
Brett Powell

BIRMINGHAM - MUMBAI

Expert techniques for effective
data analytics and business intelligence

Mastering
Microsoft Power BI

Copyright © 2018 Packt Publishing

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-723-3

www.packtpub.com

Mastering
Microsoft Power BI

http://www.packtpub.com

Preface 1

Chapter 1: Planning Power BI Projects 7
Power BI deployment modes 8

Corporate BI 8
Self-Service Visualization 10
Self-Service BI 10
Choosing a deployment mode 11

Project discovery and ingestion 12
Sample Power BI project template 13

Sample template – Adventure Works BI 13
Power BI project roles 15

Dataset designer 16
Report authors 17
Power BI admin 18
Project role collaboration 19

Power BI licenses 20
Power BI license scenarios 22

Power BI Premium features 23
Data warehouse bus matrix 24
Dataset design process 25

Selecting the business process 26
Declaring the grain 27
Identifying the dimensions 28
Defining the facts 29

Data profiling 30
Dataset planning 34

Data transformations 34
Import versus DirectQuery 37

Import mode 39
DirectQuery mode 40

Sample project analysis 40
Summary 41

Chapter 2: Connecting to Sources and Transforming Data with M 43
Query design per dataset mode 43

Import mode dataset queries 45
DirectQuery dataset queries 46

Data sources 47
Authentication 48

Contents

Data source settings 49
Privacy levels 51
Power BI as a data source 54
Power BI Desktop options 55

Global options 56
CURRENT FILE options 57

SQL views 58
SQL views versus M queries 60
SQL view examples 62

Date dimension view 63
Mark As Date Table 65
Product Dimension view 67

Slowly-changing dimensions 68
M queries 68

Data Source Parameters 70
Staging Queries 72

DirectQuery staging 74
Fact and dimension queries 74

Source Reference Only 75
M query summary 76

Excel workbook – Annual Sales Plan 76
Data types 78

Item access in M 80
DirectQuery report execution 81

Bridge Tables Queries 81
Parameter Tables 82
Security Tables 85

Query folding 86
Partial query folding 87

M Query examples 88
Trailing three years filter 88
Customer history column 89

Derived column data types 91
Product dimension integration 92
R script transformation 95

M editing tools 96
Advanced Editor 97
Visual Studio Code 98
Visual Studio 100

Summary 101

Chapter 3: Designing Import and DirectQuery Data Models 102
Dataset layers 103

Dataset objectives 104
Competing objectives 106
External factors 107

The Data Model 107
The Relationships View 107
The Data View 109
The Report View 110
Fact tables 111

Fact table columns 112
Fact column data types 114
Fact-to-dimension relationships 116

Dimension tables 120
Hierarchies 121
Custom sort 123

Bridge tables 125
Parameter tables 126

Measure groups 126
Last refreshed date 128
Measure support logic 129

Relationships 131
Uniqueness 131
Ambiguity 132
Single-direction relationships 133

Direct flights only 134
Bidirectional relationships 135

Shared dimensions 136
Date dimensions 138

The CROSSFILTER function 139
Model metadata 141

Visibility 141
Column metadata 142

Default Summarization 142
Data format 143
Data category 143

Field descriptions 145
Optimizing performance 146

Import 147
Columnar compression 147
Memory analysis via DMVs 149

DirectQuery 151
Optimized DAX functions 151
Columnstore and HTAP 152

Summary 153

Chapter 4: Developing DAX Measures and Security Roles 154
DAX measures 155

Filter context 155
SQL equivalent 157

Measure evaluation process 158
Row context 159

Scalar and table functions 161
The CALCULATE() function 162

Related tables 163
The FILTER() function 164

DAX variables 166
Base measures 170

Measure support expressions 172
KPI Targets 173
Current and prior periods 174

Date intelligence metrics 176
Current versus prior and growth rates 179
Rolling periods 179

Dimension metrics 181
Missing dimensions 181

Ranking metrics 183
Dynamic ranking measures 185

Security roles 187
Dynamic row-level security 192

Performance testing 194
DAX Studio 195

Tracing a Power BI dataset via DAX Studio 196
Summary 200

Chapter 5: Creating and Formatting Power BI Reports 202
Report planning 203

Power BI report architecture 207
Live connections to Power BI datasets 209

Customizing Live connection reports 213
Switching source datasets 214

Visualization best practices 215
Visualization anti-patterns 220

Choosing the visual 222
Tables versus charts 223
Chart selection 225

Visual interactions 227
Edit interactions 228
What-if parameters 229

Slicers 232
Slicer synchronization 234
Custom slicer parameters 235

Report filter scopes 237
Report filter conditions 239
Report and page filters 241

Page filter or slicer? 243
Relative date filtering 244

Visual-level filtering 246
Top N visual-level filters 248

Visualization formatting 249
Visual-level formatting 249
Line and column charts 251
Tooltips 252

Report page tooltips 253
Column and line chart conditional formatting 254

Column chart conditional formatting 255
Line chart conditional formatting 256

Table and matrix 257
Table and matrix conditional formatting 258
Values as rows 261

Scatter charts 261
Map visuals 263

Bubble map 264
Filled map 266

Mobile-optimized reports 267
Responsive visuals 270

Report design summary 271
Summary 273

Chapter 6: Applying Custom Visuals, Animation, and Analytics 274
Drillthrough report pages 275

Custom labels and the back button 277
Multi-column drillthrough 279

Bookmarks 281
Selection pane and the Spotlight property 283
Custom report navigation 285
View mode 287

ArcGIS Map visual for Power BI 288
ArcGIS Maps Plus subscriptions 293

Waterfall chart breakdown 294
Analytics pane 296

Trend Line 297
Forecast line 299

Quick Insights 302
Explain the increase/decrease 303

Custom visuals 305
Adding a custom visual 306
Power KPI visual 311
Chiclet Slicer 316
Impact Bubble Chart 318
Dot Plot by Maq Software 319

Animation and data storytelling 321

Play axis for scatter charts 321
Pulse Chart 323

Summary 325

Chapter 7: Designing Power BI Dashboards and Architectures 326
Dashboards versus reports 327
Dashboard design 329

Visual selection 332
Layout 335

Navigation pane 335
Full screen mode 336

Supporting tiles 337
Custom date filters 339

Multi-dashboard architectures 341
Single-dashboard architecture 342
Multiple-dashboard architecture 343
Organizational dashboard architecture 344
Multiple datasets 346

Dashboard tiles 348
Tile details and custom links 350
Images and text boxes 352
SQL Server Reporting Services 353
Excel workbooks 357

Live report pages 360
Mobile-optimized dashboards 363
Summary 365

Chapter 8: Managing Application Workspaces and Content 366
Application workspaces 367

Workspace roles and rights 369
Workspace admins 369
Workspace members 370

My Workspace 373
Staged deployments 374

Workspace datasets 376
Power BI REST API 377

Client application ID 378
Workspace and content IDs 379
PowerShell sample scripts 380

Dashboard data classifications 383
Version control 386

OneDrive for Business version history 387
Source control for M and DAX code 389

Metadata management 391
Field descriptions 392

Creating descriptions 392

View field descriptions 393
Metadata reporting 396

Query field descriptions 396
Standard metadata reports 398

Server and database parameters 398
Querying the DMVs from Power BI 399
Integrating and enhancing DMV data 400
Metadata report pages 401

Summary 402

Chapter 9: Managing the On-Premises Data Gateway 403
On-premises data gateway planning 404

Top gateway planning tasks 408
Determining whether a gateway is needed 408
Identifying where the gateway should be installed 409
Defining the gateway infrastructure and hardware requirements 410

On-premises data gateway versus personal mode 412
Gateway clusters 414
Gateway architectures 416
Gateway security 420
Gateway configuration 422

The gateway service account 425
TCP versus HTTPS mode 426

Managing gateway clusters 426
Gateway administrators 428
Gateway data sources and users 429
PowerShell support for gateway clusters 430

Troubleshooting and monitoring gateways 431
Restoring, migrating, and taking over a gateway 431
Gateway log files 432
Performance Monitor counters 434

Scheduled data refresh 435
DirectQuery datasets 436

Single sign-on to DirectQuery sources via Kerberos 437
Live connections to Analysis Services models 438

Azure Analysis Services refresh 439
Dashboard cache refresh 441
Summary 443

Chapter 10: Deploying the Power BI Report Server 444
Planning for the Power BI Report Server 445

Feature differences with the Power BI service 447
Parity with SQL Server Reporting Services 449
Data sources and connectivity options 451
Hardware and user licensing 452

Pro licenses for report authors 454

Alternative and hybrid deployment models 454
Report Server reference topology 456

Installation 457
Hardware and software requirements 458

Analysis Services Integrated 459
Retrieve the Report Server product key 460
Migrating from SQL Server Reporting Services 462

Configuration 463
Service Account 465
Remote Report Server Database 465
Office Online Server for Excel Workbooks 467

Upgrade cycles 468
Report Server Desktop Application 469

Running desktop versions side by side 470
Report Server Web Portal 471

Scheduled data refresh 473
Data source authentication 474

Power BI mobile applications 475
Report server administration 476

Securing Power BI report content 477
Execution logs 478

Scale Power BI Report Server 480
Summary 481

Chapter 11: Creating Power BI Apps and Content Distribution 482
Content distribution methods 483
Power BI apps 484

Licensing apps 484
App deployment process 485
User permissions 487
Publishing apps 489
Installing apps 491
Apps on Power BI mobile 494
App updates 494
Dataset-to-workspace relationship 495

Self-Service BI workspace 496
Self-Service content distribution 497
Risks to Self-Service BI 497

Sharing dashboards and reports 498
Sharing scopes 502
Sharing versus Power BI apps 502

SharePoint Online embedding 503
Custom application embedding 506
Publish to web 507

Data alerts 509
Microsoft Flow integration 511

Email Subscriptions 514
Analyze in Excel 515

Power BI Publisher for Excel 518
Summary 519

Chapter 12: Administering Power BI for an Organization 520
Data governance for Power BI 521

Implementing data governance 523
Azure Active Directory 524

Azure AD B2B collaboration 525
Licensing external users 528

Conditional access policies 529
Power BI Admin Portal 531

Usage metrics 533
Users and Audit logs 533
Tenant settings 534
Embed Codes 536
Organizational Custom visuals 536

Usage metrics reports 539
Audit logs 543

Audit log monitoring solutions 547
Audit logs solution template 550

Power BI Premium capacities 553
Capacity allocation 555
Create, size, and monitor capacities 557

Change capacity size 559
Monitor premium capacities 559

App workspace assignment 561
Capacity admins 563

Summary 564

Chapter 13: Scaling with Premium and Analysis Services 565
Power BI Premium 566

Power BI Premium capabilities 567
Corporate Power BI datasets 569

Limitation of Corporate BI datasets – Reusability 569
Premium capacity nodes 571

Frontend versus backend resources 573
Power BI Premium capacity allocation 575

Corporate and Self-Service BI capacity 575
Power BI Premium resource utilization 577

Data model optimizations 578
Report and visualization optimizations 580

Premium capacity estimations 581
Analysis Services 584

Analysis Services Models versus Power BI Desktop 585
Scale 587
Usability 589
Development and management tools 591

Azure Analysis Services versus SSAS 592
SSAS to Azure AS Migration 594

Provision Azure Analysis Services 596
Migration of Power BI Desktop to Analysis Services 598
Summary 604

Index 608

Preface
Microsoft Power BI is a leading business intelligence and analytics platform that supports
both self-service data visualization and exploration as well as enterprise BI deployments.
Power BI consists of cloud services, mobile applications, a data modeling and report
authoring application, and other utilities, including the On-premises data gateway.
Additionally, organizations can deploy Power BI reports on-premise via the Power BI
Report Server and scale their deployments with Power BI Premium capacity and Analysis
Services.

This book provides an end-to-end analysis of Power BI tools and features, from planning a
Power BI project to distributing Power BI apps to large groups of users. You'll be
familiarized with all the fundamental concepts and see how Power BI datasets, reports, and
dashboards can be designed to deliver insights and rich, interactive experiences. You'll also
become knowledgeable about management and administration topics such as the allocation
of Power BI Premium capacities, Azure Active Directory security groups, conditional access
policies, and staged deployments of Power BI content. This book will encourage you to take
advantage of these powerful features and follow thoughtful, consistent practices in
deploying Power BI for your organization.

Who this book is for
This book is intended for business intelligence professionals responsible for either the
development of Power BI solutions or the management and administration of a Power BI
deployment. BI developers can use this as a reference guide to features and techniques to
enhance their solutions. Likewise, BI managers interested in a broad conceptual
understanding, as well as processes and practices to inform their delivery of Power BI, will
find this a useful resource. Experience of creating content on Power BI Desktop and sharing
content on the Power BI service will be helpful.

What this book covers
Chapter 1, Planning Power BI Projects, discusses alternative deployment modes for Power
BI, team and project roles, and licensing. Additionally, an example project template and its
corresponding planning and dataset design processes are described.

[2]

Chapter 2, Connecting to Sources and Transforming Data with M, depicts the data access layer
supporting a Power BI dataset, including data sources and fact and dimension table queries.
Concepts of the Power Query M language, such as query folding and parameters, are
explained and examples of custom M queries involving conditional and dynamic logic are
given.

Chapter 3, Designing Import and DirectQuery Data Models, reviews the components of the
data model layer and design techniques in support of usability, performance, and other
objectives. These topics include relationship cross-filtering, custom sort orders, hierarchies,
and metadata.

Chapter 4, Developing DAX Measures and Security Roles, covers the implementation of
analysis expressions reflecting business definitions and common analysis requirements.
Primary DAX functions, concepts, and use cases such as date intelligence, row-level security
roles, and performance testing are examined.

Chapter 5, Creating and Formatting Power BI Reports, describes a report planning process,
data visualization practices, and report design fundamentals, including visual selection and
filter scopes. Top report development features, such as slicer visuals, tool tips, and
conditional formatting are also reviewed.

Chapter 6, Applying Custom Visuals, Animation, and Analytics, examines powerful interactive
and analytical features, including drillthrough report pages, bookmarks, the Analytics pane,
ArcGIS Maps, and the waterfall charts. Additionally, examples of custom visuals, such as
the Power KPI, and the capabilities of animation to support data storytelling are provided.

Chapter 7, Designing Power BI Dashboards and Architectures, provides guidance on visual
selection, layout, and supporting tiles to drive effective dashboards. Alternative multi-
dashboard architectures, such as an organizational dashboard architecture, are reviewed, is
the configuration of dashboard tiles and mobile optimized dashboards.

Chapter 8, Managing Application Workspaces and Content, features the role and
administration of app workspaces in the context of Power BI solutions and staged
deployments. Additionally, the Power BI REST API, content management features, and
practices are reviewed, including field descriptions and version history.

Chapter 9, Managing the On-Premises Data Gateway, covers top gateway planning
considerations, including alternative gateway architectures, workloads, and hardware
requirements. Gateway administration processes and tools are described, such as the
manage gateways portal, gateway log files, and PowerShell Gateway commands.

[3]

Chapter 10, Deploying the Power BI Report Server, contrasts the Power BI Report Server with
the Power BI cloud service and provides guidance on deployment topics such as licensing,
reference topology, configuration, administration, and upgrade cycles.

Chapter 11, Creating Power BI Apps and Content Distribution, walks through the process of
publishing and updating apps for groups of users. Additionally, other common distribution
methods are covered, such as the sharing of reports and dashboards, email subscriptions,
data-alert-driven emails, and embedding Power BI content in SharePoint Online.

Chapter 12, Administering Power BI for an Organization, highlights data governance for self-
service and corporate BI, Azure Active Directory features such as Conditional Access
Policies, and the Power BI admin portal. Details are provided about configuring Power BI
service tenant settings, managing Power BI Premium capacities, and the tools available to
monitor Power BI activities.

Chapter 13, Scaling with Premium and Analysis Services, reviews the capabilities of Power BI
Premium and alternative methods for allocating premium capacity. Additionally, Power BI
datasets are contrasted with Analysis Services models, Azure Analysis Services is
contrasted with SQL Server Analysis Services, and the migration of a Power BI dataset to an
Analysis Services model is described.

To get the most out of this book
A Power BI Pro license and access to the Power BI service is necessary to follow many of the
topics and examples in this book. The assignment of the Power BI Service Administrator
role within the Office 365 admin center, as well as administrative access to an On-premises
data gateway, would also be helpful for the second half of this book. It's assumed that
readers are familiar with the main user interfaces of Power BI Desktop and have some
background in business intelligence or information technology.

The primary data source for the examples in this book was the AdventureWorks data
warehouse sample database for SQL Server 2016 CTP3. A SQL Server 2017 Developer
Edition database engine instance was used to host the sample database. For the import
mode dataset, an Excel workbook stored the sales plan data. For the DirectQuery dataset,
the sales plan data was stored in the sample SQL Server database.

[4]

The AdventureWorksDW2016CTP3 sample database can be downloaded
from the following URL:
https:/ /www. microsoft. com/ en-us/ download/ details.aspx?id=49502.

Editions of SQL Server 2017 are available for download from the following
URL:
https:/ /www. microsoft. com/ en-us/ sql- server/ sql-server-downloads.

The Power BI Desktop files and specific queries and scripts utilized in the book are included
in the code bundle. However, the source data and database are not included in the code
bundle. Additionally, the database used by the book contains objects not included in the
downloadable sample database, such as SQL views for each fact and dimension table.
Therefore, even with access to a SQL Server 2017 database engine instance and the sample
AdventureWorks data warehouse database, the examples in the book cannot be completely
reproduced.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/download/details.aspx?id=49502
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

[5]

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering- Microsoft- Power- BI. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/MasteringMicrosoftPowerBI

_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

 SELECT
P.ProductKey as 'Product Key'
, P.ProductAlternateKey as 'Product Alternate Key'
, P.EnglishProductName AS 'Product Name'
, ISNULL(S.EnglishProductSubcategoryName, 'Undefined') 'Product
Subcategory'

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Internet Sales Amount (Import) =
SUMX('Internet Sales','Internet Sales'[Order Quantity]*'Internet
Sales'[Unit Price])
Internet Sales Amount (DirectQuery) =
SUM('Internet Sales'[Sales Amount])

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/Mastering-Microsoft-Power-BI
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/MasteringMicrosoftPowerBI_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMicrosoftPowerBI_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringMicrosoftPowerBI_ColorImages.pdf

[6]

Warnings or important notes appear like this.

Tips and tricks appear like this.

1
Planning Power BI Projects

In this chapter, we will walk through a Power BI project planning process from the
perspective of an organization with an on-premises data warehouse and a supporting
nightly extract-transform-load (ETL) process but no existing SSAS servers or IT-approved
Power BI datasets. The business intelligence team will be responsible for the development
of a Power BI dataset, including source queries, relationships, and metrics, in addition to a
set of Power BI reports and dashboards.

Almost all business users will consume the reports and dashboards in the Power BI online
service and via the Power BI mobile apps, but a few business analysts will also require the
ability to author Power BI and Excel reports for their teams based on the new dataset.
Power BI Pro licenses and Power BI Premium capacity will be used to support the
development, scalability, and distribution requirements of the project.

In this chapter, we will review the following topics:

Power BI deployment modes
Project discovery and ingestion
Power BI project roles
Power BI licenses
Dataset design process
Dataset planning
Import and DirectQuery datasets

Planning Power BI Projects Chapter 1

[8]

Power BI deployment modes
Organizations can choose to deliver and manage their Power BI deployment through IT and
standard project workflows or to empower certain business users to take advantage of Self-
Service BI capabilities with tools such as Power BI Desktop and Excel. In many scenarios, a
combination of IT resources, such as the On-premises data gateway and Power BI Premium
capacity, can be combined with the business users' knowledge of requirements and
familiarity with data analysis and visualization.

Organizations may also utilize alternative deployment modes per project or with different
business teams based on available resources and the needs of the project. The greatest value
from Power BI deployments can be obtained when the technical expertise and governance
of Corporate BI solutions are combined with the data exploration and analysis features,
which can be made available to all users. The scalability and accessibility of Power BI
solutions to support thousands of users, including read-only users who have not been
assigned Power BI Pro licenses, is made possible by provisioning Power BI Premium
capacity, as described in the final three chapters of this book.

Corporate BI
The Corporate BI delivery approach in which the BI team develops and maintains both the
Power BI dataset (data model) and the required report visualizations is a common
deployment option, particularly for large-scale projects and projects with executive-level
sponsors or stakeholders. This is the approach followed in this chapter and throughout this
book, as it offers maximum control over top BI objectives, such as version control,
scalability, usability, and performance.

However, as per the following Power BI deployment modes diagram, there are other
approaches in which business teams own or contribute to the solution:

Planning Power BI Projects Chapter 1

[9]

Power BI deployment modes

A Power BI dataset is a semantic data model composed of data source queries, relationships
between dimensions and fact tables, and measurement calculations. The Power BI Desktop
application can be used to create datasets as well as merely connect to existing datasets to
author Power BI reports. The Power BI Desktop shares the same data retrieval and
modeling engines as the latest version of SQL Server Analysis Services (SSAS) in tabular
mode and Azure Analysis Services, Microsoft's enterprise BI modeling solution. Many BI/IT
organizations utilize Analysis Services models as the primary data source for Power BI
projects and it's possible to migrate Power BI Desktop files (.pbix) to Analysis Services
models, as described in Chapter 13, Scaling with Premium and Analysis Services.

Self-service approaches can benefit both IT and business teams, as they can reduce IT
resources, project timelines, and provide the business with a greater level of flexibility as
their analytical needs change. Additionally, Power BI projects can be migrated across
deployment modes over time as required skills and resources change. However, greater
levels of self-service and shared ownership structures can also increase the risk of
miscommunication and introduce issues of version control, quality, and consistency.

Planning Power BI Projects Chapter 1

[10]

Self-Service Visualization
In the Self-Service Visualization approach, the dataset is created and maintained by the IT
organization's BI team, but certain business users with Power BI Pro licenses create reports
and dashboards for consumption by other users. In many scenarios, business analysts are
already comfortable with authoring reports in Power BI Desktop (or, optionally, Excel) and
can leverage their business knowledge to rapidly develop useful visualizations and
insights. Given ownership of the dataset, the BI team can be confident that only curated
data sources and standard metric definitions are used in reports and can ensure that the
dataset remains available, performant, and updated, or refreshed as per business
requirements.

Self-Service BI
In the Self-Service BI approach, the BI organization only contributes essential infrastructure
and monitoring, such as the use of an On-premises data gateway and possibly Power
Premium capacity to support the solution. Since the business team maintains control of both
the dataset and the visualization layer, the business team has maximum flexibility to tailor
its own solutions including data source retrieval, transformation, and modeling. This
flexibility, however, can be negated by a lack of technical skills (for example, DAX
measures) and a lack of technical knowledge such as the relationships between tables in a
database. Additionally, business-controlled datasets can introduce version conflicts with
corporate semantic models and generally lack the resilience, performance, and scalability of
IT-owned datasets.

It's usually necessary or at least beneficial for BI organizations to own the
Power BI datasets or at least the datasets which support important, widely
distributed reports and dashboards. This is primarily due to the required
knowledge of dimensional modeling best practices and the necessary
technical skills in the M and DAX functional languages to develop
sustainable datasets. Additionally, BI organizations require control of
datasets to implement row-level security (RLS) and to maintain version
control. Therefore, small datasets initially created by business teams are
often migrated to the BI team and either integrated into larger models or
rationalized given the equivalent functionality from an existing dataset.

Planning Power BI Projects Chapter 1

[11]

Choosing a deployment mode
Larger organizations with experience of deploying and managing Power BI often utilize a
mix of deployment modes depending on the needs of the project and available resources.
For example, a Corporate BI solution with a set of standard IT developed reports and
dashboards distributed via a Power BI app may be extended by assigning Power BI Pro
licenses to certain business users who have experience or training in Power BI report
design. These users could then leverage the existing data model and business definitions
maintained by IT to create new reports and dashboards and distribute this content in a
separate Power BI app to distinguish ownership.

An app workspace is simply a container of datasets, reports, and
dashboards in the Power BI cloud service that can be distributed to large
groups of users. A Power BI app represents the published version of an
app workspace in the Power BI service and workspace. Members can
choose which items in the workspace are included in the published Power
BI app. See Chapter 8, Managing Application Workspaces and Power BI
Content, and Chapter 11, Creating Power BI Apps and Content
Distribution, for greater detail on app workspaces and apps, respectively.

Another common scenario is a proof-of-concept (POC) or small-scale self-service solution
developed by a business user or a team to be transitioned to a formal, IT-owned, and
managed solution. Power BI Desktop's rich graphical interfaces at each layer of the
application (query editor, data model, and report canvas) make it possible and often easy
for users to create useful models and reports with minimal experience and little to no code.
It's much more difficult, of course, to deliver consistent insights across business functions
(that is, finance, sales, and marketing) and at scale in a secure, governed environment. The
IT organization can enhance the quality and analytical value of these assets as well as
provide robust governance and administrative controls to ensure that the right data is being
accessed by the right people.

Planning Power BI Projects Chapter 1

[12]

The following list of fundamental questions will help guide a deployment mode decision:

Who will own the data model?1.
Experienced dataset designers and other IT professionals are usually
required to support complex data transformations, analytical data
modeling, large data sizes, and security rules, such as RLS roles, as
described in Chapter 4, Developing DAX Measures and Security Roles
If the required data model is relatively small and simple, or if the
requirements are unclear, the business team may be best positioned to
create at least the initial iterations of the model
The data model could be created with Analysis Services or Power BI
Desktop

Who will own the reports and dashboards?2.
Experienced Power BI report developers with an understanding of
corporate standards and data visualization best practices can deliver a
consistent user experience
Business users can be trained on report design and development
practices and are well-positioned to manage the visualization layer,
given their knowledge of business needs and questions

How will the Power BI content be managed and distributed?3.
A staged deployment across development, test, and production
environments, as described in Chapter 8, Managing Application
Workspaces and Content, helps to ensure that quality, validated content
is published. This approach is generally exclusive to Corporate BI
projects.
Sufficient Power BI Premium capacity is required to support
distribution to Power BI Free users and either large datasets or
demanding query workloads.
Self-Service BI content can be assigned to Premium Capacity, but
organizations may wish to limit the scale or scope of these projects to
ensure that provisioned capacity is being used efficiently.

Project discovery and ingestion
A set of standard questions within a project template form can be used to initiate Power BI
projects. Business guidance on these questions informs the BI team of the high-level
technical needs of the project and helps to promote a productive project kickoff.

Planning Power BI Projects Chapter 1

[13]

By reviewing the project template, the BI team can ask the project sponsor or relevant
subject matter experts (SMEs) targeted questions to better understand the current state and
the goals of the project.

Sample Power BI project template
The primary focus of the project-planning template and the overall project planning stage is
on the data sources and the scale and structure of the Power BI dataset required. The project
sponsor or business users may only have an idea of several reports, dashboards, or metrics
needed but, as a Corporate BI project, it's essential to focus on where the project fits within
an overall BI architecture and the long-term return on investment (ROI) of the solution. For
example, BI teams would look to leverage any existing Power BI datasets or SSAS tabular
models applicable to the project and would be sensitive to version-control issues.

Sample template – Adventure Works BI
The template is comprised of two tables. The first table answers the essential who and
when questions so that the project can be added to the BI team's backlog. The BI team can
use this information to plan their engagements across multiple ongoing and requested
Power BI projects and to respond to project stakeholders, such as Vickie Jacobs, VP of
Group Sales, in this example:

Date of Submission 10/15/2017

Project Sponsor Vickie Jacobs, VP of Group Sales

Primary Stakeholders Adventure Works Sales
Adventure Works Corp

Power BI Author(s) Mark Langford, Sales Analytics Manager

The following table is a list of questions that describe the project's requirements and scope.
For example, the number of users that will be read-only consumers of Power BI reports and
dashboards, and the number of self-service users that will need Power BI Pro licenses to
create Power BI content will largely impact the total cost of the project.

Planning Power BI Projects Chapter 1

[14]

Likewise, the amount of historical data to include in the dataset (2 years, 5 years?) can
significantly impact performance scalability:

Topic # Question Business Input

Data sources 1
Can you describe the required data?
(For example, sales, inventory,
shipping).

Internet Sales, Reseller
Sales, and the Sales and
Margin Plan. We need to
analyze total corporate sales,
online, and reseller sales, and
compare these results to our
plan.

Data sources 2
Is all of the data required for your
project available in the data
warehouse (SQL Server)?

No

Data Sources 3

What other data sources (if any)
contain all or part of the required
data (for example, Web, Oracle,
Excel)?

The Sales and Margin
Plan is maintained in Excel.

Security 4 Should certain users be prevented
from viewing some or all of the data?

Yes, sales managers and
associates should only see
data for their sales territory
group. VPs of sales, however,
should have global access.

Security 5 Does the data contain any PCII or
sensitive data? No, not that I’m aware of

Scale 6 Approximately, how many years of
historical data are needed? 3-4

Data refresh 7 How often does the data need to be
refreshed? Daily

Data refresh 8 Is there a need to view data in real
time (as it changes)? No

Distribution 9
Approximately, how many users will
need to view reports and
dashboards?

200

Planning Power BI Projects Chapter 1

[15]

Distribution 10
Approximately, how many users will
need to create reports and
dashboards?

3-4

Version control 11 Are there existing reports on the
same data? If so, please describe.

Yes, there are daily and
weekly sales snapshot reports
available on the portal.
Additionally, our team builds
reports in Excel that compare
actuals to plan.

Version Control 12 Is the Power BI solution expected to
replace these existing reports?

Yes, we would like to
exclusively use Power BI
going forward.

A business analyst inside the IT organization can partner with the business on completing
the project ingestion template and review the current state to give greater context to the
template. Prior to the project kickoff meeting, the business analyst can meet with the BI
team members to review the template and any additional findings or considerations.

Many questions with greater levels of detail will be raised as the project
moves forward and therefore the template shouldn't attempt to be
comprehensive or overwhelm business teams. The specific questions to
include should use business-friendly language and serve to call out the top
drivers of project resources and Corporate BI priorities, such as security
and version control.

Power BI project roles
Following the review of the project template and input from the business analyst, members
of the Power BI team can directly engage the project sponsor and other key stakeholders to
officially engage in the project. These stakeholders include subject matter experts on the
data source systems, business team members knowledgeable of the current state of
reporting and analytics, and administrative or governance personnel with knowledge of
organizational policies, available licenses, and current usage.

Planning Power BI Projects Chapter 1

[16]

New Power BI projects of any significant scale and long-term adoption of Power BI within
organizations require Dataset Designers, Report Authors, and a Power BI Admin(s), as
illustrated in the following diagram:

Power BI team roles

Each of the three Power BI project roles and perhaps longer-term roles as part of a business
intelligence team entail a distinct set of skills and responsibilities. It can be advantageous in
a short-term or POC scenario for a single user to serve as both a dataset designer and a
report author. However, the Power BI platform and the multi-faceted nature of Corporate
BI deployments is too broad and dynamic for a single BI professional to adequately fulfill
both roles. It's therefore recommended that team members either self-select or are assigned
distinct roles based on their existing skills and experience and that each member develops
advanced and current knowledge relevant to their role. A BI manager and/or a project
manager can help facilitate effective communication across roles and between the BI team
and other stakeholders, such as project sponsors.

