves data for a report.

You can define a default value for a parameter. If all parameters have default values,
the report will immediately display data when the report is executed. If at least one
parameter does not have a default value, the report will display data after the user enters
all parameter values.

When the report is run in a browser, the parameter is displayed in a box at the top of
the report. When the report is run in the Preview mode, the value of the parameter is
displayed in the corresponding box.

An example will be used to show you how to create a parameterized report. This
example describes only those steps that are different from the steps already discussed
in relation to Example 24.1. The query used in this example, shown in Example
24.2, selects data from the AdventureWorksDW database. For this reason, you
have to select and define a new data source. The specification of the new source is
identical to the specification of the source called Source1, except that you choose the
AdventureWorksDW database instead of the sample database.

 ExAMPLE 24.2
SELECT t.MonthNumberOfYear AS month, t.CalendarYear AS year,
 p.ProductKey AS product_id, SUM(f.UnitPrice) AS sum_of_sales,
 COUNT(f.UnitPrice) AS total_sales
 FROM DimDate t, DimProduct p, FactInternetSales f
 WHERE t.DateKey = f.OrderDateKey AND p.ProductKey = f.ProductKey
 AND CalendarYear = @year
 GROUP BY t.CalendarYear, t.MonthNumberOfYear, p.ProductKey
 ORDER BY 1;

The query in Example 24.2 calculates the number and the sum of unit product
prices. It also groups the rows according to the list of column names in the GROUP
BY clause. The expression

CalendarYear = @year

in the WHERE clause of the example specifies that the input parameter @year in this
query is related to the calendar year for which you want to query data.

This report is a typical example of a matrix type report. Values of the year column
will be assigned to the Page view, values of the month column to the Columns view,
and values of the product_id column to the Rows view. The Details view displays the
aggregate values SUM and COUNT.

To start the report in the Preview mode, type the value of the CalendarYear
parameter (2008, for instance) and click the View Report tab. Figure 24-7 shows a part
of this report.

Ch24.indd 676 1/25/12 5:56:51 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 7 7

Figure 24-7 A preview of part of the report

Ch24.indd 677 1/25/12 5:56:51 PM

 6 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Managing Reports
Reports can be accessed and delivered using two methods:

On demandCc

Subscription basedCc

These two methods are described next, followed by a discussion of your report
delivery options.

On-Demand Reports
As you already know, before you can use or distribute a report, you have to deploy it.
This can be done on demand. On-demand access allows users to select the reports from
a report-viewing tool. You can use Report Manager or a browser to view a report. This
section explains how you can view on-demand reports using a browser.

Reporting Services Web service allows you to access reports on demand. All reports
are organized in a hierarchical namespace and accessed through virtual directories. If
you used the default values to configure URLs, you should be able to access the Report
Server Web service using URLs that specify the computer name or localhost as the host
name: http://localhost/ReportServer. The default virtual directory for Report Manager
is http://localhost/Reports/. (Both default values can be modified.)

To view a report on demand, select the report from the corresponding folder
hierarchy. In this case, the report server creates a temporary snapshot for the purpose of
delivering the report. The snapshot is discarded after delivery.

There are several possibilities for running reports on demand. The first one is to
specify that a report queries the corresponding data source each time a user runs the
report. In this case, a new instance of the report is generated each time a new user
executes the report.

If you want to enhance performance, cached reports should be your choice. (Cached
reports will be discussed in detail in a moment.)

Report Subscription
On-demand reporting requires report selection each time you want to view a report’s
result. By contrast, subscription-based access automatically generates and delivers
reports to a destination.

Ch24.indd 678 1/25/12 5:56:51 PM

http://localhost/ReportServer
http://localhost/Reports/

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 7 9

SQL Server Reporting Services supports two kinds of subscriptions:

Standard subscriptionsCc

Data-driven subscriptionsCc

The following subsections describe these subscription forms.

Standard Subscriptions
A standard subscription usually consists of specific parameters for parameterized
reports as well as report presentation options and delivery options. You can use different
tools to manage standard subscriptions. Usually, Report Manager is used for this task.

To create a new subscription, open Report Manager and locate the report for which
you want to add a subscription. Hover over the report, and click the drop-down arrow.
In the drop-down menu, click Subscribe. This opens the New Subscription page for the
report.

The first step is to choose a delivery mode. You can choose between e-mail or the file
share method. When you choose file share as the delivery method, you have to provide
the file name, path, render format, and security information.

The next step is to configure a schedule. You can specify a schedule for a particular
report only or use a shared schedule for several subscriptions. (If your report has
parameters, you have to determine which values are assigned to parameters when the
subscription is started.)

Data-Driven Subscriptions
A data-driven subscription delivers reports to a list of recipients determined at run
time. This type of subscription differs from a standard subscription in the way it gets
subscription information: some settings from a data source are provided at run time,
and other settings are static (that is, they are provided from the subscription definition).
Static aspects of a data-driven subscription include the report that is delivered, the
delivery extension, connection information to an external data source that contains
subscriber data, and a query. Dynamic settings of the subscription are obtained from
the row set produced by the query, including a subscriber list and user-specific delivery
extension preferences or parameter values.

Ch24.indd 679 1/25/12 5:56:51 PM

 6 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Note
SQL Server Enterprise Edition is required if you want to use data-driven subscriptions.

The next section discusses how you can process reports.

Report Delivery Options
Report processing begins with a published report definition, which includes a query,
layout information, and code. Report and data processing together create a dataset
with layout information, which is stored as an intermediate format. After processing is
complete, reports are compiled as a CLR assembly and delivered to the report server.

When a report is deployed on the report server, it is configured by default to be run
on demand. The subsection “On-Demand Reports” in the previous section describes
how reports are used on demand. This section describes additional options that you can
use to execute a report:

Cached reportsCc

Execution snapshotsCc

Cached Reports
Caching means that a report is generated only for the first user who opens it, and
thereafter is retrieved from the cache for all subsequent users who work with the same
report. A report server can cache a copy of a processed report and return that copy when
a user opens the report. To a user, the only evidence available to indicate the report is a
cached copy is the date and time that the report ran. If the date or time is not current
and the report is not a snapshot, the report was retrieved from cache.

As you probably guessed, caching shortens the time to retrieve frequently accessed
reports. Also, this technique is recommended for large reports. If the server is rebooted,
all cached instances are reinstated when the Report Server Web service is restarted.

The contents of the cache are volatile and can change as new reports are added or
existing ones dropped. If you require a more predictable caching strategy, you should
create an execution snapshot, which is described next.

Ch24.indd 680 1/25/12 5:56:51 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

 C h a p t e r 2 4 : S Q L S e r v e r R e p o r t i n g S e r v i c e s 6 8 1

Execution Snapshots
The main disadvantage of cached reports is that the first user who wants to use the
particular report has to wait until the system creates it. A more user-friendly method
would be for the system to create the report automatically, so even the first user doesn’t
have to wait. This is supported by execution snapshots.

An execution snapshot is a way to create cached reports that contain data captured
at a specific point in time. The benefit of an execution snapshot is that no user has to
wait, because the data has already been accessed from the report’s data source(s) and
stored in the Report Server temporary database. That way, the report will be rendered
very quickly. The disadvantage of execution snapshots is that data can become stale, if
the time difference between the creation of the report snapshot and access of the report
is too long.

The main difference between execution snapshots and cached reports is that cached
reports are created as a result of a user action, while execution snapshots are created
automatically by the system.

Summary
SQL Server Reporting Services is the SQL Server–based enterprise reporting tool. To
create a report, you can use the Report Server Project Wizard or Report Builder. The
definition of a report, which comprises the corresponding query, layout information,
and code, is stored using the XML-based Report Definition Language (RDL). SSRS
processes the report definition into one of the standard formats, such as HTML or
PDF.

Reports can be accessed on demand or delivered based on a subscription. When
you execute a report on demand, a new instance of the report will usually be generated
each time you run the report. Subscription-based reports can be either standard or data
driven. Reports based on a standard subscription usually consist of specific parameters
as well as report presentation options and delivery options. A data-driven subscription
delivers reports to a list of recipients determined at run time.

To shorten the time of report execution, thereby increasing performance, you can
either cache your reports or use execution snapshots. The main difference between
execution snapshots and cached reports is that cached reports are created as a result
of a user action, while execution snapshots are created automatically by the system.

The next chapter describes optimization techniques for business intelligence.

Ch24.indd 681 1/25/12 5:56:51 PM

 6 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 24

Exercises
 E.24.1

Get the employee numbers and names for all clerks. Create a report in the matrix report
type using this query. Use Report Manager to view a report.

 E.24.2

Use the sample database and get the budgets and project names of projects being
worked on by employees in the Research department who have an employee number
< 25000. Create a report in the table report type using this query. Use a browser to view
the report.

Ch24.indd 682 1/25/12 5:56:51 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

Chapter 25

In This Chapter

c Data Partitioning
c Star Join Optimization
c Columnstore Index

Optimizing Techniques
for Relational Online
Analytical Processing

Ch25.indd 683 1/25/12 11:15:33 AM

 6 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

This chapter describes several optimizing techniques pertaining to relational
online analytical processing (ROLAP). In other words, these techniques can
be applied only to relational storage of multidimensional data. The first part

of this chapter discusses when it is reasonable to store all entity instances in a single
table and when it is better, for performance reasons, to partition the table’s data. After
a general introduction to data partitioning and the type of partitioning supported by
the Database Engine, the steps that you have to follow to partition your table(s) are
discussed in detail. You will then be given some partitioning techniques that can help
increase system performance, followed by a list of important suggestions for how to
partition your data and indices.

The second part of this chapter explains the technique called star join optimization.
Two examples are presented to show you in which cases the query optimizer uses this
technique instead of usual join processing techniques. The role of bitmap filters will be
explained, too.

The final part of the chapter explains the use of the columnstore index. You will
see how to create such an index and use it to increase the performance of a group of
data warehouse queries. The limitations of the implementation of this data warehouse
technique in SQL Server 2012 will be discussed too.

Data Partitioning
The easiest and most natural way to design an entity is to use a single table. Also, if all
instances of an entity belong to a table, you don’t need to decide where to store its rows
physically, because the database system does this for you. For this reason there is no
need for you to do any administrative tasks concerning storage of table data, if you don’t
want to.

On the other hand, one of the most frequent causes of poor performance in
relational database systems is contention for data that resides on a single I/O device.
This is especially true if you have one or more very large tables with millions of rows.
In that case, on a system with multiple CPUs, partitioning the table can lead to better
performance through parallel operations.

By using data partitioning, you can divide very large tables (and indices too) into
smaller parts that are easier to manage. This allow many operations to be performed in
parallel, such as loading data and query processing.

Partitioning also improves the availability of the entire table. By placing each
partition on its own disk, you can still access one part of the entire data even if one or
more disks are unavailable. In that case, all data in the available partitions can be used
for read and write operations. The same is true for maintenance operations.

If a table is partitioned, the query optimizer can recognize when the search condition
in a query references only rows in certain partitions and therefore can limit its search to

Ch25.indd 684 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 8 5

those partitions. That way, you can achieve significant performance gains, because the
query optimizer has to analyze only a fraction of data from the partitioned table.

Note
Data partitioning brings performance benefits only for huge tables. For this reason, partition only tables with at
least several hundred thousand rows.

How the Database Engine Partitions Data
A table can be partitioned using any column of the table. Such a column is called the
partition key. (It is also possible to use a group of columns for the particular partition
key.) The values of the partition key are used to partition table rows to different filegroups.

Two other important notions in relation to partitioning are the partition scheme and
partition function. The partition scheme maps the table rows to one or more filegroups.
The partition function defines how this mapping is done. In other words, the partition
function defines the algorithm that is used to direct the rows to their physical location.

The Database Engine supports only one form of partitioning, called range
partitioning. Range partitioning divides table rows into different partitions based on the
value of the partition key. Hence, by applying range partitioning you will always know
in which partition a particular row will be stored.

Note
Besides range partitioning, there are several other forms of partitioning. One of them is called hash partitioning.
In contrast to range partitioning, hash partitioning places rows one after another in partitions by applying a
hashing function to the partition key. Hash partitioning is not supported by the Database Engine.

The steps for creating partitioned tables using range partitioning are described next.

Steps for Creating Partitioned Tables
Before you start to partition database tables, you have to complete the following steps:

Set partition goals.1.
Determine the partition key and number of partitions.2.
Create a filegroup for each partition.3.
Create the partition function and partition scheme.4.
Create partitioned indices (optionally).5.

Ch25.indd 685 1/25/12 11:15:33 AM

 6 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

All of these steps will be explained in the following sections.

Set Partition Goals
Partition goals depend on the type of applications that access the table that should be
partitioned. There are several different partition goals, each of which could be a single
reason to partition a table:

Improved performance for individual queriesCc

Reduced contentionCc

Improved data availabilityCc

If your primary goal of table partitioning is to improve performance for individual
queries, then distribute all table rows evenly. That way, the database system doesn’t have
to wait for data retrieval from a partition that has more rows than other partitions. Also,
if such queries access data by performing a table scan against significant portions of a
table, then you should partition the table rows only. (Partitioning the corresponding
index will just add overhead in such a case.)

Data partitioning can reduce contention when many simultaneous queries perform
an index scan to return just a few rows from a table. In this case, you should partition
the table and index with a partition scheme that allows each query to eliminate
unneeded partitions from its scan. To reach this goal, start by investigating which
queries access which parts of the table. Then partition table rows so that different
queries access different partitions.

Partitioning improves the availability of the database. By placing each partition on
its own filegroup and locating each filegroup on its own disk, you can increase the data
availability, because if one disk fails and is no longer accessible, only the data in that
partition is unavailable. While the system administrator services the corrupted disk,
limited access still exists to other partitions of the table.

Determine the Partition Key and Number of Partitions
A table can be partitioned using any table column. The values of the partition key are
used to partition table rows to different filegroups. For the best performance, each
partition should be stored in a separate filegroup, and each filegroup should be stored
on one separate disk device. By spreading the data across several disk devices, you can
balance the I/O and improve query performance, availability, and maintenance.

You should partition the data of a table using a column that does not frequently
change. If you use a column that is often modified, any update operation of that column
can force the system to move the modified rows from one partition to the other, and
this could be time consuming.

Ch25.indd 686 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 8 7

Create a Filegroup for Each Partition
To achieve better performance, higher data availability, and easier maintenance, you
will use different filegroups to separate table data. The number of filegroups depends
mostly on the hardware you have. When you have multiple CPUs, partition your data
so that each CPU can access data on one disk device. If the Database Engine can
process multiple partitions in parallel, the processing time of your application will be
significantly reduced.

Each data partition must map to a filegroup. To create a filegroup, you use either the
CREATE DATABASE or ALTER DATABASE statement. Example 25.1 shows the
creation of a database called test_partitioned with one primary filegroup and two other
filegroups.

Note
Before you create the test_partitioned database, you have to change the physical addresses of all .mdf and .ndf
files in Example 25.1 according to the file system you have on your computer.

 ExamPlE 25.1

USE master;

CREATE DATABASE test_partitioned

ON PRIMARY

 (NAME='MyDB_Primary',

 FILENAME=

 'd:\mssql\PT_Test_Partitioned_Range_df.mdf',

 SIZE=2000,

 MAXSIZE=5000,

 FILEGROWTH=1),

FILEGROUP MyDB_FG1

 (NAME = 'FirstFileGroup',

 FILENAME =

 'd:\mssql\MyDB_FG1.ndf',

 SIZE = 1000MB,

 MAXSIZE=2500,

 FILEGROWTH=1),

FILEGROUP MyDB_FG2

 (NAME = 'SecondFileGroup',

 FILENAME =

 'f:\mssql\MyDB_FG2.ndf',

 SIZE = 1000MB,

 MAXSIZE=2500,

 FILEGROWTH=1);

Ch25.indd 687 1/25/12 11:15:33 AM

 6 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

Example 25.1 creates a database called test_partitioned, which contains a primary
filegroup, MyDB_Primary, and two other filegroups, MyDB_FG1 and MyDB_FG2.
The MyDB_FG1 filegroup is stored on the D: drive, while the MyDB_FG2 filegroup
is stored on the F: drive.

If you want to add filegroups to an existing database, use the ALTER DATABASE
statement. Example 25.2 shows how to create another filegroup for the test_partitioned
database.

 ExamPlE 25.2

USE master;

ALTER DATABASE test_partitioned

 ADD FILEGROUP MyDB_FG3

GO

ALTER DATABASE test_partitioned

ADD FILE

 (NAME = 'ThirdFileGroup',

 FILENAME =

 'G:\mssql\MyDB_FG3.ndf',

 SIZE = 1000MB,

 MAXSIZE=2500,

 FILEGROWTH=1)

TO FILEGROUP MyDB_FG3;

Example 25.2 uses the ALTER DATABASE statement to create an additional
filegroup called MyDB_FG3. The second ALTER DATABASE statement adds a new
file to the created filegroup. Notice that the TO FILEGROUP option specifies the
name of the filegroup to which the new file will be added.

Create the Partition Function and Partition Scheme
The next step after creating filegroups is to create the partition function, using the
CREATE PARTITION FUNCTION statement. The syntax of the CREATE
PARTITION FUNCTION is as follows:

CREATE PARTITION FUNCTION function_name(param_type)

 AS RANGE [LEFT | RIGHT]

 FOR VALUES ([boundary_value [,...n]])

function_name defines the name of the partition function, while param_type
specifies the data type of the partition key. boundary_value specifies one or more
boundary values for each partition of a partitioned table or index that uses the partition
function.

Ch25.indd 688 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 8 9

The CREATE PARTITION FUNCTION statement supports two forms of the
RANGE option: RANGE LEFT and RANGE RIGHT. RANGE LEFT determines
that the boundary condition is the upper boundary in the first partition. According to
this, RANGE RIGHT specifies that the boundary condition is the lower boundary in
the last partition. If not specified, RANGE LEFT is the default.

Before the partition function can be defined, you have to specify the table that will
be used for partitioning. In this chapter’s examples, the orders table will be used.
Example 25.3 creates the table. (Check first whether your sample database already
contains the orders table. If so, drop it.)

 ExamPlE 25.3

USE sample;

CREATE TABLE orders

 (orderid INTEGER NOT NULL,

 orderdate DATE,

 shippeddate DATE,

 freight money);

GO

declare @i int , @order_id integer

 declare @orderdate datetime

 declare @shipped_date datetime

 declare @freight money

 set @i = 1

 set @orderdate = getdate()

 set @shipped_date = getdate()

 set @freight = 100.00

 while @i < 1000001

 begin

 insert into orders (orderid, orderdate, shippeddate, freight)

 values(@i, @orderdate, @shipped_date, @freight)

 set @i = @i+1

 end

The CREATE TABLE statement in Example 25.3 creates the orders table, while
the subsequent batch loads one million rows in that table.

Example 25.4 shows the definition of the partition function for the orders table with
1,000,000 rows.

 ExamPlE 25.4

USE test_partitioned;

CREATE PARTITION FUNCTION myRangePF1 (int)

 AS RANGE LEFT FOR VALUES (500000);

Ch25.indd 689 1/25/12 11:15:33 AM

 6 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

The myRangePF1 partition function specifies that there will be two partitions and
that the boundary value is 500,000. This means that all values of the partition key that
are smaller than or equal to 500,000 will be placed in the first partition, while all values
greater than 500,000 will be stored in the second partition. (Note that the boundary
value is related to the values in the partition key, which in this example is the column
orderid of the orders table. As you will see, you specify the name of the partition key in
the corresponding CREATE TABLE statement.)

The created partition function is useless if you don’t associate it with specific filegroups.
As mentioned earlier in the chapter, you make this association via a partition scheme, and
you use the CREATE PARTITION SCHEME statement to specify the association
between a partition function and the corresponding filegroups. Example 25.5 shows the
creation of the partition scheme for the partition function in Example 25.4.

 ExamPlE 25.5

USE test_partitioned;

CREATE PARTITION SCHEME myRangePS1

 AS PARTITION myRangePF1

 TO (MyDB_FG1, MyDB_FG2);

Example 25.5 creates the partition scheme called myRangePS1. According to this
scheme, all values to the left of the boundary value (i.e., all values < 500,000) will be
stored in the MyDB_FG1 filegroup. Also, all values to the right of the boundary value
will be stored in the MyDB_FG2 filegroup.

Note
When you define a partition scheme, you must be sure to specify a filegroup for each partition, even if multiple
partitions will be stored on the same filegroup.

The creation of a partitioned table is slightly different from the creation of a
nonpartitioned one. As you might guess, the CREATE TABLE statement must
contain the name of the partition scheme and the name of the table column that will
be used as the partition key. Example 25.6 shows the enhanced form of the CREATE
TABLE statement that is used to define partitioning of the orders table.

Ch25.indd 690 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 9 1

 ExamPlE 25.6

USE test_partitioned;

CREATE TABLE orders

 (orderid INTEGER NOT NULL,

 orderdate DATETIME,

 shippeddate DATETIME,

 freight money)

ON myRangePS1 (orderid);

The ON clause at the end of the CREATE TABLE statement is used to specify the
already-defined partition scheme (see Example 25.5). Using this scheme, the specified
partition scheme ties together the column of the table (orderid) with the partition
function where the data type (INT) of the partition key is specified (see Example 25.4).

Create Partitioned Indices
When you partition table data, you can partition the indices that are associated with
that table, too. You can partition table indices using the existing partition scheme for
that table or a different one. When both the indices and the table use the same partition
function and the same partitioning columns (in the same order), the table and index
are said to be aligned. When a table and its indices are aligned, the database system can
move partitions in and out of partitioned tables very effectively, because the partitioning
of both database objects is done with the same algorithm. For this reason, in the most
practical cases it is recommended that you use aligned indices.

Example 25.7 shows the creation of a clustered index for the orders table. This index
is aligned because it is partitioned using the partition scheme of the orders table.

 ExamPlE 25.7

USE test_partitioned;

CREATE UNIQUE CLUSTERED INDEX CI_orders

 ON orders(orderid)

 ON myRangePS1(orderid);

As you can see from Example 25.7, the creation of the partitioned index for the orders
table is done using the enhanced form of the CREATE INDEX statement. This form
of the CREATE INDEX statement contains an additional ON clause that specifies the
partition scheme. If you want to align the index with the table, specify the same partition
scheme as for the corresponding table. (The first ON clause is part of the standard syntax
of the CREATE INDEX statement and specifies the column for indexing.)

Ch25.indd 691 1/25/12 11:15:33 AM

 6 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

Partitioning Techniques for Increasing
System Performance
The following partitioning techniques can significantly increase performance of your
system:

Table collocationCc

Partition-aware seek operationCc

Parallel execution of queriesCc

Table Collocation
Besides partitioning a table together with the corresponding indices, the Database
Engine also supports the partitioning of two tables using the same partition function.
This partition form means that rows of both tables that have the same value for the
partition key are stored together at a specific location on the disk. This concept of data
partitioning is called collocation.

Suppose that, besides the orders table (see Example 25.3), there is also an order_
details table, which contains zero, one, or more rows for each unique order ID in the
orders table. If you partition both tables using the same partition function on the join
columns orders.orderid and order_details.orderid, the rows of both tables with the
same value for the orderid columns will be stored together on the disk. Suppose that
there is a unique order with the identification number 49031 in the orders table and
five corresponding rows in the order_details table. In the case of collocation, all six
rows will be stored side by side on the disk. (The same procedure will be applied to all
rows of these tables with the same value for the orderid columns.)

This technique has significant performance benefits when, accessing more than
one table, the data to be joined is located at the same partition. In that case the system
doesn’t have to move data between different data partitions.

Partition-Aware Seek Operation
The internal representation of a partitioned table appears to the query processor as a
composite (multicolumn) index with an internal column as the leading column. (This
column, called partitionedID, is a hidden computed column used internally by the
system to represent the ID of the partition containing a specific row.)

For example, suppose there is a tab table with three columns, col1, col2, and col3.
(col1 is used to partition the table, while col2 has a clustered index.) The Database
Engine treats internally such a table as a nonpartitioned table with the schema tab
(partitionID, col1, col2, col3) and with a clustered index on the composite key
(partitionedID, col2). This allows the query optimizer to perform seek operations

Ch25.indd 692 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 9 3

based on the computed column partitionID on any partitioned table or index. That
way, the performance of a significant number of queries on partitioned tables can be
improved because the partition elimination is done earlier.

Parallel Execution of Queries
In SQL Server versions prior to 2008, one thread is allocated per partition when
multiple partitions are queried. In other words, one partition is not shared between
multiple threads and therefore the work on one partition cannot be parallelized.
(For the description of parallel queries, see Chapter 15.) This can cause performance
problems on systems with many CPUs if the table has fewer partitions than CPUs. In
that case, not all the CPUs will be used to process the query.

Since SQL Server 2008, the Database Engine provides two query execution
strategies for parallel query plans on partitioned objects:

Single-thread-per-partition strategyCc The query optimizer assigns one thread
per partition to execute a parallel query plan that accesses multiple partitions. One
partition is not shared between multiple threads, but multiple partitions can be
processed in parallel.
Multiple-threads-per-partition strategyCc The query optimizer assigns multiple
threads per partition regardless of the number of partitions to be accessed. In
other words, all available threads start at the first partition to be accessed and scan
forward. As each thread reaches the end of the partition, it moves to the next
partition and begins scanning forward. The thread does not wait for the other
threads to finish before moving to the next partition.

Which strategy the query optimizer chooses depends on your environment. It
chooses the single-thread-per-partition strategy if queries are I/O-bound and include
more partitions than the degree of parallelism. It chooses the multiple-threads-per-
partition strategy in the following cases:

Partitions are striped evenly across many disksCc

Your queries use fewer partitions than the number of available threadsCc

Partition sizes differ significantly within a single tableCc

Guidelines for Partitioning Tables and Indices
The following suggestions are guidelines for partitioning tables and indices:

Do not partition every table. Partition only those tables that are accessed most Cc

frequently.

Ch25.indd 693 1/25/12 11:15:33 AM

 6 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

Consider partitioning a table if it is a huge one, meaning it contains at least several Cc

hundred thousand rows.
For best performance, use partitioned indices to reduce contention between sessions.Cc

Balance the number of partitions with the number of processors on your system. Cc

If it is not possible for you to establish a 1:1 relationship between the number
of partitions and the number of processors, specify the number of partitions as a
multiple factor of the number of processors. (For instance, if your computer has
four processors, the number of partitions should be divisible by four.)
Do not partition the data of a table using a column that changes frequently. If you Cc

use a column that changes often, any update operation of that column can force
the system to move the modified rows from one partition to another, and this
could be very time consuming.
For optimal performance, partition the tables to increase parallelism, but do not Cc

partition their indices. Place the indices in a separate filegroup.

