

Mastering Visual Studio 2017

Boosted productivity, redefined fundamentals, streamlined Azure
development, and more

Kunal Chowdhury

BIRMINGHAM - MUMBAI

< html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">

Mastering Visual Studio
2017

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1250717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-190-5

www.packtpub.com

http://www.packtpub.com

Credits

Author

Kunal Chowdhury

Copy Editor

Safis Editing

Reviewer

Dirk Strauss

Project Coordinator

Prajakta Naik

Commissioning Editor

Merint Mathew

Proofreader

Safis Editing

Acquisition Editor

Karan Sadawana

Indexer

Mariammal Chettiyar

Content Development Editor

Siddhi Chavan

Graphics

Abhinash Sahu

Technical Editor

Tiksha Sarang

Production Coordinator

Nilesh Mohite

About the Author
Kunal Chowdhury has been a Microsoft MVP (Most Valuable Professional) since
2010, starting with Silverlight to Windows app development. He is also a renowned
public speaker, active blogger (by passion), and a software engineer (senior/technical
lead) by profession. Over the years, he has acquired profound knowledge on various
Microsoft products and helped developers throughout the world with his deep
knowledge and experience.

As a technical buff, Kunal has in-depth knowledge of OOPs, C#, XAML, .NET, WPF,
UWP, Visual Studio, Windows 10 and Microsoft Azure. He is also proficient in entire
Software Development Life Cycle (SDLC) and Scrum methodology. He has written
many articles, tips & tricks on his technical blog (kunal-chowdhury) for developers
and consumers.

You can contact Kunal via email at books@kunal-chowdhury.com. You can also follow
him on Twitter at @kunal2383 and become a part of his major fans on social media
channels for the updates that he shares over there.

I would like to thank my wife, Manika Paul Chowdhury, and my parents for their
continuous support throughout the period while writing this book. I would also like to
thank the publisher and reviewers for their valuable feedback.

Lastly, thanks to all my friends and colleagues who helped me to learn all that I have
gathered over the years.

About the Reviewer
Dirk Strauss is a software developer and Microsoft MVP from South Africa, with
over 13 years of programming experience. He has extensive experience in SYSPRO
Customization, an ERP system, with C# and web development being his main focus.

He works for Evolution Software, developing responsive web applications with
incredibly inspirational and talented individuals.

He has authored the books C# Programming Cookbook and C# 7 and .NET Core
Cookbook - Second Edition, published by Packt. He has written for Syncfusion,
contributing to the Succinctly series of ebooks, and he also blogs at www.dirkstrauss.com
whenever he gets a chance.

As always, to my wife and kids. Thank you for your love and support.

http://www.dirkstrauss.com

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan your
personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon
page at https://www.amazon.com/dp/1787281906.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787281906

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. What is New in Visual Studio 2017 IDE?
The new installation experience

Overview of the new installation experience
Installation using the online installer
Creating an offline installer of Visual Studio 2017
Installing Visual Studio 2017 from the command line
Modifying your existing Visual Studio 2017 installation
Uninstalling Visual Studio 2017 installation
Signing in to Visual Studio 2017

The new features and enhancements to the Visual Studio IDE
Overview to the redesigned start page
The improved code navigation tool
Changes to Find All References of an instance
Structural guide lines
Editor config
The Roaming Extension Manager feature
Open folders in a convenient way
Lightweight solution loading
Connected Services
Acquiring tools and features by using In-Product Acquisition
The Run to Click feature
Improved Attach to Process with process filtering
The new exception helper
Add conditions to Exception Settings
Updates to Diagnostic Tools

Summary
2. What is New in C# 7.0?

Local functions or nested functions
Literal improvements in C# 7.0
The new digit separators
Getting to know about pattern matching

The Is expression with pattern matching
Switch statements with pattern matching

The ref returns and locals
New changes to tuples
Changes to the throw expression
Changes to the expression-bodied members
New changes with the out variables
Getting to know about deconstruction syntax
Uses of the generalized async return types

Summary
3. Building Applications for Windows Using XAML Tools

The WPF architecture
Presentation Framework
Presentation Core
Common Language Runtime
Media Integration Library
OS Core
Types of WPF applications

The XAML overview
Object element syntax
Property attribute syntax
Property element syntax
Content syntax
Collection syntax
Event attribute syntax
Understanding the XAML namespaces
Working with inline code in XAML pages
The code behind file of an XAML page

Building your first WPF application
Getting started with WPF project
Understanding the WPF project structure
Getting familiar with XAML Designer
Adding controls in XAML
Command-line parameters in WPF application

Layouts in WPF
Using Grid as a WPF panel
Using StackPanel to define stacked layout
Using Canvas as a panel
Using WPF DockPanel to dock child elements
Using the WrapPanel to automatically reposition
Using UniformGrid to place elements in uniform cells

WPF property system
Data binding in WPF
Using Converters while data binding
Using triggers in WPF

Property trigger
Multi trigger
Data trigger
Multidata trigger
Event trigger

Summary
4. Building Applications for Windows 10 Using UWP Tools

Getting started with Universal Windows Platform
Generic design principles of UWP apps

Effective scaling
Effective pixels
Universal controls
Universal styles
Repositioning of controls
Resizing the UI
Reflowing of UI elements
Replacing the UI Elements
Revealing the UI elements

Getting started with UWP app development
Building your first UWP application

Setting up the development environment for first use
Setting up the developer mode
Creating, building, and running the application

Designing UWP applications
Defining XAML page layouts

The relative panels
The VariableSizedWrapGrid class

Data manipulation in a view
The GridView control
The ListView control
The FlipView control

Application designing with the XAML style
Defining a style as a resource
Inheriting a style from another style

Building your own XAML control
Creating the custom control
Exposing properties from a custom control

Generating visual assets using the new Manifest Designer
Preparing UWP apps to publish to Windows Store
Summary

5. Building Applications with .NET Core
Overview of .NET Core
Installation of .NET Core with Visual Studio 2017
A quick lap around the .NET Core commands

Creating a .NET Core console app
Creating a .NET Core class library
Creating a solution file and adding projects in it
Resolving dependencies in the .NET Core application
Building a .NET Core project or solution
Running a .NET Core application
Publishing a .NET Core application

Framework-Dependent Deployments
Self-Contained Deployments

Creating an ASP.NET Core application
Creating a unit testing project

Creating .NET Core applications using Visual Studio
Publishing a .NET Core application using Visual Studio 2017

Framework-Dependent Deployments
Self-Contained Deployments

Creating, building, and publishing a .NET Core web app to Microsoft Azure
Summary

6. Managing NuGet Packages
Overview to NuGet package manager
Creating a NuGet package library for .NET Framework

Creating the metadata in NuGet spec file
Building the NuGet Package
Building NuGet Package for multiple .NET Frameworks
Building NuGet package with dependencies

Creating a NuGet package library for .NET Standard
Editing the metadata of the project
Building the NuGet Package from Visual Studio 2017
Building a NuGet Package with package references

Testing the NuGet package locally
Publishing NuGet package to NuGet store
Managing your NuGet packages
Summary

7. Debugging Applications with Visual Studio 2017
Overview of Visual Studio debugger tools
Debugging C# source code using breakpoints

Organizing breakpoints in code
Debugger execution steps
Adding conditions to breakpoints

Using conditional expressions
Using breakpoint hit counters
Using breakpoint filters

Adding actions to breakpoints
Adding labels to breakpoints
Managing breakpoints using the Breakpoints window
Exporting/importing breakpoints

Using the Data Tips while debugging
Pinning/unpinning Data Tips for better debugging
Inspecting Data Tips in various watch windows

The Autos window
The Locals window
The Watch window

Using visualizers to display complex Data Tips
Importing/exporting Data Tips
Using debugger to display debugging information

Using the Immediate Window while debugging your code
Using the Visual Studio Diagnostics Tools
Using the new Run to Click feature in Visual Studio 2017
Debugging an already running process
Debugging XAML application UI

Overview of XAML debugging
Inspecting XAML properties on Live Visual Tree
Enabling UI debugging tools for XAML

Summary
8. Live Unit Testing with Visual Studio 2017

Overview of Live Unit Testing in Visual Studio 2017
Unit testing framework support
Understanding the coverage information shown in editor
Integration of Live Unit Testing in Test Explorer

Configuring Visual Studio 2017 for Live Unit Testing
Installing Live Unit Testing component
General settings of Live Unit Testing in Visual Studio
Starting/pausing the Live Unit Testing
Including and excluding test methods/projects

Unit testing with Visual Studio 2017
Getting started with configuring the testing project
Understanding the package config
Live Unit Testing with an example

Navigating to failed tests
Summary

9. Accelerate Cloud Development with Microsoft Azure
Understanding the cloud computing basics

Infrastructure as a Service
Platform as a Service
Software as a Service

Creating your free Azure account
Configuring Visual Studio 2017 for Azure development
Creating an Azure website from portal

Creating a web application

Creating an App Service plan
Managing Azure websites (Web Apps) from the portal
Creating an Azure website from Visual Studio

Creating an ASP.NET Web Application
Publishing the web application to cloud

Updating an existing Azure website from Visual Studio
Building a Mobile App Service

Creating Azure Mobile App
Preparing Azure Mobile App for data connectivity
Adding SQL data connection
Creating a SQL Database

Integrating Mobile App Service in a Windows application
Creating the Model and Service Client
Integrating the API call

Scaling App Service plan
Summary

10. Working with Source Controls
Working with Git repositories

Installing Git for Visual Studio 2017
Connecting to the source control servers
Getting started with Git repositories

Creating a new repository
Cloning an existing repository
Reviewing the Git configuration settings

Working with Git branches
Creating a new local branch
Switching to a different branch
Pushing a local branch to remote
Deleting an existing branch

Working with changes, staging, and commits
Staging changes to local repository
Committing changes to the local repository
Discarding uncommitted changes
Amending message to an existing commit

Syncing changes between local and remote repositories
Pushing changes to the remote repository
Fetching changes available in the remote repository
Merging changes available in the remote repository to the local repository
Resolving merge conflicts

Working with Pull Requests for code review
Creating Pull Requests for code review
Reviewing an existing Pull Request
Merging a Pull Request

Working with Git commit history
Rebasing changes to rewrite the commit history
Copying commits using Cherry-Pick

Undoing your changes
Resetting a local branch to a previous state
Reverting changes from remote branch

Tagging your commits
Working with Team Projects

Connecting to a Team Project
Cloning an existing project folder
Performing check-out operation to a file
Committing your changes to the repository
Undoing your local changes
Creating code review request

Rolling back your existing change set
Summary

Preface
Day by day, a revolution is happening in the computer world; existing technologies
are becoming old and obsolete, opening up more space for newer ones. To learn and
work on the modern technologies, you will need an updated IDE. Microsoft does the
same with developers, most popular IDE named Visual Studio.

Microsoft released Visual Studio for developers in 1997. In 2002, it first received a
flavor of .NET, and then it underwent a revolution with many new features in every
major build. Along with Visual Studio 2015, Microsoft added support for .NET Core,
which is a cross-platform, free, and open source managed software framework, such
as .NET.

Visual Studio 2017, initially known as Visual Studio "15", was released on 7th March,
2017. It included a new installation experience, with which you will be able to install
a specific workload or a component that you need to accomplish your work. As well
as this, it also includes features such as .NET Core, and support for NGen, Editor
Config, Docker, and Xamarin. Not only the Microsoft platforms, but Visual Studio
2017 also supports Linux app development, C/C++, Cordova, Python, Node.js,
tooling for data science, and analytical applications.

As the industry is forwarding with latest technologies and IDE changes, it is not easy
to cope with the latest changes. As a developer, it is very hard to learn everything that
a new release brings.

In this book, we will cover most of the changes to move you one step ahead with the
advancements. Ranging from the installation changes to new features introduced in
the IDE, followed by features introduced in it, C# 7.0 will give you the base to start
with Visual Studio 2017. Then, we will move on to learning how to build apps for
Windows using XAML tools, UWP tools, and .NET Core; we will learn about NuGet,
more on debugging and unit testing applications, cloud development with Azure, and
source controls like Git/TFS.

The examples given in this book are simple, easy to understand, and provide you with
a heads up to learn and master your skills with the new IDE, Visual Studio 2017. By
the time you reach the end of this book, you will be proficient with deep knowledge
about each of the chapters that it covers. You will enjoy reading this book with lots of
graphical and textual steps to help you gain confidence in working with this IDE.

Choosing the right version of Visual Studio 2017 can be done as follows:

Visual Studio 2017 comes in three different editions and they are: Visual Studio
Community 2017, Visual Studio Professional 2017, and Visual Studio Enterprise
2017.

The Visual Studio Community edition is a free, fully-featured IDE for students, open
source developers, and individual developers. In all these cases, you can create your
own free or paid apps using the Visual Studio 2017 Community edition.
Organizations will also be able to use the Community edition, but only under the
following conditions:

In an enterprise organization, an unlimited number of users can use the
Community edition, if they are using it in a classroom learning environment,
academic research, or in an open source project. An organization is defined as an
enterprise organization if they have more than 250 computers or $1 million
annual revenue.
In a non-enterprise organization, the Community edition is restricted to up to
five users.

If you are a professional in a small team, you should go for Visual Studio Professional
2017. If you are a large organization building end-to-end solutions in a team of any
size, and if the price does not matter to you, then Visual Studio Enterprise 2017 is the
right choice as it includes all the features that it offers.

A point to note is that you can install multiple editions of Visual Studio
2017 side by side. So, feel free to install any or all editions based on
your need.

What this book covers
Chapter 1, What is New in Visual Studio 2017 IDE?, focuses on the new IDE-specific
changes incorporated in Visual Studio 2017 and how these will help the developers to
improve their productivity. Starting from installation, it will cover the various
workloads and component parts of the installer, and then guide you through syncing
your IDE settings, followed by the new features.

Chapter 2, What is New in C# 7.0?, provides in-depth knowledge to help you learn
about the latest changes part of C# 7.0. This chapter will guide you through a number
of simple code snippets to help you learn quickly and become proficient in delivering
your code.

Chapter 3, Building Applications for Windows Using XAML Tools, focuses on XAML-
based Windows Presentation Foundation (WPF) applications for Windows. This will
help you learn the WPF architecture, XAML syntax, various layouts, data bindings,
converters, and triggers, and guide you through building professional applications
from scratch.

Chapter 4, Building Applications for Windows 10 Using UWP Tools, provides a deeper
insight to build XAML-based applications targeting Universal Windows Platform
(UWP). This is the latest technology platform from Microsoft and the base for
Windows 10 specific devices, such as mobile, PC, Xbox, IoT, and so on. This chapter
will guide you through learning the generic design principles of UWP apps, followed
by designing and styling applications. Later in the chapter, it will guide you to prepare
apps to publish to the Windows Store.

Chapter 5, Building Applications with .NET Core, gives you a quick lap around the new
Framework and guides you to create, build, run, and publish .NET Core applications.
This chapter will cover in-depth knowledge of Framework Dependent Deployments
and Self-Contained Deployments. Later, it will guide you through publishing
ASP.NET Core applications to Windows Azure.

Chapter 6, Managing NuGet Packages, focuses on the NuGet package manager for the
Microsoft development platform including, .NET. The NuGet client tools provide the
ability to produce and consume packages. The NuGet gallery is the central package
repository used by all package authors and consumers. Here, you will learn how to
create a NuGet package, publish it to a gallery, and test it.

Chapter 7, Debugging Applications with Visual Studio 2017, focuses on giving you an
in-depth understanding on the different debugging tools present inside Visual Studio.
It's the core part of every code development. The more comfortable you are with code
debugging, the better the code that you can write/maintain. This chapter will help you
learn the debugging process in Visual Studio 2017.

Chapter 8, Live Unit Testing with Visual Studio 2017, provides a deeper insight into
Live Unit Testing, which is a new module in Visual Studio 2017. It automatically runs
the impacted unit tests in the background as you edit code, and then visualizes the
results with code coverage, live in the editor. This chapter will help you become
proficient in building Live Unit Testing with Visual Studio 2017.

Chapter 9, Accelerate Cloud Development with Microsoft Azure, makes it easy for you
to understand the cloud computing basics that includes Microsoft Azure, which is an
open, flexible, enterprise-grade cloud computing platform. It basically delivers IaaS
(Infrastructure as a Service), PaaS (Platform as a Service), and SaaS (Software as a
Service). This chapter will guide you through creating Azure websites and mobile app
services, and then integrating those with a Windows application.

Chapter 10, Working with Source Controls, demonstrates the steps to manage your code
with versioning support in a source control repository. Source control is a component
of software configuration management, source repositories, and version management
systems. If you are building enterprise-level applications in a distributed environment,
you must use it to keep your code in a safe vault. This chapter will guide you through
how easy it is to use Git and TFS to manage your code directly from Visual Studio.

What you need for this book
The basic software requirements for this book are as follows:

Microsoft Visual Studio 2017 (version 15.0 or above)
Microsoft .NET Framework 4.5 and above (part of Visual Studio)
Microsoft .NET Core 1.0 (part of Visual Studio)
Windows 10 operating system
An account on Windows DevCenter
An account on Windows Azure
An account on GitHub and/or Microsoft Team Services

Who this book is for
.NET developers who would like to master the new features of VS 2017, and would
like to delve into newer areas such as cloud computing, would benefit from this book.
Basic knowledge of previous versions of Visual Studio is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "The dotnet restore command restores the dependencies and tools of a
project."

A block of code is set as follows:

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 }

 }

Any command-line input or output is written as follows:

 dotnet sln <SolutionName> add <ProjectName>

 dotnet sln <SolutionName> add <ProjectOneName> <ProjectTwoName>

 dotnet sln <SolutionName> add **/**

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the New
Project dialog, navigate to Installed | Templates | Visual C# | .NET Core."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of. To send us general feedback,
simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example
code
You can download the example code files for this book from your account at http://ww
w.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/support and register to have the files e-mailed directly to you. You can download
the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishin
g/Mastering-Visual-Studio-2017. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Visual-Studio-2017
https://github.com/PacktPublishing/

Downloading the color
images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.packt
pub.com/sites/default/files/downloads/MasteringVisualStudio2017_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MasteringVisualStudio2017_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of existing errata
under the Errata section of that title. To view the previously submitted errata, go to htt
ps://www.packtpub.com/books/content/support and enter the name of the book in the search
field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the
suspected pirated material. We appreciate your help in protecting our authors and our
ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

What is New in Visual
Studio 2017 IDE?
Visual Studio 2017 is the new IDE for developers released by Microsoft. It not only
focuses on building applications targeting the Microsoft platform, but it can also be
used to build applications using C++, Python, and so on. In short, it will be an IDE for
every developer who needs to build apps on any platform.

Visual Studio 2017 will help you save time and effort for all the tasks that you want to
do with your code, be it code navigation, refactoring, code fixes, debugging,
IntelliSense, or unit testing of your module. Not only from the code perspective, but it
will also streamline your real-time architectural dependency validation and provide
stronger support for the integration of source code repositories, such as TFS (Team
Foundation Server) or Git.

It comes with a brand new lightweight installation experience that modularizes the
need to improve your efficiency of the fundamental tasks with a faster IDE access to a
new way of viewing, editing, debugging, and testing your code.

Not only the common code editing features, but Visual Studio 2017 also comes with
Xamarin, which will help you build mobile applications for Android, iOS, and
Windows, more quickly and easily than ever. You can also choose the path to build
mobile apps with Visual C++ or Apache Cordova, the cloud's first applications
powered by Microsoft Azure.

In this chapter, we will cover the new installation experience, as well as the new
features and enhancements that Microsoft has added to Visual Studio 2017. The
following are the topics that we will discuss in this chapter:

The new installation experience:
Overview of the new installation experience
Installation using the online installer
Creating an offline installer of Visual Studio 2017
Installing Visual Studio 2017 from the command line
Modifying your existing Visual Studio 2017 installation
Uninstalling Visual Studio 2017 installation
Signing in to Visual Studio 2017

The new features and enhancements to the Visual Studio IDE:
Overview of the redesigned start page
The improved code navigation tool
Changes to Find All References of an instance
Structural guidelines
Editor config
The Roaming Extension Manager
Open folders in a convenient way
The Lightweight Solution Loading
The Connected Services
Acquiring tools and features by using the In-Product Acquisition
The Run to Click feature

Improved Attach to Process with process filtering
The new Exception Helper
Adding conditions to Exception Settings
Updates to the Diagnostic Tools

The new installation
experience
In this section, we will discuss the various workloads and components of Visual
Studio 2017's new installation experience. The basic installer that comes in the web-
only mode allows you to select the components that you want to install before it
downloads them. This saves you a lot of bandwidth. We will cover them here.

Unlike the previous versions of Visual Studio, you will not find an Offline Installer
for Visual Studio 2017. You need to manually create it, which you can use to install
Visual Studio 2017 without internet connectivity. This can be done by creating a
layout using the web installer. Although the download size of the offline installer is
big, it saves you the time and bandwidth when you want to install it on multiple
devices.

In this section, we will learn how to configure and install different workloads or
components using the online and offline installers. We will then continue to learn the
ways to modify or uninstall the Visual Studio installation, as well as signing in to the
IDE for a synced workspace setting across devices.

Before going into depth, let's see the system requirements to install Visual Studio
2017:

Visual Studio 2017 will install and run on the following operating systems:
Windows 10 version 1507 or higher to build apps for Universal Windows
Platform (UWP)
Windows Server 2016
Windows 8.1 (with Update 2919355)
Windows Server 2012 R2 (with Update 2919355)
Windows 7 SP1 (with the latest Windows Updates)

Here's the hardware requirements:
1.8 GHz or faster processor. It's recommended to have dual core or higher.
At least 2 GB of RAM, minimum 2.5 GB if running in a Virtual Machine.
It's recommended to have 4 GB of RAM.
It's recommended to have 1 GB to 40 GB HDD space, based on the
features you are going to install.
Visual Studio will work best at a resolution of WXGA (1366 by 768) or
higher.

Overview of the new
installation experience
The new version of the installer that is used to install Visual Studio 2017 allows you
to control the individual workload/module that you need. Unlike the previous versions
of the installer, it does not take more installation space; rather, it allows you to do a
basic installation, having a few hundred MBs only for the core editor to install. On a
need basis, you can select the workload or the individual module.

The Workloads screen will allow you to select the module that you want to install. If
you want to build applications targeting Windows 10 only, you should go with
Universal Windows Platform development. Consider the following screenshot:

If you want to build applications for Python or Node.js, the respective workloads are
there to help you install the required components. Consider the following screenshot:

We will discuss more about the installation steps in the next point, where we will see
how to install Visual Studio 2017 using the online installer.

Installation using the online
installer
You can go to https://www.visualstudio.com/downloads/ and select the Visual Studio 2017
edition that best suits your need and then download it. There are three different
editions available--Visual Studio Community 2017, Visual Studio Professional 2017,
and Visual Studio Enterprise 2017.

The Visual Studio Community edition is a free, fully-featured IDE for students, open
source developers, and individual developers. In all these cases, you can create your
own free or paid apps using the Visual Studio 2017 Community edition.
Organizations will also be able to use the Community edition, but only under the
following conditions:

In an enterprise organization, an unlimited number of users can use the
Community edition if they are using it in a classroom learning environment,
academic research, or an open source project. An organization is defined as an
enterprise organization if they have more than 250 computers or a 1 million
dollar annual revenue.
In a non-enterprise organization, the Community edition is restricted to up to
five users.

To know more about the Visual Studio Community 2017 license terms, check out this
page:

https://www.visualstudio.com/license-terms/mlt553321/

If you are a professional in a small team, you need to select Visual Studio Professional
2017, and for end-to-end solutions by a team of any size, select Visual Studio
Enterprise 2017.

Once you have downloaded the online/web installer, double-click on it to start the
installation process. This will first show a screen where you can read the License
Terms and Microsoft Privacy Statement, which you need to agree to before continuing
with the installation process. Once you click on the Continue button, the installer will
take a few minutes to prepare itself. This is shown in the following screenshot:

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/license-terms/mlt553321/

The main screen of the installer has three different tab contents--Workloads,
Individual components, and Language packs.

The Workloads tab allows you to select the group of components that comes under a
single module. In other words, each workload contains the features you need for the
programming language or platform you prefer.

For example, if you like to build Windows Presentation Foundation (WPF)
applications, you need to select .NET desktop development, and to build ASP.NET
web applications, you need to select the ASP.NET and web development module
under the workloads.

To install and build applications for both WPF and Windows 10, select .NET desktop
development and Universal Windows Platform development, as shown in the
following screenshot. For each individual workload, the selected components will be
listed in the panel on the right-hand side of the screen:

The Individual components tab lists all the component parts of individual workloads,
category wise, for you. The components part of the selected workloads will be auto-

checked by default.

Only use this section if you are an advanced user. Some components
may have dependencies with one or more workloads. Deselecting one
of them can cause the other workloads to unload from the installation
process. So, be cautious while selecting/deselecting any one of them.

The third tab is the Language packs tab, which allows you to choose the language that
you want to use with Visual Studio 2017. By default, it's the system's default language
selected on the screen; however, you can opt for Czech, French, German, or any other
languages from the available list shown in the following screenshot:

By default, a location is prepopulated for the installer to install Visual Studio 2017,
but you can change it to a different folder. Once you are done, click on the Install
button.

This will start the actual installation process. If you are using the web installer, it will
download an individual module from the Microsoft server and install them gradually.
This may take some time, based on your selected workloads/components and internet
bandwidth. Consider the following screenshot:

This will be fast and take less time than the previous IDE installers. Once it completes
the installation, it may ask you to restart your system to take into effect the changes
that it made to start the Visual Studio instance. If you see such a message on the
screen, as shown in the following screenshot, make sure to restart your computer by
clicking on the Restart button:

From the same page, you will be allowed to modify the existing installation, launch
the Visual Studio 2017 IDE, or uninstall the complete installation.

Creating an offline installer
of Visual Studio 2017
Sometimes, we may need to have an offline copy of the installer so that we can install
it to multiple devices without an active or fast internet connection. This will save your
bandwidth from downloading the same copy multiple times over the network. The
offline installer is big. So, before going further to create the offline copy, make sure
that you have an active internet connection available with no limitation of download
bandwidth.

1. First, download the Visual Studio setup executable file (web installer) to a drive
on your local machine.

2. Now, run the downloaded setup executable with the following arguments
(switches) from a command prompt:

Add --layout <path>, where <path> is the location where you want the
layout to be downloaded. By default, all languages will be downloaded
along with all the packages.
In case you want to restrict the download to a single language only, you
can do so by providing the --lang <language> argument, where <language> is
one of the ISO country codes given in the following list. If not specified,
support for all localized languages will be downloaded.

ISO CODE LANGUAGE

cs-CZ Czech

de-DE German

en-US English

es-ES Spanish

fr-FR French

it-IT Italian

ja-JP Japanese

ko-KR Korean

pl-PL Polish

pt-BR Portuguese - Brazil

ru-RU Russian

tr-TR Turkish

zh-CN Chinese - Simplified

zh-TW Chinese - Traditional

For example, to download the Visual Studio 2017 Enterprise edition
under the local path C:\VS2017\, you need to provide the following
command:

vs_enterprise.exe --layout "C:\VS2017\"

To download the English localized edition to local path C:\VS2017\,
provide the following command:
vs_enterprise.exe --layout "C:\VS2017\" --lang "en-US"

To download only the .NET desktop development workload, run:
vs_enterprise.exe --layout "C:\VS2017\" --add

Microsoft.VisualStudio.Workload.ManagedDesktop

To download the .NET desktop development and Azure development
workloads, provide the following command:

vs_enterprise.exe --layout "C:\VS2017\" --add

Microsoft.VisualStudio.Workload.ManagedDesktop

Microsoft.VisualStudio.Workload.Azure

As shown in the following screenshot, it will start downloading all the packages part
of Visual Studio 2017. As the offline installer is big, it will take plenty of time,
depending on the speed of your internet network:

Once the download completes, go to the folder where you downloaded the packages

(in our case, it's C:\VS2017\) and run the installer file, that is, vs_enterprise.exe, for
example. Then, follow the same steps as mentioned earlier to select the required
Workloads and/or Individual components to start the installation process.

Installing Visual Studio 2017
from the command line
You can use command-line parameters/switches to install Visual Studio 2017. Be sure
to use the actual installer, for example, vs_enterprise.exe for the Visual Studio 2017
Enterprise edition, and not the bootstrapper file, which is named vs_setup.exe. The
bootstrapper file loads the MSI for actual installation. You can also run C:\Program
Files (x86)\Microsoft Visual Studio\Installer\vs_installershell.exe to install the
Visual Studio components from the command line.

Here is a list of the command-line parameters/switches:

Parameters/Switch Description

[--catalog] <uri>

[<uri> ...]
Required -- One or more file paths or URIs to catalogs.

--installDir <dir>

--

installationDirectory

<dir>

Required -- The target installation directory.

-l <path>, --log

<path>

Specify the log file; otherwise, one is automatically
generated.

-v, --verbose Display verbose messages.

-?, -h, --help Display parameter usage.

--instanceId <id> Optional -- The instance ID to install or repair.

--productId <id>
Optional -- The product ID to install. Otherwise, the first
product found is installed.

--all
Optional -- Whether to install all workloads and
components for a product.

--add <workload or Optional -- One or more workload or component IDs to

component ID> ... add.

--remove <workload or

component ID> ...

Optional -- One or more workload or component IDs to
remove.

--optional, --

includeOptional

Optional -- Whether to install all optional workloads and
components for selected workload.

--lang, --language

<language-locale> ...

Optional -- Install/uninstall resource packages with the
specified languages.

--sharedInstallDir

<dir>

Optional -- The target installation directory for shared
payloads.

--compatInstallDir

<dir>

Optional -- The target installation directory for legacy
compatibility payloads.

--layoutDir <dir>

--layoutDirectory

<dir>

Optional -- The layout directory in which to find
packages.

--locale <language-

locale>

Optional -- Change the display language of the user
interface for the installer. Setting will be persisted.

--quiet
Optional -- Do not display any user interface while
performing the installation.

--passive
Optional -- Display the user interface, but do not request
any interaction from the user.

Here is a list of workload IDs that you need to provide while installing Visual Studio
2017 from the command line:

Microsoft.VisualStudio.Workload.CoreEditor: This is the core part of Visual
Studio 2017 containing the core shell experience, syntax-aware code editing,
source code control, and work item management.
Microsoft.VisualStudio.Workload.Azure: This contains the Azure SDK tools
and projects to develop cloud apps and create resources.
Microsoft.VisualStudio.Workload.Data: Using this workload, you can
connect, develop, and test data solutions using SQL Server, Azure Data Lake,
Hadoop, or Azure Machine Learning.

Microsoft.VisualStudio.Workload.ManagedDesktop: This workload will help
you build WPF, Windows Forms, and console applications using the .NET
Framework.
Microsoft.VisualStudio.Workload.ManagedGame: If you are a game
developer, you can create 2D and 3D games with Unity, a powerful cross-
platform development environment.
Microsoft.VisualStudio.Workload.NativeCrossPlat: Want to create and debug
applications running in a Linux environment? This workload will allow you to
build native cross platform apps.
Microsoft.VisualStudio.Workload.NativeDesktop: Classic Windows-based
applications using the power of the Visual C++ toolset, ATL, and optional
features such as MFC and C++/CLI can be built using this workload.
Microsoft.VisualStudio.Workload.NativeGame: If you are a game developer,
you can use the full power of C++ to build professional games powered by
DirectX, Unreal, or Cocos2d.
Microsoft.VisualStudio.Workload.NativeMobile: Using this, you can build
cross-platform applications for iOS, Android, or Windows using the C++ APIs.
Microsoft.VisualStudio.Workload.NetCoreTools: .NET Core is a new
addition to Visual Studio. You can build cross-platform applications using .NET
Core, ASP.NET Core, HTML, JavaScript, and CSS.
Microsoft.VisualStudio.Workload.NetCrossPlat: To build cross-platform
applications for iOS, Android, or Windows using Xamarin, you will need to
have this workload installed on your development environment.
Microsoft.VisualStudio.Workload.NetWeb: You can build web applications
using ASP.NET, ASP.NET Core, HTML, JavaScript, and CSS using the
NetWeb workload.
Microsoft.VisualStudio.Workload.Node: To build scalable network
applications using Node.js and asynchronous event-driven JavaScript runtime,
you will need this workload.
Microsoft.VisualStudio.Workload.Office: To create Office and SharePoint
add-ins, SharePoint solutions, and VSTO add-ins using C#, VB, and JavaScript,
you will need this Office workload.
Microsoft.VisualStudio.Workload.Universal: To create applications targeting
the Universal Windows Platform with C#, VB, JavaScript, or, optionally, C++,
you need to install this workload.
Microsoft.VisualStudio.Workload.VisualStudioExtension: If you want to
create add-ons and extensions for Visual Studio, you will need to install this
workload. This also includes new commands, code analyzers, and tool windows.
Microsoft.VisualStudio.Workload.WebCrossPlat: To build Android, iOS, and
UWP apps using Tools for Apache Cordova, you will need this.

Each of the preceding workloads has its own set of components, which you can refer
to from the official Microsoft page (https://aka.ms/vs2017componentids).

https://aka.ms/vs2017componentids

Modifying your existing
Visual Studio 2017
installation
After the installation ends, if you later decide to modify the existing installation to add
or remove any components or uninstall the installation, you can do so from the control
panel - Add/Remove Programs. Alternatively, you can launch the Microsoft Visual
Studio Installer and click on Modify, as shown in the following screenshot:

To add new modules, check the new workloads, or to remove modules, uncheck the
existing workloads, and proceed toward modifying the existing installation.

Uninstalling Visual Studio
2017 installation
If you have set your mind to uninstall all the packages that Visual Studio 2017
installed, the new installer that comes with it can help you uninstall the entire
packages completely, without keeping any trace of the components.

You can also launch the Microsoft Visual Studio Installer, click the icon, then
Uninstall, as shown in the following screenshot, and then click on OK when asked:

Signing in to Visual Studio
2017
Once you are done with the installation, open your Visual Studio 2017 IDE. When
you open it for the first time, it will ask you to sign in. Be sure to sign in with your
MSA (Microsoft Account) ID or a work/school account that best represents you. If
you don't have an existing account, you can create a personal account for free.

Although it is optional to sign in, it is good to keep all your Visual
Studio settings and personalization settings synced in the cloud. Doing
so will help you use the same settings from any other devices. If you
are working on multiple devices, syncing your settings will help you in
many ways (includes Theme).

Here is the screenshot of the sign-in screen of Visual Studio, where you need to
provide your account credentials:

Not only will signing in help you extend your trial license, but it will also help if you
installed the Visual Studio trial version. By default, it will have a 30 day trial period.
Once you sign in to Visual Studio 2017, you will get an additional 90 days to try it.

If you have an account that's associated with the MSDN or VSO (Visual Studio
Online) subscription, signing in to Visual Studio will automatically unlock your
installation. It will also connect to services such as Microsoft Azure and Visual Studio
Team Services in the IDE without prompting again for credentials for the same
account.

If you missed logging in to Visual Studio at the first start of the IDE, you can do so
later from the Visual Studio by using this path: Help | Register Product | Sign in, or by
clicking on the Sign in link available at the top-right corner of the screen, as shown in
the following screenshot:

Unless you sign out, you will be automatically signed in to Visual Studio whenever
you start it. This will synchronize all your changes to the settings in the cloud.

The new features and
enhancements to the Visual
Studio IDE
Every new product comes with new features and enhancements to the existing one, to
give you more control over what you need. It's the same with Visual Studio 2017
having product version 15. Microsoft has changed many things in this new redesigned
IDE and added many things to improve your productivity.

Ranging from the installation point of view to the IDE level, many things have been
incorporated. We have already discussed the new installation experience. Now we
will discuss the new features/enhancements at this point. Starting from the redesigned
start page, we will cover the improved navigation tool, the changes that have been
made in the Find All References window, structural guidelines, editor config, the
roaming extension manager, lightweight solution loading, connected services, run to
click feature, and many more.

Overview to the redesigned
start page
In Visual Studio 2017, Microsoft has brought you a faster installation experience,
better performance, and new/enhanced productivity features. One of these
productivity features is a Start Page redesigned by the Microsoft team. This will help
you start working on your code faster, with easy access to whatever you need.

Here is a quick peek of the redesigned Start Page:

The first item here is the Get Started section having a few links to get you started, but
this is not always helpful and covers part of your Start Page. To get out of it, hover on
the Get Started section to see a close (x) button. Clicking on it will collapse the said
section and, thus, will give more space to the Recent / Most Recently Used (MRU)
list.

The MRU list in the Start Page will allow you to quickly find what you're looking for.
Each MRU item will display an icon denoting it as a project, a solution, a folder, a file
path for local resources, or a remote URL for remote items not yet on the local
system.

To help you stay more productive in your daily work, the MRU on the Start Page has
some additional features:

Along with Projects and Solutions, it also lists recently opened folders.
It groups the list by date and can accommodate a longer history of files, folders,
projects, and solutions.
You can pin an MRU item to the top of the list so that you can easily access your

most important items.
If you are using multiple devices and are already signed into your Visual Studio
installation on all the devices, the MRU list will also show you a roaming item.
If you cloned a remote repository, Visual Studio will roam the item in any of
your devices that have the same associated account, and clicking on any of them
will automatically clone it down for you to continue your work. Consider the
following screenshot:

The New Project section in the Visual Studio 2017 start screen will allow you to get
easy access to the project templates. If you have recently created any projects out of
any templates, it will list all those recently used project templates.

You can also search for any project templates and use the one from the list. This is to
help you speed up the process of creating new projects using the new IDE by
bypassing the steps to find and select the desired template in the New Project dialog.
If you sign into Visual Studio, this list will also roam with you across your devices:

To help you simplify the open project/solution experience, Microsoft placed a panel
on the Start Page. From there, you can directly clone your remote repositories, either
from on-premise TFS, cloud-hosted TFS, or shared on GitHub. You can also open
projects/solution or open the folder from this screen.

The VSTS (Visual Studio Team Services) extension is already in built to Visual
Studio 2017; GitHub is a third-party extension, but comes along with it as an optional
download. If you are not able to find GitHub on the Start Page, run the installer or
install it using the In-Product acquisition:

The Developer News section is the place where you can stay updated with the latest
news. Although some developers like to read it every day, not everyone does. Hence,
Microsoft now allows you to collapse this section and stay focused on your code-
related stuff on the start page. A small badge will be there on the arrow circle to notify
you of new posts in the news feed. Consider the following screenshot:

Did you know? Hovering your mouse over the Get Started section
provides you with an x button to close the same and gain more space
for the Recent/MRU list.

The improved code
navigation tool
With Visual Studio 2017, Microsoft has improved the code navigation feature to let
you quickly find and go to line, files, types, methods, and other elements in your code.
It gives you a one-stop way to go to any kind of item that you are looking for, even in
a large code base, helping you find the item easily. You can access it from the Visual
Studio Edit | Go To menu or by using the keyboard shortcuts listed as follows:

The Go To toolbox that pops up has a few toolbox buttons to easily switch between
the navigational types, such as line, files, types, symbols, members, and so on, and a
search box:

It also offers you easy access to the toolbox buttons with shortcuts. The shortcuts are
actually a character that you start the search with. For example, starting a search with
t will directly navigate you to Types search. To find out the search key shortcut, enter
? in the search box. It will show help, as shown in the following screenshot:

If you want to navigate to a specific line, enter : <LineNo> (for example, : 25) to see a
quick view of the line, and confirming it will directly navigate you to that specific line
number. You can also access it using the keyboard shortcut, Ctrl + G.

The Go to line was already there in earlier versions of Visual Studio, but the quick
preview of the same before navigating has been added with Visual Studio 2017.

Take a look at the following screenshot to grasp an idea of previewing the line before
confirming it:

If you start the search with f, followed by the key term, it will search the term in the
file name and show you a quick preview of the selected file along with the file path.
For example, to list all the C# files having Helper at the end of their names, enter f
helper.cs in the search box, as shown in the following screenshot; interestingly, you
will see the result along with the file path, which is blurred in this screenshot. Use the
up/down arrow keys to select the result for a quick view of the selected file:

If you want to search for types such as class, interface, enum, and so on, you can start
the search with the character t, as shown here:

To start a symbol search, begin the search term with the # character and you will find
the result having entered term like this:

Similarly, to search for a member, begin the search with m and your search key; you
will get the result matching the key for any members in the solution, as shown in the
following screenshot:

You can also search by clicking on the respective buttons, which will automatically
add the contextual search character at the beginning of the search key. However, if
you remember the character, it will be very quick for you to access the required
resource without using your mouse cursor.

The last two toolbox buttons will help you switch between Current Document and
external items. You can quickly switch between them using the keyboard shortcut Ctrl
+ Alt + C.

Changes to Find All
References of an instance
The Find All References command in Visual Studio is not a new thing. It's used to
find out all the references of a member or symbol. In earlier versions of Visual Studio,
the UI of the result dialog was simple, having only the results in a grouped list. You
can find the previous result dialog here:

However, there was always a demand to improve it, as most developers use it
regularly to check for references of a member, type, or symbols. Microsoft worked on
it in Visual Studio 2017 and have provided a rich UI for developers to improve their
daily productivity.

It now has an advanced grouping, filtering, sorting, and searching within the reference
result. It now also has a colorization of the term in the result, giving you a clear
understanding of the references and directly moving you into the line of code that you
are looking for. Here, you can see the new result dialog:

The resultant dialog lists the results in a grid, having column headers to give you clear
visibility of the records, which includes the code, file name, line number, and so on
for your easy reference. You can use the column headers to sort the result based on
your need.

When you hover your mouse over a resultant item in the grid, a tooltip is displayed
with the context of the reference in source code. This gives you a quick peek of what
you are looking for.

The toolbar of the dialog has many new toolbox items. Let's understand each one of
them, as follows:

1. This list has a few entries with which you can filter the records to solution level,
project level, and so on. The list consists of the following entries:

Entire Solution
Open Documents
Current Project
Current Document
Changed Documents

2. This is the Copy button that copies the content of the selected record.
3. These are the two buttons for navigation purposes. This will navigate you to the

previous and next location in the list.
4. This button is used to clear all the filters.
5. This combination list allows you to change the Group by definition. You can

choose any one of the following:
Project then Definition
Definition only
Definition then Project
Definition then Path
Definition, Project then Path

6. This is another new toggle button to help you keep the current result on the
screen when you trigger another Find All Reference command. When the Keep
Results button is turned ON, the next invocation of Find All References will
populate the reference results in a new window.