Dataset designer
Power BI report visualizations and dashboard tiles are built on top of datasets, and each
Power BI report is associated with a single dataset. Power BI datasets can import data from
multiple data sources on a refresh schedule or can be configured to issue queries directly to
a single data source to resolve report queries. Datasets are therefore a critical component of
Power BI projects and their design has tremendous implications regarding user experience,
query performance, source system and Power BI resource utilization, and more.

Planning Power BI Projects Chapter 1

[17]

The dataset designer is responsible for the data access layer of the Power BI dataset,
including the authentication to data sources and the M queries used to define the tables of
the data model. Additionally, the dataset designer defines the relationships of the model
and any required row-level security roles, and develops the DAX measure expressions for
use in reports, such as year-to-date (YTD) sales. Given these responsibilities, the dataset
designer should regularly communicate with data source owners or SMEs, as well as report
authors. For example, the dataset designer needs to be aware of changes to data sources so
that data access queries can be revised accordingly and report authors can advise of any
additional measures or columns necessary to create new reports. Furthermore, the dataset
designer should be aware of the performance and resource utilization of deployed datasets
and should work with the Power BI admin on issues such as Power BI Premium capacity.

As per the Power BI team toles diagram, there are usually very few dataset designers in a
team while there may be many report authors. This is largely due to the organizational
objectives of version control and reusability, which leads to a small number of large
datasets. Additionally, robust dataset development requires knowledge of the M and DAX
functional programming languages, dimensional modeling practices, and business
intelligence. Database experience is also very helpful. If multiple dataset designers are on a
team they should look to standardize their development practices so that they can more
easily learn and support each other's solutions.

A Power BI dataset designer often has experience in developing SSAS
models, particularly SSAS tabular models. For organizations utilizing both
SSAS and Power BI Desktop, this could be the same individual.
Alternatively, users with experience of building models in Power Pivot for
Excel may also prove to be capable Power BI dataset designers.

Report authors
Report authors interface directly with the consumers of reports and dashboards or a
representative of this group. In a self-service deployment mode or a hybrid project
(business and IT), a small number of report authors may themselves work within the
business. Above all else, report authors must have a clear understanding of the business
questions to be answered and the measures and attributes (columns) needed to visually
analyze and answer these questions. The report author should also be knowledgeable of
visualization best practices, such as symmetry and minimalism, in addition to any corporate
standards for report formatting and layout.

Power BI Desktop provides a rich set of formatting properties and analytical features,
giving report authors granular control over the appearance and behavior of visualizations.

Planning Power BI Projects Chapter 1

[18]

Report authors should be very familiar with all standard capabilities, such as conditional
formatting, drilldown, drillthrough, and cross-highlighting, as they often lead
demonstrations or training sessions. Additionally, report authors should understand the
organization's policies on custom visuals available in the MS Office store and the specific
use cases for top or popular custom visuals.

Power BI admin
A Power BI admin is focused on the overall deployment of Power BI within an organization
in terms of security, governance, and resource utilization. Power BI admins are not
involved in the day-to-day activities of specific projects but rather configure and manage
settings in Power BI that align with the organization's policies. A Power BI admin, for
example, monitors the adoption of Power BI content, identifies any high-risk user activities,
and manages any Power BI Premium capacities that have been provisioned. Additionally,
Power BI admins use Azure Active Directory security groups within the Power BI admin
portal to manage access to various Power BI features, such as sharing Power BI content with
external organizations.

Users assigned to the Power BI service administrator role obtain access to the Power BI
admin portal and the rights to configure Power BI Tenant settings. For example, in the
following image, Anna Sanders is assigned to the Power BI service administrator role
within the Office 365 admin center:

Assigning Power BI service admin role

Planning Power BI Projects Chapter 1

[19]

The Power BI service administrator role allows Anna to access the Power BI admin portal
to enable or disable features, such as exporting data and printing reports and dashboard. BI
and IT managers that oversee Power BI deployments are often assigned to this role, as it
also provides the ability to manage Power BI Premium capacities and access to standard
monitoring and usage reporting. Note that only global administrators of Office 365 can
assign users to the Power BI service administrator role.

The Power BI admin should have a clear understanding of the organizational policy on the
various tenant settings, such as whether content can be shared with external users. For most
tenant settings, the Power BI service administrator can define rules in the Power BI admin
portal to include or exclude specific security groups. For example, external sharing can be
disabled for the entire organization except for a specific security group of users. Most
organizations should assign two or more users to the Power BI service administrator role
and ensure these users are trained on the administration features specific to this role.
Chapter 12, Administering Power BI for an Organization, contains details on the Power BI
admin portal and other administrative topics.

Project role collaboration
Communicating and documenting project role assignments during the planning stage
promotes the efficient use of time during the development and operations phases. For
organizations committed to the Power BI platform as a component of a longer-term data
strategy, the project roles may become full-time positions.

For example, BI developers with experience in DAX and/or SSAS tabular databases may be
hired as dataset designers while BI developers with experience in data visualization tools
and corporate report development may be hired as report authors:

Name Project role

Brett Powell Dataset Designer

Jennifer Lawrence Report Author

Anna Sanders Power BI Service Admin

Mark Langford Report Author

Stacy Loeb QA Tester

Planning Power BI Projects Chapter 1

[20]

Power BI licenses
Users can be assigned either a Power BI Free or a Power BI Pro license. Power BI licenses
(Pro and Free) can be purchased individually in the Office 365 admin center, and a Power
Pro license is included with an Office 365 Enterprise E5 subscription. A Power BI Pro license
is required to publish content to Power BI app workspaces, consume a Power BI app that's
not assigned to Power BI Premium capacity, and utilize other advanced features, as shown
in the following table:

Feature Power BI Free Power BI Pro

Connect to 70+ data sources Yes Yes

Publish to web Yes Yes

Peer-to-peer sharing No Yes

Export to Excel, CSV, PowerPoint Yes Yes

Email subscriptions No Yes

App workspaces and apps No Yes

Analyze in Excel, Analyze in Power BI Desktop No Yes

With Power BI Premium, users with Power BI Free licenses are able to access and view
Power BI apps of reports and dashboards that have been assigned to premium capacities.
This access includes consuming the content via the Power BI mobile application.
Additionally, Power BI Pro users can share dashboards with Power BI Free users if the
dashboard is contained in a Premium workspace. Power BI Pro licenses are required for
users that create or distribute Power BI content, such as connecting to published datasets
from Power BI Desktop or Excel.

In this sample project example, only three or four business users may need Power BI Pro
licenses to create and share reports and dashboards. Mark Langford, a data analyst for the
sales organization, requires a Pro license to analyze published datasets from Microsoft
Excel. Jennifer Lawrence, a Corporate BI developer and report author for this project,
requires a Pro license to publish Power BI reports to app workspaces and distribute Power
BI apps to users.

The following image from the Office 365 admin center identifies the assignment of a Power
BI Pro license to a report author:

Planning Power BI Projects Chapter 1

[21]

Power BI Pro license assignment

As a report author, Jennifer doesn't require any custom role assignment as per the Roles
property of the preceding image. If Jennifer becomes responsible for administering Power
BI in the future, the Edit option for the Roles property can be used to assign her to the
Power BI service administrator role, as described in the Power BI project roles section earlier.

The approximately 200 Adventure Works sales team users who only need to view the
content can be assigned Free licenses and consume the published content via Power BI apps
associated with Power BI Premium capacity. Organizations can obtain more Power BI Pro
licenses and Power BI Premium capacity (virtual cores, RAM) as usage and workloads
increase.

Typically, a Power BI service administrator is also assigned a Power BI Pro
license, but a Power BI Pro license is not required to be assigned to the
Power BI service administrator role.

The administration and governance of Power BI deployments at scale involve several topics
(such as authentication, activity monitoring, and auditing), and Power BI provides features
dedicated to simplifying administration.

Planning Power BI Projects Chapter 1

[22]

These topics and features are reviewed in Chapter 12, Administering Power BI for an
Organization.

Given the broad controls associated with the Power BI service
administrator role, such as managing Power BI Premium capacities and
setting policies for the sharing of external content, some organizations
may choose to limit this access to defined time periods. Azure Active
Directory Privileged Identity Management (PIM) can be used to provide
short-term, audited access to this role. For example, a decision could be
made to allow one security group of users to export data from Power BI. A
user, such as a BI manager, could be granted Power BI service
administrator rights for one day to implement this policy in the Power BI
admin portal.

Power BI license scenarios
The optimal mix of Power BI Pro and Power BI Premium licensing in terms of total cost will
vary based on the volume of users and the composition of these users between read-only
consumers of content versus Self-Service BI users. In relatively small deployments, such as
200 total users, a Power BI Pro license can be assigned to each user regardless of self-service
usage and Power BI Premium capacity can be avoided. Be advised, however, that, as per the
following Power BI Premium features section, there are other benefits to licensing Power BI
Premium capacity that may be necessary for certain deployments, such as larger datasets or
more frequent data refreshes.

If an organization consists of 700 total users with 600 read-only users and 100 self-service
users (content creators), it's more cost effective to assign Power BI Pro licenses to the 100
self-service users and to provision Power BI Premium capacity to support the other 600
users. Likewise, for a larger organization with 5,000 total users and 4,000 self-service users,
the most cost-effective licensing option is to assign Power Pro licenses to the 4,000 self-
service users and to license Power BI Premium for the remaining 1,000 users.

Several factors drive the amount of Power BI Premium capacity to
provision, such as the number of concurrent users, the complexity of the
queries generated, and the number of concurrent data refreshes. The
Power BI Premium calculator provides an initial estimate of the mix of
Power BI Pro and Power BI Premium capacity needed for a given
workload and can be found at https:/ / powerbi.microsoft. com/ en- us/
calculator/ .

https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/
https://powerbi.microsoft.com/en-us/calculator/

Planning Power BI Projects Chapter 1

[23]

See Chapter 12, Administering Power BI for an Organization, and Chapter 13, Scaling with
Power BI Premium and SSAS, for additional details on aligning Power BI licenses and
resources with the needs of Power BI deployments.

Power BI Premium features
An organization may choose to license Power BI Premium capacities for additional or
separate reasons beyond the ability to distribute Power BI content to read-only users
without incurring per-user license costs. Significantly, greater detail on Power BI Premium
features and deployment considerations is included in Chapter 13, Scaling with Premium
and Analysis Services.

The following table identifies several of the top additional benefits and capabilities of Power
BI Premium:

Additional Power BI Premium capabilities

Planning Power BI Projects Chapter 1

[24]

Beyond the six features listed in the preceding table, the roadmap
included in the Power BI Premium white paper has advised of future
capabilities including read-only replicas, pin to memory, and geographic
distribution. See the Power BI Premium white paper (http:/ /bit. ly/
2wBGPRJ) and related documentation for the latest updates.

Data warehouse bus matrix
The fundamentals of the dataset should be designed so that it can support future BI and
analytics projects and other business teams requiring access to the same data. The dataset
will be tasked with delivering both accurate and consistent results across teams and use
cases as well as providing a familiar and intuitive interface for analysis.

To promote reusability and project communication, a data warehouse bus matrix of
business processes and shared dimensions is recommended:

Data warehouse bus matrix

Each row reflects an important and recurring business process, such as the monthly close of
the general ledger, and each column represents a business entity, which may relate to one or
several of the business processes. The shaded rows (Internet Sales, Reseller Sales,
and Sales Plan) identify the business processes that will be implemented as their own
star schemas for this project. The business matrix can be developed in collaboration with
business stakeholders, such as the corporate finance manager, as well as source system and
business intelligence or data warehouse SMEs.

http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ
http://bit.ly/2wBGPRJ

Planning Power BI Projects Chapter 1

[25]

The data warehouse bus matrix is a staple of the Ralph Kimball data
warehouse architecture, which provides an incremental and integrated
approach to data warehouse design. This architecture, as per The Data
Warehouse Toolkit (Third Edition) by Ralph Kimball, allows for scalable data
models, as multiple business teams or functions often require access to the
same business process data and dimensions.

Additional business processes, such as maintaining product inventory levels, could
potentially be added to the same Power BI dataset in a future project. Importantly, these
future additions could leverage existing dimension tables, such as a Product table,
including its source query, column metadata, and any defined hierarchies.

Each Power BI report is tied to a single dataset. Given this 1:1 relationship
and the analytical value of integrated reports across multiple business
processes, such as Inventory and Internet Sales, it's important
to design datasets that can scale to support multiple star schemas.
Consolidating business processes into one or a few datasets also makes
solutions more manageable and a better use of source system resources, as
common tables (for example, Product, Customer) are only refreshed
once.

Dataset design process
With the data warehouse bus matrix as a guide, the business intelligence team can work
with representatives from the relevant business teams and project sponsors to complete the
following four-step dataset design process:

Select the business process.1.
Declare the grain.2.
Identify the dimensions.3.
Define the facts.4.

Planning Power BI Projects Chapter 1

[26]

Selecting the business process
Ultimately each business process will be represented by a fact table with a star schema of
many-to-one relationships to dimensions. In a discovery or requirements gathering process
it can be difficult to focus on a single business process in isolation as users regularly analyze
multiple business processes simultaneously or need to. Nonetheless, it's essential that the
dataset being designed reflects low level business activities (for example, receiving an
online sales order) rather than a consolidation or integration of distinct business processes
such as a table with both online and reseller sales data:

Confirm that the answer provided to the first question of the project template
regarding data sources is accurate:

In this project, the required business processes are Internet
Sales, Reseller Sales, Annual Sales and Margin Plan
Each of the three business processes corresponds to a fact table to
be included in the Power BI dataset

Obtain a high-level understanding of the top business questions each business
process will answer:

For example, "What are total sales relative to the Annual Sales
Plan and relative to last year?"
In this project, Internet Sales and Reseller Sales will be
combined into overall corporate sales and margin KPIs

Optionally, reference the data warehouse bus matrix of business processes and
their related dimensions:

For example, discuss the integration of inventory data and the
insights this integration may provide
In many projects, a choice or compromise has to be made given the
limited availability of certain business processes and the costs or
timelines associated with preparing this data for production use:

Additionally, business processes (fact tables) are the
top drivers of the storage and processing costs of the
dataset and thus should only be included if
necessary.

Planning Power BI Projects Chapter 1

[27]

A common anti-pattern to avoid in Power BI projects is the development
of datasets for specific projects or teams rather than business processes.
For example, one dataset would be developed exclusively for the
marketing team and another dataset would be created for the sales
organization. Assuming both teams require access to the same sales data,
this approach naturally leads to a waste of resources, as the same sales
data would be queried and refreshed twice and both datasets would
consume storage resources in the Power BI service. Additionally, this
isolated approach leads to manageability and version control issues, as the
datasets may contain variations in transformation or metric logic.
Therefore, although the analytical needs of specific business users or
teams are indeed the priority of BI projects, it's important to plan for
sustainable solutions that can ultimately be shared across teams.

Declaring the grain
All rows of a fact table should represent the individual business process from step 1 at a
certain level of detail or grain such as the header level or line level of a purchase order.
Therefore, each row should have the same meaning and thus contain values for the same
key columns to dimensions and the same numeric columns.

The grain of fact tables ultimately governs the level of detail available for analytical queries
as well as the amount of data to be accessed:

Determine what each row of the different business processes will represent:
For example, each row of the Internet Sales fact table
represents the line of a sales order from a customer
The rows of the Sales and Margin Plan, however, are
aggregated to the level of a Calendar Month, Products
Subcategory, and Sales Territory Region

If it's necessary to apply filters or logic to treat certain rows of a fact table
differently than others, the fact table likely contains multiple business
processes (for example, shipments and orders) that should be split into
separate tables. Although it's technically possible to build this logic into
DAX measure expressions, well-designed fact tables benefit Power BI and
other data projects and tools over the long term. The same metrics and
visualizations can be developed via separate fact tables with their own
relationships rather than consolidated fact tables.

Planning Power BI Projects Chapter 1

[28]

Review and discuss the implications of the chosen grain in terms of
dimensionality and scale:

Higher granularities provide greater levels of dimensionality and
thus detail but result in much larger fact tables
If a high grain or the maximum grain is chosen, determine the row
counts per year and the storage size of this table once loaded into
Power BI datasets
If a lower grain is chosen, ensure that project stakeholders
understand the loss of dimensionalities, such as the inability to
filter for specific products or customers

In general, a higher granularity is recommended for analytical power and
sustainability. If a less granular design is chosen, such as the header level
of a sales order, and this grain later proves to be insufficient to answer
new business questions, then either a new fact table would have to be
added to the dataset or the existing fact table and all of its measures and
dependent reports would have to be replaced.

Identifying the dimensions
The dimensions to be related to the fact table are a natural byproduct of the grain chosen in
step 2 and thus largely impact the decision in step 2. A single sample row from the fact table
should clearly indicate the business entities (dimensions) associated with the given process
such as the customer who purchased an individual product on a certain date and at a
certain time via a specific promotion. Fact tables representing a lower grain will have fewer
dimensions. For example, a fact table representing the header level of a purchase order may
identify the vendor but not the individual products purchased from the vendor:

Identify and communicate the dimensions that can be used to filter (aka slice and
dice) each business process:

The foreign key columns based on the grain chosen in the previous
step reference dimension tables.
Review a sample of all critical dimension tables, such as Product or
Customer, and ensure these tables contain the columns and values
necessary or expected.

Planning Power BI Projects Chapter 1

[29]

Communicate which dimensions can be used to filter multiple business processes
simultaneously:

In this project, the Product, Sales Territory, and Date dimensions
can be used to filter all three fact tables.
The data warehouse bus matrix referenced earlier can be helpful
for this step

Look for any gap between the existing dimension tables and business questions
or related reports:

For example, existing IT-supported reports may contain embedded
logic that creates columns via SQL which are not stored in the data
warehouse

Strive to maintain version control for dimension tables and the columns
(attributes) within dimension tables:

It may be necessary for project stakeholders to adapt or migrate
from legacy reports or an internally maintained source to the
Corporate BI source

A significant challenge to the identity of the dimensions step can be a lack of Master Data
Management (MDM) and alternative versions. For example, the sales organization may
maintain their own dimension tables in Excel or Microsoft Access and their naming
conventions and hierarchy structures may represent a conflict or gap with the existing data
warehouse. Additionally, many corporate applications may store their own versions of
common dimensions, such as products and customers. These issues should be understood
and, despite pressure to deliver BI value quickly or according to a specific business team's
preferred version, the long-term value of a single definition for an entire organization as
expressed via the bus matrix should not be sacrificed.

Defining the facts
The facts represent the numeric columns to be included in the fact table. While the
dimension columns from step 3 will be used for relationships to dimension tables, the fact
columns will be used in measures containing aggregation logic such as the sum of a
quantity column and the average of a price column:

Define the business logic for each fact that will be represented by measures in the
dataset:

For example, gross sales is equal to the extended amount on a sales
order, and net sales is equal to gross sales minus discounts

Planning Power BI Projects Chapter 1

[30]

Any existing documentation or relevant technical metadata should be reviewed
and validated
Similar to the dimensions, any conflicts between existing definitions should be
addressed so that a single definition for a core set of metrics is understood and
approved
Additionally, a baseline or target source should be identified to validate the
accuracy of the metrics to be created.

For example, several months following the project, it should be
possible to compare the results of DAX measures from the Power
BI dataset to an SSRS report or a SQL query
If no variance exists between the two sources, the DAX measures
are valid and thus any doubt or reported discrepancy is due to
some other factor

See Chapter 2, Connecting to Sources and Transforming Data with M,
Chapter 3, Designing Import and DirectQuery Data Models, and Chapter
4, Developing DAX Measures and Security Roles, for details on the fact table
columns to include in Power BI datasets (for import or DirectQuery) and
the development of DAX metric expressions. The fact definitions from this
step relate closely to the concept of base measures described in Chapter 4,
Developing DAX Measures and Security Roles. Ultimately, the DAX measures
implemented have to tie to the approved definitions, but there are
significant data processing, storage and performance implications based
on how this logic is computed. In many cases, the Power BI dataset can
provide the same logic as an existing system but via an alternative
methodology that better aligns with Power BI or the specific project need.

Data profiling
The four-step dataset design process can be immediately followed by a technical analysis of
the source data for the required fact and dimension tables of the dataset. Technical
metadata, including database diagrams and data profiling results, such as the existence of
null values in source columns, are essential for the project planning stage. This information
is used to ensure the Power BI dataset reflects the intended business definitions and is built
on a sound and trusted source.

Planning Power BI Projects Chapter 1

[31]

For example, the following SQL Server database diagram describes the schema for the
reseller sales business process:

SQL Server Datdbase diagram: reseller sales

The foreign key constraints identify the surrogate key columns to be used in the
relationships of the Power BI dataset and the referential integrity of the source database. In
this schema, the product dimension is modeled as three separate dimension
tables—DimProduct, DimProductSubcategory, and DimProductCategory. Given the
priorities of usability, manageability, and query performance, a single denormalized
product dimension table that includes essential Product Subcategory and Product
Category columns is generally recommended. This will reduce the volume of source
queries, relationships, and tables in the data model and will improve report query
performance, as fewer relationships will need to be scanned by the dataset engine.

Planning Power BI Projects Chapter 1

[32]

Clear visibility to the source system, including referential and data integrity constraints,
data quality, and any MDM processes, is essential. Unlike other popular BI tools, Power BI
is capable of addressing many data integration and quality issues, particularly with
relational database sources which Power BI can leverage to execute data transformation
operations. However, Power BI's ETL capabilities are not a substitute for data warehouse
architecture and enterprise ETL tools, such as SQL Server Integration Services (SSIS). For
example, it's the responsibility of the data warehouse to support historical tracking with
slowly changing dimension ETL processes that generate new rows and surrogate keys for a
dimension when certain columns change. To illustrate a standard implementation of slowly
changing dimensions, the following query of the DimProduct table in the Adventure
Works data warehouse returns three rows for one product (FR-M94B-38):

Historical tracking of dimensions via slowly changing dimension ETL processes

It's the responsibility of the Power BI team and particularly the dataset designer to
accurately reflect this historical tracking via relationships and DAX measures, such as the
count of distinct products not sold. Like historical tracking, the data warehouse should also
reflect all master data management processes that serve to maintain accurate master data
for essential dimensions, such as customers, products, and employees. In other words,
despite many line of business applications and ERP, CRM, HRM, and other large corporate
systems which store and process the same master data, the data warehouse should reflect
the centrally governed and cleansed standard. Creating a Power BI dataset which only
reflects one of these source systems may later introduce version control issues and, similar
to choosing an incorrect granularity for a fact table, can ultimately require costly and
invasive revisions.

Different tools are available with data profiling capabilities. If the data source is the SQL
Server, SSIS can be used to analyze source data to be used in a project.

In the following image, the Data Profiling Task is used in an SSIS package to analyze the
customer dimension table:

Planning Power BI Projects Chapter 1

[33]

Data Profiling Task in SQL Server integration services

The Data Profiling Task requires an ADO.NET connection to the data
source and can write its output to an XML file or an SSIS variable. In this
example, the ADO.NET data source is the Adventure Works data
warehouse database in SQL Server 2016 and the destination is an XML file
(DataProfilingData.xml). Once the task is executed, the XML file can
be read via the SQL Server Data Profile Viewer as per the following
example. Note that this application, Data Profile Viewer, requires an
installation of the SQL Server and that the Data Profiling Task only works
with SQL Server data sources.

All fact and dimension table sources can be analyzed quickly for the count and distribution
of unique values, the existence of null values, and other useful statistics.

Planning Power BI Projects Chapter 1

[34]

Each data profiling task can be configured to write its results to an XML file on a network
location for access via tools such as the Data Profile Viewer. In this example, the Data
Profile Viewer is opened from within SSIS to analyze the output of the Data Profiling Task
for the Customer dimension table:

Data Profile Viewer: column null ratio profiles of DimCustomer table

Identifying and documenting issues in the source data via data profiling is a critical step in
the planning process. For example, the cardinality or count of unique values largely
determines the data size of a column in an import mode dataset. Similarly, the severity of
data quality issues identified impacts whether a DirectQuery dataset is a feasible option.

Dataset planning
After the source data has been profiled and evaluated against the requirements identified in
the four-step dataset design process, the BI team can further analyze the implementation
options for the dataset. In almost all Power BI projects, even with significant investments in
enterprise data warehouse architecture and ETL tools and processes, some level of
additional logic, integration, or transformation is needed to enhance the quality and value
of the source data or to effectively support a business requirement. A priority of the dataset,
planning stage is to determine how the identified data transformation issues will be
addressed to support the dataset. Additionally, based on all available information and
requirements, the project team must determine whether to develop an import mode dataset
or a DirectQuery dataset.

Planning Power BI Projects Chapter 1

[35]

Data transformations
To help clarify the dataset planning process, a diagram such as the following can be created
that identifies the different layers of the data warehouse and Power BI dataset where
transformation and business logic can be implemented:

Dataset planning architecture

In some projects, minimal transformation logic is needed and can be easily included in the
Power BI dataset or the SQL views accessed by the dataset. For example, if only a few
additional columns are needed for a dimension table and there's straightforward guidance
on how these columns should be computed, the IT organization may choose to implement
these transformations within Power BI's M queries rather than revise the data warehouse, at
least in the short term.

If a substantial gap between BI needs and the corporate data warehouse is
allowed to persist and grow due to various factors, such as cost, project
expediency, and available data warehouse skills, then Power BI datasets
will become more complex to build and maintain. Dataset designers
should regularly analyze and communicate the implications of datasets
assuming greater levels of complexity.

Planning Power BI Projects Chapter 1

[36]

However, if the required transformation logic is complex or extensive with multiple join
operations, row filters, and data type changes, then the IT organization may choose to
implement essential changes in the data warehouse to support the new dataset and future
BI projects. For example, a staging table and a SQL stored procedure may be needed to
support a revised nightly update process or the creation of an index may be needed to
deliver improved query performance for a DirectQuery dataset.

Ideally, all required data transformation and shaping logic could be implemented in the
source data warehouse and its ETL processes so that Power BI is exclusively used for
analytics and visualization. However, in the reality of scarce IT resources and project
delivery timelines, typically at least a portion of these issues must be handled through other
means, such as SQL view objects or Power BI's M query functions.

A best practice is to implement data transformation operations within the
data warehouse or source system. This minimizes the resources required
to process an import mode dataset and, for DirectQuery datasets, can
significantly improve query performance, as these operations would
otherwise be executed during report queries. For many common data
sources, such as Oracle and Teradata, M query expressions are translated
into equivalent SQL statements (if possible) and these statements are
passed back to the source system via a process called Query Folding. See
Chapter 2, Connecting to Sources and Transforming Data with M, for more
details on query folding.

As per the dataset planning architecture diagram, a layer of SQL views should serve as the
source objects to datasets created with Power BI Desktop. By creating a SQL view for each
dimension and fact table of the dataset, the data source owner or administrator is able to
identify the views as dependencies of the source tables and is therefore less likely to
implement changes that would impact the dataset without first consulting the BI team.
Additionally, the SQL views improve the availability of the dataset, as modifications to the
source tables will be much less likely to cause the refresh process to fail.

As a general rule, the BI team and IT organization will want to avoid the use of DAX for
data transformation and shaping logic, such as DAX calculated tables and calculated
columns. The primary reason for this is that it weakens the link between the dataset and the
data source, as these expressions are processed entirely by the Power BI dataset after source
queries have been executed. Additionally, the distribution of transformation logic across
multiple layers of the solution (SQL, M, DAX) causes datasets to become less flexible and
manageable. Moreover, tables and columns created via DAX do not benefit from the same
compression algorithms applied to standard tables and columns and thus can represent
both a waste of resources as well as a performance penalty for queries accessing these
columns.

Planning Power BI Projects Chapter 1

[37]

In the event that required data transformation logic cannot be implemented directly in the
data warehouse or its ETL or extract-load-transform (ELT) process, a secondary alternative
is to build this logic into the layer of SQL views supporting the Power BI dataset. For
example, a SQL view for the product dimension could be created that joins the Product,
Product Subcategory, and Product Category dimension tables, and this view could be
accessed by the Power BI dataset. As a third option, M functions in the Power BI query
expressions could be used to enhance or transform the data provided by the SQL views. See
Chapter 2, Connecting to Sources and Transforming Data with M, for details on these functions
and the Power BI data access layer generally.

Import versus DirectQuery
A subsequent but closely related step to dataset planning is choosing between the default
Import mode or DirectQuery mode. In some projects, this is a simple decision as only one
option is feasible or realistic given the known requirements while other projects entail
significant analysis of the pros and cons of either design. For example, if a data source is
considered slow or ill-equipped to handle a high volume of analytical queries then an
import mode dataset is very likely the preferred option. Additionally, if multiple data
sources are required for a dataset and they cannot be consolidated into a single DirectQuery
data source then an import mode dataset is the only option. Likewise, if near real-time
visibility to a data source is an essential business requirement then DirectQuery is the only
option.

When DirectQuery is a feasible option or can be made a feasible option via minimal
modifications, organizations may be attracted to the prospect of leveraging investments in
high-performance database and data warehouse systems. However, the overhead costs and
version control concerns of import mode can be reduced via Power BI features, such as the
dataset refresh APIs discussed in Chapter 8, Managing Application Workspaces and
Content, and the expected incremental data refresh feature for Power BI Premium
capacities.

The following list of questions can help guide an import versus DirectQuery decision:

Is there a single data source for our dataset which Power BI supports as a1.
DirectQuery source?

For example, each fact and dimension table needed by the dataset is
stored in a single data warehouse database, such as Oracle, Teradata,
SQL Server, or Azure SQL Database.

Planning Power BI Projects Chapter 1

[38]

The following URL identifies the data sources supported for
DirectQuery with Power BI, including sources which are currently only
in beta: http:/ /bit. ly/2AcMp25.

If DirectQuery is an option per question 1, is this source capable of supporting2.
the analytical query workload of Power BI?

For example, although Azure SQL Data Warehouse technically
supports DirectQuery, it's not recommended to use Azure SQL Data
Warehouse as a DirectQuery data source, given the limitations on the
volume of concurrent queries supported and a lack of query plan
caching.
In many other scenarios, the data source may not be optimized for
analytical queries, such as with star schema designs and indexes which
target common BI/reporting queries. Additionally, if the database is
utilized for online transaction processing (OLTP) workloads and/or
other BI/analytical tools, then it's necessary to evaluate any potential
impact to these applications and the availability of resources.

Is an import mode dataset feasible, given the size of the dataset and any3.
requirements for near real-time visibility to the data source?

Currently Power BI Premium supports import mode datasets up to 10
GB in size and incremental data refresh is not available. Therefore,
massive datasets must either use a DirectQuery data source or a Live
connection to an Analysis Services model.
Additionally, Power BI Premium currently supports a maximum of 48
refreshes per day for import mode datasets. Therefore, if there's a need
to view data source data for the last several minutes or seconds, an
import mode dataset is not feasible.