Star Join Optimization
As you already know from Chapter 21, the star schema is a general form for structuring
data in a data warehouse. A star schema usually has one fact table, which is connected
to several dimension tables. The fact table can have 100 million rows or more, while
dimension tables are fairly small relative to the size of the corresponding fact table.
Generally, in decision support queries, several dimension tables are joined with the
corresponding fact table. The convenient way for the query optimizer to execute such
queries is to join each of the dimension tables used in the query with the fact table,
using the primary/foreign key relationship. Although this technique is the best one for
numerous queries, significant performance gains can be achieved if the query optimizer
uses special techniques for particular groups of queries. One such specific technique is
called star join optimization.

Before you start to explore this new technique, take a look at how the query optimizer
executes a query in the convenient way, as shown in Example 25.8.

 ExamPlE 25.8

USE AdventureWorksDW;

SELECT ProductAlternateKey

 FROM FactInternetSales f JOIN DimDate t ON f.OrderDateKey = t.DateKey

 JOIN DimProduct d ON d.ProductKey = f.ProductKey

 WHERE CalendarYear BETWEEN 2003 AND 2004

 AND ProductAlternateKey LIKE 'BK%'

 GROUP BY ProductAlternateKey, CalendarYear;

Ch25.indd 694 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 9 5

The execution plan of Example 25.8 is shown in Figure 25-1.
As you can see from the execution plan in Figure 25-1, the query joins first the

FactInternetSales fact table with the DimDate dimension table using the relationship
between the primary key in the dimension table (DateKey) and the foreign key in the
fact table (DateKey). After that, the second dimension table, DimProduct, is joined
with the fact table in the similar way. At the end, both temporal results are joined
together using the hash join method.

The use of the star join optimization technique will be explained using Example 25.9.

 ExamPlE 25.9

USE AdventureWorksDWMod;

GO

SELECT F.ProductKey, F.CurrencyKey, D1.CurrencyName, D2.EndDate

FROM dbo.FactInternetSales AS F

JOIN dbo.DimCurrency AS D1 ON F.CurrencyKey = D1.CurrencyKey

JOIN dbo.DimProduct D2 ON F.ProductKey = D2.ProductKey

WHERE D1.CurrencyKey <= 12 AND D2.ListPrice > 50

OPTION (MAXDOP 32);

The query optimizer uses the star join optimization technique only when the fact
table is very large in relation to the corresponding dimension tables. To ensure that
the query optimizer would apply the star join optimization technique, I significantly

Figure 25-1 Execution plan of Example 25.8

Ch25.indd 695 1/25/12 11:15:33 AM

 6 9 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

enhanced the FactInternetSales fact table from the AdventureWorksDW database.
The original size of this table is approximately 64,000 rows, but for this example I
created an additional 500,000 rows by generating random values for the ProductKey,
SalesOrderNumber, and SalesOrderLineNo columns. Figure 25-2 shows the
execution plan of Example 25.9.

The query optimizer detects that the star join optimization technique can be applied
and evaluates the use of bitmap filters. (A bitmap filter is a small to midsize set of
values that is used to filter data. Bitmap filters are always stored in memory.)

As you can see from the execution plan in Figure 25-2, the fact table is first
scanned using the corresponding clustered index. After that the bitmap filters for both
dimension tables are applied. (Their task is to filter out the rows from the fact table.)
This has been done using the hash join technique. At the end, the significantly reduced
sets of rows from both streams are joined together.

Note
Do not confuse bitmap filters with bitmap indices! Bitmap indices are persistent structures used in BI as an
alternative to B+-tree structures. The Database Engine doesn’t support bitmap indices.

Columnstore Index
As you already know from Chapter 10, index access means that indices are used to
access entire rows that fulfill a condition of the given query. This is a general approach
and doesn’t depend on the number of columns being returned. In other words, the

Figure 25-2 Execution plan of Example 25.9

Ch25.indd 696 1/25/12 11:15:33 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 9 7

values of all columns of a particular row will be fetched, even if values of only one or
two columns are needed. The reason for this is that the Database Engine and all other
relational database systems store a table’s rows on data pages. (This traditional approach
of storing data is called row store.)

A new approach to storing data promises to improve performance in cases where the
values of only a few columns of a table need to be fetched. Such an approach is called
column store, and SQL Server 2012 introduces this technique using the index called
columnstore. In column store, data is grouped and stored one column at a time. The
query processor of a database system that supports column store can take advantage of
the new data layout and significantly improve query execution time of such queries that
retrieve just a few of a table’s rows.

managing Columnstore Index
You can create columnstore indices using either of the following:

Transact-SQL statementsCc

SQL Server Management StudioCc

The following subsections discuss both methods.

Creating a Columnstore Index Using Transact-SQL
You use the well-known CREATE INDEX statement (with slight extensions) to create
a columnstore index in Transact-SQL. Example 25.10 shows the creation of such an
index for the FactInternetSales table of the AdventureWorksDW sample database.

 ExamPlE 25.10

USE AdventureWorksDW;

GO

CREATE NONCLUSTERED COLUMNSTORE INDEX cs_index1

 ON FactInternetSales (OrderDateKey, ShipDateKey, UnitPrice);

As you can see from the preceding SQL statement, to create a columnstore index,
you extend the syntax of the convenient CREATE INDEX statement with the
COLUMNSTORE phrase. Note, however, that among the many existing options
available for traditional indices, only two are supported for columnstore indices: MAXDOP
and DROP_EXISTING. (The MAXDOP option specifies the maximum degree of
parallelism, while the DROP_EXISTING option can be used to rebuild the index.)

Ch25.indd 697 1/25/12 11:15:33 AM

 6 9 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

The CREATE INDEX statement in Example 25.10 creates a columnstore index
for three columns of the FactInternetSales table: OrderDateKey, ShipDateKey, and
UnitPrice. This means that all values of each of the three columns will be grouped and
stored separately.

Example 25.11 shows the simple analytical query in relation to the UnitPrice
column of the FactInternetSales table.

 ExamPlE 25.11

USE AdventureWorksDW;

GO

SET STATISTICS TIME ON;

GO

SELECT AVG (UnitPrice)

 FROM FactInternetSales;

In the case that the cs_index1 index isn’t created, the output of the STATISTICS
TIME option of the SET statement is as follows:

Table 'FactInternetSales'. Scan count 5, logical reads 25411,

physical reads 2, read-ahead reads 23230, lob logical reads 0,

 lob physical reads 0, lob read-ahead reads 0.

SQL Server Execution Times: CPU time = 280 ms, elapsed time = 9181 ms.

When you create the index using Example 25.10 and execute the query in Example
25.11 again, the performance gains (in relation to both elapsed time and the number of
logical reads) are dramatic:

Table 'FactInternetSales'. Scan count 1, logical reads 779, physical

reads 1, read-ahead reads 2882, lob logical reads 0, lob physical reads

0, lob read-ahead reads 0.

SQL Server Execution Times: CPU time = 109 ms, elapsed time = 155 ms.

Creating a Columnstore Index Using SSMS
To create a columnstore index in Object Explorer of SQL Server Management Studio,
expand the tree structure of the table for which the index should be created, right-click
the Indexes icon, and choose New Index | Nonclustered Columnstore Index. Click Add
in the wizard, check the boxes of those columns that will be used for column store, and
click OK.

Ch25.indd 698 1/25/12 11:15:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 6 9 9

advantages and limitations of Columnstore Indices
As a performance-tuning technique, columnstore indices offer significant performance
benefits only for a group of queries. The following subsections discuss the advantages
and limitations of this technique.

Benefits of Columnstore Indices
The following are the benefits of columnstore indices:

The system fetches only needed columns.Cc The smaller the number of fetched columns,
the smaller the number of I/O operations required. For instance, if only 10 percent
of the length of each data row is retrieved, the use of column store can reduce I/O
significantly because only a small part of the data has to be transferred from disk
into memory. (This is especially true for data warehouses, where fact tables usually
have million of rows.)
Compression of values is optimal.Cc Storing data by rows is suboptimal for compressing
the data. The reason is that values of columns of a table have many different
forms: some of them are numeric and some are strings or dates. Most compression
algorithms are based on similarities of a group of values. When data is stored by
rows, the possibility to exploit similarity among values is thus limited. By contrast,
a column store organizes data in column-wise fashion. Data items from a single
column are stored contiguously. Usually, there is repetition and similarity among
values within a column. The column store organization allows compression
algorithms to exploit that similarity.
Execution time for queries with special characteristics is significantly faster.Cc As Example
25.11 demonstrated, if your query retrieves values from a few columns that are
indexed with the columnstore index, the query will be executed significantly
faster. (Obviously, performance gains decrease as the number of columns in the
SELECT list of a query increases.)
No limitation exists on the number of key columns.Cc The concept of key columns exists only
for row store. Therefore, the limitation on the number of key columns for an index
does not apply to columnstore indices. (Also, if a base table has a clustered index, all
columns in the clustering key must be present in the nonclustered columnstore index.
Otherwise, it will be added to the columnstore index automatically.)
Columnstore indices work with table partitioning.Cc No change to the table partitioning
syntax is required. A columnstore index on a partitioned table must be partition-
aligned with the base table. Therefore, a nonclustered columnstore index can be
created on a partitioned table only if the partitioning column is one of the columns
in the columnstore index.

Ch25.indd 699 1/25/12 11:15:34 AM

 7 0 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

Limitations of Columnstore Index
Columnstore indices have been implemented for the first time in SQL Server 2012.
For this reason, you cannot expect the implementation to be optimal. The following are
some of the restrictions in relation to columnstore indices:

A table with a columnstore index is read-only.Cc A table with a columnstore index
cannot be updated. (This is not a significant issue for data warehouse systems,
because update operations are not executed often.) Books Online describes several
ways in which you can circumvent this limitation.
A columnstore index doesn’t support all data types.Cc SQL Server 2012 allows you
to create columnstore indices for common business data types, such as CHAR,
VARCHAR, INT, DECIMAL, and FLOAT. The following data types, among
others, cannot be included in a columnstore index: BINARY, VARBINARY,
VARCHAR(max), and SQL_VARIANT.
There are several restrictions on clustered and nonclustered columnstore indices.Cc At the
moment, it is not possible to create more than one nonclustered columnstore
index per table, and clustered columnstore indices are not available in SQL Server
2012. (You can expect that both limitations will be eliminated in a future version
of SQL Server.)

Summary
The Database Engine supports range partitioning of data and indices that is entirely
transparent to the application. Range partitioning partitions rows based on the value
of the partition key. In other words, the data is divided using the values of the
partition key.

If you want to partition your data, you must complete the following steps:

Set partition goals.1.
Determine the partition key and number of partitions.2.
Create a filegroup for each partition.3.
Create the partition function and partition scheme.4.
Create partitioned indices (if necessary).5.

By using different filegroups to separate table data, you achieve better performance,
higher data availability, and easier maintenance.

Ch25.indd 700 1/25/12 11:15:34 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 25

 C h a p t e r 2 5 : O p t i m i z i n g Te c h n i q u e s f o r R O L A P 7 0 1

The partition function is used to map the rows of a table or index into partitions
based on the values of a specified column. To create a partition function, use the
CREATE PARTITION FUNCTION statement. To associate a partition function
with specific filegroups, use a partition scheme. When you partition table data, you can
partition the indices associated with that table, too. You can partition table indices using
the existing partition schema for that table or a different one.

Star join optimization is an index-based optimization technique that supports the
optimal use of indices on huge fact tables. The main advantages of this technique are
the following:

Significant performance improvements in case of moderately and highly selective Cc

star join queries.
No additional storage cost. (The system does not create any new indices, but uses Cc

bitmap filters instead.)

SQL Server 2012 supports columnstore indices, which gives you a new way to
store values of a table’s columns. Because of many restrictions in the current version,
the use of this very promising technique should be restricted. In other words, if you
intend to use the technique for production databases, test carefully the possible use of
columnstore indices first on a nonproduction database.

This chapter is the last chapter of the book’s part concerning business intelligence.
The next chapter starts the last part of the book and gives you an introduction to XML.

Ch25.indd 701 1/25/12 11:15:34 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 /
Blind folio 703

Beyond Relational Data

Part V

Ch26.indd 703 1/25/12 11:25:02 AM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

In This Chapter

c XML: Basic Concepts
c Schema Languages
c Storing XML Documents

in SQL Server

c Presenting Data
c Querying Data

SQL Server and XML

Chapter 26

Ch26.indd 705 1/25/12 11:25:03 AM

 7 0 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

This chapter has four main parts. The first part introduces the Extensible
Markup Language (XML), which has become more and more important
as a data storage format. This part describes requirements of a well-formed

document. It also explains the basic concepts of XML. The second part introduces two
schema languages: the Document Type Definition (DTD) language and the XML
Schema language.

The third part of the chapter discusses XML in relation to database systems,
generally, and in relation to the Database Engine, particularly. The most important
storage form, using the XML data type, is introduced after that. The retrieval of stored
XML documents using system stored procedures is described in the fourth part of the
chapter, followed by a discussion of the presentation of relational data in XML. The
end of this part briefly explains the XQuery language and the existing SQL Server
XQuery methods.

XML: Basic Concepts
XML is an HTML-like language that is used for data exchange and the digital
representation of data. Both HTML and XML are markup languages, meaning that
they use tags to represent the logical structure of data, and both are important to the
functioning of the World Wide Web. However, unlike HTML, which has a fixed
number of tags, each with its own meaning, the repertoire of tags in XML is not set in
advance and semantic meaning is not set for any XML tag. (The concise description of
HTML is given in the section “XML-Related Languages”.)

This section begins by looking at the requirements of a well-formed XML
document, after which the three main components of XML are presented: elements,
attributes, and namespaces. Next, the World Wide Web is briefly introduced, followed
by a discussion of XML-related languages.

Requirements of a Well-Formed XML Document
The following are the requirements of a well-formed XML document, an example of
which is shown in Example 26.1:

It has a root element (Cc PersonList, in Example 26.1).
Every opening tag is followed by a matching closing tag.Cc

The elements of the document are properly nested.Cc

An attribute must have a value, which is quoted.Cc

Ch26.indd 706 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 0 7

 EXaMPLE 26.1

<?xml version="1.0" encoding="UTF-8"?>

<PersonList Type="Employee">

 <Title> Value="Employee List"></Title>

 <Contents>

 <Employee>

 <Name>Ann Jones</Name>

 <No>10102</No>

 <Deptno>d3</Deptno>

 <Address>

 <City>Dallas</City>

 <Street>Main St</Street>

 </Address>

 </Employee>

 <Employee>

 <Name>John Barrimore</Name>

 <No>18316</No>

 <Deptno>d1</Deptno>

 <Address>

 <City>Seattle</City>

 <Street>Abbey Rd</Street>

 </Address>

 </Employee>

 </Contents>

</PersonList>

An XML document, as shown in Example 26.1, generally contains three parts:

An optional first line that tells the program that receives the document which Cc

version of XML it is dealing with (version 1.0 in Example 26.1)
An optional external schema (usually written using DTD or the XML Schema Cc

language; see the section “Schema Languages” later in this chapter)
A root element—the element that contains all other elementsCc

The most important component of XML documents is the element, described next.

Note
Besides XML elements, attributes, and namespaces, which are described in detail in the following sections,
there are also other components of XML documents, such as comments and processing instructions (PIs). These
components will not be discussed because they are beyond the scope of this book.

Ch26.indd 707 1/25/12 11:25:03 AM

 7 0 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

XML Elements
You use XML to digitally represent documents. To represent a document, you have to
know its structure. For instance, if you consider a book as a document, it can first be
broken into chapters (with titles). Each chapter comprises several sections (with their
titles and corresponding figures), and each section has one or more paragraphs.

All parts of an XML document that belong to its logical structure (such as chapters,
sections, and paragraphs in the case of a book) are called elements. Therefore, in XML,
each element represents a component of a document. In Example 26.1, PersonList,
Title, and Employee are examples of XML elements. Also, each element can contain
other elements. (The parts of an element that do not belong to the logical structure of
a document are called character data. For instance, words or sentences in a book can be
treated as character data.)

All elements of a document build a hierarchy of elements that is called the tree
structure of the document. Each structure has an element on the top level that contains
all other elements. This element is called the root element. All elements that do not
contain any subelements are called leaves.

Note
In contrast to HTML, where valid tags are determined by the language specification, tag names in XML are
chosen by the programmer.

The XML elements directly nested within other elements are called children. For
instance, in Example 26.1, Name, No, and Address are children of Employee, which is
a child of Contents, which is again a child of the root element PersonList.

Each element can have extra information that is attached to it. Such information is
called an attribute, and it describes the element’s properties. Attributes are used together
with elements to represent objects. The general syntax of an element together with an
attribute and their values is

<el_name attr_name="attr_value">el_value</el_name>

In the following line from Example 26.1,

 <PersonList Type="Employee">,

Type is the name of an attribute that belongs to the element PersonList, and Employee
is the attribute value.

The following section describes attributes in detail.

Ch26.indd 708 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 0 9

XML attributes
Attributes are used to represent data. Elements can be used for the same purpose, which
prompts the question of whether attributes are needed at all, because almost everything
you can do using attributes is possible to do with elements (and subelements). However,
the following tasks can be accomplished only with attributes:

Define a unique valueCc

Enforce a limited kind of referential constraintCc

Note
There is no general rule for how you should define data. The best rule of thumb is to use an attribute when a
property of an element is general, and to use subelements for a specific property of an element.

An attribute can be specified to be an ID type attribute. The value of the ID
attribute must be unique within the XML document. Therefore, you can use the ID
attribute to define a unique value.

An attribute of type IDREF must refer to a valid ID declared in the same document.
In other words, the value of the IDREF attribute must occur in the document as a value
of the corresponding ID attribute.

An attribute of type IDREFS specifies a list of strings, separated by blanks, that are
referenced by the values of the ID attribute. For instance, the following line shows the
XML fragment of an IDREFS attribute:

<Department Members="10102 18316"/>

(This example assumes that the attribute No of the Employee element is the ID
attribute, while the attribute Members of the Department element is of the type
IDREFS.)

The pairs ID/IDREF and ID/IDREFS correspond to primary key/foreign key
relationships in the relational model, with a few differences. In the XML document,
the values of different ID type attributes must be distinct. For instance, if you have
CustomerID and SalesOrderID attributes in an XML document, these values must
be distinct.

Note
ID, IDREF, and IDREFS are data types of the Document Type Definition (DTD), discussed later in this chapter.

Ch26.indd 709 1/25/12 11:25:03 AM

 7 1 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

XML Namespaces
When using XML, you build a vocabulary of terms that is appropriate for the domain
in which you model your data. In this situation, different vocabularies for different
domains can cause naming conflicts when you want to mix the domains together in
an XML document. (This is usually the case when you want to integrate information
obtained from different domains.) For instance, the article element in one domain can
reference scientific articles, while the element with the same name in another domain
could be related to a sales article. This problem can be solved using XML namespaces.

Generally, the name of every XML tag must be written in the form namespace:name,
where namespace specifies an XML namespace and name is an XML tag.

A namespace is always represented by a worldwide unique URI (uniform resource
identif ier), which is usually a URL but can be an abstract identifier, too.

Example 26.2 shows the use of two namespaces.

 EXaMPLE 26.2

<Faculty xmlns="http://www.fh-rosenheim.de/informatik"

 xmlns:lib="http:// www.fh-rosenheim.de/library">

 <Name>Book</Name>

 <Feature>

 <lib:Title>Introduction to Database Systems</lib:Title>

 <lib:Author>A. Finkelstein</lib:Author>

 </Feature>

</Faculty>

Namespaces are defined using the xmlns attribute. Example 26.2 specifies two
namespaces. The first one is the default namespace, because it is specified only with
the xmlns keyword. Therefore, it is the shorthand for the namespace http://www
.fh-rosenheim.de/informatik. The second namespace is specified in the form xmlns:lib.
The prefix lib serves as the shorthand for http://www.fh-rosenheim.de/library.

Tags belonging to the latter namespace should be prefixed with lib:. Tags without
any prefix belong to the default namespace. (In Example 26.2, two tags belong to the
second namespace: Title and Author.)

Note
One of the frequently used prefixes is “xsd”. As you can see from Example 26.8, this prefix serves as the shorthand
for http://www.w3.org/2001/XMLSchema, the link to the XML Schema specification.

Ch26.indd 710 1/25/12 11:25:03 AM

http://www.fh-rosenheim.de/informatik
http://www.fh-rosenheim.de/library
http://www.w3.org/2001/XMLSchema
http://www.fh-rosenheim.de/informatik

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 1 1

XML and World Wide Web
The Web has become a dominant communications medium because it is used
by billions of people for a variety of activities, including business, social, political,
governmental, and educational activities. Generally, the Web has four parts:

Web serverCc

Web browserCc

HTML (Hypertext Markup Language)Cc

HTTP (Hypertext Transfer Protocol)Cc

The web server sends pages (usually HTML pages) to the Web. A web browser
receives the pages and displays them on the computer screen. (Microsoft Internet
Explorer is an example of a web browser.)

You use HTML to create documents for the Web. This language allows you to
format data that is shown using a web browser. The simplicity of HTML is one of
the reasons that the Web has gained such importance. However, HTML has one
main disadvantage: it can tell you only how the data should look. In other words, the
language is used only to describe the layout of data.

HTTP is a protocol that “connects” a web browser with a web server and sends the
available pages in both directions. If the pages contain another hyperlink, the protocol is
used to connect to that web server, using the given address.

XML-Related Languages
XML is related to two other languages:

SGMLCc

HTMLCc

Standard General Markup Language (SGML) is a very powerful markup language
that is used for the interchange of large and complex documents. SGML is used
in many areas where there is a necessity for complex documents, such as airplane
maintenance. As you will read in just a moment, XML is SGML lite—that is, it is a
simplified subset of SGML that is primarily used for the Web.

HTML is the most important markup language used for the Web. Each HTML
document is an SGML document with a fixed document type definition. (Fixed document
types are described in the next section.) Therefore, HTML is just an instance of SGML.

Ch26.indd 711 1/25/12 11:25:03 AM

 7 1 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

HTML documents are text files that contain tags, and each tag is written in angle
brackets. The most important tags are hyperlinks. You use hyperlinks to reference
documents that are managed by a web server. Those references build the network that
spans the whole Internet.

HTML has two important features:

It is used only to format a document.Cc

It is not an extensible language.Cc

HTML is a markup language that you can use to describe how the data should look.
(On the other hand, this language offers more than a simple formatted language such as
LaTeX, because its elements are generalized and descriptive.)

HTML only uses a fixed number of elements. For this reason, you cannot use
HTML suitably for particular document types.

Schema Languages
In contrast to HTML, which contains a set of fixed rules that you must follow when
you create an HTML document, XML does not have such rules, because this language
is intended for many different application areas. Hence, XML includes languages that
are used to specify the document structure. The most important schema languages for
XML documents are

Document Type Definition (DTD)Cc

XML SchemaCc

The following sections describe these languages.

Document Type Definition
A set of rules for structuring an XML document is called a document type definition
(DTD). A DTD can be specified as a part of the XML document, or the XML
document can contain a uniform resource locator (URL) indicating where the DTD is
stored. A document that conforms to the associated DTD is called a valid document.

Note
XML does not require that documents have corresponding DTDs, but it requires that documents be well formed
(as described earlier in this chapter).

Ch26.indd 712 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 1 3

Example 26.3 shows the DTD for the XML document in Example 26.1.

 EXaMPLE 26.3

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE PersonList SYSTEM "C:\tmp\Unbenannt4.dtd">

<!ELEMENT EmployeeList (Title, Contents)>

<!ELEMENT Title EMPTY>

<!ELEMENT Contents (Employee*)>

<!ELEMENT Employee (Name, No, Deptno, Address)>

<!ELEMENT Name (Fname, Lname)>

<!ELEMENT Fname (#PCDATA)>

<!ELEMENT Lname (#PCDATA)>

<!ELEMENT No (#PCDATA)>

<!ELEMENT Deptno (#PCDATA)>

<!ELEMENT Address (City, Street) >

<!ELEMENT City (#PCDATA)>

<!ELEMENT Street (#PCDATA)>

<!ATTLIST EmployeeList Type CDATA #IMPLIED

 Date CDATA #IMPLIED>

 <!ATTLIST Title Value CDATA #REQUIRED>

Note
Both documents (the XML document from Example 26.1 and the DTD in Example 26.3) must be linked together.
This link can be generated by an XML editor or manually. In the latter case you have to extend the XML document
with the appropriate information.

There are several common DTD components: a name (EmployeeList in Example 26.3)
and a set of ELEMENT and ATTLIST statements. The name of a DTD must conform
to the tag name of the root element of the XML document (see Example 26.1) that uses
the DTD for validation. Also, you have to link the XML document with the corresponding
DTD file.

Element type declarations must start with the ELEMENT statement, followed by
the name of the element type being defined. (Every element in a valid XML document
must conform to an element type declared in the DTD.) Also, the order of elements
in the DTD must be preserved in the corresponding XML document. In Example
26.3, the first ELEMENT statement specifies that the element EmployeeList consists
of Title and Contents elements, in that order. The elements that do not contain any
subelements must be declared to be alphanumerical—that is, of type #PCDATA. (The
Title element is such an element.)

Ch26.indd 713 1/25/12 11:25:03 AM

 7 1 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

The * sign in the definition of the Contents element indicates that there are zero or
more elements of the Employee type. (Besides *, there are two other signs, ? and +. The
? sign specifies that there is at most one element, while the + sign indicates that there is
at least one element.)

Attributes are declared for specific element types using the ATTLIST statement.
This means that each attribute declaration starts with the string <!ATTLIST.
Immediately after that comes the attribute’s name and its data type. In Example 26.3,
the EmployeeList element is allowed to have the attributes Type and Date, while
the Title element can only have the Value attribute. (All other elements do not have
attributes.)

The #IMPLIED keyword specifies that the corresponding attribute is optional,
while the #REQUIRED keyword determines the mandatory form of the attribute.

Note
Besides the #PCDATA data type, DTD supports several other data types, such as ID, IDREF, and IDREFS. These data
types are explained earlier in this chapter.

Besides the definition of a document’s structure, formatting a document can be
an important issue. For this task, XML supports another language called Extensible
Stylesheet Language (XSL), which allows you to describe how the data of your
document should be formatted or displayed.

Note
The style of a document is described as a separate unit. For this reason, each document without this additional
unit will use the default formatting of the web browser.