7. The search box will allow you to search within the result set to give you the
perfect result that you are looking for.

Structural guide lines
Visual Studio 2017 also focuses on a new feature called Structural guide lines. The
Structural Guide Lines are drawn in the editor so that you can easily visualize the
structure of the code that you are currently working on. When you mouse hover on the
guideline, a tooltip containing the context of the current code block relative to its
ancestor blocks is displayed. Here, in the following screenshot, you can see how the
lines are drawn and how the tooltip is displayed with its ancestor blocks when you
hover over the guide lines of the using block:

This feature is enabled by default. If you want to disable it, you can navigate to the
Visual Studio options dialog at the path: Tools | Options | Text Editor | General, and
uncheck the checkbox labelled Show structure guide lines.

To enable it again, follow the same path and check the same box, as shown in the
preceding screenshot.

Editor config
Editor config helps developers define and maintain consistent coding styles between
different editors and/or IDEs. Microsoft has added support of Editor config in Visual
Studio 2017.

The default text editor settings in Visual Studio applies to all projects of a given type.
For example, if you change a C# or VB.NET text editor's settings, those settings will
apply to all C# projects and VB.NET projects respectively. However, in general, the
coding conventions that you use in your personal projects may differ from those used
in your team's projects.

Here comes the Editor Config that enables you to do this on a per project basis and/or
per folder level. In this case, the settings are contained in a .editorconfig file added to
your code base. As the settings are contained in a file in the code base, they travel
along with the code base:

The Editor Config doesn't support a full set of C# formatting rules and, hence, it's not
a replacement for format settings in Visual Studio. Currently, it supports the following
settings only in Visual Studio 2017:

indent_style
indent_size
tab_width
end_of_line
charset
root
trim_trailing_whitespace
insert_final_newline
Code style conventions

You can create an editor configuration file at the project level or at any folder level.
When you add it to the project's root level, its settings are applied across all the files in
the project. If you add it to any specific folder level inside the project, the root settings
will be overridden and will apply to all applicable files at that level and below.

Did you know? Adding an .editorconfig file to your project or code
base will not convert the existing styles to new ones. It will apply the
settings to only newly added lines in that code base. To make an entire
document adhere to the code formatting rules defined in your editor
configuration, you can use the Format Document (Ctrl + K, D)
command.

To create an Editor Config (.editorconfig) file, right-click on a project or folder where
you want to apply the settings, and then, from the context menu, click on Add | New
Item..., as shown in the following screenshot:

Now, from the Add New Item dialog box, select the Text File template and give it a
name, for example, .editorconfig, as shown in the following screenshot, to add the
file. Note that the file name only consists of the extension of the file:

The .NET code style settings allow you to enforce the style that you want to use in
your code base. Depending on the severity set in the Editor Config, it can show you a
suggestion, a compiler warning, or compiler error. This can be written in the
following fashion:

options_name = false|true : none|suggestion|warning|error

The option must specify true (preferable) or false; a colon, :, and a severity of none,
suggestion, warning, or error. The default is none.

If you set the severity as none, it will not show anything to the user when this style is
not being followed. If you set it as a suggestion, it will show a suggestion (underlying
dots on the first two characters) when the style is not being followed. In case of
warning or error, it will either show compiler warning or compiler error if the code
does not match the style being applied to it.

The Roaming Extension
Manager feature
The Roaming Extension Manager is a new feature in Visual Studio 2017 and can be
seen under the Extensions and Updates dialog box. This allows you to keep a track of
all your favorite extensions. It allows you to sync the installed extensions by creating
a synchronized list in the cloud if you have already signed in on all your Visual Studio
IDEs across all your development environments.

Navigate to the Tools | Extensions and Updates menu in your Visual Studio instance
and expand the entry that says Roaming Extension Manager. Under this, you will find
all the extensions roamed with your account. This is shown in the following
screenshot:

Here, you will find three kinds of icons:

Roamed icon (): If the extension is a part of your roaming list, but not
installed on this machine, you will get this roamed icon overlayed on it. Click on
the Download button to install the extension.
Roamed and installed icon (): This icon will be set as an overlay, when an
extension is part of your roaming list and is installed on this system too.
Installed icon (): When an extension is not a part of your roaming list, but
present on this machine, it will get this installed icon overlay.

If you want to add any extensions to the roaming list to roam along with your account,
select the specific extension and click on the Start Roaming button. When the
extension is roaming, it will auto-install on the other system, where you sign in to
Visual Studio with the same personalized account:

If you do not want to roam an extension for any reason, you can remove it from the
roaming list by clicking on the Stop Roaming button of that extension, which is
shown in the following screenshot:

If you have any favorite extensions that you use regularly on all your devices, you will
love to sync them with your account. This way, you don't have to manually search and
install them on the new system where you will write your code.

Did you know? If you download an extension when you are already
signed in to Visual Studio 2017, it will be added to your roaming list,
giving you easy access to it from any of your development
environments.

Open folders in a convenient
way
In Visual Studio 2017, Microsoft has provided a convenient way to work with the
code base. You can now directly open a folder instead of opening the solution/project
explicitly. When you open a folder, you can easily navigate to all files by structural
folders using the Solution Explorer. Not only this, but you can also build your projects
from the Solution Explorer; right-click on context menu.

In order to open a folder, you can click on File | Open | Folder... from the Visual
Studio menu or the Open Folder link present on the Start Page. Alternatively, you can
press the keyboard shortcut: Ctrl + Shift + Alt + O:

The folder view also supports the following:

Searching across the code in your folder with the Go To (Ctrl + ,) command.
Scoping the Solution Explorer folder view to subfolders. To scope your current
context to a specific project/folder, right click on it and then click on Scope To
This from the context menu.
Opening folders in Explorer or the Command Prompt from the Solution
Explorer itself.
Easily toggle between solutions with the Solution selection dropdown.
Configuring the debug and launch settings with launch.json. Right-click on a
debuggable file and select Debug and Launch Settings.
Configuring tasks and customizing the build with tasks.json. Right-click on any
file and select Configure Task Settings.
Launch.vs.json and tasks.vs.json have IntelliSense in the JSON editor.
Integration with supported source control repositories. This will provide you the

current status of the file. As shown in the following screenshot, a + or a tick
mark provides you the status of the local file in comparison with the version
available in source control repository:

You can also open a folder from the Windows Explorer window by right-clicking on
any folder and then clicking the Open in Visual Studio context menu item, as shown
in the following screenshot:

Lightweight solution loading
Lightweight solution loading is yet another feature of Visual Studio 2017 that
enables you to load large solutions faster, reducing the load time and memory usages,
as it loads only the files that are needed (per need basis). It is best suited to large
solutions that contain C# or a mix of C# and C++ projects. If Visual Studio decides
that you are working with large solutions, it will prompt you to enable this feature.

This feature is not enabled by default. To enable it, open Visual Studio Options from
Tools | Options and navigate to Projects and Solutions | General. On the right-side
panel, you will find a setting labelled Lightweight solution load for all solutions.
Check it to enable the feature. Uncheck it if you decide to go back to the previous
settings.

Alternatively, you can search for Lightweight Solution load in the Quick Launch search
box to directly navigate to it:

Once you enable the feature, it will apply the lightweight solution loading to all
solutions that you open using Visual Studio 2017. If you don't want this but would
like to open a solution only, you can enable it for that specific solution by right-
clicking on the solution file in the Solution Explorer. There, you will find a context
menu entry that says Enable Lightweight Solution Load. This is shown in the
following screenshot:

Connected Services
Microsoft added a new Getting Started experience for freshly created projects in
Visual Studio 2017. It replaced existing Getting Started pages with an Overview tab in
the new App Configuration Designer and focused the page on the actions that will get
you started quickly to build your app, add an application insight/other connected
services, publish your app to Azure, and set up continuous delivery:

In Visual Studio 2015, we saw a section called Service Capabilities. In Visual Studio
2017, they have changed it to Connected Service to modernize the Add Connected
Service and Add Service Reference features.

This will allow you to connect your app to services. A new node called Connected
Services is available in the Solution Explorer for web and mobile applications.
Double-clicking on this node will open a new full-page tab in Visual Studio where
you can configure popular Microsoft services available for you to connect to.

Using Monitoring with Application Insights, you can gain insights through telemetry,
analytics, and smart detection in the following ways:

Detect and diagnose exceptions and application performance issues
Monitor the website insights hosted on Azure, containers, on-premises, and on
other cloud providers
Integrate with your DevOps pipeline using Visual Studio, VSTS, GitHub, and
Webhooks

Here is the screenshot of the Connected Services screen present inside Visual Studio
2017:

The Cloud Storage with Azure Storage feature will allow you to store and access data
with Azure Storage services, such as Blobs, Queues, and Tables. If you have an Azure
subscription, you can connect to it and start using it on your web or mobile apps. You
can also connect to the Azure App Service to add authentication and deliver push
notifications for mobile apps.

The other popular service, Office 365 APIs, will allow you to integrate your
applications with Office 365 Services. A wizard is there to help you easily configure
your project to connect with services such as mail, calendar, contacts, files, and more.
You can also create an application in the Azure Active Directory associated with your
Office 365 domain. To get started, you should have a valid Office 365 subscription
available.

There is a Find more services link at the bottom of the page, which will open the
Visual Studio Marketplace under the Extensions and Updates option, where you will
be able to connect to more services.

Acquiring tools and features
by using In-Product
Acquisition
Visual Studio 2017 makes it easier to acquire any missing components using In-
Product Acquisition. Using this, you don't have to leave the IDE to start the installer.
Using the Quick Launch search bar, you can kick off the installer to start an in-
product acquisition of any workload or individual component. Consider the following
screenshot:

The preceding image shows us how to use Visual Studio to acquire a Universal
Windows Platform development workflow and other related components. This will
directly launch the installer and proceed towards the installation of said workflow.

If you cannot find the templates that you are looking for, the Visual Studio 2017
installer can also be opened from the New Project dialog box, as shown in the
following screenshot:

The Run to Click feature
Debugging now becomes easier with Visual Studio 2017. You can simply click on an
icon next to a line of code to run to that line while debugging. When you have stopped
at a breakpoint, just click on the green Run to Click icon that subtly appears next to
the line of code that your mouse is hovered over. This will reduce the burden of
adding temporary breakpoints and several steps that need to be performed to break the
debugger to a specific line on the fly:

This feature is enabled by default. To disable it, click on the menu item Tools |
Options and then navigate to Debugging | General. Alternatively, you can directly
navigate there by clicking on the menu item Debug | Options. Scroll to the end of the
right-side panel and find an option labelled Show run to click button in editor while
debugging. Uncheck it to disable the feature.

If you want to re-enable it later, follow the same steps and check the aforementioned
option. Consider the following screenshot:

Improved Attach to Process
with process filtering
In the earlier versions of Visual Studio, it was quite difficult to search for a particular
process in the Available Processes list of the Attach to Process dialog box. To
overcome this, Microsoft has added a search box in the top-right corner of the list. It
will help you filter the list and find out the exact process that you are looking for:

To help you further in this long process list, history entry has been added to the search
box. When you are in this window at a later point of time, you can click on the
arrowhead to select the last search item from the list.

A new entry labelled Reattach to Process... has been added to the Debug menu of
Visual Studio 2017 to help you reattach to the process that you used last.
Alternatively, you can press the keyboard shortcut, which is Shift + Alt + P, to directly
attach the debugger to the last processes from the previous debugging session. This is
shown in the following screenshot:

The debugger will first try to reattach to the process by matching the previous process
ID, and then by matching to the previous process name. If no matches are found, or if
there are multiple processes with the same name, the Attach to Process dialog will
open to allow you to select the desired process from the list.

The new exception helper
Handling an exception is the most crucial part for a developer and it becomes
frustrating when you are unable to define the cause of the same. Previous versions of
Visual Studio do not provide more details about the exception other than a generic
contextual UI to the developer in debug mode.

Microsoft worked on a redesigned UI for the exception helper to give you more
details of the exception in a compact non-modal dialog with quick access to the inner
exception. When there is a NullReferenceException, the new UI shows you what was
null. Take a look at the following screenshot that shows antivirusList was null, which
caused the issue:

Add conditions to Exception
Settings
Visual Studio 2017 allows you to add conditions when you configure the debugger to
break on thrown exceptions from a specific module. Thus, the breakpoint will hit only
when the specified condition is met. You can use the asterisk/wildcards to broaden the
conditions, as shown in the following screenshot:

Updates to Diagnostic Tools
When you start your debugging session inside Visual Studio, the Diagnostic Tools
window becomes visible, having many details on the screen. With Visual Studio
2017, you can now view the number of Application Insights and UI Analysis events
(UWP apps only) that occurred in your application, along with the number of
Exceptions and IntelliTrace events. You can also take a memory snapshot of your
heap and enable or disable the CPU profiling:

If you don't want to load Diagnostic Tools when the debugger session starts, you can
disable it by unchecking the Enable Diagnostic Tools while debugging checkbox
under the debugging options. Consider the following screenshot:

Summary
By the end of this chapter, you will have learned many things that have been newly
added/modified in Visual Studio 2017. You learned about the workloads and the
individual components part of the new installation experience. You also learned how
to create an offline layout of the installer and the step-by-step instructions to install
Visual Studio 2017 on your system.

Apart from those, we also covered the new and improved changes in Visual Studio
2017 IDE that will improve the productivity of developers. Whether you want to
create a new project, open an existing one, or work with code, find the references of
any symbol, or debug, you will find it useful and easy to use everywhere. Also, the
convenient way to open a folder, load the solution in a lightweight manner, or acquire
additional components using the In-Product Acquisition is second to none.

In the next chapter, we will discuss the new features introduced in C# 7.0 that have
been introduced with Visual Studio 2017 for developers to build rapid and robust
applications without spending too much time on code.

What is New in C# 7.0?
C# is a simple, modern, object-oriented programming language with support for
component-oriented programming. It constructs robust applications using automatic
garbage collection of unused objects, proper exception handling, and type-safe design.

Along with Visual Studio 2017, Microsoft introduces the next version of C#, that is,
C# 7.0, which provides several changes and new features for developers to build rapid
and robust applications without spending more time on code.

In this chapter, we will learn about the following new features introduced in C# 7.0,
guided through the code:

Local functions or nested functions
Literal improvements in C# 7.0
The new digit separators
Getting to know about pattern matching
The ref returns and locals
New changes to tuples
Changes to the throw expression
Changes to Expression-bodied members
New changes to the out variables
Getting to know about the Deconstruction syntax
Uses of the generalized async return types

Local functions or nested
functions
C# 7.0, which comes with Visual Studio 2017, allows you to write local functions or
nested functions. The local function provides you with the ability to declare
methods/functions inside an already defined methods body. It has the same capability
as normal methods, but it will be scoped to the method block where they are declared.

In earlier versions of C#, we needed to write the method bodies separately and then
we needed to call one method from the other. Here is the old way to write a method
called by another method:

 public static Person GetBloggerDetails()

 {

 return new Person

 {

 FirstName = "Kunal",

 LastName = "Chowdhury",

 Blogs = GetBlogs()

 };

 }

 private static List<string> GetBlogs()

 {

 return new List<string> { "http://www.kunal-chowdhury.com" };

 }

In the preceding example, although the GetBlogs method is private, it is accessible to
the other members of the same class and is being detected by IntelliSense. To
overcome this, C# 7.0 introduced local functions (nested functions), by which you
will be able to add a number of local/nested functions within a function/method body,
constructor, or property's getter and setter. Here's how to do it:

 public static void CalculateOne()

 {

 double a = 5, b = 3;

 double Sum(double x, double y) { return x + y; }

 double Subtract(double x, double y) { return x - y; }

 double Multiply(double x, double y) { return x * y; }

 void Print(string msg, double value)

 {

 Console.WriteLine(msg + value);

 }

 Print(string.Format("Sum of {0}, {1} is: ", a, b), Sum(a, b));

 Print(string.Format("Difference of {0}, {1} is: ", a, b),

 Subtract(a, b));

 Print(string.Format("Multiplication of {0}, {1} is: ", a, b),

 Multiply(a, b));

 }

Here you can see that the Sum, Subtract, Multiply, and Print methods are local to the
CalculateOne method. So, no one other than the callee will have access to it. That
means, only the CalculateOne method from the preceding example will have access to
those local methods, thus, making your code more secure:

It's not mandatory to pass a parameter to the inline method. You can use the variables
already in scope of the main method (callee). Here's an example for your quick
reference:

 public static void CalculateTwo(int a, int b)

 {

 Print();

 void Print()

 {

 Console.WriteLine("Sum of {0}, {1}: {2}", a, b, (a + b));

 }

 }

Once you run the preceding code snippet, you will see the following output in console
window:

You can also utilize the same capabilities as a normal function here. For example, you
can easily use generics, ref and out parameters, dynamic, async and await within a local
function and achieve all the things that a normal function does. The following code
block returns an out parameter from a local function:

 public static void CalculateThree()

 {

 void Sum(int x, int y, out int result) => result = x + y;

 int retValue = 0;

 Sum(5, 3, out retValue);

 Console.WriteLine("Result: " + retValue);

 }

Remember that a local function cannot be static and it does not
maintain any of the call stack information that a normal function does.
That's why, if you are using recursive calls and the call stack becomes
too high, you may sometime get StackOverflowException. As the local
function does not have any call stack, it is better to use it in such
scenarios.

The local function supports Caller Info Attributes (CallerMemberName, CallerLineNumber,
CallerFilePath). Here's an example:

 public static void PrintMethodDetails()

 {

 void Print([CallerMemberName] string name = null,

 [CallerLineNumber] int line = 0,

 [CallerFilePath] string filePath = null)

 {

 Console.WriteLine("The method name is: " + name);

 Console.WriteLine("The method line no. is: " + line);

 Console.WriteLine("The file path is: " + filePath);

 }

 Print();

 }

The preceding code snippet will result in the following output:

You can declare a local function with the same name as the member method and the
local function will hide it:

 public static void DisplayText()

 {

 void Print()

 {

 Console.WriteLine("Print from local function");

 }

 Print();

 }

 public static void Print()

 {

 Console.WriteLine("Print from member method");

 }

Here you can see that, although a member method named Print is there, it called the
local function instead of the member method:

Literal improvements in C#
7.0
There were two types of literals supported in C# prior to C# 7.0. They are decimal
literals and hexadecimal literals. For example, 490 is a decimal literal, whereas
0x50A or 0X50A is a hexadecimal literal, equivalent to the decimal value 490. Please
note that the prefixes 0x and 0X define the same thing.

Here's an example for you to easily understand how a hexadecimal literal is used in
C#:

 class Program

 {

 static void Main(string[] args)

 {

 double height = 490;

 double width = 1290;

 double heightInHex = 0x1EA; // equivalent to decimal 490

 double widthInHex = 0x50A; // equivalent to decimal 1290

 Console.WriteLine("Height: " + heightInHex + " Width: " + widthInHex);

 }

 }

Along with C# 7.0, Microsoft added more support to literals, and they have now
introduced binary literals in C# to handle the binary value. The binary literals prefixed
with 0b or 0B have the same meaning.

In the following example, the decimal value of the binary literal 0b1110110110 is
950:

 class Program

 {

 static void Main(string[] args)

 {

 double height = 950;

 double width = 5046;

 double heightInBinary = 0b1110110110; // decimal 950

 double widthInBinary = 0b1001110110110; // decimal 5046

 Console.WriteLine("Height: " + heightInBinary + " Width: " + widthInBinary);

 }

 }

Remember that, whether your representation is decimal, hexadecimal,
or binary in code, the output is always in decimal form only.

Once you run the preceding code snippet, you will see the following output in console
window:

The new digit separators
Digit separator is a new feature in C# 7.0. You can use _ (underscore) inside numeric
literals as a digit separator. The purpose of it is none other than improving the
readability of the value in code.

You can put a digit separator (_) wherever you want between digits. You can have
multiple underscores (____) too. They will have no effect on the value. This is shown
in the following code snippet:

 var decimalValue1 = 1_50_000; // better than 150000

 var decimalValue2 = 25_91_50_000; // better than 259150000

 // you can use multiple underscores too

 var decimalValue3 = 25_91__50___000; // better than 259150000

You can also add digit separators to a binary literal and/or hexadecimal literals:

 var binaryValue = 0b1010_1011_1100_1101_1110_1111;

 var hexadecimalValue = 0xAB_C_0_D_EF_578;

Please note that the following conventions are invalid:

_1_50_000, as it starts with _
1_50_000_ or 1_50_000.25_, as it ends with _
5000_._25, as the decimal point can't be associated with _
_0b1100, 0b_1100, or 0_b_1100, as 0b should be prefixed with a valid binary
number
_0xFEB1, 0x_FEB1, or 0_x_FEB1, as 0x should be prefixed with a valid
hexadecimal value

Here is the complete code for you to try:

 class Program

 {

 static void Main(string[] args)

 {

 var decimalValue1 = 1_50_000; // better than 150000

 var decimalValue2 = 25_91_50_000; // better than 259150000

 // you can use multiple underscores too

 var decimalValue3 = 25_91__50___000;

 Console.WriteLine("Decimal Value 1: " + decimalValue1);

 Console.WriteLine("Decimal Value 2: " + decimalValue2);

 Console.WriteLine("Decimal Value 3: " + decimalValue3);

 var binaryValue = 0b1010_1011_1100_1101_1110_1111;

 var hexadecimalValue = 0xAB_C_0_D_EF_578;

 Console.WriteLine("Binary Value: " + binaryValue);

 Console.WriteLine("Hexadecimal Value: " + hexadecimalValue);

 }

 }

Here's the output of the preceding code:

Getting to know about
pattern matching
Pattern matching is a new notion introduced in C# 7.0, which adds some power to the
existing operators and statements. You can perform pattern matching on any data type
and from that statement you can extract the value of that data type. There are two
different types of pattern matching in C# 7.0:

The Is expression with pattern matching
Switch statements with pattern matching

The Is expression with
pattern matching
In this type of pattern matching, it introduces a new pattern variable out of the
expression, allowing you to extract the value of the type. It is similar to the out
variable, but with a limited scope to the surroundings.

Let's look at an example. In the old method, we need to check for the data type, and
then we must convert the variable to the specified data type to get the value out of it.
Here, if the person is of type Employee, we can type cast it to Employee to get the values
of the employee object:

 if (person is Employee)

 {

 Employee employee = (Employee)person;

 Console.WriteLine("Person '{0}' is an Employee",

 employee.Firstname);

 }

 else if (person is Customer)

 {

 Customer customer = (Customer)person;

 Console.WriteLine("Person '{0}' is a Customer",

 customer.Firstname);

 }

In C# 7.0, you can do that in the same line while validating the expression. It allows
you to extract the is expression by adding a pattern to the right side of the expression
and extracting the value from it. The preceding example can be rewritten in C# 7.0 as
follows:

 if (person is Employee employee)

 {

 Console.WriteLine("Person '{0}' is an Employee",

 employee.Firstname);

 }

 else if (person is Customer customer)

 {

 Console.WriteLine("Person '{0}' is a Customer",

 customer.Firstname);

 }

Here you can see that employee is a value extracted from the same line as the
expression, which you can use in subsequent lines of the block.

You can also use the extracted variable just like an out variable with a limited scope to
the surrounded blocks. The following code snippet shows you how to do this:

 if (!(obj is int i))

 {

 return;

 }

 Console.WriteLine("Value of i: " + i);

Here you can see that the value i, which is derived after the conversion in the
expression, acts like an out parameter and has access to it within the next code lines
outside the expression block. If you run the preceding example, it will print the value
of i (where obj is 50, in our case) in the console window:

Switch statements with
pattern matching
The new switch case statement pattern enhances the case blocks by comparing the
value, not just by constants, but also by an expression. In C# 7.0, you can generalize
the switch statement in the following manner:

You can put switch on any type, in addition to primitive data types
You can use patterns on case clauses
You can have additional conditions on case clauses using the keyword when

Let's look at the following example, where we have the base Person reference passed
to the switch statement:

 public static void Validate(Person person)

 {

 switch (person)

 {

 case Employee e:

 Console.WriteLine($"{e.Firstname} is an Employee");

 break;

 case Customer c when (c.IsPremium):

 Console.WriteLine($"{c.Firstname} is a Premium Customer");

 break;

 case Customer c:

 Console.WriteLine($"{c.Firstname} is a Customer");

 break;

 default:

 Console.WriteLine($"{person.Firstname} is a Person");

 break;

 case null:

 Console.WriteLine("Null value specified\n");

 break;

 }

 }

 // satisfies the first case of type Employee

 Validate(new Employee { Firstname = "Kunal" });

 // satisfies the second case where the person is a Premium Customer

 Validate(new Customer { Firstname = "Kunal", IsPremium = true });

 // satisfies the third case where the person is a Normal Customer

 Validate(new Customer { Firstname = "Kunal" });

 // satisfies the fourth case where the person does not fit any of the above cases

 Validate(new Person { Firstname = "Kunal" });

 // satisfies the fifth case when the person is set as 'null'

 Validate(null);

In this example, if the person is an Employee, the first case clause will execute. When
the person is a Customer, the second or third case clause will execute based on the
condition satisfied by the when expression. If no other case satisfies, it will execute the
default case.

When the object passed to the switch statement is null, it will get higher preference on
top of the default case, jump directly to the case null, and display Null value specified

in the console window. This will reduce your additional code to checking whether the
object is null and giving you the option to handle the null check within the switch
case:

Some important points on switch statements in C# 7.0:

Just like the catch clauses, the order of the case clauses now matters. The first
clause that matches, gets picked. For example, the first clause of the following
code snippet gets picked up when a customer is a premium user. This is a valid
case for the compiler:

The following case becomes invalid as the more generic one gets picked up
before checking the condition within the case statement. The compiler will give
an error in such cases, as it has already been handled by the previous case:

Also, the compiler will give you an error for such obvious cases having
unreachable codes. The following code snippet is invalid as well:

Even though you write the null case at the end, the default case always gets

evaluated at the end, giving higher preference to the null check.
The pattern variables introduced by a case are always in the scope of the
corresponding switch section only.

Visual Studio 2015 and C# 6.0 included a similar kind of when-clause pattern as part
of a structured error handling system:

 try

 {

 // perform your error prone code

 }

 catch (Exception ex) when (logExceptionDetails)

 {

 // handle the exception only if you want to log

 Console.WriteLine("Catch block when logExceptionDetails=true");

 }

 catch

 {

 // all other cases

 Console.WriteLine("Catch block when logExceptionDetails=false");

 }

The ref returns and locals
Since C# 1.0, the language has supported passing parameters to a method by reference
using the ref, but there exists no mechanism to return a safe reference to stack or heap
memory locations.

In C# 7.0, Microsoft has provided the option for developers to return values by
reference and store them in local variables as a reference pointer.

Before going into an example of return by reference, let us first look at an example of
how the return by value works with a pass by reference parameter. In the following
example, the GetAsValue method accepts a third parameter of type integer as a
reference, and returns a value to the callee, which gets stored in the local variable name:

 public static void DemoReturnAsValue()

 {

 var count = 0;

 var index = 0;

 string[] names = { "Kunal", "Manika", "Dwijen" };

 string name = GetAsValue(names, index, ref count);

 Console.WriteLine("No. of strings in the array: " + count);

 Console.WriteLine("Name at {0}th index is: {1}\n", index, name);

 name = "Rajat";

 Console.WriteLine("The value of 'name' variable changed to:" + name);

 Console.WriteLine("The new name at {0}th index is still: {1}\n",

 index, GetAsValue(names, index, ref count));

 }

 public static string GetAsValue(string[] names, int index,

 ref int count)

 {

 count = names.Length;

 return names[index];

 }

Now, when we change the value of the variable name, it does not change the original
string of the array, as it returned by value and there's no reference between them. If
you run the preceding example, you will see the following output, where the zeroth
position of the array still has the previous/original value. The count variable that we
passed as reference parameter will have the length of the array as it is marked as ref:

In C# 7.0, if you want to return something from a method by reference, you should
mark the return type with the ref keyword and put it as a reference in a local variable.
This is how the preceding implementation of the GetAsValue will change, along with
the implementation of storing it:

Now, when you change the value of the variable name, it will change the original value
of the array as we are referencing its memory address. Printing the value of the array
will give you the changed output. Here is the complete code implementation for the
preceding changes, which should give you a clear understanding:

 public static void DemoReturnAsReference()

 {

 var count = 0;

 var index = 0;

 string[] names = { "Kunal", "Manika", "Dwijen" };

 ref string name = ref GetAsReference(names, index, ref count);

 Console.WriteLine("No. of strings in the array: " + count);

 Console.WriteLine("Name at {0}th index is: {1}\n", index, name);

 name = "Rajat";

 Console.WriteLine("The value of 'name' variable changed to: " + name);

 Console.WriteLine("The new name at {0}th index is now: {1}\n", index,

 GetAsReference(names, index, ref count));

 }

 public static ref string GetAsReference(string[] names,

 int index, ref int count)

 {

 count = names.Length;

 return ref names[index];

 }

When you run the code, you will get the preceding output, where the zeroth index of
the array now has the new name, which we have changed by reference.

New changes to tuples
A tuple is a finite ordered list of elements. In C#, it's not a new thing, having been
available since .NET Framework 4.0. It is useful when you want to return multiple
values from a method without creating a separate class or collection to hold the data.
Tuples are declared in the manner, Tuple<T1, T2, T3, ...> and are available under the
System namespace.

By default, a tuple can hold up to eight value types, but you can extend it by adding
the reference of System.Runtime.

Although this is useful when returning multiple values, you need to create an
allocation for the System.Tuple<...> object. The following example demonstrates how
to return multiple values using a tuple:

 public static Tuple<string, string> GetAuthor()

 {

 return new Tuple<string, string>("Kunal Chowdhury",

 "www.kunal-chowdhury.com");

 }

Based on the number of elements, the returned value generates properties dynamically
to get the individual values. For example, if you return two values using a tuple, the
returned object will have Item1 and Item2 properties to access the individual values. If
the tuple object has three values, the properties will be Item1, Item2, Item3, and
Item4.

Here you can see an example of how to access the returned values:

In C# 7.0, you don't need to specify it by explicitly creating the tuple object. Rather,
you can specify the return types within brackets, as shown in the following code
snippet:

 public static (string, string) GetAuthor()

 {

 return ("Kunal Chowdhury", "www.kunal-chowdhury.com");

 }

If you receive an error using the new way of using tuples in C# 7.0, you must
explicitly reference System.ValueTuple from the NuGet package library. To install the
package, either open the NuGet package manager or the NuGet package manager
console; or you can simply click the Install package 'System.ValueTuple' menu item
from the tooltip, as shown in the following screenshot. This is the simplest way to

download and install the package:

Alternatively, you can find the package here: http://www.nuget.org/package
s/System.ValueTuple/.

Once you have installed the package, you can see that the DLL reference to the
System.ValueTuple has already been added to your project:

Apart from the preceding simplest way, C# 7.0 also allows you to define the name to
the tuple elements to describe them easily:

 public static (string AuthorName, string Blog) GetAuthor()

 {

 return ("Kunal Chowdhury", "www.kunal-chowdhury.com");

 }

You can also specify the element names directly to the tuple literals, making it simpler
and error free while assigning:

 public static (string AuthorName, string Blog) GetAuthor()

 {

 return (AuthorName: "Kunal Chowdhury",

 Blog: "www.kunal-chowdhury.com");

 }

Setting a descriptive name to the tuple element makes it easily identifiable while
accessing from the returned object. In the preceding example, AuthorName and Blog are
better than Item1 and Item2.

When you make the changes to your existing tuple definition, you can easily rename it
in the accessible method by following the step given here:

http://www.nuget.org/packages/System.ValueTuple/

When you are directly using tuples in Visual Studio editor window, you can see them
appear in IntelliSense to use in your code.

Points to remember:

Tuples are value types
Elements of tuples are public and mutable
Two tuples are equal, if their elements are pairwise equal

Changes to the throw
expression
The earlier versions of C# had some limitations on throwing exceptions from certain
places, which caused developers to write more code to validate and raise exceptions.
In C# 7.0, those limitations have been removed to reduce the overload.

The Null Coalescing operator now allows you to throw an exception in the middle of
the expression without explicitly checking for null:

 m_designation = designation ??

 throw new ArgumentNullException(designation);

It is now possible to throw an exception from the Conditional operator too:

 m_department = department == null ?

 throw new ArgumentNullException(department) :

 department;

C# 7.0 also allows you to throw an exception from expression-bodied member, as
shown in the following code snippet:

 public void SetSalary(double salary) =>

 throw new NotImplementedException();

Changes to the expression-
bodied members
In C# 6.0, Microsoft introduced the expression-bodied methods and properties, but
these had a few limitations, which didn't allow us to use them in the constructors,
destructors, and getters/setters of properties.

With C# 7.0, these limitations are no more, and you can now write them for single-
liner constructors and destructors, as well as the getter and setter of a property. Here's
how you can use them:

 public class Person

 {

 private string m_name;

 // constructor

 public Person() => Console.WriteLine("Constructor called");

 // destructor

 ~Person() => Console.WriteLine("Destructor called");

 // getter/setter properties

 public string Name

 {

 get => m_name;

 set => m_name = value;

 }

 }

When you run the preceding code, the following output can be seen in the console
window:

New changes with the out
variables
Currently in C#, we need to first declare a variable before we pass it as an out
parameter to a method. You can use a var while declaration if you initialize them in
the same line, but when you don't want to initialize explicitly, you must declare them,
specifying the full type:

 // predeclaration of 'out' variable was mandatory

 int result; // or, var result = 0;

 string value = "125";

 int.TryParse(value, out result);

 Console.WriteLine("The result is: " + result);

In C# 7.0, the out variables can be declared right at the point where they are passed as
an out parameter to a method. You can now directly write int.TryParse(value, out int
result); and get the value of the out parameter, to use it in the scope of the enclosing
block:

 static void Main(string[] args)

 {

 string value = "125";

 int.TryParse(value, out int result);

 Console.WriteLine("Result: " + result);

 }

You can also use var instead of a strong type declaration, like int.TryParse(value, out
var result);, and the compiler will define it properly:

 static void Main(string[] args)

 {

 string value = "125";

 int.TryParse(value, out var result);

 Console.WriteLine("Result: " + result);

 }

To use an out parameter, both the method definition and the calling
method must explicitly use the out keyword.

If you have already written code in the existing way of declaration before passing the
out parameter to a method, Visual Studio 2017 will allow you to leverage this new
feature of C# 7.0 from the light bulb icon:

From the popup, you can fix all the similar occurrences, in the current document, the
entire project, or at the solution level, by clicking the links highlighted as shown in the
preceding screenshot.

Getting to know about
deconstruction syntax
Deconstruction is a syntax to split a value into multiple parts and store those parts
individually into new variables. For example, tuples that return multiple values. Let us
take the following method as an example, which returns a tuple of two string
variables, Title and Author (see the New changes to tuples section):

 public (string Title, string Author) GetBookDetails()

 {

 return (Title: "Mastering Visual Studio 2017",

 Author: "Kunal Chowdhury");

 }

Now, when you call the method GetBookDetails(), it will return a tuple. You can access
its elements by calling the element name, as follows:

 var bookDetails = GetBookDetails(); // returns Tuple

 Console.WriteLine("Title : " + bookDetails.Title);

 Console.WriteLine("Author : " + bookDetails.Author);

In a deconstructing declaration, you can split the tuple into parts and assign them
directly into new variables. You can then access those variables individually, just like
a local variable:

 (string title, string author) = GetBookDetails();

 Console.WriteLine("Title : " + title);

 Console.WriteLine("Author : " + author);

While deconstructing, you can also use var for the individual variables, instead of
strong type names:

 (var title, var author) = GetBookDetails();

 Console.WriteLine("Title : " + title);

 Console.WriteLine("Author : " + author);

The preceding code can also be replaced by the following deconstruction syntax, by
putting a single var outside the parentheses as an abbreviation:

 var (title, author) = GetBookDetails();

 Console.WriteLine("Title : " + title);

 Console.WriteLine("Author : " + author);

If you have existing variables with a deconstructing assignment, you can use the same
variables to store the return values of a new call:

 var (title, author) = GetBookDetails();

 // deconstruct to existing variables

 (title, author) = GetAnotherBookDetails();

 Console.WriteLine("Title : " + title);

 Console.WriteLine("Author : " + author);

Until now, we have learned how to write the syntax to deconstruct a tuple. In C# 7.0,
it's not limited to tuples only. You can use deconstructing assignments for any type, as
long as it has a Deconstruct method in the following form: public void Deconstruct (out
T1 x1, ..., out Tn xn) { ... }.

A Deconstruct method should use out parameters to return the values
instead of using tuples. This is to enable you to have multiple overloads
for different numbers of values.

For example, let us create a class named Book exposing the Deconstruct method with
two out variables:

 public class Book

 {

 public void Deconstruct (out string Title, out string Author)

 {

 Title = "Mastering Visual Studio 2017";

 Author = "Kunal Chowdhury";

 }

 }

As we didn't expose any properties to access the values of Title and Author from the
Book class, we will not find them generally in the IntelliSense popup when trying to
access an instance of the class. Refer to the following screenshot:

As we have declared the Deconstruct method in the class, you can directly deconstruct
the instance into multiple variables to get the desired output of the return values:

 var book = new Book();

 var (title, author) = book; //var (title, author) = new Book();

 Console.WriteLine("Title : " + title);

 Console.WriteLine("Author : " + author);

When you run the preceding code, you will get the following output in the console
window:

Uses of the generalized async
return types
Prior to C# 7.0, async methods had to return either void, Task, or Task<T>. As Task is a
reference type, returning such an object from async methods can impact performance
because it allocates an object into memory even though it returns a cached object or
runs asynchronously.

To overcome this, C# 7.0 introduces the ValueTask type, which is set to prevent the
allocation of a Task<T> object when the result of the async operation is already
available. Using it, the async methods can return types other than Task, Task<T>, and
void:

 public async ValueTask<long> GetValue()

 {

 return await Task.Run<long>(() => 5000);

 }

If you receive an error accessing ValueTask in C# 7.0, you must explicitly reference
System.Threading.Tasks.Extensions from the NuGet package library. To install the
package, either open the NuGet package manager or the NuGet package manager
console; or you can simply click the Install package
'System.Threading.Tasks.Extensions' menu item from the tooltip, as shown in the
following screenshot. This is the simplest way to download and install the package:

Alternatively, you can find the package here: http://www.nuget.org/packages/System.Threadin
g.Tasks.Extensions/.

Once you have installed the package, you can see that the DLL reference to
System.Threading.Tasks.Extensions has already been added to your project:

http://www.nuget.org/packages/System.Threading.Tasks.Extensions/

Summary
In this chapter, we have learned about the new features introduced in C# 7.0, along
with the release of Visual Studio 2017. We have also demonstrated each of them with
examples/code.

At a glance, we have learned about local or nested functions, literal improvements, the
new digit separators, pattern matching, ref returns and locals, changes in tuples,
changes to the throw expression, and expression-bodied members. We also learned
about the new changes to the out variables, deconstruction syntax, and the uses of
generalized async return types.

As we have become familiar with the features of C# 7.0, let's move on to the next
chapter, where we will learn about building applications for Windows using Windows
Presentation Foundation. We will also learn how to design a XAML UI, do data
bindings, and much more.

Building Applications for
Windows Using XAML
Tools
The Windows Presentation Foundation (WPF) provides developers a unified
programming model to build dynamic, data-driven desktop applications for Windows.
It supports a broad set of features that includes application models, controls, layouts,
graphics, resources, security, and more. It is a graphical subsystem for rendering rich
UI (User Interfaces) and is part of the .NET Framework, which was first released
along with .NET 3.0.

The WPF is a resolution-independent framework that uses vector-based rendering
engine using the eXtendable Application Markup Language (XAML) to create
stunning user interfaces.

The runtime libraries for it to execute are included with Windows since Windows
Vista and Windows Server 2008. If you are using Windows XP with SP2/SP3 and
Windows Server 2003, you can optionally install the necessary libraries.

In this chapter, we will discuss on the following points and start building Windows
applications using the WPF framework:

The WPF architecture
The XAML overview

Object element syntax
Property attribute syntax
Property element syntax
Content syntax
Collection syntax
Event attribute syntax
Understanding the XAML namespaces
Working with inline code in XAML pages
The code behind file of an XAML page

Build your first WPF application
Get started with WPF project
Understanding the WPF project structure
Get familiar with XAML Designer
Adding controls in XAML
Command-line parameters in WPF application

Layouts in WPF
Using Grid as a WPF panel
Using Stack Panel to define stacked layout
Using Canvas as a panel
Using WPF Dock Panel to dock child elements
Using the WrapPanel to automatically reposition
Using UniformGrid to place elements in uniform cells

WPF property system

Data binding in WPF
Using Converters while data binding
Using triggers in WPF

Property trigger
Multi trigger
Data trigger
Multidata trigger
Event trigger

The WPF architecture
The architecture of WPF is a layered architecture, which includes managed,
unmanaged, and the core APIs as shown in the following diagram, where the
programming model is exposed through the managed code:

Presentation Framework
The Presentation Framework (presentationframework.dll) provides the required
components (such as layouts, controls, graphics, media, data bindings, documents,
animations, and styling) to build WPF applications.

Presentation Core
The Presentation Core layer (presentationcore.dll) provides you the wrapper around
the Media Integration Library to provide you public interface to access the MIL Core.
It also provides you the Visual System to develop the visual tree, which contains
visual elements and rendering instructions.

Common Language Runtime
Common Language Runtime provides several features to build robust applications.
This includes CTS (Common Type System), error handling, memory management,
and more.

Media Integration Library
The Media Integration Library (milcore.dll) is part of the unmanaged layer and
provides you access to the unmanaged components to enable tight integrations with
DirectX, which is used to display all graphics rendered through the DirectX engine.
MILCore provides performance gain to CLR with the rendering instructions from the
Visual System.

OS Core
The next layer is the OS Core that provides you access to low-level APIs to handle
the core components of the operating system that includes Kernel, User32, DirectX,
GDI, and Device Drivers.