If the DirectQuery source is capable of supporting a Power BI workload as per4.
question 2, is the DirectQuery connection more valuable than the additional
performance and flexibility provided via the import mode?

In other words, if an import mode dataset is feasible, as per question 3,
then an organization should evaluate the trade-offs of the two modes.
For example, since an import mode dataset will be hosted in the Power
BI service and in a compressed and columnar in-memory data store, it
will likely provide a performance advantage. This is particularly the
case if the DirectQuery source is hosted on-premises and thus queries
from the Power BI cloud service must pass through the On-premises
data gateway reviewed in Chapter 9, Managing the On-Premises Data
Gateway.

http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25
http://bit.ly/2AcMp25

Planning Power BI Projects Chapter 1

[39]

Additionally, any future data sources and most future data
transformations will need to be integrated into the DirectQuery source.
With an import mode dataset, the scheduled import process can
include many data transformations and potentially other data sources
without negatively impacting query performance.

For organizations that have invested in powerful data source systems for BI workloads,
there's a strong motivation to leverage this system via DirectQuery. A business intelligence
team or architect will be adverse to copying data into another data store and thus creating
both another data movement and a source of reporting that must be supported. As a result
of this scenario, Microsoft is actively investing in improvements to DirectQuery datasets for
Power BI and Analysis Services models in DirectQuery mode. These investments are
expected to reduce the gap in query performance between DirectQuery and the import
mode. Additionally, a hybrid dataset mode may be released that allows teams to isolate
tables or even partitions of tables between DirectQuery and Import storage options.

However, Microsoft is also in the process of expanding support for large import mode
Power BI datasets hosted in Power BI Premium capacity. For example, in the near future a
dataset much larger than 10 GB could be incrementally refreshed to only update or load the
most recent data. Additional details on the capabilities provided by Power BI Premium,
potential future enhancements, and the implications for Power BI deployments are included
in Chapter 13, Scaling with Premium and Analysis Services.

Import mode
An import mode dataset can include multiple data sources, such as SQL Server, Oracle, and
an Excel file. Since a snapshot of the source data is loaded into the Power BI cloud service,
in addition to its in-memory columnar compressed structure, query performance is usually
good for most scenarios. Another important advantage of import mode datasets is the
ability to implement data transformations without negatively impacting query
performance. Unlike DirectQuery datasets, the operations of data source SQL views and the
M queries of Import datasets are executed during the scheduled data refresh process. The
Query Design per dataset mode section of Chapter 2, Connecting to Sources and Transforming
Data with M, discusses this issue in greater detail.

Given the performance advantage of the in-memory mode relative to DirectQuery, the
ability to integrate multiple data sources, and the relatively few use cases where real-time
visibility is required, most Power BI datasets are designed using the import mode.

Planning Power BI Projects Chapter 1

[40]

DirectQuery mode
A DirectQuery dataset is limited to a single data source and serves as merely a thin
semantic layer or interface to simplify the report development and data exploration
experience. DirectQuery datasets translate report queries into compatible queries for the
data source and leverage the data source for query processing, thus eliminating the need to
store and refresh an additional copy of the source data.

A common use case of Power BI and SSAS Tabular DirectQuery datasets is to provide
reporting on top of relatively small databases associated with OLTP applications. For
example, if SQL Server 2016 or later is used as the relational database for an OLTP
application, nonclustered columnstore indexes can be applied to several tables needed for
analytics. Since nonclustered indexes are updateable in SQL Server 2016, the database
engine can continue to utilize existing indexes to process OLTP transactions, such as a
clustered index on a primary key column while the nonclustered columnstore index will be
used to deliver performance for the analytical queries from Power BI. The business value of
near real-time access to the application can be further enhanced with Power BI features,
such as data-driven alerts and notifications.

Sample project analysis
As per the data refresh questions from the project template (#7-8), the Power BI dataset only
needs to be refreshed daily—there's not a need for real-time visibility of the data source.
From a dataset design perspective, this means that the default import mode is sufficient for
this project in terms of latency or data freshness. The project template also advises that an
Excel file containing the Annual Sales Plan must be included in addition to the historical
sales data in the SQL Server data warehouse. Therefore, unless the Annual Sales Plan
data can be migrated to the same SQL Server database containing the Internet Sales and
Reseller Sales data, an import mode dataset is the only option.

The data security requirements from the project template can be
implemented via simple security roles and therefore do not materially
impact the import or DirectQuery decision. DirectQuery datatsets can
support dynamic or user-based security models as well but, given
restrictions on the DAX functions that can be used in security roles for
DirectQuery datasets, import mode datasets can more easily support
complex security requirements. However, depending on the data source
and the security applied to that source relative to the requirements of the
project, organizations may leverage existing data source security through
a DirectQuery dataset via a single sign-on with Kerberos delegation.

Planning Power BI Projects Chapter 1

[41]

Finally, the BI team must also consider the scale of the dataset relative to size limitations
with import mode datasets. As per the project template (#6), 3–4 years of sales history needs
to be included, and thus the dataset designer needs to determine the size of the Power BI
dataset that would store that data. For example, if Power BI Premium capacity is not
available, the PBIX dataset is limited to a max size of 1 GB. If Power BI Premium capacity is
available, large datasets (for example, 10 GB+) potentially containing hundreds of millions
of rows can be published to the Power BI service.

The decision for this project is to develop an import mode dataset and to keep the Excel file
containing the Annual Sales Plan on a secure network location. The BI team will
develop a layer of views to retrieve the required dimension and fact tables from the SQL
Server database as well as connectivity to the Excel file. The business will be responsible for
maintaining the following Annual Sales Plan Excel file in its current schema, including
any row updates and the insertion of new rows for future plan years:

Annual Sales Plan in Excel data table

By using the existing Excel file for the planned sales and margin data rather than
integrating this data into the data warehouse, the project is able to start faster and maintain
continuity for the business team responsible for this source. Similar to collaboration with all
data source owners, the dataset designer could advise the business user or team responsible
for the sales plan on the required structure and the rules for maintaining the data source to
allow for integration into Power BI. For example, the name and directory of the file, as well
as the column names of the Excel data table, cannot be changed without first
communicating these requested revisions. Additionally, the values of the Sales
Territory Region, Product Subcategory, and Calendar Yr-Mo columns must
remain aligned with those used in the data warehouse to support the required actual versus
plan visualizations.

The sales plan includes multiple years and represents a granularity of the month, sales
territory region, and product subcategory. In other words, each row represents a unique
combination of values from the Calendar Yr-Mo, Sales Territory Region, and
Product Subcategory columns. The Bridge tables section in Chapter 3, Designing Import
and DirectQuery Data Models, describes how these three columns are used in integrating the
Sales Plan data into the dataset containing Internet Sales and Reseller Sales data.

Planning Power BI Projects Chapter 1

[42]

Summary
In this chapter, we've walked through the primary elements and considerations in planning
a Power BI project. A standard and detailed planing process inclusive of the self-service
capabilities needed or expected, project roles and responsibilities, and the design of the
dataset can significantly reduce the time and cost to develop and maintain the solution.
With a sound foundation of business requirements and technical analysis, a business
intelligence team can confidently move forward into a development stage.

In the next chapter, the two data sources identified in this chapter (SQL Server and Excel)
will be accessed to begin development of an import mode dataset. Source data will be
retrieved via Power BI's M language queries to retrieve the set of required fact and
dimension tables. Additionally, several data transformations and query techniques will be
applied to enhance the analytical value of the data and the usability of the dataset.

2
Connecting to Sources and

Transforming Data with M
This chapter follows up on the dataset planning process described in the previous chapter
by implementing M queries in a new Power BI Desktop file to retrieve the required fact and
dimension tables. Parameters and variables are used to access a set of SQL views reflecting
the data warehouse tables inside a SQL Server database and the Annual Sales Plan data
contained in an Excel workbook. Additional M queries are developed to support
relationships between the sales plan and dimension tables and to promote greater usability
and manageability of the dataset.

Three examples of implementing data transformations and logic within M queries, such as
the creation of a dynamic customer history segment column, are included. Finally, tools for
editing and managing M queries, such as extensions for Visual Studio and Visual Studio
Code, are reviewed.

In this chapter, we will review the following topics:

Query design per dataset mode
Data sources
Power BI Desktop options
SQL views
Parameters
Staging queries
Data types
Query folding
M query examples
M query editing tools

Connecting to Sources and Transforming Data with M Chapter 2

[44]

Query design per dataset mode
Many common M queries can be written for both import and DirectQuery datasets, but
with widely different implications for the source system resources utilized and the
performance of the analytical queries from Power BI. It's essential that the mode of the
dataset (import or DirectQuery) has been determined in advance of the development of the
data access queries and that this decision is reflected in the M queries of the dataset.

The M queries supporting a Power BI dataset import mode should exclude, or possibly
split, columns with many unique values, such as a Transaction Number column, as these
columns consume relatively high levels of memory. A standard design technique for import
mode models is to exclude derived fact table columns with relatively more unique values
when these values can be computed via simple DAX measure expressions based on
columns of the same table with fewer unique values.

In the following example, the SUMX() DAX function is used to compute the Sales Amount
measure based on the Order Quantity and Unit Price columns of the Internet
Sales fact table, thus avoiding the need to import the Sales Amount column:

Internet Sales Amount (Import) =
SUMX('Internet Sales','Internet Sales'[Order Quantity]*'Internet
Sales'[Unit Price])

Internet Sales Amount (DirectQuery) =
SUM('Internet Sales'[Sales Amount])

As per the second measure, the Sales Amount column would be included in a DirectQuery
data model and the DAX measure for the sales amount would exclusively utilize this
column to generate a more efficient SQL query for the data source.

The import mode model is able to efficiently compute similar SUMX()
expressions at scale with basic arithmetic operators (+, -, *, /) as these
operations are supported by the multithreaded storage engine of the
xVelocity in-memory analytics engine. For greater detail on DAX
measures for import and DirectQuery datasets, see Chapter 4, Developing
DAX Measures and Security Roles.

The M queries supporting a DirectQuery dataset should generally contain minimal to no
transformation logic as the complexity of the resulting SQL statement may negatively
impact the performance of Power BI report queries as well as increase the resource usage of
the data source.

Connecting to Sources and Transforming Data with M Chapter 2

[45]

This is especially important for the fact tables and any large dimension tables of the
DirectQuery dataset. Given the central role of the data source for query performance and
scalability of DirectQuery solutions, the Power BI dataset designer should closely
collaborate with the data source owner or subject matter expert, such as a database
administrator, to make the best use of available source system resources.

As noted in the To get the most out of this book section of the Preface, an
AdventureWorks data warehouse sample database
(AdventureWorksDW2016CTP3) hosted on a local instance of the SQL
Server 2017 database engine was the primary data source for the examples
in this book. The PBIX files included in the code bundle reference ATLAS
as the name of the database server and AdventureWorksDW as the name
of the database. Therefore, any attempt to refresh the queries within these
PBIX files or create new queries against this data source will return errors
as the user doesn't have access to this source.

Additionally, certain objects of the AdventureWorksDW database used in
this book such as views are not included in the downloadable sample
database. For this reason, the exact results depicted in this book cannot be
perfectly reproduced via a SQL Server 2017 (or later) database instance
and the sample database alone. Moreover, the code examples in the book
are intended to highlight essential concepts and use cases. The
corresponding code included in the code bundle may, for example,
include additional columns not referenced in the book as these columns
weren't essential to the given example.

Import mode dataset queries
All M queries of an import mode dataset are executed only once per scheduled refresh.
Therefore, if sufficient resources are available during these scheduled intervals, the M
queries can contain more complex and resource-intensive operations without negatively
impacting report query performance. In fact, well-designed data retrieval processes can
benefit from report query performance as the source data is prepped to take greater
advantage of the compression algorithms applied to import mode datasets. The systems
impacted by these retrieval operations depend on the data source, whether the data sources
is located on-premises or in a public cloud, such as MS Azure, and the operations of the
query itself.

Connecting to Sources and Transforming Data with M Chapter 2

[46]

In this project example with an on-premises SQL Server database, the M queries can utilize
the database server's resources during each refresh via the query folding process described
later in this chapter. In the event that certain M expressions cannot be translated into an
equivalent SQL statement for the given source, these expressions will be evaluated by the
in-memory M engine of the On-premises data gateway, which is installed on-premises. If
the source database was in the cloud and not within an Infrastructure-as-a-Service (IaaS)
virtual machine, a gateway would not be required for the refresh, and resources in Power
BI, such as Power BI Premium capacity hardware, would be used to execute any M
expressions that can't be folded to a source.

For import mode datasets, M queries can be partially folded such that a
source database is used to execute only part of the required logic. For
example, an M query may contain both simple transformation steps, such
as filtering out rows, as well as more complex logic that references a
custom M function. In this scenario, a SQL statement may be generated for
the initial steps of the query, and the results of this SQL query could be
used by another system's resources, such as the On-premises data gateway
to process the remaining logic. All steps (variables) within an M query
following a step that cannot be folded are also not folded. Likewise, any M
step following a Value.NativeQuery() function that passes a SQL
statement to a source system will also not be folded. See the Query folding
section later in this chapter for more details.

DirectQuery dataset queries
For DirectQuery datasets, every M query is folded to exclusively utilize the resources of the
single data source. Therefore, certain M functions and query logic that lack an equivalent
SQL expression for the given data source, such as Oracle or Teradata, are not supported. In
these scenarios, the dataset designer can develop alternative M queries that produce the
same target data structure and are supported by the source system or implement the
necessary logic within the layer of SQL views supporting the dataset.

An additional and fundamental limitation to the scope of M queries for DirectQuery
datasets is the impact on query performance and user experience. Since the SQL statements
representing M queries must be executed by the source system during report viewing
sessions, common transformations such as converting data types and sorting tables can
cause significant performance degradation.

Connecting to Sources and Transforming Data with M Chapter 2

[47]

Additionally, a high volume of sub-optimal SQL queries passed from Power BI reports can
quickly drive up the resource usage of the source system. Therefore, although it's often
technically possible to implement similar data transformation logic in the SQL views and M
queries of DirectQuery datasets as with import mode datasets, the performance and
resource implications of these transformations frequently prove unacceptable.

Dataset designers of DirectQuery datasets should document the SQL
statements generated by their M queries. As shown in the Query folding
section later in this chapter, these queries can be accessed from the View
Native Query command within the Applied Steps pane of the Power
Query Editor in Power BI Desktop. Sharing and reviewing these queries
with the data source owner, or a subject matter expert on the data source
can often lead to new ideas to improve performance or data quality. For
example, the data source owner can analyze the indexes of the source fact
table and determine whether the WHERE clause of the query can take
advantage of existing indexes.

Data sources
Data source connectivity is one of the strengths of Power BI, due to the vast list of standard
data source connectors included in Power BI Desktop, in addition, to support for Open
Database Connectivity (ODBC) and Object Linking and Embedding, Database (OLE DB)
connections. The breadth of data connectivity options is further bolstered by the ability for
developers to create custom Power BI data connectors for a specific application, service, or
data source. Custom data connectors, the data retrieval processes created for all data
sources for Power BI, and other Microsoft applications are developed with the M language.

Power BI's data connectors are consistently extended and improved with each monthly
release of Power BI Desktop. New data sources are commonly added as a preview or beta
release feature and previous beta connectors are moved from beta to general availability.

Connecting to Sources and Transforming Data with M Chapter 2

[48]

In the following example from the October 2017 release of Power BI Desktop, the connector
for Google BigQuery is in beta while Amazon Redshift has been generally available since
the June 2017 release:

Beta and generally-available data connectors in Power BI Desktop

Beta connectors should only be used for testing purposes, as differences
between the beta release and the subsequent generally-available connector
may cause queries dependent on the beta version to fail.

The data connector icons exposed in the Get Data graphical interface of Power BI Desktop
are associated with the data access functions of M, such as Sql.Database().

Authentication
Power BI Desktop saves a data source credential, or sign-in identity, for each data source
connection used. These credentials and settings are not stored in the PBIX file but rather on
the local computer specific to the given user.

An authentication dialog specific to the data source is rendered if the user hasn't accessed
the data source before or if the user has removed existing permissions to the data source in
Power BI Desktop's Data source settings menu. In the following example, an
Sql.Database() M query function references the AdventureWorksDW SQL Server
database on the ATLAS server.

Connecting to Sources and Transforming Data with M Chapter 2

[49]

In this scenario, the user has not previously accessed this data source (or has cleared
existing source permissions), and thus executing this query prompts the user to configure
the authentication to this source as shown in the following image:

Edit Authentication Credentials in Power BI Desktop

Most relational database sources have similar authentication options. For SQL Server, the
user can choose between the default Windows-integrated authentication (that is, Use my
current credentials) or database authentication if the database is in Mixed Mode.
Additionally, the credentials can be saved exclusively to the specific database or be reused
for other databases on the same server.

Data source settings
The Data source settings menu provides access to the authentication and privacy levels
configured for each data source within the current file and the saved permissions available
to all of the user's Power BI Desktop files.

Connecting to Sources and Transforming Data with M Chapter 2

[50]

This menu can be accessed under the Edit Queries drop-down on the Home tab of Power
BI Desktop's report view or from the Home tab of the Query Editor, as shown in the
following screenshot:

Data source settings menu in Power BI Desktop

In this example, the user chose to save the Windows authentication to the ATLAS server
rather than the specific database (AdventureWorksDW) on the server. The Edit
Permissions... command button provides the ability to revise the authentication, such as
from Windows to database or to enter a new username and password.

Connecting to Sources and Transforming Data with M Chapter 2

[51]

The Edit... command of the Edit Permissions menu, highlighted in the following image,
prompts the same SQL Server credential menu that was used when originally configuring
the method of authentication to the data source:

Edit credentials accessed via Edit Permissions

Many organizations set policies requiring users to regularly revise their
usernames or passwords for certain data sources. Once these credentials
have been updated, the user should utilize the Edit Permissions menu to
ensure that the updated credentials will be used for M queries against this
data source. Depending on the security policy of the data source, repeated
failures to authenticate due to the outdated credentials saved in Power BI
Desktop can cause the user's account to be temporarily locked out of the
data source.

Privacy levels
In addition to the authentication method and user credentials for a data source, Power BI
also stores a privacy level for each data source. Privacy levels define the isolation level of
data sources and thus restrict the integration of data sources in M queries.

Connecting to Sources and Transforming Data with M Chapter 2

[52]

For example, in the absence of privacy levels, an M query that merges a CSV file with a
publicly available online database could result in the data from the CSV file being passed to
the online database to execute the operation. Although this default behavior is preferable
from a query performance and resource utilization standpoint, the CSV file may contain
sensitive information that should never leave the organization or even an individual user's
machine. Applying privacy levels, such as Private for the CSV file and Public for the online
database, isolates the two sources during query execution thus preventing unauthorized
access to sensitive data.

The privacy level of a data source can be accessed from the same Edit Permissions dialog
available in the Data source settings menu as shown in the following screenshot:

Privacy Level options per data source

The default Privacy Level for data sources is None. Therefore, dataset designers should
revise privacy levels when first configuring data sources in Power BI Desktop based on the
security policies for the given sources.

Connecting to Sources and Transforming Data with M Chapter 2

[53]

Four privacy levels are available:

Public: A public data source is not isolated from other public sources, but data
transfer from organizational and private data sources to public data sources is
prevented. Public source data can be transferred to an organizational data source
but not to a private data source.
Organizational: An organizational data source is isolated from all public data
sources but is visible to other organizational data sources. For example, if a CSV
file is marked as organizational, then a query that integrates this source with an
organizational SQL Server database can transfer this data to the database server
to execute the query.
Private: A private data source is completely isolated from all other data sources.
Data from the private data source will not be transferred to any other data
sources, and data from public sources will not be transferred to the private
source.
None: The privacy level applied is inherited from a separate data source, or not
applied if the separate parent source has not been configured. For example, the
privacy level for an Excel workbook stored on a network directory could be set to
None, yet the isolation level of Private would be enforced if a data source for the
root directory of the file is set to Private.

In this project, the Excel workbook containing the Annual Sales Plan is not merged with
any queries accessing the SQL Server data warehouse and thus the privacy levels do not
impact any queries. However, as with all other data security issues, such as row-level
security (RLS) roles, the dataset designer should be mindful of privacy levels and apply the
appropriate setting per data source.

Restrictive privacy levels that do not directly reject queries that can only
be executed by violating the privacy (isolation) level of a data source may
still prevent query folding from occurring and thus significantly reduce
performance and reliability. For example, if an Excel workbook is isolated
from a SQL Server data source due to a Private privacy level, then the
local resources available to the M engine will be used to execute this
operation rather than the SQL Server database engine. If the source data
retrieved from SQL Server is large enough, the resource requirements to
load this data and then execute this operation locally could cause the
query to fail.

Connecting to Sources and Transforming Data with M Chapter 2

[54]

Power BI as a data source
Over 59 distinct cloud services are available to Power BI, such as Google Analytics and
Dynamics 365. Most importantly for this project, the Power BI online service is a fully
supported data source enabling report development in Power BI Desktop against published
datasets. As shown in the following screenshot, the datasets contained in Power BI App
Workspaces in which the user is a member are exposed as data sources:

Power BI service data connector in Power BI Desktop

Connecting to a dataset published to Power BI establishes a Live
connection for the given report, just like connections to SQL Server
Analysis Services. With Live connections, all data retrieval and modeling
capabilities are disabled and the queries associated with report
visualizations are executed against the source database.

Leveraging published datasets as the sources for reports provides a natural isolation
between the dataset design and report development processes. For example, a dataset
designer can implement changes to a local Power BI Desktop file (PBIX), such as the
creation of new DAX measures, and re-publish the dataset to make these measures
available to report authors. Additionally, these connections provide report authors with
visibility to the latest successful refresh of the dataset if the dataset is configured in import
mode.

Connecting to Sources and Transforming Data with M Chapter 2

[55]

Power BI Desktop options
Dataset designers should be aware of the global and current file settings available to
manage the Power BI Desktop environment. Among other options, these settings include
the implementation of the privacy levels described earlier, the DAX functions available to
DirectQuery datasets, auto recovery, preview features, and whether M queries will be
executed in parallel or not.

Power BI Desktop options can be accessed from the File menu as follows (File | Options
and settings | Options):

Power BI Desktop options – GLOBAL Privacy

Connecting to Sources and Transforming Data with M Chapter 2

[56]

By setting the global Privacy Levels option to Always combine data
according to your Privacy Level settings for each source, the current file
privacy setting options are disabled. For all development and project
activities, it's recommended to apply the privacy levels established per
data source rather than each PBIX file's privacy settings.

It's outside the scope of this chapter to provide details of each Power BI Desktop option, but
the following two sections recommend settings that are relevant to dataset design.

Global options
Global options only need to be set once and concern fundamental settings, including data
source privacy levels and security:

Set the DirectQuery option to Allow unrestricted measures in DirectQuery1.
mode
Configure the security options to require user approval for new native database2.
queries and to use the ArcGIS Maps for Power BI
Set the privacy option to always combine data according to privacy level settings3.
for each source
Configure the Power Query Editor options to display the Query Settings pane4.
and the Formula Bar
Click the OK button in the bottom-right corner of the Options dialog to apply5.
these settings:

It may be necessary to restart Power BI Desktop for the revised settings
to take effect

For DirectQuery datasets, not all DAX functions can be translated to a SQL
statement for execution by the data source. When DAX measures use these
non-optimized functions, especially against larger or unfiltered tables, the
local execution can result in poor performance. However, when used
appropriately, such as against pre-filtered or aggregated data, unrestricted
measure expressions can add to the analytical value of the dataset without
negatively impacting performance. See the official documentation for
DAX-formula compatibility with DirectQuery models http:/ /bit. ly/
2oK8QXB.

http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB

Connecting to Sources and Transforming Data with M Chapter 2

[57]

CURRENT FILE options
The CURRENT FILE options must be set per the Power BI Desktop file and are particularly
important when creating a new dataset:

Disable the automatic column type and header detection for unstructured sources1.
Disable all relationship options, including the import of relationships from data2.
sources and the detection of new relationships after data is loaded
Assuming a date dimension table is available to the dataset, disable the Auto3.
Date/Time option
For larger import datasets with many queries, disable the parallel loading of4.
tables
Click the OK button in the bottom-right corner of the Options dialog to apply5.
these settings:

Power BI Desktop Options – CURRENT FILE Data Load

Connecting to Sources and Transforming Data with M Chapter 2

[58]

The dataset designer should explicitly apply the appropriate data types
within the M queries, accessing any unstructured sources, such as Excel
files. Likewise, the dataset designer should have access to data source
documentation or subject matter experts regarding table relationships.
Furthermore, the columns and hierarchies of the dataset's date dimension
table can be used instead of the automatic internal date tables associated
with the Auto Date/Time option.

Large Power BI datasets with multiple fact tables can contain many queries which, if
executed in parallel, can overwhelm the resources of the source system resulting in a data
refresh failure. Disabling the parallel loading of tables, therefore, improves the availability
of the dataset and reduces the impact of the refresh process on the source server.

When Power BI Desktop is being used for report development rather than
dataset development, the Query reduction in CURRENT FILE options can
benefit the user experience. These options, including the disabling of
cross-highlighting by default and the use of an Apply button for slicer and
filter selections, result in fewer report queries being generated. Particularly
for large and DirectQuery datasets, these options can contribute to more
efficient and responsive self-service experiences with reports.

SQL views
As described in the Dataset planning section of Chapter 1, Planning Power BI Projects, a set of
SQL views should be created within the data source and these objects, rather than the
database tables, should be accessed by the Power BI dataset. Each fact and dimension table
required by the Power BI dataset should have its own SQL view and its own M query
within the dataset that references this view. The SQL views should preferably be assigned
to a dedicated database schema and identify the dimension or fact table represented as
shown in the following screenshot:

Views assigned to BI schema in SQL Server

Connecting to Sources and Transforming Data with M Chapter 2

[59]

A common practice is to create a database schema specific to the given
dataset being created or to the specific set of reports and dashboards
required for a project. However, as suggested in the Data Warehouse Bus
Matrix section of Chapter 1, Planning Power BI Projects there shouldn't be
multiple versions of dimensions and facts across separate
datasets—version control is a top long-term deliverable for the BI team.
Therefore, a single database schema with a generic name (BI in this
example) is recommended.

The existence of SQL view objects declares a dependency to source tables that are visible to
the data source owner. In the event that a change to the source tables of a view is needed or
planned, the SQL view can be adjusted, thus avoiding any impact to the Power BI dataset,
such as a refresh failure or an unexpected change in the data retrieved. As shown in the
following SQL Server dialog, a view (BI.vDim_Promotion) is identified as a dependent
object of the DimPromotion dimension table:

SQL Server Object Dependencies

Connecting to Sources and Transforming Data with M Chapter 2

[60]

For mature data warehouse sources, the simple query logic contained in each SQL view is
sufficient to support the needs of the dataset. However, with Power BI (and SSAS Tabular
2017), BI teams can also leverage M functions to further enhance the value of this data.

SQL views versus M queries
A common question in Power BI projects specific to data retrieval is whether to implement
any remaining transformation logic outside the data source in SQL views, within the M
queries of the dataset, or both. For SQL Server Analysis Services (SSAS) projects prior to
SQL Server 2017, the layer of SQL views was the only option to implement any
transformations and some BI teams may prefer this more familiar language and approach.
In other scenarios, however, the SQL views may not be accessible or the dataset designer
may have a particular strength in M query development relative to SQL. Additionally,
given the expanded role of M queries in the Microsoft ecosystem, such as the Common Data
Service, as well as support for M query development in Visual Studio, other BI teams may
see long-term value in M queries for lightweight data transformation needs.

Ideally, an organization's data warehouse already includes necessary data transformations
and thus minimal transformation is required within SQL or M. In this scenario, the M query
for the table can simply reference the SQL view of the table, which itself contains minimal to
no transformations, and inherit all required columns and logic. As a secondary alternative,
the SQL views can be modified to efficiently implement the required logic thus isolating
this code to the data source. As a third design option, M queries can implement the required
logic and, via query folding, generate a SQL statement for execution by the source. Yet
another design option, though less than ideal, is to implement part of the required logic in
the SQL view and the remaining logic in the M query.

The guiding principle of the data retrieval process for the import mode dataset is to
leverage the resources and architecture of the data source. The M queries of the Power BI
dataset, which access the layer of SQL views in the source system, ultimately represent the
fact and dimension tables of the data model exposed for report development and ad hoc
analysis. This model should address all data transformation needs, thus avoiding the need
for DAX-calculated columns and DAX-calculated tables.

Additionally, the data model in Power BI (or Analysis Services) should remain aligned with
the architecture and definitions of the data warehouse. If a gap is created by embedding
data transformation logic (for example, new columns) into the Power BI dataset that is not
present in the data warehouse, plans should be made to eventually migrate this logic to the
data warehouse to restore alignment.

Connecting to Sources and Transforming Data with M Chapter 2

[61]

In other words, a user or tool should be able to return the same results of a Power BI report
based on the Power BI dataset by issuing a SQL query against the source data warehouse.
This is particularly essential in environments with other BI and reporting tools built on top
of the data warehouse.

If it's necessary to use both SQL views and M functions to implement the
data transformation logic, then both queries should be documented and,
when possible, this logic should be consolidated closer to the data source.

As shown in the Dataset Planning Architecture diagram from Chapter 1, Planning Power BI
Projects, there are six layers in which data logic can be implemented:

Dataset planning architecture

Data retrieval processes should strive to leverage the resources of data sources and avoid or
minimize the use of local resources. For example, a derived column implemented within
either a SQL Views (layer 3) or within an M Queries (layer 4) which folds its logic to the
data source is preferable to a column created by a DAX Calculated Tables and Columns
(layer 5). Likewise, if data transformation logic is included within M queries (for example,
joins, group by), it's important to ensure these operations are being executed by the source
system as described in the Query folding section later in this chapter. These considerations
are especially critical for large tables given the relatively limited resources (for example,
CPU, Memory) of a Power BI dataset or the On-premises data gateway if applicable.

Additionally, the dimension and fact tables of the Power BI dataset and the DAX measures
created should represent a single version for the organization—not a customization for a
specific team or project sponsor. Therefore, although the combination of SQL views and M
queries provides significant flexibility for implementing data transformations and logic,
over time this logic should be incorporated into corporate data warehouses and extract-
transform-load (ETL) processes so that all business intelligence tools have access to a
common data source.

Connecting to Sources and Transforming Data with M Chapter 2

[62]

Incrementally migrate transformation logic closer to the corporate data
warehouse over time. For example, a custom column that's originally
created within an M query via the Table.AddColumn() function and a
conditional expression (if...then), could first be built into the SQL view
supporting the table, thus eliminating the need for the M query logic.

In a second and final stage, the column could be added to the dimension
or fact table of the corporate data warehouse and the conditional
expression could be implemented within a standard data warehouse ETL
package or stored procedure. This final migration stage would eliminate
the need for the SQL view logic, improve the durability and performance
of the data retrieval process, and in some scenarios also increase the
feasibility of a DirectQuery dataset.