XML Schema
XML Schema is a standardized data definition language for XML documents. It
defines a set of base types that are supported as types in XML. The XML Schema
language contains many advanced features and is therefore significantly more complex
than DTD.

Note
The XML Schema language is discussed only briefly in this book because of its complexity. An example of the XML
Schema language is given later in this chapter (see Example 26.8).

Ch26.indd 714 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 1 5

The main features of the XML Schema language are the following:

It uses the same syntax as that used for XML documents. (For this reason, Cc

schemas are themselves well-formed XML documents.)
It is integrated with the namespace mechanism. (Although there can be more Cc

than one schema definition document for a namespace, a schema definition
document defines type in only one namespace.)
It provides a set of base types, the same way SQL provides CHAR, INTEGER, Cc

and other standard data types.
It supports primary/foreign key integrity constraints.Cc

Storing XML Documents in SQL Server
As you already know from Chapter 1, the relational data model is the best model to
use if you have structured data with the corresponding schema. On the other hand, if
the data you use is semistructured, you have to know how to model the data. In that
case, XML is a good choice because it is a platform-independent model, which ensures
portability of semistructured data.

The goal of all modern database systems, including the Database Engine is to store
any kind of data. Therefore, a tight relationship exists between relational databases
and XML documents. We’ll take a brief look at the general methods for storing XML
documents in relational databases before we focus specifically on how XML documents
are stored in the Database Engine. There are three general techniques for storing XML
documents in relational databases:

As “raw” documentsCc

Decomposed into relational columnsCc

Using native storageCc

If you store an XML document as a large object (LOB), an exact copy of the data is
stored. In this case, XML documents are stored “raw”—that is, in their character string
form. The raw form allows you to insert documents very easily. The retrieval of such a
document is very efficient if you retrieve the entire document. To retrieve parts of the
documents, you need to create special types of indices.

To decompose an XML document into separate columns of one or more tables, you
can use its schema. In this case, the hierarchical structure of the document is preserved,
while order among elements is ignored. (As you already know, the relational model does

Ch26.indd 715 1/25/12 11:25:03 AM

 7 1 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

not support ordering of columns in a table, whereas elements of an XML document are
ordered.) Storing XML documents in decomposed form makes it much easier to index
an element if it is placed in its own column.

Note
The decomposition process of an XML document into separate columns is also known as “shredding.”

Native storage means that XML documents are stored in their parsed form. In other
words, the document is stored in an internal representation (Infoset, for instance)
that preserves the XML content of the data. (Infoset, or XML Information Set, is a
standardized specification that provides a set for use in other specifications that need to
refer to the information in an XML document.)

Using native storage makes it easy to query information based on the structure
of the XML document. On the other hand, reconstructing the original form of the
XML document is difficult, because the created content may not be an exact copy of
the document. (The detailed information about the significant white spaces, order of
attributes, and namespace prefixes in XML documents is generally not retained.)

Note
In the rest of this chapter, “XML” has two meanings. First, this term specifies the language, Extended Markup
Language. Second, the same term is used to specify the XML data type in the Database Engine. To keep the
distinction clear, the term “XML” is used to specify the language, and the phrase “XML data type” is used to
specify the data type. (Also, “XML column” means a column of the XML data type.)

SQL Server supports all three general techniques for storing XML documents
discussed earlier in this section:

Raw documentsCc The Database Engine uses the VARCHAR(MAX) and
VARBINARY(MAX) data types to store XML documents as raw documents.
(This approach won’t be discussed further in this book because of its complexity.)
DecompositionCc The Database Engine can decompose XML documents
into separate columns of tables by using the sp_xml_preparedocument system
procedure. This procedure parses the given document and represents its nodes as
a tree. (For further discussion of this system procedure, see the section “Storing
XML Documents Using Decomposition” later in this chapter.)

Ch26.indd 716 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 1 7

Native storageCc The XML data type enables you to store XML documents in
the native way in a database managed by the Database Engine. (Database systems,
such as the Database Engine, that store XML documents in a completely parsed
form are called native XML database systems.)

The following sections discuss in detail the last two techniques. Because the use of
the XML data type is the most important storage form, native storage is discussed first.

Storing XML Documents Using the XML Data Type
The XML data type is the base data type in Transact-SQL, meaning you can use
this data type in the same way you use the standard data types, such as INTEGER
or CHARACTER. On the other hand, the XML data type has some limitations,
because an XML column cannot be declared using the UNIQUE, PRIMARY KEY, or
FOREIGN KEY clauses.

Generally, you can use the XML data type to declare the following:

Table columnsCc

VariablesCc

Input or output parameters (in stored procedures or user-defined functions)Cc

Note
The following text describes the use of the XML data type to declare a table column. The use of this type to
declare variables or parameters is similar.

Example 26.4 shows the use of the XML data type to declare a column of a table.

 EXaMPLE 26.4

USE sample;

CREATE TABLE xmltab (id INTEGER NOT NULL PRIMARY KEY,

 xml_column XML);

The CREATE TABLE statement in Example 26.4 creates a table with two
columns: id and xml_column. The id column is used to uniquely identify each row of
the table. xml_column is an XML column that will be used in the following examples
to show how XML documents can be stored, indexed, and retrieved.

Ch26.indd 717 1/25/12 11:25:03 AM

 7 1 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

As previously stated, XML documents can be stored in a native way in a column of
the XML data type. Example 26.5 shows the use of the INSERT statement to store
such a document.

 EXaMPLE 26.5

USE sample;

INSERT INTO xmltab VALUES (1,

'<?xml version="1.0"?>

<PersonList Type="Employee">

 <Title> Value="Employee List"></Title>

 <Contents>

 <Employee>

 <Name>Ann Jones</Name>

 <No>10102</No>

 <Deptno>d3</Deptno>

 <Address>

 <City>Dallas</City>

 <Street>Main St</Street>

 </Address>

 </Employee>

 <Employee>

 <Name>John Barrimore</Name>

 <No>18316</No>

 <Deptno>d1</Deptno>

 <Address>

 <City>Seattle</City>

 <Street>Abbey Rd</Street>

 </Address>

 </Employee>

 </Contents>

</PersonList>');

The INSERT statement in Example 26.5 inserts two values: the value of the identifier
and an XML document. (The inserted XML document is the same document used at
the beginning of this chapter; see Example 26.1.) Before the XML document is stored,
it will be parsed using the XML parser, which checks its syntax. Actually, the parser
checks whether or not the particular XML document is well formed. For instance, if
you omit the last row of the XML document (</PersonList>), the XML parser displays
the following error message:

Msg 9400, Level 16, State 1, Line 3

XML parsing: line 24, character 0, unexpected end of input

Ch26.indd 718 1/25/12 11:25:03 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 1 9

If you use the SELECT statement to see the content of the xmltab table, SQL Server
Management Studio uses the XML editor to display XML documents. (To display the
entire document in the editor, click the corresponding value in the result set.)

Indexing an XML Column
The Database Engine stores XML values internally as binary large objects. Without
an index, these objects are decomposed at run time to evaluate a query, which can be
time-consuming. Therefore, the reason for indexing XML columns is to improve query
performance.

Note
If you want to create any kind of XML indices, the corresponding table must include the explicit definition of the
primary key (see Example 26.4).

The system supports a primary XML index and three types of secondary XML
indices. The primary XML index indexes all tags, values, and paths within the XML
instances of an XML column. Queries use the primary XML index to return scalar
values or XML subtrees.

Example 26.6 creates a primary XML index.

 EXaMPLE 26.6

USE sample;

GO

CREATE PRIMARY XML INDEX i_xmlcolumn ON xmltab(xml_column);

As you can see from Example 26.6, the creation of a primary XML index is similar
to the creation of an index as described in Chapter 10. A primary XML index uses an
XML instance to generate the corresponding relational internal form out of it. That way,
the repeated run-time generation of the internal form for queries and updates is omitted.

To further improve search performance, you can create secondary XML indices. A
primary XML index must exist before secondary indices can be built. You can create
three types of XML secondary indices using different keywords:

FOR PATHCc Creates a secondary XML index over the document structure
FOR VALUECc Creates a secondary XML index over the element and attribute
values of the XML column
FOR PROPERTYCc Creates a secondary XML index that searches for a property

Ch26.indd 719 1/25/12 11:25:03 AM

 7 2 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

The following list gives you some guidelines for creating secondary XML indices:

If your queries use path expressions on XML columns, the PATH index is likely Cc

to speed them up. The most common case is the use of the exist() method on
XML columns in the WHERE clause of the Transact-SQL language. (The exist()
method is discussed later in this chapter.)
If your queries retrieve multiple values from individual XML instances by using Cc

path expressions, the use of the PROPERTY index may be helpful.
If your queries involve retrieval of values within XML instances without knowing Cc

the element or attribute names that contain those values, you may want to create
the VALUE index.

Example 26.7 shows the creation of a PATH index. (The syntax for creating all other
secondary XML indices is analogous.)

 EXaMPLE 26.7

USE sample;

GO

CREATE XML INDEX i_xmlcolumn_path ON xmltab(xml_column)

 USING XML INDEX i_xmlcolumn FOR PATH;

In Example 26.7 you use the FOR PATH keyword to create the corresponding
secondary index. You must specify the USING clause if you want to define any
secondary XML index.

XML indices have some limitations in relation to convenient indices:

XML indices cannot be composite indices.Cc

There are no clustered XML indices.Cc

Note
The reason for creating XML indices is different from the reason for creating convenient indices. XML indices
enhance the performance of queries concerning XML documents, while convenient indices enhance the
performance of SQL queries.

SQL Server also supports the corresponding ALTER INDEX and DROP INDEX
statements. The ALTER INDEX statement allows you to change the structure of an
existing XML index, while the DROP INDEX statement deletes such an index.

Ch26.indd 720 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 2 1

There is also a catalog view for XML indices, called sys.xml_indexes. This view
returns one row per each existing XML index. The most important columns of the view
are using_xml_index_id and secondary_type. The former specifies whether the index
is primary or secondary, while the latter determines the type of the secondary index (“P”
for PATH, “V” for VALUE, and “R” for PROPERTY secondary index). This view also
inherits columns from the sys.indexes catalog view.

Typed vs. Untyped XML
As you already know, an XML document can be well formed and valid. (Only a well-
formed document can be validated.) An XML document that conforms to one or
more given schemas is said to be schema valid and is called an instance document of the
schemas. The XML schemas are used to perform more precise type checking during
compilation of queries.

XML data type columns, variables, and parameters may be typed (conform to one or
more schemas) or untyped. In other words, whenever a typed XML instance is assigned
to an XML column data type, variable, or parameter, the system validates the instance.

The following section explains the use of XML schemas, after which typed XML
instances are discussed in more detail.

XML Schemas and SQL Server An XML schema specifies a set of data types that
exist in a particular namespace. You use the XML Schema language to implement a
particular XML schema. (Transact-SQL doesn’t support the use of DTD to specify
an XML schema.) The Database Engine uses the CREATE XML SCHEMA
COLLECTION statement to import the schema components into the database.
Example 26.8 shows the use of this statement.

 EXaMPLE 26.8

USE sample;

CREATE XML SCHEMA COLLECTION EmployeeSchema AS

 N'<?xml version="1.0" encoding="UTF-16"?>

 <xsd:schema elementFormDefault="unqualified"

 attributeFormDefault="unqualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <xsd:element name="employees">

 <xsd:complexType mixed="false">

 <xsd:sequence>

 <xsd:element name="fname" type="xsd:string"/>

 <xsd:element name="lname" type="xsd:string"/>

 <xsd:element name="department" type="xsd:string"/>

 <xsd:element name="salary" type="xsd:integer"/>

Ch26.indd 721 1/25/12 11:25:04 AM

 7 2 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 <xsd:element name="comments" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>’;

Example 26.8 shows how the CREATE XML SCHEMA COLLECTION
statement can be used to catalog the EmployeeSchema schema as a database object.
The XML schema for Example 26.8 includes attributes (elements) for employees,
such as family name, last name, and salary. (A detailed discussion of the XML Schema
language is outside the scope of this introductory book.)

Generally, an XML schema collection has a name, which can be qualified using the
relational schema name (dbo.EmployeeSchema, for instance). The schema collection
consists of one or more schemas that define the types in one or more XML namespaces.
If the targetNamespace attribute is omitted from an XML schema, that schema does
not have an associated namespace. (There is a maximum of one such schema inside an
XML schema collection.)

The Database Engine also supports the ALTER XML SCHEMA COLLECTION
and DROP XML SCHEMA COLLECTION statements. The former allows you
to add new schemas to an existing XML schema collection, while the latter deletes an
entire schema collection.

Typed XML Columns, Variables, and Parameters
Each typed XML column, variable, or parameter must be specified with associated
schemas. To do this, the name of the schema collection, which is created using the
CREATE XML SCHEMA COLLECTION statement, must be written inside the
pair of parentheses, after the instance name, as shown in Example 26.9.

 EXaMPLE 26.9

USE sample;

CREATE TABLE xml_persontab (id INTEGER,

 xml_person XML(EmployeeSchema));

The xml_person column in Example 26.9 is associated with the XML schema
collection EmployeeSchema (see Example 26.8). This means that all specifications
from defined schemas are used to check whether the content of the xml_person
column is valid. In other words, when you insert a new value in the typed XML column
(or modify an existing value), all constraints specified in the schemas are checked.

Ch26.indd 722 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 2 3

The specification of an XML schema collection for the typed XML instance can be
extended with two keywords:

DOCUMENTCc

CONTENTCc

The DOCUMENT keyword specifies that the XML column can contain only XML
documents, while the CONTENT keyword, the default value, specifies that the XML
column can contain either documents or fragments. (Remember, an XML document
must have a single root element, while an XML fragment is an XML construct without
a root element.)

Example 26.10 shows the use of the DOCUMENT keyword.

 EXaMPLE 26.10

USE sample;

CREATE TABLE xml_persontab_doc (id INTEGER,

 xml_person XML(DOCUMENT EmployeeSchema));

The Database Engine supports several catalog views in relation to XML Schema, the
most important of which are the following:

sys.xml_schema_attributesCc Returns a row per XML schema component that is
an attribute
sys.xml_schema_elementsCc Returns a row per XML schema component that is
an element
sys.xml_schema_componentsCc Returns a row per component of an XML schema

Storing XML Documents Using Decomposition
The sp_xml_preparedocument system procedure reads the XML text provided as
input, parses the text, and represents the parsed document as a tree with the various
nodes: elements, attributes, text, and comments.

Example 26.11 shows the use of the sp_xml_preparedocument system procedure.

 EXaMPLE 26.11

USE sample;

DECLARE @hdoc INT

DECLARE @doc VARCHAR(1000)

SET @doc ='<ROOT>

Ch26.indd 723 1/25/12 11:25:04 AM

 7 2 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 <Employee>

 <Name>Ann Jones</Name>

 <No>10102</No>

 <Deptno>d3</Deptno>

 <Address>Dallas</Address>

 </Employee>

 <Employee>

 <Name>John Barrimore</Name>

 <No>18316</No>

 <Deptno>d1</Deptno>

 <Address>Seattle</Address>

 </Employee>

</ROOT>'

EXEC sp_xml_preparedocument @hdoc OUTPUT, @doc

The XML document in Example 26.11 is stored as a string in the @doc variable.
This string is decomposed (shredded) by the sp_xml_preparedocument system
procedure. The procedure returns a handle (@hdoc) that can then be used to access the
newly created tree representation of the XML document.

Note
The @hdoc handle will be used in the first example of the next section to extract data from the XML
document.

The sp_xml_removedocument system procedure removes the internal representation
of the XML document specified by the document handle and invalidates the document
handle.

The next section shows how you can present the stored XML data in the relational
form.

Presenting Data
Using the Database Engine, you can present data in the following ways:

Present XML documents and fragments as relational dataCc

Present relational data as XML documentsCc

The following sections discuss these two methods.

Ch26.indd 724 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 2 5

Presenting XML Documents as Relational Data
You can generate a set of rows from XML documents and fragments and query it
using the Transact-SQL language. You do so by using OpenXML, which lets you use
Transact-SQL statements to extract data from an XML document. Using OpenXML,
you can retrieve the data from an XML document as if it were in a relational table.
(OpenXML is an international standard for documents that can be implemented by
multiple applications on multiple platforms.)

Example 26.12 shows how you can query the XML document from Example 26.11
using OpenXML.

Note
The code in Example 26.12 must be appended to the code in Example 26.11 and executed together.

 EXaMPLE 26.12

SELECT * FROM OPENXML (@hdoc, '/ROOT/Employee', 1)

 WITH (name VARCHAR(20) 'Name',

 no INT 'No',

 deptno VARCHAR(6) 'Deptno',

 address VARCHAR(50) 'Address');

The result is

name no deptno address
Ann Jones 10102 d3 Dallas

John Barrimore 18316 d1 Seattle

Presenting Relational Data as XML Documents
As you already know from Chapter 6, a SELECT statement queries one or more tables
and displays the corresponding result set. The result set is displayed by default as a table.
If you want to display the result set of a query as an XML document or fragment, you
can use the FOR XML clause in your SELECT statement. With this clause, you can
specify one of the four following modes:

RAWCc

AUTOCc

Ch26.indd 725 1/25/12 11:25:04 AM

 7 2 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

EXPLICITCc

PATHCc

Note
The FOR XML clause must be specified at the end of the SELECT statement.

The following sections describe each of these modes. Also, the last section describes
directives.

RAW Mode
The FOR XML RAW option transforms each row of the result set into an XML
element with the identifier <row>. Each column value is mapped to an attribute of the
XML element in which the attribute name is the same as the column name. (This is
true only for the non-null columns.)

Example 26.13 shows the use of the FOR XML RAW option specified for the join
of the employee and works_on tables from the sample database.

 EXaMPLE 26.13

USE sample;

SELECT employee.emp_no, emp_lname, works_on.job

FROM employee, works_on

WHERE employee.emp_no <= 10000

AND employee.emp_no = works_on.emp_no

FOR XML RAW;

Example 26.13 displays the following XML document fragment:

<row emp_no="2581" emp_lname="Hansel " job="Analyst " />
<row emp_no="9031" emp_lname="Bertoni " job="Manager " />
<row emp_no="9031" emp_lname="Bertoni " job="Clerk " />

Without the FOR XML RAW option, the SELECT statement in Example 26.13
would retrieve the following rows:

emp_no emp_lname job
2581 Hansel Analyst

9031 Bertoni Manager

9031 Bertoni Clerk

Ch26.indd 726 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 2 7

As you can see from both results, the first output produces one XML element for
each row in the result set.

AUTO Mode
AUTO mode returns the result set of a query as a simple, nested XML tree. Each table
in the FROM clause from which at least one column appears in the SELECT list is
represented as an XML element. The columns in the SELECT list are mapped to the
appropriate elements’ attributes.

Example 26.14 shows the use of AUTO mode.

 EXaMPLE 26.14

USE sample;

SELECT employee.emp_no, emp_lname, works_on.job

FROM employee, works_on

WHERE employee.emp_no <= 10000

AND employee.emp_no = works_on.emp_no

FOR XML AUTO;

The result is

<employee emp_no="9031" emp_lname="Bertoni ">

 <works_on job="Manager " />

 <works_on job="Clerk " />

</employee>

<employee emp_no="2581" emp_lname="Hansel ">

 <works_on job="Analyst " />

</employee>

Note
The result of Example 26.14 is not a valid XML document. As you already know, a valid XML document must have
a root element.

The result in Example 26.14 is significantly different from the result in the previous
example, although the SELECT statement for both examples is equivalent (except
for the specification of the AUTO mode instead of the RAW mode). As you can see
from Example 26.14, the result set is displayed as the hierarchy of the employee and
works_on tables. This hierarchy is based on the primary key/foreign key relationship
of both tables. For this reason, the data from the employee table is displayed first, and
the corresponding data from the works_on table is displayed after that, at the lower
hierarchy level.

Ch26.indd 727 1/25/12 11:25:04 AM

 7 2 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

The nesting of the elements in the resulting XML document or fragment is based on
the order of tables identified by the columns specified in the SELECT clause; therefore,
the order in which column names are specified in the SELECT clause is significant.
For this reason, in Example 26.14 the values of the emp_no column of the employee
table form the top element in the resulting XML fragment. The values of the job
column of the works_on table form a subelement within the top element.

EXPLICIT Mode
As you can see from Example 26.14, the result set in the AUTO mode is displayed as a
simple, nested XML tree. The queries in AUTO mode are good if you want to generate
simple hierarchies, because this mode provides little control over the shape of the XML
document generated from a query result.

If you want to specify the extended form of the result set, you can use the FOR
XML EXPLICIT option. With this option, the result set is displayed as a universal
table that has all the information about the resulting XML tree. The data in the table
is vertically partitioned into groups. Each group then becomes an XML element in the
result set.

Example 26.15 shows the use of the EXPLICIT mode.

 EXaMPLE 26.15

USE sample;

SELECT 1 AS tag, NULL as parent,

emp_lname AS [employee!1!emp_lname],

NULL AS [works_on!2!job]

FROM employee

UNION

SELECT 2, 1, emp_lname, works_on.job

FROM employee, works_on

WHERE employee.emp_no <= 10000

AND employee.emp_no = works_on.emp_no

ORDER BY [employee!1!emp_lname]

FOR XML EXPLICIT;

The result is

<employee emp_lname="Barrimore " />

<employee emp_lname="Bertoni ">

 <works_on job="Clerk " />

 <works_on job="Manager " />

</employee>

<employee emp_lname="Hansel ">

Ch26.indd 728 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 2 9

 <works_on job="Analyst " />

</employee>

<employee emp_lname="James " />

<employee emp_lname="Jones " />

<employee emp_lname="Moser " />

<employee emp_lname="Smith " />

As you can see from the SELECT statement in Example 26.15, the FOR XML
EXPLICIT option requires two additional metadata columns: tag and parent. (These
two columns are used to determine the primary key/foreign key relationship in the
XML tree.) The tag column stores the tag number of the current element, while the
parent column stores the tag number of the parent element. (The parent table is the
table with the primary key.) If the parent tag is NULL, the row is placed directly under
the root element.

Note
Do not use EXPLICIT mode because of its complexity. Use the PATH mode instead (discussed next).

PATH Mode
All three of the FOR XML options previously described have different disadvantages
and restrictions. The FOR XML RAW option supports only one level of nesting,
while the FOR XML AUTO option requires that all columns selected from the same
table occur at the same level. Also, both options do not allow mixing of elements
and attributes in the same XML document. On the other hand, the FOR XML
EXPLICIT option allows mixing of elements and attributes, but the syntax of this
option is cumbersome, as you can see from the previous example.

The FOR XML PATH option allows you to implement in a very easy way almost
all queries that require the EXPLICIT mode. In the PATH mode, column names or
column aliases are treated as XPath expressions, which indicate how the values are being
mapped to XML. (An XPath expression consists of a sequence of nodes, separated by /.
For each slash, the system creates another level of hierarchy in the resulting document.)

Example 26.16 shows the use of the PATH mode.

 EXaMPLE 26.16

USE sample;

SELECT d.dept_name "@Department",

 emp_fname "EmpName/First",

 emp_lname "EmpName/Last"

Ch26.indd 729 1/25/12 11:25:04 AM

 7 3 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

FROM Employee e, department d

WHERE e.dept_no = d.dept_no

AND d.dept_no = 'd1'

FOR XML PATH;

The result is

<row Department="Research ">

 <EmpName>

 <First>John </First>

 <Last>Barrimore </Last>

 </EmpName>

</row>

<row Department="Research ">

 <EmpName>

 <First>Sybill </First>

 <Last>Moser </Last>

 </EmpName>

</row>

In the PATH mode, the column names are used as the path in constructing an XML
document. The column containing department names starts with @. This means that
the Department attribute is added to the <row> element. All other columns include
a slash in the column name, indicating hierarchy. For this reason, the resulting XML
document will have the <EmpName> child under the <row> element and <First> and
<Last> elements at the next sublevel.

Directives
The Database Engine supports several different directives that allow you to produce
different results when you want to display XML documents and fragments. The
following list shows several of these directives:

TYPECc

ELEMENTS (with XSINIL)Cc

ROOTCc

The following subsections describe these directives.

TYPE Directive The Database Engine allows you to store the result of a relational
query as an XML document or fragment in the XML data type by using the TYPE

Ch26.indd 730 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 3 1

directive. When the TYPE directive is specified, a query with the FOR XML option
returns a one-row, one-column result set. (This directive is a common directive,
meaning you can use it in all four modes.) Example 26.17 shows the use of the TYPE
directive with the AUTO mode.

 EXaMPLE 26.17

USE sample;

DECLARE @x xml;

SET @x = (SELECT * FROM department

 FOR XML AUTO, TYPE);

SELECT @x;

The result is
<department dept_no="d1 " dept_name="Research " location="Dallas " />
<department dept_no="d2 " dept_name="Accounting " location="Seattle " />
<department dept_no="d3 " dept_name="Marketing " location="Dallas " />

Example 26.17 first declares the variable @x as a local variable of the XML data type
and assigns the result of the SELECT statement to it. The last SELECT statement in
the batch displays the content of the variable.

ELEMENTS Directive As you already know from Chapter 3, the Database Engine
supports NULL values to specify unknown (or missing) values. In contrast to the
relational model, XML does not support NULL values, and those values are omitted in
the result sets of queries with the FOR XML option.

The Database Engine allows you to display the missing values in an XML
document by using the ELEMENTS directive with the XSINIL option. Generally,
the ELEMENTS directive constructs the corresponding XML document so that
each column value maps to an element. If the column value is NULL, no element is
added by default. By specifying the additional XSINIL option, you can request that
an element be created for the NULL value as well. In this case, an element with the
XSINIL attribute set to TRUE is returned for each NULL value in the column.

ROOT Directive Generally, queries with the FOR XML option produce XML
fragments—XML without a corresponding root element. This can be a problem if an
API accepts only XML documents as input. The Database Engine allows you to add
the root element using the ROOT directive. By specifying the ROOT directive in the
FOR XML query, you can request a single, top-level element for the resulting XML.
(The argument specified for the directive provides the name of the root element.)

Ch26.indd 731 1/25/12 11:25:04 AM

 7 3 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

Example 26.18 shows the use of the ROOT directive.

 EXaMPLE 26.18

USE sample;

SELECT * FROM department

FOR XML AUTO, ROOT ('AllDepartments');

The result is

 <AllDepartments>
 <department dept_no="d1 " dept_name="Research " location="Dallas " />
 <department dept_no="d2 " dept_name="Accounting " location="Seattle " />
 <department dept_no="d3 " dept_name="Marketing " location="Dallas " />
</AllDepartments>

The query in Example 26.18 displays the XML fragment with all rows from the
department table. The ROOT directive adds the root specification in the result set
with the AllDepartments parameter as the root name.