Types of WPF applications
WPF applications can be of two types: desktop-based applications and web-based
applications. The desktop applications are normal .EXE executables, whereas the web-
based browser applications are the .XBAP files which can be deployed in web servers
and run inside any supported browser. The .NET framework is mandatory to run any
of these application outputs.

Each WPF application starts with two threads. The UI thread uses
System.Threading.DispatcherObject to create the messaging system to maintain the
queue of UI operations. Just like Win32 message pumping, it performs the UI
operation sorted by the priority set to it. The other thread is the background thread to
handle the rendering engine, which is being managed by WPF. It picks up a copy of
the visual tree and performs action to show the visual components in the Direct 3D
surface. After that, it calls all UI elements to determine the size and arranges the child
elements by their parents.

The XAML overview
XAML (eXtensible Application Markup Language), is an XML-based markup
language to declaratively create the UI of the WPF applications. You can create
visible UI elements in the declarative XAML syntax and then write the code behind to
perform the run-time logic.

Though it is not mandatory to use XAML to create the UI, it is well accepted to make
the things easier as creation of the entire application UI is much more difficult using
C# or VB.NET. It is as simple as writing an XML node with few attributes (optional)
to create a simple button in the UI. The following examples show you how you can
create a button using XAML:

 <Button />

 <Button Content="Click Here" />

 <Button Height="36" Width="120" />

You can either compile an XAML page or render directly on the UI. When you
compile an XAML file, it produces a binary file known as BAML (Binary
Application Markup Language), stored as resource inside the assembly file. When it
loads into the memory, the BAML is parsed at runtime:

There are few syntax terminologies available to define an element in the XAML to
create the instance of it. We'll take a look at few of them next to get started with it.

Object element syntax
The XAML object element declares an instance of a type. Each object element starts
with an opening angular bracket (<) followed by the name of it. Optionally, it can have
a prefix to define its namespace outside of the default scope. The object element can
be closed by a closing angular bracket (>) or with a self-closing angular bracket (/>).
When the object element has a child element, we use the first one followed by the end
tag (<Button>Click Here</Button>), and for the other case, a self-closing element
(<Button Content="Click Here" />) is used.

When you specify the object element in an XAML page, the instruction to create an
instant of the element is being generated and when you load the XAML, it creates the
instance by calling the default constructor of the same.

Property attribute syntax
Each element can have one or more properties. You can set the properties in XAML
as an attribute. The syntax of it starts with the property name, an assignment operator
and a value within quotes. For example, in the following code snippet, the first
example defines a button element without specifying a property attribute whereas the
other two elements have the attribute defined:

 <Button />

 <Button Content="Click Here" />

 <Button Content="Click Here" Background="Red" />

Property element syntax
The properties can also be defined as an element when you cannot assign the value
within the quotes. This generally starts with <element.PropertyName> and ends with
</element.PropertyName>. The following example shows you how to write the Background
property as an element to the Button:

 <Button>

 <Button.Background>

 <SolidColorBrush Color="Red" />

 </Button.Background>

 </Button>

Content syntax
An XAML element can have content within it. It can be set as the value of child
elements of root. Refer to the following code blocks. The first example shows how to
set the text content property of a button instead of specifying it in an attribute syntax
(<Button Content="Click Here" />):

 <Button>

 <Button.Content>

 Click Here

 </Button.Content>

 </Button>

In the following example, when the Button element is wrapped by a Border panel, it is
defined as element content of the said panel and omits the explicit definition of the
content property:

 <Border>

 <Button Content="Click Here" />

 </Border>

The preceding code can be rewritten with a Content property (Border.Child) having a
single element in it:

 <Border>

 <Border.Child>

 <Button Content="Click Here" />

 </Border.Child>

 </Border>

The value of an XAML content property must be contiguous and hence the following
definition is incorrect:

Also, you cannot define an XAML content property like this, where you are trying to
put the content twice:

Collection syntax
Sometimes it's required to define a collection of elements in the XAML. This is done
using the Collection syntax to make it more readable. For example, a StackPanel can
have multiple elements defined inside the Children property :

 <StackPanel>

 <StackPanel.Children>

 <Button Content="1" />

 <Button Content="2" />

 </StackPanel.Children>

 </StackPanel>

The preceding example can also be written as follows, where the parser knows how to
create and assign it:

 <StackPanel>

 <Button Content="1" />

 <Button Content="2" />

 </StackPanel>

Event attribute syntax
In XAML, you can also define events for a specific object element. Though it looks
like property attribute, but is used to assign the event. If the attribute value of an
element is the name of an event, it is treated as an event. In the following code
snippet, the Click attribute defines the click event of the buttons:

 <Button Click="Button_Click">Click Here</Button>

 <Button Click="Button_Click" Content="Click Here" />

The implementation of the event handler is generally defined in the code behind of the
XAML page. The event implementation for the preceding button click event looks
like this:

 void Button_Click(object sender, RoutedEventArgs e)

 {

 // event implementation

 }

Understanding the XAML
namespaces
An XAML namespace is an extension to the XML namespace syntax, providing you
the concept to use markup entities from referenced assemblies or different modules.
When you create a new Windows UserControl or any other XAML pages, you will
see that there are two XAML namespace declarations within the root tag of the
XAML.

The first namespace xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
maps the client/framework-specific XAML namespaces as default.

The second namespace declaration
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" maps a different XAML
namespace with the prefix x:, to provide you intrinsic supports to the XAML language
definition. It defines many commonly used features, which are required for basic WPF
applications. For example, the x:Class attribute in the root element of the XAML file
defines the code behind the class name that you want to use as a partial class:

You can also map XAML namespaces to an assembly using a series of tokens in an
xmlns declaration. The syntax has two token names: clr-namespace and assembly. For
example, xmlns:controls="clr-
namespace:Packt.KunalChowdhury.Demo.Controls;assembly=MyAssembly".

The first token, that is, the clr-namespace defines the CLR namespace of the public
element that you want to access from the second token, that is, assembly. The second
token should pass the name of the assembly (without the file extension) and not the
path of it. Once you have defined it, you can access the public type/element within
that XAML.

Let's discuss this with a simple example:

 <Window x:Class="MyWpfApplication.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:controls="clr-namespace:Packt.KunalChowdhury.Demo.Controls;

 assembly=MyAssembly" Title="Main Window" Height="350" Width="525">

 <Grid>

 <controls:MyUserControl />

 </Grid>

 </Window>

Here we have defined the XMLNS namespace to clr-
namespace:Packt.KunalChowdhury.Demo.Controls;assembly=MyAssembly and assigned a prefix

controls, so that we can access the public type MyUserControl, which is already
available in it under the Packt.KunalChowdhury.Demo.Controls namespace with the
<controls:MyUserControl /> XAML tag.

You can omit the assembly if the clr-namespace referenced is being
defined within the same assembly as the application. Alternatively, you
can specify assembly= without defining any string token.

Working with inline code in
XAML pages
You can write inline programming code (C# or VB.NET) within the XAML page,
using the x:Code directive and must be surrounded by <![CDATA[...]]> to escape the
contents for XML. This can interact within the same XAML page:

<Window x:Class="MyWpfApplication.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Main Window" Height="350" Width="525">

 <Grid>

 <Button Click="Button_Click" Content="Click Here" />

 <x:Code>

 <![CDATA[

 void Button_Click(object sender, RoutedEventArgs e)

 {

 // event implementation

 }

]]>

 </x:Code>

 </Grid>

</Window>

Try to avoid using the inline code in the XAML page, as it violates the separation
between the designer and the code behind. Also, other language-specific programming
features are not supported in inline coding.

The code behind file of an
XAML page
When an XAML is markup compiled, it has an associated code behind class file. The
code behind is a partial class and derives from the same class, which is the root of the
XAML page element:

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 }

 }

The constructor of the class gives a call to the InitializeComponent method available in
another partial class implementation, which resides in a .g.i.cs file. For example, if
your XAML page name is MainWindow.xaml, its associated code behind is
MainWindow.xaml.cs and the core partial implementation is in an autogenerated file
named MainWindow.g.i.cs. The .g.i.cs file can be located in the obj folder under the
project. It loads your XAML page and defines the UI elements placed in the designer.

Here's how the InitializeComponent() method looks like:

Building your first WPF
application
Before starting with the WPF application development, make sure that you have
installed the .NET desktop development workload on your system. Run your Visual
Studio 2017 installer and confirm that the .NET desktop development workload is
already checked. If not, check it and proceed towards installation of the required
components.

Hope you have already configured your Visual Studio installation to build desktop
applications using Windows Presentation Foundation. Let's start building our first
WPF app using XAML and C#.

Getting started with WPF
project
To get started, open your Visual Studio 2017 IDE and navigate to File | New |
Project... (or press keyboard shortcut Ctrl + Shift + N). This will open the new project
window on your screen:

In the New Project dialog window, navigate to Installed | Templates | Visual C# |
Windows Classic Desktop, and select the WPF App template from the list. Select the
appropriate .NET Framework that you are targeting your app for (must be 3.5 or
higher). Here we have selected the .NET Framework 4.6.1.

Enter the name of the solution, the location of the project code base, and the project
name. Once you have filled up all the necessary details on the screen, click on the OK
button. This will start creating the project from the selected project template:

Alternatively, you can search for wpf app in the search box under the New Project
section of the Visual Studio 2017 Start Page to bring the preceding dialog, selecting
the correct project automatically:

Understanding the WPF
project structure
Once the project is created from the selected template, you will see that the project has
few files in it. Among them, you will find two XAML files (App.xaml and
MainWindow.xaml) and two associated C# files (App.xaml.cs and MainWindow.xaml.cs)
automatically created by Visual Studio:

The App.xaml file is the declarative start point of your application, which extends the
Application class and subscribes to application-specific events, unhandled exception,
and more. From this class, it gets the starting instruction to navigate to the initial
window or page.

Here's the structure of the App.xaml file:

<Application x:Class="Demo.WPF.FirstApp.App"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="clr-namespace:Demo.WPF.FirstApp"

StartupUri="MainWindow.xaml">

 <Application.Resources>

 </Application.Resources>

</Application>

Here you can see that StartupUri is set to MainWindow.xaml, which means that the
MainWindow.xaml file will launch on startup. If you want to launch a different
window/page at startup, replace the same with the desired filename.

Instead of defining StartupUri in the App.xaml file, you can also dynamically set it by
subscribing to the application Startup event.

<Application x:Class="Demo.WPF.FirstApp.App"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:local="clr-namespace:Demo.WPF.FirstApp"

Startup="Application_Startup">

 <Application.Resources>

 </Application.Resources>

</Application>

Here is the associated code behind, implementing the Startup event to launch a
window named MainWindow on the user screen:

using System.Windows;

namespace Demo.WPF.FirstApp

{

 /// <summary>

 /// Interaction logic for App.xaml

 /// </summary>

 public partial class App : Application

 {

 private void Application_Startup(object sender,

 StartupEventArgs e)

 {

 var mainWindow = new MainWindow();

 mainWindow.Show();

 }

 }

}

The other file, MainWindow.xaml, by default consists of a blank Grid (one of the WPF
panels), where you can specify your layouts and put your desired controls to design
the UI:

<Window x:Class="Demo.WPF.FirstApp.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:local="clr-namespace:Demo.WPF.FirstApp"

 mc:Ignorable="d"

 Title="MainWindow" Height="350" Width="525">

 <Grid>

 </Grid>

</Window>

The related logics, properties, events, and so on, you can define in the associated code
behind class file MainWindow.xaml.cs. It's a partial class and all the autogenerated UI-
related initialization is written in the InitializeComponent() method defined in the other
partial class MainWindow.g.i.cs file that we have already discussed earlier:

 using System.Windows;

 namespace Demo.WPF.FirstApp

 {

 /// <summary>

 /// Interaction logic for MainWindow.xaml

 /// </summary>

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 }

 }

 }

When you build any WPF desktop application project, it generates an .exe file along
with .dll (if you have any in-house class libraries and/or third-party libraries) files.

Getting familiar with XAML
Designer
When you open an XAML page, the Visual Studio 2017 editor opens it in two
different views side-by-side within the same screen. These two views are named as
Designer View and XAML View. In the designer view, you will be able to design
your UI by drag, drop, resize, and so on and on the other side, the XAML view will
allow you to write XAML codes directly to create the UI:

Check out the preceding screenshot to have a glimpse on how the Visual Studio loads
the XAML page and provides you the option to change the view as follows:

1. Switch to design view: Double-clicking on this icon will change the view to full
screen designer view, hiding the XAML editor

2. Swap panes: This will allow you to swap the views, left to right (vertical split)
or up to down (horizontal split)

3. Switch to XAML view: If you double-click on this icon, it will change the view
to full screen XAML view, hiding the designer

4. Vertical Split: When you do a vertical split, the designer view and the XAML
editor view will set side by side (as shown in the preceding screenshot) left and
right

5. Horizontal Split: When you do a horizontal split, the designer view and the
XAML editor view will align top and bottom positions in a stack fashion

Adding controls in XAML
Let's add a button control on the UI of our WPF application. To do this, open the
MainPage.xaml file and inside the Grid panel, add the Button tag with its content and
dimension as shown in the following highlighted code snippet and it will show you a
preview in the designer view:

<Window x:Class="Demo.WPF.FirstApp.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="MainWindow" Height="350" Width="525">

 <Grid>

 <Button Content="Click Here" Width="100" Height="26" />

 </Grid>

</Window>

Now, let's add some color to the button. You can either do it by writing XAML
attributes for the button in the XAML view or you can utilize the Visual Studio
property window from the designer view.

Let's add the color from the property window and will see how the Visual Studio
editor adds the XAML attributes. To do this, select the button in the designer view
and open the properties window. There you will see a category labeled as Brush.
Under this, you will be able to change the color of the selected UI element. First,
select the Background and move the color slider to select Red. Then, select Foreground
and choose an appropriate foreground/text color to white. You will notice that the
preview in the designer view automatically gets updated with the selected colors:

Here's the XAML code for your reference:

<Grid>

 <Button Content="Click Here" Width="100" Height="26"

 Background="Red" Foreground="#FFEEE5E5" />

</Grid>

Now, when you build and run the app, you will see a button having red background
and white text color on the screen. If you click on that button, there will be no action
as we have not added any event handler to it. To do this, go to the design view, select
the button control, navigate to the Properties window, and click on the Navigate Event
Handler icon present at the right corner, as shown in the following screenshot:

Here, you will find an input box labeled Click. Double-click on it to create the click
handler of the button in the associated code file and register it in the XAML page.

Alternatively, you can write Click="Button_Click" in the XAML, against the button tag
to register the event first and press the F12 keyboard shortcut on the event name to
generate the associated event handler in the code behind:

Now, navigate to the event handler implementation and add a message box to show
when you click on the button:

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 MessageBox.Show("Hello WPF Message Box");

 }

Let's build and run the code. If the build succeeds, it will show you the following
window on the screen with the button, clicking on which will display a message:

Command-line parameters
in WPF application
You can also pass command-line parameters to a WPF application. These will be
captured in the Startup event of the App.xaml file. The StartupEventArgs e has a property
named Args that returns the command-line parameters as an array of strings.

The following example demonstrates how to retrieve the command-line arguments in
WPF application:

 private void Application_Startup(object sender,

 StartupEventArgs e)

 {

 var args = e.Args;

 if (args != null && args.Count() > 0)

 {

 foreach (var arg in args)

 {

 // write code to use the command line arg value

 }

 }

 }

You can go to the project properties by navigating to Debug | Command line
arguments (as shown in the following screenshot) to set the arguments for debugging
purpose:

Layouts in WPF
Layout is an important part of any GUI-based application, for usability purpose. You
must arrange your controls in a proper position, so that, the user can find it easy to
work. You should also keep arranging your controls properly to scale them in
different screen resolutions and/or different font sizes. WPF provides a built-in
support of various panels to help you on this:

Grid: This defines a flexible area to position UI elements in rows and columns.
StackPanel: This defines an area where the child elements can arrange in stack
fashion horizontally or vertically.
Canvas: This defines an area to set the UI elements by coordinates relative to
the area specified.
DockPanel: This defines an area which you can arrange horizontally or
vertically, relative to each other.
WrapPanel: This defines an area where child elements can position themselves
sequentially from left to right. When it reaches the edge of the panel box, it
breaks to the next line.
VirtualizingPanel: This defines the panel to virtualize the children data.
UniformGrid: This defines the panel to have a uniform cell size.

Each of the preceding panel elements derives from the base Panel and allows you to
create a simple and better layout design of your app. You can set controls or child
panels inside a panel to design your view.

Note that designing a layout is an intensive process and thus if you have a large
collection of children, it will have more number of calculations to set the size and
position of elements. Thus, the UI complexity will increase impacting the
performance of the application.

Whenever a child element changes its position, it automatically triggers the layout
system to revalidate the UI and arranges the children according to the layout defined.
The layout system does this in two phases. The Measure pass recalculates each
member of the children collection with a call to the Measure method of the panel. This
sets the height, width, and margin of the controls in the UI.

The Arrange pass, which generally begins with the call to the Arrange method,
generates the bounds of the child and passes to the ArrangeCore method for processing.
It then evaluates the desired size of the child and calls the ArrangeOverride method to
determine the final size. Finally, it allocates the desired space and completes the
process of layouting.

The following are some quick tips to remember:

Canvas is a simple panel and has better performance than a complex panel such
as Grid.
Avoid fixed positioning of UI elements. Rather align them in combination to
margin and padding.
Whenever possible, set the Height and Width property to Auto instead of a fixed
size.
Avoid unnecessary calls to UpdateLayout as it forces a recursive layout update.

Use a StackPanel to layout a list of elements horizontally or vertically.
When working with a large Children collection, consider using a
VirtualizingStackPanel.
Use a GridPanel to layout static data in the UI.
ItemControl can be used with a grid panel in a DataTemplate to layout dynamic
data.
Use Margin to add extra space around the control.
Use Padding to add extra space inside the control.

As we have already seen that, there exists many panels in WPF to create the UI
layout; let's discuss each of them in detail. This will help you to decide which one to
choose when and how to use them.

Using Grid as a WPF panel
Let's start with the Grid layout panel. It is the most useful panel you will ever use in
your application, and is the default panel inserted inside every XAML page when you
create a Window, Page, or User Control. You could see that there was a Grid panel
inserted when we created our first WPF application. A button control was placed
inside it.

The Grid layout control allows you to define the Grid structure to place individual
elements in rows and columns structure in a matrix format:

In XAML, you need to design your Grid cells using RowDefinitions and
ColumnDefinitions. Each definition group can have multiple definitions. The
RowDefinition can have height set to it and the ColumnDefinition can have width set
to it. Each can have three different sets of values:

Auto: When set to Auto the row height or the column width will set based on the
content.
A numeric value: When you set a positive numeric value, it will have a fixed
size.
* (asterisk): When you provide asterisk (*), it will take the maximum available
space in the ratio specified. Consider the following cases for example:

If you have two rows and you specify both of their heights to *, they will
have the row height equally distributed on the available space.
If you have two rows and you specify one as * and the other as 2*, then the
row height will be divided in the 1:2 ratio of the available space.

In case you don't specify any height or width, the row or column will by
default have equal distribution of the available space.

Let's discuss on the following code snippet, where it has four row definitions and
three column definitions. The first two rows will automatically set their heights based
on the dimension of their contents, the fourth row will have 30 px height and the third
row will have the remaining space as its height. Similarly, the first column will have
auto width based on its contents, the second column will have 20 px space, and the
third column will occupy the remaining space available to it:

Once you divide your Grid panel in rows and columns, you can place your elements in
the appropriate cell by using the Grid.Row or Grid.Column property. The Grid.RowSpan and
Grid.ColumnSpan properties are used to span an element across multiple rows and
columns.

Using StackPanel to define
stacked layout
When you want to add elements in a stack fashion, either horizontally or vertically,
you need to use the StackPanel. You need to specify the Orientation property to set
whether it will be a horizontal stack panel or a vertical stack panel. The following
figure demonstrates a horizontal and a vertical StackPanel:

If you don't specify any orientation, it will by default be set as a vertical stack panel.
You can add multiple UI elements (controls or panels) as children to it:

 <!-- Horizontal StackPanel -->

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Stack 1"/>

 <TextBlock Text="Stack 2"/>

 <TextBlock Text="Stack 3"/>

 <TextBlock Text="Stack 4"/>

 </StackPanel>

 <!-- Vertical StackPanel -->

 <StackPanel Orientation="Vertical">

 <TextBlock Text="Stack 1"/>

 <TextBlock Text="Stack 2"/>

 <TextBlock Text="Stack 3"/>

 <TextBlock Text="Stack 4"/>

 </StackPanel>

Using Canvas as a panel
Canvas is the lightweight panel and can be used to position the children at a specific
coordinate position within the view. You can imagine it as a HTML div element and
position the elements at (x, y) coordinate. The attached properties Canvas.Left,
Canvas.Top can be used to position the elements relative to left and top corners,
whereas the Canvas.Right and Canvas.Bottom can be used to position the child elements
relative to right and bottom corners:

Here's a simple example that demonstrates the TextBlocks positioned at (75, 30) and
(220, 75) respectively:

 <Canvas>

 <TextBlock Text="(75, 30)" Canvas.Left="75" Canvas.Top="30"/>

 <TextBlock Text="(220, 75)" Canvas.Left="220" Canvas.Top="75"/>

 </Canvas>

This is not very flexible as you have to manually move the child controls around and
make them align the way you want them to. Use it only when you want complete
control over the position of the child controls.

Using WPF DockPanel to
dock child elements
The DockPanel allows you to dock the child elements to any one of the four sides (top,
right, bottom, or left). By default, the last element (if not given any specific dock
position) fills the remaining space. You can use it when you need to divide your
window to regions and/or use when you want to place one or more elements to any of
the sides.

As shown in the following code snippet, you need to set the DockPanel.Dock attribute of
the child elements to one of the four values:

 <DockPanel Background="LightCyan">

 <Border Width="150" Height="50"

 DockPanel.Dock="Bottom" Background="YellowGreen">

 <TextBlock Text="Bottom Docking"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Border>

 <Border Width="150" Height="50"

 DockPanel.Dock="Top" Background="YellowGreen">

 <TextBlock Text="Top Docking"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Border>

 <Border Width="150" Height="50"

 DockPanel.Dock="Right" Background="YellowGreen">

 <TextBlock Text="Right Docking"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Border>

 <Border Width="150" Height="50"

 DockPanel.Dock="Left" Background="YellowGreen">

 <TextBlock Text="Left Docking"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Border>

 <Border Width="150" Height="50"

 Background="White">

 <TextBlock Text="No Docking"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"/>

 </Border>

 </DockPanel>

When you run the preceding example, the result will look like the following diagram,
positioning all the child elements based on the value specified as the DockPanel.Dock
attribute:

Note that the last element, which does not have any docking position set, has taken the
remaining space and is placed at the center position of the Window.

Using the WrapPanel to
automatically reposition
Inside a panel, when you want to position each of its child elements next to the other,
either horizontally (default) or vertically, until there is no more room and then wrap to
the next line to continue, you need to use WrapPanel. It just looks like a combination
of GridPanel and StackPanel, having variable cell size. Use it when you want a
vertical or horizontal list automatically wrapped to next line if there's no more room
for the controls to accommodate in the same line.

Let's see the following diagram as an example of WrapPanel:

Here you can see that the child elements positioned themselves in a row and when it
does not have room to accommodate in the same line, it wraps itself into a new line.
For example, in the preceding diagram, the fifth element wrapped itself into second
line due to lack of space in the first line. Similarly, the ninth element positioned itself
on the third line as the second line does not have sufficient space for that element.
You can also see that the items can have variable size and that does not affect the
behavior of the positioning and as a result, there are no big gaps in between that we
can see in a Grid.

Here's an XAML code snippet to demonstrate the preceding example:

 <WrapPanel Background="DarkOrange">

 <Border Width="120" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="120" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="120" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="60" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="60" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="120" Height="50"

 Background="Yellow" Margin="4"/>

 <Border Width="120" Height="50"

 Background="Yellow" Margin="4"/>

 </WrapPanel>

Using UniformGrid to place
elements in uniform cells
The UniformGrid panel is just like WrapPanel, but with a catch that, it will have
child elements placed in uniform cells. The rows and columns in a UniformGrid have
the same size. By default, the rows and columns autoresize to give space to more
elements. The elements also resize automatically to accommodate themselves within
that space:

 <UniformGrid>

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 .

 .

 .

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 </UniformGrid>

The following diagram is a UniformGrid panel, having all the columns autoresized to
a same size x:

In the preceding example, notice elements 5 and 6. Unlike WrapPanel, they don't set
side by side in a condensed manner to reduce the gap between them; rather they still
position themselves in their original defined column cells.

You can define how many rows or columns you want to show in the Grid by
specifying the Rows and Columns properties of the UniformGrid.

When you mention the rows count to 1, all the elements inside a UniformGrid will
accommodate themselves in a single row by reducing their size. When you define
more rows, based on the number of row counts, it will reduce the column count:

 <UniformGrid Rows="1">

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 .

 .

 <Border Width="150" Height="40"

 Background="DarkOrange" Margin="4"/>

 </UniformGrid>

Similarly, you can specify the column count; when specified, based on the column
count, it will generate the number of rows.

WPF property system
WPF provides a new property system, which extends the functionality of the default
CLR (Common Language Runtime) property and is known as a dependency
property. A normal CLR property is a wrapper to its getter and setter implementation
of its private variable; whereas a dependency property extends it to provide you a way
to compute the value based on the value of other inputs.

In addition to this, it also provides you with a way to do self-contained validation, set
default values, monitor changes to its value, and do a callback.

To work with a dependency property, you must derive the class from DependencyObject,
which will work as the observer. It holds the new property system defined within the
DependencyObject class:

A CLR property looks like this:

 private string m_AuthorName;

 public string AuthorName

 {

 get { return m_AuthorName; }

 set { m_AuthorName = value; }

 }

 public string BookName { get; set; } // auto properties

A dependency property extends it further and provides you with more options to set
the default value, pass a callback method, and so on:

public static readonly DependencyProperty AuthorNameProperty =

DependencyProperty.Register("AuthorName", typeof(string), typeof(MainWindow),

new PropertyMetadata("Kunal Chowdhury"));

public string AuthorName

{

 get { return (string)GetValue(AuthorNameProperty); }

 set { SetValue(AuthorNameProperty, value); }

}

The first line is used to register the dependency property into the WPF property
system. This is done to ensure that the object contains the property in it and we can
easily call the getter or setter to access the value of the property.

We can even use a normal CLR property to wrap a dependency property and use the
GetValue and SetValue methods to get and set the values passed to the dependency
property.

The Register method takes four parameters to it. The first one is the CLR property
name that you defined for the getter and setter. The second parameter is the return
type of the property. The third is the class handler (derived from DependencyObject),
where you are declaring it. The fourth one is the extended property metadata, where
you can set the default value.

You can further extend the property metadata to associate a callback method to it, just
like the following code snippet extended from the preceding example:

public static readonly DependencyProperty AuthorNameProperty =

 DependencyProperty.Register("AuthorName", typeof(string), typeof(MainWindow),

 new PropertyMetadata("Kunal Chowdhury", OnAuthorNamePropertyChanged));

private static void OnAuthorNamePropertyChanged(DependencyObject d,

 DependencyPropertyChangedEventArgs e)

{

 // your code here to handle the data

}

public string AuthorName

{

 get { return (string)GetValue(AuthorNameProperty); }

 set { SetValue(AuthorNameProperty, value); }

}

Each of the dependency property internally invokes the INotifyPropertyChanged event
whenever the value of the property is modified, and thus, we can use it to provide
notification to the UI that the data associated with it has been changed. When you
need to use a data binding to a property target, you must define it as a dependency
property.

Data binding in WPF
Data binding is a technique to establish a connection between the UI of the
application and the business logic to have data synchronization between them. Though
you can directly access UI controls from code behind to update their content, but data
binding became a preferred way to update the UI layer for its autoupdate notification
mechanism.

To make data binding work, both the sides of the binding must provide a change
notification to the other side. The source property of a data binding can be a normal
.NET CLR property or a dependency property, but the target property must be a
dependency property:

Data binding is typically done in XAML using the {Binding} markup extension. It can
be unidirectional (source > target or target > source) or bidirectional (source < >
target), known as Mode and is defined in four categories:

OneWay: This type of unidirectional data binding causes the source property to
automatically update the target property. The reverse is not possible here. For
example, if you want to display a label/text in the UI based on some condition in
the code behind or business logic, you need to use OneWay data binding as you
don't need to update back the property from the UI:

 <TextBlock Text="{Binding AuthorName}"/>

 <TextBlock Text="{Binding AuthorName, Mode=OneWay}"/>

 <TextBox Text="{Binding AuthorName}"/>

 <TextBox Text="{Binding AuthorName, Mode=OneWay}"/>

TwoWay: This type of binding is a bidirectional data binding, where both the
source property and the target property can send update notifications. This is
applicable for editable forms where the user can change the value displayed in
the UI. For example, the Text property of a TextBox control supports this type of
data binding:

 <TextBox Text="{Binding AuthorName, Mode=TwoWay}"/>

OneWay to Source: This is another unidirectional data binding, which causes
the target property to update the source property (the reverse of OneWay
binding). Here, the UI sends notification to the data context and no notification
is generated if the data context changes:

 <TextBox Text="{Binding AuthorName, Mode=OneWayToSource}"/>

One time: This causes the source property to initialize the target property. After
that, no notifications will be generated. You should use this type of data binding
where the source data does not change.

One way binding is the default data binding.
When you set Mode=OneWay to the Text property of a TextBox, the
notification does not generate to the source property if the user updates
its value in the UI.

Let's discuss it with a small and simple demonstration. First, create a new WPF
project using Visual Studio 2017 and we name it Demo.WPF.DataBinding. It would have
already created an XAML file named MainWindow.xaml and MainWindow.xaml.cs.

Open the MainWindow.xaml.cs file and add three dependency properties of type string
named AuthorName, BookName, and PublishDate. You can use the propdp snippet to
generate the dependency properties. After the addition of the three properties, your
code will look like this:

namespace Demo.WPF.DataBinding
{

 public partial class MainWindow : Window

 {

 public string AuthorName

 {

 get { return (string)GetValue(AuthorNameProperty); }

 set { SetValue(AuthorNameProperty, value); }

 }

 public string BookName

 {

 get { return (string)GetValue(BookNameProperty); }

 set { SetValue(BookNameProperty, value); }

 }

 public string PublishDate

 {

 get { return (string)GetValue(PublishDateProperty); }

 set { SetValue(PublishDateProperty, value); }

 }

 public static readonly DependencyProperty AuthorNameProperty =

 DependencyProperty.Register("AuthorName", typeof(string),

 typeof(MainWindow), new PropertyMetadata("Kunal Chowdhury"));

 public static readonly DependencyProperty BookNameProperty =

 DependencyProperty.Register("BookName", typeof(string),

 typeof(MainWindow), new PropertyMetadata("Mastering Visual Studio"));

 public static readonly DependencyProperty PublishDateProperty =

 DependencyProperty.Register("PublishDate", typeof(string),

 typeof(MainWindow), new PropertyMetadata("2017"));

 public MainWindow()

 {

 InitializeComponent();

 }

 }

}

Now, as we have three dependency properties already defined, we can start creating
the object binding. First, let's give a name mainWindow to the window. This is so as to
easily identify the context of the code behind.

Then we need to set the data context of the grid. We can use a data binding here and
will tell the grid to use the same class by assigning mainWindow as the element name of
the context <Grid DataContext="{Binding ElementName=mainWindow}".

Let's divide the Grid into a few rows, columns, and add few TextBlocks and TextBoxes
onto it to complete the data binding steps. Here's the complete code for your
reference:

<Window x:Class="Demo.WPF.DataBinding.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Name="mainWindow" Title="Data Binding Demo"

 Height="350" Width="700" FontSize="12">

 <Grid DataContext="{Binding ElementName=mainWindow}" Margin="20">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="20"/>

 <ColumnDefinition Width="*"/>

 <ColumnDefinition Width="40"/>

 <ColumnDefinition Width="Auto"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="26"/>

 <RowDefinition Height="26"/>

 <RowDefinition Height="26"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <TextBlock Text="Author Name" Grid.Row="0" Grid.Column="0"/>

 <TextBlock Text=":" Grid.Row="0" Grid.Column="1"

 HorizontalAlignment="Center"/>

 <TextBox Text="{Binding AuthorName, Mode=OneWay}" Grid.Row="0"

 Grid.Column="2"/>

 <TextBlock Text="(Mode=OneWay)" Grid.Row="0" Grid.Column="4"/>

 <TextBlock Text="Book Name" Grid.Row="1" Grid.Column="0"/>

 <TextBlock Text=":" Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"/>

 <TextBox Text="{Binding BookName, Mode=TwoWay}" Grid.Row="1"

 Grid.Column="2"/>

 <TextBlock Text="(Mode=TwoWay)" Grid.Row="1" Grid.Column="4"/>

 <TextBlock Text="Published" Grid.Row="2" Grid.Column="0"/>

 <TextBlock Text=":" Grid.Row="2" Grid.Column="1"

 HorizontalAlignment="Center"/>

 <TextBox Text="{Binding PublishDate, Mode=TwoWay,

 UpdateSourceTrigger=PropertyChanged}" Grid.Row="2" Grid.Column="2"/>

 <TextBlock Text="(Mode=TwoWay, UpdateSourceTrigger=PropertyChanged)"

 Grid.Row="2" Grid.Column="4"/>

 <StackPanel Grid.Row="3" Grid.Column="2" Margin="0 20 0 0">

 <TextBlock Text="You entered Author Name:" FontWeight="Bold"/>

 <TextBlock Text="{Binding AuthorName}"/>

 <TextBlock Text="You entered Book Name:" FontWeight="Bold"

 Margin="0 10 0 0"/>

 <TextBlock Text="{Binding BookName}"/>

 <TextBlock Text="You entered Published Date:" FontWeight="Bold"

 Margin="0 10 0 0"/>

 <TextBlock Text="{Binding PublishDate}"/>

 </StackPanel>

 </Grid>

</Window>

For the first textbox, the Text property has been bound to AuthorName as a OneWay data
binding, the second textbox uses a TwoWay data binding mode with the property
BookName. The third textbox also uses a TwoWay data binding with the property
PublishDate, but has specified UpdateSourceTrigger=PropertyChanged. This tells the system
to notify whenever the property changes.

When you build and execute the preceding code, you will see that the following
window pops up with a few textblocks and textboxes as defined in the XAML. The
values in the textbox controls populate from the default value that we specified at the
time of declaring the dependency properties:

Now, modify the text of the first textbox (Author Name) but it will not update the
label that we placed below. As it has a OneWay data binding associated with it, no
update notification will be sent out even if you trigger a lost focus on that textbox
control.

If you change the text of the second textbox (Book Name), no notification will be
carried out unless you trigger a lost focus on it. TwoWay data binding will act here to
update the associated Textblock automatically.

The third textbox control also has TwoWay data binding associated with it, but it also
has a binding property that says, update the source when the property changes. So, if
you start typing in the third box, you will see that the Textblock will immediately start
getting the notification and update itself:

You can define four set of values to UpdateSourceTrigger and these are as follows:

Default: When specified, it triggers based on the default association set by the
target. For example, the default trigger for the TextBox.Text property is LostFocus.
LostFocus: This gets triggered when the associated control loses its focus.
PropertyChanged: This gets triggered when the associated property gets change
notification.
Explicit: This only gets triggered when the application explicitly calls
UpdateSource of the binding.

Using Converters while data
binding
In data binding, when the source object type and the target object type differs, value
converters are used to manipulate data between the source and the target. This is done
by writing a Converter class, implementing the IValueConverter interface. It consists of
two methods:

Convert(...): This gets called when the source updates the target object.
ConvertBack(...): This gets called when the target object updates the source
object:

Implementation of the value converter is simple. First create a class in your project.
We named it BoolToColorConverter and implemented it from IValueConverter. Implement
the two methods as part of the interface.

For demonstration purpose, the class will accept a Boolean value as input and convert
it to a SolidColorBrush object. This needs to be done in the Convert method. You can
also add the revert conversion in the ConvertBack method, but for this demo, we will
not implement it; rather, we will throw a NotImplementedException.

Here's the converter code for your reference:

using System;

using System.Globalization;

using System.Windows.Data;

using System.Windows.Media;

namespace Demo.WPF.Converters

{

 public class BoolToColorConverter : IValueConverter

 {

 public object Convert(object value, Type targetType, object parameter,

 CultureInfo culture)

 {

 var boolValue = value is Boolean ? bool.Parse(value.ToString()) : false;

 return new SolidColorBrush(boolValue ? Colors.Red : Colors.Green);

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 throw new NotImplementedException();

 }

 }

}

Now, we need to attach the converter class to our XAML page, load it to memory, and
create the data binding. Let's first declare the xmlns namespace for our converter. As it
is in the same project, namespace declaration will be sufficient.

Once the xmlns declaration is done, we need to load the converter into the window's
resource and define a key for it so that it can be easily accessible:

 <Window ...

 <Window.Resources>

 <converters:BoolToColorConverter

 x:Key="BoolToColorConverter"/>

 </Window.Resources>

 .

 .

 </Window>

The next step is to create the UI and complete the data binding. Let's first add one
border and a checkbox in the XAML page. Here, instead of creating any property in
the code behind, we will directly use the control properties.

As per this demonstration, the Background property of the border will change based on
the checked status of the checkbox named chkColor. Let's create a data binding for the
border's Background property. The binding path will be the IsChecked property of the
checkbox, whose name we defined as chkColor. Thus, the ElementName will point to the
name of the checkbox control, as shown in the following code:

<Border Background="{Binding Path=IsChecked, ElementName=chkColor}"/>

Now, as the IsChecked property returns a Boolean value and the Background property
accepts a Brush value, we need to use the converter to the binding expression. As we
have already defined the converter as a resource of the Window, we just need to
reference it here as StaticResource. The code can now be written as:

<Border Background="{Binding Path=IsChecked, ElementName=chkColor,

 Converter={StaticResource BoolToColorConverter}}"

Here is the complete code for your easy reference:

<Window x:Class="Demo.WPF.Converters.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:converters="clr-namespace:Demo.WPF.Converters"

 Title="Converter Demo" Height="200" Width="240">

 <Window.Resources>

 <converters:BoolToColorConverter x:Key="BoolToColorConverter"/>

 </Window.Resources>

 <StackPanel Orientation="Vertical" VerticalAlignment="Top">

 <Border Background="{Binding Path=IsChecked, ElementName=chkColor,

 Converter={StaticResource BoolToColorConverter}}" Width="200"

 Height="100" Margin="10"/>

 <CheckBox x:Name="chkColor" IsChecked="True" Content="Error"

 Margin="10"/>

 </StackPanel>

</Window>

Now, if we run the preceding sample code, it will first load the checkbox as checked
because we specified the IsChecked property of the control as True. As the value is True,
it will be passed to the converter and it will return a Red Brush, which will assign the
background color of the border control (the following screenshot, left image).

Uncheck the checkbox to set its value as False, resulting the converter to return Green
Brush and you will see that the color changes to Green (the following screenshot, right
image). If you check it again, you will see it as Red.

Using triggers in WPF
A trigger enables you to change property values when certain conditions are satisfied.
It can also enable you to take actions based on property values by allowing you to
dynamically change the appearance and/or the behavior of your control without
writing additional codes in the code behind classes.

In WPF, the triggers are usually defined in a style or in the root of an element, which
are applied to that specific control. There are five types of triggers:

Property trigger
Multi trigger
Data trigger
Multidata trigger
Event trigger

Property trigger
The most common trigger is the property trigger, which can be simply defined in
XAML with a <Trigger> element. It triggers when a specific property on the owner
control changes to match a specified value:

<Style TargetType="{x:Type CheckBox}">

 <Style.Triggers>

 <Trigger Property="IsChecked" Value="True">

 <Setter Property="Background" Value="LightGreen"/>

 </Trigger>

 <Trigger Property="IsChecked" Value="False">

 <Setter Property="Background" Value="Red"/>

 </Trigger>

 </Style.Triggers>

</Style>

The preceding XAML code snippet creates a style for a checkbox control having two
triggers associated with its property IsChecked. When the value is True, the background
of the checkbox will be set to LightGreen, and when it is False, the background will be
set to Red.

If we run the example, with a checkbox control in it, we will see the following results
based on the checked status of it:

Multi trigger
This is almost like the property trigger, but here it is used to set an action on multiple
property changes and will execute when all the conditions within
MulitTrigger.Conditions are satisfied:

<Style TargetType="{x:Type CheckBox}">

 <Style.Triggers>

 <MultiTrigger>

 <MultiTrigger.Conditions>

 <Condition Property="IsEnabled" Value="True"/>

 <Condition Property="IsChecked" Value="False"/>

 </MultiTrigger.Conditions>

 <MultiTrigger.Setters>

 <Setter Property="Background" Value="Red"/>

 <Setter Property="Opacity" Value="0.5"/>

 </MultiTrigger.Setters>

 </MultiTrigger>

 </Style.Triggers>

</Style>

Here, in this example, we have a multi trigger associated with the checkbox control's
style. When the control is enabled and unchecked, the trigger will get fired and set the
background of the control to Red and opacity to 50%:

Data trigger
As the name suggests, the data trigger applies a property value to perform a set of
actions on the data that has been bound to the UI element. This is represented by the
<DataTrigger> element.

Here's an example of writing a data trigger to a UI element:

<StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <CheckBox Name="chkError" Content="Error"

 VerticalAlignment="Center"/>

 <TextBlock Margin="20, 0" FontSize="50">

 <TextBlock.Style>

 <Style TargetType="TextBlock">

 <Setter Property="Text" Value="Pass" />

 <Setter Property="Foreground" Value="Green" />

 <Style.Triggers>

 <DataTrigger Binding="{Binding ElementName=chkError,

 Path=IsChecked}" Value="True">

 <Setter Property="Text" Value="Fail" />

 <Setter Property="Foreground" Value="Red" />

 </DataTrigger>

 </Style.Triggers>

 </Style>

 </TextBlock.Style>

 </TextBlock>

</StackPanel>

In the preceding example, we have two UI controls: a checkbox and a textblock. The
Textblock has a data trigger set to it, bound to the IsChecked property of the checkbox.
When the property value matches True, it will trigger and set the text as Fail with a
foreground color Red. In the default case (when the value matches False), the normal
case will execute and show the text Pass in Green color.