SQL view examples
Each SQL view should only retrieve the columns required for the dimension or fact table. If
necessary, the views should apply business-friendly, unambiguous column aliases with
spaces and proper casing. Dimension table views should include the surrogate key used for
the relationship-to-fact tables, as well as the business or natural key column if historical
tracking is maintained as will be shown by the customer dimension example later in this
section.

Fact table views should include the foreign key columns for the relationships to the
dimension tables, the fact columns needed for measures, and a WHERE clause to only
retrieve the required rows, such as the prior three years. Given the size of many data
warehouse fact tables and the differences in how this data can best be accessed per the
Query design per dataset mode section earlier, dataset designers should ensure that the
corresponding SQL views are efficient and appropriate for the dataset.

A robust date dimension table is critical for all datasets and thus its SQL view and/or M
query has a few unique requirements. For example, it should include integer columns that
can define the default sort order of weekdays as well as sequentially increasing integer
columns to support date intelligence expressions. The date table should also include a
natural hierarchy of columns (that is, Year, Year-Qtr, Year-Mo, Year-Wk) for both the
Gregorian (standard) calendar as well as any custom fiscal calendar. These columns enable
simple drill-up/down experiences in Power BI and report visualizations at different date
granularities that span multiple time periods, such as the prior two years by week.

Connecting to Sources and Transforming Data with M Chapter 2

[63]

Given the static nature of the Date (and Time) dimension tables, their
minimal size, and their universal application in reports and dashboards,
it's usually a good use of IT/BI resources to enhance the source date table
in the data warehouse. This could include any derived columns currently
supported via SQL views or M queries as well as columns uniquely
valuable to the organization, such as company holidays. Additionally, any
dynamic columns, such as Calendar Month Status (Current Month,
Prior Month) can be computed within a SQL-stored procedure or an ETL
package and this processing can be scheduled to update the source date
table daily.

Date dimension view
The following sample from a date dimension SQL view includes several columns that will
be needed by the Power BI dataset:

Sample date dimension columns

The Calendar Year Month Number column can be used to define the default sort order of
the Calendar Yr-Mo column and can also support date intelligence DAX measure
expressions that select a specific time, frame such as the trailing four months. Likewise, a
prior calendar year date (or prior fiscal year date) column can be referenced in date
intelligence measure expressions. The Calendar Month Status and Calendar Year
Status columns make it easy for report authors to define common filter conditions, such as
the current and prior month or the current year excluding the current month. Additionally,
since the values for these columns are updated either by a daily job in the source database
or computed within the SQL view for the date dimension, the filter conditions for these
columns only need to be set once.

Connecting to Sources and Transforming Data with M Chapter 2

[64]

Power BI Desktop supports relative date filtering conditions for date
columns by default. Similar to the Calendar Month and Year Status
columns identified earlier, this feature is also useful in defining many
common report filter conditions, such as the last 20 days. However, the
filter conditions available in relative date filtering are not comprehensive
and typical conditions, such as all of last year and all dates from the
current year, can only be defined via the status columns. Additional
details regarding relative date filtering are available in Chapter 5, Creating
and Formatting Power BI Reports.

The following T-SQL from the date dimension view (BI.vDim_Date) leverages the
CURRENT_TIMESTAMP() function to compute two dynamic columns (Calendar Year
Status, Calendar Month Status) and the DATEPART() function to retrieve the date
rows from January 1st of three years ago through the current date:

SELECT
 D.Date
,
 CASE
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP) THEN 'Current Calendar
Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-1 THEN 'Prior Calendar
Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-2 THEN '2 Yrs Prior
Calendar Year'
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP)-3 THEN '3 Yrs Prior
Calendar Year'
 ELSE 'Other Calendar Year'
 END AS [Calendar Year Status]
,
 CASE
 WHEN YEAR(D.[Date]) = YEAR(CURRENT_TIMESTAMP) AND MONTH(D.Date) =
MONTH(CURRENT_TIMESTAMP) THEN 'Current Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS
date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS
date))) THEN 'Prior Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS
date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS
date))) THEN '2 Mo Prior Calendar Month'
 WHEN YEAR(D.[Date]) = YEAR(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS
date))) AND
 MONTH(D.[Date]) = MONTH(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS
date))) THEN '3 Mo Prior Calendar Month'

Connecting to Sources and Transforming Data with M Chapter 2

[65]

 ELSE 'Other Calendar Month'
 END AS [Calendar Month Status]
FROM
DBO.DimFinDate as D
WHERE
D.[Calendar Year] >= DATEPART(YEAR,CURRENT_TIMESTAMP)-3 AND D.Date <=
CAST(CURRENT_TIMESTAMP as date);

Provided that the scheduled refresh of the import mode dataset is successful, reports with
filter conditions defined against the dynamic date columns, such as Calendar Month
Status, will be updated automatically.

If the date columns in the SQL Server data source are only available as
integers in YYYYMMDD format, the following T-SQL expression can be used
to produce a date data type within the SQL view:

CONVERT(date,CAST(F.OrderDateKey AS nvarchar(8)),112)

However, the Mark as Date Table feature can be used to leverage existing
YYYYMMDD integer columns for date relationships, as described in the
following section.

Mark As Date Table
Most data warehouses store date columns as integers for query performance reasons. For
example, an Order Date Key column on a fact table would store the 20180225
(YYYYMMDD) value as an integer data type to represent February 25th, 2018. Likewise, an
existing date dimension table in the data warehouse usually also contains a YYYYMMDD date
key column to support the join to these fact tables in SQL queries. If this date dimension
table also contains a date column and meets essential data integrity criteria, the Mark as
Date Table feature in Power BI Desktop can be used to leverage existing integer/whole
number columns representing dates for relationships.

Connecting to Sources and Transforming Data with M Chapter 2

[66]

In the following screenshot, the Date table has been selected in the Fields list in Power BI
Desktop and the Mark as Date Table icon has been selected from the modeling tab of the
ribbon:

Mark as Date Table

As shown in the preceding screenshot, the column named Date, which is stored as a Date
data type, has been specified as the Date column to use by the Mark as Date Table feature.
Power BI validates that this column meets the required criteria to function properly.

In addition to relationships based on YYYYMMDD columns, this feature enables DAX Time
Intelligence functions, such as SAMEPERIODLASTYEAR(), to work properly. Power BI will
use the date column specified by the model author in the Mark as Date Table setting in
executing these expressions.

To utilize the Mark as Date Table feature, the Date column (Date data type) specified for
the Mark as Date Table feature must meet the following criteria:

No null values.
No duplicate values.
Contiguous date values:

There must be a single date value for each date from the earliest
date to the latest date. In other words, there can't be any gaps or
missing dates.

Connecting to Sources and Transforming Data with M Chapter 2

[67]

If a date/time column is used, the timestamp must be the same for each value of
the column.

Product Dimension view
As shown in the database diagram schema referenced in Chapter 1, Planning Power BI
Projects, it's recommended to provide a consolidated or de-normalized dimension for
datasets. In the following view (BI.vDim_Product), three product dimension tables are
joined and a logical column, Product Category Group, is created to support a common
reporting and analysis need:

SELECT
 P.ProductKey as 'Product Key'
, P.ProductAlternateKey as 'Product Alternate Key'
, P.EnglishProductName AS 'Product Name'
, ISNULL(S.EnglishProductSubcategoryName, 'Undefined') 'Product
Subcategory'
, ISNULL(C.EnglishProductCategoryName, 'Undefined') AS 'Product Category'
, CASE
 WHEN C.EnglishProductCategoryName = 'Bikes' THEN 'Bikes'
 WHEN C.EnglishProductCategoryName IS NULL THEN 'Undefined'
 ELSE 'Non-Bikes'
 END AS 'Product Category Group'
FROM
DBO.DimProduct AS P
LEFT JOIN DBO.DimProductSubcategory AS S
ON P.ProductSubcategoryKey = S.ProductSubcategoryKey
LEFT JOIN DBO.DimProductCategory AS C
ON S.ProductCategoryKey = C.ProductCategoryKey

In this example, it's necessary to use LEFT JOIN since the product dimension table in the
data warehouse allows for null values in the foreign key column
(ProductSubcategoryKey). Retrieving the product rows that haven't yet been assigned a
subcategory or category is necessary for certain reports that highlight future products. For
these products, an ISNULL() function is used to replace null values with an undefined
value. Additionally, similar to the Date view, a CASE expression is used to generate a
column that groups the product rows into two categories (Bikes and Non-Bikes).

Connecting to Sources and Transforming Data with M Chapter 2

[68]

Slowly-changing dimensions
The product and customer dimension views retrieve both the surrogate key column used
for relationships in the dataset as well as the business key that uniquely identifies the given
product or customer, respectively. For example, the same product (FR-M94B-38) is
represented by three product dimension rows (304, 305, 306) due to changes in its list price
over time:

Slowly-changing dimension processing applied to Product Dimension

As discussed in Chapter 1, Planning Power BI Projects, the historical tracking of core
business entities, such as customers and products, via slowly-changing dimension ETL
processes is an essential requirement for data warehouses. The ability to insert and update
rows based off of changes in specific columns is well outside the scope of SQL views and M
query transformations.

DAX measures will reference the business key or alternate key column of
these dimension tables to compute the discount count of these entities. For
dimensions without slowly-changing dimension processing applied, the
foreign key column of the related fact table can be used to compute the
distinct count of dimension values associated with the given fact or event.
Greater detail on these measures is included in Chapter 4, Developing
DAX Measures and Security Roles.

M queries
With the SQL views created, the data sources configured, and the Power BI Desktop
environment options applied, the dataset designer can finally develop the data retrieval
queries and parameters of the dataset.

Connecting to Sources and Transforming Data with M Chapter 2

[69]

Within the Power Query Editor of Power BI Desktop, group folders can be used to organize
M queries into common categories such as Data Source Parameters, Staging Queries, Fact
table Queries, Dimension Table Queries, and Bridge Table Queries as shown in the
following screenshot:

Power Query Editor in Power BI Desktop with group folders

The parameters and queries displayed with a gray font are included in the refresh process
of the dataset but not loaded to the data modeling layer. For example, the
AdWorksSQLServer query displayed in the preceding image merely exposes the objects of
the SQL Server database via the Sql.Database() M function for other queries to reference.
This query, along with the data source parameters, all have a gray font and are used to
streamline the data retrieval process such that a single change can be implemented to
update many dependent queries.

Connecting to Sources and Transforming Data with M Chapter 2

[70]

Right-click a query or parameter in the queries list to expose the Enable load and Include
in report refresh properties as shown in the following screenshot:

Enable load and Include in report refresh

For many datasets, the only queries that should be loaded to the data model are the
dimension and fact table queries and certain parameter table queries. For this dataset, three
bridge tables will also be loaded and included in the report refresh to support the analysis
of Internet Sales and Reseller Sales data versus the annual Sales and Margin
Plan.

The parameter table queries, as described in the following Parameters
table section, do not contain data and are merely used as placeholders for
related DAX measures in the Power BI Fields list, similar to display
folders.

Data Source Parameters
Parameters are special M queries that do not access an external data source and only return
a scalar or individual value, such as a specific date, number, or string of text characters. The
primary use case for parameters is to centrally define a common and important value, such
as a server name or the name of a database, and then reference that parameter value in
multiple other queries. Like global variables, parameters improve the manageability of
large datasets as the dataset designer can simply revise a single parameter's value rather
than manually modify many queries individually.

Query parameters can be created and modified via the Manage Parameters dialog available
on the Home tab of the Power Query Editor. The following image of Manage Parameters
identifies the six parameters defined for the SQL Server database and the Microsoft Excel
workbook:

Connecting to Sources and Transforming Data with M Chapter 2

[71]

Manage Parameters in Power Query Editor

For this dataset, development and production environment database parameters (for
example, ProdServer and ProdDB) are configured with a list of valid possible values to
make it easy and error-free when switching data sources. For the same purpose, both the
name of the Excel workbook containing the annual Sales and Margin Plan and its file
directory are also stored as parameters.

The Suggested Values dropdown provides the option to allow any value to be entered
manually, for a value to be selected from a hardcoded list of valid values, and for a query
that returns a list (a value type in M, such as a table and a record), to dynamically populate
a list of valid parameter values. Given the small number of valid server names in this
example and the infrequency of changing production and development server names, the
three suggested values have been entered manually.

Connecting to Sources and Transforming Data with M Chapter 2

[72]

Parameters are often used with Power BI Template (.PBIT) files to enable
business users to customize their own reports with pre-defined and
pre-filtered queries and measures. For example, the user would open a
template and select a specific department, and this selection would be
used to filter the M queries of the dataset.

Additionally, parameters can be useful in defining the values used in the
filtering conditions of queries, such as the starting and ending dates and in
the calculation logic used to create custom columns in M queries.
Parameters are usually only used by other queries and thus not loaded
(gray font) but they can be loaded to the data model as individual tables
with a single column and a single row. If loaded, the parameters can be
accessed by DAX expressions just like other tables in the model.

Staging Queries
With the data source parameters configured, staging queries can be used to expose the data
sources to the dimension and fact table queries of the dataset. For example, the
AdWorksSQLServer staging query merely passes the production server and production
database parameter values into the Sql.Database() M function as shown in the earlier
image of the Power Query Editor interface. This query results in a table containing the
schemas and objects stored in the database, including the SQL views supporting the fact
and dimension tables.

The SalesPlanFilePath staging query used for the Annual Sales Plan Excel workbook
source is very similar in that it merely references the file name and file directory parameters
to form a complete file path, as shown in the following screenshot:

Annual Sales Plan Staging Query—Excel Workbook

Connecting to Sources and Transforming Data with M Chapter 2

[73]

The third and final staging query, CurrentDateQry, simply computes the current date as a
date value:

Current Date Staging Query

Just like parameters, the results of staging queries, such as CurrentDateQry, can be
referenced by other queries, such as the filtering condition of a fact table. In the following
sample M query, the Table.SelectRows() function is used in the Internet Sales
query to only retrieve rows where the Order Date column is less than or equal to the value
of the CurrentDateQry (10/16/2017):

let
 Source = AdWorksSQLServer,
 ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 CurrentDateFilter = Table.SelectRows(ISales, each [Order Date] <=
 CurrentDateQry)
in
 CurrentDateFilter

In this simple example, the same filter condition can easily be built into the SQL view
(vFact_InternetSales), supporting the fact table and this approach would generally be
preferable. However, it's important to note that the M engine is able to convert the final
query variable (CurrentDateFilter), including the reference to the staging query
(CurrentDateQry), into a single SQL statement via Query Folding. In some data
transformation scenarios, particularly with rapid iterations and agile project lifecycles, it can
be preferable to at least temporarily utilize efficient M queries within the Power BI dataset
(or Analysis Services model) rather than implement modifications to the data source (for
example, data warehouse tables or views).

Connecting to Sources and Transforming Data with M Chapter 2

[74]

As you will see in the Query folding section later in this chapter, if it's
necessary to use M to implement query transformations or logic, the
dataset designer should be vigilant in ensuring this logic is folded into a
SQL statement and thus executed by the source system. This is
particularly important for large queries retrieving millions of rows, given
the limited resources of the on-premises gateway server (if applicable) or
any provisioned capacities (hardware) with Power BI Premium.

DirectQuery staging
The database staging query for a DirectQuery dataset is slightly different than an import
mode dataset. For this query, an additional variable is added to the let expression, as shown
in the following example:

let
 Source = Sql.Database(ProdServer, ProdDB),
 DummyVariable = null
in
 Source

The additional variable (DummyVariable) is ignored by the query and the same
Sql.Database() function that references the server and database parameters for the
import mode dataset can also be used for the DirectQuery dataset.

Fact and dimension queries
For larger datasets with multiple fact tables, most M queries will access a single SQL view,
apply minimal to no transformations, and then expose the results of this query to the data
model as a dimension or fact table. For import mode datasets, the M query is executed upon
a scheduled refresh and the query results are loaded into a compressed, columnar format.
For DirectQuery mode datasets, the M queries with the Enable load property set only
define the SQL statement representing the given dimension or fact tables. The DirectQuery
data source will utilize these SQL statements to create SQL queries necessary to resolve
report queries, such as joining the Internet Sales query with the Product query.

Connecting to Sources and Transforming Data with M Chapter 2

[75]

Source Reference Only
The following M query references the SQL view (BI.vDim_Customer) via the staging
query (AdWorksSQLServer) and does not apply any further transformations:

Customer Dimension Query

The customer query accesses the unique M record associated with the schema (BI) and SQL
view (vDim_Customer) from the table produced by the staging query
(AdWorksSQLServer). This record contains all field names of the staging table query
including the Data field that stores the SQL view. Referencing the Data field of the M
record retrieves the results of the SQL view.

Since no M transformations are applied, the M query reflects the source SQL view and
changes to the SQL view such that the removal of a column will be automatically carried
over to the Power BI dataset upon the next refresh. The one-to-one relationship between the
SQL view and the M query is one of the primary reasons to favor implementing, or
migrating, data transformation logic within the data warehouse source rather than in the
Power BI dataset.

Connecting to Sources and Transforming Data with M Chapter 2

[76]

M query summary
In summary, the Power Query Editor interface in Power BI Desktop should contain the
following types or groups of queries:

Parameters:
These will be used to store individual values essential to the data
retrieval that could change, such as the names of servers,
databases, and file paths.

Staging Queries:
These queries will not be loaded to the data model but will contain
logic used by one or many other queries.
For example, a staging query will connect to a specific SQL Server
database based on two parameters (server and database) and this
staging query will be used by the fact and dimension table queries.

Fact and Dimension Queries:
These queries will define the tables exposed to the data model layer
and optionally the reporting interface.
It's essential that these queries contain columns supporting the
relationships of the data model as well as all columns needed for
calculations/aggregations, grouping, and filtering in reports.

Parameter Tables (optional):
Additional tables can be loaded to the data model that don't
contain relationships but are used for other purposes, such as the
user interface as a placeholder for hidden logic.

Excel workbook – Annual Sales Plan
For the import mode dataset, the annual Sales and Margin Plan data is retrieved from a
table object within an Excel workbook. In the following fact table query (Sales and
Margin Plan), the SalesPlanFilePath staging query is referenced within
an Excel.Workbook() data access function:

Connecting to Sources and Transforming Data with M Chapter 2

[77]

Sales and Margin Plan query from Excel workbook source

As you saw in the Power BI Desktop settings section earlier in this chapter, the automatic
data type detection option for unstructured sources should be disabled. It's, therefore,
necessary to explicitly define the appropriate data type for each column of the Excel table
via the Table.TransformColumnTypes() function. The Int64.Type, Currency.Type,
and type number arguments used in this function correspond to the Whole Number,
Fixed Decimal Number, and Decimal Number data types, respectively.

Connecting to Sources and Transforming Data with M Chapter 2

[78]

For a DirectQuery dataset, the Sales and Margin Plan data would be retrieved from a
SQL view within the same database as the other fact and dimension tables as shown in the
following screenshot:

Sales and Margin Plan M query for DirectQuery dataset

The cost and time required to integrate the Sales and Margin Plan data into the data
warehouse database are one of the reasons that the default import mode dataset was chosen
for this project. The limitation of a single database within a single data source is currently
one of the primary limiting factors for DirectQuery datasets. In the following screenshot, an
error is thrown when trying to utilize two databases from the same database server for a
DirectQuery dataset:

DirectQuery limitation – Single Database

DirectQuery is a strategic priority for Microsoft and thus current limitations may be
eliminated in the near future.

Connecting to Sources and Transforming Data with M Chapter 2

[79]

Data types
For structured data sources, such as SQL Server, the source column data types will
determine the data types applied in Power BI. For example, a money data type in SQL
Server will result in a Fixed Decimal Number data type in Power BI. Likewise, the integer
data types in SQL Server will result in a Whole Number data type and the numeric and
decimal data types in SQL Server will result in Decimal Number data types in Power BI.

When an M query is loaded to the data model in a Power BI dataset, a Fixed Decimal
Number data type is the equivalent of a (19,4) numeric or decimal data type in SQL Server.
With four digits to the right of the decimal place, the use of the Fixed Decimal Number
data type avoids rounding errors. The Decimal Number data type is equivalent to a
floating point or approximate data type with a limit of 15 significant digits. Given the
potential for rounding errors with Decimal Number data types and the performance
advantage of Fixed Decimal Number data types, if four digits of precision is sufficient,
the Fixed Decimal Number data type is recommended to store numbers with fractional
components. All integer or whole number numeric columns should be stored as Whole
Number types in Power BI.

Numeric columns in M queries can be set to Whole Number, Fixed Decimal Number, and
Decimal Number data types via the following expressions, respectively—Int64.Type,
Currency.Type, and type number. The Table.TransformColumnTypes() function is
used in the following M query example to convert the data types of the Discount Amount,
Sales Amount, and Extended Amount columns:

let
 Source = AdWorksSQLServer,
 Sales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 TypeChanges = Table.TransformColumnTypes(Sales,
 {
 {"Discount Amount", Int64.Type}, // Whole Number
 {"Sales Amount", Currency.Type}, // Fixed Decimal Number
 {"Extended Amount", type number} // Decimal Number
 })
in
 TypeChanges

As M is a case-sensitive language, the data type expressions must be
entered in the exact case, such as type number rather than Type Number.
Note that single-line and multi-line comments can be included in M
queries. See the M query examples section later in this chapter for additional
details.

Connecting to Sources and Transforming Data with M Chapter 2

[80]

Given the impact on performance and the potential for rounding errors, it's important to
check the numeric data types defined for each column of large fact tables. Additional details
on data types are included in Chapter 3, Designing Import and DirectQuery Data Models.

Item access in M
Accessing records from tables, items from lists, and values from records are fundamental to
M query development. In the following example, the results of the BI.vDim_Account SQL
view are returned to Power BI using slightly different M syntax than the customer
dimension query from the previous section:

let
 Source = AdWorksSQLServer,
 AccountRecord = Source{[Name = "BI.vDim_Account"]},
 Account = AccountRecord[Data]
in
 Account

For this query, a record is retrieved from the AdWorksSQLServer staging query based only
on the Name column. The Data field of this record is then accessed in a separate variable
(Account) to return the results of the BI.vDim_Account SQL view to Power BI. BI teams or
the dataset designer can decide on a standard method for accessing the items exposed from
a data source staging query.

The following sample code retrieves the "Cherry" string value from an M list:

let
 Source = {"Apple","Banana","Cherry","Dates"},
 ItemFromList = Source{2}
in
 ItemFromList

M is a zero-based system such that Source{0} would return the "Apple" value and
Source{4} would return an error since there are only four items in the list. Zero-based
access also applies to extracting characters from a text value. For example,
the Text.Range("Brett",2,2) M expression returns the et characters.

The list value type in M is an ordered sequence of values. There are many
functions available for analyzing and transforming list values, such as
List.Count() and List.Distinct(). List functions that aggregate the
values they contain (for example, List.Average()) are often used within
grouping queries that invoke the Table.Group() function.

Connecting to Sources and Transforming Data with M Chapter 2

[81]

DirectQuery report execution
In the following database trace from SQL Server Profiler, a DirectQuery dataset has
translated a Power BI report query into a SQL statement, which joins the SQL statements
associated with the Reseller Sales, Reseller, and Date M queries:

SQL Server Profiler trace – Power BI DirectQuery report visualization

For DirectQuery datasets, it's important to understand both the individual queries
associated with each table of the model as well as how the data source is utilizing these
queries in resolving report queries. In this example, the three table queries are used as
derived tables to form the FROM clause of the outer SQL statement. Additionally, though not
included in the trace image, the WHERE clause reflects a slicer (filter) selection for a specific
calendar year in a Power BI report.

Bridge Tables Queries
The analysis of actual or historical Sales and Margin Plan versus the Annual Sales
Plan is one of the top requirements for this dataset. Given the granularity of the annual
Sales and Margin Plan (Calendar Month, Product Subcategory, Sales
Territory Region), it's necessary to create bridge tables reflecting the unique values of
these columns.

Connecting to Sources and Transforming Data with M Chapter 2

[82]

The three bridge tables, which can be hidden from the user interface, enable relationships
between the Date, Product, and Sales Territory dimension tables with the Sales and
Margin Plan fact table.

In the following example, the Sales Territory dimension table query is referenced as a
source and the unique values of the Sales Territory Region column are retrieved via
the Table.Distinct() function:

Sales Territory Bridge Table query for actual versus plan analysis

In the data model, the bridge tables will have one-to-many relationships with both the
Annual Sales Plan fact table and their associated dimension tables. The relationship
between the bridge tables and the dimensions will be set to allow bidirectional cross-
filtering such that a filter selection for a Product Category (for example, Bikes) will
impact both the historical sales fact tables as well as the Sales and Margin Plan. Greater
details of this model will be discussed in Chapter 3, Designing Import and DirectQuery Data
Models. The Enable load and Include in Report Refresh properties for each bridge table
query (accessible via the right-click menu) should be set to true.

All three bridge table M queries result in simple SQL statements, such as
the following, via Query Folding:

"Select distinct [Sales Territory Region] from
BI.vDim_SalesTerritory"

Therefore, all three bridge table queries can be used in a DirectQuery
dataset. Additionally, these bridge queries could be stored as new SQL
views in the source database to eliminate the dependency on M functions.

Connecting to Sources and Transforming Data with M Chapter 2

[83]

Parameter Tables
The final group of M queries, parameter table queries, are developed for usability and
manageability purposes. From a usability standpoint, the Date Intelligence Metrics
and Adventure Works Sales queries serve to consolidate similar DAX measures in the
Fields list. Additionally, the CurrentDate query is used to provide reports with a text
message advising of the latest data refresh date. From a manageability standpoint, the
Measure Support query can be used to centralize intermediate or branching DAX
expressions that can be referenced by many DAX measures.

As shown in the following example of the Adventure Works Sales query, a trivial
expression can be used for three of the four queries since the purpose of the query is simply
to provide a table name to the data model:

Adventure Works Sales Parameter Tables query

The Date Intelligence Metrics, Adventure Works Sales, and Measure Support
queries can all retrieve a blank value and the Include in report refresh property can be
disabled. The following two chapters will demonstrate how these blank tables can be
utilized as data model metadata, and DAX measures are added to the dataset in Chapter
3, Designing Import and DirectQuery Data Models, and Chapter 4, Developing DAX Measures
and Security Roles, respectively.

The CurrentDate query is the only parameter table query that needs to be executed with
each report refresh. The following M script for the CurrentDate query produces a table
with one column and one record, representing the current date as of the time of execution:

let
 RefreshDateTime = DateTime.LocalNow(),
 TimeZoneOffset = -5,
 RefreshDateTimeAdjusted = RefreshDateTime +

Connecting to Sources and Transforming Data with M Chapter 2

[84]

#duration(0,TimeZoneOffset,0,0),
 RefreshDateAdjusted = DateTime.Date(RefreshDateTimeAdjusted),
 TableCreate = Table.FromRecords({[CurrentDate = RefreshDateAdjusted]}),
 DateType = Table.TransformColumnTypes(TableCreate,{"CurrentDate", type
date})
in
 DateType

All reported times in Microsoft Azure are expressed in Coordinated Universal Time
(UTC). Therefore, timezone adjustment logic can be built into the M query to ensure the last
refreshed date message reflects the local timezone. In the preceding example, five hours are
reduced from the DateTime.LocalNow() function reflecting the variance between US
Eastern Standard Time and UTC. The adjusted datetime value is then converted into a date
value and a table is built based on this modified date value.

As shown in the following image, the Adventure Works Sales and Date Intelligence
Metrics queries are represented in the FIELDS list and the CurrentDate query is used by
a DAX measure to advise of the last refreshed date:

Parameter Tables in Fields list and Data Refresh Message

The DAX expression supporting the last refreshed message is as follows:

Last Refresh Msg =
 VAR CurrentDateValue = MAX('CurrentDate'[CurrentDate])
 RETURN "Last Refreshed: " & CurrentDateValue

An additional example of using DAX to return a string value for title or label purposes is
included in the Drillthrough Report Pages section of Chapter 6, Applying Custom Visuals,
Animation, and Analytics.

Connecting to Sources and Transforming Data with M Chapter 2

[85]

As datasets grow larger and more complex, BI teams or dataset designers
may add or revise group names to better organize M queries. For example,
the four parameter group queries in this section serve three separate
functions (fields list, last refreshed date, and DAX logic
centralization).

To experienced Power BI and SSAS Tabular developers, a parameter table
is understood as a custom table of parameter values loaded to a model and
exposed to the reporting interface. DAX measures can be authored to
detect which value (parameter) has been selected by the user (for example,
10% growth, 20% growth) and dynamically compute the corresponding
result. For this dataset, the concept of Parameter Tables is extended to
include any query that is loaded to the data model but not related to any
other table in the data model.

Security Tables
Based on the data security needs for this project described in Chapter 1, Planning Power BI
Projects, it's not necessary to retrieve any tables for the purpose of implementing a row-level
security (RLS) role. As shown in the Sample Power BI project template section in Chapter
1, Planning Power BI Projects, the sales managers and associates should only have access to
their Sales Territory groups, while the Vice Presidents should have global access. With
these simple requirements, the security groups of users (for example, North America,
Europe, the Pacific region) can be created and assigned to corresponding RLS roles defined
in the data model. See Chapter 4, Developing DAX Measures and Security Roles, for details on
implementing these security roles.

In projects with more complex or granular security requirements, it's often necessary to load
additional tables to the data model such as a Users table and a Permissions table. For
example, if users were to be restricted to specific postal codes rather than sales territory
groups, a dynamic, table-driven approach that applies filters based on the user issuing the
report request would be preferable to creating (and maintaining) a high volume of distinct
RLS roles and security groups. Given the importance of dynamic (user-based) security,
particularly for large-scale datasets, detailed examples of implementing dynamic security
for both import and DirectQuery datasets are included in Chapter 4, Developing DAX
Measures and Security Roles.

Connecting to Sources and Transforming Data with M Chapter 2

[86]

Query folding
Query folding is one of the most powerful and important capabilities of the M language as
it translates M expressions into SQL statements that can be executed by the source system.
With query folding, M serves as an abstraction layer to implement both common and
complex data cleansing and transformation operations while still leveraging source system
resources. When implementing any remaining logic or data transformations via M
functions, a top priority of the dataset designer is to ensure that these operations are folded
to the data source.

In the following M query, a Table.RemoveColumns() M function is applied against the
SQL view for the Internet Sales fact table to exclude three columns that are not needed
for the dataset:

Power Query Editor: View Native Query

The additional step is translated to a SQL query that simply doesn't select the three
columns. The specific SQL statement passed to the source system can be accessed by right-
clicking the final step in the Query Settings pane and selecting View Native Query. If
the View Native Query option is grayed out, this indicates that the specific step or
transformation is executed with local resources.