Querying Data
There are two standardized languages that can be used to query XML documents:

XPathCc

XQueryCc

XPath a simple query language that is used to navigate through elements and
attributes in an XML document. XQuery is a complex query language that uses XPath
as its sublanguage. XQuery supports the so-called FLWOR (pronounced “flower”)
expressions, referring to the FOR, LET, WHERE, ORDER BY, and RETURN
clauses. (A detailed discussion of these query languages is beyond the scope of this
book. This section provides only a brief introduction.)

The Database Engine supports five methods that can be used to query XML
documents with XQuery:

query()Cc Accepts an XQuery statement as input and returns an instance of the
XML data type.
exist()Cc Accepts an XQuery statement as input and returns 0, 1, or NULL,
depending on the query result.

Ch26.indd 732 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

 C h a p t e r 2 6 : S Q L S e r v e r a n d X M L 7 3 3

value()Cc Accepts an XQuery statement as input and returns a single scalar value.
nodes()Cc This method is useful when you want to shred an instance of the xml
data type into relational data. It allows you to identify nodes that will be mapped
into a new row.
modify()Cc You can use this method to insert, modify, and delete XML
documents.

Example 26.19 shows the use of the query() method.

 EXaMPLE 26.19

USE sample;

SELECT xml_column.query('/PersonList/Title')

 FROM xmltab

 FOR XML AUTO, TYPE;

The result is

<xmltab>

 <Title> Value="Employee List"></Title>

</xmltab>

The SELECT list of the query in Example 26.19 contains the query() method,
which is applied to an instance of the xml_column column. The parameter of the
method is an XPath expression. (Note that the methods are applied using the dot
notation.) The expression '/PersonList/Title' is an absolute expression, where the values
of the Title element are retrieved. (Remember that XPath expressions are valid XQuery
statements because XPath is a sublanguage of XQuery.)

Example 26.20 shows the use of the exist() method.

 EXaMPLE 26.20

SELECT xml_column.exist('/PersonList/Title/@Value=EmployeeList') AS a

 FROM xmltab

 FOR XML AUTO, TYPE;

The result is

<xmltab a="1" />

As you already know, the exist() method accepts an XQuery statement as input and
returns 0, 1, or NULL, depending on the query result. If the query result is an empty

Ch26.indd 733 1/25/12 11:25:04 AM

 7 3 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 26

sequence, the return value is 0. A sequence with at least one item returns 1, and NULL
is returned if the value of the column is NULL.

The SELECT list of the query in Example 26.20 contains the exist() method with
an XPath expression that tests whether the Value attribute of the XML document has
the value EmployeeList. (In XPath, the @ sign is used to specify an XML attribute.)
The test is evaluated to TRUE, and therefore the return value of the query is 1.

Summary
XML is a format for interchanging and archiving of data. An XML document contains
several tags that are chosen by the person who implements the document. All parts of
an XML document that belong to its logical structure are called elements. Elements
together with their subelements build a hierarchical structure. Each element can have
extra information that is attached to it. Such information is called an attribute. Besides
elements and attributes, an XML document can also contain namespaces, processing
instructions, and comments.

The XML Schema language is a standardized schema language that is used to
specify a schema for a given XML document. An XML document that conforms to
the associated schema is called a valid document. (There is also another simple schema
language called Document Type Definition, which is not standardized.) The XML
Schema language comprises data definition statements for XML, in much the same
way that DDL contains data definition statements for SQL.

The Database Engine has full support for storing, presenting, and querying XML
documents. The most important feature is the existence of the XML data type, which
allows the database system to store XML documents as first class objects.

The values of the XML data type can be schema validated if one or more schemas
are associated with this type. You can determine the exact data types of elements and
attributes only if the corresponding XML document contains types specified by XML
schemas. Schema definitions are specified using the CREATE XML SCHEMA
COLLECTION statement.

XML also supports several methods, which can be used to query XML documents.
These methods contain XPath or XQuery expressions as their parameters.

The next chapter describes spatial data.

Ch26.indd 734 1/25/12 11:25:04 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

Chapter 27

In This Chapter

c Introduction
c Working with Spatial

Data Types

c Displaying Information
Concerning Spatial Data

c New Spatial Data Features
in SQL Server 2012

Spatial Data

27-Ch27.indd 735 2/6/12 2:03:00 PM

 7 3 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

This chapter comprises four parts. The introductory part describes the most
important general issues about spatial data that you to need understand
before you begin to work with spatial data. Besides different spatial models

and formats, this part introduces both of the data types supported by SQL Server:
GEOMETRY and GEOGRAPHY. Also, several subtypes of these two root types are
described in detail.

The second part of the chapter presents several examples to show how spatial
data can be used. In these examples, different methods of the GEOMETRY and
GEOGRAPHY data types are applied. Additionally, this part also describes the
creation and use of a spatial index.

The third part of the chapter is dedicated to using SQL Server Management Studio
to display or plot spatial data in a graphical form. Examples are provided for both
spatial data types, and you will see how you can display their results.

The final part discusses new features implemented in SQL Server 2012. It
introduces the new subtypes of the GEOMETRY and GEOGRAPHY data types as
well as new spatial indices and system stored procedures.

Introduction
In the past few years, the need of businesses to incorporate spatial data into their
databases and to manage it using a database system has grown significantly. The most
important factor leading to this growth is the proliferation of geographical services and
devices, such as Microsoft Virtual Earth and low-priced GPS devices.

Generally, the support of spatial data by a database vendor helps users to make better
decisions in several scenarios, such as:

Real-estate analysis (“Find a suitable property within 500m of an elementary Cc

school.”)
Consumer-based information (“Find the nearest shopping malls to a given ZIP Cc

code.”)
Market analysis (“Define geographic sales regions and ascertain whether there is a Cc

necessity for a new branch office.”)

As you already know from Chapter 5, you can use the CREATE TYPE statement
to create user-defined data types. The implementation of such types is done using
Common Language Runtime (CLR), which is described in Chapter 8. Developers of
SQL Server used CLR to implement two new data types in relation to spatial data:

27-Ch27.indd 736 2/6/12 2:03:00 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 3 7

GEOMETRY and GEOGRAPHY. These two data types are discussed after the
following brief look at the different models for representing spatial data.

Models for Representing Spatial Data
Generally, there are two different groups of models for representing spatial data:

Geodetic spatial modelsCc

Flat spatial modelsCc

Planets are complex objects that can be represented using a flattened sphere (called
a spheroid). A good approximation for the representation of Earth (and other planets)
is a globe, where locations on the surface are described using latitude and longitude.
(Latitude gives the location of a place on Earth north or south of the equator, while
longitude specifies the location in relation to a chosen meridian.) Models that use these
measures are called geodetic models. Because these models provide a good approximation
of spheroids, they provide the most accurate way to represent spatial data.

Flat spatial models (or planar models) use two-dimensional maps to represent Earth.
In this case, the spheroid is flattened and projected in a plane. The flattening process
results in some deformation of shape and size of the projected (geographic) objects.
Flat spatial models work best for small surface areas, because the larger the surface area
being represented, the more deformation that occurs.

As you will see in the following two sections, the GEOMETRY data type is based
on a flat spatial model, while the GEOGRAPHY data type is based on a geodetic
spatial model.

GEOMETRY Data Type
The Open Geospatial Consortium (OGC) introduced the term “geometry” to represent
spatial features, such as point locations and lines. Therefore, “geometry” represents data
in a two-dimensional plane as points, lines, and polygons using one of the existing flat
spatial models.

You can think of “geometry” as a data type with several subtypes, as shown in
Figure 27-1. The subclasses are divided into two categories: the base geometry
subclasses and the homogeneous collection subclasses. The base geometries include,
among others, Point, LineString, and Polygon, while the homogeneous collections
include MultiPoint, MultiLineString, and MultiPolygon. As the names imply, the
homogeneous collections are collections of base geometries. In addition to sharing base
geometry properties, homogeneous collections have their own properties.

27-Ch27.indd 737 2/6/12 2:03:00 PM

 7 3 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

The types in Figure 27-1 that appear in italic font are instantiable, which means they
have instances. All instantiable types are implemented as user-defined data types in
SQL Server. The following are the instantiable types:

Point Cc A point is a zero-dimensional geometry with single X and Y coordinate
values. Therefore, it has a NULL boundary. Optionally, a point can have two
additional coordinates: evaluation (Z coordinate) and measure (M coordinate).
Points are usually used to build complex spatial types.
MultiPointCc A multipoint is a collection of zero or more points. The points in a
multipoint do not have to be distinct.
LineString Cc A line string is a one-dimensional geometry object that has a length
and is stored as a sequence of points defining a linear path. Therefore, a line
string is defined by a set of points, which define the reference points of it. Linear
interpolation between the reference points specifies the resulting line string. A
line string is called simple if it does not intersect its interior. The endpoints (the
boundary) of a closed line string occupy the same point in space. A line is called a
ring if it is both closed and simple.
MultiLineStringCc A multiline string is a collection of zero or more line strings.

Geometry

Curve Surface

MultiSurface MultiCurve MultiPoint

Point Geometry Collection

CurvePolygon

Polygon

CompoundCurveCircularString

MultiPolygon MultiLineString

LineString

Figure 27-1 The type hierarchy with the GEOMETRY type as a root

27-Ch27.indd 738 2/6/12 2:03:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 3 9

PolygonCc A polygon is a two-dimensional geometry object with surface. It is
stored as a sequence of points defining its exterior bounding ring and zero or
more interior rings. The exterior and any interior rings specify the boundary of a
polygon, and the space enclosed between the rings specifies the polygon’s interior.
MultiPolygonCc A multipolygon is a collection of zero or more polygons.
GeometryCollectionCc A geometry collection is a collection of zero or more
geometry objects. In other words, this geometry object can contain instances of
any subtype of the GEOMETRY data type.

Note
As you can see from Figure 27-1, there are three other subtypes that can have instances: CircularString,
CompoundCurve, and CurvePolygon. These three subtypes will be discussed in detail in the “New Spatial Data
Features in SQL Server 2012” section later in this chapter.

GEOGRAPHY Data Type
While the GEOMETRY data type stores data using X and Y coordinates, the
GEOGRAPHY data type stores data as GPS latitude and longitude coordinates.
(Longitude represents the horizontal angle and ranges from –180 degrees to +180 degrees,
while latitude represents the vertical angle and ranges from –90 degrees to +90 degrees.)

The GEOGRAPHY data type, unlike the GEOMETRY data type, requires the
specification of a Spatial Reference System. A Spatial Reference System is a system used
to identify a particular coordinate system and is specified by an integer. Information on
available integer values in SQL Server 2012 can be found in the sys.spatial_reference_
systems catalog view. (This view will be discussed later in this chapter.)

Note
All instantiable types (see Figure 27-1) that are implemented for the GEOMETRY data type are implemented for
the GEOGRAPHY data type, too.

GEOMETRY vs. GEOGRAPHY
As you already know, the GEOMETRY data type is used in flat spatial models, while
the GEOGRAPHY data type is used in geodetic models. The main difference between
these two groups of models is that with the GEOMETRY data type, distances and
areas are given in the same unit of measurement as the coordinates of the instances.
(Therefore, the distance between the points (0,0) and (3,4) will always be 5 units.)

27-Ch27.indd 739 2/6/12 2:03:01 PM

 7 4 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

This is not the case with the GEOGRAPHY data type, which works with ellipsoidal
coordinates that are expressed in degrees of latitude and longitude.

There are also some restrictions placed on the GEOGRAPHY data type. For
example, each instance of the GEOGRAPHY data type must fit inside a single
hemisphere.

External Data Formats
SQL Server supports three external data formats that can be used to represent spatial
data in an implementation-independent form:

Well-known text (WKT)Cc A text markup language for representing spatial
reference systems of spatial objects and transformations between spatial reference
systems.
Well-known binary (WKB)Cc The binary equivalent of WKT.
Geography Markup Language (GML)Cc The XML grammar defined by
OGC to express geographical features. GML is an open interchange format for
geographic transactions on the Internet.

These three external data formats are also standardized by the SQL/MM standard,
as discussed later in the section “New Subtypes of Circular Arcs.”

Note
All examples shown in this chapter reference the WKT format, because this format is the easiest to read.

The following examples show the syntax of WKT for the selected types:

POINT(3,4)Cc The values 3 and 4 specify the X coordinate and Y coordinate,
respectively.
LINESTRING(0 0, 3 4)Cc The first two values represent the X and Y coordinates
of the starting point, while the last two values represent the X and Y coordinates
of the end point of the line.
POLYGON(300 0, 150 0, 150 150, 300 150, 300 0) Cc Each pair of numbers
represents a point on the edge of the polygon. (The end point of the specified
polygon is the same as the starting point.)

27-Ch27.indd 740 2/6/12 2:03:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 4 1

Working with Spatial Data Types
As you already know, SQL Server supports two different data types in relation to
spatial data: GEOMETRY and GEOGRAPHY. These types are user-defined types
implemented by SQL Server developers using CLR. Both data types have several
subtypes, which are either instantiable or noninstantiable. For each instantiable
subtype, you can create instances and work with them. These instances can be used as
values of a table’s columns, as well as variables or parameters. As you already guessed,
noninstantiable types do not contain instances. In a hierarchy of classes, the root class is
usually noninstantiable, while the classes that build the leaves of the hierarchy tree are
almost always instantiable. (A root class that is noninstantiable is called an abstract class.)

The following two sections describe how you can use these two data types to create
and query spatial data. After that, the spatial indices will be introduced.

Working with the GEOMETRY Data Type
An example will help to explain the use of the GEOMETRY data type. Example 27.1
creates a table for nonalcoholic beverage markets in a given city (or state).

 ExAMPLE 27.1
 USE sample;
 CREATE TABLE beverage_markets
 (id INTEGER IDENTITY(1,1),
 name VARCHAR(25),
 shape GEOMETRY);
INSERT INTO beverage_markets
 VALUES ('Coke', GEOMETRY::STGeomFromText
 ('POLYGON ((0 0, 150 0, 150 150, 0 150, 0 0))', 0));
INSERT INTO beverage_markets
 VALUES ('Pepsi', GEOMETRY::STGeomFromText
 ('POLYGON ((300 0, 150 0, 150 150, 300 150, 300 0))', 0));
INSERT INTO beverage_markets
 VALUES ('7UP', GEOMETRY::STGeomFromText
 ('POLYGON ((300 0, 150 0, 150 150, 300 150, 300 0))’, 0));
INSERT INTO beverage_markets
 VALUES ('Almdudler', GEOMETRY::STGeomFromText
 ('POINT (50 0)', 0));

The beverage_markets table has three columns. The first is the id column, the
values of which are generated by the system because this column is specified with the
IDENTITY property. The second column, name, contains the beverage name. The
third column, shape, specifies the shape of the market area in which the particular
beverage is the most preferred one. The first three INSERT statements create three
areas in which a particular beverage is most preferred. All three areas happen to

27-Ch27.indd 741 2/6/12 2:03:01 PM

 7 4 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

be a polygon. The fourth INSERT statement inserts a point because there is just one
place where the particular beverage (Almdudler) can be bought.

Note
If you take a look at the specification of the POINT (or POLYGON) data type in Example 27.1, you will see that this
specification has an additional parameter as the last parameter, the spatial reference ID (SRID) parameter. This
parameter is required, and for the GEOMETRY data type the default value is 0.

Example 27.1 introduces the first method in relation to the GEOMETRY data
type: STGeomFromText(). This static method is used to insert the coordinates of
geometric figures, such as polygons and points. In other words, it returns an instance of
the GEOMETRY data type in the WKT format.

Note
Generally, a type can have two different groups of methods: static methods and instance methods. Static
methods are always applied on the whole type (i.e., class), while instance methods are applied on particular
instances of the class. The invocation of methods from both groups is different. Static methods use the sign “::”
between the type and the method (for instance, GEOMETRY::STGeomFromText; see Example 27.1), while instance
methods use dot notation (for instance, @g.STContains; see Example 27.2).

Besides the STGeomFromText() method, SQL Server supports three other similar
static methods:

STPointFromText()Cc Returns the WKT representation of an instance of the
POINT data type
STLineFromText()Cc Returns the WKT representation of an instance of the
LINESTRING data type augmented with the corresponding elevation and
measure values
STPolyFromText()Cc Returns the WKT representation of an instance of the
MULTIPOLYGON data type augmented with the corresponding elevation and
measure values

Spatial data can be queried the same way as relational data. The following examples
show a sample of the information that can be found from the content of the shape
column of the beverage_markets table.

Note
SQL Server supports a lot of methods that can be applied to instances of the GEOMETRY data type. The following
examples describe only some of the most important methods. For more information on other instance methods,
refer to Books Online.

27-Ch27.indd 742 2/6/12 2:03:01 PM

mailto:@g.STContains

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 4 3

Example 27.2 shows the use of the STContains() method.

 ExAMPLE 27.2

Determine whether the shop that sells Almdudler lies within the area where Coke is
the preferred beverage:

DECLARE @g geometry;

DECLARE @h geometry;

SELECT @h = shape FROM beverage_markets WHERE name ='Almdudler';

SELECT @g = shape FROM beverage_markets WHERE name = 'Coke';

SELECT @g.STContains(@h);

The result is 0.
The STContains() method returns 1 if an instance of the GEOMETRY data

type completely contains another instance of the same type, which is specified as a
parameter of the method. The result of Example 27.2 means that the shop that sells
Almdudler does not lie within the area where the preferred beverage is Coke.

Example 27.3 shows the use of the STLength() method.

 ExAMPLE 27.3

Find the length and the WKT representation of the shape column for the Almdudler
shop:

SELECT id, shape.ToString() AS wkt, shape.STLength() AS length

 FROM beverage_markets

 WHERE name = 'Almdudler' ;

The result is

id wkt length
4 POINT (50 0) 0

The STLength() method in Example 27.3 returns the total length of the elements
of the GEOMETRY data type. (The result is 0 because the displayed value is a point.)
The ToString() method returns a string with the logical representation of the current
instance. As you can see from the result of Example 27.3, this method is used to load all
properties of the given point and to display it using the WKT format.

Example 27.4 shows the use of the STIntersects() method.

27-Ch27.indd 743 2/6/12 2:03:01 PM

mailto:@g.STContains(@h

 7 4 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 ExAMPLE 27.4

Determine whether the region that sells Coke intersects with the region that sells Pepsi:

USE sample;

DECLARE @g geometry;

DECLARE @h geometry;

SELECT @h = shape FROM beverage_markets WHERE name = 'Coke';

SELECT @g = shape FROM beverage_markets WHERE name = 'Pepsi';

SELECT @g.STIntersects(@h);

The result of Example 27.4 is 1 (TRUE), meaning that the two geometries intersect.
In contrast to Example 27.3, where the column of a table is declared to be of the

GEOMETRY data type, Example 27.4 declares the variables @g and @h using this
data type. (As you already know, table columns, variables, and parameters of stored
procedures can be declared to be of the GEOMETRY data type.) The STIntersects()
method returns 1 if a geometry instance intersects another geometry instance. In
Example 27.4, the method is applied to both regions, declared by variables, to find out
whether the regions intersect.

Example 27.5 shows the use of the STIntersection() method.

 ExAMPLE 27.5

USE sample;

DECLARE @poly1 GEOMETRY = 'POLYGON ((1 1, 1 4, 4 4, 4 1, 1 1))';

DECLARE @poly2 GEOMETRY = 'POLYGON ((2 2, 2 6, 6 6, 6 2, 2 2))';

DECLARE @result GEOMETRY;

SELECT @result = @poly1.STIntersection(@poly2);

SELECT @result.STAsText();

The result is (the values are rounded):

POLYGON ((2 2, 4 2, 4 4, 2 4, 2 2))

The STIntersection() method returns an object representing the points where
an instance of the GEOMETRY data type intersects another instance of the same
type. Therefore, Example 27.5 returns the rectangle where the polygon declared by
the @poly1 variable and the polygon declared by the @poly2 variable intersect. The
STAsText() method returns the WKT representation of a GEOMETRY instance,
which is the result of the example.

Note
The difference between the STIntersects() and STIntersection() methods is that the former method tests
whether two geometry objects intersect, while the latter displays the intersection object.

27-Ch27.indd 744 2/6/12 2:03:01 PM

mailto:@g.STIntersects(@h
mailto:@poly1.STIntersection(@poly2
mailto:@result.STAsText

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 4 5

Working with the GEOGRAPHY Data Type
The GEOGRAPHY data type is handled in the same way as the GEOMETRY data
type. This means that the same (static and instance) methods that you can apply to the
GEOMETRY data type are applicable to the GEOGRAPHY data type, too. For this
reason, only Example 27.6 is used to describe this data type.

 ExAMPLE 27.6

USE AdventureWorks;

SELECT SpatialLocation, City

 FROM Person.Address

 WHERE City = 'Dallas';

The result is

SpatialLocation City
0xE6100000010C4DD260393369404026C0A31BF73458C0 Dallas

0xE6100000010C10A810D1886240403A0F0653663158C0 Dallas

0xE6100000010C4346160AA26440406340F0E64F3B58C0 Dallas

0xE6100000010C107E16DAAD6540403DA892EAD52C58C0 Dallas

0xE6100000010C8044A1422D5F4040F66D784F983758C0 Dallas

0xE6100000010C8E345943826A4040839B00B8E03358C0 Dallas

0xE6100000010CAA5BBD5FAB69404087866D198D3C58C0 Dallas

The Address table of the AdventureWorks database contains a column called
SpatialLocation, which is of the GEOGRAPHY data type. Example 27.6 displays the
geographic location of all persons living in Dallas. As you can see from the result of this
example, the value in the SpatialLocation column is the hexadecimal representation of
the longitude and latitude of the location where each person lives. (Example 27.10, later
in the chapter, uses SQL Server Management Studio to display the result of this query.)

Working with Spatial Indices
As you already know from Chapter 10, indexing is generally used to provide fast access
to data. Therefore, spatial indices are necessary to speed up retrieval operations on
spatial data.

A spatial index is defined on a table column of the GEOMETRY or
GEOGRAPHY data type. In SQL Server, these indices are built using B-trees,
which means that the indices represent two dimensions in the linear order of B-trees.

27-Ch27.indd 745 2/6/12 2:03:01 PM

 7 4 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

Therefore, before reading data into a spatial index, the system implements a hierarchical
uniform decomposition of space. The index-creation process decomposes the space into
a four-level grid hierarchy.

The CREATE SPATIAL INDEX statement is used to create a spatial index.
The general form of this statement is similar to the convenient CREATE INDEX
statement, but contains additional options and clauses, some of which are introduced
here:

GEOMETRY_GRID clauseCc Specifies the geometry grid tessellation scheme
that you are using. (Tessellation is a process that is performed after reading the
data for a spatial object. During this process, the object is fitted into the grid
hierarchy by associating it with a set of grid cells that it touches.) Note that
GEOMETRY_GRID can be specified only on a column of the GEOMETRY
data type.
BOUNDING_BOX optionCc Specifies a numeric four-tuple that defines the
four coordinates of the bounding box: the X-min and Y-min coordinates of the
lower-left corner, and the X-max and Y-max coordinates of the upper-right
corner. This option applies only within the GEOMETRY_GRID clause.
GEOGRAPHY_GRID clauseCc Specifies the geography grid tessellation scheme.
This clause can be specified only on a column of the GEOGRAPHY data type.

Example 27.7 shows the creation of a spatial index for the shape column of the
beverage_markets table.

 ExAMPLE 27.7

USE sample;

GO

ALTER TABLE beverage_markets

 ADD CONSTRAINT prim_key PRIMARY KEY(id);

GO

CREATE SPATIAL INDEX i_spatial_shape

 ON beverage_markets(shape)

 USING GEOMETRY_GRID

 WITH (BOUNDING_BOX = (xmin=0, ymin=0, xmax=500, ymax=200),

 GRIDS = (LOW, LOW, MEDIUM, HIGH),

 PAD_INDEX = ON);

A spatial index can be created only if the primary key for the table with a spatial data
column is explicitly defined. For this reason, the first statement in Example 27.7 is the
ALTER TABLE statement which defines this constraint.

27-Ch27.indd 746 2/6/12 2:03:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 4 7

The subsequent CREATE SPATIAL INDEX statement creates the index using
the GEOMETRY_GRID clause. The BOUNDING_BOX option specifies the
boundaries inside which the instance of the shape column will be placed. The GRIDS
option specifies the density of the grid at each level of a tessellation scheme. (The
PAD_INDEX option is described in Chapter 10.)

Note
SQL Server 2012 introduces additional spatial indices, which are described in the section “New Spatial Data
Features in SQL Server 2012” later in this chapter.

SQL Server supports, among others, three catalog views related to spatial data:

sys.spatial_indexesCc

sys.spatial_index_tessellationsCc

sys_spatial_reference_systemsCc

The sys.spatial indexes view represents the main index information of the spatial
indices (see Example 27.8). Using the sys.spatial_index_tessellations view, you
can display the information about the tessellation scheme and parameters of each
of the existing spatial indices. The sys.spatial_reference_systems view lists all the
spatial reference systems supported by SQL Server. (Spatial reference systems are
used to identify a particular coordinate system.) The main columns of the view are
spatial_reference_id and well_known_text. The former is the unique identifier of the
corresponding reference system, while the latter describes that system.

Example 27.8 shows the use of the sys_spatial_indexes catalog view.

 ExAMPLE 27.8

USE sample;

SELECT object_id, name, type_desc

 FROM sys.spatial_indexes;

The result is

object_id name type_desc
914102297 i_spatial_shape SPATIAL

The catalog view in Example 27.8 displays the information about the existing
spatial index (created in Example 27.7).

27-Ch27.indd 747 2/6/12 2:03:01 PM

 7 4 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

Note
Two new system procedures introduced in SQL Server 2012 will be described in the “New Spatial Data Features in
SQL Server 2012” section of this chapter.

Displaying Information Concerning Spatial Data
Microsoft extended the functionality of SQL Server Management Studio to display
spatial data in a graphical form. Two examples will be presented to show this
functionality. Example 27.9 uses the GEOMETRY data type, while Example 27.10 is
based on the GEOGRAPHY data type.

 ExAMPLE 27.9

USE sample;

DECLARE @rectangle1 GEOMETRY = 'POLYGON((1 1, 1 4, 4 4, 4 1, 1 1))';

DECLARE @line GEOMETRY = 'LINESTRING (0 2, 4 4)';

SELECT @rectangle1

UNION ALL

SELECT @line

To display the result of spatial data in SQL Server Management Studio, click the
Spatial Results tab, which is next to the Results tab. In the case of Example 27.9,
Management Studio displays a rectangle, showing the content of the @rectangle1 variable,
and the line from the @line variable. Figure 27-2 shows the result of Example 27.9.