When you run the preceding example, we will see the following result based on the
checked status of the checkbox control:

Multidata trigger
This is same as the data trigger having a difference that, you can set property values
based on multiple conditions defined in MultiDataTrigger.Conditions. Property values
are defined in MultiDataTrigger.Setters, as shown in the following code snippet:

<StackPanel Orientation="Vertical" Margin="20">

 <UniformGrid>

 <CheckBox x:Name="chkOne" Content="Value 1"/>

 <CheckBox x:Name="chkTwo" Content="Value 2"/>

 </UniformGrid>

 <TextBlock Text="Mastering Visual Studio 2017" FontSize="20">

 <TextBlock.Style>

 <Style TargetType="TextBlock">

 <Style.Triggers>

 <MultiDataTrigger>

 <MultiDataTrigger.Conditions>

 <Condition Binding="{Binding ElementName=chkOne,

 Path=IsChecked}" Value="True"/>

 <Condition Binding="{Binding ElementName=chkTwo,

 Path=IsChecked}" Value="True"/>

 </MultiDataTrigger.Conditions>

 <MultiDataTrigger.Setters>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="FontSize" Value="36"/>

 <Setter Property="Foreground" Value="Green"/>

 </MultiDataTrigger.Setters>

 </MultiDataTrigger>

 </Style.Triggers>

 </Style>

 </TextBlock.Style>

 </TextBlock>

</StackPanel>

When you run the preceding code, there will be two checkbox controls as unchecked
and a text block with a font size of 20. As per the conditions mentioned in the code,
you need to check both the checkboxes to trigger the same and change the font
weight, font size, and foreground color of the text:

Event trigger
Event triggers are generally used to perform actions when the routed events of the
associated FrameworkElement arises. This is mainly used in animations to control the
look when a certain UI event raises.

In the following example, we have a Textblock control. By default, its size is set to 30
with an opacity level of 20%. It has two events, MouseEnter and MouseLeave, associated
with it. Now, on mouse hover we need to specify an animation to grow the font size to
50 and the opacity to 100%. Similarly, on mouse leave, we need to bring it back to the
initial state.

Here, the event trigger will help you to perform the same within the XAML page:

<TextBlock Text="Hover here" FontSize="30" Opacity="0.2"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Style>

 <Style TargetType="TextBlock">

 <Style.Triggers>

 <EventTrigger RoutedEvent="MouseEnter">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation Duration="0:0:0.500"

 Storyboard.TargetProperty="FontSize" To="50" />

 <DoubleAnimation Duration="0:0:0.500"

 Storyboard.TargetProperty="Opacity" To="1.0"/>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 <EventTrigger RoutedEvent="MouseLeave">

 <EventTrigger.Actions>

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation Duration="0:0:0.500"

 Storyboard.TargetProperty="FontSize" To="30" />

 <DoubleAnimation Duration="0:0:0.500"

 Storyboard.TargetProperty="Opacity" To="0.2"/>

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger.Actions>

 </EventTrigger>

 </Style.Triggers>

 </Style>

 </TextBlock.Style>

</TextBlock>

When you run the sample, by default, the text will be visible with a 20% opacity level.
Now, if you hover the mouse on the text, you will see a smoothing animation to
gradually change the size of the font and the opacity level.

When you leave your mouse out of the text, it will smoothly return to the initial state.
Here, the Duration property of the animation has the responsibility for the smoothing
effect:

Summary
In this chapter, we have learned about Windows Presentation Foundation, its
architecture, XAML syntaxes, inline code, code behind, the WPF project structure,
and XAML designer. We have also covered how to work with XAML markup to
design a Windows application by discussing WPF controls, command-line
parameters, and layout panels.

Apart from these, we discussed the new property system with an example of the
dependency property, data binding and its implementation, converters, and various
types of triggers.

Since we have now become familiar with XAML markups in this chapter, we can now
move on to another new topic on building Universal Windows Platform (UWP)
applications. Here, again, we will use XAML and C# to build applications targeting
Windows 10 device families.

Building Applications for
Windows 10 Using UWP
Tools
A Universal Windows Platform (UWP) is a single API surface which is consistent
across all Windows 10 devices, from your phone with a 4.5-inch screen to your
phablet, tablet, laptop, PC, Xbox, a giant 84-inch Surface Hub, and all-in-ones. This
guaranteed API surface enables developers to build a single app which can run on all
devices that support Windows 10:

This broad range of hardware devices has been divided into multiple device families,
giving the developer easy access to target one or more of them that have the same
developer platform named UWP.

Using this single platform, with the help of a single SDK, you can build a single
application which can run across all these device families, distributed via a single
Windows Store:

In this chapter, we are going to learn the following:

Getting started with Universal Windows Platform (UWP):
Generic design principles of UWP apps
Getting started with UWP app development

Building your first UWP application:
Setting up the development environment for first use
Setting up the developer mode
Creating, building, and running the application
Designing UWP applications
Application designing with XAML style

Building your own XAML control
Generating visual assets using the new Manifest Designer
Preparing UWP apps to publish to Windows Store

Getting started with
Universal Windows Platform
In Windows Phone 7, the operating system was based on Windows CE, which was the
operating system for small devices, but different from the OS that covers the big
Windows.

When Microsoft launched Windows Phone 8, they swapped out the Windows CE
operating system and based it on the Windows NT kernel. This was the same for PCs
and Xbox One.

But with Windows 8.1 and Windows Phone 8.1, Microsoft delivered it on a converged
developer platform with the option to build applications targeting the universal 8.1
app platform that shares a high percentage of the code.

With the launch of Windows 10, it changed again. The code has been improved
further and generalized to provide a single set of APIs to create a single app which can
run on all device families running the Windows 10 operating system. They named it
Universal Windows Platform (UWP):

So, in the big picture, it's the One Windows ruling all the sets of devices under the
device families.

Though they use a common shell, they still have a distinctive user experience for the
end user. Each device family offers its own user experience that is appropriate for that
device. There are also a small number of APIs specific to each device family that you
can call to create differentiating experiences on each device.

Generic design principles of
UWP apps
As UWP apps are one core, one binary app running across all devices, it is necessary
for it to generalize in a way that it can smoothly run on those devices. Here are a few
generic design principles that a UWP app must follow.

Effective scaling
UWP apps can automatically adjust the size of controls and fonts based on the
resolution of the device where it is running. When the app runs, the system executes
an algorithm to normalize the display of each control running on the screen. For
example, a control having a 20 pixel font size should look proportionate on phones,
tablets, desktop PCs, laptops, and/or Surface Hubs:

When you design your app, you need to make sure that effective scaling has been
maintained for all the device families that you are going to target running the app.

Effective pixels
As you are targeting your app to scale properly in small, medium, and large resolution
systems, it is necessary to take care of your design based on effective pixels instead of
actual pixels.

When you place a control in the UI and the system scales the window, it does this in
multiples of four. You need to make sure to snap your control to the 4x4 pixel grid to
have a clear picture in a high-resolution system. If you place it in the middle of the
4x4 pixel grid, you will see a blurred image as shown in the following image:

In the first example in the preceding image, you could see that the text Visual Studio
2017 is blurred as it was not effectively placed in the 4x4 grid, but in the second
example, the clarity is better as it was properly snapped to the grid block.

Universal controls
The platform provides you with a set of universal controls which you can use in all
Windows devices that target UWP. This set of controls includes everything, ranging
from simple buttons to the powerful GridView and ListView to display data to the
user. When you use these controls, you will get the same functionalities on all device
families.

Universal styles
UWP apps follow a default set of styles that automatically provide you with support
for dark and light themes. You can also use the user-defined accent color or provide
your custom theme. The default style also supports high contrast mode, so you can
ensure that it will display properly.

Repositioning of controls
Based on the device family or the screen size, you can reposition the UI elements to
get the most out of the available space. In most cases, a small device needs scrolling
to display more data, but when you port it to a large screen device, you can place
more controls on it to accommodate the controls in the available space. UWP app
design should focus on repositioning to support the responsiveness of the UI.
Consider the following screenshot:

Resizing the UI
This is another UI responsiveness feature of UWP apps. Your app must be resizable
based on the screen resolution. When the user changes its orientation or runs it in a
higher resolution system, the app should be smart enough to utilize the available space
and resize the controls accordingly to give a better reading experience. Consider the
following screenshot:

Reflowing of UI elements
Based on device and orientation, your app can offer an optimal display of content by
adding more columns or reflowing the items in a different way. For example, the
following design shows how it offers a two-column layout of content when the user
switches from portrait to landscape mode:

Replacing the UI Elements
It may be possible to have a better UI by providing different control sets in a different
resolution or orientation of the device. This is another kind of responsive design
where you are replacing the entire UI.

For example, the following design uses a calendar control and a list box in portrait
view but when it changes to landscape mode, the controls have been replaced with a
date picker and a set of tiles:

Revealing the UI elements
Sometimes, it may be possible to reveal new UI elements based on screen orientation,
size, specific situations, and/or functionalities supported by the device.

For example, your app can have a map on a large display or a camera option in the
lock screen if your device supports the Windows Hello feature.

Getting started with UWP
app development
We have already discussed that the Universal Windows Platform makes it easier to
build apps with a single API set, create one binary package, and distribute it to one
Store to reach millions of people using Windows 10 on all their devices, such as
mobile, tablet, PC, laptop, Xbox, HoloLens, Surface, and more.

To get started with the UWP app development, you need the Windows 10 operating
system as the host and Visual Studio 2015 Update 3 or Visual Studio 2017 as the
editor with the UWP Tools/SDK. We are going to use Visual Studio 2017 IDE in this
book to go through each code example.

Let's first take a look at how we can build apps for Windows 10. You can choose the
traditional Windows desktop apps (called Classic Windows Apps) using WinForm,
WPF (which is also XAML-based), and MFC with full .NET support. You can choose
between a set of programming languages such as C#, VB.NET, C++, and others to
build classic apps.

Then we have the UWP, which we discussed just now. Here, you can use C#,
VB.NET, or C++ to build XAML-based Universal Windows apps. If you are a
JavaScript lover, you can use HTML to design the UI. This type of application can be
run across all Windows 10 devices. In this chapter, we are going to focus on this
topic.

In case you are from other technologies, you can still build apps for Windows 10
using the Windows bridging technologies for iOS, Android, hosted web apps, Win32,
and more. These bridges for Windows allow you to convert your existing apps to
UWP so that you can enhance them with the new features and publish them to
Windows Store to reach all devices running Windows 10. To know more about the
Windows bridging technologies, check out this page: https://developer.microsoft.com/en-us/
windows/bridges.

Here is a diagram that demonstrates this in a simple manner:

https://developer.microsoft.com/en-us/windows/bridges

Building your first UWP
application
Let us start with building our first UWP application, but before that, we need to set up
the development environment for first use. Later, you can directly start with the
project.

Setting up the development
environment for first use
To start building apps targeting Universal Windows Platform, make sure that you
have the Universal Windows Platform development workload installed on your Visual
Studio 2017 dev environment.

Open the Visual Studio installer from the start screen or run the setup from the control
panel and then click Modify, as shown in the following screenshot:

This will launch the Workloads screen. Check whether Universal Windows Platform
development is checked. If it is unchecked, it means that the components related to it
are not installed. Check the workload and click on Modify to install all the required
components. It will start downloading the required packages from the Microsoft
server and complete the installation:

Note that it will take around 6 GB of installation space. Make sure that
you have the required internet bandwidth and available disk space.

If you have already downloaded the offline installer, alternatively, you can run the
installer from the installer path to save the bandwidth. If there are any new updates
available in the server, the installer will auto download them.

Setting up the developer
mode
To build and deploy UWP applications in your local system directly from Visual
Studio, you need to set up the developer mode in the Windows developer feature set.
To check and configure it, open the Windows 10 Settings app and click on Update &
security.

From the left-hand side navigation panel, click on For developers, which will open the
developer features screen in the right-hand side panel. To deploy and debug UWP
apps from Visual Studio, you need to enable the Developer mode radio button, as
shown in the following screenshot:

This will pop up a message box asking you to confirm whether you really want to turn
on the developer mode. To continue, confirm the security risks by clicking the Yes
button:

This will start downloading and installing the developer mode packages, which will
not take more than a few minutes. You may have to restart your PC in order to use all
the features:

Creating, building, and
running the application
Once you have the development environment set up properly, you can start creating
your UWP application project, building it, and running it on your system. To get
started, open the Visual Studio 2017 IDE and create a new project either from File |
New | Project... or from the New Project panel available in the start screen. When
using the second approach, search for universal and pick up the project template type
that you want to create. Alternatively, you can press Ctrl + Shift + N to open the new
project dialog:

In the next screen, from the installed templates, select Visual C# | Windows Universal
and from the right-hand side panel, select Blank App (Universal Windows) to create a
blank basic app. Give it a name and click on OK to continue with the project creation:

The next screen will ask you to choose the target version and minimum version of the
Windows 10 platform that your universal windows app will support. Based on the
SDK version installed on your system, it will populate the details in the drop-down

menu. Select the one that is best suited for your app. Here, for the demo project, we
will select Build 14393 as the target version and Build 10586 as the minimum
version. Click on OK to continue:

Here are some points you must consider when building applications for Windows 10,
under UWP:

When the minimum version and target version are different, your application
will work in any version of Windows in the range from minimum version to
target version.
Make sure to test your application on a device running the minimum target
version to ensure that the code executes properly.
When you have the same minimum and target versions, you don't have to do any
specific check for API availability. In other case, call the API that exists in the
minimum supported version.

Once Visual Studio creates the selected app project, you will find the App.xaml and
MainPage.xaml under the project in Solution Explorer. Double-click on MainPage.xaml to
view the UI of your application. By default, it will have an empty Grid panel only:

Let's add a TextBlock control inside the Grid panel and set its Text, FontSize, FontWeight,
and Foreground properties:

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">

 <TextBlock Text="Hello UWP App!"

 FontSize="40"

 FontWeight="Bold"

 Foreground="Green"/>

 </Grid>

Now you need to build the solution and deploy it to run the application. Go to the
Build menu and click on Build Solution to check for any compilation issues. Then
click on Deploy Solution to deploy the project output on your local system. Now click
on Start Without Debugging under the Debug menu to launch the deployed
application.

You can also hit Ctrl + F5 to perform all the preceding steps automatically and launch
the app on the screen. Once launched, you will see a Hello UWP App! text on the
window in green, as specified in MainPage.xaml:

You can also deploy it to a simulator, remote machine, physical device, or emulator of
your choice by clicking the arrowhead drop-down menu shown as follows. If you
have any emulators installed, those will be listed here. By default, it is set to Local
Machine. If you want to deploy it to a connected Windows Mobile device, select
Device from the list. To deploy it in an emulator, select the one that you want to test:

If you don't find the emulators listed here, you need to download them from the
Microsoft server by clicking the Download New Emulators... drop-down menu entry.
Find the installer and grab it out.

To work with the emulator, your device should have Hyper-V technology/Second
Level Address Translation (SLAT) support. More precisely, the system should have
CPU virtualization enabled.

SLAT is a Hyper-V technology introduced in Intel and AMD
processors. Intel named it Extended Page Table (EPT), introduced in
processors built on the Nehalem architecture, whereas AMD named it
Rapid Virtualization Indexing (RVI), introduced in their third-
generation Opteron processors named Barcelona.

To check whether your system supports Hyper-V virtualization or SLAT, open Task
Manager and navigate to Performance | CPU. At the bottom-right corner of the dialog,
you will find a label titled Virtualization. The value of it must be Enabled in order to
use the emulators.

Designing UWP applications
Before going into designing UWP apps, you must know that the designer window
allows you to preview your UI design in various devices and in various screen
orientations without building and running the app. All these can be done within the
Visual Studio designer view itself.

When you open your XAML page in designer view, you will see a panel that has a
drop-down menu and a few buttons inside it, as shown in the following screenshot.
The dropdown lists a few devices, starting from 5-inch phone devices to tablet,
desktop, Xbox, Surface Hub, IoT device, and HoloLens, each having different device
sizes and screen resolution:

The adjacent buttons of the dropdown are used to preview your UI in different screen
orientations, portrait or landscape, followed by a label that displays your effective
screen resolution.

At the end of the panel, there is a small wheel to launch the Device Preview Settings,
where you can preview your app in High Contrast mode and/or with a different
Theme available by default:

Defining XAML page
layouts
In Universal Windows apps, XAML provides you with a flexible way to define your
page layout by using panels, visual states, and different definitions for each device
family to create good-looking, responsive UIs. We have already discussed responsive
design techniques earlier in this chapter. So, let's start discussing layout patterns.

The XAML page layout pattern provides three levels of optimization techniques,
which you can use to design your app screens:

A fluid layout allows you to design your panels such that they can auto resize
and position the children as per the available space. You can use Grid, Canvas,
StackPanel, and RelativePanel to build such a fluid layout.
An adaptive layout allows you to resize, reflow, reveal, or replace a part of
your screen based on the window size. Visual states can be used to create an
adaptive trigger to easily handle it.
The tailored layout type allows you to optimize your screen for a specific
device family or screen sizes. You can use a custom trigger and separate XAML
files with a single or multiple code file for each device family to create a tailored
layout.

In Chapter 3, Building Applications for Windows Using XAML Tools, we covered
various XAML panels such as Grid, Canvas, StackPanel, and so on. So let's go to the
next step and learn about RelativePanel and VariableSizedWrapGrid.

The relative panels
Relative panels are useful when you have nested panels in your application UI, but not
in a fashion that uses a proper linear pattern to define the layout. In this type of panel,
the elements are arranged in relation to the other panels described by various attached
properties.

By default, an element positions itself at the top-left corner of the panel, but you can
reposition it by defining relative panel alignment. There are three types of relative
alignment possible in UWP applications:

Panel alignment:
AlignLeftWithPanel
AlignTopWithPanel
AlignRightWithPanel
AlignBottomWithPanel
AlignHorizontalCenterWithPanel
AlignVerticalCenterWithPanel

Sibling alignment:
AlignLeftWith
AlignTopWith
AlignRightWith
AlignBottomWith
AlignHorizontalCenterWith
AlignVerticalCenterWith

Sibling position:
LeftOf
Above
RightOf
Below

To get started, let us create a UWP app project first and open MainPage.xaml. Now
replace the Grid panel with a RelativePanel and add two border controls named
redBorder and greenBorder, with background as red and green color brush
respectively.

Now, select the green border (which is on top of the red border) and go to its
properties. Under the RelativePanel category, enter the name of the control for which
you want to set its relative position. In our example, we will set redBorder for the
input box labeled Below. This will set a new attribute to the green border as
RelativePanel.Below="redBorder" and immediately you will notice that the green border
is placed below the red border control:

Similarly, add another border control inside the relative panel with a blue background
brush and name it blueBorder for reference. This will be, by default, set at the top-left
corner (on top of the red border control).

Now go to its properties and under the RelativePanel category, enter redBorder and
greenBorder for the input box labeled Below and RightOf.

This will now place the blue border control adjacent to the green border. If you check
the XAML code, you will notice that it has added two attributes (attached properties)
to it as RelativePanel.Below="redBorder" and RelativePanel.RightOf="greenBorder":

Let's add another border control with a yellow background and give it the name
yellowBorder. We will place it next to the blue border but align it to the top of the
panel. So, set RightOf as blueBorder and AlignTopWithPanel as checked:

This will result in the XAML code of the yellow border control having
RelativePanel.AlignTopWithPanel="True" and RelativePanel.RightOf="blueBorder" attached
properties.

Here is the complete code for your easy reference:

 <RelativePanel>

 <Border x:Name="redBorder" Background="Red"

 Width="300" Height="150"/>

 <Border x:Name="greenBorder" Background="Green"

 Width="300" Height="150"

 RelativePanel.Below="redBorder"/>

 <Border x:Name="blueBorder" Background="Blue"

 Width="300" Height="150"

 RelativePanel.Below="redBorder"

 RelativePanel.RightOf="greenBorder"/>

 <Border x:Name="yellowBorder" Background="Yellow"

 Width="300" Height="150"

 RelativePanel.AlignTopWithPanel="True"

 RelativePanel.RightOf="blueBorder"/>

 </RelativePanel>

When you run the preceding code, you will see the following output on the screen:

Here, the red box is placed in the top-left corner, a green box just below it, a blue box
placed adjacent to the green box, and a yellow box in the top-right corner but at the
same line where the red box is available.

You will only see the RelativePanel category in the control's property
pane if it is inside a RelativePanel.

The VariableSizedWrapGrid
class
The VariableSizedWrapGrid class allows you to arrange its elements in rows and
columns, wrapped to a new row or column when the maximum rows or columns
defined by the MaximumRowsOrColumns property reaches the specified value.

You can arrange the elements from top to bottom and wrap to the next column by
setting its orientation to Vertical. When you set it to Horizontal, the elements arrange
themselves from left to right and then wrap to the next row.

The RowSpan and/or the ColumnSpan attached properties can be used to span the specified
elements across rows and/or columns within the layout. Using this, you can create a
layout just like the Windows 10 start screen having multiple small, medium, wide, and
large tiles in it.

Let's see an example defining the VariableSizedWrapGrid layout control in action having
multiple border controls in it:

 <VariableSizedWrapGrid Orientation="Horizontal"

 MaximumRowsOrColumns="5">

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 <Border Background="Orange" Margin="4"

 Width="100" Height="208"

 VariableSizedWrapGrid.RowSpan="2"/>

 <Border Background="Orange" Margin="4"

 Width="208" Height="100"

 VariableSizedWrapGrid.ColumnSpan="2"/>

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 <Border Background="Orange" Margin="4"

 Width="100" Height="100" />

 </VariableSizedWrapGrid>

The previous example will result in the following output on the screen, having five
columns of different-sized elements:

Please note the following points while using VariableSizedWrapGrid control:

The content of VariableSizedWrapGrid is not virtualized
You may see a performance impact when working with large datasets in this
panel.
VariableSizedWrapGrid can be placed inside the ItemsPanel of a GridView or
ItemsControl, but cannot be placed inside an ItemsPanel of a ListView.

Data manipulation in a view
Most of the time, you will have to display and manipulate data inside your UWP
applications. To do this, there are many views available as part of the SDK, among
which the GridView, ListView, and FlipView controls are very popular and widely
used. The GridView and ListView controls have the same functionalities due to their
same base class, ListViewBase, but they display data differently.

As these are the most commonly used controls to display and manipulate data inside
Universal Windows apps, let us discuss each one of them with a suitable example and
code snippet.

The GridView control
The GridView control represents a set of scrollable items in rows and columns,
stacked in a horizontal manner until they need to wrap to the next line. It is often used
to display a photo/media gallery or a home page/dashboard of navigational linked
items in a large display:

The elements can be dynamically added to its Items property from code behind class.
You can also do a data binding of a collection of items to its ItemsSource property. In
case you have some static data that won't change, you can directly place it in XAML
inside the GridView tag as written in the following code to demonstrate the preceding
example:

 <GridView>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="150" Margin="4"/>

 </GridView>

Here, we have added eight Rectangle controls which stack horizontally first and then
move to the next row when it is unable to accommodate the next item within the same
line. If you resize the window, based on the available space, the items will
automatically reposition themselves in rows. When there are more items than the
available space, it will add a scrollbar for a scrolling experience.

The ListView control
The ListView control is like what we have learned in GridView but with the catch that
it displays the items in a stacked fashion within a single column. Like in the grid view,
you can use the Items to add elements/data dynamically from code behind or use a
data binding to its ItemsSource property to add a collection of items. You can also write
the items in the XAML page to populate it, but in a static manner.

Let's have the same sample that we used in GridView, but here in a ListView control:

 <ListView>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 <Rectangle Fill="Orange"

 Width="250" Height="75" Margin="4"/>

 </ListView>

Here, you can see that the items are displayed in a stacked fashion in a single column
though we have free space available at the right. This you can use to implement a UI
with a set of data in a list manner, for example, a contact list or a list of links. When
you have more items in a list view, a scrollbar will automatically appear to give you
an in-built scrolling effect:

The FlipView control
The FlipView control is used to display a collection of images or other items in such a
manner that your browsing becomes easy. The main use of this control is in a photo
gallery within an app with an easy-to-navigate feature, both for touch-based and
mouse-based systems. In a touch-based system, the user can swipe left/right or
up/down, and in a mouse-based system, the user can navigate using the arrowheads
which display on hovering the mouse.

Let us create a FlipView control in an XAML page by placing a few static images:

 <FlipView>

 <Image Source="Assets/WP_001.jpg" />

 <Image Source="Assets/WP_002.jpg" />

 <Image Source="Assets/WP_003.jpg" />

 <Image Source="Assets/WP_004.jpg" />

 </FlipView>

Alternatively, you can use the Items property or the ItemsSource property to
dynamically populate a collection of items of any type. You can use horizontal
(default) or vertical orientation to give left-right or top-bottom navigation controls.

If you run the preceding code (having proper images), you will see that the window
will contain the following view having the images. If you hover over the control, you
will see the navigational arrowheads which you can use to switch to the next or
previous image (if there is one):

Application designing with
the XAML style
A style is a collection of property settings applied to one or more instances of a
control to provide a better look across the application. It is possible to customize your
UWP application experience by styling the XAML controls but to apply the style, the
target object must be a DependencyObject and the target property must be a
DependencyProperty.

You can set styles for individual controls, page-level controls, application-level
controls, or shared between multiple applications running across devices.

You need to define the style under the Resources property. When you define the style
inline to a control, it will be available only within the context of the control. When
you move that style to its parent layout, it will be available within the context of the
panel, for that type of control that you defined. Similarly, if you move the style to
page level or application level (in App.xaml), it will be available for the page or
application context.

When you move the style to a separate resource dictionary file as a ResourceDictionary,
it will be available within the scope where the said resource dictionary file has been
referenced. Thus, it can be shared between multiple applications. You can also merge
multiple resource dictionary files into a single application and use them.

A resource defined near to the contextual structure of the control gets
higher privileges and automatically overrides the resource defined in
the higher level having the same key. For example, a page-level
resource overrides an application-level resource.

Defining a style as a resource
A style can be defined in two ways: implicit styling and explicit styling. In implicit
styling definition, you need to specify a TargetType for that style and all the controls
defined by TargetType within that context will automatically use that specified style.
The explicit style definition has an x:Key attribute along with the TargetType attribute
and will apply it only to that target in the context which has explicitly referenced the
resource as its style with the markup extension {StaticResource}.

Here is an implicit style definition of a button:

 <Style TargetType="Button">

 .

 .

 .

 </style>

Here is an explicit style definition of a button, having a key named MyButtonStyle that
can be attached to a button by declaring Style="{StaticResource MyButtonStyle}" in the
XAML:

 <Style x:Key="MyButtonStyle" TargetType="Button">

 .

 .

 .

 </style>

A TargetType property must be set in a style to avoid any exceptions.

You can use a Setter in a style to apply values to any dependency property. For
example, to set the background color of a button control from style, you need to
assign the Background property of the button using the Setter property value as shown
in the following code snippet. You can define as many properties as you want using
the Setter tag inside a style:

 <Style TargetType="Button">

 <Setter Property="Background" Value="Orange"/>

 <Setter Property="Foreground" Value="White"/>

 <Setter Property="Height" Value="50"/>

 <Setter Property="Width" Value="100"/>

 </Style>

Now, to use the style, you need to declare it as a resource. You can either choose it as
an inline style or can place it as a page-level resource dictionary. You can go further
and set it globally as an application resource.

To demonstrate, let us add it as a page-level resource which will be available only to
that page context. Create a new UWP project and open the MainPage.xaml file. Now
create the previous style under <Page.Resources>, which will look as follows:

 <Page x:Class="Demo.UWP.Styles.Button.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Page.Resources>

 <Style TargetType="Button">

 <Setter Property="Background" Value="Orange"/>

 <Setter Property="Foreground" Value="White"/>

 <Setter Property="Height" Value="50"/>

 <Setter Property="Width" Value="100"/>

 </Style>

 </Page.Resources>

 <Grid>

 </Grid>

 </Page>

Now, replace the Grid with a StackPanel and add a few buttons inside it to show side by
side, in a horizontal stack:

 <StackPanel Orientation="Horizontal">

 <Button Content="Button 1" Margin="4"/>

 <Button Content="Button 2" Margin="4"/>

 <Button Content="Button 3" Margin="4"/>

 <Button Content="Button 4" Margin="4"/>

 <Button Content="Button 5" Margin="4"/>

 </StackPanel>

As the style that we defined is an implicit style as a page resource, all the buttons
within the said page will automatically apply the same. If you define an explicit style,
you must set the Style property of the individual buttons binding the StaticResource
key.

Let's have a look into the following UIs having two different windows. The first
window has the buttons having default styles, whereas the second window has the
same buttons after applying our custom style:

Do note that, if you specify a value for a property both in style and on
element directly, the value set on element takes higher preference than
the value set on style.

You can also create/modify the style of a control using the Visual Studio editor. To
get started, right-click on the control (in our case, it is a button control) in Visual
designer and from the context menu, click Edit Template | Edit a Copy... as follows:

This will open a Create Style Resource dialog box in the screen where you need to
provide the name/key of the style that you are going to generate. When you specify
the name/key, it will create an explicit style. To create an implicit style, select Apply
to all.

You can also specify where you want to create the style. By default, it will get
generated in the page resource but you can change it to define in Application resource
or create it as an inline style:

Inheriting a style from
another style
Just like class inheritance, you can also inherit a style from another base style by using
the property BasedOn. This reduces duplicate style setters and gives you a clean, easy-
to-maintain code.

Let us create one base Style for button control having only two setters to change its
background and foreground color. As we are going to inherit this style, let's give it the
name ButtonBaseStyle by defining the x:Key attribute:

 <Style x:Key="ButtonBaseStyle" TargetType="Button">

 <Setter Property="Background" Value="Orange"/>

 <Setter Property="Foreground" Value="White"/>

 </Style>

Create another style with two more setters to define the button's height and width
properties. Now inherit the first style by setting the BasedOn property of the second
style referencing the name of the base as follows:

 <Style TargetType="Button"

 BasedOn="{StaticResource ButtonBaseStyle}">

 <Setter Property="Height" Value="50"/>

 <Setter Property="Width" Value="100"/>

 </Style>

Now, due to its implicit behavior, all the button controls in the page will get the
second style applied. As it is referencing the first style (that is, ButtonBaseStyle) as a
base reference, the style properties defined there will get inherited and applied to the
buttons automatically.

Building your own XAML
control
A custom control is a loosely coupled control defined in a class which derives from
Control. The UI of custom control is generally defined in a resource dictionary inside
the resource file. We can create themes for custom control and reuse them in various
projects very easily.

Button, CheckBox, TextBox, and so on, even ListView and GridView, are nothing but
custom controls. You can easily load them inside an XAML page.

It's not always possible to use only default control sets that come with the SDK.
Sometimes, it is useful to create our own custom control, expose its required
properties, and design the template from scratch as per our need.

A custom control generally inherits from the System.Windows.Controls.Control class.
You may derive from a different custom control also depending on your requirement.

Custom controls are compiled into a DLL assembly and can be reused in multiple
places very easily. You have total control over its code, thus giving you more
flexibility to extend the behavior. Once you build and add the reference of a custom
control to your project, you can find it in the toolbox and you will be able to drag and
drop the control in your design view and start working with that very easily.

Let us create two Universal Windows projects in our solution. One will be a main
application project and another will be a class library project. To get started, go to File
| New | Project... and navigate to Visual C# | Windows Universal. First create the
Blank App (Universal Windows) project, then follow the same steps and create the
Class Library (Universal Windows) project:

So, in your solution, there will be two projects. In the Class Library project, we will
create the custom control and reference this assembly in the main application. Let's
first add the reference in the main application. Right-click on the main application
project and add a reference to the class library:

Creating the custom control
Now we will need to create our first custom control. Guess where? That will be
created in the class library project. As the main application has a reference to the
library already added to it, so it will automatically get the public class types or
controls that we are going to create here.

So, right-click on the library project. From the context menu, click on Add | New
Item... as shown in the following screenshot:

In the Add New Item dialog window, expand Installed | Visual C# and select the item
type Templated Control as shown in the following screenshot. It's nothing but the type
to create custom controls. Give it a good name. In our demo, we are naming it
MyCustomControl.cs. Click on Add to continue:

Once your first Templated Control (custom control) has been created in your project,
you will see two files getting generated. The first one is Generic.xaml under a folder
named Themes. This is the resource dictionary file that we discussed earlier in this
chapter and includes the templated style of the control. The second one is the class file
of the control, where you can add additional functionalities or properties of it.

If you create another custom control in the same project, the Generic.xaml file will get
updated with the new control's template:

Let's see what's there in the Generic.xaml file. The file contains a ResourceDictionary,
containing the templated style of the control that we have created. The setter property
Template defines the UI of it. By default, it contains a blank Border control with
background and border set to it from the template:

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Demo.UWP.CustomControls.Library">

 <Style TargetType="local:MyCustomControl">

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="local:MyCustomControl">

 <Border

 Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding

 BorderThickness}">

 </Border>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

 </Style>

</ResourceDictionary>

Now, go to the main application project and open the MainPage.xaml file. As we have

already referenced the library project, we just need to add the XMLNS namespace of
the library to the XAML page. Let's give it a prefix controls for easy reference.

Inside the Grid panel, add the control that we have created. You can access it from the
namespace controls that we declared. Give it a dimension and background color to
recognize in the UI. Here is the code:

 <Page

 x:Class="Demo.UWP.CustomControls.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:controls="using:Demo.UWP.CustomControls.Library">

 <Grid>

 <controls:MyCustomControl Width="400" Height="35"

 Background="Orange"/>

 </Grid>

 </Page>

Now, if you run the code, you will see the custom control that we added in the main
page of the application running in the UI, which will look like this, having the control
with an orange background:

Exposing properties from a
custom control
Now let us customize our control to have two properties exposed which, when filled,
will show in the UI. To do this, open the MyCustomControl.cs file and create two
dependency properties named FirstName and LastName. As every custom control derives
from a Control having base class as DependencyObject, you can create dependency
properties in it.

Here's the implementation of our class:

namespace Demo.UWP.CustomControls.Library

{

 public sealed class MyCustomControl : Control

 {

 public static readonly DependencyProperty FirstNameProperty =

 DependencyProperty.Register("FirstName", typeof(string),

 typeof(MyCustomControl), new PropertyMetadata(string.Empty));

 public static readonly DependencyProperty LastNameProperty =

 DependencyProperty.Register("LastName", typeof(string),

 typeof(MyCustomControl), new PropertyMetadata(string.Empty));

 public string FirstName

 {

 get { return (string)GetValue(FirstNameProperty); }

 set { SetValue(FirstNameProperty, value); }

 }

 public string LastName

 {

 get { return (string)GetValue(LastNameProperty); }

 set { SetValue(LastNameProperty, value); }

 }

 public MyCustomControl()

 {

 this.DefaultStyleKey = typeof(MyCustomControl);

 }

 }

}

As we have the dependency properties created, we can access them in the control's
template present in the Generic.xaml file. Let's alter the template to have a StackPanel
with two TextBlocks stacked in a horizontal orientation. Create the template binding
to have the Text property of the TextBlock controls associated with the newly created
properties. Here's the XAML template for your reference:

<Style TargetType="local:MyCustomControl" >

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="local:MyCustomControl">

 <Border

 Background="{TemplateBinding Background}"

 BorderBrush="{TemplateBinding BorderBrush}"

 BorderThickness="{TemplateBinding BorderThickness}">

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="{TemplateBinding FirstName}"

 Margin="8 8 2 8"/>

 <TextBlock Text="{TemplateBinding LastName}"

 Margin="2 8 8 8"/>

 </StackPanel>

 </Border>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

Now in the main page, we need to set the values to the exposed properties of our
custom control. Assign the values to FirstName and LastName:

<Page

 x:Class="Demo.UWP.CustomControls.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:controls="using:Demo.UWP.CustomControls.Library">

 <Grid>

 <controls:MyCustomControl Width="400" Height="35"

 Background="Orange"

 Margin="20"

 FirstName="Kunal"

 LastName="Chowdhury"/>

 </Grid>

</Page>

Compile the code and run it. You will see the control updated with the first name and
last name populated in the UI, which we passed from our main page to the control.
The UI will look like this:

Generating visual assets
using the new Manifest
Designer
Every app that you build needs some basic sets of icons, logos, splash screen, and
more. When you create a UWP application using the Visual Studio project template,
you will find the basic set of generic images under the Assets folder. These include
store logo, splash screen image, small tile icon, medium tile icon, wide tile icon, and
lock screen logo:

As those are generic images, you cannot build an app with those and publish to Store.
It will fail immediately during the validation process. For your app, you must update
those images with your app icons; create some stunning image icons to attract the
user's eye.

Visual Studio 2017 allows you to easily generate these icons/images from a single
image, scaling them to use on all different types of devices that your app targets.

To get started, open the Package.appxmanifest file present in your UWP application
project. Now navigate to the Visual Assets tab to select an image and generate all the
images that you need:

Under the All Visual Assets navigation entry, you will find a panel named Asset
Generator. Select the source of the image that you want to use as a template. A preview
of the selected source image will get displayed in the screen. Select the destination of
the generated images. By default, it is the project's Assets folder.

The next step is to select the assets and various scales that you want to generate.
Select the ones that your app is going to target. You can choose all of them too.

Once you have properly set these four fields, click on the Generate button. Visual
Studio 2017 will automatically generate all the images, based on the scales and assets
that you have selected:

You can also configure Display Settings from this screen. This will allow you to set a
short name for your app tile, set the tile background color (default is transparent), the
splash screen background, and the tile icons where you want to display the app name:

The same screen will preview all the icons/images that were generated when you
clicked on the Generate button. Review them and if there are any modifications that
you want to perform, do that before preparing your app to publish to Windows Store.

Preparing UWP apps to
publish to Windows Store
When you have finished developing your Universal Windows application, have tested
it properly, and are ready to publish it to Microsoft Windows Store for the people to
install on their devices and use, you need to perform some basic steps in order to
generate the app package and validate the bundle locally with the Windows App
Certification Kit (WACK).

First, make sure that the package manifest file is correct and has all the required
information updated. To do this, open the Package.appxmanifest file and visit all the tab
details available there. In the Application tab, enter the Display name that you want
for your app, select the supported orientations that your app supports, lock screen
notification type, and others as shown in the following screenshot:

In the Visual Assets tab, select the images and/or generate them using the Asset
Generator that we discussed in the previous section of this chapter. Fill in all the other
details based on your app requirements and functionalities. Save the screen and build
your project to make sure that there are no compilation issues.

Now navigate to the IDE menu items by navigating to Project | Store | Create App
Packages..., as shown in the following screenshot, to start building the app packages
for Windows Store using the Visual Studio wizard, which will guide you step by step:

In the screen that opens on clicking Create App Packages..., click Yes to build
packages to upload to the Windows Store. Visual Studio will download the required
information for the packages before continuing with the package generation. You
need to sign in to the Windows Store with a Microsoft Store account. If you don't
have a Store account, you can create it from here: https://developer.microsoft.com/en-us/store
/register:

It's an one-time registration (no yearly or renewal fee required) which
an indie developer or an organization will have to do to publish apps
to the Windows Store. The registration will cost approximately $19
USD for an individual account, and approximately $99 USD for
company accounts. The exact amount may vary depending on your
country/region. Once you have an account on the Store, you can
publish as many apps as you want (free or paid). Microsoft won't
charge any additional costs.

https://developer.microsoft.com/en-us/store/register

When you are signed in to your Store account, you will see the following screen with
your existing apps (if any) listed in the grid. For a new app, which you have not yet
published to the Store, enter a name in the input box labeled Reserve a new app name
and click on Reserve. If the name is available to use in the Store, it will create the
entry in your app list and enable the Next button to navigate to the next screen:

The next screen will allow you to select the output location where your app package
will be generated. All the fields will be auto-populated based on the details available
in the project:

If you want to enable the crash analytics for your app, make sure to
include the full PDB (Program Database) symbol files. In other cases,
uncheck the checkbox to have the package without debugging
information.

At the end, click on Create to start building the app package to publish to the Store.
Once the package creation is successful, you will see the following screen asking you
to launch the WACK to start validating your app locally against Microsoft
recommended test cases. This step is to ensure that the basic app validation is
successful before you publish it to Store and to avoid the delay in getting a failed
notification (if any) from the Store:

Once you click on Launch Windows App Certification Kit, select all the test cases
which are available and execute them. It is recommended to test against all the cases
before you submit the package to Store:

While the validation is in progress, keep the system idle and don't
interact with the device. Your app may launch multiple times
automatically during this execution.

At the end of the validation, the wizard will generate a report and launch on the
screen. Check whether all the tests were successful. If any of the entries say FAILED,
you must correct that and follow the same steps again to generate the package and
validate it using the WACK tool.

Once all the tests are successful, you can log in to the Windows Store developer
dashboard, upload the generated package, fill in all the form entries, and submit it to
Store for Microsoft testers to validate it again. If the certification gets a green signal,
your app will finally publish to the Store and will be available for download. Your
apps can be free, trial, or fully paid. To know more about the pricing tiers and payout
options, head to the following link: http://bit.ly/getting-paid-apps.

http://bit.ly/getting-paid-apps

Summary
In this chapter, we learnt about the platform to build Universal Windows applications
which can target any device families running Windows 10. First, we learned about the
generic design principles and then headed toward creating our first UWP application,
after setting up the development environment. Then we learned about various XAML
page layouts and data manipulation in a view to design a good-looking UWP
application. We covered GridView, ListView, and FlipView to show data on screen.

Near to the end, we discussed how to create a style of a XAML control, assign it to a
resource dictionary, and inherit a style from another base style. We then covered how
to build custom controls and generate visual assets using the new Manifest Designer
of Visual Studio 2017.

Finally, we have discussed how to create the app package, locally validate the
package against Microsoft-specific test cases using the WACK tool, and prepare it for
submission to Windows Store.

In the next chapter, we are going to learn about .NET Core and start building
applications targeting this new .NET Framework.