Connecting to Sources and Transforming Data with M Chapter 2

[87]

Selecting one of the APPLIED STEPS in the Query Settings pane displays
a preview of the results of the query of the given step. Particularly for
queries with several steps, the ability to quickly walk through the
transformations or view the query results at any given step is very helpful
in analyzing and debugging M queries. Note that the names of the
variables used in the M query will be reflected in the APPLIED STEPS
pane, further underscoring the importance of applying intuitive variable
names in M queries.

Query folding is limited by the data source of the M expression with relational databases,
such as SQL Server and Oracle, supporting the most query folding. Alternatively, no query
folding is possible when an Excel workbook or a text file is the data source of a query. The
M queries against these file sources will use local M engine resources and thus the volume
of data imported as well as the complexity of the query should be limited. Other sources,
such as SharePoint lists, Active Directory, and Exchange, support some level of query
folding, though significantly less than relational databases.

Partial query folding
Dataset designers should check the final step of each query in the dataset to ensure that
query folding is occurring. If all required transformations or logic of an M query cannot be
folded into a single SQL statement, the dataset designer should attempt to re-design the
query to obtain as much query folding as possible. For example, all common or simple
transformations can be implemented in the first four steps of the query so that View Native
Query will be visible for the fourth step. The remaining logic can be added as the fifth step
of the query and this locally executed step or transformation will be applied against the
results of the SQL statement generated from the fourth step of the query.

The Value.NativeQuery() M function can be used to pass a SQL
statement to the data source. However, any further transformations
applied to the results of this function in the M query will exclusively use
local resources. Therefore, if implemented, the SQL statement passed to
the data source should either include all required logic for the query or
return a small result set that can be further processed with local resources.

Connecting to Sources and Transforming Data with M Chapter 2

[88]

M Query examples
The M query language includes hundreds of functions and several books have been written
about to its application. The greater purpose of this chapter is to understand M queries in
the context of a corporate Power BI solution that primarily leverages an IT-managed data
warehouse. As shown in the examples shared in the M Queries section earlier, the
combination of a mature data warehouse and a layer of SQL view objects within this source
may eliminate any need for further data transformations. However, Power BI Dataset
designers should still be familiar with the fundamentals of M queries and their most
common use cases, as it's often necessary to further extend and enhance source data.

The following sections demonstrate three common data transformation scenarios that can
be implemented in M. Beyond retrieving the correct results, the M queries also generate
SQL statements for execution by the source system via query folding, and comments are
included for longer-term maintenance purposes.

If you're new to M query development, you can create a blank query from
the Other category of data source connectors available within the Get
Data dialog. Alternatively, you can duplicate an existing query via the
right-click context menu of a query in the Power Query Editor and then
rename and revise the duplicate query.

Trailing three years filter
The objective of this example is to retrieve dates from three years prior to the current year
through the current date. For example, on October 18th, 2017, the query should retrieve
January 1st, 2014 through October 18th, 2017. This requirement ensures that three full years
of historical data, plus the current year, is always available to support reporting.

The starting date and current date values for the filter condition are computed via Date and
DateTime M functions and assigned variables names (StartDate, CurrentDate). Since
the starting date will always be on January 1st, it's only necessary to compute the starting
year and pass this value to the #date constructor. Finally, the two date variables are passed
to the Table.SelectRows() function to implement the filter on the Reseller Sales fact
table view:

let
//Trailing Three Year Date Values
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 StartYear = Date.Year(CurrentDate)-3,
 StartDate = #date(StartYear,1,1),

Connecting to Sources and Transforming Data with M Chapter 2

[89]

//Reseller Sales View
 Source = AdWorksSQLServer,
 ResellerSales = Source{[Schema = "BI", Item =
"vFact_ResellerSales"]}[Data],
//Trailing Three Year Filter
 FilterResellerSales =
 Table.SelectRows(ResellerSales, each [Order Date] >= StartDate and
[Order Date] <= CurrentDate)
in
 FilterResellerSales

As shown in the View Native Query dialog available in the Applied Steps window of the
Power Query Editor, the custom filter condition is translated into a T-SQL statement for the
source SQL Server database to execute:

Query Folding of three year filter condition

Note that the order of the variables in the expression doesn't impact the final query. For
example, the two Reseller Sales view variables could be specified prior to the three date
variables and the final FilterResellerSales variable would still generate the same SQL
query. Additionally, be advised that M is a case-sensitive language. For example,
referencing the variable defined as StartDate via the name Startdate will result in a
failure.

Single-line comments can be entered in M queries following the double
forward slash (//) characters per the trailing three years example.
Multiline or delimited comments start with the (/*) characters and end
with the (*/) characters, just like T-SQL queries for SQL Server.

If the requirement was only to retrieve the trailing three years of data relative to the current
date (for example, October 18th, 2014 through October 18th, 2017) the StartDate variable
could be computed via the Date.AddYears() function, as follows:

//Trailing three years (e.g. October 18th, 2014 through October 18, 2017)
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 StartDate = Date.AddYears(CurrentDate,-3)

Connecting to Sources and Transforming Data with M Chapter 2

[90]

Customer history column
In this example, the goal is to add a column to the customer dimension table that groups the
customers into four categories based on the date of their first purchase. Specifically, the new
column needs to leverage the existing first purchase date column and assign the customer
rows to one of the following four categories—First Year Customer, Second Year
Customer, Third Year Customer, Legacy Customer. Since the column will be
computed daily with each scheduled refresh, it will be used by the sales and marketing
teams to focus their efforts on new and older customer segments.

A combination of date functions and conditional logic (if..then..else) is used with the
Table.AddColumn() function to produce the new column:

let
// Customer History Date Bands
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 OneYearAgo = Date.AddYears(CurrentDate,-1),
 TwoYearsAgo = Date.AddYears(CurrentDate,-2),
 ThreeYearsAgo = Date.AddYears(CurrentDate,-3),
//Customer Dimension
 Source = AdWorksSQLServer,
 Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],
 CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment",
 each
 if [Customer First Purchase Date] >= OneYearAgo then "First Year
Customer"
 else if [Customer First Purchase Date] >= TwoYearsAgo and [Customer
First Purchase Date] < OneYearAgo then "Second Year Customer"
 else if [Customer First Purchase Date] >= ThreeYearsAgo and [Customer
First Purchase Date] < TwoYearsAgo then "Third Year Customer"
else "Legacy Customer", type text)
in
 CustomerHistoryColumn

As shown in the following image from the Power Query Editor, the Customer History
Segment produces one of four text values based on the Customer First Purchase Date
column:

Customer History Segment column in Power Query Editor

Connecting to Sources and Transforming Data with M Chapter 2

[91]

In this example, the customer Alan Zheng falls into the Third Year Customer segment
since his first purchase date (10/20/2014) is after 10/18/2014 - three years prior to the current
date (10/18/2017). When the dataset is refreshed on 10/21/2017, Alan Zheng will be re-
classified as a Legacy Customer by the Customer History Segment column since his
first purchase date will be more than three years old at that time.

Like the previous M query example of a trailing three year filter, the conditional logic for
the derived customer column is also translated into T-SQL via query folding:

Native SQL Query generated by Customer M Query

The two dynamic columns (Calendar Year Status, Calendar Month
Status) included in the date dimension SQL view earlier in this chapter
could also be computed via M functions.

Derived column data types
The final parameter to the Table.AddColumn() function is optional but should be
specified to define the data type of the new column. In the customer history column
example, the new column is defined as a text data type. If a whole number column was
created, an Int64.Type would be specified, such as the following example:

MyNewColumn = Table.AddColumn(Product, "My Column", each 5, Int64.Type)

Connecting to Sources and Transforming Data with M Chapter 2

[92]

If the data type of the column is not defined in the Table.AddColumn() function or later in
the query via the Table.TransformColumnTypes() function, the new column will be set
as an Any data type, as shown in the following screenshot:

Data Type of Any

Columns of the Any data type will be loaded to the data model as a text data type. Dataset
designers should ensure that each column in every query has a data type specified. In other
words, the Any (that is, unknown) data type should not be allowed in M queries.

Product dimension integration
The SQL view for the product dimension referenced earlier in this chapter contained the
following four operations:

Join the Product, ProductSubcategory, and ProductCategory dimension1.
tables into a single query
Create a custom product category group column (for example, Bikes versus2.
Non-Bikes)
Apply report-friendly column names with spaces and proper casing3.
Replace any null values in the Product Subcategory and Product Category4.
columns with the 'Undefined' value

Like almost all operations available to SQL SELECT queries, the same query can also be
created via M functions. If the SQL view for the product dimension cannot be created
within the data source, the following M query produces the same results:

let
 Source = AdWorksSQLServer,
//Product Dimension Table Views
 Product = Source{[Schema = "BI", Item = "vDim_Products"]}[Data],
 ProductSubCat = Source{[Schema = "BI", Item =
"vDim_ProductSubcategory"]}[Data],

Connecting to Sources and Transforming Data with M Chapter 2

[93]

 ProductCat = Source{[Schema = "BI", Item =
"vDim_ProductCategory"]}[Data],

//Product Outer Joins
 ProductJoinSubCat =
Table.NestedJoin(Product,"ProductSubcategoryKey",ProductSubCat,"ProductSubc
ategoryKey","ProductSubCatTableCol",JoinKind.LeftOuter),
 ProductJoinSubCatCol =
Table.ExpandTableColumn(ProductJoinSubCat,"ProductSubCatTableCol",{"English
ProductSubcategoryName","ProductCategoryKey"},{"Product Subcategory",
"ProductCategoryKey"}),

 ProductJoinCat =
Table.NestedJoin(ProductJoinSubCatCol,"ProductCategoryKey",ProductCat,"Prod
uctCategoryKey","ProductCatTableCol",JoinKind.LeftOuter),
 ProductJoinCatCol =
Table.ExpandTableColumn(ProductJoinCat,"ProductCatTableCol",{"EnglishProduc
tCategoryName"},{"Product Category"}),

//Select and Rename Columns
 ProductDimCols =
Table.SelectColumns(ProductJoinCatCol,{"ProductKey","ProductAlternateKey","
EnglishProductName","Product Subcategory","Product Category"}),
 ProductDimRenameCols = Table.RenameColumns(ProductDimCols,{
 {"ProductKey", "Product Key"},{"ProductAlternateKey","Product
Alternate Key"},{"EnglishProductName","Product Name"}
 }),

//Product Category Group Column
 ProductCatGroupCol = Table.AddColumn(ProductDimRenameCols,"Product
Category Group", each
 if [Product Category] = "Bikes" then "Bikes"
 else if [Product Category] = null then "Undefined"
 else "Non-Bikes"
,type text),

//Remove Null Values
 UndefinedCatAndSubcat =
Table.ReplaceValue(ProductCatGroupCol,null,"Undefined",Replacer.ReplaceValu
e,{"Product Subcategory","Product Category"})
in
 UndefinedCatAndSubcat

The three product dimension tables in the dbo schema of the data warehouse are referenced
from the AdWorksSQLServer staging query described earlier in this chapter.

Connecting to Sources and Transforming Data with M Chapter 2

[94]

The Table.NestedJoin() function is used to execute the equivalent of the LEFT JOIN
operations from the SQL View, and the Table.ExpandTableColumn() function extracts
and renames the required Product Subcategory and Product Category columns.
Following the selection and renaming of columns, the Product Category group column is
created via a conditional expression within the Table.AddColumn() function. Finally, the
Table.ReplaceValue() function replaces any null values in the Product Category and
Product Subcategory columns with the 'Undefined' text string. The Power Query
Editor provides a preview of the results:

Power Query Editor preview of Product M Query

Despite the additional steps and complexity of this query relative to the previous M query
examples (trailing three years filter, Customer History Segment column), the entire
query is translated into a single SQL statement and executed by the source SQL Server
database. The View Native Query option in the Applied Steps pane of the Power Query
Editor reveals the specific syntax of the SQL statement generated via query folding:

Part of Native Query generated from Product M Query

Connecting to Sources and Transforming Data with M Chapter 2

[95]

Note that a dedicated SQL view object in the BI schema (for example,
BI.vDim_ProductSubcategory) is accessed for each of the three product
dimension tables. Per the SQL views section earlier in this chapter, it's
recommended to always access SQL views from Power BI datasets, as this
declares a dependency with the source tables.

Note that the Table.Join() function could not be used in this scenario given the
requirement for a left outer join and the presence of common column names. With a left
outer join, the presence of common column names, such as ProductSubcategoryKey or
ProductCategoryKey, for the tables in the join operation would cause an error.
Additionally, although a left outer join is the default behavior of the Table.NestedJoin()
function, it's recommended to explicitly specify the join kind (for example,
JoinKind.Inner, JoinKind.LeftOuter, JoinKind.LeftAnti) as per the
ProductJoinSubCat and ProductJoinCat variables of the M query.

Whenever any unstructured or business-user-owned data sources are used
as sources for a Power BI dataset, it's usually appropriate to implement
additional data quality and error-handling logic within the M query. For
example, a step that invokes the Table.Distinct() function could be
added to the Sales and Margin Plan query that retrieves from the
Excel workbook to remove any duplicate rows. Additionally, the third
parameter of the Table.SelectColumns() function (for example,
MissingField.UseNull) can be used to account for scenarios in which
source columns have been renamed or removed.

R script transformation
It's possible to execute an R script within an M query as part of a data transformation
process.

Connecting to Sources and Transforming Data with M Chapter 2

[96]

As shown in the following image, the Run R Script is available on the Transform tab of
the Power Query Editor in Power BI Desktop:

Run R Script Command in Power Query Editor

To execute the R script in Power BI Desktop, R needs to be installed on the local machine as
well as any R packages used by the script. Most importantly, for the R script to work
properly when the dataset is published to the Power BI service, the privacy levels for the
data sources need to be set to Public. For most organizations, this limitation rules out the
use of R scripts for data transformations in Power BI. Additionally, the presence of R scripts
adds another layer of complexity to a solution that already includes SQL, M, and DAX.

M editing tools
Power BI Desktop stores the M code for queries created via the Power Query Editor
graphical interface or the Advanced Editor within M documents for repeatable execution.
Similar to other languages and project types, code editing tools are available to support the
development, documentation, and version control of M queries. Dataset designers can use
Visual Studio or Visual Studio Code to author and manage the M queries for Power BI and
other Microsoft projects. These tools include common development features, such as
IntelliSense, syntax highlighting, and integrated source control.

Connecting to Sources and Transforming Data with M Chapter 2

[97]

Advanced Editor
In Power BI Desktop, the M code for each query can be accessed from the Advanced Editor
window within the Power Query Editor. With the Power Query Editor open, select a query
of interest from the list of queries on the left and click on the Advanced Editor icon from the
Home tab to access the following window:

Advanced Editor in Power BI Desktop

As of the October 2017 release of Power BI Desktop, the Advanced Editor is limited to
checking the syntax of the query. The colorization or highlighting of keywords,
surrounding detection, and IntelliSense features available to DAX expressions is not yet
available in Power BI Desktop. Given the importance of M queries to Power BI projects, as
well as SQL Server Analysis Services 2017 and other Microsoft applications, external M
editing tools, such as Visual Studio Code, are frequently used by dataset designers.

Connecting to Sources and Transforming Data with M Chapter 2

[98]

Experienced M query authors will often use the data transformation icons
available in the Power Query Editor to quickly produce an initial version
of one or a few of the requirements of the query. The author then uses the
Advanced Editor or an external M editing tool to analyze the M code
generated by the Power Query Editor and can revise or enhance this code,
such as by changing variable names or utilizing optional parameters of
certain M functions.

For the most common and simple data transformation tasks, such as
filtering out rows based on one value of a column (for example, State =
"Kansas"), the M code generated by the Power Query Editor usually
requires minimal revision. For more complex queries with custom or less
common requirements, the Power Query Editor graphical interface is less
helpful and a greater level of direct M development is necessary.

Visual Studio Code
Visual Studio Code is a free, lightweight code-editing tool from Microsoft that's available on
all platforms (Windows, Mac, Linux). Power Query M Language is an extension to Visual
Studio Code that provides code-editing support for M queries, as shown in the following
screenshot:

M Query in Visual Studio Code

Connecting to Sources and Transforming Data with M Chapter 2

[99]

In this example, the same Internet Sales query viewed in the Advanced Editor of Power
BI Desktop has been copied into a Visual Studio code file and saved with a (.pq) file
extension. Once saved in a supported file extension, code-editing features, such
as colorization, auto-closing, and surrounding detection, are applied. M query files can be
opened and saved with the following four file extensions—.m, .M, .pq, and .PQ.

Since the .pq file extension is used by the Power Query SDK for Visual
Studio, as described in the following section, this file extension is
recommended for storing M queries.

In the initial release of the extension (v 1.0.0), IntelliSense is limited to the terms within the
query. Future updates will likely include IntelliSense support for the standard library of M
functions and common M syntax, similar to the Power Query SDK for Visual Studio. To
install the Power Query M Language extension for Visual Studio Code, open the Extensions
Marketplace in Visual Studio Code (View | Extensions) and search for the name of the
extension.

Prior to the M extension for Visual Studio Code and the Power Query SDK
for Visual Studio, M developers commonly utilized the free Notepad++
code editor application. Since M is not a standard supported language for
this tool, developers would create a user-defined language by pasting or
typing in a list of M functions and keywords. The following blog post
from Lars Schreiber, MS MVP, walks through the M for Notepad++ setup
process: http:/ /ssbi- blog. de/technical- topics- english/ power-
query- editor- using- notepad/ .

http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/
http://ssbi-blog.de/technical-topics-english/power-query-editor-using-notepad/

Connecting to Sources and Transforming Data with M Chapter 2

[100]

Visual Studio
For Visual Studio 2015 and 2017, the Power Query SDK can be used to create Data
Connector and M query projects, as shown in the following screenshot:

Power Query project types in Visual Studio

With a new PQ file solution and project in Visual Studio, the M queries of a Power BI
dataset can be added as separate (.pq) files, as shown in the following screenshot:

Power Query project in Visual Studio 2017

Connecting to Sources and Transforming Data with M Chapter 2

[101]

Unlike the extension for Visual Studio Code, the file extension types for Power Query
projects are exclusive to (.pq). Most importantly, full M language Intellisense is supported,
making it dramatically easier to find M functions relevant to specific data transformation
operations. Moreover, unlike the extension for Visual Studio Code, M queries can be
executed from within Visual Studio via the Power Query SDK for Visual Studio. To execute
an M query in Visual Studio, such as in the preceding example, click the Start button on the
toolbar (green play icon) or hit F5. You can also right-click the Power Query project (for
example, AdWorks Enteprise Import) to configure properties of the M query project,
such as the maximum output rows to return and whether native queries can be executed.

To install the Power Query SDK for Visual Studio, access the Visual Studio Marketplace
(Tools | Extensions and Updates) and search for the name of the extension (Power Query
SDK).

As per the lock icons next to the project files in the Solution Explorer
window, the Power Query SDK for Visual Studio enables standard
integration with source control and project management tools, such as
Team Foundation Server (TFS) and Visual Studio Team Services
(VSTS).

Summary
In this chapter, we've covered all components of the data retrieval process used to support
the dataset for this project as described in Chapter 1, Planning Power BI Projects. This
includes the layer of SQL views within a database source, source connectivity parameters in
Power BI Desktop, and the M queries used to define and load the dimension and fact tables
of the dataset. In constructing a data access layer and retrieval process for a dataset, we've
also discussed the design considerations relative to import and DirectQuery datasets, Power
BI Desktop configuration options, and data source privacy levels. Additionally, we've
reviewed core concepts of the M language, including query folding, item access, and data
types. Moreover, we've reviewed three examples of efficiently implementing impactful data
transformation logic via M queries as well as the tools for developing and editing M
queries.

In the next chapter, we'll leverage the M queries and design techniques described in this
chapter to create import and DirectQuery data models. Specifically, the dimension and fact
table M queries will become the dimension and fact tables of the data model, and
relationships will be defined to form multiple star schemas. Additionally, the bridge table
M queries will be used to support the analysis of historical sales and margin results versus
the annual sales and margin plan.

3
Designing Import and

DirectQuery Data Models
This chapter utilizes the queries described in Chapter 2, Connecting to Sources and
Transforming Data with M, to create both an import and a DirectQuery Data Model.
Relationships are created between fact and dimension tables to enable business users to
analyze the fact data for both Internet Sales and Reseller Sales simultaneously by
using common dimension tables and across multiple business dates. A combination of
relationships, bidirectional cross-filtering, and DAX measures will be used to support the
analysis of actual sales data versus the Annual Sales and Margin Plan. Additionally, the
product dimension table is enhanced with a hierarchy to enable simple drill up/down, and a
custom sort order is applied to columns in the date dimension table.

This chapter also includes recommended practices for model metadata, such as data
categories, and tips to improve the usability of Data Models, such as a simplified field list.
Finally, we will review common performance analysis tools and optimization techniques
for import and DirectQuery Data Models. As described in the Dataset planning section of
Chapter 1, Planning Power BI Projects, a DirectQuery model relies on the data source of the
dataset (for example, a SQL Server-relational database) to execute report queries while an
import model loads (copies) the source data into a columnar compressed in-memory data
store. The implications of this decision significantly influence many factors of Power BI
solutions, such as modifications to data source systems to support DirectQuery datasets and
the configuration of scheduled refresh processes to support import mode datasets.

In this chapter, we will review the following topics:

Dataset objectives
Views in Power BI Desktop
Fact table design
Relationships
Hierarchies

Designing Import and DirectQuery Data Models Chapter 3

[103]

Custom sort orders
Bidirectional cross-filtering
Model metadata
Performance optimization

Dataset layers
As we saw in Chapter 1, Planning Power BI Projects, and Chapter 2, Connecting to Sources
and Transforming Data with M, Power BI datasets are composed of three tightly integrated
layers, all included within a Power BI Desktop file. The M Queries described in the Chapter
2, Connecting to Sources and Transforming Data with M, connect to data sources and optionally
apply data cleansing and transformation processes to this source data to support the Data
Model. The Data Model, the subject of this chapter, concerns the relationships defined
between fact and dimension tables, hierarchies of related columns, and metadata properties
that define default behaviors, such as the sorting of column values. The final layer of
datasets discussed in Chapter 4, Developing DAX Measures and Security Roles, Data Analysis
Expressions (DAX) Measures, leverages the Data Model (and thus the M Queries) to deliver
analytical insights for presentation in Power BI and other tools.

The term Data Model is often used instead of dataset, particularly in the
context of Analysis Services. Both Azure Analysis Services models and
SQL Server Analysis Services (SSAS) models created in Tabular mode
include the same three layers of Power BI datasets. In other contexts,
however, Data Model refers exclusively to the relationships, measures, and
metadata, but not the source queries. For this reason, and given the use of
the term datasets in the Power BI service, the term dataset (and dataset
designer) is recommended.

Designing Import and DirectQuery Data Models Chapter 3

[104]

The following diagram summarizes the role of each of the three dataset layers:

Three layers of datasets

At the Data Model layer, all data integration and transformations should be complete. For
example, it should not be necessary to define data types or create additional columns at the
Data Model level.

Ensure that each layer of the dataset is being used for its intended role. For
example, DAX Measures should not contain complex logic, so as to avoid
unclean or inaccurate data. Likewise, DAX Measure expressions should
not be limited by incorrect data types (for example, a number stored as
text) or missing columns on the date table. Dataset designers and data
source owners can work together to keep the analytical layers of datasets
focused exclusively on analytics.

Dataset objectives
For both Power BI projects and longer-term deployments, it's critical to distinguish Power
BI datasets from Power BI reports and dashboards. Although Power BI Desktop is used to
develop both datasets and reports, a Power BI dataset is an SSAS Data Model internally.
Similar to an SSAS Data Model developed and maintained by IT, the intent of the Power BI
dataset is to provide a simplified layer for reporting and analysis and to embed corporate-
approved logic and security. Power BI reports, which are also saved as .pbix files, will
only connect to the dataset and thus will exclusively leverage Power BI Desktop's
visualization features, such as Bookmarks and Slicer visuals.

As per Chapter 1, Planning Power BI Projects, datasets and reports are also associated with
unique technical and non-technical skills. A Power BI report developer, for example, should
understand visualization standards, the essential logic and structure of the dataset, and
how to distribute this content via Power BI Apps.

Designing Import and DirectQuery Data Models Chapter 3

[105]

However, the report developer doesn't necessarily need to know any programming
languages and can iterate very quickly on reports and dashboards. A Power BI dataset
designer, conversely, must have a fundamental knowledge of DAX and is very well served
by the M (Power Query) language and standard SQL. Additionally, the dataset designer is
not able to iterate as quickly as the report developer given the technical dependencies
within a dataset and the longer-term objectives for the dataset.

Given that the dataset serves as the bridge between data sources and analytical queries, it's
important to proactively evaluate datasets relative to longer-term objectives. Large,
consolidated datasets should be designed to support multiple teams and projects and to
provide a standard version or definition of core metrics. Although organizations may
enable business users to create datasets for specific use cases, corporate BI solutions should
not utilize datasets like individual reports for projects or teams.

The following table summarizes the primary objectives of datasets and identifies the
questions that can be used to evaluate a dataset in relation to each objective:

Objective Success criteria

User interface How difficult is it for business users to build a report from scratch?
Are users able to easily find the measures and columns needed?

Version control Do our measures align with an official, documented definition?
Are we reusing the same dimensions across multiple business processes?

Data security Have we implemented and thoroughly tested Row-level security (RLS) roles?
Are we using Azure Activity Directory (AAD) security groups to implement security?

Performance Are users able to interact with reports at the speed of thought?
Are our core DAX Measures efficient and utilizing all CPU cores available?

Scalability Can the dataset support additional business processes and/or history?
Can the dataset support additional users and workloads?

Analytics Does the dataset deliver advanced insights (out of the box)?
Are any local (report-level) measures or complex filters being used?

Availability How confident are we in the data sources and data retrieval process?
Are there dependencies we can remove or potential errors we can trap?

Manageability How difficult is it to implement changes or to troubleshoot issues?
Can existing data transformation and analytical logic be consolidated?

Designing Import and DirectQuery Data Models Chapter 3

[106]

Several of the objectives are self-explanatory, but others, such as availability and
manageability, are sometimes overlooked. For example, the same business logic may be
built into many individual DAX Measures, making the dataset more difficult to maintain as
requirements change. Additionally, there may be certain hardcoded dependencies within
the M Queries that could cause a dataset refresh to fail. Dataset designers and BI teams
must balance the needs to deliver business value quickly while not compromising the
sustainability of the solution.

To simplify individual measures and improve manageability, common
logic can be built into a small subset of hidden DAX Measures. The DAX
Measures visible in the fields list can reference these hidden measures and
thus will automatically update if any changes are necessary. This is very
similar to parameters and data source staging queries in M per Chapter 2,
Connecting to Sources and Transforming Data with M. Examples of
centralizing DAX logic are provided later in this chapter within the
Parameters table section.

Competing objectives
As a dataset is expanded to support more dimension and fact tables, advanced analytics,
and more business users, it can be necessary to compromise certain objectives to deliver
others. A common example of this is the implementation of date intelligence measures. For
instance, five DAX Measures with their own date intelligence calculation (for example,
Year-to-Date, Prior Year-to-Date), may be created for each existing measure thus
causing a dataset with 20 measures to contain 120 measures. Since Power BI does not
currently support display folders for measures, this can negatively impact the usability or
user interface objective. Another example is the performance of complex DAX Measures
relative to the scale of the dataset. Advanced, statistical calculations can be embedded in
datasets but performance is limited by the size of the dataset and the volume of users that
utilize this logic.

A method or work-around for providing the essential effect of measure-
display folders can be achieved with parameter tables. Essentially, an
empty table can be loaded to the model with a table name that describes a
type of DAX Measure. DAX Measures can then be assigned to this table
via the Home Table property. See the Parameter tables section for
additional details.

Designing Import and DirectQuery Data Models Chapter 3

[107]

External factors
Just like any other database, a well-designed Power BI dataset can still fail to deliver its
objectives due to external factors. For example, Power BI reports can be created that
generate a wide and long table of many columns and many metrics. These data extracts and
other dense visualizations that plot many different points are very resource-intensive
relative to card- and summary-level chart visualizations. Additionally, even when the
compression of an import mode dataset is maximized and the DAX Measures are efficient,
there may be insufficient hardware resources available to support the given reporting
workload. It's the responsibility of the Power BI admin, as described in Chapter 1, Planning
Power BI Projects, and potentially any delegated capacity administrators to utilize the
monitoring capabilities of Power BI and to provision the necessary resources to ensure
sufficient performance.

The Data Model
The Data Model layer of the Power BI dataset consists of the Relationship View, the Data
View, and the fields list exposed in the Report View. Each of the three views in Power BI
Desktop is accessible via an icon in the top-left menu below the toolbar, although the Data
View is exclusively available to import mode datasets.

The Relationships View
The Relationships View provides the equivalent of a database diagram specific to the tables
loaded to the model for the dataset. The relationship lines distinguish the one, or parent,
table of each relationship from the many, or child, table. A solid line indicates that the
relationship is active, while a dotted line denotes an inactive relationship that can only be
activated via the USERELATIONSHIP() DAX expression. Additionally, the arrow icons on
the relationship lines advise whether cross-filtering is single-directional (one arrow → one
way) or bidirectional (two arrows).

In the following screenshot from the Relationships View, only the Reseller to Reseller
Sales relationship is bidirectional and the relationships between all tables displayed are
active:

Designing Import and DirectQuery Data Models Chapter 3

[108]

Relationships View

Given the bidirectional cross-filtering relationship, a filter applied to the Employee table
would filter the Reseller Sales table and then also filter the Reseller dimension table.
Double-clicking a relationship line prompts the Edit Relationship dialog to optionally
modify the columns defining the relationship, the cross-filtering behavior (single or
bidirectional), and whether the relationship is active or passive.

Designing Import and DirectQuery Data Models Chapter 3

[109]

The bidirectional relationship between Reseller and Reseller Sales
from this example is only intended to demonstrate the graphical
representation of relationships in the Relationships View. Bidirectional
relationships should only be applied in specific scenarios, as described in
the Bidirectional relationships section later in this chapter.

A gray font indicates that the given column is not visible in the Report View. For certain
tables that are only used for internal logic, such as bridge tables or measure support, the
entire table will be grayed out and invisible to the Report View. Synonyms can only be
accessed via the Relationships View and can serve to improve the accuracy of Power BI's Q
& A natural language queries by associating terms with tables, columns, and measures of
the Data Model.

The Data View
The Data View provides visibility to the imported rows for each table as well as important
metadata, such as the count of rows and the distinct values for columns. In the following
screenshot, the Freight column of the Reseller Sales table has been selected in the
Data View, as indicated by the table icon on the far left:

Data View

Metadata of the column and/or table selected is displayed at the bottom of the Data View
window. For example, selecting the Freight column per the preceding image results in a
status message noting 53,207 rows for the Reseller Sales table and 1,394 distinct values
for the Freight column. If only the table name is selected from the fields list, only the
count of rows imported to the table is displayed at the bottom.

Designing Import and DirectQuery Data Models Chapter 3

[110]

The count of rows, and particularly the count of distinct values in a
column, is of critical importance to import mode datasets. Columns with
many unique values, such as primary keys or highly precise numeric
columns (that is, 3.123456), will consume much more memory.
Additionally, as a columnar database, the columns with a larger memory
footprint will also require more time to scan to resolve report queries.