Note
If you want to display multiple objects of the GEOMETRY data type using Management Studio, you have to return
them as multiple rows in a single table. For this reason, Example 27.9 uses two SELECT statements combined into
one using the UNION ALL clause. (Otherwise, only one point at a time will be displayed.)

Example 27.10 shows how you can display the resulting instances of the
GEOGRAPHY data type.

 ExAMPLE 27.10

USE AdventureWorks;

SELECT SpatialLocation, City

 FROM Person.Address

 WHERE City = 'Dallas';

27-Ch27.indd 748 2/6/12 2:03:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 4 9

Example 27.10 is the same as Example 27.6. To plot the result of this example using
Management Studio, click again the Spatial Results tab. Figure 27-3 shows the result of
Example 27.10.

Note
If you move your mouse to one of the points plotted in Figure 27-3, Management Studio displays the associated
location addresses.

0

4

3

2

1

1 2 3 4

Figure 27-2 Displaying the result of Example 27.9 in Management Studio

32.83°

32.82°

32.81°

32.8°

32.79°

32.78°

32.77°

32.76°

32.75°

32.84°

32.74°

–96.8° –96.7°

Figure 27-3 Displaying the result of Example 27.10 in Management Studio

27-Ch27.indd 749 2/6/12 2:03:01 PM

 7 5 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

New Spatial Data Features in SQL Server 2012
SQL Server 2012 introduces the following enhancements to spatial types:

New subtypes of circular arcsCc

New spatial indicesCc

New system stored procedures concerning spatial dataCc

The following sections describe these features.

New Subtypes of Circular Arcs
Circular arcs are based on the ANSI SQL/MM standard. (All ANSI standards
concerning SQL are divided into parts, depending on which area in relation to SQL is
described. SQL/MM specifies Part III and describes spatial data.) Generally, an arc is
a closed segment of a curve in the two-dimensional plane. Therefore, a circular arc is a
segment of the circumference of a circle. Circular arcs can be specified by themselves or
combined with line segments. Also, they can be used as a basis for a new polygon type
that contains one or more curve components.

Circular arcs are supported by the GEOMETRY and GEOGRAPHY data types
and can be defined using WKT, WKB, and GML data formats.

There are three new types for the following circular arcs:

Circular stringCc

Compound curveCc

Curve polygon Cc

The following subsections describe these three forms of circular arcs..

Circular String
If you take a look at Figure 27-1, which appears early in the chapter, you will see that a
circular string is a direct subtype of the curve type. For this reason, circular strings are
the basic curve subtype.

You need at least three points to define a circular string. The first point specifies
the start, the second specifies the end of the circular string, and the third must be
somewhere along the arc. Circular strings can be linked together, where the last point
of the previous curve becomes the first point of the next one. (As you probably guessed,
the corresponding subtype is called CIRCULARSTRING.)

27-Ch27.indd 750 2/6/12 2:03:01 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 5 1

Example 27.11 shows how a circular string can be defined using a variable.

 ExAMPLE 27.11

DECLARE @g GEOMETRY;

SET @g =

GEOMETRY::STGeomFromText ('CIRCULARSTRING(0 -12.5, 0 0, 0 12.5)',0);

Compound Curve
Compound curve, as its name suggests, allows you to specify new curves that are
composed of either circular strings only or circular and linear strings. The end point
of each component is linked together with the starting point of the next one. (The
corresponding subtype is called COMPOUNDCURVE.)

Example 27.12 shows how a compound curve can be built using different
components.

 ExAMPLE 27.12

DECLARE @g GEOGRAPHY;

SET @g = GEOGRAPHY::STGeomFromText('

 COMPOUNDCURVE(CIRCULARSTRING(0 -23.43778, 0 0, 0 23.43778),

 CIRCULARSTRING(0 23.43778, -45 23.43778, -90 23.43778),

 CIRCULARSTRING(-90 23.43778, -90 0, -90 -23.43778),

 CIRCULARSTRING(-90 -23.43778, -45 -23.43778, 0 -23.43778))' ,4326);

Example 27.12 constructs an instance of the GEOGRAPHY data type and assigns
it to a variable. The variable is made up of a curve polygon, which itself is made up of
compound curves, which themselves are made up of circular strings and linear strings.
Note that the last parameter of the STGeomFromText() method is the value 4326.
This is the default SRID value for the GEOGRAPHY data type and corresponds
to the WGS 82 spatial reference system. (The SRID value is explained earlier in this
chapter.)

Curve Polygons
Curve polygons are composed of linear and circular strings as well as compound curves.
As you can see from Figure 27-1, this CURVEPOLYGON type is a direct subtype of
the SURFACE type, and the supertype of the POLYGON type. Within a given ring,
the first point in a component of a curve polygon must be identical to the last point of
the next component.

27-Ch27.indd 751 2/6/12 2:03:01 PM

 7 5 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

New Spatial Indices
A new auto grid spatial index has been introduced in SQL Server 2012 for the
GEOMETRY and GEOGRAPHY data types. (The functionality of both indices is
similar, so I will describe only the auto grid index for the GEOMETRY data type.)

The Geometry Auto Grid Index
The strategy that the new geometry auto grid index uses to pick the right trade-off
between performance and efficiency is different from the strategy described earlier in
this chapter. It uses eight levels of tessellation for better approximation of objects of
various sizes. (The already described “manual grid” spatial index uses only four user-
specified levels of tessellation.)

Example 27.13 shows the creation of a geometry auto grid index.

 ExAMPLE 27.13

CREATE SPATIAL INDEX auto_grid_index

 ON beverage_markets(shape)

 USING GEOMETRY_AUTO_GRID

 WITH (BOUNDING_BOX = (xmin=0, ymin=0, xmax=500, ymax=200),

 CELLS_PER_OBJECT = 32, DATA_COMPRESSION = page);

The GEOMETRY_AUTO_GRID clause describes the created index as an auto
grid index. The CELLS_PER_OBJECT clause specifies the maximum number of cells
that tessellation can count per object. The DATA_COMPRESSION clause specifies
whether the compression is enabled for the particular spatial index. (All other clauses
of the CREATE SPATIAL INDEX statement are described immediately following
Example 27.7.)

New System Stored Procedures Concerning Spatial Data
The following system stored procedures are new in SQL Server 2012:

sp_help_spatial_geometry_histogramCc

sp_help_spatial_geography_histogramCc

Note
The syntax and functionality of both system procedures is similar, so I will discuss only the first one.

27-Ch27.indd 752 2/6/12 2:03:02 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 27

 C h a p t e r 2 7 : S p a t i a l D a t a 7 5 3

The sp_help_spatial_geometry_histogram system procedure returns the names
and values for a specified set of properties about a geometry spatial index. The result
is returned in a table format. You can choose to return a core set of properties or all
properties of the index. Example 27.14 shows the use of this system procedure.

 ExAMPLE 27.14
DECLARE @query geometry
 ='POLYGON((-90.0 -180.0, -90.0 180.0, 90.0 180.0, 90.0 -180.0, -90.0
-180.0))';
EXEC sp_help_spatial_geometry_index 'beverage_markets', 'auto_grid_index', 0,
 @query;

The sp_help_spatial_geometry_index system procedure in Example 27.14 displays
the properties of the spatial index called auto_grid_index, created in Example 27.13.

Summary
SQL Server supports two spatial data types: GEOGRAPHY and GEOMETRY.
The GEOGRAPHY data type is used to represent spatial data in geodetic models,
while the GEOMETRY data type is used with flat spatial models. To work with these
data types, you need a set of corresponding operations (methods). For both data types,
Microsoft implemented methods specified by OGC that can be used to retrieve spatial
data from a table’s columns.

SQL Server Management Studio has good support for the GEOMETRY and
GEOGRAPHY data types. SSMS uses the Spatial Results tab to display graphically
the content of columns with such data types.

SQL Server 2012 introduces the following enhancements to spatial types:

The subtypes of circular arcs: CIRCULARSTRING, COMPOUNDCURVE Cc

and CURVEPOLYGON
The auto grid spatial indexCc

The Cc sp_help_spatial_geometry_histogram and sp_help_spatial_geography_
histogram system procedures

The next, final chapter of the book describes SQL Server Full-Text Search.

27-Ch27.indd 753 2/6/12 2:03:02 PM

This page intentionally left blank

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Chapter 28

In This Chapter

c Introduction
c Indexing Full-Text Data
c Querying Full-Text Data

c Troubleshooting
Full-Text Data

c New Features in
SQL Server 2012 FTS

SQL Server Full-Text
Search

Ch28.indd 755 1/25/12 11:27:17 AM

 7 5 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

This chapter is divided into five parts. The introductory part describes general
concepts related to full-text data that you need to be aware of before you begin
working with it. This part introduces tokens, word breakers, and stop lists and

describes their roles in full-text search. It also introduces the different operations that
can be performed on tokens and explains how SQL Server Full-Text Search works.

The second part describes the general steps that are required to create a full-text
index and then demonstrates how to apply those steps first using Transact-SQL and
then using SQL Server Management Studio.

The third part is dedicated to full-text queries. It describes two different predicates
and two row functions that can be used for full-text search. For these predicates
and functions, several examples are provided to show you how you can solve specific
problems in relation to extended operations on words.

Three dynamic management views (DMVs) that can be used to troubleshoot full-
text indexing are discussed in the fourth part of the chapter. Two of the DMVs can be
used during the indexing phase and the other can be used during the search phase.

The final part of the chapter discusses new features implemented in SQL
Server 2012, which include the capability to search extended properties and
enhanced functionality of the NEAR clause in the CONTAINS predicate and
CONTAINSTABLE row function.

Introduction
A component of SQL Server called Full-Text Search (FTS) allows you to search
through data stored in text documents. Such data is usually unstructured, which means
that it contains irregularities and ambiguities that make it difficult to understand using
traditional computer programs. For this reason, unstructured data does not have a
predefined data model.

FTS stores data from text documents in the same way as alphanumerical data is
stored in the relational model. This means that such data is stored in table columns
of the CHAR, VARCHAR, NCHAR, NVARCHAR, XML, VARBINARY, and
VARBINARY(max) data types. (The VARBINARY(max) data type can be used either
with or without the FILESTREAM property.)

Note
When a column of a binary data type (such as VARBINARY(max), for instance) contains a document with a
supported document-file extension, SQL Server Full-Text Search uses a filter to interpret the binary data. The
filter, which implements the IFilter interface, extracts the textual information from the document and submits
it for indexing. (The following section describes IFilters.)

Ch28.indd 756 1/25/12 11:27:17 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 5 7

Before we discuss how data stored in text documents can be retrieved, let us see how
such data must be prepared for the query process. The following subsections introduce
general concepts related to full-text data that are useful to know before you begin
indexing data stored in text documents in preparation for the query process.

Tokens, Word Breakers, and Stop Lists
A full-text query allows you to search for words within text documents. The basic unit
of such a query is called a token. In Western languages, this term usually has the same
meaning as word. In non-Western languages, however, no clear concept of a word exists
because such languages do not use a white space to separate meaningful strings. In such
a case, a full-text component has to make decisions concerning boundaries between two
tokens. (This chapter uses the terms token and word interchangeably.)

Word Breakers and IFilters
As you will see a bit later in the chapter, a full-text component has to index data in
documents before the query process can be started. Before indexing, the full-text
component locates token boundaries by applying language-specific components called
word breakers to the text document. Therefore, the main task of word breakers is to
break content into tokens and decide how those tokens are stored in the full-text index.
(The word breaker for the English language breaks words at white-space boundaries
and at punctuation.)

Word breakers for non-English languages index composite words and extract all
constituent words. For example, consider the word breaker for the German language,
in which a word can be composed of several other words. The German word
Wortzusammensetzung means “word composition” and is composed of three different
words. The task of the German-language word breaker is, among other things, to
analyze such words and extract constituent words or characters.

Indexing documents in a VARBINARY, VARBINARY(max), or XML data type
column requires extra processing. This processing must be performed by a filter. The
filter extracts the textual information from the document and sends the text to the
word-breaker component for the language associated with the table column. SQL
Server FTS calls such filters IFilters.

The choice of a particular IFilter depends on the data type of the table column
where the data is stored. This means that for columns of the CHAR, NCHAR,
VARCHAR, and NVARCHAR data types, the SQL Server FTS applies the text
IFilter. Similarly, for the columns of the XML data type, SQL Server FTS applies the
XML IFilter. (Neither choice can be overridden.)

Ch28.indd 757 1/25/12 11:27:17 AM

 7 5 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

For the columns of the VARBINARY data type, SQL Server FTS uses the IFilter
that corresponds to the file extension of the document. In other words, for a Word
document, this extension will be docx, and for a PowerPoint presentation, it will be pptx.

Stop Lists
After the word breakers have done their work, the stop lists are applied. Stop lists are
lists of selected stop words. Stop words (or noise words) are words that are ignored during
full-text search because their relevance to the content of the text is low. (For instance,
English stop words are, among others, a, and, and the.) The practical effect of ignoring
these words is that the text becomes shorter, requiring less storage memory for the
corresponding full-text index.

Note
Since SQL Server 2008, stop lists are stored in the database to which they belong. You can store several stop lists
in your database.

You can create your own stop list by using SQL Server Management Studio. After
you create your own stop list, you can add new stop words to it, delete one or more
existing stop words, delete all stop words, or drop the entire stop list.

Operations on Tokens
Because full-text search works on unstructured data, some special operations are
needed. These operations can be divided in three groups:

Extended operations on wordsCc

Matching optionsCc

Proximity operationsCc

The following subsections discuss these operations.

Note
The preceding full-text operations can be combined using logical operators such as AND, OR, and NOT.

Ch28.indd 758 1/25/12 11:27:17 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 5 9

Extended Operations on Words
In Chapter 6 you learned how to retrieve information from relational tables by using
the LIKE operator, which compares column values with a specified pattern. This
operation is very limited because it can only match the given pattern exactly. FTS
searches not only for a particular word exactly, but also searches for words related to
it. For example, when you query for the word person, you might expect to find related
words such as persons and personal. A full-text component should also search for more
specific words, such as man and woman, and synonyms, such as individual.

Another form of extended search corrects errors in the given query term and in
the text on which the search is done. Spelling errors in search terms are common, so a
full-text component should correct common typing errors such as heirarchy instead of
hierarchy.

Matching Options
Matching options identify which factors are significant when deciding whether a term
matches a word in the text being searched. A common matching option is to specify
that the search is case sensitive. For example, if you want to search for a particular word
only when it begins with an uppercase letter, and ignore matches of the same word
written in all lowercase letters, you can type the search term with an initial uppercase
letter and indicate the search is case sensitive. The use of wildcards is another matching
option. For example, an asterisk (*) might be used in a search term to represent any
character located at that position in the term. Thus, lim* would return matches of limb,
lime, limo, and limp. Yet another matching option is to specify whether or not to ignore
diacritics. A diacritic is an additional glyph added to a letter. Examples from English are
naïve and café.

Proximity Operations
If you want to search for several words but receive results only for instances where
those words appear close together in the particular text you are searching, you can use a
proximity operation. For example, if you want to know whether the words Microsoft and
management are associated in a given text, you can instruct SQL Server FTS to search
only for occurrences in which the words appear near each other (the proximity of which
you can specify). SQL Server FTS uses the NEAR clause to specify such proximity
operations (as shown in Example 28.10, later in the chapter).

Note
As you will see in the section “Querying Full-Text Data” later in the chapter, SQL Server FTS supports all three
forms of full-text search operations just described.

Ch28.indd 759 1/25/12 11:27:17 AM

 7 6 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Relevance Score
When you use a relational query, you always get an exact answer. This is not true in
the case of full-text search. The result set of a full-text query can be subjective, and the
ordering of the result set depends on the system you use for querying.

SQL Server FTS assigns a relevance score to each term that is indexed. The score
is based on a calculation of how important the concept behind the term is. (The
importance is measured by the number of times the term occurs in the document.)
Almost all existing full-text search components use different algorithms to determine
a relevance score for each query.

How SQL Server FTS Works
Before you can query a text document, you have to index it. The reason is that only
indexed tokens of a text document can be found with good performance. The SQL
Server FTS builds a full-text index during a process called population, which fills the
index with words and the locations in which they occur in documents. The full-text
indices are stored in catalogs. You can specify one or more catalogs per database, but
one catalog belongs always to a particular database.

Full-text indices are activated on a catalog-by-catalog basis. A catalog can be
populated in either of two ways:

Full populationCc Clears all data stored in a full-text catalog and repopulates it
by building index entries for all rows in all tables covered by the catalog. A full
population typically occurs when a catalog is first populated.
Incremental populationCc Adjusts only index entries for rows that have been
modified since the last population. The benefit of incremental population is speed:
it minimizes the time required to populate data, because the number of index
entries to be stored is considerably smaller than in the case of the full population.

Note
The system always performs the full population if the structure of the table is modified. This includes altering
any column, index, or full-text index definition.

SQL Server FTS repopulates full-text indices dynamically. This means that, like
regular SQL Server indices, full-text indices can be automatically updated when data
is modified (added, updated, or deleted) in the associated table(s). Additionally, you
can repopulate a full-text catalog either immediately or using a schedule. With both
methods, you can choose a full population or an incremental population.

Ch28.indd 760 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 6 1

Because full-text indices can consume a significant amount of disk space, it is
important to plan their placement in full-text catalogs. Consider the following
guidelines when you assign a table to a catalog:

Keep the full-text index as small as possible. (You can do so by selecting the Cc

shortest column as a key.)
If you are indexing a large table, assign the table to its own full-text catalog.Cc

This closes the discussion of full-text basics. Now we can turn our attention to how
SQL Server FTS creates full-text indices.

Indexing Full-Text Data
To index text documents stored in a table’s column, you have to execute the following
steps:

Ensure that the table has a non-null column and that this column has a UNIQUE Cc

index.
Enable for full-text indexing a database to which the table belongs.Cc

Create a full-text catalog in which to store full-text indices.Cc

Create a full-text index on the column that will be used for full-text indexing.Cc

You can perform all these tasks using either Transact-SQL or SQL Server
Management Studio, as described next, in turn.

Indexing Full-Text Data Using Transact-SQL
To examine in detail how to perform the tasks in the preceding list using Transact-
SQL, first create a table called product, as shown in Example 28.1. (If your sample
database already contains a table with the same name, drop the table using the DROP
TABLE statement before you execute Example 28.1.) The product table will be used to
demonstrate full-text querying in the next section.

 ExampLE 28.1

USE sample;

CREATE TABLE product

 (product_id CHAR(5) NOT NULL,

 product_name VARCHAR (30) NOT NULL,

 description VARCHAR(900) NOT NULL);

Ch28.indd 761 1/25/12 11:27:18 AM

 7 6 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

The product table in Example 28.1 fulfills all requirements for building a full-text
index. First, it has a non-null column (product_id). Second, the description column of
the table is character based (that is, specified using the VARCHAR data type) and can
therefore be used for full-text search.

Create a Unique Index
Example 28.2 creates a unique index on the product_id column and inserts two rows
into the product table. These rows will be used to show how full-text data can be queried.

 ExampLE 28.2

USE sample;

CREATE UNIQUE INDEX ind_description

 ON dbo.product(product_id);

GO

INSERT INTO product VALUES (1, 'MS Application Center ', 'This Microsoft

product simplifies the deployment and management of Windows DNA solutions

within farms of servers. Application Center makes it easy to configure

and manage high-availability server arrays ');

INSERT INTO product VALUES (2, 'MS Commerce Server ', 'Commerce Server

is the fastest way to build an effective Microsoft online business.

It provides all of the personalization, user and product management,

marketing, closed loop analysis, and electronic ordering infrastructure

necessary for both business-to-business and business-to-consumer

e-commerce. ');

Enable a Database for Full-Text Indexing
You can use the sp_fulltext_database system stored procedure to enable (or disable)
full-text indexing for a database. This stored procedure has the following syntax:

[EXEC] sp_full_text_database [@action=] 'enable' | 'disable'

The enable parameter enables full-text indexing for the current database, while
the disable parameter removes all full-text catalogs in the file system for the current
database. Example 28.3 shows how you can enable the sample database for full-text
indexing.

 ExampLE 28.3

USE sample;

EXEC sp_fulltext_database 'enable';

Ch28.indd 762 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 6 3

The alternative way to enable your database for full-text indexing is to right-click the
database in Object Explorer, choose Properties, and click the Files tab. Check Use Full-
Text Indexing and then click OK.

Create a Full-Text Catalog
To create a full-text catalog, you can use either the CREATE FULLTEXT CATALOG
statement or the sp_fulltext_catalog system procedure.

Note
The sp_fulltext_catalog system procedure will be removed in a future version of SQL Server. For this reason, I
will discuss only the use of the CREATE FULLTEXT CATALOG statement.

The CREATE FULLTEXT CATALOG statement creates a full-text catalog for
a database. One full-text catalog can have several full-text indices, but a full-text index
can be part of only one full-text catalog. Each database can contain zero or more full-
text catalogs.

Note
Since SQL Server 2008, full-text catalogs are part of the database to which they belong. That allows all indices in
a catalog to be rebuilt at once.

Example 28.4 shows how you can create a full-text catalog for the sample database.

 ExampLE 28.4

USE sample;

CREATE FULLTEXT CATALOG sample_catalog

 WITH ACCENT_SENSITIVITY = OFF

 AS DEFAULT;

The CREATE FULLTEXT CATALOG statement in Example 28.4 creates the
catalog called sample_catalog for the sample database. Using the AS DEFAULT
clause, the catalog is specified as the default catalog for this database. This means
that each full-text index that is created without the explicit specification of the
corresponding catalog will be stored in the default catalog.

Ch28.indd 763 1/25/12 11:27:18 AM

 7 6 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Note
Do not use the default catalog to store full-text indices of a large table! For performance reasons, such a table
should have its own full-text catalog.

The ACCENT_SENSITIVITY clause in Example 28.4 specifies whether the
catalog is accent sensitive (ON) or not (OFF). The default value is ON.

Note
In addition to the two clauses just described, the CREATE FULLTEXT CATALOG statement supports other clauses,
such as ON FILEGROUP, IN PATH, and AUTHORIZATION. You can find the description of these clauses in Books
Online.

Transact-SQL also supports the ALTER FULLTEXT CATALOG and DROP
FULLTEXT CATALOG statements. The former allows you to change properties of
an existing catalog. The most important clause of this statement is REBUILD, which
tells the system to rebuild the entire catalog. (When a catalog is rebuilt, the existing
catalog is deleted and a new catalog is created in its place.) The DROP FULLTEXT
CATALOG statement drops the entire catalog. (You must drop all full-text indices
associated with the catalog before you can drop the catalog.)

Create a Full-Text Index
The CREATE FULLTEXT INDEX statement creates a full-text index on a table. Only
one full-text index is allowed per table. Example 28.5 shows the use of this statement.

 ExampLE 28.5

USE sample;

CREATE FULLTEXT INDEX

 ON dbo.product(description)

 KEY INDEX ind_description

 ON sample_catalog;

The statement in Example 28.5 creates the full-text index for the description
column of the product table. As you can see from this example, the syntax of the
statement is similar to the syntax of the convenient CREATE INDEX statement. The
additional KEY INDEX clause specifies the name of the unique, non-null index that
is necessary to create the full-text index (see Example 28.2). The second ON clause

Ch28.indd 764 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 6 5

specifies the name of the catalog in which to store the full-text index. (In this example,
the specification of the ON clause can be omitted because sample_catalog is the
default catalog for the sample database.)

Two important clauses of this statement are LANGUAGE and TYPE COLUMN.
The LANGUAGE clause contains the parameter that can be specified as a string,
integer, or hexadecimal value corresponding to the locale identifier (LCID) of a
language. If no value is specified, the default language of the instance of the Database
Engine is used. (To retrieve the name of the language that corresponds to the given
LCID, use the sys.fulltext_language catalog view.)

Note
SQL Server FTS supports full-text operations on many different languages. Information about all the supported
languages is stored in the sys.syslanguages catalog view.

The TYPE COLUMN clause is necessary when the column with the full-text index
stores binary data (VARBINARY(max), for instance). The TYPE COLUMN clause
specifies the name of a different column in the table that stores the file extension for
the binary data. For example, the binary data might be a .docx file. SQL Server uses the
column specified in the TYPE COLUMN clause to associate the binary data with the
corresponding software system.

Transact-SQL also supports the ALTER FULLTEXT INDEX and DROP
FULLTEXT INDEX statements. The former statement allows you to change the
properties of an existing full-text index. The most important clauses of this statement
are ADD and DROP. These clauses, respectively, tell the system to add or delete the
specified column(s) to or from the index. (Use the DROP clause only on columns that
have been enabled previously for full-text indexing.) The DROP FULLTEXT INDEX
statement removes the specified index.

Index Full-Text Data Using SQL Server
management Studio
As previously mentioned, the steps necessary to index text documents stored in a table’s
column can be performed using SQL Server Management Studio, too. To build full-
text indices using Management Studio, expand the server, expand the Databases folder,
expand the database, and expand the Tables folder. Right-click the table for which you
want to create a full-text index, choose Full-Text Index, and click Define Full-Text
Index. This starts the Full-Text Indexing Wizard. On the initial screen, click Next. The
Select an Index page appears (see Figure 28-1).

Ch28.indd 765 1/25/12 11:27:18 AM

 7 6 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Create a unique, non-null index, which you will use as the starting point for the full-
text indexing (see also Example 28.2). Click Next.

Note
If the table doesn’t contain a column with such properties, you will get the message “A unique column must be
defined on this table/view.” In that case, modify the structure of the table to fulfill these conditions.

In the next step, the wizard selects all character- and image-based columns from the
table and shows them on the Select Table Columns page (see Figure 28-2). Check any
columns that you want to be eligible for full-text queries and click Next. (Note that if
you select several columns, SQL Server FTS creates one composite full-text index for
all selected columns.)

The next wizard step is the Select Change Tracking page. This step allows you
to choose one of the two population types or to specify that changes should not be
tracked (see Figure 28-3). When you define automatic or manual change tracking, a full
population of the index occurs. To avoid a population at the end of this wizard, select
the Do Not Track Changes option and clear the Start Full Population When Index Is
Created check box. Click Next.