Building Applications with
.NET Core
.NET Core is an open source framework (hosted on GitHub
https://github.com/dotnet/core), released by Microsoft and maintained by the .NET
community, to build cross-platform applications for Windows, Linux, and Mac OS.
You can get it from Microsoft's official .NET Core site at https://www.microsoft.com/net/co
re or GitHub. If you are using Visual Studio 2017, you can get it as part of the
installer.

In this chapter, we will discuss the following core topics:

Overview of .NET Core
Installing .NET Core with Visual Studio 2017
A quick lap around the .NET Core commands:

Creating a .NET Core console app
Creating a .NET Core class library
Creating a solution file and adding projects to it
Resolving dependencies in a .NET Core application
Building a .NET Core project or solution
Running a .NET Core application
Publishing a .NET Core application
Creating an ASP.NET Core application
Creating a unit testing project

Creating .NET Core applications using Visual Studio
Publishing a .NET Core application using Visual Studio 2017:

Framework-Dependent Deployments
Self-Contained Deployments

Creating, building, and publishing a .NET Core web app to Microsoft Azure

https://github.com/dotnet/core
https://www.microsoft.com/net/core

Overview of .NET Core
.NET Core version 1.0 was first released in 2016 and now has support to work in
Visual Studio 2015, update 3.3 or later, Visual Studio 2017, and Visual Studio Code
only. The shared SDK component can be used to build, run, and publish applications
using Visual Studio, Visual Studio Code, and the command line interface:

Please note that .NET Core 2.0 is scheduled for release in Q3 of 2017
and .NET Core 2.1 is scheduled for release in Q4 of 2017 (after
Microsoft releases Windows 10 Fall Creators Update).

.NET Core is a subset of the .NET Framework, and contains its core features in both
runtime and libraries. The .NET Framework, which was first released in 2002, is now
running version 4.6.2. Until now, it was only targeted for the Windows platform, but,
as time has passed, there has been a need to target it on different platforms. Using
.NET Core components, you can build apps targeting the following platforms:

Windows:
Windows 7, 8, 8.1, 10
Windows Server 2008 R2 SP1
Windows Server 2012 SP1, R2
Windows Server 2016

Mac:
Mac OS 10.11 or higher

Linux:
Red Hat Enterprise 7.2
Ubuntu 14.04, 16.04, 16.10
Mint 17
Debian 8.2
Fedora 23, 24
Cent OS 7.1
Oracle Linux 7.1
Open SUSE 13.2, 42.1

It is composed of a .NET runtime, a set of framework libraries, a set of SDK tools,
language compilers, and the .NET app host. Currently, you can use the C# and F#
languages to build apps and libraries, and VB is on its way.

.NET Core 1.0 does not support all the app models of .NET Framework except the
console and ASP.NET Core app models. It contains a smaller set of APIs from the

.NET Framework as it is a subset of the other, but Microsoft is making changes to
expand it further. Using .NET Core you can build apps that can execute on a device,
the cloud, and on embedded/IoT devices. Following are the characteristics that best
define .NET Core:

It is an open-source platform hosted on GitHub with the MIT and Apache 2
license.
Due to its flexible deployment nature, you can include .NET Core in your app
(SCD) or install it side by side (FDD). We will discuss SCD and FDD later in
this chapter.
You can build cross-platform applications, which are currently supported by a
few flavors of the Windows, Linux, and Mac operating systems.
You can use the command-line interface to execute everything from project
creation to publishing an app.
As it is a subset of the .NET Framework it is compatible with that, along with
Xamarin and Mono via the .NET Standard Library.
Finally, it is supported by Microsoft and maintained by a vast .NET community.

Installation of .NET Core
with Visual Studio 2017
To install .NET Core along with Visual Studio 2017, run the Visual Studio installer. If
you have already installed Visual Studio 2017, you can modify the existing
installation to install the .NET Core workload.

When the installer starts, you will see the following screen, where you can customize
the workloads that you want to install. From the list, select .NET Core cross-platform
development and click on Install to continue:

This will start the installation process. Once it completes, you may have to restart your
computer for the changes to take effect.

Once the installation is successful, open a console window and type in the dotnet new
command to populate your local .NET Core package cache, which will occur only
once to improve the restore speed and enable offline access.

dotnet is the driver of .NET Core's CLI (Command Line Interface). It
accepts commands followed by distinct options to run specific features.

When you use it for the first time, it will print the following output in the console
window, which may take up to a minute to complete the initialization:

A quick lap around the .NET
Core commands
The driver of the .NET Core CLI is dotnet. You can use this along with commands
and distinct options to run specific features that it supports. Each of its features is
implemented as a command, which you need to specify after the dotnet in the
command line.

Here is the list of .NET Core commands:

When you use dotnet new, it initializes new project based on the project template
and language that you select. The default is C#, and, currently, C# and F# are the
only programming languages supported.
Following is the list of project templates, their short names to pass to the
command, and the language type for each template, for your reference:

The dotnet restore command restores the dependencies and tools of a project.
The dotnet clean command is used to clean the output of a project that was built
earlier.
The dotnet build command is used to build a .NET Core application.
The dotnet msbuild command provides access to the msbuild CLI to build a
project and all its dependencies.
When you want to publish a .NET Core application as a framework-dependent
or self-contained app, you should use the dotnet publish command.
The dotnet run command is used to run the application from source.
When you use dotnet test, it executes the tests using the test runner specified in
the project.json file.
When you want to create a NuGet package of your code, you should use the
dotnet pack command in the CLI.
When you specify the dotnet sln command, it allows you to add, remove, and
list projects in a solution file.
The dotnet nuget delete command deletes or unlists a project from the NuGet
server.
The dotnet nuget locals command is used to clear or list the local NuGet
resources.
Using the dotnet nuget push command, you can push a NuGet package to the
server and publish it in the NuGet store.

Creating a .NET Core
console app
Let's learn how to create a .NET Core console application. Here, we will discuss how
to create it from the CLI using the command dotnet new.

As we have already seen that the short name for the command line console application
template is console, we will use it to create this type of project. By default, it creates
the new project in the current directory with the name of the same directory, unless
you specify the name.

Let's first create a console application with all default parameters/options. Open a
console window and navigate to the directory of your choice. Then enter the following
command to create a console application project:

 dotnet new console

This will successfully create the console application project, along with the code file
as shown in the following screenshot:

In the preceding demonstration, we have created a new folder named Demo in the
D:\DotNetCore directory path, then navigated to that new directory (D:\DotNetCore\Demo)
in the console window and given the command. As we have not specified any name
explicitly, it will create a project in the context of the current directory. So, you will
see Demo.csproj in that directory, with a C# file named Program.cs.

Let's create another project, but this time we will specify a name and the language
explicitly. Navigate to the DotNetCore directory in the console window and enter the
following command:

 dotnet new console -lang C# -n "HelloDotNetCore"

This will create a new folder named HelloDotNetCore and a project of the same name,
with a Program.cs code file in C#. If you want to build an F# project, specify the option
as -lang F#:

Note that none of the preceding commands create any solution file for the projects. To
create a solution file from CLI, use the dotnet new sln command.

Creating a .NET Core class
library
To create a .NET Core class library project, we need to use the same command, dotnet
new, but with a class library type project template, whose short name is classlib. Let's
navigate to the folder (in our case, it's D:\DotNetCore) in the console window and enter
the following command:

 dotnet new classlib -n "CustomLibrary" -lang C#

This will create a C# project named CustomLibrary.csproj and a C# class file, Class1.cs,
in a directory named CustomLibrary under the current directory:

Creating a solution file and
adding projects in it
Using the .NET Core CLI, you can also create a solution file and add/remove projects
in it. To create a default solution file, enter the following command in the console
window:

 dotnet new sln

This will create a solution file named DotNetCore.sln in the current directory, as shown
in the following screenshot:

In case you want to specify a name while creating the solution file, enter the command
as follows:

 dotnet new sln -n "Demo Solution"

The solution file, with the specified name, will get generated in the same folder:

To modify the solution file from the command line to add projects in it, enter either of
the following commands, providing the proper name of the solution and the project
name:

 dotnet sln <SolutionName> add <ProjectName>

 dotnet sln <SolutionName> add <ProjectOneName> <ProjectTwoName>

 dotnet sln <SolutionName> add **/**

When you want to add a single project in a solution file, use the first command. Use
the second command with the names of all the projects that you want to add. When
you want to add all the projects available in the current directory, you can use
asterisks, as shown in the third of the preceding commands.

Similarly, you can remove any project from the solution file. You can use any of the
following commands, as per your requirements:

 dotnet sln <SolutionName> remove <ProjectName>

 dotnet sln <SolutionName> remove <ProjectOneName> <ProjectTwoName>

 dotnet sln <SolutionName> remove **/**

The first command mentioned here is used to remove a single file. When there are
multiple projects that you want to remove selectively, run the second command. Use
the third command when you want to remove all the projects available in the current
directory from the solution file.

Let's do this in practice. We will first create two .NET Core projects of types Console
App and Class Library. Then we will add them to a newly created solution file. Now,
navigate to the folder where you want to create these, and work through the following
steps to build our first solution file:

1. Create a console app project by entering the following command:

 dotnet new console -n "Demo App"

2. Create a class library project by entering the following command:

 dotnet new classlib -n "Custom Library"

3. Create a solution file:

 dotnet new sln -n "Demo Solution"

4. Add the projects into the solution file:

 dotnet sln "Demo Solution.sln" add "Demo App\Demo App.csproj"

 "Custom Library\Custom Library.csproj"

Here's a screenshot of the steps that we followed in the steps:

Resolving dependencies in
the .NET Core application
.NET Core uses NuGet to restore dependencies and project-specific tools, which are
done in parallel when you enter the command from a command line in the directory
where your project/solution resides. Let's resolve the dependencies of the projects that
we have just created. Enter the following command from the current directory
(D:\DotNetCore, in our case):

 dotnet restore

This will start restoring the .NET Core packages/dependencies:

In the preceding screenshot, you can see how it executed in parallel to first restore its
package dependencies and then the tool-related dependencies for MSBuild. Unless
these dependencies are resolved, you cannot proceed to build and run your
application.

Building a .NET Core
project or solution
To build a .NET Core project from the command line, you can use the dotnet build
command. When you specify it in a directory with multiple projects, a build will be
performed for all the projects.

When there is a solution in the directory that has at least one project linked,
performing the following command will build all the projects linked in the solution
file:

 dotnet build

Here's a screenshot of the command execution:

To build a specific project or solution, provide its name or the path to it while
executing the build command. Following is the command to build the Demo App project
we have created (you can use either of them):

 dotnet build "Demo App"

 dotnet build "Demo App\Demo App.csproj"

Here's a screenshot of the execution process to build the Demo App application:

Building a .NET Core project requires the dependencies to be resolved
first. Hence, you should execute the dotnet restore command at least
once before building your code.

The output of the build will get generated in the bin folder of the project directories.
By default, it builds against the debug configuration settings, but to build the
project(s) in release mode, the --configuration Release option needs to be specified, as
follows:

 dotnet build --configuration Release

 dotnet build "Demo App" --configuration Release

You can also target the build for a different runtime by specifying --runtime followed
by <RuntimeIdentifier>. If you want to build the project/solution against the runtime of
Red Hat Enterprise Linux 7 (64-bit), enter the following commands one by one:

 dotnet clean

 dotnet resolve --runtime rhel.7-x64

 dotnet build --runtime rhel.7-x64

The first command will clean the current workspace. The second command will build
the project(s)/solution against the specified runtime (rhel.7-x64). The third command
will build against the runtime specified.

Make sure to resolve the dependencies before retargeting to build to a
different runtime.

When you build a project or a solution, the output files are written in the bin folder of
the project directory. All the temporary files related to build get generated in the obj
folder of the project directory, just like any other projects targeting, .NET Framework.

Running a .NET Core
application
To run a .NET Core application, you can use the dotnet run command from the
console window. As it relies on the dotnet build command, when you specify a project
to run, it automatically builds the project and then launches the application.

To run an app in the project context, enter the following command:

 dotnet run --project <ProjectPath>

If you already have a portable application DLL, you can run it directly by executing
the DLL by the dotnet driver without specifying any command. For example, the
following command runs the already available DLL built against .NET Core 1.0:

 dotnet "Demo App\bin\Debug\netcoreapp1.0\Demo App.dll"

Please refer the following screenshot:

Publishing a .NET Core
application
When you build, debug, and test your application successfully, you need to publish or
deploy your app. The .NET Core provides the dotnet publish command to publish
your app for deployment.

To publish a .NET Core app in the Release mode, enter the following command:

 dotnet publish <ProjectName> -c Release

There are two kinds of deployment available for .NET Core applications, which are
Framework-Dependent Deployment (FDD) and Self-Contained Deployment
(SCD). The first one depends on a system-wide version of .NET Core to be present
before running the application, whereas the second type of deployment does not
depend on any .NET Core version already installed on the system as it includes the
entire .NET Core libraries and runtime, along with the resultant application files.

Let's learn more about each of the preceding deployment types with a simple demo-
oriented example.

Framework-Dependent
Deployments
This type of deployment model executes by default while publishing a .NET Core
application. In this deployment step, only your app and any third-party dependencies
get deployed, and there exists no reason to deploy .NET Core along with your app as
your app will use the .NET Core version that's present on the user's system.

In this model, the output of the .NET Core application is always a .dll file. You won't
find any .exe file to run.

This type of deployment has a number of benefits:

As you don't need to deploy .NET Core along with your app, the size of your
deployment package stays very small
It reduces disk space and memory usage on the system as multiple apps can use
a single .NET Core installation
As .NET Core uses a common Portable Executable (PE) format, which the
underlying operating system can understand, there's no need to define the target
operating system

Let's work through the following steps to create, build, run, and publish an app using
the FDD deployment model:

1. Create a directory for your solution (for example, DotNetCore) and navigate to it
in a command window.

2. Enter the following command to create a new C# Console application:

 dotnet new console -lang C# -n "FDD Demo"

3. Create a solution file named FDD Demo and add the project into the solution file:

 dotnet new sln -n "FDD Demo"

 dotnet sln "FDD Demo.sln" add "FDD Demo\FDD Demo.csproj"

4. Now resolve the dependencies by entering the following command:

 dotnet restore

5. Build the solution by running the following command, which will generate the
PE version of the application in the bin\debug folder:

 dotnet build

6. If the build succeeds, the output DLL will get generated in DotNetCore\FDD
Demo\bin\Debug\netcoreapp1.0\FDD Demo.dll. Now, enter the following command to
run it:

 dotnet "FDD Demo\bin\Debug\netcoreapp1.0\FDD Demo.dll"

7. Once you are ready to publish your app, enter the following command to create
the release version of the project to the DotNetCore\FDD

Demo\bin\Release\netcoreapp1.0\publish folder:

 dotnet publish "FDD Demo\FDD Demo.csproj" -c Release

Here, in the FDD model, you will have only your app and its dependency files (if
any), along with the PDB file and JSON configuration files, in the publish directory.
No other files will get deployed there, thus keeping your deployment package very
small.

Self-Contained Deployments
In this type of deployment model, .NET Core gets deployed along with your
application and dependency libraries. Thus, the size of your deployment package
becomes large compared to the package created by the FDD model. The version of
.NET Core depends on the version of the framework that you build your app with.

In this model, the output of the .NET Core application is an .exe file, which loads the
actual .dll file on execution.

The main advantages of this type of deployment are as follows:

As you are bundling the version of .NET Core that your app needs to run, you
can be assured that it will run on the target system.
Only you can decide which version of .NET Core your app will support. You
should select the target platform before you create the deployment package.
The output is an EXE file, which loads the actual DLL.

Let's work through the following steps to create, build, run, and publish an app using
the SCD model:

1. Create a directory for your solution (for example, DotNetCore) and navigate to it
in a command window.

2. Enter the following command to create a new C# Console application:

 dotnet new console -lang C# -n "SCD Demo"

3. Create a solution file named SCD Demo and add the project into the solution file:

 dotnet new sln -n "SCD Demo"

 dotnet sln "SCD Demo.sln" add "SCD Demo\SCD Demo.csproj"

4. Now, open the project file SCD Demo.csproj in a notepad.
5. Create a <RuntimeIdentifiers> tag under the <PropertyGroup> section of your

.csproj and define the platforms that your app targets:

 <PropertyGroup>

 <RuntimeIdentifiers>win10-x64</RuntimeIdentifiers>

 </PropertyGroup>

6. Here you can set multiple identifiers separated by semicolons.
7. Now resolve the dependencies by entering the following command:

 dotnet restore

8. Build the solution by running the following command (enter the runtime
identifier that you want your app to target), which will generate the output of the
application in the bin\Debug\netcoreapp1.0 folder:

 dotnet build -r win10-x64

9. If the build succeeds, the output DLL will get generated, along with the EXE as
DotNetCore\SCD Demo\bin\Debug\netcoreapp1.0\SCD Demo.dll and DotNetCore\SCD
Demo\bin\Debug\netcoreapp1.0\SCD Demo.exe.

10. Now, enter the following command to run it:

 dotnet "SCD Demo\bin\Debug\netcoreapp1.0\SCD Demo.dll"

11. You can also run the EXE file directly:

 "SCD Demo\bin\Debug\netcoreapp1.0\SCD Demo.exe"

12. Once you are ready to publish your app, enter the following command to create
the release version of the project to the DotNetCore\SCD
Demo\bin\Release\netcoreapp1.0\win10-x64\publish folder:

 dotnet publish -c Release -r win10-x64

If you open the published folder, you will see many other files apart from the project
DLL, project EXE, JSON configs, and PDB files. You can create as many deployment
packages as you want, based on your targeted RIDs. Separate folders will get
generated for each RID package.

Creating an ASP.NET Core
application
There are three different types of ASP.NET Core project templates available to use,
which are the Empty ASP.NET Core web application (identified as web), MVC
ASP.NET Core web application (identified as mvc), and Web API ASP.NET Core web
application (identified as webapi). Among these, only the MVC web app currently has
support for both the C# and F# languages.

To create an empty ASP.NET core application, enter the following command in the
console window:

 dotnet new web -n <ProjectName>

To create an MVC-based ASP.NET web app, enter the following command:

 dotnet new mvc -n <ProjectName>

To create an ASP.NET MVC web application with no authentication, enter the
following:

 dotnet new mvc -au None -n <ProjectName>

To create an ASP.NET web API application, enter the following in the command line:

 dotnet new webapi -n <ProjectName>

By default, ASP.NET Core web applications uses SQLite for database support. You
can change it to use LocalDB instead of SQLite. To change it, append either of the -
uld or --use-local-db options with a value true, as follows:

 dotnet new mvc -n <ProjectName> -uld true -au none

Here's what happens after you enter the command, and the files/folders that it
generates:

Creating a unit testing
project
Unit testing projects can also be created using .NET Core. In the command line, you
can specify the template code mstest or xunit to create a simple unit test project or
xUnit test project, respectively.

To create a simple unit test project from the command line, enter the following:

 dotnet new mstest -n <ProjectName>

To create an xUnit test project, enter the following command:

 dotnet new xunit -n <ProjectName>

You can also run a unit test project from the command line. You need to execute the
dotnet test command to do so. The unit testing frameworks are bundled as a NuGet
package and can be restored as ordinary dependencies. You can execute either of the
following commands:

 dotnet test

 dotnet test <ProjectPath>

Creating .NET Core
applications using Visual
Studio
We have discussed the .NET Core commands to create, build, run, and publish .NET
Core applications. We have also covered how to create and run ASP.NET Core
applications and unit testing projects.

Now, let's look at how to do it easily using Visual Studio 2017. To create a .NET Core
application using Visual Studio, open the Visual Studio 2017 instance and click on
File | New | Project... to open the New Project window (alternatively, you can press
the following keyboard shortcut: Ctrl + Shift + N):

In the New Project dialog, navigate to Installed | Templates | Visual C# | .NET Core.
Here you will see five types of template:

Console App
Class Library
Unit Test Project
xUnit Test Project
ASP.NET Core Web Application

You can select the template you want to create. To demonstrate, let's create a console
application first. From the available list of project templates, select Console App
(.NET Core). Provide a proper name for the project/solution file, select the location,
and click on OK to create the project, as shown in the following screenshot:

Like other project templates and unlike the CLI tools for .NET Core, this wizard will
create the solution and add the project into it automatically. A class file named
Program.cs will be available, which is the entry point to the application:

Let's build the application and run it. You will see a Hello World string printed on the
screen. If you navigate to the bin\debug\netcoreapp1.0 folder path of the project
directory, you will see ConsoleApp.dll, which is our application host.

Publishing a .NET Core
application using Visual
Studio 2017
Visual Studio 2017 made it easy to publish a .NET Core application. While, in the
CLI, it's all about commands, which you need to perform one by one to publish, but in
Visual Studio it's all about a few clicks.

Similar to the command line, you can publish an application in both the FDD and
SCD models from Visual Studio 2017. Let's learn how to do this with both the
deployment models.

Framework-Dependent
Deployments
The default deployment model that Visual Studio configures for a .NET Core
application is the Framework-Dependent Deployment model. Here, when you publish
an app, only the portable, executable DLL will get generated, which you need to run
in a system where .NET Core is already installed.

To publish an app to create the deployment package, right-click on the project and,
from the context menu that pops up on the screen, click Publish..., as shown in the
following screenshot:

This will open the publishing wizard dialog on the screen. For a console app, the
publishing target is File System. If you are publishing a web application, you can
publish it to Azure App Service, Azure Virtual Machine, IIS, or FTP along with the
File System:

Click on the Browse... button to select the publish folder (the default is
bin\Release\PublishOutput) and, when you are ready, click on the Publish button. This
will publish the app to the selected folder and show you a summary:

In the summary section, you can see that the build configuration is Release and the
target runtime is Portable. Click on the link labeled Settings, which will open the
following Profile Settings page:

On this screen, you will be able to change the configuration, target framework, and
target location. As we are publishing it as Portable Executable format (FDD model),
you won't be able to change the target runtime.

Self-Contained Deployments
To do a Self-Contained Deployment for your application to run in a system without
.NET Core installed, you need to first edit your project file to make some changes. In
this type of deployment, the core libraries will also get copied with your application,
making the deployment package larger than expected.

For SCD, first, open your project file. In Visual Studio 2017, right-click on the project
in Solution Explorer and click on the menu item Edit <AppName>.csproj. In our case it's
Edit ConsoleApp.csproj, as shown in the following screenshot:

As shown in the following screenshot, enter the <RuntimeIdentifiers>win10-
x64;Ubuntu.14.04-x64</RuntimeIdentifiers> tag inside the <PropertyGroup> tag as child,
where win10-x64 and ubuntu.14.04-x64 are two different runtime identifiers that we have
selected for our app's deployment. You can add more than one RID here, as a
semicolon-separated values:

Now save the .csproj file, build the solution, and right-click on the project inside
Solution Explorer. From the context menu, click on Publish... to start the deployment
process:

This will show the Publish wizard dialog, where you can set the publish target. As we
are publishing a console application, we will have only one option to select and that's
the File System. For a web application, you will get many options such as publishing
to Azure App Service, Azure Virtual Machine, IIS, or FTP:

Click on the Browse... button and select the publish folder (the default is
bin\Release\PublishOutput). Once you are done, click on the Publish button. This will
publish your app to the target location and show you a summary.

Note that the configuration is by default selected as Release and the target runtime is
set to your host system RID, which is the first entry we added as RuntimeIdentifier in
the .csproj file:

To edit the publish profile, click on Settings. This will open the Profile Settings page:

On this page, you will be allowed to change Configuration, Target Framework, Target
Runtime, and Target Location. Click on the Target Runtime dropdown. There you
will see the identifiers that we have set in the project file. In our case, it was win10-x64
and ubuntu.14.04-x64. To publish the application for Ubuntu Linux, select
ubuntu.14.04-x64 from the list and click on Save:

This will update the target runtime on the summary page to the Ubuntu RID. Now
click on the Publish button to publish the application. By default, both packages will
be deployed in the same publish directory. If you want to place them in separate
folders, change the target location accordingly to easily identify the output:

Creating, building, and
publishing a .NET Core web
app to Microsoft Azure
As we have already learned how to create a .NET Core console application, build and
publish it using the framework-dependent and SCD models (both using CLI and from
Visual Studio 2017), let us now begin with creating an ASP.NET Core MVC web
application.

To begin with, click on the File | New | Project... menu, which will open the New
Project dialog on the screen. You can also open it by pressing the keyboard shortcut,
Ctrl + Shift + N.

From the available .NET Core project types, click on the ASP.NET Core Web
Application template. Enter the project name, solution name, and location, and click
on OK to start creating the project:

This will open another dialog on the screen asking you to select the ASP.NET Core
web template. Currently, there exist three templates for you to choose from:

Empty
Web API
Web Application

If you want to build a web application from scratch, select the Empty web template.
To create an ASP.NET Core application with a RESTful HTTP service, select the
Web API template, which will give you a sample app to start with. For a complete
web application with MVC views and controllers, select the Web Application
template:

You can also set an authentication to your web app (the default is No Authentication)
by clicking on the Change Authentication button:

The Change Authentication dialog has the following four options:

No Authentication: This is the default authentication type. Keep this selected if
your app does not require any user authentication.
Individual User Accounts: If your application will store user profiles to a SQL
Server database, you need to select this option. You can also configure your
signing process by using Facebook, Twitter, Google, Microsoft, or any other
provider's authentication system.
Work or School Accounts: To use an Active Directory or Office 365 signing
process, use this type of authentication system.
Windows Authentication: If you are building an intranet application that will
use a Windows authentication system, select this.

Here we will use No Authentication, so keep it selected. Click on OK to continue
creating the web application.

Once Visual Studio has created the project, you can build and run it. This will create a
web page from the sample it has created:

To publish the application that we have just created, right-click on the project inside
Solution Explorer and click on Publish, as shown in the previous screenshot. This will
open the app publishing wizard. Here you can select Microsoft Azure App Service,
Azure Virtual Machine, File System/Folder, IIS, or FTP as the publishing target.

As we are going to publish it to Microsoft Azure, select Microsoft Azure App Service
and click the Publish button:

To deploy an app to Microsoft Azure, you should already have an Azure account. To
create your Azure account with $200 free credit, visit the following link: https://azure.mi
crosoft.com/en-us/free/

If you already have an Azure account and are already signed in with the same MSA
account in Visual Studio, the following screen will be shown asking you to provide
more details on hosting your app to Azure:

https://azure.microsoft.com/en-us/free/

It will ask you to enter your web app name and Azure subscription details (as
mentioned in the following steps) to publish it there:

1. First, enter the web application name. This should be globally unique.
2. Select the Azure subscription that you want to link with.

3. Select a Resource Group name. If there are no entries in the list, you need to
create one by clicking the New... button. Fill in the required details and click
OK.

4. Select the application service plan from the list. If the list is empty, you need to
click the New... button to create a publishing plan by filling all the required
details. Then select the plan that you have created.

5. Finally, click Create to start the final publishing and hosting process to Azure.

Once it starts the publishing job, it will show you the following page, with details of
your application hosting. Based on the web application name that you entered earlier,
it will create the Site URL and host to a subdomain hosted on azurewebsites.net:

Once it successfully publishes the application to Microsoft Azure App Service, you
can either click the link under Site URL or click on Preview to launch in your
configured browser application.

When you launch the site on a browser, you will see the site that we created running
on a public web server. As the website was created from the Visual Studio default
web template, you will see the following screen:

You can also view the site details by launching the Server Explorer from the Visual
Studio View menu, which will look as follows:

Summary
In this chapter, we have learned about the basics of .NET Core and how to install it
from the Visual Studio 2017 installer. We have discussed the commands you must
know to create, build, and run .NET Core applications from the CLI or console. Along
with this, we have also discussed a couple of types of application deployment models,
FDD and SCD.

Apart from the core commands, we also learned how to create, build, and publish
.NET Core applications using the Visual Studio 2017 IDE. We also covered how to
publish a web app to Microsoft Azure.

In the next chapter, we will discuss NuGet packages and learn how to create, publish,
test, and manage them.

Managing NuGet Packages
NuGet is a free and open-source package manager for the Microsoft development
platform. It was first introduced in 2010, and has now evolved to a larger ecosystem
for the platform. Starting with Visual Studio 2012, it comes preinstalled as a Visual
Studio extension.

You can create packages of your libraries and distribute them in NuGet Package
gallery, http://www.nuget.org/packages, or to your local NuGet store, which, when
published, can be downloaded again using NuGet Package Manager inside Visual
Studio.

In this chapter, we will cover the following topics:

Overview of NuGet Package Manager
Creating a NuGet package library for .NET Framework:

Creating the metadata in a NuGet Spec file
Building NuGet Package
Building NuGet Package for multiple .NET Frameworks
Building NuGet Package with dependencies

Creating a NuGet package library for .NET Standard
Editing the metadata of the project
Building the NuGet Package from Visual Studio 2017
Building a NuGet Package with Package References

Testing the NuGet Package locally
Publishing NuGet Package to NuGet Store
Managing your NuGet packages

http://www.nuget.org/packages

Overview to NuGet package
manager
A NuGet package is a .nupkg file that contains all the required components needed to
reference an external library in a project. Typically, this component is one or more
DLLs and the metadata describing the package. It can consist of other components,
source code, and debug symbols, but this is rare.

When you install any of the Visual Studio 2017 workloads, by default it installs the
support for NuGet along with the NuGet package manager tool, which you can find
listed under the Individual components tab of the installer. If you uninstall it, all the
dependent workloads will automatically get uninstalled from your system:

NuGet package manager comes in both console and GUI mode, integrated as part of
the Visual Studio IDE. As GUI provides you with easier access to search, install,
update, and uninstall a package, it is always preferable, and most of the time a
developer interacts with it while using any library package through NuGet.

When you install a NuGet package, the following things happen:

1. The package that you are trying to install gets downloaded in the packages
folder under your solution directory.

2. Any other NuGet packages that this package is dependent on also get
downloaded automatically.

3. The references to the package content (that is, the DLL references) automatically
get added to the project.

To open NuGet package manager, click on Tools | NuGet Package Manager, and
select Package Manager Console for the console window or Manage NuGet Packages
for Solution... for the GUI window. This is shown in the following screenshot:

Alternatively, you can right-click on the project/solution to launch the NuGet Package
Manager GUI from the context menu entry:

In the package manager window, search for the library that you want to install. It will
give you a list of packages based on your search term. Select the one you want to
install, select the suitable version, and click Install to continue:

It will pop up a dialog showing you the list of packages (including dependent
packages) that it's going to install. Review the changes and click on OK to start the
download process.

Once downloaded, it will add the assembly references to your project and add an entry

to the packages.config file under your project directory:

Creating a NuGet package
library for .NET Framework
As we have discussed the basics of NuGet package, let's start creating our first NuGet
package for libraries targeting .NET Framework. We will use the NuGet CLI to build
the package for class libraries targeting .NET Framework. The NuGet CLI tool is a
single .exe file, which you can download from the NuGet site, or directly from https://w
ww.nuget.org/nuget.exe.

First, let's create a class library project, which we are going to pack later. Go to File |
New | Project..., select the targeted .NET Framework (in our case, it's .NET
Framework 4), and then select the Class Library (.NET Framework) from the
available templates under Visual C#. Select a location for the project, give it a name,
and click on OK:

Once the project gets created, add a few classes, and some code inside them, as per
your requirements. Let's add a class file called LogHelper.cs and add the following
code inside it:

 namespace NuGetDemoLibrary

 {

 public class LogHelper

 {

 public static void Log(string message)

 {

 Console.WriteLine(message);

 }

 }

 }

Now build the project in Release mode and ensure that there are no errors. As our
demo class library (NuGetDemoLibrary.dll) is ready, it's time for us to create the NuGet
package.

https://www.nuget.org/nuget.exe

Creating the metadata in
NuGet spec file
Go to the root directory of your project and copy the downloaded CLI file, nuget.exe,
there. Open a console window, navigate to the project directory, and enter either of
the following commands to create the nuspec file:

 nuget spec

 nuget spec NuGetDemoLibrary.csproj

 nuget spec bin\Release\NuGetDemoLibrary.dll

For the previously mentioned NuGet commands, please note the following:

If you use the first command nuget spec, it will create the nuspec file based on the
available project files in the directory where it was executed.
The nuget spec <ProjectFilePath> will create the nuspec file only for the project
that you specified.
If you use a specific DLL, in this fashion-- nuget spec <DllFilePath>, the NuGet
spec file will be created based on the specified DLL. This command is mostly
recommended as it creates the metadata information of the nuspec file from the
DLL metadata.

Have a look at the following screenshot to understand it easily:

This will create the NuGetDemoLibrary.nuspec file with default values:

If you create the nuspec file from the DLL, most of these metadata entries will have a
value picked from the generated DLL. As we have created it from the project, it has a
placeholder field against most of the entries. You must replace these default values
before generating the package.

The id field must be unique across the NuGet global store or the gallery where you are
going to host the package. Generally, it gets populated from the AssemblyName field of
the DLL. Do a check in the store or the gallery before assigning this field.

The licenseUrl, projectUrl, and iconUrl are optional. If you don't want to put in these
links, you can remove the entire lines.

NuGet uses semantic versioning, where it has three parts for the version field in the
following convention: Major.Minor.Patch, thus put a three-fields version number
against it. Whenever you upload a new version to NuGet, it decides if it is the latest
stable version. If you are not releasing a final version, you can inform NuGet to mark
it as a pre-release version by suffixing the -prerelease switch or -alpha, -beta, or -gamma
to the version field. Technically, you can add any string there but it is always
preferable to put a meaningful convention. For example, if your build version is 4.5.2
and you want to set it as a pre-release beta version, change the value of the version
field to 4.5.2-beta.

Note that NuGet prioritizes the version field in reverse chronological
order. Thus, -beta will get higher preference than -alpha, and the final
release version will get the highest preference automatically.

Fill all other fields mentioned under the metadata tag inside the spec file and save it.
Now you need to specify the files you are going to bundle and in which folder you
want to place them when downloaded from NuGet. Generally, when you download
from NuGet, they are placed inside the package folder of your solution directory,
categorized by package type. Here, you can also define a Framework-specific folder
path, which we will discuss later in this chapter.

Let's add the output of our class library project and mark it to place under the lib
folder of the target directory. Enter the following XML tag inside the package element
with the path of the precompiled binary assembly:

 <files>

 <file src="bin\Release\NuGetDemoLibrary.dll"

 target="lib\NuGetDemoLibrary.dll"/>

 </files>

Let's update the details and save the file. The resultant output of our .nuspec file will
look like the following block:

 <?xml version="1.0"?>

 <package >

 <metadata>

 <id>Demo.Packt.Kunal.NuGetDemoLibrary</id>

 <version>1.0.0-alpha</version>

 <title>NuGet Demo Library</title>

 <authors>Kunal Chowdhury</authors>

 <owners>WinLab</owners>

 <description>This is for demo purpose only</description>

 <releaseNotes>Change 1, Change 2, ...</releaseNotes>

 <copyright>Copyright 2017</copyright>

 <tags>Demo, Packt</tags>

 </metadata>

 <files>

 <file src="bin\Release\NuGetDemoLibrary.dll"

 target="lib\NuGetDemoLibrary.dll"/>

 </files>

 </package>

You can add multiple precompiled assemblies inside the package by defining them
inside the <files>...</files> element:

 <files>

 <file src="Assembly-1.dll" target="lib\Assembly-1.dll"/>

 <file src="Assembly-2.dll" target="lib\Assembly-2.dll"/>

 <file src="Assembly-3.dll" target="lib\Assembly-3.dll"/>

 </files>

You can also use wildcards in the <files> section, as follows:

 <files>

 <file src="*.dll" target="lib "/>

 </files>

Building the NuGet Package
As our NuGet spec file is ready, it's time for us to create the NuGet package from the
nuspec file. Use the nuget pack command followed by the nuspec file name to start
creating the project. Enter the following command in the console window:

 nuget pack NuGetDemoLibrary.nuspec

This will create a NuGet package file with the extension .nupkg in the same directory:

The file name will be a combination of the ID and the version that we specified in the
.nuspec file. In our case, it generates the file Demo.Packt.Kunal.NuGetDemoLibrary.1.0.0-
alpha.nupkg, as you can see in the preceding screenshot.

You will also see a warning message on-screen, which says one issue found as the
assembly is not inside a framework folder. As we have placed the DLL under the lib
folder of the target location directly, it generates this error. NuGet recommends
putting the assemblies inside a framework-specific folder. You can ignore this if this
assembly is targeted for multiple frameworks. But if you want to build multiple
binaries for different frameworks with the same name and embed them in the same
package, continue reading.

Building NuGet Package for
multiple .NET Frameworks
NuGet supports multiple .NET Framework-targeting platforms. If your binary targets
a specific .NET Framework, you can ask NuGet to handle it accordingly by specifying
them in the nuspec file. For example, your binary can support only .NET Framework
3.0 or can support any version higher than .NET 3.0.

To do this, NuGet uses a proper directory structure under the lib folder, categorized by
the target framework in an abbreviated format. For a .NET 2.0 targeted library, place
it inside a subfolder named net20; for a .NET 3.5 targeted library, place it inside a
subfolder named net35, and so on. You can get a list of supported frameworks and
their abbreviated codes at http://bit.ly/nuget-supported-frameworks.

When you install the assembly from a NuGet package, first it checks for the target
.NET Framework version of the project where you are going to install it, then selects
the correct assembly version from the appropriate subfolder under the lib folder and
adds it as reference:

Now let's modify our existing nuspec file to add support for Framework-specific
assemblies. As our project targets .NET 4 and above, let's specify it in the nuspec file.
Open the existing .nuspec file and modify the target of our assembly file to deploy for
.NET 4.0 and above. Here's the modified version of our NuGet spec file:

 <?xml version="1.0"?>

 <package >

 <metadata>

 <id>Demo.Packt.Kunal.NuGetDemoLibrary</id>

 <version>1.0.0-alpha</version>

 <title>NuGet Demo Library</title>

 <authors>Kunal Chowdhury</authors>

 <owners>WinLab</owners>

 <description>This is for demo purpose only</description>

 <releaseNotes>Change 1, Change 2, ...</releaseNotes>

 <copyright>Copyright 2017</copyright>

 <tags>Demo, Packt</tags>

 </metadata>

 <files>

 <file src="bin\Release\NuGetDemoLibrary.dll"

 target="lib\net40\NuGetDemoLibrary.dll"/>

 </files>

 </package>

Here, you will notice that the target of the assembly has been set to

http://bit.ly/nuget-supported-frameworks

lib\net40\NuGetDemoLibrary.dll. The subfolder net40 under the root lib defines that the
assembly can be deployed in projects targeting .NET framework 4.0 and above.

Now open the console window in that directory and use the following nuget pack
command to create/update the package:

 nuget pack NuGetDemoLibrary.nuspec

This time you will see that no warning messages have been generated as we have
specified the correct target framework:

You can also append a dash and add a profile name to the end of the folder to define a
target-specific framework profile. There are four profiles currently available, which
NuGet supports:

client for Client Profile
full for Full Profile
wp for Windows Phone
cf for Compact Framework

For example, to target the .NET Framework 4.0 full profile, place your assembly in a
folder named net40-full, and to target the .NET Framework 4.0 client profile, place
your assembly in net40-client.

Building NuGet package
with dependencies
When you create a NuGet package, you can specify which dependencies your package
should refer and download automatically. You can define it using the <dependency> tag
inside the <dependencies> tag under <metadata>. When installing or reinstalling the
package, NuGet downloads the exact version of the dependency specified in the nuspec
file by default:

<?xml version="1.0"?>

<package >

 <metadata>

 <id>Demo.Packt.Kunal.NuGetDemoLibrary</id>

 <version>1.0.0-alpha</version>

 <title>NuGet Demo Library</title>

 <authors>Kunal Chowdhury</authors>

 <owners>WinLab</owners>

 <description>This is for demo purpose only</description>

 <releaseNotes>Change 1, Change 2, ...</releaseNotes>

 <copyright>Copyright 2017</copyright>

 <tags>Demo, Packt</tags>

 <dependencies>

 <dependency id="WinLab.Windows.Helpers.System"

 version="2016.11.29"/>

 </dependencies>

 </metadata>

 <files>

 <file src="bin\Release\NuGetDemoLibrary.dll"

 target="lib\net40\NuGetDemoLibrary.dll"/>

 </files>

</package>

You can define dependencies to support the minimum version, maximum version, a
version range, or an exact version when downloading via a package. In general,
developers specify only the minimum version of a referenced dependency, but any of
them are possible.

If you specify version="1.0" for a dependency, it marks it as the minimum required
version. When you specify version="[1.0]", it marks it as an exact version match. You
can also define a pre-release version while defining a dependency (such as
version="1.0-prerelease").

Please note that a stable release version of a package cannot have a
pre-release dependency.

The following table describes how you can specify a minimum version, maximum
version, or a version range when defining a dependency in NuGet:

Notation Description

1.0 Minimum version, inclusive

(1.0,) Higher than the minimum version specified

[1.0] Exact version

(,3.0] Maximum version, inclusive

(,3.0) Less than the maximum version specified

[1.0,3.0] Version ranging between 1.0 - 3.0, inclusive

(1.0,3.0) Version ranging higher than 1.0 but less than 3.0

[1.0,3.0) At least version 1.0 but less than 3.0

(1.0,3.0] Higher than version 1.0, but maximum version 3.0

Creating a NuGet package
library for .NET Standard
Visual Studio 2017 provides you with an easy and comfortable way to build a NuGet
package for .NET Standard libraries. .NET Standard Library is a formal
specification of the .NET APIs, which are intended to be available on all .NET
runtimes. .NET Standard Library defines a uniform set of Base Class Library (BCL)
APIs for all the .NET platforms, and enables developers to produce portable class
libraries that can run in all .NET runtimes.

Let's first create a .NET Standard class library. Create a new project by selecting Class
Library (.NET Standard) under the Visual C# | .NET Standard templates, as shown in
the following screenshot. Give it a proper name, select the location where you want to
create the project, and hit OK:

Once the project gets created, create the class files that you want to bundle with your
package and write the necessary code. Build your project in Release mode to make
sure there are no errors.

Editing the metadata of the
project
Once your project is ready, you need to edit the metadata for the NuGet package.
With NuGet 4.0 and .NET Core projects, you don't need to create any NuGet Spec
(.nuspec) files. Instead of that, you can edit the project file itself and edit the metadata
content.