DirectQuery datasets do not include Data View and thus common modeling features, such
as setting the data format of columns and measures, can be accessed via the Modeling tab
in the Report View. The dataset designer of a DirectQuery dataset would select the column
or measure from the Fields list in the Report View and then access the relevant metadata
property from the Modeling tab, such as Data Category and Sort by Column. The
availability of Data View and its supporting metadata (for example, count of rows, discount
count of values) is a modeling convenience of import mode datasets over DirectQuery
datasets. In the absence of the Data View, DirectQuery modelers can use table report visuals
on the Report View to sample or preview the values and formatting of columns and
measures.

The Report View
The Report View is primarily used for developing visualizations, but it also supports
modeling features, such as the creation of user-defined hierarchies. In the following
screenshot of a DirectQuery dataset, the Customer City column of the Customer table is
selected from the fields list:

Modeling options in Report View

The Data Category and Default Summarization properties for the Customer City column
have been set to City and Don't summarize, respectively. The Modeling tab of the Report
View provides both import and DirectQuery datasets with access to all common modeling
features, such as managing relationships, creating new DAX Measures, and accessing RLS
roles.

Designing Import and DirectQuery Data Models Chapter 3

[111]

Note that the New Table option is grayed out for DirectQuery datasets
since DAX-calculated tables are exclusively able to import models.
However, as explained in both the chapters Chapter 1, Planning Power BI
Projects and Chapter 2, Connecting to Sources and Transforming Data with M,
DAX-calculated columns and tables should be rarely used. M queries, SQL
views, and data warehouse objects are almost always preferable
alternatives to support the needed columns and tables.

In terms of data modeling, the Relationships View and the following Manage relationships
dialog are the most fundamental interfaces as these definitions impact the behavior of DAX
Measures and report queries:

Manage relationships dialog

Relationships can be created, edited, and deleted from the Manage relationships dialog.
For larger models with many tables and relationships, the dataset designer can utilize both
the Manage relationships dialog and the Relationships View.

Dynamic Management Views (DMVs), such as
TMSCHEMA_RELATIONSHIPS, can be used to analyze Power BI datasets,
just as they're used with other SQL Server products. To get started, simply
open the DAX Studio application while the Power BI Desktop (PBIX) file is
open and connect to the running dataset. You can then query the DMVs
(that is, select * from $SYSTEM.TMSCHEMA_RELATIONSHIPS). For
longer-term projects, it can be worthwhile to create a Power BI dataset that
exclusively retrieves from DMVs data and supports updated
documentation reports, such as the tables, columns, and measure
definitions included in a dataset. An example of this is included in the
Microsoft Power BI Cookbook (https:/ /www. packtpub. com/ big-data- and-
businessintelligence/ microsoft- power-bi-cookbook).

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Import and DirectQuery Data Models Chapter 3

[112]

Fact tables
There are three fact tables for this dataset—Internet Sales, Reseller Sales, and the
Sales and Margin Plan. The ability to analyze and filter two or all three of these tables
concurrently via common dimensions, such as Date, Product, and Sales Territory, is
what gives this dataset its analytical value to the business. A Power BI report, which is
always connected to a single dataset, could contain visualizations comparing total
Adventure Works Sales (Internet Sales plus Reseller Sales) to the overall Sales
and Margin Plan. This same report could also include detailed visualizations that explain
higher-level outcomes, such as the growth in online customers or changes in the Reseller
Sales margin rates:

Data Warehouse Bus Matrix

Each checkmark symbol represents the existence of a relationship implemented either
directly between the fact and dimension tables in the Data Model or, in the case of the
Sales and Margin Plan, via bridge tables. See Chapter 1, Planning Power BI Projects, for
more details on the Data Warehouse Bus Matrix.

The Sales and Margin Plan is at a lower grain than the Internet
Sales and Reseller Sales fact tables and thus cannot be filtered
directly by columns such as Product Name. For the Sales and Margin
Plan fact table, an alternative model design, including bridge tables and
conditional DAX Measures, is used to support cross-filtering from the
Product, Sales Territory, and Date dimension tables. See the Bridge
tables section later in this chapter for more details.

Fact table columns
Fact tables should only contain columns that are needed for relationships to dimension
tables and numeric columns that are referenced by DAX Measures. In some models, an
additional column that isn't modeled in a dimension table and is needed for analysis, such
as Sales Order Number, may also be included in a fact table.

Designing Import and DirectQuery Data Models Chapter 3

[113]

Given their size and central role in the dataset, fact tables receive much greater analysis to
deliver optimal performance and scalability.

In the following T-SQL query of the Reseller Sales source fact table, columns are
computed that produce the same values as the ExtendedAmount, SalesAmount, and
TotalProductCost columns:

Reseller Sales fact column logic

Only the UnitPrice, OrderQuantity, DiscountAmount, and ProductStandardCost
columns are needed for the import mode dataset since DAX Measures can be written to
embed the necessary logic (for example, UnitPrice * OrderQuantity) for the
ExtendedAmount, SalesAmount, and TotalProductCost columns. By not importing
these columns to the Data Model, a significant amount of data storage is saved and query
performance is not compromised. Columns with few unique values, such as
OrderQuantity, can be highly compressed by import mode datasets and thus are
lightweight to store and fast to scan to resolve report queries.

The same three columns can also be removed from the Internet Sales
fact table. The SUMX() function will be used in the DAX Measures and
only reference the source columns (OrderQuantity, UnitPrice, and
ProductStandardCost).

The $0.04 difference between the sum of the Sales Amount column and
the Sales Amount Calc expression is caused by the DiscountAmount
column being stored as a float (approximate) data type. In almost every
scenario, a variance this small ($.04 out of $80.4 M) is acceptable to obtain
the scalability benefit of not importing a fact table column.

Designing Import and DirectQuery Data Models Chapter 3

[114]

If the SQL View for the fact table is exclusively utilized by this dataset, then the three
columns can be removed there. If the SQL View cannot be modified, then the three columns
can be removed via the M Query for the fact table, as shown in the following screenshot:

Fact table columns excluded from the dataset

As shown in the previous screenshot, the Table.RemoveColumns() function excludes
three columns from the source SQL View, as these columns only represent derived values
from other columns that are included in the query. Therefore, for an import mode dataset,
DAX Measures can be written to efficiently implement these simple calculations via the
source columns, such as Unit Price and Order Quantity. However, for a DirectQuery
dataset, these derived columns (for example, Total Product Cost) would not be
removed due to the performance advantage of the SUM() SQL expressions referencing
individual columns. The following chapter contains details on implementing these DAX
measures and other measure expressions.

Fact column data types
It's essential that the numeric columns of fact tables are assigned to the appropriate data
types. All integer columns, such as Order Quantity, should be stored as a whole number
data type, and decimal numbers will be stored as either fixed decimal numbers or as
decimal numbers. If four decimal places is sufficient precision, a Fixed decimal number
type should be used to avoid rounding errors and the additional storage and performance
costs of the decimal number type.

Designing Import and DirectQuery Data Models Chapter 3

[115]

In the following screenshot, the Freight column is stored as a Fixed decimal number type
and, thus, despite a format of six decimal places, only four significant digits are displayed to
the right of the decimal place:

Fixed decimal number data type

Dataset designers should check the numeric columns of fact tables and ensure that the
appropriate data type has been assigned for each column. For example, certain scientific
columns may require the deep precision available for decimal number types (15 significant
digits), while accounting or financial columns generally need to be exact and thus the
internal (19, 4) data type of a Fixed decimal number type is appropriate. Note that the
result of aggregated expressions against this fixed decimal column will be a number of the
same type and, therefore, to avoid overflow calculation errors, will also need to fit the (19,
4) data type. The Data types section in Chapter 2, Connecting to Sources and Transforming
Data with M provides details on the relationship between M data types and data types in the
Data Model, as well as the function for converting column types in M Queries.

The Data View from the Fixed decimal number data type image is not available for
DirectQuery datasets. For DirectQuery datasets, the data types of columns should be set
and managed at the data source table level such that Power BI only reflects these types.
Revising data types during report query execution, either via SQL views in the data source
or the M Queries in Power BI, can significantly degrade the performance of DirectQuery
datasets.

Designing Import and DirectQuery Data Models Chapter 3

[116]

Fact-to-dimension relationships
To create the Data Model relationships identified in the Data Warehouse Bus Matrix image:

Click Manage Relationships from the Modeling tab in Report View.1.
From the Manage Relationships dialog, click the New command button at the2.
bottom to open the Create relationship interface. Choose the fact table, such as
Internet Sales, for the top table via the dropdown and then select the
dimension table as shown in the following screenshot:

Creating a relationship for the import mode dataset

Designing Import and DirectQuery Data Models Chapter 3

[117]

If the relationship columns have the same name, such as Currency Key in this example,
Power BI will automatically select the columns to define the relationship. Almost all
relationships will follow this Many to one(*:1) or fact-to-dimension pattern with the Cross-
filter direction property set to Single and the relationship set to active.

The two columns used for defining each relationship should be of the same data type. In
most relationships, both columns will be of the whole number data type as only a numeric
value can be used with slowly changing dimensions. For example, a Product Key column
could use the values 12, 17, and 27 to represent three time periods for a single product as
certain attributes of the product changed over time.

Prior to the Mark as Date Table feature described in the previous chapter,
a date column stored as a date data type was used for relationships in
Power BI datasets as this enables the time intelligence functions of DAX to
work correctly. Given this feature, however, whole number (integer)
columns stored in YYYYMMDD format (for example, 20180225 for
February 25th, 2018) can be used for fact-to-date table relationships in
Power BI datasets. Details on utilizing this feature and other
considerations for date dimension tables are included within the SQL
views section of Chapter 2, Connecting to Sources and Transforming Data
with M.

As more relationships are created, it can be helpful to switch to the Relationships view and
move or organize the dimension tables around the fact table. Relationships view can make
it clear when additional relationships need to be defined and can be useful in explaining the
model to report authors and users.

Click OK to create the relationship and repeat this process to build the planned star schema
relationships for both the Internet Sales and Reseller Sales fact tables, as shown in
the following screenshot of Internet Sales:

Designing Import and DirectQuery Data Models Chapter 3

[118]

Internet Sales relationships

All relationships from Internet Sales to a dimension table are active (solid line) except
for two additional relationships to the Date dimension table. In this dataset, the Order
Date is used as the active relationship, but two additional inactive (dotted line)
relationships are created based on the Due Date and Ship Date columns of the fact table.
DAX Measures can be created to invoke these alternative relationships via the
USERELATIONSHIP() DAX function, as shown in the following example:

Internet Net Sales (Due Date) =
CALCULATE([Internet Net Sales], USERELATIONSHIP('Internet Sales'[Due Date
Key],'Date'[Date Key]))

Internet Net Sales (Ship Date) =
CALCULATE([Internet Net Sales],USERELATIONSHIP('Internet Sales'[Ship Date
Key],'Date'[Date Key]))

Designing Import and DirectQuery Data Models Chapter 3

[119]

The inactive relationships and their corresponding measures enable report visualizations
based on a single-date dimension table, such as in the following table:

Measures with active and inactive relationships

In this scenario, the Internet Net Sales measure uses the active relationship based on
Order Date by default, but the other measures override this relationship via the
CALCULATE() and USERELATIONSHIP() functions.

A common alternative approach to inactive relationships is to load
additional date dimension tables and create active relationships for each
additional date column on the fact table (for example, Due Date, Ship
Date) to these tables. The columns for these additional date tables can be
named to avoid confusion with other date columns (for example, Ship
Date Calendar Year) and some teams or organizations are more
comfortable with table relationships than DAX Measures. Additionally,
this design allows for intuitive matrix-style visualizations with two
separate date dimensions (Ship Date, Order Date) on the x and y axis
filtering a single measure via active relationships.

For DirectQuery datasets, the Assume referential integrity relationship property is critical
for performance as this determines whether inner- or outer-join SQL statements are
generated to resolve report queries. When enabled, as shown in the following screenshot,
inner-join SQL queries will be passed to the source system when report queries require
columns or logic from both tables of the relationship:

Assume referential integrity

Designing Import and DirectQuery Data Models Chapter 3

[120]

If Assume referential integrity is not enabled, outer-join SQL queries will be generated to
ensure that all necessary rows from the fact table or many sides of the relationship are
retrieved to resolve the report query. The query optimizers within supported DirectQuery
sources, such as SQL Server and Oracle, are able to produce much more efficient query
execution plans when presented with inner-join SQL statements. Of course, improved
performance is of no value if the outer join is necessary to return the correct results, thus it's
essential for referential integrity violations in the source system to be addressed.

Dimension tables
The columns of dimension tables give the measures from the fact tables context, such as
Internet Net Sales by sales territory country and calendar year. More advanced
dimension columns, such as the Customer History Segment column, described in
Chapter 2, Connecting to Sources and Transforming Data with M, can instantly give report
visualizations meaning and insight. In addition to their application within report visuals,
such as the date axis of charts, dimension columns are frequently used to set the filter
conditions of a report, a report page, or a specific visual of a report page. By default, Power
BI lists dimension tables alphabetically in the fields list and also lists column names of
tables alphabetically.

Just as dataset designers must ensure that all common DAX Measures are included in the
dataset, dataset designers must also ensure that the necessary dimension columns are
available to group, filter, and generally interact with the dataset. Two of the top usability
features for dimension tables include hierarchies and custom sorting. When implemented,
these features enable users to explore datasets more easily, such as drilling up, down, and
through the columns of a hierarchy. Additionally, the sort by column feature serves to
generate logical report layouts, such as the months of the year from January through
December.

Designing Import and DirectQuery Data Models Chapter 3

[121]

Hierarchies
To create a hierarchy, select the column in the Fields list that will represent the top level of
the hierarchy and use the ellipsis or right-click the menu to select the New hierarchy
option, as shown in the following screenshot:

Creating a hierarchy

In this example, the Product Category Group column is the top level of the hierarchy
and Product Category will be its child or lower level. Likewise, the Product
Subcategory column will be a child of Product Category and the Product Name
column will be the lowest level of the hierarchy under Product Subcategory. To add
columns to the hierarchy, click the ellipsis next to the given column or use the right-click
context menu to choose the Add to hierarchy option. Alternatively, the child columns can
be dragged and dropped onto the name of the hierarchy by holding down the left mouse
button when selecting the column. The levels of the columns can also be adjusted from
within the hierarchy by dragging and dropping column names.

Dimension tables often contain hierarchical data, such as dates (year,
quarter, month, week, day) and geographies (country, state/province, city,
zip code). As shown in the example of the date dimension in the previous
chapter (see the Date dimension view section), natural date hierarchies in
which each column value has only one parent (for example, 2017-Sep) are
strongly recommended. Unnatural date hierarchies can be confusing in
reports as it isn't clear which parent value (2015, 2016, 2017?) a given child
value, such as September, belongs to.

Designing Import and DirectQuery Data Models Chapter 3

[122]

Once the hierarchy is created, a single click of the hierarchy name in the fields list adds all
the columns and their respective levels to the report visualization. In the following
screenshot, all four columns of the Product Hierarchy are added to the Axis of a column
chart to support drilling and interactive filter behavior in Power BI:

Hierarchy in Report Visual

Certain columns or levels of the hierarchy can optionally be removed from the specific
visual. For example, if the report developer only wishes to include Product Category and
Product Subcategory in a particular visual, the other two columns can be removed from
the Axis field well via the delete (X) icons.

Designing Import and DirectQuery Data Models Chapter 3

[123]

The DAX language includes a set of parent and child functions, such as
PATH() and PATHITEM(), that can be used to create hierarchy columns
when a dimension table contains a Parent Key column. Common
examples of this include an organizational structure with multiple levels
of management or a chart of financial accounts. Creating these columns
via DAX functions is one of the few examples when DAX-calculated
columns may be preferable to other alternatives. A detailed example of
parent and child functions was included in Chapter 3 of the Microsoft
Power BI Cookbook by Packt Publishing.

Custom sort
Most dimension columns used in reports contain text values, and, by default, Power BI sorts
these values alphabetically. To ensure these columns follow their logical order (for example,
Jan, Feb, Mar) in report visualizations, it's necessary to store a corresponding column in the
same dimension table and at the same granularity. For example, in addition to a Calendar
Month column that contains the 12 text values for the names of the months, a Calendar
Month Number column is included in the date dimension with the value of 1 for every row
with the January value for Calendar Month, and so forth.

To set a custom sort order for a column, select the column in the fields list in Report View
and then click the dropdown for the Sort By Column icon under the Modeling tab. Choose
the supporting column that contains the integer values, such as Calendar Month Number,
as shown in the following screenshot:

Sort by Column

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Import and DirectQuery Data Models Chapter 3

[124]

Most columns used as a Sort by Column are not needed for report visualizations and can
be hidden from the fields list. Per the Date Dimension View section in Chapter 2, Connecting
to Sources and Transforming Data with M, sequentially increasing integer columns are
recommended for natural hierarchy columns, such as Calendar Yr-Mo, as these columns
can support both logical sorting and date intelligence calculations.

Although the Calendar Month and weekday columns are the most common examples for
custom sorting, other dimension tables may also require hidden columns to support a
custom or logical sort order. In the following example, an integer column is added to the
Customer dimension M Query to support the logical sort order of the Customer History
Segment column:

 /*Preceding M query variables not included*/
//Customer History Segment Column
 CustomerHistoryColumn = Table.AddColumn(Customer, "Customer History
Segment", each
 if [Customer First Purchase Date] >= OneYearAgo then "First Year
Customer"
 else if [Customer First Purchase Date] >= TwoYearsAgo and [Customer
First Purchase Date] < OneYearAgo then "Second Year Customer"
 else if [Customer First Purchase Date] >= ThreeYearsAgo and [Customer
First Purchase Date] < TwoYearsAgo then "Third Year Customer"
else "Legacy Customer", type text),

//Customer History Segment Column Sort
 CustomerHistColSort = Table.AddColumn(CustomerHistoryColumn, "Customer
History Segment Sort", each
 if [Customer First Purchase Date] >= OneYearAgo then 1
 else if [Customer First Purchase Date] >= TwoYearsAgo and [Customer
First Purchase Date] < OneYearAgo then 2
 else if [Customer First Purchase Date] >= ThreeYearsAgo and [Customer
First Purchase Date] < TwoYearsAgo then 3 else 4, Int64.Type)
in
 CustomerHistColSort

With the integer column (Customer History Segment Sort) added to the Customer
dimension table and the Sort by Column property of the Customer History Segment
column set to reference this column, Power BI reports visualize the Customer History
Segment column by the logical order of the four possible values (First Year Customer,
Second Year Customer, Third Year Customer, and Legacy Customer) by default.

Designing Import and DirectQuery Data Models Chapter 3

[125]

Bridge tables
For this dataset, bridge tables are used to link three dimension tables (Sales Territory,
Product, and Date) to the Sales and Margin Plan fact table. As shown in the following
screenshot from the Relationships View, the bridge tables are hidden from the fields list in
the Report View (gray shading) and bidirectional cross-filtering is enabled between the
dimension and bridge tables:

Bridge tables hidden from the Report View

The bidirectional relationships enable filter selections on the three dimension tables (Sales
Territory, Product, and Date) to impact the Sales and Margin Plan fact table as well
as the Internet Sales and Reseller Sales fact tables. Given the higher granularity of
the dimension tables relative to the Sales and Margin Plan (for example, individual
dates versus months), the bridge tables with distinct values (the one side) and bidirectional
cross-filtering support the core requirement of analyzing historical sales data (Internet
and Reseller Sales) versus the Sales and Margin Plan.

As described in the Bridge Tables Queries section of Chapter 2, Connecting to Sources and
Transforming Data with M, a Table.Distinct() M function can be used against the
column from the given dimension table query that aligns with the granularity of the Sales
and Margin Plan table.

Designing Import and DirectQuery Data Models Chapter 3

[126]

For example, the Sales and Margin Plan fact table contains rows per Product
Subcategory, thus the Product Subcategory bridge table contains one row for each
unique Product Subcategory value via the following M expression:

let
 SubCats = Table.SelectColumns(Product, {"Product Subcategory"}),
 DistinctSubCats = Table.Distinct(SubCats)
in
 DistinctSubCats

The existing M Query for the Product dimension table, which references the data source
staging query (AdWorksSQLServer) and the SQL view of the dimension
(BI.vDim_Product), is leveraged by the bridge table query. The M Queries for the bridge
tables generate simple SQL statements ("Select Distinct..") for execution by the source
system. Additionally, with the Include in report refresh query property set to true, any
new dimension values are automatically retrieved into the dataset.

Parameter tables
Unlike the bridge tables, there are no relationships between the four parameter tables and
any other tables in the model, as shown in the following screenshot from the Relationships
View:

Parameter tables

Designing Import and DirectQuery Data Models Chapter 3

[127]

Measure groups
The Date Intelligence and Adventure Works Sales tables only serve to provide an
intuitive name for users to find related DAX Measures. For example, several of the most
important DAX Measures of the dataset will include both Internet Sales and Reseller
Sales. It wouldn't make sense for these consolidated measures, such as Total Net Sales, to
be found under the Internet Sales or Reseller Sales fact tables in the field list. For
similar usability reasons, the Date Intelligence Metrics provides an intuitive name
for users and report developers to find measures, such as year-to-date, prior year-to-date,
and year-over-year growth. The two parameter tables, Date Intelligence Metrics and
Adventure Works Sales, effectively serve as display folders, as shown in the following
screenshot of the Fields list from the Report View:

Fields list with parameter tables

To obtain the calculator symbol icon in the fields list, all columns have to be hidden from
the Report View and at least one DAX Measure must reference the table in its Home Table
property. Once these two conditions are met, the show/hide pane arrow of the fields list
highlighted in the image can be clicked to refresh the fields list.

In this example, the Adventure Works Sales and Date Intelligence Metrics tables
both contain only a single column (named Dummy) that can be hidden via the right-click
context menu accessible in the Relationships View, the fields list of Report View, and for
import datasets the Data View as well.

Designing Import and DirectQuery Data Models Chapter 3

[128]

The columns of the three fact tables (Internet Sales, Reseller Sales, and Sales and
Margin Plan) are also hidden to provide users with an intuitive display of groups of
measures at the top of the fields list followed by dimensions and their hierarchies.

The Home Table for a measure can be set by selecting it from the fields list and choosing a
table from the Home Table dropdown on the Modeling tab in the Report View. As shown
in the following screenshot, the Internet Net Sales (PY YTD) measure is selected and
Date Intelligence Metrics is configured as its home table:

Home Table property for DAX Measures

Last refreshed date
The CurrentDate table, as described in the Data Source Parameters
section of Chapter 2, Connecting to Sources and Transforming Data with M, contains only
one column and one row, representing the date at the time the source M Query was
executed. With this date value computed with each dataset refresh and loaded into the Data
Model, a DAX Measure can be written to expose the date to the Power BI report visuals. In
the following screenshot from the Report View, a measure named Last Refresh Msg uses
a DAX variable to reference the parameter table and then passes this variable to a text
string:

Last refreshed message via the parameter table

Designing Import and DirectQuery Data Models Chapter 3

[129]

It's common to include a last refreshed text message on at least one report page of every
published report. In the event the source dataset has failed to refresh for several days or
longer, the text message will advise users of the issue. See Chapter 4, Developing DAX
Measures and Security Roles for more information on DAX variables.

For DirectQuery datasets, the M Query for the CurrentDate parameter table uses standard
SQL syntax within the Value.NativeQuery() function, such as the following:

let Source = AdWorksSQLServer,
 View = Value.NativeQuery(Source, "Select CAST(Current_Timestamp as
date) as [CurrentDate]")
in View

The Source variable references the AdWorksSQLServer staging query, as described in the
previous chapter. The Data Source Parameters section of Chapter 2, Connecting to Sources
and Transforming Data with M, contains the M Query for the CurrentDate parameter
table in the import mode datasets.

Measure support logic
The purpose of the Measure Support table is to centralize DAX expressions that can be
reused by other measures. Since DAX variables are limited to the scope of individual
measures, a set of hidden, intermediate measures avoids the need to declare variables for
each measure. The intermediate, or branching, DAX measure expressions also make it easy
and less error-prone to implement a change as all dependent DAX measures will be
updated automatically. In this way, the Measure Support table serves a similar function to
the parameter and staging query expressions, described in the previous chapter, for M
Queries.

For this dataset, DAX expressions containing the ISFILTERED() and ISCROSSFILTERED()
functions can be used to determine the granularity of the filter context for the Product,
Sales Territory, and Date dimension tables. If the user or report developer has applied
a filter at a granularity not supported by the Sales and Margin Plan fact table, such as
an individual product or date, a blank should be returned to avoid confusion and incorrect
actual versus plan comparisons. The following DAX Measure tests the filter context of the
Date dimension table and returns one of two possible text values—Plan Grain or Actual
Grain:

Date Grain Plan Filter Test = SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Date')),"Plan Grain",
 ISFILTERED('Date'[Calendar Week in Year]) || ISFILTERED('Date'[Date]) ||
ISFILTERED('Date'[Weekday]) ||ISFILTERED('Date'[Calendar Yr-Wk]), "Actual

Designing Import and DirectQuery Data Models Chapter 3

[130]

Grain", "Plan Grain")

Similar filter test measures can be created for the Sales Territory and Product
dimension tables. All three measures should be hidden from the Report View, and the
Home Table property should be set to Measure Support. Once these dimension-specific
measures have been defined, a final support measure can integrate their results, as shown
in the following example:

Plan Grain Status = IF([Date Grain Plan Filter Test] = "Plan Grain" &&
[Product Grain Plan Filter Test] = "Plan Grain" && [Sales Territory Grain
Plan Filter Test] = "Plan Grain", "Plan Grain", "Actual Grain")

Given the logic built into the four hidden measure support expressions, DAX Measures can
reference the results and deliver the intended conditional behavior in report visualizations,
as shown in the following example of a variance-to-plan measure:

Internet Net Sales Var to Plan = IF([Plan Grain Status] = "Actual
Grain",BLANK(),
[Internet Net Sales] - [Internet Net Sales Plan Amt])

In the following report, the Internet Net Sales Plan and Internet Net Sales Var
to Plan measures both return blank values when a product color or calendar year-week
value has been selected from either slicer visual:

Sales and Margin Plan measures are blank due to the Product Color filter

The Product Category and Sales Territory country visuals do not cause the sales
plan measures to return blank values since these columns are within the granularity of the
Sales and Margin Plan fact table.

Designing Import and DirectQuery Data Models Chapter 3

[131]

Relationships
Relationships play a central role in the analytical behavior and performance of the dataset.
Based on the filters applied at the report layer and the DAX expressions contained in the
measures, relationships determine the set of active rows for each table of the model to be
evaluated. It's critical that the dataset designer understands how relationships drive report
behavior via cross-filtering and the rules that relationships in Power BI must adhere to, such
as uniqueness and non ambiguity.

Uniqueness
Relationships in Power BI Data Models are always defined between a single column from
each of the two tables. One of these two columns must uniquely identify the rows of its
table, such as the Currency Key column from the Currency table in the Fact-to-dimension
relationships section earlier in this chapter. Power BI will throw an error message if a row
with a duplicate value for the relationship column is attempted to be loaded to the one side
of the relationship, as shown in the following screenshot:

Uniqueness enforced in relationships

Power BI and SSAS Tabular models do not enforce or require referential integrity as with
relationship uniqueness, however. For example, a sales fact table can contain transactions
for a customer that is not present in the customer dimension table. No error message will be
thrown and DAX measures that sum the sales table will still result in the correct amount,
including the new customer's transactions. A blank row is added to the customer dimension
table by default for these scenarios (also known as early-arriving facts) and this row is
visible when the measure is grouped by columns from the customer dimension table in
report visualizations. If missing dimensions is an issue, the dataset designer can work with
the data source owner and/or the data warehouse team to apply a standard foreign key
value (for example, -1) to these new dimension members within an extract-transform-
load (ETL) process and a corresponding row can be added to dimensions with an unknown
value for each column.

Designing Import and DirectQuery Data Models Chapter 3

[132]

In the rare event that a text column is used for a relationship, note that
DAX is not case-sensitive like the M language. For example, M functions
that remove duplicates, such as Table.Distinct(), may result in unique
text values (from M's perspective), such as Apple and APPLE. When these
values are loaded to the data model, they will be considered duplicates
and thus relationships will not be allowed. To resolve this issue, a
standard casing format can be applied to the column within a
Table.TransformColumns() function via text functions, such as
Text.Proper() and Text.Upper(). Removing duplicates after the
standard casing transformation will result in a column of unique values
for the data model.

Ambiguity
Data model relationships must result in a single, unambiguous filter path across the tables
of the model. In other words, a filter applied to one table must follow a single path to filter
another table—the filter context cannot branch off into multiple intermediate tables prior to
filtering a final table. In the following screenshot from the Relationships View, only one of
the two relationships to the Auto Accidents fact table is allowed to be active (solid line):

Ambiguous relationships avoided

Designing Import and DirectQuery Data Models Chapter 3

[133]

When a filter is applied to the Auto Owners table, the inactive relationship between
Insurance Polices and Auto Accidents provides a single, unambiguous filter path
from Auto Owners to Auto Accidents via relationships with the Automobiles table. If
the model author tries to set both relationships to the Auto Accidents table as active,
Power BI will reject this relationship and advise of the ambiguity it would create, as shown
in the following screenshot:

Ambiguity error in the Edit Relationship Dialog

Given the active relationship between the Automobiles and Auto Accidents tables, if the
relationship between Insurance Policies and Auto Accidents was active, the Auto
Owners table would have two separate paths to filter the Auto Accidents table (via
Insurance Policies or via Automobiles).

Single-direction relationships
Single-direction cross-filtering relationships are the most common in Power BI datasets and
particularly for data models with more than one fact table. In this dataset, whether import
or DirectQuery, all relationships are defined with single direction cross-filtering except for
the relationships from Sales Territory, Product, and Date to their corresponding
bridge tables, as described in the following section on bidirectional relationships.

The following screenshot from the Relationships View includes three of the seven
dimension tables related to Reseller Sales:

Designing Import and DirectQuery Data Models Chapter 3

[134]

Single-direction relationships

As you can see from the arrow icons in the Relationships View, the filter context in single-
direction relationships exclusively navigates from the one side of a relationship to the many
side. In the absence of any DAX expressions that override the default cross-filtering
behavior, tables on the one side of single-direction relationships are not filtered or impacted
by filters applied to the table on the many side of the relationship. For example, the
Employee table has 299 unique rows based on its Employee Key column. A measure, such
as Count of Employees, that references this column will always return the 299 value despite
any filters applied to other tables in the model.

There are, of course, valid business scenarios for allowing the filter context of the related
fact table to impact dimension measures, such as the Count of Employees or the
Distinct Count of Product Subcategories. Dataset designers can support these
requirements by default via bidirectional cross-filtering relationships, but in most scenarios
this isn't necessary or appropriate. For these DAX measures, the CROSSFILTER() function
can be applied to override the default single-direction cross-filtering. See the following
CROSSFILTER section for the function syntax and a use case example.