Figure 28-1 The Select an Index page

Ch28.indd 766 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 6 7

Figure 28-2 The Select Table Columns wizard page

Figure 28-3 The Select Change Tracking wizard page

Ch28.indd 767 1/25/12 11:27:18 AM

 7 6 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

The next wizard page, Select Catalog, Index Filegroup, and Stoplist (see Figure 28-4),
allows you to choose an existing catalog or create a new one. Click Next.

The next step, Define Population Schedules, is an optional step, which you should
skip by clicking Next. Finally, the Summary description appears. Click Finish to end
the whole process.

Querying Full-Text Data
SQL Server FTS supports two predicates and two functions that you can use to query
text using a full-text index:

FREETEXT predicateCc

CONTAINS predicateCc

FREETEXTTABLE functionCc

CONTAINSTABLE functionCc

Figure 28-4 The Select Catalog, Index Filegroup, and Stoplist page

Ch28.indd 768 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 6 9

The following sections describe each of these predicates and functions.

FREETExT predicate
The FREETEXT predicate is used to search values in full-text indexed columns that
match the meaning in the search condition. Additionally, you can use this predicate if
you want to find all words related to the word(s) in the search query.

Example 28.6 shows the use of the FREETEXT predicate for the given string.

 ExampLE 28.6

USE sample;

SELECT product_id, product_name FROM product

 WHERE FREETEXT(description, 'manage');

The result is

product_id product_name
1 MS Application Center

As you can see from Example 28.6, the FREETEXT predicate has two arguments.
The first argument specifies the column that is full-text indexed. The second argument
specifies the string that is searched in the documents stored in the specified column(s).

Example 28.7 shows the search for the related strings.

 ExampLE 28.7

USE sample;

SELECT product_id, product_name

 FROM product

 WHERE FREETEXT(description, 'fast solution');

The result is

product_id product_name
1 MS Application Center

Example 28.7 shows two things: the implicit use of the Boolean operator OR and
the search for words that are similar to but do not exactly match the search terms. (This
operation belongs in the extended operations on words category.) Although the second
parameter in the FREETEXT predicate in Example 28.7 looks like the search on the

Ch28.indd 769 1/25/12 11:27:18 AM

 7 7 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

string fast solution, it actually searches on one (or both) of two different strings, fast
and solution. (The existence of multiple words in a search string implies the use of the
Boolean operator OR.) Also, neither the word fast nor the word solution appears in one
of the rows. As you already know, the FREETEXT predicate searches for related words,
too. SQL Server FTS finds the word solutions in the first document and the word fastest
in the second document and considers them to be related to the words solution and fast,
respectively.

CONTaINS predicate
The CONTAINS predicate is used to search columns containing character-based data
types for exact and fuzzy matches. It also allows you to search for particular words
and phrases, search for words within close proximity of each another, and search using
weighted search. (Weighted search is a search based on frequencies of the search terms
in the documents being searched. Weighted search is often used by search engines. It
produces a numerical score for each possible document.)

Note
The CONTAINS predicate provides significantly more functionality in full-text search than the FREETEXT predicate.

Example 28.8 shows the use of the CONTAINS predicate to search with a wildcard.
This operation belongs in the search with matching options category.

 ExampLE 28.8

USE sample;

SELECT product_id, product_name FROM product

 WHERE CONTAINS(description, ' "config*" ');

The result is

product_id product_name
1 MS Application Center

The CONTAINS predicate in Example 28.8 searches the documents of the
description column for any word beginning with config. The * sign is the wildcard
of the CONTAINS predicate and specifies any sequence of zero or more characters.

Ch28.indd 770 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 7 1

Therefore, this sign has the same meaning as the percent sign (%) for the LIKE
predicate. (As you can see from Example 28.8, you need to use an additional pair of
double quotes for the pattern with the wildcard.)

The CONTAINS predicate allows you to combine several operations using the
Boolean operators AND, OR, and NOT. Example 28.9 shows the use of the AND
operator.

 ExampLE 28.9

USE sample;

SELECT product_id, product_name

 FROM product

 WHERE CONTAINS(description, ' "manage*" AND "market*" ');

The result is

product_id product_name
2 MS Commerce Server

The query in Example 28.9 retrieves all rows that contain a word beginning with
manage and a word beginning with market.

Example 28.10 shows the use of the NEAR option to match words in close
proximity to one another. This operation belongs to a group of proximity operations.

 ExampLE 28.10

USE sample;

SELECT product_id, product_name FROM product

 WHERE CONTAINS(description, 'Microsoft NEAR management');

The result is

product_id product_name
1 MS Application Center

2 MS Commerce Server

As you can see from the result of Example 28.10, SQL Server FTS retrieves both
rows, because the words Microsoft and management appear relatively close to one
another in both documents (see also Example 28.17).

Ch28.indd 771 1/25/12 11:27:18 AM

 7 7 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Note
SQL Server FTS always returns the identity of the rows plus their relevance score. The system uses the latter
value to order the result set. (The results set of Example 28.10 shows that the relevance score of the second row
is higher than the relevance score of the first row. This is obvious, because both Microsoft and management are
closer to each other in the second row than in the first row.)

Example 28.11 shows the use of the FORMSOF clause with the INFLECTIONAL
specification.

 ExampLE 28.11

USE sample;

SELECT product_id, product_name FROM product

 WHERE CONTAINS(description,'FORMSOF (INFLECTIONAL, provide)');

The result is

product_id product_name
2 MS Commerce Server

INFLECTIONAL specifies that different forms of the string (plural and singular
forms of nouns, comparative forms of adjectives, and various tenses of verbs) are to be
matched. Therefore, the SELECT statement in Example 28.11 finds the word provides
as the form of the verb provide.

FREETExTTaBLE Function
As its name indicates, FREETEXTTABLE is a table that contains one or more rows
for those columns that contain values matching the word(s) in the specified string.
Analogous to the FREETEXT predicate, FREETEXTTABLE also contains rows
where values of the full-text indexed column(s) do not exactly match the word(s)
in the search condition. FREETEXTTABLE uses the same search conditions
as the FREETEXT predicate, but has additional functionality: queries using
FREETEXTTABLE specify a relevance score for each row and can therefore display
the top n matches. (The FREETEXT predicate also calculates a relevance score for all
rows of the result set, but it does not use that score when displaying the result set.)

Ch28.indd 772 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 7 3

Note
FREETEXTTABLE can be referenced in the FROM clause of a SELECT statement like any other table.

Example 28.12 shows the use of the FREETEXTTABLE function.

 ExampLE 28.12
USE sample;
SELECT pr.product_id, pr.product_name
 FROM product pr, FREETEXTTABLE(product,description, 'fast solution',1) ftt
 WHERE pr.product_id = ftt.[key];

The result is

product_id product_name
1 MS Application Center

The query in Example 28.12 joins two tables: the product table and
FREETEXTTABLE. As you can see from the example, FREETEXTTABLE contains
four parameters. The first parameter specifies the name of the table (product in this
example), the second specifies the name of the column on which full-text search is
applied (description), the third specifies the search string, and the last parameter
specifies an integer that limits the result set to the top n matches, ordered by the value
of the column called rank. (FREETEXTTABLE has two implicit columns named key
and rank, which can be referenced within the query to obtain the appropriate rows and
the relevant score values, respectively.)

Note
Example 28.12 is similar to Example 28.7, but their results are different because of the last parameter of
FREETEXTTABLE.

CONTaINSTaBLE Function
Like FREETEXTTABLE, CONTAINSTABLE is a table that returns zero or more
rows. CONTAINSTABLE is used to search columns containing character-based data
types for exact and fuzzy matches. Additionally, it allows you to search for specific

Ch28.indd 773 1/25/12 11:27:18 AM

 7 7 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

words and phrases, search for words within close proximity of each another and
weighted search, too. (CONTAINSTABLE uses the same search conditions as the
CONTAINS predicate.)

Note
The syntax of CONTAINSTABLE is analogous to that of FREETEXTTABLE. CONTAINSTABLE has the same four
parameters previously described for FREETEXTTABLE. Additionally, CONTAINSTABLE has two implicit columns,
key and rank, with the same meaning.

Example 28.13 shows the use of CONTAINSTABLE.

 ExampLE 28.13

USE sample;

SELECT pr.product_id, pr.product_name

 FROM product pr INNER JOIN

 CONTAINSTABLE(product, description, 'Microsoft NEAR management',1) ct

 ON pr.product_id = ct.[key]

 ORDER BY ct.rank DESC;

The result is

product_id product_name
1 MS Application Center

The query in Example 28.13 joins two tables: CONTAINSTABLE and the product
table. This example is similar to Example 28.10, but their results are different: the
specification of CONTAINSTABLE contains as the last parameter the number n (in
Example 28.13, the value 1) that limits the result set to only the top n matches, ordered
by the value of the relevant score. Also, the ORDER BY clause contains the DESC
option and therefore causes the display of the last ranked row.

CONTAINSTABLE can also be used to calculate weighted matches, as shown in
Example 28.14.

 ExampLE 28.14

SELECT pr.product_id, pr.product_name

 FROM product pr,

 CONTAINSTABLE (product, description,

 'ISABOUT (Microsoft WEIGHT(.4), management WEIGHT(.2))') ct

 WHERE pr.product_id = ct.[key]

 ORDER BY ct.rank DESC;

Ch28.indd 774 1/25/12 11:27:18 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 7 5

The result is

product_id product_name
2 MS Commerce Server

1 MS Application Center

The ISABOUT clause of the CONTAINSTABLE function matches a full-text
column against a group of one or more weighted search terms. Therefore, Example
28.14 searches for all names containing the token Microsoft or management and assigns
a different weighting to each token using the WEIGHT clause with a parameter that
specifies the weight. (The value of a weight must be between 0 and 1.)

Troubleshooting Full-Text Data
Problems concerning full-text data can have two sources. The first group of problems
occurs during full-text indexing, while the second group of problems happens during
the querying phase. You can use the following DMVs to troubleshoot problems
concerning full-text data:

sys.dm_fts_index_keywordsCc

sys.dm_fts_index_keywords_by_documentCc

sys.dm_fts_parserCc

Note
The first two DMVs support troubleshooting of problems concerning full-text indexing, while the last one can be
used to diagnose problems during the querying phase.

The sys.dm_fts_index_keywords DMV returns information about the content of a
full-text index for the specified table. Example 28.15 shows the use of this DMV.

 ExampLE 28.15

USE sample;

SELECT keyword, display_term, document_count

 FROM sys.dm_fts_index_keywords (db_id('sample'),

object_id('product'));

Ch28.indd 775 1/25/12 11:27:19 AM

 7 7 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

Example 28.15 displays information related to a full-text index for the product table.
The keyword column shows the hexadecimal representation of the keyword stored in
the full-text index. The display_term column displays the human-readable format of
the keyword, while the document_count column specifies the number of documents or
rows containing the current term.

The second DMV, sys.dm_fts_index_keywords_by_document, has similar
functionality to that of the first one, but breaks down the keywords by document.
Therefore, this DMV helps you to troubleshoot problems deeper in the document.
It contains the same columns as the previous DMV, but additionally supports the
following two columns:

document_idCc ID of the document or row from which the current term was full-
text indexed
occurrence_countCc Number of times the current keyword occurs in the
document or row that is indicated by document_id

The sys.dm_fts_parser DMV displays internal information during the search phase.
In other words, the interpretation of a search phrase for the given query is displayed by
the system. Example 28.16 shows the use of the sys.dm_fts_parser view.

 ExampLE 28.16

USE sample;

SELECT keyword, occurrence, special_term, display_term

 FROM sys.dm_fts_parser (' "The Microsoft business analysis" ',

1033, 0, 0);

The result of Example 28.16 is

keyword occurrence special_term display_term
0x007400680065 1 Noise Word the

0x006D006900630072006F0073006F00660074 2 Exact Match Microsoft

0x0062007500730069006E006500730073 3 Exact Match business

0x0061006E0061006C0079007300690073 4 Exact Match analysis

The keyword column shows the hexadecimal representation of the keyword stored
in the full-text index. The occurrence column indicates the order of each term in the
parsing result. The special_term column contains information about the characteristics
of the term displayed in the display_term column being issued by the word breaker.

Ch28.indd 776 1/25/12 11:27:19 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 7 7

New Features in SQL Server 2012 FTS
SQL Server 2012 supports two enhancements to full-text search:

Customizing a proximity searchCc

Searching extended propertiesCc

The following subsections describe these new features.

Customizing a proximity Search
As you already know from Example 28.10, SQL Server FTS uses the NEAR clause to
find tokens that appear relatively close to each other in the corresponding document.
In previous versions of SQL Server, the NEAR clause doesn’t allow you to specify the
distance between the tokens.

In SQL Server 2012 you can customize a proximity search by using the extended
NEAR clause of the CONTAINS predicate or CONTAINSTABLE row function.
This optional feature allows you to specify the maximum number of nonsearch terms
that separate the first and last search terms in a match. Customizing a proximity search
with the NEAR clause also enables you to specify that words and phrases are matched
only if they occur in the order in which you specify them.

Example 28.17 shows how the proximity search can be applied using the
CONTAINSTABLE function.

 ExampLE 28.17

USE sample;

SELECT pr.product_id, pr.product_name

 FROM product pr INNER JOIN

 CONTAINSTABLE (product, description,

 '(user NEAR analysis)') AS ct

 ON pr.product_id = ct.[key]

 ORDER BY ct.rank DESC;

SELECT pr.product_id, pr.product_name

 FROM product pr INNER JOIN

 CONTAINSTABLE (product, description,

 'NEAR((user, analysis), 3)') AS ct

 ON pr.product_id = ct.[key]

 ORDER BY ct.rank DESC;

Ch28.indd 777 1/25/12 11:27:19 AM

 7 7 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

The first SELECT statement in Example 28.17 shows the functionality of
the NEAR clause in earlier versions of SQL Server. The clause specifies to select
documents in which both words exist, but does not specify that the words must be
within a particular distance of each other. (The clause calculates the distance between
the words, but only to determine the rank of each document in the result set.)

The second SELECT statement shows the extended functionality of the NEAR
clause. Now, you can use a parameter (in this case, 3) to specify the distance between
both words. (The distance of 3 means that no more than three nonsearch terms
separate the two search terms.) For this reason, the result of the SELECT statements
is different: the result of the first one displays information about the second document,
and the result of the second one is empty. (Both words exist in the second document,
but their distance is greater than three.)

Searching Extended properties
SQL Server 2012 allows you to search data stored in a full-text column based not
only on content, but on extended properties too. Searching for extended properties is
possible only if the particular IFilter exists. (The detailed descriptions of IFilters is
given at the beginning of this chapter.)

The first step in searching for extended properties is to create the corresponding
property list. You create this list using the CREATE SEARCH PROPERTY LIST
statement. Example 28.18 creates the property list for the description column of the
product table.

 ExampLE 28.18

USE sample;

CREATE SEARCH PROPERTY LIST Sample_Properties;

GO

ALTER SEARCH PROPERTY LIST Sample_Properties

 ADD 'MS Tools'

 WITH (PROPERTY_SET_GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9',

 PROPERTY_INT_ID = 1);

The first statement in Example 28.18 creates an empty search property list called
Sample_Properties. This search property list is used to specify one or more extended
properties that you want to include in a full-text index. Using the ADD clause, you can
add an extended search property (in this case, MS Tools) to the specified property list.
(Adding a property means that it is registered for the search property list.)

Ch28.indd 778 1/25/12 11:27:19 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

 C h a p t e r 2 8 : S Q L S e r v e r F u l l - Te x t S e a r c h 7 7 9

The PROPERTY_SET_GUID parameter specifies the globally unique identifier
(GUID) of the property set to which the property belongs. The PROPERTY_INT_ID
parameter specifies the integer that uniquely identifies the property within its property
set.

The created search property list can be assigned to an existing full-text index using
the ALTER FULLTEXT INDEX statement, as shown in Example 28.19.

 ExampLE 28.19

USE sample;

ALTER FULLTEXT INDEX ON dbo.product

 SET SEARCH PROPERTY LIST Sample_Properties

 WITH NO POPULATION;

GO

 ALTER FULLTEXT INDEX ON dbo.product

 START FULL POPULATION;

Note
When you execute Example 28.19, you will get a warning, which you should ignore. (This warning concerns the
first statement in the example. The second statement brings the full-text index into a consistent state.)

The first statement in Example 28.19 adds the Sample_Properties list to the
existing full-text index. (This is done without populating the index.) The second
statement populates the index using the full population. (Full and incremental
population are described earlier in this chapter.)

You can view the names of the existing property lists using the catalog view called
sys.registered_search_property_lists, as shown in Example 28.20.

 ExampLE 28.20

USE sample;

SELECT name FROM

 sys.registered_search_property_lists;

Summary
Using SQL Server FTS, you can apply a full-text search to documents that are stored
in alphanumerical column(s) of a relational table. Before starting a query search, you
have to create a full-text index for the column(s) and populate it.

Ch28.indd 779 1/25/12 11:27:19 AM

 7 8 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Chapter 28

The following types of queries are supported by SQL Server FTS:

Searching for words or phrasesCc

Searching for words in close proximity to each otherCc

Searching for inflectional forms of verbs and nounsCc

Searching for a word that has a higher designated weighting than another wordCc

SQL Server FTS supports two predicates: FREETEXT and CONTAINS.
You should use the CONTAINS predicate because it provides significantly more
functionality in full-text search than the FREETEXT predicate. Also, you can use
two row functions: FREETEXTTABLE and CONTAINSTABLE. The functionality
of FREETEXTTABLE corresponds to the functionality of FREETEXT, and the
functionality of CONTAINSTABLE corresponds to the functionality of CONTAINS.

Ch28.indd 780 1/25/12 11:27:19 AM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

781

Index

% Interrupt Time counter, 552
% Processor Time counter, 552

A
ACID, 362–363
address space, 549
ADOMD.NET, 614
AFTER triggers, 387

creating an audit trail, 387–388
enforcing integrity constraints, 389–391
implementing business rules, 389

agents, 493–494
aggregate functions, 83

convenient aggregate functions, 153–158
statistical aggregate functions, 158–159,

646–647
user-defined aggregate functions, 159

aggregation, 591–593
design storage aggregation, 608–610

alerts
error messages, 477–479
on error severity levels, 480–482
overview, 477
SQL Server Agent error log, 479
on system errors, 480
on user-defined errors, 482–484
Windows Application log, 479

alias data types, 115–117
aliases, 136
ALL operator, 177–179
ALLOW_ROW_LOCKS option, 281
ALTER APPLICATION ROLE statement, 338
ALTER INDEX statement, 284
ALTER LOGIN statement, 327
ALTER ROLE statement, 341
ALTER SCHEMA statement, 330
ALTER TRIGGER statement, 385
ALTER USER statement, 333
ALTER VIEW statement, 298

anchor queries, 201
ANY operator, 177–179
application roles, 337–339
application-code efficiency, 543
APPLY operator, 251–253
arguments, 250
articles, 492–493
asymmetric keys, 320–321
atomicity, 362–363
attributes, 15
authentication, 7, 316

encrypting data, 318–324
implementing an authentication mode, 318
managing contained databases, 349–351
mixed mode, 27, 318
overview, 317–318
in SQL Server Management Studio, 44
Windows mode, 27, 317–318

authorization, 7, 316
DENY statement, 346–347
GRANT statement, 342–346
managing contained databases, 349–351
managing permissions using Management Studio,

348–349
overview, 341–342
REVOKE statement, 347–348

AUTO mode, 727–728
automation components, 468, 469
availability groups, 459
availability modes, 459
availability replicas, 459
available fields, 671
AVG aggregate function, 156–157

B
B+-tree data structure, 275
backup, 7
BACKUP DATABASE statement, 433–435
BACKUP LOG statement, 435–436

29-Index.indd 781 2/6/12 2:11:27 PM

 7 8 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

backup set, 432–433
backup sets, and recovery, 442–443
backups

backup devices, 432–433
differential backup, 430
file or filegroup backup, 431
full database backup, 429
master database backup, 439–440
overview, 429
production database backup, 440
scheduling backups, 439
transaction log backup, 430–431
using SQL Server Management Studio, 436–439
using Transact-SQL statements, 432–436
See also Maintenance Plan Wizard; recovery

batches, 228
bcp utility, 414, 415–416
BEGIN DISTRIBUTED TRANSACTION statement, 364
BEGIN TRANSACTION statement, 363, 366
BETWEEN operator, 144–146
BI systems. See business intelligence systems
BIDS. See Business Intelligence Development Studio (BIDS)
binary data types, 79
BIT data types, 79
bitmap filters, 696
bitmap indices, 696
Boolean operators, 140–144
breakpoint actions, 66
breakpoint conditions, 65
breakpoint filters, 66
Buffer Cache Hit Ratio counter, 554–555
Bulk Copy Program. See bcp utility
Business Intelligence Development Studio (BIDS),

600–601, 665
choosing a report type, 671
choosing the deployment location and completing the

wizard, 673–674
choosing the report style, 673
creating parameterized reports, 675–677
creating reports with the Report Server Project Wizard,

667–675
data sources and datasets, 667–669
deploying the report, 675
designing a query, 669–670
designing the data in the table, 671–672
previewing the result set, 674–675
report delivery options, 680–681
specifying the report layout, 672–673
starting, 666–667

business intelligence systems, 583–584

C
cached reports, 680
candidate keys, 105–106
cardinality ratio, 16
Cartesian product, 187
CASE expressions, 172–174
catalog views, 260, 262–263

querying, 263–265
catastrophes, 429
CATCH statement, 233–235
categories, 421
CDC. See change data capture
cells, defined, 599
certificates, 321–322
change data capture, 352–354
change tracking, 316, 351–354

See also security
character data types, 76
CHECK clause, 108
check constraints, 108
checkpoints, 441
circular string, 750–751
CLIs. See command-line interfaces
CLR

and stored procedures, 242–247
and triggers, 396–400
and user-defined functions, 255–256

CLR data types, 117
clustered indices, 276–277
clustered tables, 276, 277
collocation, 692
column statistics, 513–514
column store indices, 289
columnar store, 697
column-level encryption, 323
COLUMNPROPERTY function, 270–271
columnstore indices

benefits of, 699
creating using Management Studio, 698
creating using Transact-SQL, 697–698
limitations of, 700
overview, 696–697

command-line interfaces, 5
comments, 74
COMMIT WORK statement, 364
Common Language Runtime. See CLR
common table expressions

and nonrecursive queries, 199–200
overview, 198–199
and recursive queries, 200–204

29-Index.indd 782 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 8 3

D
Data Analysis Expressions (DAX), 615
data definition language (DDL), 11
data independence, 5–6
data integrity, 6
data loss, reasons for, 428–429
data manipulation language (DML), 11
data marts, 585–586
data mining, 595
data replication. See replication
data reports, 660–661

cached reports, 680
execution snapshots, 681
matrix form, 671
on-demand reports, 678
report subscription, 678–680
tabular form, 671
See also Reporting Services

data sources, 667–668
selecting, 669

data stores, 582
data types

alias, 115–117
binary and BIT, 79
character, 76
CLR, 117
CURSOR, 242
GEOGRAPHY data type, 739–740, 745
GEOMETRY, 737–740
GEOMETRY data type, 741–744
HIERARCHYID, 81
large objects (LOBs), 79–80
numeric, 75
SQL_VARIANT, 80
temporal, 76–78
TIMESTAMP, 81
UNIQUEIDENTIFIER, 80

data warehouses, 584–586
data access, 595
design, 587–590
dimensional model, 587–590

Database Engine
creating databases, 96–99
disk files and filegroups, 97
objects, 96
Tuning Advisor, 561–569

database mirroring, 456, 457
database security

ALTER USER statement, 333
CREATE USER statement, 332–333

comparison operators, 175–176
compound curve, 751
computed columns, 290–291
computer failures, 429
concurrency control, 6–7
concurrency models, 360–361
concurrency problems, 375–376
conditions, 421
conflict detection, 496–497, 499
consistency, 362–363
consolidation of data, 584
constants, 72–73
contained databases, 124–125

authorization and authentication, 349–351
CONTAINS predicate, 770–772
CONTAINSTABLE function, 773–775
convenient aggregate functions, 153–158
correlated subqueries

and the EXISTS function, 194–195
overview, 193

COUNT aggregate function, 157–158
COUNT_BIG aggregate function, 158
counters, 552, 554–555, 557, 558–559
covering indices, 288–289
CREATE APPLICATION ROLE statement, 338
CREATE ASSEMBLY statement, 246
CREATE DATABASE statement, 96–100
CREATE INDEX statement, 278–282
CREATE LOGIN statement, 325–326
CREATE ROLE statement, 341
CREATE SCHEMA statement, 328–329
CREATE SEQUENCE statement, 164–167
CREATE TABLE statement, 101–104

and declarative integrity constraints, 104–109
CREATE TRIGGER statement, 384–385
CREATE USER statement, 332–333
CREATE VIEW statement, 294–298
CTEs. See common table expressions
CUBE operator, 636–638
cubes, 590–591

aggregation, 591–593
browsing, 611–613
creating, 607–608
defined, 599
members, 590
physical storage of, 593–594
processing, 610–611

CURSOR data type, 242
curve polygons, 751
custom-based resolution, 499

29-Index.indd 783 2/6/12 2:11:27 PM

 7 8 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

dirty reads, 367, 375
disk backups, 432–433
disk failures, 429
disk I/O, 547–549
disk striping, 455
displayed fields, 671
distributed transactions, 488–489

two-phase commit, 488–489
distribution agents, 494
distribution database, 493
distribution servers, configuring, 502–504
distributors, 490–491
DML. See data manipulation language (DML)
document type definition (DTD), 712–714
domains, 115–117
DROP APPLICATION ROLE statement, 338
DROP INDEX statement, 286
DROP LOGIN statement, 327
DROP ROLE statement, 341
DROP SCHEMA statement, 330
DROP TABLE statement, 219
DROP TRIGGER statement, 386
DROP USER statement, 333
DROP VIEW statement, 298–299
DROP_EXISTING option, 280
DTD. See document type definition (DTD)
durability, 362–363
dynamic disk space management, 52
dynamic management functions (DMFs), 260, 265–267
dynamic management views (DMVs), 260, 265–267

monitoring memory, 555–556
monitoring the disk system with, 557–558
monitoring the network interface, 559
and query optimization, 528–531

E
editions, 22–23
EKM. See Extensible Key Management (EKM)
ELEMENTS directive, 731
encryption, 316

asymmetric keys, 320–321
certificates, 321–322
column-level encryption, 323
editing user keys, 322–323
overview, 318–319
SQL Server Extensible Key Management, 323
symmetric keys, 320
Transparent Data Encryption (TDE), 324