To get started, right-click on the project in Solution Explorer and click the Edit
<ProjectName> menu item (in our case, it's Edit NuGetDemoStandardLibrary.csproj), as
shown in the following screenshot:

Visual Studio 2017 will open the project in an editor with the following XML content,
where the PropertyGroup defines the metadata information:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard1.4</TargetFramework>

 </PropertyGroup>

</Project>

Let's modify it to add the following package descriptions:

The PackageId must be unique across the global NuGet store, or the gallery where you
want to push the package. Before assigning it, do a search on the gallery to check the
status of availability. You can define the PackageVersion as Major.Minor.Patch. When
the generated package is not a final version, you can suffix a -prerelease switch to it to
tell NuGet that it's a pre-release version. You can also use any string to define it, but
it's advisable to use a meaningful name, such as -alpha or -beta.

Once you are done modifying all the metadata values, save the project file. The
following is the complete metadata for you to reference:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard1.4</TargetFramework>

 <PackageId>Demo.Packt.Kunal.NuGetDemoStandardLibrary</PackageId>

 <PackageVersion>1.0.0-prerelease</PackageVersion>

 <Authors>Kunal Chowdhury</Authors>

 <Description>Demo Library</Description>

 <PackageReleaseNotes>Change 1, Change 2 ...</PackageReleaseNotes>

 <Copyright>Copyright 2017 (c) All rights reserved</Copyright>

 <PackageTags>Tag1 Tag2</PackageTags>

 </PropertyGroup>

</Project>

Building the NuGet Package
from Visual Studio 2017
When you are ready to create the NuGet package, change the build mode to Release
and build it again, to make sure there are no errors. Now, right-click on the project in
Visual Studio 2017 Solution Explorer, and from the context menu, click on the menu
item Pack, as shown in the following screenshot:

This will start the build process and create the NuGet package file (.nupkg) in the
bin\Release folder of the project. The file name will construct using the PackageId and
PackageVersion that we defined in the project metadata, and will generate as
<PackageId>.<PackageVersion>.nupkg (in our case, it's
Demo.Packt.Kunal.NuGetDemoStandardLibrary.1.0.0-prerelease.nupkg):

Do you know that a NuGet Package file is just a ZIP file with the
extension .nupkg? You can rename the .nupkg to .zip and see its package
content. Make sure to change it back before uploading it to nuget.org.

Building a NuGet Package
with package references
You can use the XML node PackageReference to define the NuGet package
dependencies in the .NET Core project files. You need to add an <ItemGroup> under the
<Project> root to declare the package references. You can add multiple project
references inside a single ItemGroup node. Use the Include attribute to assign the ID of
the dependency package that you are referring, and the attribute Version to set the
minimum, maximum, or exact version of the package:

<ItemGroup>

 <PackageReference Include="Newtonsoft.Json"

 Version="9.0.1" />

</ItemGroup>

The NuGet package reference supports floating versions, by which you can use
wildcards to tell NuGet to support only the versions within the specified build series.
For example, when you say Version="9.0.*", it means that the project will use the latest
9.0.x version. Similarly, Version="9.*" means use the latest 9.x version.

The following table shows how you can use the version notation for a dependency
package to define the minimum, maximum, or a version range:

Notation Description

1.0 Minimum version, inclusive

(1.0,) Higher than the minimum version specified

[1.0] Exact version

(,3.0] Maximum version, inclusive

(,3.0) Less than the maximum version specified

[1.0,3.0] Version ranging between 1.0 - 3.0, inclusive

(1.0,3.0) Version ranging higher than 1.0 but less than 3.0

[1.0,3.0) At least version 1.0 but less than 3.0

(1.0,3.0] Higher than version 1.0, but maximum version 3.0

In the Visual Studio 2017 NuGet package reference for .NET Core projects, you can
also add a condition to control which version of the dependency package to include.
This can be done with an attribute, Condition, within the definition of the
PackageReference node or the ItemGroup node.

The following demonstrates how you can use the condition in a package reference:

<ItemGroup>

 <PackageReference Condition="'$(TargetFramework)'=='net452'"

 Include="Newtonsoft.Json"

 Version="9.0.1"/>

</ItemGroup>

When you have multiple library packages to target for a specific framework version,
you can check the condition at the item-group level and include the package
references within that. Here's how you can define it:

<ItemGroup Condition="'$(TargetFramework)'=='net452'">

 <PackageReference Include="Newtonsoft.Json"

 Version="9.0.1" />

</ItemGroup>

Once you are done with the changes, save the file. For your reference, here's the
complete code that we have used:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>netstandard1.4</TargetFramework>

 <PackageId>Demo.Packt.Kunal.NuGetDemoStandardLibrary</PackageId>

 <PackageVersion>1.0.0-prerelease</PackageVersion>

 <Authors>Kunal Chowdhury</Authors>

 <Description>Demo Library</Description>

 <PackageReleaseNotes>Change 1, Change 2</PackageReleaseNotes>

 <Copyright>Copyright 2017 (c) All rights reserved.</Copyright>

 <PackageTags>Tag1 Tag2</PackageTags>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="Newtonsoft.Json"

 Version="9.*"/>

 </ItemGroup>

</Project>

When you are ready, build the project in Release mode to check for errors; right-click
on the project in the Solution Explorer, and click on Pack. This will build the code and
publish/update the NuGet package.

Testing the NuGet package
locally
When you are done building your final NuGet package, you may want to push/upload
it to the NuGet gallery. It could be the gallery hosted at nuget.org, a third-party
gallery, or a local repository, but before that, you may want to test it locally. This you
can achieve by creating a local package store.

To create the local package store, open the NuGet Package Manager Settings by
navigating to the Visual Studio menu hierarchy, Tools | NuGet Package Manager |
Package Manager Settings, as shown in the following screenshot:

From the left-hand navigation panel, navigate to NuGet Package Manager | Package
Sources. On the right-hand panel, it lists all the available package sources and the
machine-wide package sources. Click the icon to add a new package source:

This will provide you with a field to define the new package source. Give it a name
and provide the local path from where you want to read the package. Let's click the ...

(ellipsis) to browse local folders and point it to the bin\Release folder of our project.
Click on the Update button to refresh the path information in the available package
source that we just created. Click on OK to save the information:

Once the package source has been defined, let's create a console application and load
the dependency library from our local NuGet source. You can choose any other
version, but here we will target it for .NET Core.

To create a console application in the solution, right-click on the solution file under
Solution Explorer. From the context menu, click Add | New Project... to open the
Visual Studio New Project dialog box. Select Console App (.NET Core) from the
available list of templates, give it a name, and click on OK to create the console
application project:

Once the project has been created, it's time to install the library from the store. As we
are testing it locally before pushing it to a public store, we will install it from the local
package store, and NuGet will automatically download the referenced dependencies
and install them.

To do this, either right-click on the project or right-click on the Dependencies
reference folder, as shown in the following screenshot, and from the context menu
that pops up on the screen, click on Manage NuGet Packages... to launch the NuGet
Package Manager:

NuGet Package Manager will, by default, select the Package source as nuget.org.
Change it to our Local Package Source. As in our local store, we have a pre-release
version of the library; check the Include prerelease box:

This will immediately list our library on the panel. Select the entry that says
Demo.Packt.Kunal.NuGetDemoStandardLibrary, and in the right-hand panel you will
see the details of the package from its metadata information. As we have provided,
Version will list as 1.0.0-prerelease and the dependent assemblies will be listed under
the Dependencies panel, as shown in the preceding screenshot.

Click on the Install button to continue the installation of the package from our local
store. This will show a popup on the screen to review the changes that Visual Studio
is about to make in your project. Click on the OK button to continue the installation.
Consider the following screenshot:

If any of the binaries have a license agreement, it will show up on the screen. You
must accept the agreement to continue. Once you proceed, this will start the download
process of the package and related dependencies.

The output window will trace the entire installation process and list it under Package
Manager. This will look similar to the following:

 Restoring packages for D:\NuGet Demos\NuGetDemo\NuGetDemo.csproj...

 Installing NuGet package Demo.Packt.Kunal.NuGetDemoStandardLibrary 1.0.0-

 prerelease.

 Committing restore...

 Writing lock file to disk. Path: D:\NuGet Demos\NuGetDemo

 \obj\project.assets.json

 Restore completed in 360.15 ms for D:\NuGet Demos\NuGetDemo

 \NuGetDemo.csproj.

 Successfully installed 'Demo.Packt.Kunal.NuGetDemoStandardLibrary

 1.0.0-prerelease' to NuGetDemo

 Successfully installed 'Newtonsoft.Json 9.0.1' to NuGetDemo

 Successfully installed 'System.Runtime.Serialization.Primitives 4.1.1'

 to NuGetDemo

 Executing nuget actions took 718.08 ms

 Time Elapsed: 00:00:01.1269487

 ========== Finished ==========

 Restoring NuGet packages...

 Time Elapsed: 00:00:00.5185572

 ========== Finished ==========

If you now expand the Dependencies reference folder of the project under Solution
Explorer, you will see a NuGet reference of our library package, which contains the
DLL references of the binaries. Please refer to the following screenshot:

If you publish a new update of your library with a new version number, you will get
an update notification, which you will find under the Updates tab of NuGet Package
Manager. Select the already installed package to update to higher binaries or uninstall
it from the project. Consider the following screenshot:

The preceding screenshot demonstrates two new updates (version 1.0.0 and 2.0.0),
available on top of the pre-release version 1.0.0.

Publishing NuGet package to
NuGet store
Once you are done with your class library, have generated the NuGet package, and
tested it locally, you may want to push it to the NuGet gallery for public availability
so that others can find, install, and use your library from NuGet Store.

To begin publishing your NuGet package, open any browser window and navigate to
https://www.nuget.org. If you don't have an account, you need to register in the portal;
otherwise, you can sign in with your account credentials. The Register / Sign in link is
available at the top-right corner of the website:

Once you are signed in to NuGet, click Upload Package. Under the Choose a
package... label, click on the Browse... button to select the .nupkg file that you want to
upload and publish to NuGet Store. Click the Upload button to continue:

Once the package has been uploaded, verify all the details. You may want to change
the metadata information from this screen. Click on Submit to finally publish it.

If you have uploaded any pre-release package, the site will inform you about the
package. Also, a label will show This package has not been indexed yet, as it takes
some time to index your package and show it in search results. Consider the following

https://www.nuget.org

screenshot:

Once the package has been uploaded and published, you will be able to download and
install the package directly from NuGet Package Manager, pointing your gallery to
nuget.org as the package source. You can also use the Package Manager Console to
download it via the command line.

Managing your NuGet
packages
You can manage all your NuGet packages from the NuGet Package Manager, which
you can invoke from the Visual Studio Tools menu - NuGet Package Manager |
Manage NuGet Packages for Solution....

All the installed packages will get listed under the Installed tab, whereas the packages
with new updates on the server will get listed under the Updates tab.

The installed packages may have overlay icons to denote the status of the package.
For example, the blue arrowhead (as shown in the following screenshot for our
package library) denotes that an update is available, and the green checkmark (as
shown in the following screenshot for the Newtonsoft.Json library) denotes that the
library is installed:

You can configure NuGet Package Manager to allow NuGet to automatically
download the missing packages of a project/solution. You can also ask it to
automatically check for any missing package during the build in Visual Studio. To
enable these settings, open NuGet Package Manager settings.

From this screen (as shown in the following screenshot), you can also configure the
default package management format to either Packages.config or PackageReference.
.NET Core projects generally use the PackageReference format:

Summary
In this chapter, we have had an overview of NuGet package manager, and learned
about its usage and the process to use it in a project/solution. We also learned how to
create a NuGet package library for .NET Framework and .NET Standard. We
discussed the NuGet spec file, versioning mechanism, dependencies, conditional
dependencies, and the method to target NuGet package for multiple .NET
Frameworks.

Finally, we discussed how to create a local package source to test a package before
publishing it to a store, and how to publish it to NuGet Gallery using the nuget.org
portal.

In the next chapter, we will learn the new debugging techniques available in Visual
Studio 2017, along with Breakpoints, DataTips, Diagnostic Tools, and XAML UI
debugging.

Debugging Applications with
Visual Studio 2017
Debugging is the core part of any application development. It is a process that helps
you to quickly look at the current state of your program by walking through the code
line by line. Developers generally start debugging the application while writing code.
Some developers start debugging even before writing the first line of code to know the
logic and functionalities. It's a rare case scenario when a developer completes writing
code without debugging the application.

Visual Studio provides us details about the running program as much as possible. It
also helps to change some values while the application is already running. Thus,
debugging inside Visual Studio IDE is becoming more popular day by day.

In this chapter, we are going to cover the following topics:

Overview of Visual Studio debugger tools
Debugging C# source code using breakpoints

Organizing breakpoints in code
Debugger execution steps
Adding conditions to breakpoints
Adding actions to breakpoints
Adding labels to breakpoints
Managing breakpoints using the Breakpoints window
Exporting/importing breakpoints

Using the Data Tips while debugging
Pinning/unpinning Data Tips for better debugging
Inspecting Data Tips in various watch windows
Using visualizers to display complex Data Tips
Importing/exporting Data Tips
Using debugger to display debugging information

Using the Immediate Window while debugging your code
Using the Visual Studio Diagnostics Tools
Using the new Run to Click feature in Visual Studio 2017
Debugging an already running process
Debugging the XAML application UI

Overview of XAML debugging
Inspecting XAML properties on Live Visual Tree
Enabling UI debugging tools for XAML

Overview of Visual Studio
debugger tools
The debugger is a Visual Studio tool which works as a background process to inspect
the execution of the program. Breakpoints are used to notify the debugger to pause the
execution of the program when it hits at a certain line. PDB (Program Data Base)
files are used to store the debugging information. It stores the line number, Data Tips
information, and many other related information of the source code which are
required to debug the application. Visual Studio then reads it to pause the debugging
and provide more details of the execution.

When you build the application in debug mode, the PDB file has more
information than in release mode.

It is not mandatory that in all cases the debugger will work. Certain situations exist
when your debugging information is invalid and in such cases the Visual Studio
debugger will fail to attach to the running process: for example, if the binary version
of your code is different than the actual code. This often happens when you compiled
your code and attached the binary in a modified version of the original code.

When you run your application in debug mode, you will see a different layout of
Visual Studio IDE. It automatically adjusts the window layout to provide you with a
better environment for debugging.

In debug mode, you will not generally see the Solution Explorer, Team Explorer,
Toolbox, and the Properties window. Instead, Visual Studio creates a layout with C#
Interactive, Call Stack, Diagnostics Tools, IntelliTrace, Watch Window, Exception
Settings, Immediate Window, and all other related information:

In this chapter, we will demonstrate some of the important tools and techniques for
you to master code debugging.

Debugging C# source code
using breakpoints
A breakpoint is a signal to tell the debugger to pause the current execution of the
application at certain points defined in the code editor and wait for further commands.
It does not terminate the execution, but it waits until the next instruction is set to it and
then resumes at any time.

The Visual Studio code debugger provides a powerful tool to break the execution
where and when you want to start the debugging process. It helps you to observe the
behavior of the code in runtime and find the cause of the problem.

Organizing breakpoints in
code
Let's start with placing our first breakpoint in the code and gradually move forward
with code debugging. Click on the left-hand side bar of the code file in Visual Studio
to place the breakpoint. Alternatively, you can press F9 to toggle the breakpoints.
Once you place a breakpoint, a red circle will be generated in the side bar and the
entire code block in the line will get a dark red background:

When you press F5 or start the application in debug mode, it will break at the point
where you placed it. A yellow arrow head at the left-hand side bar represents a marker
of the current execution of the line, having a yellow block on the execution line. You
can also drag the marker arrow up or down within the same debugging context to
restart or continue the execution of the code block:

When you right click the breakpoint circle on the left-hand side bar, a context menu
will pop up on the screen which allows you to delete or disable the breakpoint:

In case you want to delete or disable all the breakpoints in the currently loaded
solution, you can navigate to the Visual Studio Debug menu and click Delete All
Breakpoints or Disable All Breakpoints respectively. From this menu, you can also
create a new breakpoint or toggle an existing breakpoint:

Debugger execution steps
When you are debugging a code, you may want to debug it line-by-line. Thus, you
will need to execute the current line and step over to next one. Sometimes you may
want to go deep into the method or property to debug the code. You can do all these
things from the Visual Studio Debug menu:

You can click the Debug | Step Over menu or press the keyboard shortcut F10 to
execute the current line and jump into the next line for execution. Click the Debug |
Step Into menu item or press the F11 key to step into any property or method for
debugging. You can then continue the line by line execution by pressing F10 or
continue executing the program to the end or to the next breakpoint by pressing the F5
key on the keyboard:

Visual Studio also provides some smart menu entries to help you in debugging your
code. When you are at any breakpoint, you can continue the execution to a specific
line and break again. To do so, right click on any line within that debugging context
and choose Run to Cursor as shown in the preceding screenshot. Alternatively, you
can click the desired line and press the keyboard shortcut Ctrl + F10 to continue the
execution.

In this case, all the lines between the executing line and selected line will execute
before it breaks. This is same as placing another breakpoint on that line:

You can also ask Visual Studio to jump into a specific line without executing certain
lines of code. This is sometimes needed when you smell a bad code which is causing a
bug to occur and you want to check without removing/commenting/changing that
portion of code.

A point to remember is that Run To Cursor executes lines of code in
between whereas Set Next Statement skips code in between.

While you are at a specific breakpoint, you can right click on any line within that
debugging context and select Set Next Statement. You can also press the keyboard
shortcut Ctrl + Shift + F10 to move the current marker of your debugger to that
selected line. Alternatively, you can also drag the marker arrow of the current line to
the new execution line to set it as the next statement. None of the code written within
those two lines will execute during that debugging instance.

Adding conditions to
breakpoints
You can add conditions to break the execution only when a certain condition is met.
This is often useful when you are iterating a list and want to check the runtime value
for a specific condition.

To add a condition to a breakpoint, right click on the red circle on the left-hand side
bar. A context menu will pop up on the screen. Click on the menu Conditions... to
open the inline dialog. You can also press Alt + F9 + C to open it:

There can be three different types of conditions that you can place to a breakpoint:

Conditional expressions
Hit counters
Filters

Using conditional
expressions
Conditional expressions are often useful if you want to hit a breakpoint on some
conditions. For example, you would like to debug a for statement when a specific
index count is reached or when an item in a collection meets a specific value.

To add a conditional expression to a breakpoint inside Visual Studio 2017, select the
Conditions checkbox from the Breakpoint Settings dialog and select the condition
type as Conditional Expression from the dropdown. The next dropdown allows you to
select the comparer (Is true or When changed). The text box next to it allows you to
enter the condition. Here in this case, we entered i == 5:

In the preceding example, the breakpoint will directly hit when the variable i of the
for loop sets to 5. You can then start your code debugging when the said conditions
are met.

You can add multiple conditions by clicking the Add condition link which will be
clubbed with the AND operator. Once a condition has been added to a breakpoint, the
red breakpoint circle will show a + symbol.

Using breakpoint hit
counters
A hit counter is used to determine the count of breakpoint hits on a specific line and
based on that, break the debugger. This is useful in iterations where you want to stop
only when the number of hits it encounters reaches a threshold value:

In the Breakpoint settings dialog, select the Conditions checkbox and from the
dropdown, select Hit Count. From the next dropdown, select either =, Is a multiple of,
or >= as the type of comparer and then enter the value in the text field.

When the hit count is reached, the debugger will stop at that breakpoint and wait for a
further command. Like conditional expressions, you can add multiple hit counters
along with other conditions with the AND operator.

Using breakpoint filters
The breakpoint filters are useful when you want to specify any additional criteria for
the breakpoint. You can specify the breakpoint to hit only when a specific
MachineName, ProcessID, ProcessName, ThreadID, or ThreadName matches.

You can select Filter from the first dropdown and Is True from the second dropdown
and then specify the conditional value in the associated input box, as shown in the
following screenshot:

Adding actions to
breakpoints
You can specify some actions to a breakpoint to log a message to the output window
or run a specific function when the breakpoint reaches. This is generally done to trace
an execution log and print various values at different moments of the process.

To add actions to a breakpoint, right click on the red circle on the left-hand side bar
and click on Actions... from the context menu that pops up in the screen:

This will open the Breakpoint settings dialog on screen having the Actions checkbox
as checked. In the input box, either you can enter the name of the function that you
want to execute for tracing or enter the string with the variable that you want to print:

You can use curly braces to print the value of a variable. For example, the following
expression The value of 'i' is {i} will print the value of the variable i along with the
text that we specified.

You can also use some special keywords, as mentioned in the following list, to print
their current values:

$ADDRESS: Current instruction
$CALLER: Previous function name
$CALLSTACK: Call stack
$FUNCTION: Current function name
$PID: Process ID
$PNAME: Process name

$TID: Thread ID
$TNAME: Thread name

By default, the Continue execution checkbox is selected. That means the actions that
we selected will be executed without stopping the code execution.

Adding labels to breakpoints
When you are working with multiple breakpoints set over multiple code files of a
large project or solution, it is sometimes difficult to identify and manage them
properly. Visual Studio provides a better way to organize them.

As shown in the following screenshot, right click on a specific breakpoint and click on
Edit Labels.... Alternatively, you can press Alt + F9 + L to open the breakpoint labels
dialog:

This will open the Edit breakpoint labels dialog window, as shown in the following
screenshot:

If you have already defined any labels within the same solution, this will list all of
them here. You can add a new label to your selected breakpoint or associate it with
other breakpoint labels listed in this screen.

Note that you can add multiple labels to a single breakpoint from the
Edit breakpoint labels dialog box.

Managing breakpoints using
the Breakpoints window
Visual Studio provides a straightforward way to manage all your breakpoints under a
single toolbox window, which you can find by navigating to Debug | Windows |
Breakpoints (keyboard shortcut: Ctrl + D + B). When you place multiple breakpoints
in your code file or solution, this window helps you to navigate between them very
easily.

You can add a new breakpoint, delete a breakpoint, or enable/disable it from here.
This also lists the label, conditions, hit counter, filter, complete function name,
process, and many other details set to each breakpoint, and is easily searchable:

Exporting/importing
breakpoints
Visual Studio allows you to export/import breakpoints. This is useful when multiple
developers are working on the same code and want to debug at the same breakpoints
set by other developers.

You can either export individual breakpoints by right clicking on the breakpoint circle
present at the left-hand side bar or you can export all the listed breakpoints in the
Breakpoints window by clicking the export button, as shown in the following
screenshot:

This will save the details in an XML file, which you can share with others. They need
to import it by clicking the import breakpoints from the breakpoint window and all the
detailed information shared by you will be automatically loaded in the editor.

Using the Data Tips while
debugging
During code debugging, Data Tips are used to provide more information of an
object/variable in the current scope of execution and work only in break mode. They
use the data type information to display each value that has a type associated with it.
The debugger loads the object information recursively in a hierarchical structure and
displays it in the editor.

Here's an example of how the Data Tips load for an object:

To display a Data Tip, place a breakpoint in your application code and run it in debug
mode. When the breakpoint hits, hover over an object/variable to display the Data Tip
associated with that object/variable. It is a tree of members which you can expand to
get more details associated with it. When you hover out of the object/variable, the
Data Tips disappear.

The Data Tips are evaluated in the current execution context where the
breakpoint hits and the execution moved into suspended state. Thus,
hovering over a variable in another function, which is in the current
context, will show the same value in the Data Tips that are being
displayed in the current execution context.

Pinning/unpinning Data Tips
for better debugging
When you hover out from the variable, the Data Tip disappears. Thus, it is a
requirement to keep it displayed. The Visual Studio editor provides a way to keep it
visible. You can pin a value from a Data Tip to the editor screen and drag it to any
position. To do this, just click the pin to the source icon in the tooltip (as shown in the
following screenshot) and a pin icon will appear at the left-hand side on the same line
where you positioned the pinned value:

You can also add a comment to a pinned data tip. Hover over the pinned value and
expand the arrow head. It will provide you with a space to enter the comment, as
shown in the following screenshot:

When you are debugging your code, the value stored in the pinned entry will change
as per the current context. The IDE stores the Data Tip information in a persistent
storage for later use. When the debugging session is over, you can hover over the
pinned icon present at the left-hand side to view the value from the last debugging
session. This is often used to share the debugging details with other members of the
team.

When you pin a Tata Tip's value, the icon changes to the unpin state. To unpin a Data
Tip, click on unpin from source icon.

Inspecting Data Tips in
various watch windows
Visual Studio provides various watch windows to simplify the debugging process, so
that you can investigate objects in a fixed debugging window just like the Data Tips.
There are three distinct types of watch windows available:

Autos
Locals
Watch

The Autos window
The Autos window shows all the objects and variables information from the current
executing context. This information gets loaded when the debugger hits a breakpoint.
Generally, Visual Studio automatically generates this list and updates based on the
context of the debugger.

Here is a screenshot of the Autos window, which you can manually open from the
Visual Studio Debug | Windows | Autos menu path or by invoking the keyboard
shortcut Ctrl + D + A:

The Locals window
The Locals window displays the information of the local variables and objects based
on the current thread execution context. You can manually invoke this window from
the Visual Studio menu, Debug | Windows | Locals, or by pressing the keyboard
shortcut Ctrl + D + L:

The Watch window
There can be four Watch windows', namely Watch 1, Watch 2, Watch 3, and Watch
4. These are customized windows which show information about objects and variables
based on what you have added to them.

In general, when you add a variable in a watch window, it gets added to Watch 1. If
you want to move it to a different watch window, you need to drag it from Watch 1 to
the other one.

While you are in debugger break mode, you will see a blank watch
window. But, you can right click on any object or variable in that
context and click Add Watch from the context menu to add the selected
variable in the watch list.

Not only objects and variables, you can also add any expression to it. Simply select an
expression, right click on it and from the context menu click the Add Watch menu
item:

You can drag a variable, object, or an expression from the code editor to the watch
window. You can also add a new item in the watch window grid by double clicking
on a new grid row.

Like other windows, it also displays the data in three columns: Name, Value, and
Type, and the tree can be expanded to get more details about a complex object, as
shown in the following screenshot:

You can also add a variable, an object, or an expression to QuickWatch to simplify
the value inspection process. From the right click context menu, click on
QuickWatch... to add it for inspection:

You can alternatively press the keyboard shortcut Ctrl + D + Q to add it to the
QuickWatch window. You can then expand an object to display its properties or
values:

When you have a more complex object, such as an exception object, the QuickWatch
window is useful in getting each and every detail out of the object in a single

debugging tool window:

Using visualizers to display
complex Data Tips
Visual Studio provides a set of visualizers to help display complex Data Tips while
you debug your code. When you hover over a variable, the Data Tip can contain a find
icon based on the data type associated with the debugger visualizer for that variable.
Clicking on the arrow head displays a pop up menu with the list of visualizers for that
debugging instance.

For example, check the following screenshot where we have four visualizers, Text
Visualizer, XML Visualizer, HTML Visualizer, and JSON Visualizer:

Here, if you click on Text Visualizer, a dialog box will appear showing the text
representation of the debugging value. The text visualizer shows it in text format,
whereas the XML, HTML, or JSON visualizer shows it in the respective format based
on the associated data type. Based on the content of the variable, you should use the
respective visualizer:

Here's an example of how the Visual Studio XML Visualizer represents the content of
an XML document:

Importing/exporting Data
Tips
Like breakpoints, you can also export Data Tips to an XML file which you can share
with your team. Others can import it to the same source and debug it further. To
export the Data Tips, go to the Visual Studio menu, Debug | Export DataTips..., which
will open the Export DataTips dialog. Select the folder where you want to save the
XML file, give the file a name, and click Save. It will produce an XML which will
look like the one shown in the following screenshot (at the right side):

It is a SOAP-based XML file and includes all the related information that you need to
reload the entire Data Tips. To import the Data Tips, navigate to Debug | Import
DataTips... and select the desired file.

Using debugger to display
debugging information
Sometimes it is difficult to debug a complex data type value. For example, with a
collection of Employees, if you see it inside a Data Tip, you will see that each item of
the list displays the object by default. To view each property, you need to expand it,
which becomes difficult in some scenarios when you have a lot of data:

As shown in the preceding screenshot, we are expanding the object to check the
property values of each object. As it's a simple object, we may find it easy but think
about a scenario having multiple properties and variables inside it. Debugging that
becomes very difficult; that you already know.

So, what can be done to simplify the debugging process? Visual Studio provides an
attribute, DebuggerDisplay, present in the System.Diagnostics namespace, which when set
to a class, controls how the member value is going to display in the debugger window.

To implement it, set the DebuggerDisplay attribute to a class and pass a string that you
want to display as an argument to it. The value inside the { } (curly braces) defines the
property that you want to show in the Debugger window. You can add multiple
properties to display in the Data Tips for an easier debugging experience, as shown in
the following screenshot:

Now, when your debugger hits and you hover over to see the Data Tip, you will see
that the string that you passed as an argument to the DebuggerDisplay attribute (along
with the property details in curly braces) gets printed in the Data Tips instead of the
object representation. Here's a screenshot of how it will look in our example that we
have just used:

In C#, you can also use an expression inside the curly braces which
has implicit access to the member variable of the current instance of
the target type.

Using the Immediate
Window while debugging
your code
Immediate Window, which is present under the Visual Studio menu, Debug |
Windows | Immediate, and can also be invoked using keyboard shortcut Ctrl + D + I,
is used while debugging an application. You will find it useful while executing
statements, evaluating expressions, and/or printing any values present within the
debugging context.

For example, let's take the preceding example to populate the employees object. Once
your debugging context has evaluated the said object, you can perform an operation
on that object within the Immediate Window.

In general, entering the object name employees will print the object information
available in that collection. When DebuggerDisplay is set to the model class, entering
the same employees will print the entire details of the object in a formatted string as
defined in the debugger display attribute.

You can also evaluate an expression by defining it in the Immediate Window, if the
same is available within the same debugging context:

Using the Visual Studio
Diagnostics Tools
The Diagnostics Tools feature of Visual Studio provides you with historical
information about your application in a debugging session. Along with Visual Studio
2013, Microsoft first introduced the Performance and Diagnostics hub feature which
changed over time and was relaunched as Diagnostics Tools in Visual Studio 2015
with more limited options than the version currently available in Visual Studio 2017.

When you start a debugging session, the Diagnostics Tools window will automatically
launch and show side-by-side of your code window. In case it is unavailable, you can
launch it from the Visual Studio Debug | Windows | Show Diagnostics Tools menu or
alternatively you can press the keyboard shortcut Ctrl + Alt + F2:

The window shows you detailed historical information about your application,
PerfTips, in the events graph and events table. It also allows you to correlate
execution time with the Memory and CPU utilization graph. You can take snapshots
of the current memory utilization and enable/disable the CPU profiling in this screen:

In the preceding screenshot, check how the memory was utilized over time. The
yellow arrow head means the time when the garbage collector was called, either
automatically by the system or forcefully from the code:

To view all the events performed while debugging the context, switch to the Events
tab. It gives you a new IntelliTrace experience in Visual Studio and saves you
valuable debugging time. It captures additional events and useful information about
the execution of your application, thus allowing you to identify the potential root
causes of any issues. When an exception happens, it also maintains the history of the
events where they occurred.

When you want to know more about a specific event, click the item from the list and
activate Historical Debugging to set the debug window back to a time when the event
occurred. You can then see the call stack, the values of local variables, and other
important information available at the time when the event occurred:

To know more about the memory utilization, navigate to the Memory Usage tab. Here
you need to first take snapshots of the current memory usage by clicking the Take
Snapshot button, as shown in the preceding screenshot.

Using this tab, you can monitor the memory usage (increased/decreased) and identify
the memory issues while you are debugging your code. Clicking on the individual
links in each item will give you more details about the snapshot and heap objects, as
shown in the following screenshot:

The CPU Usage tab provides you details about the CPU utilization and tells you how
many CPU resources were used by your code. You can correlate this information with
the CPU usage graph shown in the tools window and find out the spike where a higher
utilization took place, as shown in the following screenshot:

You should start CPU Profiling to grab this information about CPU

utilization by the program currently in the debugging context.

If you spot a potential issue when debugging, you can check this tab to get the per-
function breakdown to identify the problem. Double clicking any item will give you
details about the call tree, as shown in the following screenshot:

This provides the following details about each function that is available in the call
tree:

Total CPU %: This provides you the CPU activity in the selected function and
functions it called. The information is provided in percentage value.
Self CPU %: This provides the percentage of CPU activity in the selected
function but not in the functions where it has been called.
Module: This provides the name of the module where the call has been made.

By investigating these column values, you can easily identify the code block where
the CPU utilization was higher and based on that you can optimize your code.

The diagnostic tool provides you with an option to enable/disable native profiling (the
default is: disabled). Click the Select Tools | Settings... to open the diagnostic tools
property pages, where you will be able to enable native heap profiling or native
corruption detection, as shown in the following screenshot:

Using the new Run to Click
feature in Visual Studio 2017
Visual Studio 2017 provides a new feature, named Run to Click, which makes the
debugging steps easy. Whenever you are in a debugging context, you can mouse
hover on any line to let the IDE show you a green icon near to the line. You can then
click on that icon to instruct the debugger to execute to that line and break for the next
instruction. This is similar to the menu item, Run to Cursor, but with easier steps to
execute:

It is often useful to debug from one line of a code block to another by clicking just the
icon, instead of placing breakpoints on each line. This option is enabled by default,
but you can disable/enable it any time from Visual Studio Options | Debugging |
General, as shown in the following screenshot:

Debugging an already
running process
It is often necessary to debug an already running process. It could be a service, an
existing process, or a website running on a local or remote system. Visual Studio
provides us with an option to debug a running process. When you are debugging a
remote process, you will need the Microsoft Visual Studio Remote Debugging
Monitor service running.

To get started, you will need to open the exact code that was used to build the process.
If there is a change in the code, the debugging information will not be loaded. Once
you open the solution, go to the Debug | Attach to Process... menu, which will open a
dialog window, Attach to Process, on the screen. Alternatively, you can press Ctrl +
Alt + P to invoke the window:

From the Connection Type dropdown, select the type of the connection that you want
to attach. To attach a local process, keep the selection to Default. Based on your
requirement, you can either select Remote (no authentication), SSH, or WebKit
websocket (no authentication) as a connection type.

Select the Connection Target entry, which is the local system by default and then from
the Available Processes list, you can select the process that you want to debug, if the
same code has been loaded inside Visual Studio. You can also choose the Show
processes from all users checkbox to get a list of processes running by other users in
the same system.

At the end, click the Attach button to attach the process with Visual Studio. If

everything goes fine, the process will get attached with the solution loaded inside the
Visual Studio IDE.

While debugging an already running process, you should keep in mind that:

To debug the process properly, the debug version of the application must be
used. A release build can also work but with reduced debugging functionalities.
The debugging information should be present (PDB File) and mapped with the
process.

When the debugging information gets loaded, the breakpoint will hit by the debugger
and you will debug the application as-is, as you did when you started the application
from Visual Studio in debug mode.

In case you want to debug a remote application, you should run the MSVSMON.exe file,
which comes along with Visual Studio, to start the remote debugging session.

Visual Studio 2017 provides a new feature which allows you to reattach to a process
that you last attached in the Visual Studio current context. This saves time as you
don't have find the process in the process list again and attach to it. Just navigate to the
Visual Studio menu Debug | Reattach to Process... or press Shift + Alt + P to
automatically attach with the previous selected process:

Debugging XAML
application UI
Visual Studio 2017 provides a very good feature to make the XAML app development
easier. You can now edit your XAML code of a WPF or UWP application, when the
application is running in debug mode. You don't have to recompile your project to
view the changes. You will automatically see it in the live application as and when
you are modifying the markup.

Just as with F12 - Developer Tools of browser applications, you can now navigate to
the Visual Tree of XAML page when the application is running in debug mode and
attached with the Visual Studio 2017 debugger tool.

Overview of XAML
debugging
Live Visual Tree and Live Property Explorer are two tool windows which will help
you to perform XAML debugging more easily. You can now inspect the XAML at
runtime and visualize the layout to show alignments and space for UI elements. If you
have lots of data bindings, you can use Live Visual Tree and Live Property Explorer
to change properties in runtime and see how it affects the design of the running
application. You can invoke the tool windows by navigating to the Visual Studio
menus, Debug | Windows | Live Visual Tree and Debug | Windows | Live Property
Explorer, respectively:

When you run an XAML application from Visual Studio and the debugger is attached,
you will notice the following, as shown in the preceding screenshot:

The Live Visual Tree window (highlighted as 1 in the screenshot) gives you a
tree view of the UI elements of your running XAML application and provides
information about the number of XAML elements inside each container. If the
interface changes from one state to another, Live Visual Tree also changes in
runtime.
The Live Property Explorer window (highlighted as 2) provides you with default
values of the properties for the visual element that you have selected. By default,
these fields are in disabled mode. But you can add a new entry to Local by
clicking the New button and overriding the existing value. When you stop the
debugging instance, the local changes will get lost.
You will also notice a floating toolbar (highlighted as 3) on your application,
which is only available in debug mode. This allows you to easily select the
element in the running instance of the application and inspect its Visual Element
in the Live Visual Tree. The floating toolbar contains four buttons: Go to Live
Visual Tree, Enable Selection, Display layout adorners, and Track focused

element, as shown in the following screenshot:

Inspecting XAML properties
on Live Visual Tree
Let's start by creating a new WPF project. Go to File | New | Project... and from the
available project templates under Visual C# | Windows Classic Desktop, select the
WPF App (.NET Framework) template. Give it a name and click OK to create the
project.

This will create a blank project with a MainWindow.xaml page which will have a blank
<Grid/> layout inside the <Window/> tag, as shown in the following screenshot. Run the
application in debug mode to launch the Live Visual Tree explorer. If the tool window
does not come up automatically, navigate to the Visual Studio 2017 menu Debug |
Windows | Live Visual Tree:

When you run the app, it will have a blank window in the screen as we have not added
any control in the UI. But, in the Live Visual Tree explorer, you can see that there are
many other items in between MainWindow and Grid, which generally renders by the
Presentation Framework automatically. It's called the visual representation of the
XAML UI.

As Visual Studio 2017 supports XAML modifications while the application is running
in debug mode, let's add a ListBox control inside the Grid tag and add some static
strings as ListBoxItem, without closing the running app:

 <Grid>

 <ListBox>

 <ListBoxItem>Item 1</ListBoxItem>

 <ListBoxItem>Item 2</ListBoxItem>

 <ListBoxItem>Item 3</ListBoxItem>

 <ListBoxItem>Item 4</ListBoxItem>

 </ListBox>

 </Grid>

Once you add the preceding XAML code in the XAML editor of Visual Studio, the
application UI will automatically refresh and show you a list box with the added
strings. The Live Visual Tree explorer will also get an update to reflect the added
control:

As shown in the preceding screenshot, the ListBox control will get placed in the Grid
but the items inside the ListBox control (named as ListBoxItem) will be placed multiple
layers down in the Visual Tree accompanied by Border, ScrollViewer, Grid, and other
layout panels.

This is how the XAML controls actually render in the UI. The more levels of elements
you have in a Visual Tree, the more performance issues it may hit. Detecting and
eliminating unnecessary elements in the Visual Tree is just one of the major
advantages of the Live Visual Tree debugger window.

You can also inspect the Visual Tree representation of any control from the UI by
using the Enable Selection control. Switch to your application UI and, as shown in the
following screenshot, click the second icon (Enable Selection) of the XAML debugger
toolbox.

Now, hover over the application UI to see a dotted adorner on the controls that you
are hovering on. Click the one that you want to see in the Live Visual Tree explorer
and it will directly navigate you to the selected item, as shown in the following
screenshot:

Visual Studio 2017 also supports modification of the selected element in the Live
Visual Tree window. This you can do in the Live Property Explorer window. In case
it does not show up automatically, you can invoke it by navigating to the Visual
Studio menu Debug | Windows | Live Property Explorer.

As shown in the following screenshot, select the third ListBox item and change its text
by modifying the content property at runtime. You will see that the value that you
entered in the Live Property Explorer window gets automatically updated in the UI:

In the Live Property Explorer window you will find most of the properties disabled.
This is because those are either inherited from implicit/explicit styles or have default
values. To experiment with the UI element properties, you should modify the
properties inside the Local panel.

To override an existing property value of the selected element from the Live Visual
Tree, click the New button present in the Local panel:

This will add a dropdown list in the panel, where you will be able to select the
property that you want to change. When you select the property, the panel will get
populated with the appropriate property boxes to fill it.

Let's add a Background property to the third ListBox item and set the color as Red
(#FFFF0000) to it. You will see that it will get SolidColorBrush with the color value
that you have entered. Activate the application window to see the visual
representation of the property live in the application window, as shown in the
following screenshot:

Do notice that the actual element in the XAML designer did not get the changes. This

is because the Live Property Explorer only gives you a preview of what you want to
modify in runtime. Based on that, you can change the original UI in the XAML view
or designer view for permanent changes.

Do remember that, if you end the debugging session, the changes that
you performed in the Live Property Explorer window will get lost and
when you restart it, you will see fresh values as per the default.
This is often useful when you want to see the changes live at runtime
for any element inside the Visual Tree.

To permanently set the properties of any UI element while the application is running
in debug mode, either use the XAML code view or the XAML designer view. The
running application will automatically get the update of the style changes as shown in
the following screenshot:

Enabling UI debugging tools
for XAML
In case you could not see the UI debugging tools on the application while running in
debug mode, this could be because the Enable UI Debugging Tools for XAML option
is turned off. When this is disabled, you will not be able to view the Live Visual Tree
and Live Properties window.

To enable the XAML debugging tools, go to the Visual Studio options from the Tools
| Options... menu. Now, from the Debugging | General section of the Options window,
select the checkbox, Enable UI Debugging Tools for XAML, as shown in the
following screenshot:

To be able to change the XAML elements and their properties when the application is
already running in debug mode, check the Enable XAML Edit and Continue option. If
you modify this option, you need to restart the debugging process for the changes to
take effect.

Summary
In this chapter, we learned about the debugger execution steps and how to debug C#
code using breakpoints. Here we covered organizing breakpoints, setting conditional
breakpoints, hit counters, breakpoint filters, actions, and labels. We also covered how
to manage breakpoints in code using the Breakpoints window of the Visual Studio
debugger tools and discussed how to import/export them.