Direct flights only
For the most common and data-intensive report queries, always look to eliminate any
unnecessary intermediate relationships between dimension tables and fact tables.

Designing Import and DirectQuery Data Models Chapter 3

[135]

In the following example, the Reseller table must filter a hidden intermediate table
(Reseller Keys) prior to filtering the Reseller Sales fact table:

Anti-pattern: intermediate table relationships

Removing the intermediate table (connecting flight), Reseller Keys in this example,
significantly improves performance by reducing the scan operations required of the DAX
query engine. The performance benefit is particularly acute with larger fact tables and
dimensions with many unique values. For small fact tables, such as a budget or plan table of
3,000 rows, intermediate tables can be used without negatively impacting performance.

Bidirectional relationships
Bidirectional cross-filtering enables the filter context of a table on the many side of a
relationship to flow to the one side of the relationship. Prior to support for bidirectional
relationships, equivalent filter behavior commonly used in many-to-many relationships was
only possible via DAX expressions. A common use case for bidirectional relationships is
represented in the following data model:

Bidirectional cross-filtering for a many-to-many relationship

Designing Import and DirectQuery Data Models Chapter 3

[136]

In this model, a customer can have many accounts and an individual account can be
associated with many customers. Given the many-to-many relationship between
Customers and Accounts, a bridge table (CustomerAccount) is created that contains the
combinations of customer and account key values. Due to the many-to one relationship
between CustomerAccount and Accounts, a filter applied to the Customers table will
only impact the Transactions fact table if bidirectional cross-filtering is enabled from
CustomerAccount to Accounts. Without this bidirectional relationship, a filter applied to
the Customers table would only impact the CustomerAccount table as single-direction
relationships only flow from the one side of the relationship to the many.

The only bidirectional relationships defined in the dataset for this project were described in
the Bridge table section earlier in this chapter. Although powerful, and preferable for certain
use cases, such as with bridge tables, bidirectional relationships can lead to unexpected or
undesired query results. Additionally, the DAX CROSSFILTER() function makes it possible
to selectively implement bidirectional relationship behavior for specific measures.

Detailed documentation and additional examples of bidirectional cross-
filtering are included in the Bidirectional cross-filtering in SQL Server
Analysis Services 2016 and Power BI Desktop whitepaper by Kasper de Jonge.
The document can be downloaded from the Power BI Documentation
site: http:/ /bit. ly/ 28TGDSS.

Shared dimensions
In this dataset, the Sales Territory, Product, Date, Currency, and Promotion
dimension tables are related to both the Internet Sales and Reseller Sales fact
tables. As shown in the following screenshot from the Relationships View, these
relationships and the three dimension tables specific to either fact table all have single-
direction cross-filtering enabled:

Shared dimension tables

http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS
http://bit.ly/28TGDSS

Designing Import and DirectQuery Data Models Chapter 3

[137]

Unlike the shared dimensions, the Reseller and Employee dimension tables are
exclusively related to the Reseller Sales fact table and the Customer dimension is
exclusively related to the Internet Sales fact table. This is a common scenario for larger
models in that fact tables will both share dimensions and maintain their own exclusive
relationships to certain dimension tables.

In general, it's recommended to avoid bidirectional relationships between shared
dimensions and fact tables when there are also dimension tables exclusive to certain fact
tables. This is because such relationships generate filter contexts that business users often
don't expect or desire and that don't add analytical value. For example, if the relationship
between Promotion and Reseller Sales was revised to allow for bidirectional cross-
filtering, a report that analyzed internet sales by customers would be impacted by the filter
selections of the Reseller and Employee dimension tables even though these two tables
are not related to Internet Sales.

In this example, the filter context would flow from the Reseller and/or
Employee tables to Reseller Sales but then, via the bidirectional
relationship with Promotion, also filter the Promotion table, and finally
filter the Internet Sales fact table. In almost all scenarios, the business
would expect the Reseller and Employee tables to only filter the
Reseller Sales measures. For the rare cases in which this filtering
behavior is useful or needed, bidirectional cross-filtering can be enabled
for specific measures via the CROSSFILTER() function.

A better use case for bidirectional relationships is between the exclusive dimension tables
and their fact tables, such as from Reseller to Reseller Sales or from Customer to
Internet Sales. These bidirectional relationships aren't required given the
CROSSFILTER() function and other options available in DAX, but they allow simple
measures against these dimensions, such as the count of resellers to reflect the filter
selections applied to other Reseller Sales dimensions, such as Sales Territory and
Product.

Designing Import and DirectQuery Data Models Chapter 3

[138]

Bidirectional cross-filtering is also not allowed for certain relationships
due to the ambiguity this would create. In this dataset, Power BI Desktop
rejects bidirectional relationships between the Sales Territory,
Product, and Date dimension tables with the Internet Sales and
Reseller Sales fact tables because this would create more than one
filter path to the Sales and Margin Plan fact table. For example, a
bidirectional relationship between Sales Territory and Reseller
Sales would allow the Product table to either filter the Sales and
Margin Plan table via the Product Subcategory bridge table, or filter
the Reseller Sales table and then utilize the new bidirectional
relationship to filter the Sales Territory table and then its bridge table
to the Sales and Margin Plan table. Rather than guess at the correct or
intended filter behavior, Power BI will throw an error and advise of the
tables associated with the ambiguous condition.

Date dimensions
Relationships between fact tables and date dimension tables should always use single-
direction cross filtering. If bidirectional cross filtering is used with date dimension tables,
then filter selections of other dimension tables related to the given fact table, such as
Promotion or Product, will reduce the date table rows available for date intelligence
calculations. Similar to the example with shared dimensions, although this adjusted filter
context is technically correct, it will often produce unexpected or undesired results, such as
only the dates in which internet sales transactions were associated with a specific promotion
type.

Note that the bidirectional relationship with the Date dimension table in
this dataset is between the Date table and the bridge table containing
unique month values. The bridge tables are hidden from the Report View
and will not be used to filter the Date table.

Designing Import and DirectQuery Data Models Chapter 3

[139]

The CROSSFILTER function
Similar to the USERELATIONSHIP() function that can invoke an inactive relationship for a
specific DAX measure, the CROSSFILTER() function can be used to implement a specific
cross-filtering behavior (single, bidirectional, none) for a specific measure. The cross-
filtering behavior specified in the measure overrides the default cross-filtering behavior
defined for the relationship.

In the following report visual, an Employee Count measure only references the Employee
dimension table and therefore is not impacted by the filter selections of the Sales
Territory Country slicer due to the single direction relationship between Employee and
Reseller Sales:

Bidirectional cross-filtering via the DAX CROSSFILTER function

The Employee Count (CF) measure, however, does adjust to reflect the Sales Territory
Country selections as well as any other dimension table filter selections that impact the
Reseller Sales fact table, such as the Date, Product, and Promotion dimension tables.
In this example, the Reseller Sales fact table is first filtered to the set of Reseller
Sales rows associated with the Germany and United Kingdom sales territory countries.
This filtered set of Reseller Sales rows is then used to filter the Employee table resulting
in three distinct employee key values. The value of 3 represents the three salespeople
associated with the Reseller Sales of Germany and United Kingdom.

Designing Import and DirectQuery Data Models Chapter 3

[140]

In the absence of any filter selections in the report, the Employee Count
and Employee Count (CF) measures will return the same results (that
is, 299). The bidirectional cross-filtering only occurs when either a filter
selection has been applied to a related dimension table in the report or
within the DAX measure itself.

If the intent is to only count the employees associated with Reseller
Sales and to respect filter selections on related dimensions, the DAX
measure can be written as follows:
CALCULATE(DISTINCTCOUNT(Employee[Employee Alternate
Key]),'Reseller Sales')

See the Dimension metrics section of Chapter 4, Developing DAX Measures
and Security Roles for more details.

The syntax for CROSSFILTER() is also very similar to USERELATIONSHIP(), as shown by
the following code block:

Employee Count = DISTINCTCOUNT(Employee[Employee Alternate Key])

Employee Count (CF) = CALCULATE(DISTINCTCOUNT('Employee'[Employee Alternate
Key]),
 CROSSFILTER('Reseller Sales'[Employee
Key],'Employee'[Employee Key],Both))

The Employee Alternate Key column represents the business key or natural key of the
employee. The Employee Key column uniquely identifies each row of the Employee table
and is used in the relationship with Reseller Sales. Given the slowly changing
dimension process, which adds a new employee row when certain attributes of an
employee change, it's necessary to reference the Employee Alternate Key column in
the DISTINCTCOUNT() measures to only count each employee once.

The third parameter to CROSSFILTER() can be set to OneWay, Both, or None. Given the
potential for unexpected or undesired results when applying bidirectional cross-filtering
relationships to models with multiple fact tables, it's generally recommended to selectively
enable bidirectional cross-filtering per measure, such as in the preceding example.

Designing Import and DirectQuery Data Models Chapter 3

[141]

There may be valid use cases for both single-direction and bidirectional
cross-filtering relationships, such as the two measures seen here. Including
these alternative measures in the dataset doesn't violate the version
control objective but does entail additional user training and
documentation. A report developer or business analyst can regularly
provide brief tutorials or updated documents on these measures and other
dataset customizations.

Model metadata
The consistent and complete application of metadata properties, such as Default
Summarization and Data Category, greatly affect the usability of a dataset. With a solid
foundation of tables, column data types, and relationships in place, dataset designers and BI
teams should consider all primary metadata properties and their implications for user
experience as well as any additional functionality they can provide.

Visibility
Every table, column, and measure that isn't explicitly needed in the Report View should be
hidden. This usually includes all relationship columns and any measure support tables and
measure expressions. If a column is rarely needed or only needed for a specific report, it can
be temporarily unhidden to allow for this report to be developed and then hidden again to
maximize usability. Numeric fact table columns that are referenced by DAX Measures (for
example, quantity) should be hidden from the fields list, as the measures can be used for
visualizing this data.

As discussed in the Parameter tables section, when all columns of a table are hidden from the
Report View and at least one DAX Measure identifies the given table as its home table, a
measure group icon (calculator symbol) will appear in the fields list. This clear
differentiation between the measures and dimension columns (attributes) is recommended,
especially if business users will be developing their own reports based on the dataset.

Tables with both visible columns and measures will force business users
and report developers to navigate between these different elements in the
fields list. This can be onerous given the volume of DAX Measures for
common fact tables. If it's necessary to expose one or a few fact table
columns permanently, consider migrating some or all of the DAX
Measures for the table to a parameter table to simplify navigation.

Designing Import and DirectQuery Data Models Chapter 3

[142]

Column metadata
Dataset designers should review the columns of each table exposed to the Report View and
ensure that appropriate metadata properties have been configured. These settings,
including any custom sorting described earlier, only need to be applied once and can
significantly improve the usability of the dataset.

Default Summarization
The Default Summarization property should be revised from Power BI's default setting to
the Do not summarize value for all columns. Power BI will apply a Default Summarization
setting of Sum for all columns with a numeric data type (whole number, fixed decimal
number, decimal number) when a table is first loaded to the data model. As shown in the
following screenshot, a summation symbol (∑) will appear next to the field name in the
fields list if a Default Summarization other than Do not Summarize is enabled:

Default Summarization for numeric columns

As illustrated in the previous image, the Default Summarization property for a column can
be accessed via the Modeling tab of the Data View. Additionally, as with other metadata
properties, Default Summarizaton can also be accessed from the Report View. As
mentioned in the Data View section earlier, implementing metadata changes, such as
Default Summarization and Data Category, via the Modeling tab from the Report View is
the only option for DirectQuery models.

Designing Import and DirectQuery Data Models Chapter 3

[143]

If a user selects a column with Default Summarization enabled, the specific aggregation
specified by the property (for example, Sum, Average) will be returned rather than the
grouping behavior of Do not summarize. In many cases, the numeric column is only used
to group measures, such as Internet Net Sales by Product Dealer Price, and DAX
Measures can be written for any needed calculation logic. Additionally, Default
Summarization can create confusion, such as when a user expects a sum aggregation based
on the summation symbol but the model author has applied an alternative default
summarization (for example, Minimum, Average). Alternatively, the names assigned to
DAX measures, such as Average Product Dealer Price, make it clear which
aggregation is being applied.

For these reasons, it's recommended to convert the default summarization setting to Do not
Summarize. A broader concept of this recommendation is to build essential DAX Measure
expressions into the dataset, as described in Chapter 4, Developing DAX Measures and
Security Roles, to make Power BI datasets more flexible and powerful for users and report
developers.

Data format
The default formatting Power BI applies to columns and measures should also be revised to
a corporate standard or a format applicable to the column or measure. For example, the
default full date format of 'Friday July 1, 2011' can be revised to the more compact
(mm/dd/yyyy) format of 7/1/2011. Likewise, the currency format for measures calculating
financial data can be revised to display two decimal places and the thousands separator can
be added to numeric measures.

Business users and report developers do not have the ability to change column and measure
formatting when connecting to the published dataset from Power BI or Excel. Therefore, it's
important to choose widely accepted data formats and formats that lend themselves to
intuitive data visualizations.

Data category
By default, Power BI does not assign columns to any of the 13 available data categories.
Assigning geographic categories, such as City, to columns helps Power BI determine how
to display these values on map visualizations. For example, certain city names, such as
Washington, are also associated with state or province names and without an assigned
data category, map visuals would have to guess whether to plot the city or the state.

Designing Import and DirectQuery Data Models Chapter 3

[144]

Currently 10 of the 13 column data categories are related to geography,
including County, Country/Region, Continent, City, Latitude, Longitude,
Postal Code, Address, Place, and State or Province.

The Web URL Data Category can be used to enable the initiation of emails from Power BI
report visuals. In the following table visual, the Employee Email Link column contains
mailto values (that is, mailto://John@adworks.com) and the URL icon property under
Values has been set to On:

Web URL Data Category for Mailto Link column

Without specifying the Web URL Data Category of the Employee Email
Link column, the values will appear as normal text. With the Web URL
Data Category specified, the full mailto link will be displayed in the table
visual by default; this can also be used to initiate an email. Both the Web
URL Data Category specification and the URL icon property (set to On)
are required to display the email icon.

The Image URL Data Category can be used to expose images in report visualizations, such
as the following example with the custom Chiclet slicer:

Image URL Data Category used for Chiclet slicer visual

See Chapter 6, Applying Custom Visuals, Animation, and Analytics for additional details on
the Chiclet slicer.

The Barcode Data Category, the only other non-geographic category beyond Web URL and
Image URL, can be used by the Power BI mobile applications to scan individual items from
mobile devices.

Designing Import and DirectQuery Data Models Chapter 3

[145]

Field descriptions
Descriptions can be added to the measures and columns of a data model to aid users during
report development. Once descriptions have been applied and the dataset has been
published to the Power BI service, users connected to the dataset via reports can view the
descriptions as they hover over the fields in the fields list. This feature is particularly useful
in communicating the business logic contained in measures, such as whether discounts are
included or excluded in the Internet Net Sales measure.

Although field descriptions are recommended, particularly for measures
that contain custom or complex logic, they are not a substitute for the
formal documentation of a dataset. In most scenarios, the field description
will only be used as a convenient reminder of the essential logic or
meaning and thus can be more concise than the official corporate
definition of the column or measure. A detailed example of developing
documentation reports of a Power BI Dataset via Dynamic Management
Views (DMVs) and Power BI Desktop can be found in Chapter 10
of Microsoft Power BI Cookbook (https:/ /www.packtpub. com/big-data-
and-business- intelligence/ microsoft- power-bi-cookbook) by Packt
Publishing.

In the following example, a report author is connected to a published Power BI dataset and
has hovered over the Internet Gross Product Margin measure:

Field Descriptions as Tooltips in the fields list

The descriptions can only be viewed from Power BI Desktop or the Power
BI service. Users connecting to the dataset from Excel via the Power BI
Publisher for Excel can't see the descriptions. Additionally, field
descriptions are exclusive to the fields list and are not displayed in visuals
on the report canvas. Chapter 5, Creating and Formatting Power BI Reports,
contains additional information on Power BI reports created via Live
connections to published Power BI datasets.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Import and DirectQuery Data Models Chapter 3

[146]

Descriptions can be applied by enabling the FIELD PROPERTIES pane from the View tab
in the Report View. In the following screenshot, the FIELD PROPERTIES pane exposes the
Name and Description of the selected measure (Internet Gross Product Margin):

FIELD PROPERTIES pane

Users connected to the dataset via Live connections can view the descriptions via the FIELD
PROPERTIES pane. In this context, the Name and Description properties are read-only.

DMVs can be used to retrieve the descriptions applied to measures and
columns of a dataset. With the dataset open in Power BI Desktop, the user
can connect from a client application, such as DAX Studio, to execute the
relevant DMV. The Description field of both the MDSCHEMA_MEASURES
and the TMSCHEMA_MEASURES DMVs contains the description that has
been applied to DAX Measures. The Description field in the
TMSCHEMA_COLUMNS DMV provides the description applied to columns.

Optimizing performance
One of the main reasons for creating a dataset, particularly an import mode dataset, is to
provide a performant data source for reports and dashboards. Although Power BI supports
traditional reporting workloads, such as email subscriptions and view-only usage, Power BI
empowers users to explore and interact with reports and datasets. The responsiveness of
visuals for this self-service workload is largely driven by fundamental data model design
decisions, such as the granularity of fact and dimension tables.

Designing Import and DirectQuery Data Models Chapter 3

[147]

Additional performance factors outside the scope of this chapter include the hardware
resources allocated to the dataset, such as with Power BI Premium capacities (v-cores,
RAM), the efficiency of the DAX Measures created for the dataset, the design of the Power
BI reports that query the dataset, and the volume and timing of queries generated by users.
Beyond the DAX measures described in Chapter 4, Developing DAX Measures and Security
Roles these other factors are outside the control of the dataset designer and will be
addressed in other chapters, such as Chapter 13, Scaling up with Power BI Premium and
SSAS.

Import
The performance of an import mode dataset is largely driven by fundamental design
decisions, such as the granularity of fact and dimension tables. For example, large
dimension tables with more than a million unique values, such as customer IDs or product
IDs will produce much less performant report queries than small dimensions with only 100
to 1,000 unique values. Likewise, DAX Measures that access columns containing thousands
of unique values will perform much more slowly than measures that reference columns
with a few unique values. A simplistic but effective understanding is that higher levels of
cardinality (unique values) result in greater memory consumption via reduced compression
and CPUs require additional time to scan greater amounts of memory.

An import mode designer should be cautious about the performance
implications of relationships to large dimension tables. Although usability
is somewhat compromised, a separate but less granular dimension
containing only the most common columns can be created to drive more
efficient report queries. For example, business users may rarely need to
access individual product SKUs and would prefer the performance benefit
provided by a smaller dimension table that contains only product
categories and product subcategories.

Columnar compression
It's important to understand the columnar layout and internal storage of the import mode
datasets. Power BI creates individual segments of approximately one million rows and
stores separate memory structures for column data, the dictionary of unique values for
columns, relationships, and hierarchies.

In the following diagram, three segments are used to store a fact table of 2.8 million rows:

Designing Import and DirectQuery Data Models Chapter 3

[148]

Columnar storage of import mode datasets

Since only the columns required for a query are scanned during query execution, a
relatively expensive column in terms of memory consumption (due to many unique values),
such as Order #, can be stored in the dataset without negatively impacting queries that
only access other columns. Removing fact table columns or reducing the cardinality of fact
table columns that are not used in queries or relationships will nonetheless benefit the
storage size and resources required to refresh the dataset. Fewer fact table columns may
also enable Power BI to find a more optimal sort order for compression and thus benefit the
query performance.

Eliminate any DAX-calculated column on fact tables as these columns are
not compressed as efficiently as imported columns. If necessary, replace
DAX-calculated columns with the equivalent expression in the source M
Query or SQL View. Additionally, per the Fact table columns section earlier
in this chapter, remove columns that can be computed within DAX
Measures via simple expressions (+,-,/,*). For example, the Sales column
from the Columnar Storage example image can be excluded from the
Import dataset given the Price and Qty columns.

During query execution over tables with more than one segment, one CPU thread is
associated per segment. This parallelization is limited by the number of CPU threads
available to the dataset (for example, Power BI Premium P1 with four backend v-cores), and
the number of segments required to resolve the query. Therefore, ideally, the rows of fact
tables can be ordered such that only a portion of the segments are required to resolve
queries. Using the example of the 2.8M-row fact table, a query that's filtered on the year
2017 would only require one CPU thread and would only scan the required column
segments within Segment 3.

Designing Import and DirectQuery Data Models Chapter 3

[149]

The internal order of fact table rows cannot be dictated by the dataset
designer as Power BI determines the optimal order that will lead to the
highest compression during dataset refreshes. However, dataset designers
can add a sorting transformation to the M query of a fact table
(Table.Sort()) such that Power BI will, at a minimum, consider this
particular order during its processing. Whether Power BI used the
particular sort order can be determined by analyzing the memory
footprint of the sorted column before and after the data is loaded. If the
size of the sort by column is significantly reduced following the refresh
operation, Power BI took advantage of the order by.

Memory analysis via DMVs
The same DMVs that provide information about SSAS Tabular databases are also available
for Power BI datasets. Querying these DMVs can provide schema information, such as the
columns used to define relationships, the definitions of DAX Measures, and the memory
usage of columns and other structures. From a memory analysis standpoint, the two most
important DMVs are DISCOVER_STORAGE_TABLE_COLUMNS and
DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS.

In the following query from DAX Studio, the dictionary size of each column of a Power BI
dataset is retrieved via the DISCOVER_STORAGE_TABLE_COLUMNS DMV:

Dictionary size by Column

With the Power BI dataset (the PBIX file) open on the local machine, the DAX Studio
application can connect to the dataset and SQL queries can be executed against the DMVs,
just like normal DAX queries.

Designing Import and DirectQuery Data Models Chapter 3

[150]

The DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS DMV contains information on four
separate memory structures: user hierarchies, system hierarchies, relationships, and the
compressed data segments per column. Dataset designers are generally most interested in
the size and distribution of data segments by column and this can be retrieved with the
following SQL query:

Data size per Column Segment

The first two characters of the Table_ID column identify the data structure represented by
the row. For example, H$ refers to system column hierarchies, U$ refers to user-defined
hierarchies, and R$ refers to relationships. All other rows of the DMV, the rows in which the
second character is not a dollar sign, refer to column data segments. In this query, the
WHERE clause containing the LEFT() and RIGHT() text functions and the <>'$' condition is
used to retrieve only the column data segments.

The Dictionary_Size column and the Used_Size column from the two
respective DMVs are stored in bytes. For a more intuitive analysis of this
data, particularly with large datasets, it can be helpful to convert from
bytes to megabytes by dividing by 1,048,576.

Fact and dimension tables with over a million rows will contain more than one segment
with each segment representing approximately one million rows. To analyze the DMV
query results with multiple segments, it's necessary to group the result set by column and
use aggregation functions (sum, average) against the Used_Size column. Analyzing the
memory usage data from SSAS DMVs is generally performed outside of DAX Studio in
tools such as Excel or Power BI.

Designing Import and DirectQuery Data Models Chapter 3

[151]

A separate Power BI dataset (the PBIX file) exclusively dedicated to
analyzing the memory usage of Power BI datasets can be an effective
method of streamlining the data retrieval and visualization process. A
detailed example for developing and maintaining one of these datasets is
included in Chapter 10 of the Microsoft Power BI Cookbook (https:/ /www.
packtpub. com/ big- data- and- businessintelligence/ microsoft- power-
bi-cookbook). At a high level, this solution involves executing M Queries
against a running Power BI dataset to retrieve DMVs, such as the two
DMVs idenfified, and then model and visualize this data.

DirectQuery
The dataset designer has less control over the performance of DirectQuery datasets given
that data storage and query execution is the responsibility of the source system. However,
dataset designers can ensure that the DAX functions used in measures take advantage of
the source system resources and can partner with source system owners and experts to test
alternative data source optimizations, such as the columnstore index for SQL Server.
Additionally, as advised earlier regarding the Assume Referential Integrity relationship
property, performance can be significantly improved by generating inner-join SQL
statements.

Optimized DAX functions
If the allow unrestricted measures for DirectQuery mode setting is enabled in Power BI
Desktop, all DAX functions can be used in measures. However, only certain DAX functions
are natively converted to SQL expressions for execution by the source system. The list of
these optimized functions is available in the MS documentation: http:/ /bit. ly/2oK8QXB.
To the greatest extent possible, dataset designers should ensure that optimized functions
are leveraged in measures and that non-optimized functions are only used on small, pre-
filtered or aggregated query results.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB
http://bit.ly/2oK8QXB

Designing Import and DirectQuery Data Models Chapter 3

[152]

Columnstore and HTAP
Business intelligence queries generated from tools such as Power BI are more suited for
columnar data stores and most DirectQuery source systems offer a columnar feature to
deliver improved query performance. For Microsoft SQL Server, the columnstore index is
recommended for large fact tables and this index eliminates the need to maintain traditional
B-tree indexes or to apply row or page compression. Additionally, a combination of non-
clustered columnstore indexes and in-memory table technologies can be used to
support hybrid transactional and analytical processing (HTAP) workloads. For example,
the Power BI queries against the DirectQuery dataset would utilize the columnstore index
without impacting the OLTP workload of the database.

The details of these features and configurations are outside the scope of this book but at a
minimum the owners or experts on the DirectQuery data source should be engaged on the
performance of the Power BI dataset. The following URL provides guidance on designing
columnstore indexes for SQL Server database services (for example, Azure SQL Database,
Azure SQL Data Warehouse) and on-premises SQL Server database environments: http:/ /
bit.ly/2EQon0q.

The Related Tasks section of the Columnstore indexes – Design guidance documentation
referenced in the preceding URL contains links for the T-SQL DDL statements associated
with implementing the columnstore index. In most scenarios, the dataset designer in a
Power BI project or the author of an Analysis Services model is not responsible or
authorized to optimize data sources such as with the columnstore index. However, the
dataset designer can regularly collaborate with this subject matter expert or team as the
demands and requirements of the dataset change. For example, the dataset designer can use
tools, such as DAX Studio and SQL Server Profiler as described in the Microsoft Power BI
Cookbook (https:/ /www. packtpub. com/ big- data- and-business-intelligence/ microsoft-
power-bi-cookbook), to capture the common or important SQL queries generated by Power
BI reports and then share this information with the data warehouse team.

Alternatively, the database or data warehouse team can run a trace against a data source
system per the DirectQuery report execution section of Chapter 2, Connecting to Sources and
Transforming Data with M, during a test query workload from Power BI. This trace data
could be used to identify the specific columns, tables, or expressions associated with slow
queries and thus inform database modification decisions.

http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
http://bit.ly/2EQon0q
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Import and DirectQuery Data Models Chapter 3

[153]

Summary
This chapter built on the queries from Chapter 2, Connecting to Sources and Transforming
Data with M, to implement import and DirectQuery analytical data models. Relationships
were created between fact and dimension tables as well as between bridge tables and the
Sales and Margin Plan to enable actual versus plan reporting and analysis.
Additionally, the fundamentals of designing Power BI models and all top features were
reviewed, including bidirectional cross-filtering, inactive relationships, and hierarchies.
Moreover, detailed guidance on metadata, such as data categories and DMVs available for
analyzing memory usage, was provided.

The following chapter continues to build on the dataset for this project by developing
analytical measures and security models. The DAX expressions implemented in this chapter
will directly leverage the relationships defined in this chapter and ultimately drive the
visualizations and user experience demonstrated in later chapters.

4
Developing DAX Measures and

Security Roles
This chapter will detail the implementation of DAX measures and security roles for the
dataset developed in the previous two chapters. First, a set of base measures for each
business process are created, representing business definitions such as gross and net sales,
cost of sales, and margin percentages. The base measures are then leveraged in the
development of date intelligence calculations including year-to-date (YTD) and year-over-
year (YOY) growth. Additionally, a set of customs measures are created, including
exceptions, rankings, and KPI targets to further extract insights from the dataset and
simplify report visualizations.

This chapter will also contain examples of dynamic security models in which the identity of
the logged in user is used to filter the dataset. Finally, guidance will be provided on testing
the performance of DAX expressions with DAX Studio.

In this chapter, we will review the following topics:

DAX measures
Filter and row contexts
DAX variables
Base measures
Date intelligence metrics
Dimension metrics
Ranking metrics
Security roles
Dynamic row-level security
Performance testing

Developing DAX Measures and Security Roles Chapter 4

[155]

DAX measures
All analytical expressions ranging from simple sums and averages to custom, complex
statistical analyses are implemented within DAX measures. Most measure expressions will
reference and aggregate the numeric columns of fact tables, which are hidden from the
Report View, as we have seen in per the previous chapter. Additional DAX measures can
include filtering conditions which supplement or override any filters applied in Power BI
reports, such as the net sales amount for first-year customers only. Measures can also
evaluate text columns from dimension tables, such as the count of states or provinces with
sales and return text and date values.

Just like the M query language, DAX is a rich, functional language that supports variables
and external expression references. Multiple variables can be defined within a DAX
measure to improve readability, and the results of other measures can be referenced as well,
such as the Plan Grain Status measure in Chapter 3, Designing Import and DirectQuery
Data Models. These layers of abstraction and the built-in code editing features of Power BI
Desktop including IntelliSense and colorization, enabling dataset designers to embed
powerful yet sustainable logic into datasets.

In addition to the DAX measures authored for a Power BI Dataset, Power
BI Desktop's Analytics pane can be used to create metrics specific to a
given visual, such as the trend line, min, max, an average of a metric on a
line chart. The Analytics pane is reviewed in Chapter 6, Applying Custom
Visuals, Animation and Analytics.

Filter context
A fundamental knowledge for authors of DAX measures is the filter context in which the
calculation logic of DAX measures is executed. The filter context is the set of rows for each
table in the data model which are available to be evaluated for each value displayed in
report visualizations. For example, each value of a Power BI chart that analyzes a sales
amount measured by a Product Category column will usually be unique because a
different set of rows (filter context) of the sales fact table was available to the measure when
calculating each value.

Developing DAX Measures and Security Roles Chapter 4

[156]

In the following Power BI report, five distinct filters representing five dimension tables
have been applied to a matrix visual of the Internet Gross Sales measure:

Filtered power BI report

Filters applied to the Promotion, Date, Product, Customer, and Sales Territory
dimension tables all flow across their relationships to filter the Internet Sales fact table.
The Internet Gross Sales measure is a simple SUMX() expression described in the base
measures and is thus evaluated against the Internet Sales rows remaining from these
filters.

Each individual value in Power BI reports is computed independently. For
example, the $315,028 subtotal value is not filtered by the Product
Category column like other values in the matrix, and it's not calculated as
the sum of the three cells in the Married column. This value is computed
using the customer marital status column value of Married and the other
filters from the report. See the following Measure evaluation process section
for details on the DAX engine's execution process.