Enterprise Edition, 23

database security (cont.)
default database schemas, 333
DROP USER statement, 333
managing using Management Studio, 331–332
overview, 330–331
See also security

database snapshots, creating, 99–100
database systems

overview, 4–7
See also relational database systems

databases
adding or removing database files, log files, or filegroups,

118–119
attaching and detaching, 100
contained databases, 124–125, 349–351
creating using Transact-SQL, 96–99
creating with Object Explorer, 50–54
deleting with Object Explorer, 54
setting options, 119–120
See also system databases

Datacenter Edition, 23
datasets, 668–669
date functions, 86
DBCC commands

MEMORYSTATUS command, 556
overview, 419
validation commands, 420

DDL. See data definition language (DDL)
deadlocks, 374–375
debugging, using SQL Server Management Studio, 64–66
decomposition, 716, 723–724
default instance, 26
DELETE statement, 217–219

and views, 305–306
deleted virtual tables, 386
delimited identifiers, 73–74
delimiters, 73–74
demand paging, 549
denormalizing tables, 543–545, 589
DENY statement, 346–347
derived tables, 197–198
designing a database

entity relationship model, 15–17
normal forms, 13–15
overview, 11–12

determinism, 290
Developer Edition, 23
differential backup, 430
dimensions, defined, 599
directives, 730–732

29-Index.indd 784 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 8 5

first normal form (1NF), 13
See also normal forms; normalization

fixed database roles, 336–337
fixed server roles, 334

managing, 335–336
sa login, 336

FOREIGN KEY clause, 108–109
fragmented indices, 282–283
FREETEXT predicate, 769–770
FREETEXTTABLE function, 772–773
FTS. See Full-Text Search (FTS)
full database backup, 429
full outer joins, 189
full-text indices, 289
Full-Text Search (FTS)

CONTAINS predicate, 770–772
CONTAINSTABLE function, 773–775
creating a full-text catalog, 763–764
creating a full-text index, 764–765
creating a unique index, 762
customizing a proximity search, 777–778
enabling a database for full-text indexing, 762–763
extended operations on words, 759
FREETEXT predicate, 769–770
FREETEXTTABLE function, 772–773
how FTS works, 760–761
IFilters, 757–758
indexing full-text data using Management Studio,

765–768
indexing full-text data using Transact-SQL, 761–765
introduction to, 756–757
matching options, 759
operations on tokens, 758–759
population, 760–761
proximity operations, 759
querying full-text data, 768–775
relevance score, 760
searching extended properties, 778–779
stop lists, 758
tokens, 757
troubleshooting, 775–776
word breakers, 757–758

functional dependency, 12
functions

aggregate, 83
date, 86
metadata, 90
numeric, 84–85
scalar, 83–84
string, 86–88
system, 88–89

entities, 15
entity relationship model, 15–17

example diagram, 16
ER model. See entity relationship model
error messages, 477–479

creating, 483
raising an error using triggers, 483–484

ETL, 585
EXCEPT set operator, 171–172
exception handling, with TRY, CATCH and THROW, 233–235
exclusive locks, 368
EXECUTE AS clause, 237
EXECUTE statement, 238–240

WITH RESULT SETS clause, 241–242
execution plans, 6, 508

examples of, 523–527
influencing, 516–517
Management Studio and graphical execution plans, 522–523
textual execution plan, 518–520
XML execution plan, 520–521

execution snapshots, 681
EXISTS function, 194–195
EXPLICIT mode, 728–729
Express Edition, 22
Extensible Key Management (EKM), 323
Extensible Markup Language. See XML
extents, 371, 409

F
facets, 421
fact tables, 587
failover clustering, 457–458
filegroups, 97

adding a file to the filegroup, 123–124
adding or removing, 118–119
backup, 431
creating a filegroup for each partition, 687–688
modifying properties, 119

FILEPROPERTY function, 270–271
files

adding or removing, 118–119
backup, 431
modifying properties, 119

FILESTREAM storage, 81–82
adding a file to the filegroup, 123–124
enabling, 120–122

FILLFACTOR, 280
filtered indices, 289
filters, 492

bitmap filters, 696

29-Index.indd 785 2/6/12 2:11:27 PM

 7 8 6 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

IF statement, 229–230
IFilters, 757–758
IGNORE_DUP_KEY option, 281
IN operator, 144–146, 176–177
index access, 511
index entries, 275
index pages, 274
index selection, 510–511

column statistics, 513–514
index statistics, 512–513
selectivity of an expression with the indexed column,

511–512
index statistics, 512–513
indexed views, 279, 289, 306–307

benefits of, 311–312
creating, 307–309
editing information concerning, 310
modifying the structure of, 309

indexes. See indices
indices

ALTER INDEX statement, 284
bitmap indices, 696
clustered, 276–277
column store, 289
columnstore indices, 696–700
and conditions in the WHERE clause, 287–288
covering indices, 288–289
creating, 114, 278–282
disabling an index, 285–286
editing index information, 283–284
filtered, 289
full-text, 289
geometry auto grid index, 752
guidelines for partitioning, 693–694
and the join operator, 288
nonclustered, 277–278
obtaining index fragmentation information,

282–283
overview, 274–276
partitioned, 289, 691
rebuilding an index, 284–285
removing and renaming, 286
reorganizing leaf index pages, 285
spatial indices, 745–748, 752
special types of, 289–291
XML, 289

information schema, 261, 267–268
information_schema.columns, 268
information_schema.tables, 267–268
inner queries, 174
in-row data pages, 412

G
general interfaces, 261–262

catalog views, 260, 262–265
dynamic management views (DMVs) and functions (DMFs),

260, 265–267
information schema, 261, 267–268

geodetic models, 737
GEOGRAPHY data type, 739–740, 745
Geography Markup Language (GML), 740
geometry auto grid index, 752
geometry collections, 739
GEOMETRY data type, 737–740, 741–744
global temporary tables, 179
global variables, 91–92
GOTO statement, 232, 233
GRANT statement, 342–346
graphical user interfaces. See GUIs
GROUP BY clause, 151–153

CUBE operator, 636–638
ROLLUP operator, 638–639

GROUPING function, 639–640
grouping sets, 641–642
GROUPING_ID function, 640–641
GUIs, 5

H
HADR. See high-availability and disaster recovery (HADR)
hard page faults, 550
hardware requirements, 28–29
hash joins, 516
HAVING clause, 159–160
heap, 277
hierarchies, defined, 599
HIERARCHYID data type, 81
high-availability and disaster recovery (HADR), 458

availability groups, 459
availability modes, 459
availability replicas, 459
configuration, 459–460

histograms, 512
hit counts, 65–66
HOLAP, 594
HTML, 711–712
human error, 428
Hypertext Markup Language. See HTML

I
identifiers, 74
IDENTITY property, 163–164

29-Index.indd 786 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 8 7

join hints, 534–537
join operator, 201

advantages over subqueries, 196
explicit and implicit join syntax, 180–181
and indices, 288
joining more than two tables, 186–187
natural joins, 181–185
outer joins, 188–190
overview, 180
self-joins, 191–192
semi-joins, 192
theta joins, 190–191
See also star join optimization

join order selection, 514

K
keys

asymmetric keys, 320–321
editing user keys, 322–323
Extensible Key Management (EKM), 323
symmetric keys, 320

keywords, reserved, 74

L
large object data types, 79–80
left outer joins, 188
levels, defined, 600
LIKE operator, 148–151
line strings, 738
literal values, 72–73
LOBs, 79–80
local temporary tables, 179
local variables, 231–232
locking

deadlocks, 374–375
displaying lock information, 373
exclusive locks, 368
intent locks, 369–370
lock escalation, 371
lock granularity, 370–371
lock modes, 368–370
LOCK_TIMEOUT option, 373
locking hints, 372
overview, 367–368
and performance, 545–546
shared locks, 368
update locks, 368–369

log files
adding or removing, 118–119
SQL Server Agent error log, 479

INSERT statement
inserting a single row, 210–212
inserting multiple rows, 213–214
overview, 210
and table value constructors, 214–215
and views, 300–303

inserted virtual tables, 386
installation

components, 24–25
general recommendations, 23–27
hardware requirements, 28–29
installation process, 31–39
network requirements, 29
Online Release Notes, 30
planning, 27–30
root directory, 25
security documentation, 30
Setup documentation, 30
System Configuration Checker, 30

Installation Center, 31
instances, 25–27

configuration, 34
INSTEAD OF triggers, 391–392
integrity constraints, 6, 115–117

adding or removing, 127–128
CREATE TABLE statement and, 104–109
declarative, 389–390
enabling or disabling, 128–129
enforcing, 389–391
procedural, 389

intent locks, 369–370
interfaces, 261–262
Interrupts/sec counter, 552
INTERSECT set operator, 170–171
isolation, 362–363
isolation levels, 375

concurrency problems, 375–376
READ COMMITTED isolation level, 377
READ UNCOMMITTED isolation level, 376–377
REPEATABLE READ isolation level, 377
SERIALIZABLE isolation level, 378
setting and editing, 378–379

J
jobs

creating, 470–473
creating a job schedule, 473–475
notifying operators about the job status, 475
viewing the job history log, 475–477

join columns, 182
join conditions, 182

29-Index.indd 787 2/6/12 2:11:27 PM

 7 8 8 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

N
named instance, 26
Named Pipes, 29
native storage, 716, 717
nested loops, 514–515
network requirements, 29
New Publication Wizard, 504
noise words, 758
nonclustered indices, 277–278
nonrecursive queries, 199–200
nonrepeatable reads, 376
normal forms, 13–15
normalization, 12
NTILE function, 652
null values, 92–93
NULL values, queries involving, 147–148
numeric data types, 75
numeric functions, 84–85

O
Object Explorer, 45

creating databases, 50–54
managing tables, 54–59
modifying databases, 54

OBJECTPROPERTY function, 270–271, 283
objects

creating, 96
removing, 130
uncontained, 266

OFFSET/FETCH, 650–651
OLAP, 595

advantages of using OLAP functions, 628
NTILE function, 652
OFFSET/FETCH, 650–651
ranking functions, 643–645
statistical aggregate functions, 646–647
TOP clause, 647–650

OLE DB for OLAP, 614
OLTP. See online transaction processing
ON DELETE option, 112–113
ON UPDATE option, 112–113
ONLINE option, 281
Online Release Notes, 30
online transaction processing, 582–583
operators, 90–92

Boolean operators, 140–144
comparison operators, 175–176
LIKE operator, 148–151

log files (cont.)
transaction log, 366–367
viewing the job history log, 475–477
Windows Application log, 479

log reader agents, 494
log shipping, 458
logical data independence, 5–6
logical I/O, 548
logical read, 548
lost updates, 375

M
Maintenance Plan Wizard, 460–463
managed targets, 421
management data warehouse, 569–570
Management Studio. See SQL Server Management Studio
master database, 406

backing up, 439–440
restoring, 449–450

MAX aggregate function, 154–156
max degree of parallelism, 414
MDW. See management data warehouse
MDX, 614

querying data, 621–623
measure groups, defined, 600
measures, 588
members, defined, 599
memory, 549–550

monitoring using counters, 554–555
monitoring using DBCC MEMORYSTATUS command, 556
monitoring using dynamic management views, 555–556

MEMORYSTATUS command, 556
merge agents, 494
merge joins, 515
merge replication, 498–499
MERGE statement, 220–221
metadata functions, 90
MIN aggregate function, 154–156
mirroring, 456, 457
mixed mode, 318
model database, 407
MOLAP, 594
msdb database, 408
Multidimensional Expressions. See MDX
multiline strings, 738
multipoints, 738
multipolygons, 739
multivalued dependency, 12

29-Index.indd 788 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 8 9

partition scheme, 685, 688–691
partition-aware seek operation, 692–693
partitioned indices, 289, 691
range partitioning, 685
setting partition goals, 686
table collocation, 692

PATH mode, 729–730
peer-to-peer transactional replication, 496–497
performance

application-code efficiency, 543
choosing the right tool for monitoring, 560–569
CPU counters, 552
Database Engine Tuning Advisor, 561–569
locks, 545–546
monitoring CPU usage using views, 553–554
monitoring memory, 554–556
monitoring the disk system, 556–558
monitoring the network interface, 558–560
partitioning techniques for increasing performance,

692–693
Performance Data Collector, 569–572
Performance Monitor, 550–552
physical design, 543–545
query optimization, 545
Resource Governor, 572–576
SQL Server Profiler, 560–561
and system resources, 546–550

Performance Data Collector, 569–572
Performance Monitor, 550–552
permissions, 317

with corresponding securables, 343
managing using Management Studio, 348–349
See also authorization

persistent computed columns, 290–291
pessimistic concurrency, 360–361
phantoms, 376
physical data independence, 5
physical I/O, 548
physical read, 548
PIVOT operator, 653–655

See also UNPIVOT operator
plan caching, 516–517
plan guides, 538–540

See also optimization hints
plan handles, 529
points, 738
policies, 421
Policy-Based Management, 421–424
polygons, 739

IN and BETWEEN operators, 144–146
set operators, 167–172

optimistic concurrency, 361
optimization. See query optimization
optimization hints

join hints, 534–537
overview, 531
query hints, 537–538
reasons to use, 531–532
table hints, 532–534
See also plan guides

optimizers, 6
ORDER BY clause

overview, 160–162
using to support paging, 162–163

outer joins, 188–190
outer queries, 174
OUTPUT clause, 221–224

P
PAD_INDEX option, 280
page chains, 276
page faults, 550
Page Faults/sec counter, 555
pages, 409

in-row data pages, 412
page headers, 410
row offset table, 411–412
row-overflow data, 412–414
space reserved for data, 411

Pages/sec counter, 555
Parallel Data Warehouse Edition, 23
parallel processing, 414
parent tables, 109
parity, 456
parsing, 509
partitions

creating a filegroup for each partition, 687–688
creating partitioned tables, 685–691
creating the partition function and partition scheme,

688–691
defined, 600
determining the partition key and number of partitions, 686
guidelines for partitioning tables and indices, 693–694
how the Database Engine partitions data, 685
overview, 684–685
parallel execution of queries, 693
partition function, 685, 688–691
partition key, 685, 686

29-Index.indd 789 2/6/12 2:11:27 PM

 7 9 0 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

join processing techniques, 514–516
multiple-threads-per-partition strategy, 693
optimization hints, 531–540
and performance, 545
plan caching, 516–517
query analysis, 510
SET statement, 518–522
single-thread-per-partition strategy, 693

query processing, phases of, 508–509
Quick Info pop-up, 66
QuickWatch window, 66

R
RAID, 455

RAID 0 (disk striping), 455
RAID 1 (mirroring), 456
RAID 5 (parity), 456

RAISEERROR statement, 232, 233
range partitioning, 685
ranking functions, 643–645
RAW mode, 726–727
read ahead, 548–549
READ COMMITTED isolation level, 377
READ COMMITTED SNAPSHOT isolation level, 379–380

vs. SNAPSHOT, 380–381
READ UNCOMMITTED isolation level, 376–377
recovery, 7, 440–441

automatic, 441
backup sets, 442–443
bulk-logged recovery model, 451–452
changing and editing a recovery model, 452–453
full recovery model, 451
manual, 441–450
to a mark, 448–449
recovery models, 450
restoring databases and logs using Management Studio,

446–450
restoring databases and logs using Transact-SQL

statements, 443–445
restoring other system databases, 450
restoring the master database, 449–450
simple recovery model, 452
See also backups

recursive member, 201
recursive queries, 200–204
referenced tables, 109
referencing tables, 109
referential integrity, 110

ON DELETE and ON UPDATE options, 112–113
possible problems with, 110–112

PowerPivot for Excel, 614
Data Analysis Expressions (DAX), 615
querying data, 615–621

PRIMARY KEY clause, 106–107
principals, 316–317, 327
priority-based resolution, 499
procedural extensions

block of statements, 228–229
GOTO statement, 232, 233
IF statement, 229–230
local variables, 231–232
overview, 228
RAISEERROR statement, 232, 233
RETURN statement, 232
WAITFOR statement, 232, 233
WHILE statement, 230–231

Processor Queue Length counter, 552
production databases, backing up, 440
program errors, 428
property functions, 261, 270–271
proprietary interfaces, 261–262

property functions, 261, 270–271
system functions, 261, 269–270
system stored procedures, 261, 268–269

public role, 337
publication servers, configuring, 502–504
publications, 492–493

setting up, 504
publishers, 490–491
pull subscriptions, 493
push subscriptions, 492

Q
queries

nonrecursive, 199–200
parallel execution of queries, 693
recursive, 200–204
in XML, 732–734
See also CREATE SEQUENCE statement; SELECT statements;

subqueries
query analysis, 510
query compilation, 509
Query Editor, 60–63
query execution, 509
query hints, 537–538
query optimization, 6, 508, 509

and dynamic management views, 528–531
index selection, 510–514
join order selection, 514

29-Index.indd 790 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 9 1

role switching, 459
roles

application roles, 337–339
fixed database roles, 336–337
fixed server roles, 334–336
overview, 333–334
user-defined database roles, 340–341
user-defined server roles, 339

ROLLBACK WORK statement, 364
ROLLUP operator, 638–639
ROOT directive, 731–732
root directory, installation considerations, 25
row offset table, 411–412
row store, 697
row value constructors. See table value constructors
row versioning

overview, 379
READ COMMITTED SNAPSHOT isolation level, 379–381
SNAPSHOT isolation level, 380–381
and the tempdb database, 386

row-overflow data, 412–414

S
sa login, 336
sample database, 8–11
SAVE TRANSACTION statement, 364
scalar functions, 83–84
scalar operators, 90–92
schema languages, 712–715
schemas, 114–115

ALTER SCHEMA statement, 330
CREATE SCHEMA statement, 328–329
default database schemas, 333
defined, 5
DROP SCHEMA statement, 330
user-schema separation, 327–328

second normal form (2NF), 13–14
See also normal forms; normalization

securables, 317
and permissions, 343

security, 7
change tracking, 316, 351–354
documentation, 30
managing using Management Studio, 324–325
managing using Transact-SQL statements, 325–327
in SSAS, 623–624
and views, 354–355
See also authentication; authorization; database security;

encryption
seed, 201

relational data
presenting as XML documents, 725–732
presenting XML documents as, 725

relational database systems, 7–8
sample database, 8–11

relational storage. See ROLAP
relationships, 16
relevance score, 760
removing objects, 130
REPEATABLE READ isolation level, 377
replication, 489

agents, 493–494
central publisher with a remote distributor, 500–501
central publisher with distributor, 500
central subscriber with multiple publishers, 501
configuring distribution and publication servers, 502–504
distribution database, 493
merge replication, 498–499
multiple publishers with multiple subscribers, 501–502
overview, 490
peer-to-peer transactional replication, 496–497
publications and articles, 492–493
publishers, distributors and subscribers, 490–491
replication models, 499–502
snapshot replication, 497–498
transactional replication, 495–496

Report Builder, 665–666
reporting, 595
Reporting Services

architecture, 661–662
configuring, 664–665
creating reports, 665–667
data reports, 660–661
report catalog, 663
Report Manager, 663–664
Reporting Services Windows Service, 662–663

reserved keywords, 74
resource database, 406
Resource Governor, 572–576
RESTORE DATABASE statement, 443–445
RESTORE FILELISTONLY statement, 443
RESTORE HEADERONLY statement, 442
RESTORE LABELONLY statement, 442
RESTORE LOG statement, 445
RESTORE VERIFYONLY statement, 443
result sets, 136
RETURN statement, 232
REVOKE statement, 347–348
right outer joins, 188
ROLAP, 594

data partitioning, 684–691

29-Index.indd 791 2/6/12 2:11:27 PM

 7 9 2 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

SQL Server Analysis Services. See SSAS
SQL Server, editions, 22–23
SQL Server Management Studio

backups, 436–439
browsing cubes, 614
components, 42–43
connecting to a server, 43–44, 48
creating a new server group, 48
creating databases without using Transact-SQL, 50–54
database security, 331–332
debugging, 64–66
and graphical execution plans, 522–523
indexing full-text data, 765–768
managing multiple servers, 49–50
managing permissions, 348–349
managing tables without using Transact-SQL, 54–59
modifying databases without using Transact-SQL, 54
Object Explorer, 45
opening, 42
organizing and navigating panes, 46–47
Query Editor, 60–63
registered servers, 44–45, 47–48
restoring databases and logs, 446–450
scheduling backups, 439
security, 324–325
Solution Explorer, 63–64
starting and stopping servers, 50

SQL Server Profiler, 560–561
SQL_VARIANT data type, 80
SQL:1999 standard, 628
sqlcmd utility, 416–418
sqlservr utility, 418–419
SSAS

browsing cubes, 611–613
Business Intelligence Development Studio (BIDS), 600–601
creating a BI project, 601–602
creating a cube, 607–608
design storage aggregation, 608–610
identifying data sources, 602–603
overview, 598
processing cubes, 610–611
security, 623–624
specifying data source views, 603–607
terminology, 598–600

SSMS. See SQL Server Management Studio
Standard Edition, 22
Standard General Markup Language. See SGML
standby servers, 454–455
star join optimization, 694–696
star schemas, 588
statistical aggregate functions, 158–159, 646–647

SELECT statements
GROUP BY clause, 151–153
HAVING clause, 159–160
and IDENTITY property, 163–164
ORDER BY clause, 160–163
overview, 136–138
WHERE clause, 138–151

self-joins, 191–192
semi-joins, 192
SERIALIZABLE isolation level, 378
SET IMPLICIT TRANSACTIONS statement, 365–366
set operators

INTERSECT and EXCEPT set operators, 170–172
UNION set operator, 167–170, 172

SET statement
other options, 521–522
textual execution plan, 518–520
XML execution plan, 520–521

setup, documentation, 30
Setup Support Rules, 30, 31, 32
SGML, 711
shared locks, 368
shared memory, 29
snapshot agents, 494
SNAPSHOT isolation level, 380–381
snapshot replication, 497–498
snapshots, creating, 99–100
snowflake schemas, 589–590
soft page faults, 550
Solution Explorer, 63–64
solutions, 602
SORT_IN_TEMPDB option, 280–281
sparse columns, 82
spatial data

circular string, 750–751
compound curve, 751
curve polygons, 751
displaying information concerning, 748–749
external data formats, 740
GEOGRAPHY data type, 739–740, 745
GEOMETRY data type, 737–740, 741–744
introduction to, 736–737
models for representing, 737
new subtypes of circular arcs, 750–751
new system stored procedures, 752–753
spatial indices, 745–748, 752

spheroids, 737
SQL, 11
SQL Server Agent

error log, 479
starting, 469

29-Index.indd 792 2/6/12 2:11:27 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 9 3

System Configuration Checker, 30
system databases

master database, 406
model database, 407
msdb database, 408
overview, 406
resource database, 406
tempdb database, 407–408

system functions, 88–89, 261, 269–270
system stored procedures, 228, 261, 268–269

concerning spatial data, 752–753
sp_configure, 125, 269
sp_help, 269
sp_helpconstraint, 128
sp_helptrigger, 393
sp_migrate_user_to_contained, 351
sp_monitor, 559–560
sp_setapprole, 339
sp_spaceused, 310

T
table expressions, 196–197

common table expressions (CTE), 198–204
derived tables, 197–198

table hints, 532–534
table scan, 274
table value constructors, 214–215
tables

adding or dropping a new column, 126
adding or removing integrity constraints, 127–128
CREATE TABLE statement, 101–104
creating with Object Explorer, 54
enabling or disabling constraints, 128–129
guidelines for partitioning, 693–694
managing, 54–59
modifying column properties, 127
parent tables, 109
referenced tables, 109
referencing tables, 109
renaming, 57, 129
temporary, 102, 179
viewing properties, 56

table-valued functions, 250–251
and the APPLY operator, 251–253

table-valued parameters, 253–254
tape backups, 433
target sets, 421
TCP/IP, 29
TDE. See Transparent Data Encryption (TDE)
tempdb database, 407–408
temporal data types, 76–78

statistics, 508
column statistics, 513–514
index statistics, 512–513

STATISTICS_NORECOMPUTE option, 281
stop lists, 758
stop words, 758
storage

architecture of the Database Engine, 408–409
FILESTREAM, 81–82
sparse columns, 82

stored procedures
changing the structure of, 242
and Common Language Runtime (CLR), 242–247
creating, 114, 237–240
data pages, 409–414
overview, 236

string functions, 86–88
subqueries

advantages over joins, 195–196
and ANY and ALL operators, 177–179
and comparison operators, 175–176
and the IN operator, 176–177
overview, 174–175
See also correlated subqueries

subscribers, 490–491
subscription servers, configuring, 504–505
subscriptions, 492–493

data-driven subscriptions, 679–680
report subscription, 678–680
standard subscriptions, 679

SUM aggregate function, 156
symmetric keys, 320
synonyms, creating, 114
syntax, conventions, 17
sys.dm_exec_cached_plans, 531
sys.dm_exec_procedure_stats, 531
sys.dm_exec_query_optimizer_info, 528–529
sys.dm_exec_query_plan, 529
sys.dm_exec_query_stats, 530
sys.dm_exec_sql_text, 530–531
sys.dm_exec_text_query_plan, 530–531
system administrator, sa login, 336
system availability

failover clustering, 457–458
high-availability and disaster recovery (HADR), 458–460
log shipping, 458
mirroring, 456, 457
overview, 453–454
using a standby server, 454–455
using RAID technology, 455–456

system base tables, 260
system catalog, 260–262

29-Index.indd 793 2/6/12 2:11:28 PM

 7 9 4 M i c r o s o f t S Q L S e r v e r 2 0 1 2 : A B e g i n n e r ’s G u i d e

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

AFTER triggers, 387–391
using deleted and inserted virtual tables, 386

trivial functional dependency, 12
TRUNCATE TABLE statement, 219–220
trusted connection, 416
TRY statement, 233–235
two-phase commit, 488–489
TYPE directive, 730–731
TYPEPROPERTY function, 270–271

U
UDFs. See user-defined functions
uncontained objects, 266
uniform resource identifiers, 710
UNION set operator, 167–170, 172
UNIQUE clause, 105–106
UNIQUEIDENTIFIER data type, 80
UNPIVOT operator, 655–656

See also PIVOT operator
update locks, 368–369
UPDATE statement, 215–217

and views, 303–305
URIs, 710
user interfaces, 5
user-defined aggregate functions, 159
user-defined database roles, 340–341
user-defined functions

changing the structure of, 255
and Common Language Runtime (CLR), 255–256
creating and executing, 248–249
invoking, 250

user-defined server roles, 339

V
variables

global, 91–92
local, 231–232

VIA protocol, 29
views

altering and removing, 298–299
creating, 113, 294–298
and DELETE statements, 305–306
editing information concerning, 299
and INSERT statements, 300–303
monitoring CPU usage using views, 553–554
retrieving, 300
and security, 354–355
and UPDATE statements, 303–305

virtual computed columns, 290

temporary tables, 102, 179
textual execution plan, 518–520
theta joins, 190–191
third normal form (3NF), 14–15

See also normal forms; normalization
THROW statement, 234–235
TIMESTAMP data type, 81
tokens, 757

operations on, 758–759
TOP clause, 647–650
transaction log backup, 430–431
transactional replication, 495–496
transactions

BEGIN DISTRIBUTED TRANSACTION statement, 364
BEGIN TRANSACTION statement, 363, 366
COMMIT WORK statement, 364
explicit, 361
implicit, 361
overview, 361–362
properties of, 362–363
ROLLBACK WORK statement, 364
SAVE TRANSACTION statement, 364
SET IMPLICIT TRANSACTIONS statement, 365–366
transaction log, 366–367

Transact-SQL, 11
aggregate functions, 83, 153–159
creating database snapshots, 99–100
creating databases, 96–99
date functions, 86
and indices, 278–286
metadata functions, 90
numeric functions, 84–85
restoring databases and logs, 443–445
scalar functions, 83–84
string functions, 86–88
system functions, 88–89
See also procedural extensions; SELECT statements

Transparent Data Encryption (TDE), 324
triggers

change tracking, 351
and Common Language Runtime (CLR), 396–400
creating, 114
creating a DML trigger, 384–385
database-level triggers, 394–395
DDL triggers, 393–396
defined, 384
first and last, 392–393
INSTEAD OF triggers, 391–392
modifying a trigger’s structure, 385–386
raising an error using triggers, 483–484
server-level triggers, 395–396

29-Index.indd 794 2/6/12 2:11:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

 I n d e x 7 9 5

decomposition, 716, 723–724
directives, 730–732
document type definition (DTD), 712–714
elements, 708
execution plans, 520–521
EXPLICIT mode, 728–729
indexing an XML column, 719–721
indices, 289
Infoset (XML Information Set), 716
namespaces, 710
native storage, 716, 717
overview, 706
PATH mode, 729–730
presenting relational data as XML documents, 725–732
presenting XML documents as relational data, 725
querying data, 732–734
raw documents, 715, 716
RAW mode, 726–727
related languages, 711–712
requirements of a well-formed XML document,

706–707
storing documents in SQL Server, 715–724
storing documents using decomposition, 723–724
storing documents using the XML data type, 717–723
typed columns, variables, and parameters, 722–723
typed vs. untyped, 721–722
and the World Wide Web, 711
XML Schema, 714–715, 721–722

XML column, 716
XML data type, 716, 717–723
XPath, 732–734
XQuery, 732–734

virtual tables, 294
deleted and inserted, 386
See also views

W
WAITFOR statement, 232, 233
Web Edition, 22
well-known binary (WKB), 740
well-known text (WKT), 740
WHERE clause

Boolean operators, 140–144
indices and conditions in, 287–288
LIKE operator, 148–151
IN and BETWEEN operators, 144–146
overview, 138–140
queries involving NULL values, 147–148

WHILE statement, 230–231
window construct

ordering, 632–635
overview, 628–630
partitioning, 630–632

Windows Application log, 479
Windows mode, 317–318
WITH keyword, 199
WITH RECOMPILE option, 237
WITH RESULT SETS clause, 241–242
word breakers, 757–758
Workgroup Edition, 22

X
XML

attributes, 709
AUTO mode, 727–728

29-Index.indd 795 2/6/12 2:11:28 PM

SQL_2008 / Microsoft SQL Server 2012: ABG / Petkovic / 176160-8 / Index

S LQSQS LQL
TM

Master Microsoft® SQL Server® 2012
and Microsoft’s Powerful Business
Intelligence Tools

Microsoft SQL Server 2012:
A Beginner’s Guide, Fifth Edition
Dušan Petković
Filled with real-world examples and
hands-on exercises, this book makes it
easy to learn essential skills.