Apart from this, we discussed Data Tips in detail. We discussed pinning/unpinning
Data Tips and the various watch windows, visualizers, importing/exporting Data Tips,
and the usages of the debugger display attribute.

At the end, we discussed Immediate Window, Visual Studio Diagnostics Tools, the all
new Run to Click feature, debugging an existing process, and debugging the UI of an
XAML application. The XAML debugging covered the Live Visual Tree, and Live
Property Explorer window, and how to edit an XAML page while the application is
running in debug mode.

In the next chapter, we will cover testing applications using Visual Studio 2017. There
we will discuss how to use the new Live Unit Testing feature to automatically run the
impacted unit tests to visualize the result and code coverage in the background, as and
when you are editing the code.

Live Unit Testing with
Visual Studio 2017
In computer programming, Unit Testing is a software development and testing
process by which the smallest testable parts of source code, called units, are tested to
determine whether they are performing as per the design. Unit testing is generally part
of an automation process, but you can run it manually too.

Visual Studio 2017 has a new productivity feature called Live Unit Testing, which is
currently available in the Enterprise edition and only for C#/VB.NET projects that
target the Microsoft .NET Framework.

Keeping a baseline on an understanding of the basics of the Unit Testing process, in
this chapter, we are going to discuss only the new feature Live Unit Testing and will
cover the following points:

Overview of Live Unit Testing in Visual Studio 2017
Unit testing framework support
Understanding the coverage information shown in the editor
Integration of Live Unit Testing in Test Explorer

Configuring Visual Studio 2017 for Live Unit Testing
Installing the Live Unit Testing component
General settings of Live Unit Testing in Visual Studio
Starting/pausing the Live Unit Testing
Including and excluding test methods/projects

Unit testing with Visual Studio 2017
Getting started with configuring the testing project
Understanding the package config
Live Unit Testing with an example

Navigating to failed tests

Overview of Live Unit
Testing in Visual Studio
2017
The new Live Unit Testing feature in Visual Studio 2017 allows us to quickly see the
code coverage details and the unit test case execution result, without leaving the code
editor window. The Live Unit Testing automatically runs the impacted unit tests in the
background as we edit the source code, and in real time it visualizes the unit testing
result and coverage within the editor.

It currently supports C#/VB.NET projects targeting the .NET Framework, but only in
Visual Studio 2017 Enterprise edition. When enabled, the unit test results and
visualization of the code coverage results appear on a line-by-line basis in the editor,
as shown in the following screenshot:

The live feedback notifies us in real time of the change that has broken the program.
This way it helps you to maintain the quality of code by ensuring that the tests are
always being passed as you make the changes to a new feature or a bug fix.

In the preceding screenshot, check the left-hand side bar, which has green marks
and red icons. This provides live notification of the unit test results.

Unit testing framework
support
At present, the Live Unit Testing in Visual Studio 2017 Enterprise edition supports
only three popular unit testing frameworks, namely xUnit, NUnit, and MSTest. But
there are a few supportive version specifications that you must meet for Visual Studio
unit testing adapter and unit testing framework, as mentioned here:

xUnit: Framework version 2.0 or higher, adapter version 2.2.0 or higher
NUnit: Framework version 3.5.0 or higher, NUnit3Test adapter version 3.5.1 or
higher
MSTest: Framework version 1.0.5 or higher, MSTest test adapter version 1.1.4
or higher

In case you have an older version of the test framework references and/or adapter
version in your existing projects, make sure that you remove those and add the new
references for Live Unit Testing.

Understanding the coverage
information shown in editor
When you enable Live Unit Testing, the Visual Studio code editor provides you
sufficient information to notify of the changes that you are working on in the code
coverage. It also provides you with real-time unit test results by displaying icons in
the left-hand side bar. It's known as coverage visualization, and you can visualize it
on a line-by-line basis in the editor:

The blue dash () indicates that the line of executable code does not have any
test coverage.
The green check mark () indicates that the line of executable code is covered
by passing unit test cases.
The red cross mark () indicates that the line was executed, but at least one
unit test case was failed.
When you see a blue dash with a clock icon (), it indicates that the line of
executable code does not have any test coverage at this moment, but it is
processing the changes that have been made and is going to update the
visualization with refreshed data.

When a green check mark comes with a clock icon (), it indicates that the
data is not up to date for the test case that passed earlier.

The red cross mark with a clock icon () denotes a failed test case for which
the data is not yet up-to-date. When processing the changes, the visualization
will update automatically with new data.

Integration of Live Unit
Testing in Test Explorer
Visual Studio 2017 provides a seamless coding and testing environment. The Live
Unit Testing and the Test Explorer inside Visual Studio are synchronized to give a
proficient coverage over the unit test execution throughout the project/solution.

While you are modifying the existing code, the Live Unit Testing executes in the
background for the impacted test cases for which you are changing the code, and
based on that, it lists the result in the Test Explorer automatically, and in well-defined
text.

When there are some non-impacted test cases available, those get listed as dimmed:

Configuring Visual Studio
2017 for Live Unit Testing
The component Live Unit Testing comes with Visual Studio 2017 Enterprise edition
only. To use it, you must first install the component from the Visual Studio installer
and configure it as an optional setting.

You can start/pause/stop using the Live Unit Testing module at any point of time. You
can also include/exclude unit test cases to run as part of Live Unit Testing.

In this section, we are going to discuss all of these topics. Let's first start with the
installation of the component.

Installing Live Unit Testing
component
To install the Live Unit Testing component in an existing installation of Visual Studio
2017 Enterprise edition, run the installer and modify the existing installation. Now
navigate to the Individual components tab. Scroll down to the section marked
Development activities and select the Live Unit Testing component as shown in the
following screenshot. If it is already checked, that means the component is already
installed:

Based on your selection, click on the button Modify or OK. The component will not
take more than 3 MB of installation space.

General settings of Live Unit
Testing in Visual Studio
There are a few configurable options available for Live Unit Testing, which you can
modify if you want to. To do so, navigate to Options from the Tools menu. Now, from
the left pane, select Live Unit Testing | General.

In the right pane, there are a couple of settings available, as shown in the following
screenshot:

The first option enables you to control whether the Live Unit Testing runs
automatically on solution load. The second option enables you to control whether the
Live Unit Testing will pause while building and/or debugging is in progress. The third
option will let you pause the automatic test execution when the battery power falls
below a threshold value. By default, it is set to 30%.

In this screen, you can also control the Testcase Timeout in milliseconds, which is
30000 ms (30 secs) by default. You can also set the number of test processes that the
Live Unit Testing will create.

Aside from these, you can set the logging level of Live Unit Testing. When it is set to
None, there won't be any automatic logging performed; when it is set to Error or Info,
only error messages or informational messages will get logged based on the selection.
Set it to Verbose, if you want to log every detail. The default logging level is Info.

Starting/pausing the Live
Unit Testing
To enable the Live Unit Testing to work, navigate to the Test | Live Unit Testing
menu and click on Start, as shown in the following screenshot:

There exist some cases where you want to pause or stop the automatic execution of
the Live Unit Testing process. Visual Studio 2017 allows you to temporarily pause or
stop it. You can even restart the process. To invoke any of these commands, navigate
to the Test | Live Unit Testing menu and click on the respective menu items as per
your need:

When you pause the Live Unit Testing, there won't be any coverage visualization in
the Visual Studio editor as the process will go into a temporary suspended state. When
you want to resume, click on Continue, and it will do the necessary work to update the
visualization as soon as it can.

To completely stop the Live Unit Testing process, click on Stop. This will remove all
the collected data from the process. When you start the process again, it takes longer
to load the data and update the visualization.

Restarting is like stopping the process and starting it again. Thus, it also loses all the
loaded data and reloads it, making it take longer to update the glyphs.

Including and excluding test
methods/projects
Live Unit Testing always runs in the background to give you real-time data of the unit
testing result and code coverage. But there exist some cases where you don't want to
run all the cases. This may be because of some projects, classes, or methods in a
solution that you don't modify for a prolonged period. Unnecessarily running all those
cases is just an overhead.

Visual Studio 2017 provides you with an option to include/exclude a specific method,
class, or a test project selectively. You can right-click inside a method, select Live
Tests from the context menu, and then Include or Exclude. This will internally mark
the selected method to be included or excluded from Live Unit Testing as per your
choice and save the information in the user settings. When you reopen the solution,
the same information will be remembered by Visual Studio:

If you want to include/exclude a specific class, do these same steps by right-clicking
inside a class but outside a method. To include/exclude an entire file, right-click
outside the class but within the file. All test cases in that file will be either included or
excluded, based on your choice.

You can also individually include/exclude a test project. Right-click on that project
and from the context menu select Live Tests and then Include or Exclude, as shown in
the following screenshot:

Unit testing with Visual
Studio 2017
As we have already discussed this new feature, its configuration settings, and the way
to start and stop live unit testing, let's begin demonstrating with a live example. Let's
first create a console application for a demo.

Getting started with
configuring the testing
project
Open your Visual Studio 2017 IDE, go to File | New | Project| Console App (.NET
Framework) as the project template. Create the project by giving it a name (in this
example, we are naming it ConsoleApp).

Now, create a class named Person and inherit it from the ICloneable interface (just for
this demonstration). Implement the interface to generate a Clone() method, which will
by default throw NotImplementedException. Leave it as it is; we are going to revisit this
method later. Add few string properties named ID, Name, and Address. Here's the
implementation of the class, for reference:

 public class Person : ICloneable

 {

 public string ID { get; set; }

 public string Name { get; set; }

 public string Address { get; set; }

 public object Clone()

 {

 throw new NotImplementedException();

 }

 }

As we have our Person class in our application project, let us create the unit testing
project for testing and code coverage. Right-click on the solution file in Solution
Explorer and navigate to Add | New Project... from the Visual Studio context menu.
This will open the Add New Project dialog on the screen. Select the project type Unit
Test Project (.NET Framework) from the Test category, give it a name (for example,
TestConsoleApp) and click OK to create the unit testing project in the same solution:

Once the unit testing project gets created in the solution, add the assembly reference
of the main project into it to refer the classes available there. Right-click on the unit
testing project and, from the context menu, select Add | Reference. From the
Reference Manager dialog window, navigate to Projects | Solution and then select the
projects that you want to add as references. Finally, click on OK to continue.

Understanding the package
config
Once you add the project reference to the unit testing project, the IDE adds a few
additional assemblies into the testing project. These are used to add support to the
testing framework:

If you expand the References folder of the TestConsoleApp project, you will see two
assembly references Microsoft.VisualStudio.TestPlatform.TestFramework and
Microsoft.VisualStudio.TestPlatform.TestFramework.Extensions, along with the
reference of our main project. These two DLL references are the core files that are
needed for the unit testing project to function.

In the same project, you will find a file named packages.config, which defines the
packages required for the unit testing to create the test adapter with the referenced
project. The file content will look like the following XML content, with
MSTest.TestAdapter and MSTest.TestFramework defined in it:

 <?xml version="1.0" encoding="utf-8"?>

 <packages>

 <package id="MSTest.TestAdapter"

 version="1.1.11"

 targetFramework="net462" />

 <package id="MSTest.TestFramework"

 version="1.1.11"

 targetFramework="net462" />

 </packages>

Live Unit Testing with an
example
Let's open the UnitTest1.cs file and add the following two test methods in it. The first
one will create two instances of the Person class and check to ensure that both the
instances are different. The second method will create one instance of the Person class,
assign it to another variable, and check to ensure that both the instances are equal:

When you start writing the code line-by-line, you will see that the Live Unit Testing
will run in the background and provide the status of the code coverage and test results
at the left-hand side bar. Here, in the preceding screenshot, every line generates a
green check mark () indicating that the written test cases have passed and all the
lines have been covered.

In case you are unable to see the live unit test working, refer to the Configuring Visual
Studio 2017 for Live Unit Testing section of this chapter.

When you have any unit test method fail, the icon will change to a red cross mark (
) at the line where it failed. Refer to the Overview to Live Unit Testing in Visual
Studio 2017 and Understanding the coverage information shown in editor sections of
this chapter for more details about the various icons shown in the editor.

Let's create another two test methods that will call the Clone() method of the class.
Here, the live unit test will break at the same line where the method has been called
and indicate it with a red cross mark, as you can see in the following screenshot:

In the preceding example, the Clone() method call breaks as it throws a
NotImplementedException. The rest of the lines of the said test methods will be decorated
with a blue dash mark () as these are all unreachable codes.

Let's revisit the Person class, where you will see the following status notification from
the Live Unit Testing framework:

Now, move ahead and implement the body of the Clone() method, which will now
return an object by calling the MemberwiseClone() method. After a moment, the live unit
test will execute automatically and show you the status in the left-hand side bar of the
editor. This time, all will have a green check mark:

Let's navigate to the test class. You will see that the code coverage is now 100% for
those two methods. You will also see that all the test methods have passed. This way,
the framework ensures that the cases execute while you write the code, and give you
live feedback of the changes that you performed, thus reducing the extra effort of
executing the test cases manually:

Navigating to failed tests
Visual Studio 2017 allows you to quickly navigate to the failed tests and gain an
understanding of their failings. You can click on () or () to see how many tests
were being hit by the given line that you clicked:

When you hover over a failed test in the tooltip, it provides additional information
with StackTrace to provide you more with more insight of the failure:

Summary
In this chapter, we learned about the new Live Unit Testing feature of Visual Studio
2017. Here we discussed the supported unit testing framework and adapters to run
Live Unit Testing inside the IDE. We also discussed the coverage information shown
in the editor and the integration in Test Explorer.

Then we learned how to configure Visual Studio for Live Unit Testing. There we
discussed how to install the component by running the installer, and how to use the
general settings. We also discussed how to start/stop/pause the Live Unit Testing and
how to include any specific test methods/projects to show the real-time unit testing
status and code coverage.

Later in this chapter, we demonstrated how to create a unit testing project, configure
the unit testing framework, and use it in real time with a simple example. At the end,
we discussed the ways to navigate to failed tests and grab more details out of them.

In the next chapter, we will discuss Microsoft Azure and learn how to accelerate
cloud development with it to build and manage Azure websites and Azure app
services.

Accelerate Cloud
Development with Microsoft
Azure
Microsoft Azure is an open, flexible, enterprise-grade cloud computing platform from
Microsoft which was first released as Windows Azure on February 1, 2010 and then
got renamed as Microsoft Azure on March 25, 2014. You can build, deploy, and
manage applications and services using the Azure portal, globally available through
the Microsoft data centers.

It basically delivers IaaS (Infrastructure as a Service), PaaS (Platform as a
Service), and SaaS (Software as a Service) and supports different programming
languages, tools, and frameworks to build and manage applications/services.

In this chapter, we will discuss the following topics:

Understanding the cloud computing basics
Infrastructure as a Service
Platform as a Service
Software as a Service

Creating your free Azure account
Configuring Visual Studio 2017 for Azure development
Creating an Azure website from the portal

Creating a web application
Creating an App Service Plan

Managing Azure websites (web apps) from the portal
Creating an Azure website from Visual Studio

Creating an ASP.NET web application
Publishing the web application to cloud

Updating an existing Azure website from Visual Studio
Building a Mobile App Service

Creating an Azure mobile app
Preparing an Azure mobile app for data connectivity
Adding a SQL data connection
Creating a SQL database

Integrating a Mobile App Service in a Windows application
Creating the model and service client
Integrating the API call

Scaling an App Service Plan

Understanding the cloud
computing basics
Cloud computing is a very broad concept. When you or your business need to
consider cloud services for your infrastructure or application deployment, you should
understand the basics of it. Generally, there are three types of cloud computing
models:

Infrastructure as a Service
Platform as a Service
Software as a Service

Infrastructure as a Service creates the main building blocks, Platform as a Service
comes on top of it, giving you another platform to use Software as a Service.
Software as a Service stays at the highest block of the cloud computing system. Let's
discuss all these basic service blocks in detail with the following diagram:

Infrastructure as a Service
In the fundamental building blocks of cloud computing resources, IaaS takes the
physical computer hardware to build a virtual infrastructure to utilize the resources.
You can create, reconfigure, resize, or remove any of the virtual resources in the data
centers within a few moments and monitor them remotely.

IaaS is the most flexible cloud computing model and allows you to automate
deployment of servers, process power, storage, and networking. In this service model,
you don't have to purchase any hardware as the virtual ecosystem is already available
and provided by the vendor. Amazon Web Service (AWS), Microsoft Azure, and
Google Compute Engine (GCE) are a few examples of well-known IaaS providers.

Platform as a Service
PaaS comes just one step above the IaaS block, which provides a platform where you
can develop software and deploy them. It makes the development, testing, and
deployment simpler, faster, and cost effective by providing the programming language
to interact with services, databases, servers, and/or storage without having to deal with
the infrastructure where it is being used.

As PaaS is built on top of virtualization technology, the vendor of such services
provides the physical/virtual environment with frameworks and runtimes to manage
your applications and data. Google App Engine, Red Hat's OpenShift, and Heroku are
some well-known examples of Platform as a Service.

Software as a Service
SaaS comes at the top layer of cloud computing and is typically built on top of the
solution given by Platform as a Service. SaaS uses the web to deliver software
applications for end users, which are managed by third-party vendors. Thus, it's the
most famous cloud service for the consumers, as it reduces the cost of software
ownership by removing the need of technical staff to manage installation, upgrading,
and licensing of the software.

The service is typically charged on a per user or per month basis and provides the
flexibility to add or remove users at runtime without additional costs. Office 365,
Google Apps, Dropbox, and OneDrive are some well-known examples of Software as
a Service.

Creating your free Azure
account
To get started with application development with Microsoft Azure, you will first need
to have an Azure account and have a basic idea about the Azure portal. Before
starting, let's first create an Azure account.

If you want to learn and try Azure, Microsoft provides you 30 days' free
trial to explore the cloud platform with a $200 free credit to your new
account.

To get started with the $200 free credit, jump into the site at https://azure.microsoft.com/en
-us/free/ and click on the Start Free button:

Use your Microsoft account (formerly, Windows Live ID) to log in into the portal. If
you don't have a Microsoft account username, from the same screen, you will be able
to create one.

Once you log in to the portal for the first time, it will ask you to verify your identity.
Enter your mobile number and credit card details to verify that you are a real person.
Microsoft will not charge anything on your card, but a nominal $1 charge may hold
initially on your card for verification and will be removed within 3-5 days.

Once your free credit ends or you reach the expiration date, you won't be able to use
the services that Azure offers unless you manually go and pay for your subscription.
You can also opt for a pay-as-you-go subscription and set a monthly spending cap. In
this case, when you reach that monthly spending limit, it will automatically suspend
the service and won't incur you any additional costs.

https://azure.microsoft.com/en-us/free/

Configuring Visual Studio
2017 for Azure development
Before you start building Azure applications from Visual Studio 2017, you need to
configure it by installing the required workloads. If you have not already installed the
Azure development workload, open your Visual Studio 2017 Installer.

As shown in the following screenshot, click on Modify to start customizing the
instance of the IDE:

This will open the customization screen with the Workloads tab open. Scroll down to
find the Azure development workload and select it. If you want to build ASP.NET
applications, select the ASP.NET and web development workload, as shown in the
following screenshot:

When you are ready, click the Modify button to start the installation process. This will
take some time, based on your internet bandwidth, to download and install the
required components.

Creating an Azure website
from portal
Once you have your Azure account, you can visit https://portal.azure.com to start using
the Microsoft Azure portal. When you log in to the portal, a dashboard will be shown
on the screen:

The categories present on the left side will allow you to create or manage your app
services, websites, virtual machines, database, network, IoT, and many other services
that Azure supports.

The Azure website comes under PaaS and provides an effortless way to build and
deploy web applications. In the management portal, under the Marketplace, it's named
as Web App. Let's start with creating our first Azure website.

https://portal.azure.com

Creating a web application
Once you log in to the Azure Management Portal, click on the + icon or the + New
label, as shown in the following screenshot. This will guide you to create any
services/resources currently available in Microsoft Azure:

This will open a panel on the right side with a list of available resource categories
from the Azure Marketplace. Select the one that you want to create. In our case, as we
are going to create our website, we will select Web + Mobile from the list:

Once you select Web + Mobile, it will open another panel on the right side with a list
of featured apps. This includes Web App (for websites), Mobile App (for secure and
scalable mobile backends), Logic App (for automated access and use of data), CDN
(for global distributed edge servers), Media Services (to encode, store and stream
audio/video), and more.

As we are going to create a website, let's click the featured app titled Web App. This
will open another new panel on the right of the screen:

On the Web App screen, the wizard will ask you to input a few details. Enter a name
of the application. Make sure that it is globally unique, as it's going to create a sub-
domain with the same name under azurewebsites.net.

Select the subscription model that you are going to use. In your case, it would be
different than the one shown in the preceding screenshot.

Then select the Create new radio button to create a new Resource Group. Give it a
proper name. Generally, it's going to create the resource group with the same name as
the application.

Creating an App Service
plan
Next, you should select the App Service plan/Location option from the available list.
App Service plan is the container for your app, which will determine the location,
features, cost, and compute resources associated with your app. So, select it
appropriately to optimize the compute cost.

In case there are no app service plans available in the list, create a new one and select
it. In our case, we are going to create an App Service plan with a free pricing tier to
have zero cost on hosting this demo app:

Once you select App Service plan, you may want to detect and diagnose the quality
issues in your web applications and web services. In this case, enable Application
Insights; otherwise, leave it as-is. When you are ready, hit the Create button. It will
take some time for the web app to get created.

Managing Azure websites
(Web Apps) from the portal
Once the web app gets created, navigate to App Services from the left-hand side
category list as shown in the following screenshot:

Here, it will list all the app services that you have currently hosted on your Azure
account. If you have a large list, you can easily search/filter it based on the available
options on this screen.

The website that we just created will get listed under this screen. Click on the name of
the app that you used to create it as shown in the following screenshot:

This will open another screen with detailed information about the application that you
selected. Here in this screen, you can check the activity log, monitor the requests and
errors, modify the access control, diagnose and solve problems, create a backup of the
site, update the custom domain, and more:

At the top of the Overview screen, you will find a few toolbar buttons which will
allow you to browse the site, start/stop/restart the web application, and/or delete it.

The URL that was created by the name of the application (in our case, it is
http://kunal-chowdhury.azurewebsites.net), when clicked, will launch the website into
the browser window. A generic website from the Microsoft template will get
launched, as shown in the following screenshot:

It's a default page that Microsoft provides as part of the default template. You can
redesign this page and publish the entire website from Visual Studio. In the next
sections, we are going to see how this can be done.

Creating an Azure website
from Visual Studio
As we have already learned how to create an Azure website from the Azure
Management Portal, let's learn how to create the same from Visual Studio 2017. Make
sure that you have the required components/workloads already installed (see
Configuring Visual Studio 2017 for Azure development from this chapter).

Creating an ASP.NET Web
Application
Once you are ready with creating an ASP.NET website and deploying it to Azure,
open your Visual Studio 2017 instance. Create a new project by navigating to
Templates | Visual C# | Cloud and selecting ASP.NET Web Application (.NET
Framework), as shown in the following New Project dialog:

Give your project a name and click the OK button to start creating your web
application from a template. The next screen will guide you to select the template that
you want to use. There exists a number of templates (Empty, Web Forms, MVC, Web
API, Azure Mobile App, and so on) available for you to select.

We will select Web Forms here with No Authentication support. When you are ready,
click OK to continue:

Visual Studio will then create the project based on the template and the authentication
configuration that you selected on the previous screen.

Now, from the Solution Explorer, open the Default.aspx page. It will already have a
design and content specified by Visual Studio in its template. Replace the Content tag
with the following code:

 <asp:Content ID="BodyContent" ContentPlaceHolderID="MainContent" runat="server">

 <div class="jumbotron">

 <h1>Hello Azure Website</h1>

 <p class="lead">It is a demo application to build Azure website.</p>

 <p>

 Visit site »</p>

 </div>

 </asp:Content>

Publishing the web
application to cloud
When you are ready to publish it to cloud, as an Azure website, right-click on the
project from the Solution Explorer. A context menu will pop up on the screen. Click
Publish..., as shown in the following screenshot:

This will open the web app publishing wizard. As shown in the following screenshot,
click on the Microsoft Azure App Service button under the Publish tab. There exist
two radio buttons, named Create New and Select Existing. The first one will guide
you to create a fresh new Azure website; whereas the other will guide you to select an
existing Azure website already hosted on cloud:

As we are going to create a new website on cloud, with a new URL, let's select the

Create New radio option and hit on the Publish button.

Now, a dialog window titled Create App Service will pop up. On this screen, you need
to first log in to your Azure account if you are not already logged in.

Provide a globally unique name for your web app, which will be used to create the
website URL. Select the subscription type that you want to use to host this site:

You need to select Resource Group from the available list. In case no resource group
is available for you to use or you want to host it to a new one, hit the New... button
and enter a name.

Now select the App Service Plan option from the available list. If there are no app
service plans available in the list or you want to create a new plan, click on the New...
button next to App Service Plan. A new window will be shown to configure a new
service plan:

On this screen, first give your App Service plan a name so that you can easily identify
it later. Select Location, where you want to host it. Select a proper location to
optimize its usages. Lastly, select the size of the processing unit that you want to
configure for this website. Select Free if you want it for testing/learning purpose and
don't want to cut your pocket for the usages.

Do remember that, the higher the processing unit or RAM, you will find
a better performance, but that will cost you more bucks due to more
computing power.

Once you are done configuring your app service plan, hit the Create button in your
App Service window. This will start building your project in Release configuration
and start deploying it to Azure by creating a new website based on the name that you
supplied as the Web App name. When the publishing gets complete, it will open up the
browser pointing you to the website URL that you just deployed:

Here you can see that the URL (kunalchowdhury.azurewebsites.net) that it launched, has
the same name that we provided as the app name while publishing the web app to
cloud. All done! Your web app has been deployed to Azure and is running.

When you perform some updates to your web application project and want to
republish the updated content to the web, right-click on the project again and click on
Publish.... As the publishing configuration has been already created for this project, it
will open the following configuration screen. You may, optionally, want to change
anything here. Once you are ready, click on the Publish button:

It will again build, and if there are no errors during the compilation, it will get
published to the cloud account and open the browser pointing to the same URL that
the app has been hosted.

Updating an existing Azure
website from Visual Studio
There could be various occasions when you have a website already running on Azure
and you want to update it from Visual Studio but the publishing configuration is
missing in the project. In that case, perform the following simple steps:

When you are ready with your changes inside your Visual Studio project, right-click
on it and click Publish... from the context menu. The following publishing wizard will
open on the screen:

Inside the wizard, first navigate to the Publish tab and select the Microsoft Azure App
Service category button, as shown in the preceding screenshot. Now, instead of
selecting the Create New radio button, select the other one, labelled Select Existing,
and click Publish.

The following App Service window will get launched, where you can select the
already-running website to publish your current project. If you are already logged in
to your Azure account, the subscription type will get populated automatically. Select
the one that you want to use for this web app. Select the Resource Group option from
the available list.

As shown in the following screenshot, another tree view list will get populated
automatically based on the already-hosted apps on your Azure account. If there are no
sites running, you need to go back and start from the beginning to create a new app
service. In the other case, select the one where you want it to host and click OK:

Next, Visual Studio will show you the following screen to review the configuration
details. When you are ready, just click the Publish button to let it compile and publish
it to the website that you have already selected. Once the publishing wizard deploys to
the cloud, it will open the browser window and navigate to the URL where the
application got deployed:

Building a Mobile App
Service
Azure Mobile Apps is another type of Azure App Service run as PaaS, which runs on
any platform or device, offering high scalability and global availability for enterprise-
ready mobile application development platforms. Using this, you can bring a rich set
of capabilities in your mobile applications.

Using the Azure Mobile Apps service, you can build native and cross-platform apps
targeting Windows, iOS, and Android. You can also connect to your enterprise system
or social networking sites in minutes, build offline-ready applications with data
synchronization, and leverage the push notification services to engage your
customers:

Creating Azure Mobile App
To get started, you need to create the Azure Mobile App. Log in to your Microsoft
Azure portal and click on the + or the + New button. From the wizard, select Web +
Mobile and then Mobile App. This will open a new screen to enter the details about
your mobile app.

Give the app a name, which should be globally unique, as it's going to create sub-
domain under azurewebsites.net by the name of the app. Select the appropriate
Subscription, create/select Resource Group, and select the proper App Service
plan/Location.

When you are ready, click on the Create button to start creating the Azure Mobile
App. This will now provision an Azure Mobile App backend which you can use in
your mobile client applications. It will take some time to complete the operation:

Once it gets provisioned, navigate to the App Services screen and click on the app
name that you have just created as shown in the following screenshot:

This will open the overview page of the app service, where you can get details about
it. On this screen, you can also stop, restart, or delete it when you need.

Preparing Azure Mobile
App for data connectivity
You may want your Azure Mobile App to connect to a SQL database hosted on
Azure. To do this, you need to create the connectivity of the database and may need to
create a database server too, if it is not already created.

On the service overview page, click on Quickstart and then select the project template
that you want to integrate with. You can select Windows, iOS, Android, Xamarin, or
Cordova from this screen:

Assuming that you don't have any SQL database available on Azure, you will see the
following screen. Click on the message to start creating your SQL database and then
connect it with your Mobile App Service:

Adding SQL data connection
The following screen will pop up, asking you to create a data connection. Click on the
Add button to add a new connection. As shown in the following screenshot, select
SQL Database as the connection type and then click on the next item to start
configuring the database settings:

If you don't have any SQL database hosted on Azure, you need to create a new one. In
case you don't have the database server, you need to create one of those too. Finally,
you need to generate the connection string.

Creating a SQL Database
The Azure portal provides you with a straightforward way to create a SQL database.
As shown in the following screenshot, click on the Create a new database button
which will open another screen to ask you to enter the database name, target server,
pricing tier, and so on:

Clicking on the Target server option will navigate you to a different screen which will
ask you to create a new DB server, if it is not already created. As shown in the
following screenshot, click on the Create a new server button to open the New Server
form where you need to enter details about the DB server.

Enter Server name, which must be globally unique, as it will create the DB server
under the database.windows.net domain. Enter the other fields such as Server admin
login, Password, Location and click on the Select button to continue. This will create
the server and provision it, so that you can access the hosted DB server:

The next screen will ask you to create the Table API. You will need it to store your
data to the backend. Pick the backend language from the list. You can either select
Node.js or C#. Let's select Node.js as the language.

Now, click the checkbox to acknowledge the settings confirmation to overwrite the
site content. Click on Create TodoItem table to continue. The TodoItem table is a
sample DB table that the wizard will generate but if you want to create any additional
tables later, you can navigate to the Easy Tables settings:

When it successfully generates a table inside your database, it will show you a green
check mark beside the two settings, as shown in the following screenshot:

This confirms that the database has been successfully configured to use. Scroll down
to view the third section, where it will generate you the configuration settings and a
sample model for you to start the integration part in your application.

If you are creating the application from scratch, the Create a new app tab will provide
you a sample Visual Studio project to kick-start. If you have an existing application
and/or you want to manually insert the API configurations, navigate to the Connect an
existing app tab page, as shown in the following screenshot:

Take a note about the highlighted section, which we will need later to create the
MobileServiceClient to integrate the mobile service in our project. The TodoItem model
has also been generated for you to easily start with it for the first time.

Integrating Mobile App
Service in a Windows
application
Let's get started with integrating the Mobile App Service that we just created into an
application. You can use any application, but here we will use a WPF application.
Open your Visual Studio IDE and navigate to File | New | Project... to create a WPF
project.

Creating the Model and
Service Client
Once the project gets created, you need to create the Model TodoItem in the project. To
do so, right-click on the project and navigate to Add | Class... and name it as TodoItem.
Now copy the definition of the class from the Azure portal and replace it in the code
file. Here is the code for your easy reference:

 public class TodoItem

 {

 public string Id { get; set; }

 public string Text { get; set; }

 public bool Complete { get; set; }

 }

Now, we need to create the instance of the mobile service client, so that you can
interact with Azure. Open the App.xaml.cs file and enter the following lines of code:

 public static MobileServiceClient MobileService = new

 MobileServiceClient("https://kunal-chowdhury-service.azurewebsites.net");

As our service client is hosted at https://kunal-chowdhury-service.azurewebsites.net, we
provided it as the endpoint address to the service client object. If you have hosted it in
a different endpoint, you need to set the correct one. Please update the entry
accordingly, as highlighted.

The MobileServiceClient class is part of the Microsoft.Azure.Mobile.Client DLL, which
you need to reference in your project. You can get it from NuGet by clicking on the
lightbulb tooltip and following the context menu, as shown in the following
screenshot:

This will install the latest version of the DLLs and automatically add them as a
reference in your current project. Build the solution to confirm that there are no
compiler errors.

Once your service client instance has been created, you can call the API methods of it
to do CRUD operations to your Azure database that you have created.

Integrating the API call
Let's first design our app UI to have a TextBox control to enter the description of the
ToDo item, a checkbox to mark it as complete, and a few buttons to perform add,
delete, and refresh data functionalities.

Open the MainPage.xaml file, where we need to change the UI. Replace the default Grid
panel, with the following XAML code snippet:

 <Grid>

 <StackPanel Width="270" Margin="10">

 <TextBlock Text="Task description:"/>

 <TextBox x:Name="txbTaskDescription" Height="26" />

 <CheckBox x:Name="chkComplete" Content="Complete?"

 Margin="0 10"/>

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

 <Button Content="Save" Width="100"

 Margin="10" Click="OnSaveButtonClicked"/>

 <Button Content="Refresh" Width="100"

 Margin="10" Click="OnRefreshButtonClicked"/>

 </StackPanel>

 <ListBox x:Name="lstDetails" Height="100">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Orientation="Horizontal">

 <CheckBox IsChecked="{Binding Complete}"/>

 <TextBlock Text="{Binding Text}" Margin="10 0"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

 <Button Content="Delete" Width="80"

 Margin="5" Click="OnDeleteButtonClicked"/>

 </StackPanel>

 </StackPanel>

 </Grid>

In the code behind the file of the MainPage (that is, in the MainPage.xaml.cs file), define
the button click events that we associated in the XAML page. Mark all of them with
the async keyword. This will now look like the following code snippet:

 private async void OnSaveButtonClicked(object sender,

 RoutedEventArgs e)

 {

 }

 private async void OnRefreshButtonClicked(object sender,

 RoutedEventArgs e)

 {

 }

 private async void OnDeleteButtonClicked(object sender,

 RoutedEventArgs e)

 {

 }

Now, build the solution to check for any errors and correct them if you encounter
anything. Once done, run the application which will look like the following screen:

Now, it's time to integrate the Mobile Service API to perform CRUD operations to the
Azure database from your application. The GetTable method of the service client object
returns the handle of the table as IMobileServiceTable, where you want to perform any
DB operation. Generally, it takes the table name as an argument. Alternatively, you
can call the strongly typed data operations by the type of the instance of the table.

 App.MobileService.GetTable("TodoItem"); // untyped data operation

 App.MobileService.GetTable<TodoItem>(); // typed data operation

To fetch the contents of the remote table, we need to call the ReadAsync() method on
top of the mobile service table instance and set the response as ItemsSource of the
listbox that we have added in the UI. Here is the code for your reference:

 lstDetails.ItemsSource = await App.MobileService.GetTable<TodoItem>().ReadAsync();

Similarly, when you want to insert an item to the remote database table, you should
call the InsertAsync method passing the instance of the model, like the following :

 await App.MobileService.GetTable<TodoItem>().InsertAsync(todoItem);

Similarly, for delete operation, call the DeleteAsync method by passing the instance of
the model. Here's how to call it:

 await App.MobileService.GetTable<TodoItem>().DeleteAsync(item);

Additionally, you may want to add validations while performing the add or delete
operations. When you compile and run the application, enter the task description and,
optionally, select the Complete checkbox before hitting the Save button.

Once the save operation completes. or when you click on the Refresh button, the API
call will be performed to retrieve the latest data available on the Azure DB. If you
want to delete any record, select the desired data in the listbox and click the Delete
button:

Here is the complete code snippet of the code behind the file for your reference:

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 OnRefreshButtonClicked(this, new RoutedEventArgs());

 }

 private async void OnSaveButtonClicked(object sender,

 RoutedEventArgs e)

 {

 var taskDescription = txbTaskDescription.Text;

 if (!string.IsNullOrWhiteSpace(taskDescription))

 {

 var isComplete = chkComplete.IsChecked == true;

 var todoItem = new TodoItem { Text = taskDescription,

 Complete = isComplete };

 txbTaskDescription.Text = string.Empty;

 chkComplete.IsChecked = false;

 await App.MobileService.GetTable<TodoItem>().

 InsertAsync(todoItem);

 OnRefreshButtonClicked(sender, e);

 }

 }

 private async void OnRefreshButtonClicked(object sender,

 RoutedEventArgs e)

 {

 lstDetails.ItemsSource = await App.MobileService.

 GetTable<TodoItem>().ReadAsync();

 }

 private async void OnDeleteButtonClicked(object sender,

 RoutedEventArgs e)

 {

 if(lstDetails.SelectedItem is TodoItem item)

 {

 await App.MobileService.GetTable<TodoItem>().DeleteAsync(item);

 OnRefreshButtonClicked(sender, e);

 }

 }

 }

You can now navigate to the Azure portal to view the entered data into the table. Log
in to the Azure dashboard, navigate to App Service, and select the Mobile App
Service that you created.

Now, as shown in the following screenshot, scroll down the panel to find the option

Easy tables. Click the TodoItem table to observe the data that it has. From this screen,
you can also create a new table:

When you click the table, it will open another screen where you can see the records
that the table has. On this screen, you can also change permissions to access the table,
edit the script, and manage the schema of the table:

Scaling App Service plan
The portal allows you to easily scale up or scale down the App Service plan that you
are using. It also allows you to automate the process to allow you to scale the service
plan on demand.

First log in to the Azure portal and navigate to the app service that you want to scale.
From the left side panel, scroll down to find the Scale up (App Service plan) link.
When you click on it, a new screen will show up and will allow you to select the
pricing tier for your application:

There are plenty of service plans available for you to select by choosing the correct
pricing tier. The basic tiers will have less performance than the standard or the
premium tier, but will allow you to save more money. The premium tier will charge
you more money but will give you the best performance.

The other link, Scale out (App Service plan), will allow you to override the instance
count. It also allows you to enable/disable the auto-scaling option. If you want to auto-
scale the service based on some conditions/rules, click on Enable autoscale:

This will open another screen where you can create a condition and ask the service
plan to scale based on it. You can select it either based on a metric or specific instance
count. You can add more rules and conditions as per your needs. At the end, click on
the Save button to save all your changes made on this screen.

When you don't want to run the auto-scaling option, come to this screen again and
click on the button labelled Disable autoscale:

Summary
In this chapter, we learned about cloud computing basics that include IaaS, PaaS, and
SaaS. We learned how to create a free Azure account and the way to configure Visual
Studio 2017 for Azure development. Then we discussed creating and managing Azure
websites from the portal as well as from Visual Studio. We also discussed how to
update an existing website from Visual Studio.

Later, we discussed the Mobile App Service and looked in detail at how to create a
mobile service, configure an Azure database, and integrate the service in a Windows
application. At the end, we learned about the service API calls and scaling the app
service plan based on various pricing tiers.

In the next chapter, we will learn about source controls. We will discuss how to work
with Git as a source control repository with Team Services and/or GitHub from Visual
Studio 2017.

Working with Source
Controls
A source control system is a component of a source repository and version
management system. If you are building enterprise-level applications in a distributed
environment, you will want to keep your source code in a safe vault with easy-to-
manage, easy-to-integrate, and easy-to-create versions of each check-in. The source
control repository will help you to manage your code.

There are plenty of source control repositories available in the market. Some of the
most common repositories are Git, TFS, and SVN.

In general, repositories are being hosted on on-premise environments or in a cloud-
hosted environment such as Microsoft Team Services, Team Foundation Server,
GitHub, Bitbucket, and so on, and developers connect to the remote repository to
clone the entire changeset on their system to perform changes on their code. When the
changes are over and well tested, they push those changes to the remote.

In this chapter, we are going to discuss the following core points to use a source
control repository such as Git and TFS Projects in a Visual Studio 2017
environment:

Working with Git repositories
Installing Git for Visual Studio 2017
Connecting to the source control servers
Getting started with Git repositories
Working with Git branches
Working with changes, staging, and commits
Syncing changes between local and remote
Working with pull requests for code review
Working with Git commit history
Undoing your changes
Tagging your commits

Working with TFS Projects
Connecting to a Team Project

Cloning an existing project folder
Performing a check-out operation to a file
Committing your changes to the repository
Undoing your local changes
Creating a code review request
Rolling back your existing change set

Working with Git
repositories
Git for Visual Studio 2017 comes as an optional component and you need to manually
install it to work with Git servers such as Team Foundation Services, GitHub, and
BitBucket. In this section of the chapter, we will learn how to work with Git
repositories. This will cover creating/cloning a repository, creation of a branch,
working with changes, syncing, pull requests, and commit history.

Installing Git for Visual
Studio 2017
To install the Git plugin for Visual Studio, run the Visual Studio 2017 installer and
click on Modify. Once the screen loads, navigate to the Individual Components tab, as
shown in the following screenshot. Scroll down to the Code tools section and select
Git for Windows & GitHub extension for Visual Studio. Click on the Modify button
to continue with the installation:

Git for Windows will allow you to use local Git repositories as well as
to perform Git commands to work with any remote repositories. If you
are going to deal with GitHub, you must check GitHub extension for
Visual Studio for having an easy access to your repository.

If you are installing it from an offline installer, it will momentarily install the required
components. In the other case, it will first download it from the Microsoft server and
then proceed towards the installation.

Once the installation succeeds, you are good to go with connecting to your Git
repository. The next section will help you to connect with Visual Studio Team
Services (VSTS)and/or the GitHub server.

Connecting to the source
control servers
If you have an account on Visual Studio Team Services or GitHub, you can easily
connect to it, directly from the Visual Studio 2017 IDE. All these connection settings
are available under the Team Explorer.

To connect to a Team Foundation Server (TFS) or Visual Studio Team Services,
open the Team Explorer and click the Connect... link present under Visual Studio
Team Services. You will need to log in to the portal to gain access.

If you have a GitHub account and you would like to connect to it, click the Connect...
link present under the GitHub panel of the Team Explorer window. You will need to
log in with your GitHub account credentials:

Getting started with Git
repositories
Once you have signed in to the desired server of your choice, you may want to create
a new code repository or would like to clone an existing one to your local from the
remote server. As the process is similar for both VSTS and GitHub, we are going to
demonstrate using the GitHub account.

For details about the Git command uses from command line or bash,
visit git.kunal-chowdhury.com.

http://git.kunal-chowdhury.com

Creating a new repository
To create a new repository on the remote GitHub server, you can directly use the
Visual Studio 2017 Team Explorer. Once you have logged in, click on the Create link,
as shown in the following screenshot. This will open the Create a GitHub Repository
window on the screen. Enter the required details and select the local path of the
repository. Once you have filled up everything, click on the Create button:

Once the process completes creation of the repository, you will find it listed on the
remote server as well as in your local.

Cloning an existing
repository
Visual Studio 2017 made it easy to clone an existing GitHub repository. Under the
GitHub panel of your Team Explorer, click on the Clone link to continue. If you have
already logged in, it will show you a screen with a list of repositories that you have on
your Git server.

Select the repository that you want to clone, select the folder path of the local
repository where you want to download the remote information, and finally click on
the Clone button to start the process:

Based on the size of the remote repository and your internet bandwidth, it will take
some time to download all the contents. Once the process completes, you will see it
listed both under your Local Git Repositories and on GitHub.

In case you have a different repository, other than VSTS or GitHub,
you can still clone that to your local. In such a case, as the extension or
support is not available for such services in Visual Studio, you need to
click on Clone which will expand a panel. Enter the URL of the said
repository, select the local folder path of your choice and then click on
the Clone button.

This will process the content available on remote and download a copy of it in your
local repository for further processing:

Reviewing the Git
configuration settings
Once you have set up your Git repository, you may want to review the Git
configuration settings. Open it up by following the path Team Explorer | Settings |
Global Settings:

This screen will allow you to update the desired user name, email address, local
repository path, and many other options including Diff & Merge Tools. By default,
the user name and the email address will get populated from the current connection to
the Git repository.

Working with Git branches
A branch in Git is a lightweight movable pointer to the commits that you make. The
name of the default branch is master. Whenever you make any commit, it
automatically moves forward.

In Git, you can create sub-branches to create another line of development from the
master repository to work on a new feature or to fix a bug. Once the feature or the bug
fixing is complete, it is merged back to the main/master branch and deletes the sub-
branch that we worked with as shown in the following diagram:

Every branch is referenced by HEAD, which points to the latest commit in that
branch. Whenever you make a commit, the HEAD is updated with the latest commit.

Creating a new local branch
A Git branch is just a small reference to keep an exact commit history. It does not
create multiple copies of your source. As it uses the history information stored in
commits to recreate the files on a branch, it's very easy to create it. When you commit
changes to a branch, it will not affect the other branches because it creates them in
isolation. Later, you can share branches with other members or merge the changes
into the main branch.

To create a new local branch from another one (for example, the master), right-click
on that branch from Visual Studio Team Explorer and then, from the context menu,
select the menu item New Local Branch From....

Enter the name of the new branch in the input box and select the parent branch from
the dropdown (which is automatically populated based on the selection). If you want
to checkout to that new branch, make sure to check the box labelled Checkout branch.
Once you are ready to create it, click on the button Create Branch:

This will create the branch and checkout to it. In the Team Explorer window, you will
see it listed as bold. Also, you will see the new branch name at the bottom-right corner
of the Visual Studio status bar, as shown in the preceding screenshot.

Switching to a different
branch
In Git terminology, switching to a branch is called checkout. Since the branches are
lightweight, switching between them is very quick and easy.

You can switch/checkout to a different branch either by double-clicking on it under
the Team Explorer window or selecting the one from the dropdown menu, when you
click on the current branch name, present at the bottom-right corner of the Visual
Studio status bar:

Upon checkout, the selected branch will get highlighted as bold in Team Explorer.
Also, the name of the branch, at the bottom-right corner, will change accordingly.

Pushing a local branch to
remote
When you have a local branch created on your system, you may want to push the
branch (with or without any changes) to the remote so that other users can see and get
the updates.

To push a local branch to the remote, right click on that branch in Team Explorer.
From the context menu, that pops up on the screen, select Push Branch. This will
update the remote with the details that we have just created:

Once the remote update is successful, you will see the branch details listed under
remotes/origin of your repository in Team Explorer.

Deleting an existing branch
There may be some cases when you want to remove a branch. It could be either your
local branch or a remote branch available on your Git server repository. Visual Studio
2017 provides you easy access to both.

To delete a local branch, right click on it and select Delete from the context menu. To
delete a remote branch listed under the remotes/origin, right click on the desired
branch and select Delete Branch From Remote from the context menu that pops up on
the screen.

Alternatively, you can select the branch that you want to delete and press the Delete
key on your keyboard:

Working with changes,
staging, and commits
Git is all about taking a snapshot of your code to your repository, as and when you
commit your changes. There are three stages/areas where Git tracks the changes as
you continue working on your repository:

Unmodified: This is the area where the available files have not yet changed
since your last commit to your repo. When you change some files and save
them, Git will mark them as modified.
Modified: These are the files which have been changed after your last commit
but not yet staged for your next commit. When you stage these files, Git will
move them to the staging area.
Staging: This is the area where the changed files have been added for your next
commit. When you commit the staged files, they will be marked as unmodified.

Staging changes to local
repository
When you add new files to your project, modify existing ones, or delete existing files
from your project or Git code base, they will be marked as modified since the last
commit. You can see a list of your changes by navigating to Project | Changes under
Team Explorer, as shown in the following screenshot:

Right click on the files/folders that you want to move to the staging area and, from the
context menu, click Stage. Later, if you want to unmark any file/folder from the
staging area, right click on those files/folders and click Unstage from the context
menu, as shown in the following screenshot:

If you stage any files/folders after you staged them already, the delta will be added to
the changes available in staging. When you are ready to save the changes to your
repository, you need to commit those changes.

Committing changes to the
local repository
To commit the staged changes to your local repository, navigate to Team Explorer |
Project | Changes. You will see a list of staged files in the list. You will also see a list
of changed files which are not yet pushed to the staging area.

Enter a comment as your commit message and click Commit Staged to perform a
commit operation to your local repository. The changed files, which are not yet in the
staging area, will not be committed:

As shown in the preceding screenshot, the Visual Studio 2017 status bar will show the
count of the commits performed but not yet pushed to the remote repository. As and
when you commit to your local repository, the count will increase by one, but when
you push all your local commits, it will reset to zero again.

Discarding uncommitted
changes
There could be a set of changed files, which you don't want to commit and want to
undo the changes that you have already performed. Select those files/folders and right
click on them to open the Git context menu, where you can click Undo Changes... to
discard them. The files will be reset to the unmodified stage:

Sometimes, before performing any commit or undoing the changes, you may want to
check what has been changed since your last commit. You can do so by individually
selecting a file, right-clicking on that, and clicking the Compare with Unmodified...
option from the context menu to compare the changes side-by-side, as shown in the
following screenshot:

You will find the removed lines or contents marked with a reddish background,
whereas the changed or added contents will be marked with a greenish background.

Amending message to an
existing commit
Occasionally, in some rare cases, you may want to change the existing commit
message. To do so, open the commit that you want to modify. Change the desired
message and click on the Amend Message link, as shown in the following screenshot:

This will modify the commit message and replace the existing one with a new
commit. At the end, make sure to push the changes to the remote repository for the
changes to be available to other users.

It is not advisable to modify/amend a public commit, which is available
on a remote repository, as it is going to replace the existing one with a
new hash code. When required, only perform this operation on a local
commit.

Syncing changes between
local and remote repositories
The Git extension for Visual Studio 2017 allows you to easily sync changes between a
local repository and a remote repository. If it finds any remote changes, it will first
download those and merge with the changes available in the local repository. If it
finds any merge conflict, it will immediately stop processing and ask you to resolve
them first. Later, it will push all your changes to the remote repository.

To invoke a single sync operation, open the Team Explorer window and navigate to
the Sync view, which may have outgoing commits ready to push:

You can also perform the steps individually, rather than performing both the inbound
and outbound operations in a single shot. Push will commit your local changes to
remote, Fetch will download the remote changes but won't merge, whereas the Pull
command will download the remote changes and proceed to merge the changes. Let's
discuss them one by one.

Pushing changes to the
remote repository
Pushing your changes can be of two types: Push and Publish. When there is a
relationship between the local branch and the remote repository, push will commit the
local changes to the remote repository. When there's no relation between the local
branch and the remote repository, it publishes the changes to the remote repository by
first creating the branch with the same name of the local branch and then pushing the
local commits to it.

After you publish the branch, only push will happen as there exists a branch in the
remote repository with a relationship to your local repo.

To push your changes to the remote repository, open Team Explorer and navigate to
the Sync view. You will see a list of outgoing changes, as shown in the following
screenshot. Review the changes for each commit and finally click on Push to commit
those on your remote branch to make them available publicly within the same project
team:

If during the push operation, it finds any conflicts between remote commits and local
commits, it will break the operation immediately. You will have to first resolve these
conflicts before you can push your changes.

Fetching changes available
in the remote repository
When you have some latest changes in the remote repository, which you don't have in
your local, you can ask Visual Studio to fetch those changes (new commits and new
branches) using the Git command fetch. Fetch will just download the changes to your
local, but won't merge them automatically. It will ask you to review them first.

To fetch the remote commits, open Team Explorer, navigate to the Sync view, and
click on Fetch. A list of incoming commits will be shown, if any. You can then review
them and merge those changes with your local changes:

Merging changes available in
the remote repository to the
local repository
Pull is just like fetch, but it merges the changes automatically after downloading them.
If there exist any merge conflicts, though Git takes care most of them, it will ask you
to resolve them first before continuing.

To apply the remote changes to your local, open Team Explorer and navigate to Sync
view. Then you can click either Sync or Pull to download the changes and merge
them:

The merge operation will keep the commit history of your local changes intact, so that
when you share your branch with the push command, Git will understand how others
should merge your changes.

Resolving merge conflicts
Git is good at automatically merging the file changes, but it can sometimes throw
merge conflicts. In such a case, you will have to manually resolve the conflicts before
syncing your local and remote branch.

When there are merge conflicts, Visual Studio 2017 will list down the conflicts under
the Merge In Progress panel of the Sync view. Click on the Conflicts link to start
resolving the file conflicts:

This will bring up a list of files with conflicts. Selecting a file lets you accept the
changes in the source branch where you are merging. You can also compare the files
by using the Diff link and compare with Remote or Local.

From the same screen, you can also take the remote changes or keep the local
changes. If you want to review the changes and manually want to do a merge
operation, click on the Merge button, as shown in the following screenshot:

This will show you a side-by-side view of your source and target, along with the
resultant changes to the file. Use the checkboxes present next to the modified lines
under merge conflicts to select between the remote and the local changes. You can
also modify the lines directly in the Result panel.

When you are done with the changes, click on the Accept Merge button to accept the
changes performed for the conflicts. You need to perform the same for all the
conflicts that you have, before continuing with the synchronization between local and
remote branches, as shown in the following screenshot:

Once you are done resolving all the conflicts, you can go to the Changes view and
commit the merged changes.

Working with Pull Requests
for code review
Pull Requests is the collaborative process to discuss the changes done in a branch, get
the early feedback of the changes, and merge them to the master branch once
everyone approves them. You can create Pull Request of a work-in module even if
you are not ready to merge the changes.

Creating Pull Requests for
code review
If your Git repository supports it, you can create Pull Request directly from the Visual
Studio 2017 IDE. First, you will need to push/publish the local branch changes to the
remote repository. Then open Team Explorer and navigate to the Pull Requests view,
as shown in the following screenshot:

If you are using the GitHub extension, a panel will appear with a Create New link to
create the pull request for the code review. It will automatically list the branch that
you are working on and will go to merge once the reviewers approve it. Give a title to
the pull request and a description of the work that you performed in this change set.
Once you are ready, click on the Create pull request button. All the members of the
project will get notification to review your changes.

If you are using Team Foundation Server or Team Services, you may get an option
while creating the request to enter the reviewer's name to get it reviewed by selected
people of the team project.

Reviewing an existing Pull
Request
When you create a Pull Request, the selected reviewers will get the notification to
review your changes. They can provide feedback and/or approve your pull request to
merge into the master branch:

When you get a notification about someone else's Pull Request, you can click on it to
open the review panel.

With the code lines, where you have some feedback or want to ask the author of this
pull request to do further changes, click on the + symbol, which will appear once you
hover on that line.

Clicking on the + symbol icon will provide you with an area to enter your comment
description. You can use various formatting options to construct it and finally you can
click on the Start a review button (in case you are using GitHub) to submit your
feedback.

Here is a screenshot from GitHub, demonstrating the process of adding a review
comment to a Pull Request:

In GitHub, your comments can be of three types:

Comment: To be used to submit general feedback, without providing approval
to the pull request
Approve: Use this option to provide approval to the code review request and to
give your approval to merge the changes to the master branch
Request changes: When you have some change request in mind, you can select
this and ask the author of the code to address those changes before proceeding
towards final approval

To select the type of comment, you can click on the Review changes button before
submitting your feedback to the pull request. See the following screenshot:

Merging a Pull Request
When everyone approves your changes, you will need to merge the code to the master
branch so that the changes will be available to the other members of the team. When
you are ready, open the Pull Request page which will show you a button to merge the
pull request. Click on the Merge pull request button, as shown in the following
screenshot:

During the merge, you can provide a comment to it to easily identify the changes.
Generally, it auto-populates the same from the title of the pull request:

When you merge your changes to the master branch, you can delete your existing
feature branch from the repository. As shown in the preceding screenshot, click on the
Delete branch button to safely delete the said feature branch.

Working with Git commit
history
Git is used for managing the history of changes, as and when you save your code as
commits to your local repository and merges to the master branch after approval of
pull requests.

The commit history becomes complicated when you pull remote changes, made by
other team members, from the master branch to your feature branch. It then loses the
linearity of the commit history, making it hard to follow.

It also makes it hard to keep track of the final feature changes when there exist
multiple commits in a single feature branch. In such a case, if you want to revert a
feature at a later point in time, it makes it difficult to track and revert each one of
them.

To resolve this, Git provides a command called rebase which addresses all such issues.
It takes the commits made on your current branch and replays them on a different
branch. The commit history on your current branch will get rewritten to keep the
granularity of the history.

For example, consider the following diagram as the commit history where you started
the feature branch from the old base and saved your changes with two commits. In the
meantime, some other members of your team committed two changes in the master
branch. Thus, the old base will now have two branches; one points to the master and
the other points to the feature:

Now, when you rebase your feature branch onto the master, it will rewrite your local
commit history, replaying your feature changes to the master branch. You will then
see a linear commit history on your local along with the changes made by others.

Rebasing changes to rewrite
the commit history
To rebase your current feature branch onto the recent changes available on the master
branch, first make the feature branch current, and then navigate to the Branches view
from Team Explorer.

There you will find a link called Rebase, which when clicked, will provide you a view
to rebase the changes from your current branch to the branch where you would like to
replay the commits:

When you are ready to rebase your code, click on the Rebase button and wait until it
completes the process. If there is a conflict, you will have to resolve those merge
conflicts before completing the rebase. Click on Continue once you resolve all the
conflicts or click Abort to terminate the rebasing process:

After a successful rebase, your local branch will have a different history than your
remote branch. You will have to force push the changes available in your local to
update in your remote branch.

Never force push a branch that other members are working on, as it
rewrites the commit history. Only perform force push to the branches
that you are working on alone.

Copying commits using
Cherry-Pick
Cherry-Pick is a process to copy commits from one branch to another. It only copies
the changes from the commits instead of copying all the changes available in a
branch. Thus, it is completely different from what a merge or rebase performs.

You will need to perform Cherry-Pick on commits when you accidentally committed
to a wrong branch and/or want to pull out a set of commits from your Bug-Fix branch
to the master/feature branch as soon as those are available:

To Cherry-Pick, first checkout the branch where you want to copy a set of commits
from a different branch. Then open the history of the other branch, from where you
want to pull, by clicking on the View History... from the context menu, as shown in
the preceding screenshot.

From the list of commit history, select the one that you want to pull to your current
branch. Right click and select Cherry-Pick from the context menu, as shown in the
preceding screenshot. This will pull the changes to the current branch. In case there
are any merge conflicts, you will have to resolve those first before continuing.

Once the Cherry-pick process is successful, commit the changes and push them to
your remote branch. You can repeat the process for each commit that you want to
bring in your current checked-out branch.

Undoing your changes
You may not need all the changes to commit and push to the remote repository. There
are many cases when you need to reset just the working directory/workspace to have a
cleaner space, having the last committed changes, or revert a change from the remote
in case you have pushed a wrong commit. In this section, we are going to discuss
these two points.

Resetting a local branch to a
previous state
Resetting a local branch can be done in two different ways. The first one could be
resetting the branch to the last committed state available in the local repository.
During this, you can select whether to keep your changes or not, but the most
common way is to undo all the uncommitted changes that happened in the local
branch.

To reset a branch, open Team Explorer and navigate to the Branches view. As shown
in the following screenshot, right click on the branch that you want to reset. From the
context menu, select Reset | Delete Changes (--hard) to undo all the uncommitted
local changes:

The other option could be resetting the local branch to a specific commit. All the
changes available until that selected commit will be undone and will provide you with
a fresh working copy of your files.

To reset a branch to a specific commit, open the History page of the branch and right
click on the commit that you would like to reset to. From the context menu, select
Reset | Delete Changed (--hard), as shown in the following screenshot:

Note that the reset operation affects the entire branch that has been
selected, not just those available in your current directory.

Upon doing so, the local branch will have the changes up to the selected commit from
the commit history. The History page will add another section that will list the
incoming commits, which if needed, can be pulled to the local branch:

Reverting changes from
remote branch
When you have pushed some commits to the remote repository and would like to
undo those changes, you need to use the revert command to create a new commit,
undoing all those changes.

Note that history will not be rewritten in case of a revert. Thus, it is
safe to use when working with others.

To revert a change from the shared remote branch, open Team Explorer and navigate
to the History page of the branch. Now right click on the commit that you want to
revert and click on the Revert option from the context menu entries, as shown in the
following screenshot:

This will create a new commit to undo the changes, which you need to push to your
remote branch.

Tagging your commits
Git provides you the ability to tag some specific points in your commit history as
being important. Typically, people use this functionality to mark release points of the
code. When you tag a commit, it becomes easy to identify the last commit that went to
a specific release build.

To add a tag to a specific commit, open the History page from Team Explorer. Right
click on the commit that you want to assign a tag, and click on Create Tag from the
context menu, as shown here:

This will open the Commit Details dialog inside the Team Explorer window, with the
complete details of the specific commit. Enter a tag name to it in the appropriate box,
you may want to add a tag message, and then click on the Create Tag button.

Remember that a tag cannot have a blank space and/or any special
characters and it must be unique within the same repository.

Once the tag has been locally created, you will have to push the additional details to
the remote repository so that the tag information is visible to the other team members.
If the same tag name has been already created by some other team member, you won't
be allowed to push the tag details that you have created:

Upon creation of the tag, you will see it marked alongside the commit that you have
selected to perform the tagging operation. In future, when you need to pull the remote
changes up to that commit history, you can utilize it to download the specific file
changes to your local:

Working with Team Projects
Team Foundation Server also supports Team Projects, which is nothing but a
collection of work items, code, tests, and so on, and used by a set of members of a
team to work and track a set of related items.

In this section, we will learn how to use Visual Studio 2017 to connect to a Team
Project, clone an existing project, sync your changes, create code review requests, and
rollback any changes already committed to the repository.

Connecting to a Team
Project
To connect to a Team Project in Visual Studio, open Team Explorer and click on the
Connect... link, as shown in the following screenshot. This will open a page where
you can add the TFS server that you want to connect:

Once you add the server, you will get a list of Team Projects and Git repositories
already hosted on that server. Select the one that you want to connect with. Click on
the Connect button to continue.

Visual Studio Team Services (https://www.visualstudio.com/vso/) provides you with an
online source control repository, where you can create unlimited Git repositories and
Team Projects.

If you have a small team with a maximum of five users, you can use this for free and
won't require any credit card while registering online. When your team grows, you
can move on to a paid service (https://www.visualstudio.com/team-services/pricing) model and
pay only for the users who need access.

https://www.visualstudio.com/vso/
https://www.visualstudio.com/team-services/pricing/

Cloning an existing project
folder
Once you have connected to the server, click on Source Control Explorer under your
Team Explorer. From here, you will be able to clone/download your desired folders
from the repository:

This will open Source Control Explorer. Select the team project from the left-side
panel to view its contents at the right-side panel. Now, right click on the folder that
you want to download and select Get Latest Version from the context menu to
download it:

This will download the entire folder from the server to your local workspace. You can
then modify any file/folder and check-in to the remote repository.

Performing check-out
operation to a file
When you edit a file, it automatically gets checked out to you. In some situations, you
may want to check out a file and optionally lock it to make sure that no one performs
a check-in operation before your changes are checked in.

To manually perform a check-out operation, right click on the file/folder in Solution
Explorer and click on the context menu item Check Out for Edit..., as shown in the
following screenshot:

This will open the Check Out dialog, which will allow you to optionally lock it. From
the Lock type dropdown, you will be allowed to select either of the following options:

Unchanged: Keep any existing lock
Check in: Allow other users to check out but prevent them from checking in

And when you are ready, click on the Check Out button. This will change the status of
your selected files/folders for modification.

Committing your changes to
the repository
Once you perform changes to your files, you may want to commit them to a repository
for the other team members to get the latest changes that you have made. In Team
Projects, it is named as the Check-In process.

To check-in your changes, open Team Explorer and navigate to the Pending Changes
view. Include the files that you would like to check-in and exclude the ones that you
don't want to check-in to the repository. Enter a comment to identify the changes and
optionally add the Work Item ID that you would like to associate with the change set:

From this screen, you can also compare the files with the latest server version or the
workspace version to locally review the changes that you have made. This step is
recommended to make sure that you are committing the changes that you intended to
push.

Right click on the individual files to open the context menu. Click on any of the
following context menu items to compare them:

Compare with Workspace Version: This will compare the changes with the
original one that you last downloaded from the server.
Compare with Latest Version: This will compare the file changes with the
latest version that is available on the server.

When you are ready, click on the Check In button to submit your changes. If there are
any merge conflicts, it will ask you to resolve those first.

Alternatively, you can select the desired files/folders from Solution Explorer or
Source Control Explorer, and click on Check In... from the right-click context menu,
as shown in the following screenshot:

Undoing your local changes
When you want to discard any modified files/folders, right click on them under
Solution Explorer. From the context menu, select Source Control | Undo Pending
Changes..., as shown in the following screenshot:

Make sure to double confirm whether you really want to undo the file/folder. Once
performed, you won't be able to bring back the changes.

Creating code review request
Every product gets its success from the quality of the code and that becomes solid
with a code review. Visual Studio allows you to create a code review request, directly
from Team Explorer, and allows you to catch the defect early as it's in development
stage, thus reducing the overall cost of a product.

To create a code review request, first open the History page of your change sets.
Select the change set that you would like to get reviewed by your other team
members. From the right-click context menu, as shown in the following screenshot,
click on the Request Review menu entry:

This will open the following code review request dialog where you can add one or
more reviewer's name, title of the review request, and the comment/description. Fill in
all the details and when you are ready, click on the Submit Request button:

Rolling back your existing
change set
In case you have checked in a wrong file or submitted a change set which was not
intended to go, you may want to revert it. The condition may also arise when a
specific change set is performing incorrectly in the production code and you would
want to revert that.

Visual Studio allows you to easily perform a rollback of the specific change set. To do
so, open the History page first. Right click on the change set that you want to revert,
and from the context menu, select the entry Rollback Entire Changeset:

You will have to check-in the modified files/folders, which are waiting for the final
commit to complete the revert/rollback process.

Summary
In this chapter, first we learned about source control repositories and the way to install
Git for Visual Studio 2017. Then we discussed in depth how to use Visual Studio
2017 to interact with repositories such as GitHub or TFS.

During the discussion, we covered how to connect to a remote server and create/clone
a remote repository. Then we discussed Git branches, committing changes to a
branch, syncing changes between local and remote repositories, creating Pull Requests
to perform code reviews, and the way to approve and merge the changes to the master
branch.

We have also learned how to perform rebase, Cherry-Pick, tag a commit, and reset
and revert changes. I hope the information was helpful in a broader way.

At the end of this chapter, we have also covered some basic operations on TFS
projects, which includes connecting to TFS server, check-out, check-in, code review
requests, and rollback of any changes.

This book was downloaded from AvaxHome!

Visit my blog for more new books:

www.avxhm.se/blogs/AlenMiler

https://tr.im/avaxhome

Inhaltsverzeichnis

Preface 19
What this book covers 21
What you need for this book 23
Who this book is for 24
Conventions 25
Reader feedback 26
Customer support 27

Downloading the example code 28
Downloading the color images of this book 29
Errata 30
Piracy 31
Questions 32

What is New in Visual Studio 2017 IDE? 33
The new installation experience 35

Overview of the new installation experience 36
Installation using the online installer 38
Creating an offline installer of Visual Studio 2017 42
Installing Visual Studio 2017 from the command line 45
Modifying your existing Visual Studio 2017 installation 48
Uninstalling Visual Studio 2017 installation 49
Signing in to Visual Studio 2017 50

The new features and enhancements to the Visual Studio IDE 52
Overview to the redesigned start page 53
The improved code navigation tool 56
Changes to Find All References of an instance 59
Structural guide lines 61
Editor config 62
The Roaming Extension Manager feature 64
Open folders in a convenient way 66
Lightweight solution loading 68
Connected Services 70
Acquiring tools and features by using In-Product Acquisition 72
The Run to Click feature 73
Improved Attach to Process with process filtering 74
The new exception helper 75
Add conditions to Exception Settings 76
Updates to Diagnostic Tools 77

Summary 78
What is New in C# 7.0? 79

Local functions or nested functions 80
Literal improvements in C# 7.0 83
The new digit separators 85
Getting to know about pattern matching 87

The Is expression with pattern matching 88
Switch statements with pattern matching 90

The ref returns and locals 93
New changes to tuples 95
Changes to the throw expression 98
Changes to the expression-bodied members 99
New changes with the out variables 100
Getting to know about deconstruction syntax 102
Uses of the generalized async return types 104
Summary 105

Building Applications for Windows Using XAML Tools 106
The WPF architecture 108

Presentation Framework 109
Presentation Core 110
Common Language Runtime 111
Media Integration Library 112
OS Core 113
Types of WPF applications 114

The XAML overview 115
Object element syntax 116
Property attribute syntax 117
Property element syntax 118
Content syntax 119
Collection syntax 120
Event attribute syntax 121
Understanding the XAML namespaces 122
Working with inline code in XAML pages 124
The code behind file of an XAML page 125

Building your first WPF application 126
Getting started with WPF project 127
Understanding the WPF project structure 129
Getting familiar with XAML Designer 131
Adding controls in XAML 132
Command-line parameters in WPF application 135

Layouts in WPF 136
Using Grid as a WPF panel 138
Using StackPanel to define stacked layout 140
Using Canvas as a panel 141

Using WPF DockPanel to dock child elements 142
Using the WrapPanel to automatically reposition 144

Using UniformGrid to place elements in uniform cells 145
WPF property system 146
Data binding in WPF 148
Using Converters while data binding 152
Using triggers in WPF 155

Property trigger 156
Multi trigger 157
Data trigger 158
Multidata trigger 159
Event trigger 160

Summary 162
Building Applications for Windows 10 Using UWP Tools 163

Getting started with Universal Windows Platform 165
Generic design principles of UWP apps 166

Effective scaling 167
Effective pixels 168
Universal controls 169
Universal styles 170
Repositioning of controls 171
Resizing the UI 172
Reflowing of UI elements 173
Replacing the UI Elements 174
Revealing the UI elements 175

Getting started with UWP app development 176
Building your first UWP application 177

Setting up the development environment for first use 178
Setting up the developer mode 180
Creating, building, and running the application 182

Designing UWP applications 186
Defining XAML page layouts 187

The relative panels 188
The VariableSizedWrapGrid class 191

Data manipulation in a view 193
The GridView control 194
The ListView control 195
The FlipView control 196

Application designing with the XAML style 197
Defining a style as a resource 198
Inheriting a style from another style 201

Building your own XAML control 202

Creating the custom control 204
Exposing properties from a custom control 207

Generating visual assets using the new Manifest Designer 209
Preparing UWP apps to publish to Windows Store 212
Summary 218

Building Applications with .NET Core 219
Overview of .NET Core 220
Installation of .NET Core with Visual Studio 2017 222
A quick lap around the .NET Core commands 224

Creating a .NET Core console app 225
Creating a .NET Core class library 227
Creating a solution file and adding projects in it 228
Resolving dependencies in the .NET Core application 230
Building a .NET Core project or solution 231
Running a .NET Core application 233
Publishing a .NET Core application 234

Framework-Dependent Deployments 235
Self-Contained Deployments 237

Creating an ASP.NET Core application 239
Creating a unit testing project 241

Creating .NET Core applications using Visual Studio 242
Publishing a .NET Core application using Visual Studio 2017 244

Framework-Dependent Deployments 245
Self-Contained Deployments 247

Creating, building, and publishing a .NET Core web app to Microsoft
Azure 251

Summary 257
Managing NuGet Packages 258

Overview to NuGet package manager 259
Creating a NuGet package library for .NET Framework 262

Creating the metadata in NuGet spec file 263
Building the NuGet Package 266
Building NuGet Package for multiple .NET Frameworks 267
Building NuGet package with dependencies 269

Creating a NuGet package library for .NET Standard 271
Editing the metadata of the project 272
Building the NuGet Package from Visual Studio 2017 274
Building a NuGet Package with package references 275

Testing the NuGet package locally 277
Publishing NuGet package to NuGet store 282
Managing your NuGet packages 284

Summary 286
Debugging Applications with Visual Studio 2017 287

Overview of Visual Studio debugger tools 288
Debugging C# source code using breakpoints 290

Organizing breakpoints in code 291
Debugger execution steps 293
Adding conditions to breakpoints 296

Using conditional expressions 297
Using breakpoint hit counters 298
Using breakpoint filters 299

Adding actions to breakpoints 300
Adding labels to breakpoints 302
Managing breakpoints using the Breakpoints window 303
Exporting/importing breakpoints 304

Using the Data Tips while debugging 305
Pinning/unpinning Data Tips for better debugging 306
Inspecting Data Tips in various watch windows 307

The Autos window 308
The Locals window 309
The Watch window 310

Using visualizers to display complex Data Tips 313
Importing/exporting Data Tips 315
Using debugger to display debugging information 316

Using the Immediate Window while debugging your code 318
Using the Visual Studio Diagnostics Tools 319
Using the new Run to Click feature in Visual Studio 2017 323
Debugging an already running process 324
Debugging XAML application UI 326

Overview of XAML debugging 327
Inspecting XAML properties on Live Visual Tree 329
Enabling UI debugging tools for XAML 334

Summary 335
Live Unit Testing with Visual Studio 2017 336

Overview of Live Unit Testing in Visual Studio 2017 337
Unit testing framework support 338
Understanding the coverage information shown in editor 339
Integration of Live Unit Testing in Test Explorer 340

Configuring Visual Studio 2017 for Live Unit Testing 341
Installing Live Unit Testing component 342
General settings of Live Unit Testing in Visual Studio 343
Starting/pausing the Live Unit Testing 344
Including and excluding test methods/projects 346

Unit testing with Visual Studio 2017 348
Getting started with configuring the testing project 349
Understanding the package config 351
Live Unit Testing with an example 352

Navigating to failed tests 355
Summary 356

Accelerate Cloud Development with Microsoft Azure 357
Understanding the cloud computing basics 358

Infrastructure as a Service 360
Platform as a Service 361
Software as a Service 362

Creating your free Azure account 363
Configuring Visual Studio 2017 for Azure development 364
Creating an Azure website from portal 366

Creating a web application 367
Creating an App Service plan 370

Managing Azure websites (Web Apps) from the portal 371
Creating an Azure website from Visual Studio 374

Creating an ASP.NET Web Application 375
Publishing the web application to cloud 377

Updating an existing Azure website from Visual Studio 381
Building a Mobile App Service 383

Creating Azure Mobile App 384
Preparing Azure Mobile App for data connectivity 385
Adding SQL data connection 386
Creating a SQL Database 387

Integrating Mobile App Service in a Windows application 390
Creating the Model and Service Client 391
Integrating the API call 392

Scaling App Service plan 396
Summary 398

Working with Source Controls 399
Working with Git repositories 401

Installing Git for Visual Studio 2017 402
Connecting to the source control servers 403
Getting started with Git repositories 404

Creating a new repository 405
Cloning an existing repository 406
Reviewing the Git configuration settings 408

Working with Git branches 409
Creating a new local branch 410

Switching to a different branch 411
Pushing a local branch to remote 412
Deleting an existing branch 413

Working with changes, staging, and commits 414
Staging changes to local repository 415

Committing changes to the local repository 416
Discarding uncommitted changes 417
Amending message to an existing commit 418

Syncing changes between local and remote repositories 419
Pushing changes to the remote repository 420
Fetching changes available in the remote repository 421
Merging changes available in the remote repository to the
local repository 422

Resolving merge conflicts 423
Working with Pull Requests for code review 425

Creating Pull Requests for code review 426
Reviewing an existing Pull Request 427
Merging a Pull Request 429

Working with Git commit history 430
Rebasing changes to rewrite the commit history 431
Copying commits using Cherry-Pick 433

Undoing your changes 435
Resetting a local branch to a previous state 436
Reverting changes from remote branch 438

Tagging your commits 439
Working with Team Projects 441

Connecting to a Team Project 442
Cloning an existing project folder 443
Performing check-out operation to a file 444
Committing your changes to the repository 445
Undoing your local changes 447
Creating code review request 448
Rolling back your existing change set 449

Summary 450

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	What is New in Visual Studio 2017 IDE?
	The new installation experience
	Overview of the new installation experience
	Installation using the online installer
	Creating an offline installer of Visual Studio 2017
	Installing Visual Studio 2017 from the command line
	Modifying your existing Visual Studio 2017 installation
	Uninstalling Visual Studio 2017 installation
	Signing in to Visual Studio 2017

	The new features and enhancements to the Visual Studio IDE
	Overview to the redesigned start page
	The improved code navigation tool
	Changes to Find All References of an instance
	Structural guide lines
	Editor config
	The Roaming Extension Manager feature
	Open folders in a convenient way
	Lightweight solution loading
	Connected Services
	Acquiring tools and features by using In-Product Acquisition
	The Run to Click feature
	Improved Attach to Process with process filtering
	The new exception helper
	Add conditions to Exception Settings
	Updates to Diagnostic Tools

	Summary

	What is New in C# 7.0?
	Local functions or nested functions
	Literal improvements in C# 7.0
	The new digit separators
	Getting to know about pattern matching
	The Is expression with pattern matching
	Switch statements with pattern matching

	The ref returns and locals
	New changes to tuples
	Changes to the throw expression
	Changes to the expression-bodied members
	New changes with the out variables
	Getting to know about deconstruction syntax
	Uses of the generalized async return types
	Summary

	Building Applications for Windows Using XAML Tools
	The WPF architecture
	Presentation Framework
	Presentation Core
	Common Language Runtime
	Media Integration Library
	OS Core
	Types of WPF applications

	The XAML overview
	Object element syntax
	Property attribute syntax
	Property element syntax
	Content syntax
	Collection syntax
	Event attribute syntax
	Understanding the XAML namespaces
	Working with inline code in XAML pages
	The code behind file of an XAML page

	Building your first WPF application
	Getting started with WPF project
	Understanding the WPF project structure
	Getting familiar with XAML Designer
	Adding controls in XAML
	Command-line parameters in WPF application

	Layouts in WPF
	Using Grid as a WPF panel
	Using StackPanel to define stacked layout
	Using Canvas as a panel
	Using WPF DockPanel to dock child elements
	Using the WrapPanel to automatically reposition
	Using UniformGrid to place elements in uniform cells

	WPF property system
	Data binding in WPF
	Using Converters while data binding
	Using triggers in WPF
	Property trigger
	Multi trigger
	Data trigger
	Multidata trigger
	Event trigger

	Summary

	Building Applications for Windows 10 Using UWP Tools
	Getting started with Universal Windows Platform
	Generic design principles of UWP apps
	Effective scaling
	Effective pixels
	Universal controls
	Universal styles
	Repositioning of controls
	Resizing the UI
	Reflowing of UI elements
	Replacing the UI Elements
	Revealing the UI elements

	Getting started with UWP app development

	Building your first UWP application
	Setting up the development environment for first use
	Setting up the developer mode
	Creating, building, and running the application

	Designing UWP applications
	Defining XAML page layouts
	The relative panels
	The VariableSizedWrapGrid class

	Data manipulation in a view
	The GridView control
	The ListView control
	The FlipView control

	Application designing with the XAML style
	Defining a style as a resource
	Inheriting a style from another style

	Building your own XAML control
	Creating the custom control
	Exposing properties from a custom control

	Generating visual assets using the new Manifest Designer
	Preparing UWP apps to publish to Windows Store
	Summary

	Building Applications with .NET Core
	Overview of .NET Core
	Installation of .NET Core with Visual Studio 2017
	A quick lap around the .NET Core commands
	Creating a .NET Core console app
	Creating a .NET Core class library
	Creating a solution file and adding projects in it
	Resolving dependencies in the .NET Core application
	Building a .NET Core project or solution
	Running a .NET Core application
	Publishing a .NET Core application
	Framework-Dependent Deployments
	Self-Contained Deployments

	Creating an ASP.NET Core application
	Creating a unit testing project

	Creating .NET Core applications using Visual Studio
	Publishing a .NET Core application using Visual Studio 2017
	Framework-Dependent Deployments
	Self-Contained Deployments

	Creating, building, and publishing a .NET Core web app to Microsoft Azure
	Summary

	Managing NuGet Packages
	Overview to NuGet package manager
	Creating a NuGet package library for .NET Framework
	Creating the metadata in NuGet spec file
	Building the NuGet Package
	Building NuGet Package for multiple .NET Frameworks
	Building NuGet package with dependencies

	Creating a NuGet package library for .NET Standard
	Editing the metadata of the project
	Building the NuGet Package from Visual Studio 2017
	Building a NuGet Package with package references

	Testing the NuGet package locally
	Publishing NuGet package to NuGet store
	Managing your NuGet packages
	Summary

	Debugging Applications with Visual Studio 2017
	Overview of Visual Studio debugger tools
	Debugging C# source code using breakpoints
	Organizing breakpoints in code
	Debugger execution steps
	Adding conditions to breakpoints
	Using conditional expressions
	Using breakpoint hit counters
	Using breakpoint filters

	Adding actions to breakpoints
	Adding labels to breakpoints
	Managing breakpoints using the Breakpoints window
	Exporting/importing breakpoints

	Using the Data Tips while debugging
	Pinning/unpinning Data Tips for better debugging
	Inspecting Data Tips in various watch windows
	The Autos window
	The Locals window
	The Watch window

	Using visualizers to display complex Data Tips
	Importing/exporting Data Tips
	Using debugger to display debugging information

	Using the Immediate Window while debugging your code
	Using the Visual Studio Diagnostics Tools
	Using the new Run to Click feature in Visual Studio 2017
	Debugging an already running process
	Debugging XAML application UI
	Overview of XAML debugging
	Inspecting XAML properties on Live Visual Tree
	Enabling UI debugging tools for XAML

	Summary

	Live Unit Testing with Visual Studio 2017
	Overview of Live Unit Testing in Visual Studio 2017
	Unit testing framework support
	Understanding the coverage information shown in editor
	Integration of Live Unit Testing in Test Explorer

	Configuring Visual Studio 2017 for Live Unit Testing
	Installing Live Unit Testing component
	General settings of Live Unit Testing in Visual Studio
	Starting/pausing the Live Unit Testing
	Including and excluding test methods/projects

	Unit testing with Visual Studio 2017
	Getting started with configuring the testing project
	Understanding the package config
	Live Unit Testing with an example

	Navigating to failed tests
	Summary

	Accelerate Cloud Development with Microsoft Azure
	Understanding the cloud computing basics
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Creating your free Azure account
	Configuring Visual Studio 2017 for Azure development
	Creating an Azure website from portal
	Creating a web application
	Creating an App Service plan

	Managing Azure websites (Web Apps) from the portal
	Creating an Azure website from Visual Studio
	Creating an ASP.NET Web Application
	Publishing the web application to cloud

	Updating an existing Azure website from Visual Studio
	Building a Mobile App Service
	Creating Azure Mobile App
	Preparing Azure Mobile App for data connectivity
	Adding SQL data connection
	Creating a SQL Database

	Integrating Mobile App Service in a Windows application
	Creating the Model and Service Client
	Integrating the API call

	Scaling App Service plan
	Summary

	Working with Source Controls
	Working with Git repositories
	Installing Git for Visual Studio 2017
	Connecting to the source control servers
	Getting started with Git repositories
	Creating a new repository
	Cloning an existing repository
	Reviewing the Git configuration settings

	Working with Git branches
	Creating a new local branch
	Switching to a different branch
	Pushing a local branch to remote
	Deleting an existing branch

	Working with changes, staging, and commits
	Staging changes to local repository
	Committing changes to the local repository
	Discarding uncommitted changes
	Amending message to an existing commit

	Syncing changes between local and remote repositories
	Pushing changes to the remote repository
	Fetching changes available in the remote repository
	Merging changes available in the remote repository to the local repository
	Resolving merge conflicts

	Working with Pull Requests for code review
	Creating Pull Requests for code review
	Reviewing an existing Pull Request
	Merging a Pull Request

	Working with Git commit history
	Rebasing changes to rewrite the commit history
	Copying commits using Cherry-Pick

	Undoing your changes
	Resetting a local branch to a previous state
	Reverting changes from remote branch

	Tagging your commits

	Working with Team Projects
	Connecting to a Team Project
	Cloning an existing project folder
	Performing check-out operation to a file
	Committing your changes to the repository
	Undoing your local changes
	Creating code review request
	Rolling back your existing change set

	Summary