Microsoft SQL Server 2012
Reporting Services, Fourth Edition
Brian Larson
Create, deploy, and manage BI reports
using the expert tips and best practices
in this hands-on resource.

Delivering Business Intelligence
with Microsoft SQL Server 2012,
Third Edition
Brian Larson
Equip your organization for informed,
timely decision making with the expert
tips in this practical guide.

Visualizing Data with Microsoft
Power View
Brian Larson, Mark Davis, Dan English,
and Paul Purington
Unlock the power of Microsoft Power
View and build rich BI reports with
just a few clicks.

Microsoft SQL Server 2012 Master
Data Services, Second Edition
Tyler Graham and Suzanne Selhorn
Learn best practices for deploying
and managing Master Data Services
(MDS). QSQSSQSQSSQSQSSSQSAvailable in print and e-book format

Follow us @MHComputing

MHP0721 SQL Server BOB Ad.indd 1 1/27/12 1:06 PM29-Index.indd 796 2/6/12 2:11:28 PM

	A Beginner’s Guide
	About the Author
	About the Technical Editor

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Goals of the Book
	SQL Server 2012 New Features Described in the Book
	Organization of the Book
	Changes from the Previous Edition
	Differences Between SQL and Transact-SQL Syntax
	Working with the Sample Databases

	Part I: Basic Concepts and Installation
	Chapter 1: Relational Database Systems: An Introduction
	Database Systems: An Overview
	Variety of User Interfaces
	Physical Data Independence
	Logical Data Independence
	Query Optimization
	Data Integrity
	Concurrency Control
	Backup and Recovery
	Database Security

	Relational Database Systems
	Working with the Book’s Sample Database
	SQL: A Relational Database Language

	Database Design
	Normal Forms
	First Normal Form
	Second Normal Form
	Third Normal Form

	Entity-Relationship Model

	Syntax Conventions
	Summary
	Exercises

	Chapter 2: Planning the Installation and Installing SQL Server
	SQL Server Editions
	Planning Phase
	General Recommendations
	Which SQL Server Components Should Be Installed?
	Where Will the Root Directory Be Stored?
	Should Multiple Instances of the Database Engine Be Used?
	Which Authentication Mode for the Database Engine Should Be Used?

	Planning the Installation
	Hardware and Software Requirements
	Security Documentation
	Online Release Notes
	Setup Documentation
	System Configuration Checker

	Installing SQL Server
	Summary

	Chapter 3: SQL Server Management Studio
	Introduction to SQL Server Management Studio
	Connecting to a Server
	Registered Servers
	Object Explorer
	Organizing and Navigating SQL Server Management Studio’s Panes

	Using SQL Server Management Studio with the Database Engine
	Administering Database Servers
	Registering Servers
	Connecting to a Server
	Creating a New Server Group
	Managing Multiple Servers
	Starting and Stopping Servers

	Managing Databases Using Object Explorer
	Creating Databases Without Using Transact-SQL
	Modifying Databases Without Using Transact-SQL
	Managing Tables Without Using Transact-SQL

	Authoring Activities Using SQL Server Management Studio
	Query Editor
	Solution Explorer
	SQL Server Debugging

	Summary
	Exercises

	Part II: Transact-SQL Language
	Chapter 4: SQL Components
	SQL’s Basic Objects
	Literal Values
	Delimiters
	Comments
	Identifiers
	Reserved Keywords

	Data Types
	Numeric Data Types
	Character Data Types
	Temporal Data Types
	Miscellaneous Data Types
	Binary and BIT Data Types
	Large Object Data Types
	UNIQUEIDENTIFIER Data Type
	SQL_VARIANT Data Type
	HIERARCHYID Data Type
	TIMESTAMP Data Type

	Storage Options
	FILESTREAM Storage
	Sparse Columns

	Transact-SQL Functions
	Aggregate Functions
	Scalar Functions
	Numeric Functions
	Date Functions
	System Functions
	Metadata Functions

	Scalar Operators
	Global Variables

	NULL Values
	Summary
	Exercises

	Chapter 5: Data Definition Language
	Creating Database Objects
	Creation of a Database
	Attaching and Detaching Databases

	CREATE TABLE: A Basic Form
	CREATE TABLE and Declarative Integrity Constraints
	The UNIQUE Clause
	The PRIMARY KEY Clause
	The CHECK Clause
	The FOREIGN KEY Clause

	Referential Integrity
	Possible Problems with Referential Integrity
	The ON DELETE and ON UPDATE Options

	Creating Other Database Objects
	Integrity Constraints and Domains
	Alias Data Types
	CLR Data Types

	Modifying Database Objects
	Altering a Database
	Modifying File or Filegroup Properties
	Setting Database Options
	Storing FILESTREAM Data
	Contained Databases

	Altering a Table
	Adding or Dropping a New Column
	Modifying Column Properties
	Adding or Removing Integrity Constraints
	Enabling or Disabling Constraints
	Renaming Tables and Other Database Objects

	Removing Database Objects
	Summary
	Exercises

	Chapter 6: Queries
	SELECT Statement: Its Clauses and Functions
	WHERE Clause
	Boolean Operators
	IN and BETWEEN Operators
	Queries Involving NULL Values

	GROUP BY Clause
	Aggregate Functions
	Convenient Aggregate Functions
	Statistical Aggregate Functions
	User-Defined Aggregate Functions

	HAVING Clause
	ORDER BY Clause
	Using ORDER BY to Support Paging

	SELECT Statement and IDENTITY Property
	CREATE SEQUENCE Statement
	Set Operators
	UNION Set Operator
	INTERSECT and EXCEPT Set Operators

	CASE Expressions

	Subqueries
	Subqueries and Comparison Operators
	Subqueries and the IN Operator
	Subqueries and ANY and ALL Operators

	Temporary Tables
	Join Operator
	Two Syntax Forms to Implement Joins
	Natural Join
	Joining More Than Two Tables

	Cartesian Product
	Outer Join
	Further Forms of Join Operations
	Theta Join
	Self-Join, or Joining a Table with Itself
	Semi-Join

	Correlated Subqueries
	Subqueries and the EXISTS Function
	Should You Use Joins or Subqueries?
	Subquery Advantages
	Join Advantages

	Table Expressions
	Derived Tables
	Common Table Expressions
	CTEs and Nonrecursive Queries
	CTEs and Recursive Queries

	Summary
	Exercises

	Chapter 7: Modification of a Table’s Contents
	INSERT Statement
	Inserting a Single Row
	Inserting Multiple Rows
	Table Value Constructors and INSERT

	UPDATE Statement
	DELETE Statement
	Other T-SQL Modification Statements and Clauses
	TRUNCATE TABLE Statement
	MERGE Statement
	The OUTPUT Clause

	Summary
	Exercises

	Chapter 8: Stored Procedures and User-Defined Functions
	Procedural Extensions
	Block of Statements
	IF Statement
	WHILE Statement
	Local Variables
	Miscellaneous Procedural Statements
	Exception Handling with TRY, CATCH, and THROW

	Stored Procedures
	Creation and Execution of Stored Procedures
	The EXECUTE Statement with RESULT SETS Clause
	Changing the Structure of Stored Procedures

	Stored Procedures and CLR

	User-Defined Functions
	Creation and Execution of User-Defined Functions
	Invoking User-Defined Functions
	Table-Valued Functions
	Table-Valued Parameters

	Changing the Structure of UDFs
	User-Defined Functions and CLR

	Summary
	Exercises

	Chapter 9: System Catalog
	Introduction to the System Catalog
	General Interfaces
	Catalog Views
	Querying Catalog Views

	Dynamic Management Views and Functions
	Information Schema
	Information_schema.tables
	Information_schema.columns

	Proprietary Interfaces
	System Stored Procedures
	System Functions
	Property Functions

	Summary
	Exercises

	Chapter 10: Indices
	Introduction
	Clustered Indices
	Nonclustered Indices

	Transact-SQL and Indices
	Creating Indices
	Obtaining Index Fragmentation Information
	Editing Index Information
	Altering Indices
	Rebuilding an Index
	Reorganizing Leaf Index Pages
	Disabling an Index

	Removing and Renaming Indices

	Guidelines for Creating and Using Indices
	Indices and Conditions in the WHERE Clause
	Indices and the Join Operator
	Covering Index

	Special Types of Indices
	Virtual Computed Columns
	Persistent Computed Columns

	Summary
	Exercises

	Chapter 11: Views
	DDL Statements and Views
	Creating a View
	Altering and Removing Views
	Editing Information Concerning Views

	DML Statements and Views
	View Retrieval
	INSERT Statement and a View
	UPDATE Statement and a View
	DELETE Statement and a View

	Indexed Views
	Creating an Indexed View
	Modifying the Structure of an Indexed View
	Editing Information Concerning Indexed Views
	Benefits of Indexed Views

	Summary
	Exercises

	Chapter 12: Security System of the Database Engine
	Authentication
	Implementing an Authentication Mode
	Encrypting Data
	Symmetric Keys
	Asymmetric Keys
	Editing User Keys
	SQL Server Extensible Key Management
	Methods of Data Encryption

	Setting Up the Database Engine Security
	Managing Security Using Management Studio
	Managing Security Using Transact-SQL Statements

	Schemas
	User-Schema Separation
	DDL Schema-Related Statements
	Create Schema
	Alter Schema
	Drop Schema

	Database Security
	Managing Database Security Using Management Studio
	Managing Database Security Using Transact-SQL Statements
	Default Database Schemas

	Roles
	Fixed Server Roles
	Managing Fixed Server Roles

	Fixed Database Roles
	public Role
	Assigning a User to a Fixed Database Role

	Application Roles
	Managing Application Roles Using Management Studio
	Managing Application Roles Using T-SQL
	Activating Application Roles

	User-Defined Server Roles
	User-Defined Database Roles
	Managing User-Defined Database Roles Using Management Studio
	Managing User-Defined Database Roles Using T-SQL

	Authorization
	GRANT Statement
	DENY Statement
	REVOKE Statement
	Managing Permissions Using Management Studio
	Managing Authorization and Authentication of Contained Databases

	Change Tracking
	Data Security and Views
	Summary
	Exercises

	Chapter 13: Concurrency Control
	Concurrency Models
	Transactions
	Properties of Transactions
	Transact-SQL Statements and Transactions
	Transaction Log

	Locking
	Lock Modes
	Lock Granularity
	Lock Escalation
	Affecting Locks
	Locking Hints
	LOCK_TIMEOUT Option

	Displaying Lock Information
	Deadlock

	Isolation Levels
	Concurrency Problems
	The Database Engine and Isolation Levels
	Read Uncommitted
	Read Committed
	Repeatable Read
	Serializable
	Setting and Editing Isolation Levels

	Row Versioning
	READ COMMITTED SNAPSHOT Isolation Level
	SNAPSHOT Isolation Level
	Read Committed Snapshot vs. Snapshot

	Summary
	Exercises

	Chapter 14: Triggers
	Introduction
	Creating a DML Trigger
	Modifying a Trigger’s Structure
	Using deleted and inserted Virtual Tables

	Application Areas for DML Triggers
	AFTER Triggers
	Creating an Audit Trail
	Implementing Business Rules
	Enforcing Integrity Constraints

	INSTEAD OF Triggers
	First and Last Triggers

	DDL Triggers and Their Application Areas
	Database-Level Triggers
	Server-Level Triggers

	Triggers and CLR
	Summary
	Exercises

	Part III: SQL Server: System Administration
	Chapter 15: System Environment of the Database Engine
	System Databases
	master Database
	model Database
	tempdb Database
	msdb Database

	Disk Storage
	Properties of Data Pages
	Page Header
	Space Reserved for Data
	Row Offset Table

	Types of Data Pages
	In-Row Data Pages
	Row-Overflow Data

	Parallel Processing of Tasks

	Utilities and the DBCC Command
	bcp Utility
	sqlcmd Utility
	sqlservr Utility
	DBCC Command
	Validation Commands

	Policy-Based Management
	Key Terms and Concepts
	Using Policy-Based Management

	Summary
	Exercises

	Chapter 16: Backup, Recovery, and System Availability
	Reasons for Data Loss
	Introduction to Backup Methods
	Full Database Backup
	Differential Backup
	Transaction Log Backup
	File or Filegroup Backup

	Performing Database Backup
	Backing Up Using Transact-SQL Statements
	Types of Backup Devices
	BACKUP DATABASE Statement
	BACKUP LOG Statement

	Backing Up Using Management Studio
	Scheduling Backups with Management Studio

	Determining Which Databases to Back Up
	Backing Up the master Database
	Backing Up Production Databases

	Performing Database Recovery
	Automatic Recovery
	Manual Recovery
	Is My Backup Set Ready for Recovery?
	Restoring Databases and Logs Using Transact-SQL Statements
	Restoring Databases and Logs Using Management Studio
	Recovering to a Mark
	Restoring the master Database
	Restoring Other System Databases

	Recovery Models
	Full Recovery Model
	Bulk-Logged Recovery Model
	Simple Recovery Model
	Changing and Editing a Recovery Model

	System Availability
	Using a Standby Server
	Using RAID Technology
	RAID 0 (Disk Striping)
	RAID 1 (Mirroring)
	RAID 5 (Parity)

	Database Mirroring
	Failover Clustering
	Log Shipping
	High-Availability and Disaster Recovery (HADR)
	Availability Groups, Replicas, and Modes
	Configuration of HADR

	Maintenance Plan Wizard
	Summary
	Exercises

	Chapter 17: Automating System Administration Tasks
	Starting SQL Server Agent
	Creating Jobs and Operators
	Creating a Job and Its Steps
	Creating a Job Schedule
	Notifying Operators About the Job Status
	Viewing the Job History Log

	Alerts
	Error Messages
	SQL Server Agent Error Log
	Windows Application Log
	Defining Alerts to Handle Errors
	Creating Alerts on System Errors
	Creating Alerts on Error Severity Levels
	Creating Alerts on User-Defined Errors

	Summary
	Exercises

	Chapter 18: Data Replication
	Distributed Data and Methods for Distributing
	SQL Server Replication: An Overview
	Publishers, Distributors, and Subscribers
	Publications and Articles
	The Distribution Database
	Agents
	Snapshot Agent
	Log Reader Agent
	Distribution Agent
	Merge Agent

	Replication Types
	Transactional Replication
	Peer-to-Peer Transactional Replication
	Snapshot Replication
	Merge Replication

	Replication Models
	Central Publisher with Distributor
	Central Publisher with a Remote Distributor
	Central Subscriber with Multiple Publishers
	Multiple Publishers with Multiple Subscribers

	Managing Replication
	Configuring the Distribution and Publication Servers
	Setting Up Publications
	Configuring Subscription Servers

	Summary
	Exercises

	Chapter 19: Query Optimizer
	Phases of Query Processing
	How Query Optimization Works
	Query Analysis
	Index Selection
	Selectivity of an Expression with the Indexed Column
	Index Statistics
	Column Statistics

	Join Order Selection
	Join Processing Techniques
	Nested Loop
	Merge Join
	Hash Join

	Plan Caching
	Influencing Execution Plans
	Displaying Information Concerning the Plan Cache

	Tools for Editing the Optimizer Strategy
	SET Statement
	Textual Execution Plan
	XML Execution Plan
	Other Options of the SET Statement

	Management Studio and Graphical Execution Plans
	Examples of Execution Plans
	Dynamic Management Views and Query Optimizer
	sys.dm_exec_query_plan
	sys.dm_exec_query_stats
	sys.dm_exec_sql_text and sys.dm_exec_text_query_plan
	sys.dm_exec_procedure_stats
	sys.dm_exec_cached_plans

	Optimization Hints
	Why Use Optimization Hints
	Types of Optimization Hints
	Table Hints
	Join Hints
	Query Hints
	Plan Guides

	Summary

	Chapter 20: Performance Tuning
	Factors That Affect Performance
	Database Applications and Performance
	Application-Code Efficiency
	Physical Design

	The Database Engine and Performance
	Query Optimizer
	Locks

	System Resources and Performance
	Disk I/O
	Memory

	Monitoring Performance
	Performance Monitor: An Overview
	Monitoring the CPU
	Monitoring the CPU Using Counters
	Monitoring the CPU Using Views

	Monitoring Memory
	Monitoring Memory Using Counters
	Monitoring Memory Using Dynamic Management Views
	Monitoring Memory Using the DBCCMEMORYSTATUS Command

	Monitoring the Disk System
	Monitoring the Disk System Using Counters
	Monitoring the Disk System Using DMVs

	Monitoring the Network Interface
	Monitoring the Network Interface Using Counter
	Monitoring the Network Interface Using a DMV
	Monitoring the Network Interface Using a System Procedure

	Choosing the Right Tool for Monitoring
	SQL Server Profiler
	Database Engine Tuning Advisor
	Providing Information for the Database Engine Tuning Advisor
	Working with the Database Engine Tuning Advisor

	Other Performance Tools of SQL Server
	Performance Data Collector
	Creating the MDW
	Setting Up Data Collection
	Viewing Reports

	Resource Governor
	Creation of Workload and Resource Groups
	Monitoring Configuration of Resource Governor

	Summary
	Exercises

	Part IV: SQL Server and Business Intelligence
	Chapter 21: Business Intelligence: An Introduction
	Online Transaction Processing vs. Business Intelligence
	Online Transaction Processing
	Business Intelligence Systems

	Data Warehouses and Data Marts
	Data Warehouse Design
	Cubes and Their Architectures
	Aggregation
	How Much to Aggregate?

	Physical Storage of a Cube

	Data Access
	Summary
	Exercises

	Chapter 22: SQL Server Analysis Services
	SSAS Terminology
	Developing a Multidimensional Cube Using BIDS
	Create a BI Project
	Identify Data Sources
	Specify Data Source Views
	Create a Cube
	Design Storage Aggregation
	Process the Cube
	Browse the Cube

	Retrieving and Delivering Data
	Querying Data Using PowerPivot for Excel
	Working with PowerPivot for Excel

	Querying Data Using Multidimensional Expressions

	Security of SQL Server Analysis Services
	Summary
	Exercises

	Chapter 23: Business Intelligence and Transact-SQL
	Window Construct
	Partitioning
	Ordering and Framing

	Extensions of GROUP BY
	CUBE Operator
	ROLLUP Operator
	Grouping Functions
	GROUPING Function
	GROUPING_ID Function

	Grouping Sets

	OLAP Query Functions
	Ranking Functions
	Statistical Aggregate Functions

	Standard and Nonstandard Analytic Functions
	TOP Clause
	OFFSET/FETCH
	NTILE Function
	Pivoting Data
	PIVOT Operator
	UNPIVOT Operator

	Summary
	Exercises

	Chapter 24: SQL Server Reporting Services
	Introduction to Data Reports
	SQL Server Reporting Services Architecture
	Reporting Services Windows Service
	The Report Catalog
	Report Manager

	Configuration of SQL Server Reporting Services
	Creating Reports
	Creating Reports with the Report Server Project Wizard
	Planning Data Sources and Datasets
	Selecting a Data Source
	Designing a Query
	Choosing the Report Type
	Designing the Data in the Table
	Specifying the Report Layout
	Choosing the Report Style
	Choosing the Deployment Location and Completing the Wizard
	Previewing the Result Set
	Deploying the Report

	Creating Parameterized Reports

	Managing Reports
	On-Demand Reports
	Report Subscription
	Standard Subscriptions
	Data-Driven Subscriptions

	Report Delivery Options
	Cached Reports
	Execution Snapshots

	Summary
	Exercises

	Chapter 25: Optimizing Techniques for Relational Online Analytical Processing
	Data Partitioning
	How the Database Engine Partitions Data
	Steps for Creating Partitioned Tables
	Set Partition Goals
	Determine the Partition Key and Number of Partitions
	Create a Filegroup for Each Partition
	Create the Partition Function and Partition Scheme
	Create Partitioned Indices

	Partitioning Techniques for Increasing System Performance
	Table Collocation
	Partition-Aware Seek Operation
	Parallel Execution of Queries

	Guidelines for Partitioning Tables and Indices

	Star Join Optimization
	Columnstore Index
	Managing Columnstore Index
	Creating a Columnstore Index Using Transact-SQL
	Creating a Columnstore Index Using SSMS

	Advantages and Limitations of Columnstore Indices
	Benefits of Columnstore Indices
	Limitations of Columnstore Index

	Summary

	Part V: Beyond Relational Data
	Chapter 26: SQL Server and XML
	XML: Basic Concepts
	Requirements of a Well-Formed XML Document
	XML Elements
	XML Attributes
	XML Namespaces
	XML and World Wide Web
	XML-Related Languages

	Schema Languages
	Document Type Definition
	XML Schema

	Storing XML Documents in SQL Server
	Storing XML Documents Using the XML Data Type
	Indexing an XML Column
	Typed vs. Untyped XML
	Typed XML Columns, Variables, and Parameters

	Storing XML Documents Using Decomposition

	Presenting Data
	Presenting XML Documents as Relational Data
	Presenting Relational Data as XML Documents
	RAW Mode
	AUTO Mode
	EXPLICIT Mode
	PATH Mode
	Directives

	Querying Data
	Summary

	Chapter 27: Spatial Data
	Introduction
	Models for Representing Spatial Data
	GEOMETRY Data Type
	GEOGRAPHY Data Type
	GEOMETRY vs. GEOGRAPHY
	External Data Formats

	Working with Spatial Data Types
	Working with the GEOMETRY Data Type
	Working with the GEOGRAPHY Data Type
	Working with Spatial Indices

	Displaying Information Concerning Spatial Data
	New Spatial Data Features in SQL Server 2012
	New Subtypes of Circular Arcs
	Circular String
	Compound Curve
	Curve Polygons

	New Spatial Indices
	The Geometry Auto Grid Index

	New System Stored Procedures Concerning Spatial Data

	Summary

	Chapter 28: SQL Server Full-Text Search
	Introduction
	Tokens, Word Breakers, and Stop Lists
	Word Breakers and IFilters
	Stop Lists

	Operations on Tokens
	Extended Operations on Words
	Matching Options
	Proximity Operations

	Relevance Score
	How SQL Server FTS Works

	Indexing Full-Text Data
	Indexing Full-Text Data Using Transact-SQL
	Create a Unique Index
	Enable a Database for Full-Text Indexing
	Create a Full-Text Catalog
	Create a Full-Text Index

	Index Full-Text Data Using SQL Server Management Studio

	Querying Full-Text Data
	FREETEXT Predicate
	CONTAINS Predicate
	FREETEXTTABLE Function
	CONTAINSTABLE Function

	Troubleshooting Full-Text Data
	New Features in SQL Server 2012 FTS
	Customizing a Proximity Search
	Searching Extended Properties

	Summary

	Index