Developing DAX Measures and Security Roles Chapter 4

[157]

SQL equivalent
To help understand filter context and to validate certain reports or DAX measures, it can be
helpful to compare Power BI reports to SQL statements. The following SQL statement
returns the same six values of the Power BI matrix (excluding the subtotals) via standard
inner joins and WHERE clause conditions:

SELECT
 P.[Product Category]
, C.[Customer Marital Status]
, FORMAT(SUM(F.[Unit Price] * F.[Order Quantity]), '$#,###') AS [Internet
Gross Sales]
FROM BI.vFact_InternetSales as F
 INNER JOIN BI.vDim_FinDate as D on F.[Order Date Key] = D.[Date Key]
 INNER JOIN BI.vDim_Promotion as Promo on F.[Promotion Key] =
Promo.[Promotion Key]
 INNER JOIN BI.vDim_Product as P on F.[Product Key] = P.[Product Key]
 INNER JOIN BI.vDim_Customer as C on F.[Customer Key] = C.[Customer Key]
 INNER JOIN BI.vDim_SalesTerritory as S on F.[Sales Territory Key] =
S.[Sales Territory Key]
WHERE D.[Calendar Year Status] in ('Prior Calendar Year', 'Current Calendar
Year')
 and S.[Sales Territory Group] = 'Europe' and
Promo.[Promotion Type] in ('Excess Inventory', 'Volume Discount')
GROUP BY
 P.[Product Category], C.[Customer Marital Status]

In this example, the SQL statement's WHERE clause implements the Power BI report's slicer
visual filter and its report and page level filters. The GROUP BY clause accounts for the row
and column filters of the matrix visual.

Although certain SQL concepts and examples are applicable, DAX is
distinct from SQL and other languages, such as MDX. Additionally, since
Power BI import mode datasets are stored in a columnar format, SQL
developers experienced with row-based tables and B-tree indexes have to
revise their design patterns in developing DAX measures and queries.

Developing DAX Measures and Security Roles Chapter 4

[158]

Measure evaluation process
Each value in the report, such as the $600 from the matrix visual, is computed according to
the following four-step process:

Initial Filter Context:1.
This includes all filters applied within and outside the report canvas by
the report author
Selections on slicer visuals and the rows and columns of the table and
matrix visuals represent on-canvas filters
Report, page, visual, and drillthrough filters represent off-canvas filters
that also contribute to the initial filter context

Filter Context Modified via DAX:2.
For base measures and other simplistic expressions, the initial filter
context from the report is left unchanged
For more complex measures, the CALCULATE() function is invoked to
further modify the initial filter context:

Via CALCULATE(), the initial filter context can be
removed, replaced, or supplemented with an additional
filter condition
In the event of a conflict between the initial filter context
from the report (for example, slicers, report level filters)
and the filter condition embedded in the DAX measure,
by default, the DAX measure will override the report
filter condition

Relationship Cross-Filtering:3.
With each table filtered from steps 1 and 2, the filter context is
transferred across cross-filtering relationships
In most cases, the filtered dimension tables filter the related fact tables
via single direction cross-filtering
However, as described in Chapter 3, Designing Import and DirectQuery
Data Models, bidirectional cross-filtering allows the filter context to also
transfer from the many side of a relationship to the one side

Developing DAX Measures and Security Roles Chapter 4

[159]

Measure Logic Computation:4.

The computation logic of the measure (for
example, DISTINCTCOUNT(), COUNTROWS()) is finally evaluated
against the remaining active rows for the given table or column
referenced
For common and base measures, this is simply the set of remaining
or active fact table rows
However, as shown in the following Dimension metrics section,
other DAX measures will reference dimension tables, and thus it's
important to understand how these tables are impacted by
relationship filtering and DAX expressions

This four-step process is repeated for each value of the report independently. Consequently,
reports and visuals which are dense in values require more computing resources to refresh
and update based on user filter selections. Large tabular report visuals with many columns
and rows are particularly notorious for slow performance, as this forces the DAX engine to
compute hundreds or thousands of individual values.

Although report authors and business analysts will not create DAX
measures, it's important that they have a basic understanding of the filter
context and measure evaluation processes. For example, the report author
should understand the cross-filtering relationships of the data model
(single or bidirectional) and how certain DAX measures impact the filters
applied in reports. Similarly, business analysts should be able to explain to
business users why certain report behaviors and results occur.

Row context
In addition to filter context, several DAX functions such as FILTER() and SUMX() are
iterators and execute their expressions per row of a given table. The set of rows to evaluate
from this table is always defined by the filter context which was described earlier in this
chapter. The expression parameter of iterating functions can aggregate the rows of a table or
can invoke the filter context of the specific row being iterated via the CALCULATE() function
or a measure reference.

Developing DAX Measures and Security Roles Chapter 4

[160]

Calculated DAX columns are used to illustrate row context. In the following screenshot,
four calculated columns have been added to a Date table and reference the Weekday Sort
column:

The row context in calculated columns

All four calculated columns simply add the value 1 to the Weekday Sort column, but
achieve their results via distinct expressions:

Weekday Sort Plus 1 (SUM) = SUM('Date'[Weekday Sort]) + 1
Weekday Sort Plus 1 CALC = CALCULATE(SUM('Date'[Weekday Sort])) + 1
Weekday Sort Plus 1 Measure = [Weekday Sort Summed] + 1
Weekday Sort Plus 1 = 'Date'[Weekday Sort]+1

The Weekday Sort Plus 1 CALC column and the Weekday Sort Plus 1
Measure column represent the concept of context transition. These two columns invoke the
filter context (context transition) of the given row via the CALCULATE() function or
implicitly via the reference of an existing measure, respectively:

Weekday Sort Plus 1 (SUM) computes the sum of the Weekday Sort column
plus one and repeats this value for each row
Weekday Sort Plus 1 CALC embeds a SUM() function within
the CALCULATE() function prior to adding one
Weekday Sort Plus 1 Measure references an existing measure which sums
the Weekday Sort column and then adds one
Weekday Sort Plus 1 references the Weekday Sort column of the Date table
and adds one

Developing DAX Measures and Security Roles Chapter 4

[161]

The Weekday Sort Plus 1 (SUM) expression demonstrates that aggregation functions, in
the absence of CALCULATE() or the implicit CALCULATE() when invoking measures, ignore
row context. The three other columns all operate on a per-row basis (row context) but
achieve their results via three different methods. The Weekday Sort Plus 1 column
represents the default behavior of expressions executing in a row context such as calculated
columns, FILTER(), and other iterating DAX functions.

To develop more complex DAX measures, it can be necessary to ignore the
row context of the input table, such as the Weekday Sort Plus 1 SUM()
example or explicitly invoke the row context of the table.

Scalar and table functions
The majority of DAX functions return a single value based on an aggregation or a logical
evaluation of a table or column. For example, the COUNTROWS() and DISTINCTCOUNT()
functions return individual numeric values based on a single table and a single column
input parameter, respectively. The DAX functions which return individual values as their
output, including information functions, such as ISBLANK() and LOOKUPVALUE(), are
referred to as scalar functions. For relatively simple datasets and at early stages in projects,
most DAX measures will reference a single scalar function with no other modifications,
such as with CALCULATE().

In addition to scalar functions, many DAX functions return a table as the output value. The
tables returned by these functions, such as FILTER() and ALL(), are used as input
parameters to other DAX measure expressions to impact the filter context under which the
measure is executed via the CALCULATE() function. The DAX language has been extended
to support many powerful table functions, such as TOPN(), INTERSECT(), and UNION(),
thus providing further support for authoring DAX measures.

In addition to serving as table input parameters to DAX measures, the
results of DAX table functions can be returned and exposed to client
reporting tools. The most common example of this is in developing a
paginated reporting services report either with SQL Server Reporting
Services (SSRS) or the Power BI Report Server based on an Analysis
Services Tabular model. Additionally, DAX table functions can return a
summarized or filtered table within a Power BI dataset based on the other
tables in the dataset.

Developing DAX Measures and Security Roles Chapter 4

[162]

As models grow in complexity and as model authors become more familiar with DAX, new
measures increasingly leverage a combination of scalar functions (or existing measures
based on scalar functions) and table functions. Per the DAX Variables section later in this
chapter, both scalar and table values (based on scalar and table functions, respectively) can
be stored as variables to further support abstraction and readability.

The CALCULATE() function
The CALCULATE() function is the most important function in DAX as it enables the author
to modify the filter context under which a measure is evaluated. Regardless of the fields
used and filters applied in reports, the filter parameter input(s) to CALCULATE() will be
applied. Specifically, the CALCULATE() function will either add a filter to a measure
expression (for example, Color = "Red"), ignore the filters from a table or column (for
example, ALL(Product)), or update/overwrite the filters applied within a report to the
filter parameter specified in CALCULATE().

The syntax of CALCULATE() is the following CALCULATE(<expression>, <filter1>,
<filter2>). Any number of filter parameters can be specified including no filter
parameters such as CALCULATE(SUM(Sales[Sales Amount])). When multiple filter
parameters have been specified, the function will respect all of them together as a single
condition via internal AND logic. The expression parameter is evaluated based on the new
and final filter context applied via the filter parameters.

In the following measure, any filter applied to any column from the Product or Sales
Territory tables will be ignored by the calculation:

ISales Row Count (Ignore Product and Territory) =
CALCULATE(COUNTROWS('Internet Sales'),ALL('Product'),ALL('Sales
Territory'))

The preceding measure represents one simple example of a table function (ALL()) being
used in conjunction with a scalar function (COUNTROWS()) via CALCULATE(), as described
in the previous session.

Developing DAX Measures and Security Roles Chapter 4

[163]

There are multiple forms of the ALL() function beyond ALL(table).
The ALL() function can be used to ignore the values from a single column
or multiple columns, such as, the following two
examples: (All('Customer'[Customer City]) and
ALL('Customer'[Customer City], 'Customer'[Customer

Country]). Additionally, the ALLEXCEPT() function only allows certain
columns specified to impact the filter context, and the
ALLSELECTED() function ignores filters from inside a query but allows
filters from outside the query.

Just as the CALCULATE() function is used to modify the filter context of scalar value
expressions, the CALCULATETABLE() function is used to modify the filter context of
expressions which return tables. For example, the following query expression returns all
columns from the product dimension table and only the rows which match the two filter
parameter conditions specified:

EVALUATE
CALCULATETABLE('Product',
'Product'[Product Category] = "Bikes",
'Product'[Product Dealer Price] > 2100)

The modified table result from CALCULATETABLE() can then be used as a parameter input
to another table function such as FILTER() or as a filter parameter to CALCULATE().

Related tables
It's possible to reference other tables in the data model from within a row context via the
RELATED() and RELATEDTABLE() functions. In the following screenshot from Data View of
an import mode dataset, three calculated columns have been added to a Date dimension
table with expressions referencing the Freight column of the Internet Sales fact table:

Row context with RELATEDTABLE()

Developing DAX Measures and Security Roles Chapter 4

[164]

 The DAX expressions used for each column are as follows:

Related Internet Freight Cost (Sum) =
SUMX(RELATEDTABLE('Internet Sales'),(SUM('Internet Sales'[Freight])))
Related Internet Freight Cost (Measure) =
SUMX(RELATEDTABLE('Internet Sales'),[Internet Sales Freight Cost])
Internet Sales Freight Cost Measure = [Internet Sales Freight Cost]

Only the Internet Sales Freight Cost Measure returns the correct freight cost
amount for each date. The Related Internet Freight Cost (Sum) column computes
the total freight cost on the entire Internet Sales table and uses this value for each
related row before summing the result. For example, nine rows on the Internet Sales
table have a date of 1/3/2016 and the sum of the Freight column on the Internet
Sales table is $618,839. Given the SUMX() function, the $5,569,554 value is the result of
9 (rows) multiplied by $618,839.

The Related Internet Freight Cost (Measure) also overcounts the freight cost for
the day, specifically, whenever multiple rows of the same date have the same freight cost,
the sum of these values is counted for each row. For example, five rows on the Internet
Sales table have a date of 1/2/2016 and three of these rows have the same freight cost of
$89.46. Given the SUMX() function, the value $268.37 (3 * $89.46) is added three separate
times prior to adding the other two freight cost values ($17.48 and $85.00) to produce
$908.

The RELATEDTABLE() function is used to reference tables on the many
sides of one-to-many relationships. Likewise, the RELATED() function is
used to reference tables on the one side of many-to-one relationships. For
example, a calculated column or the row context of an iterating function
such as SUMX() on the Internet Sales fact table would use RELATED() to
access a dimension table and apply logic referencing the dimension table
per row of the Internet Sales table.

The FILTER() function
The FILTER() function is one of the most important and powerful functions in DAX in that
it allows complex logic to fully define the set of rows of a table. FILTER() accepts a table as
an input and returns a table with each row respecting its defined condition. The FILTER()
function is almost always used as a parameter to a CALCULATE() function and can add to
the existing filter context or redefine the filter context by invoking ALL() as its table input.
The date intelligence measures described later in this chapter utilize FILTER() to fully
define the set of Date rows for the filter context.

Developing DAX Measures and Security Roles Chapter 4

[165]

In the following DAX measure, the FILTER() function is utilized against the Date table
and implements a condition based on the existing Internet Gross Sales measure:

Days with over 15K Gross Internet Sales =
 CALCULATE(COUNTROWS('Date'),
 FILTER('Date', [Internet Gross Sales] > 15000))

The ability to directly reference DAX measures is unique to the FILTER()
function. For example, the following measure expression is not allowed by
the DAX engine: CALCULATE(COUNTROWS('Date'), [Internet Gross
Sales] > 15000).

The Days with over 15K Gross Internet Sales measure and the Internet Gross
Sales base measure are used in the following Power BI report:

DAX measure with FILTER

Given that the FILTER() function simply references the Date table and does not remove
any filters via ALL(), the measure executes on each date contained in the matrix visual to
return a 1 or a blank. When no dates are on the visual such as the subtotal row or the card
visual, the total number of days that meet the condition (170 for the year 2015) is returned.
If the Internet Gross Sales measure was not included in the table visual, by default
Power BI would only display the dates with a 1 value for the Days with over a 15K
Gross Internet Sales measure.

Developing DAX Measures and Security Roles Chapter 4

[166]

Given both its iterative (row-by-row) execution and the potential to apply
complex measures to each row, it's important to use the FILTER()
function carefully. For example, DAX measures should not use FILTER()
directly against large fact tables. Additionally, FILTER() should not be
used when it's not needed for simple measures such as the following two
examples CALCULATE([Internet Gross Sales],'Product'[Product
Category] = "Bikes")
CALCULATE([Reseller Gross Sales],'Product'[Product Color]

IN {"Red", "White"},Promotion[Discount Percentage] > .25).

DAX variables
Variables can be defined within DAX measures and primarily serve to improve the
readability of DAX expressions. Rather than creating and referencing separate DAX
measures, variables provide an inline option, thereby limiting the volume of distinct
measures in a dataset. As a basic example of variable syntax, the "Last Refreshed" text
message described in the Parameter Tables section of Chapter 2, Connecting to Sources and
Transforming Data with M, uses a DAX variable in its expression, as follows:

Last Refresh Msg =
 VAR CurrentDateValue = MAX('CurrentDate'[CurrentDate])
 RETURN
 "Last Refreshed: " & CurrentDateValue

The VAR function is used to name a variable and the RETURN keyword allows for the
variable's result to be referenced by this name. In this example, the CurrentDateValue
variable retrieves the date stored in the CurrentDate parameter table, and a string of text is
concatenated with the variable to generate the text message.

Variables can sometimes be implemented to improve the performance of
slow measures. Variables are only evaluated once and their resulting
values (a scalar value or a table) can be referenced multiple times.
Measures which produce fewer storage engine queries will almost always
execute faster and make better use of hardware resources. Therefore, any
DAX measure or query which makes multiple references to the same
expression logic can be a good candidate for DAX variables.

Developing DAX Measures and Security Roles Chapter 4

[167]

A common use case for DAX variables is to split up the components of an otherwise more
complex DAX expression. In the following example, six DAX variables are used to produce
a filtered distinct count of accessory products and a filtered distinct count of clothing
products:

Reseller High Value Accessory and Clothing Products =
/*
Accessory category products with over 20K in net sales and over 32% net
margin since last year
Clothing category products with over 55K in net sales and over 28% net
margin since last year
Enable filtering from dimension tables related to Reseller Sales
*/
VAR AccessorySales = 20000 VAR AccessoryNetMargin = .32
VAR ClothingSales = 50000 VAR ClothingNetMargin = .28
//Distinct Accessory Products
VAR AccessoryProducts =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(
 SUMMARIZE(
 CALCULATETABLE('Reseller Sales',
 'Date'[Calendar Year Status] IN {"Current Calendar Year", "Prior
Calendar Year"},
 'Product'[Product Category] = "Accessories"),
 'Product'[Product Alternate Key]),
 [Reseller Net Margin %] >= AccessoryNetMargin && [Reseller Net Sales]
>= AccessorySales))
//Distinct Clothing Products
VAR ClothingProducts =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(
 SUMMARIZE(
 CALCULATETABLE('Reseller Sales',
 'Date'[Calendar Year Status] IN {"Current Calendar Year", "Prior
Calendar Year"},
 'Product'[Product Category] = "Clothing"),
 'Product'[Product Alternate Key]),
 [Reseller Net Margin %] >= ClothingNetMargin && [Reseller Net Sales]
> ClothingSales))
RETURN
AccessoryProducts + ClothingProducts

Developing DAX Measures and Security Roles Chapter 4

[168]

With the variables named and evaluated, the RETURN keyword simply adds the results of
the two distinct count expressions contained within the AccessoryProducts and
ClothingProducts variables. The multi-line comment at the top of the expression denoted
by /* and */ makes the DAX measure easier to understand in the future. Single-line
comments have been added using // to precede the distinct accessory and clothing
products. With the variables declared in this structure, it becomes very easy to adjust the
measure to different input thresholds such as a higher or lower net sales value or net
margin rates.

The most efficient filtering conditions of measures should be implemented
in measures first. Efficient filter conditions are those which don't require
the FILTER() function, such as the calendar year status and product
category filter conditions in the Reseller High Value Accessory and
Clothing Products measure. Once the sufficient filters have been
applied, more complex but less performant filtering conditions can
operate on smaller sets of data, thus limiting their impact on query
performance.

A Power BI report can leverage the measure in a Visual level filter to only display the
specific products that meet the criteria of the measure. In the following table visual, only
five products (2 Accessories, 3 Clothing) are displayed given the filter on the Reseller
High Value Accessory and Clothing Products measure:

Variable-based DAX measure as a Visual level filter

The filter context of the Reseller Sales fact table is respected via the SUMMARIZE()
function. Just like bidirectional cross-filtering via the CROSSFILTER() function and
bidirectional relationships, other dimensions related to the Reseller Sales fact table can
be used for filtering the measure. For example, a filter on the Sales Territory Country
column for the United States would result in only one product.

Developing DAX Measures and Security Roles Chapter 4

[169]

It's necessary to reference the alternate key of the product dimension given
the implementation of slowly changing dimension logic, as described in
Chapter 1, Planning Power BI Projects. A single product can have multiple
rows in its dimension table, reflecting various changes such as with list
prices and product weight. These unique product keys would be reflected
in the fact table, and so using the product key column would result in
counting different versions of the same product multiple times.

In addition to scalar values like DAX measures, DAX variables can also store table values
such as a specific set of customer key values or filter set of product rows. DAX measures
can then reference and apply aggregation functions against this set of tables.

In the following example, two distinct sets of customer keys (tables) are computed via
variables and then combined via the UNION() function to drive the filter context of the
measure:

Internet Sales First Year and Accessory Customers =
VAR FirstYearCustomers =
SUMMARIZE(
 CALCULATETABLE('Internet Sales',
 'Customer'[Customer History Segment] = "First Year Customer"),
 'Customer'[Customer Alternate Key])
VAR AccessoryCustomersThisYear =
SUMMARIZE(
CALCULATETABLE('Internet Sales',
 'Date'[Calendar Year Status] = "Current Calendar
Year",'Product'[Product Category] = "Accessories"),
'Customer'[Customer Alternate Key])
VAR TargetCustomerSet =
DISTINCT(UNION(FirstYearCustomers,AccessoryCustomersThisYear))
RETURN
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate
Key]),TargetCustomerSet)

The DISTINCT() function is applied against the result of the UNION() function since
duplicate rows are retained by the UNION() function in DAX. Just like the previous
example with variables, the SUMMARIZE() function is used to both embed filter conditions
and to respect the filter context of the Internet Sales fact table. In this example,
SUMMARIZE() allows selections on dimension tables related to the Internet Sales fact
table, such as Sales Territory to also impact the measure.

Developing DAX Measures and Security Roles Chapter 4

[170]

In the following matrix visual of a Power BI report, the Sales Territory Country
column from the Sales Territory dimension is used as the column header and the
results from the measure reflect each individual country:

Table-valued DAX variable-based measure

The filter context embedded into both variables (FirstYearCustomers and
AccessoryCustomersThisYear) of the measure provides the equivalent behavior of
bidirectional cross-filtering between Internet Sales and the Customer dimension. The
SUMMARIZE() function is used rather than CROSSFILTER() when given a performance
advantage. See the Performance testing section later in this chapter for additional details on
performance testing.

The combination of table-valued DAX variables and set-based DAX
functions such as UNION(), INTERSECT(), and EXCEPT() support a wide
variety of analytical operations. Authors of DAX measures should
familiarize themselves with the essentials of DAX as a query language,
particularly the SUMMARIZE() and SUMMARIZECOLUMNS() functions.
Custom tables resulting from DAX queries are often needed by DAX
measure expressions and can also be used in other applications such as
SSRS.

Base measures
Before any custom or complex DAX measures can be developed, a set of relatively simple
base measures must be implemented first. These measures represent the metrics from the
Define the facts section of Chapter 1, Planning Power BI Projects, and thus contain validated
and approved business definitions. For Adventure Works, a set of 12 base measures related
to sales, cost, and margins are applicable to both the Internet Sales and Reseller
Sales fact tables, such as the following:

Reseller Gross Sales = SUMX('Reseller Sales',
 'Reseller Sales'[Unit Price]*'Reseller Sales'[Order Quantity])
Reseller Net Sales = [Reseller Gross Sales] - [Reseller Sales Discounts]
Reseller Sales Product Cost = SUMX('Reseller Sales',
'Reseller Sales'[Order Quantity]*'Reseller Sales'[Product Standard Cost])

Developing DAX Measures and Security Roles Chapter 4

[171]

Reseller Cost of Sales = [Reseller Sales Product Cost] + [Reseller Sales
Freight Cost]
Reseller Gross Product Margin = [Reseller Gross Sales] - [Reseller Sales
Product Cost]
Reseller Gross Product Margin % = DIVIDE([Reseller Gross Product
Margin],[Reseller Gross Sales])
Reseller Net Product Margin = [Reseller Net Sales] - [Reseller Sales
Product Cost]
Reseller Net Product Margin % = DIVIDE([Reseller Net Product
Margin],[Reseller Net Sales])
Reseller Gross Margin = [Reseller Gross Sales] - [Reseller Cost of Sales]
Reseller Gross Margin % = DIVIDE([Reseller Gross Margin],[Reseller Gross
Sales])
Reseller Net Margin = [Reseller Net Sales] - [Reseller Cost of Sales]
Reseller Net Margin % = DIVIDE([Reseller Net Margin],[Reseller Net Sales])

As shown in the Fact table columns section from Chapter 3, Designing Import and DirectQuery
Data Models, three fact table columns (Extended Amount, Sales Amount, and Total
Product Cost) were excluded from the Power BI fact table to save resources. The SUMX()
function is used to compute the equivalent values from these three columns to support the
Gross Sales, Net Sales, and Product Cost measures, respectively.

Sales discounts and freight costs, both simple sums of their respective fact
table columns, are the two measures that create differences among the
base measures. Discounts separate gross sales from net sales and freight
costs separate the cost of sales from product costs only. The distinct
definitions of the base measures support common analysis needs, such as
the profitability (margin) of sales inclusive or exclusive of freight costs.

With base measures created for both Reseller Sales and Internet Sales fact tables,
an additional set of base measures can be created for Adventure Works as an organization.
Several of these measures can simply sum the Reseller Sales and Internet Sales
measures as shown in the following examples:

AdWorks Net Sales = [Internet Net Sales] + [Reseller Net Sales]
AdWorks Cost of Sales = [Internet Cost of Sales] + [Reseller Cost of Sales]
AdWorks Net Margin = [AdWorks Net Sales] - [AdWorks Cost of Sales]
AdWorks Net Margin % = DIVIDE([AdWorks Net Margin],[AdWorks Net Sales])

Developing DAX Measures and Security Roles Chapter 4

[172]

Additional DAX measures with specific filtering or evaluation logic such as date
intelligence metrics can reference the base measures in their expressions. Via this measure
branching, any subsequent changes to the definition of the base measures will be
automatically reflected in other dependent measures. Additionally, the readability of the
custom measures is improved, as these expressions only contain their specific logic.

Measure support expressions
Large and complex Power BI datasets with many measures may have one or multiple
measure support tables. As shown in the previous chapters, these hidden tables don't
contain data and aren't refreshed with the dataset, but serve as the home table for
commonly used DAX expressions. Unlike DAX variables, hidden DAX measure expressions
are globally available to other DAX measures and queries. Measure support expressions,
therefore, serve as a staging and consolidation layer to simplify DAX measures.

The measure support table may contain any of the following types of expressions:

KPI targets
Current and prior periods
Filter context information

The two measures described in the Measure support logic section of Chapter 3, Designing
Import and DirectQuery Data Models, represent the filter context information type of measure
support. These measures typically use the ISFILTERED() or ISCROSSFILTERED()
functions and are referenced within conditional expressions of other measures.
Additionally, the USERPRINCIPALNAME() function is a good candidate for the Measure
Support table if dynamic RLS is needed, or if other, user-based functionality is built into the
dataset.

The ISFILTERED() function is limited to a specific column and only
returns a true value when the given column is directly filtered. The
ISCROSFFILTERED() function can reference a column or a table and
returns true when one of the following three conditions are met:

The column referenced is directly filtered
A column on the same table as the column referenced is filtered
A column on a table which has a cross-filtering relationship to
the table or column referenced is filtered

Developing DAX Measures and Security Roles Chapter 4

[173]

KPI Targets
The standard Key Performance Indicator (KPI) visual in Power BI Desktop compares an
indicator measure relative to a Target measure. The variance between the indicator and the
target is displayed in the visual and is used to drive the color formatting (for example, red =
bad; green = good). For many measures, a corresponding target measure may need to be
created that applies some calculation logic to an existing measure. The following measure is
simply 10% greater than the previous year's year-to-date net sales:

Target: 10% Above PY YTD Internet Sales = [Internet Net Sales (PY YTD)] *
1.10

In a standard KPI visual, the target measure is displayed as the goal and used to calculate
the variance percentage between the indicator and the target. In the following example, a
$9.2M indicator value Internet Net Sales (YTD) is 5.8% below the 10% growth target
measure of $9.8M:

Standard KPI Visual

Several other common visuals in Power BI benefit from target measures, including the
bullet chart and the gauge visual. Several of these visuals can use multiple target measures
to define alternative thresholds, such as the min and max values displayed.

In certain scenarios, a dedicated table of corporate target measures can be
added to a dataset. For example, a table may contain columns for expected
or target customer counts, products sold, and other metrics at a given
date's granularity. Target measures can be created to access the values of
this table via utility functions, such as LOOKUPVALUE().

The LOOKUPVALUE() function is particularly useful because it ignores the
current filter context. As shown in the examples in the following section,
the LOOKUPVALUE() function can be relied on to provide the same input
value to other measures, such as a date or a number referring to specific
date rows, regardless of any filters applied in the report.

Developing DAX Measures and Security Roles Chapter 4

[174]

Current and prior periods
A common requirement of date intelligence metrics is to compare the YTD total for a
measure versus the equivalent time period of the prior year. For example, on November 14,
2017, the visual would compare January through October of 2017 versus January through
October of 2016. Without any external filtering, however, a standard YTD measure would
include the 14 days of November in 2017 and would capture the entire year of 2016 if the
year 2016 was in the filter context. To deliver equivalent or apples to apples comparisons of
equal time periods, the filter context of measures can be further customized.

The following measures retrieve the year-to-date net sales through the prior calendar month
and prior calendar week. For example, throughout the month of November, the YTD Last
Month measure would, at most, only retrieve the net sales through the month of October.
Likewise, the YTD Last Week measure would, at most, only include the net sales through
the end of the prior week of the year (45):

Prior Calendar Month Number =
VAR CurrentDay = TODAY()
RETURN
IF (
LOOKUPVALUE('Date'[Calendar Month Number],'Date'[Date],CurrentDay) = 1,12,
LOOKUPVALUE('Date'[Calendar Month Number],'Date'[Date],CurrentDay)-1
)
Prior Calendar Week Number =
VAR CurrentDay = TODAY()
RETURN
IF(
LOOKUPVALUE('Date'[Calendar Week Number in Year],'Date'[Date],CurrentDay) =
1, CALCULATE(MAX('Date'[Calendar Week Number in
Year]),FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar
Year]) - 1)),
LOOKUPVALUE('Date'[Calendar Week Number in
Year],'Date'[Date],CurrentDay)-1)

Internet Net Sales (YTD Last Month) =
IF([Prior Calendar Month Number] <> 12,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] =
MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Month Number] <=
[Prior Calendar Month Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'), 'Date'[Calendar Year] =
MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date'[Calendar Month Number] <= [Prior Calendar Month Number])))

Internet Net Sales (YTD Last Week) =
VAR CurrentWeek = LOOKUPVALUE('Date'[Calendar Week Number in

Developing DAX Measures and Security Roles Chapter 4

[175]

Year],'Date'[Date],TODAY())
RETURN
IF(CurrentWeek <> 1,
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] =
MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Calendar Week Number in
Year] <= [Prior Calendar Week Number])),
CALCULATE([Internet Net Sales], FILTER(ALL('Date'),'Date'[Calendar Year] =
MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Date]) &&
'Date'[Calendar Week Number in Year] <= [Prior Calendar Week Number])))

For any prior calendar year in the filter context, the (YTD Last Month) measure would
only include January through October for this given year. Likewise, the (YTD Last Week)
measure would only include weeks 1 through 45 of the given year. By embedding this
dynamic filtering logic, it's possible to use these measures in report visuals without
applying any additional filters.

The TODAY() function combined with the LOOKUPVALUE() function
makes it possible to retrieve values at query time relative to the current
date. In the previous example, the month and week number columns of
the current year (for example, October = 10) are queried via
LOOKUPVALUE() based on the current date. With these values retrieved,
subtracting one from the results provides the value associated with the
prior month and prior week, respectively. These measures are then
referenced in the FILTER() function of their respective year-to-date
measures.

Similar to this simple example, dynamically computed dates and other values make it
possible to create measures for the current date and yesterday:

Internet Net Sales (Today) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()))

Internet Net Sales (Yesterday) = CALCULATE([Internet Net Sales],
FILTER(ALL('Date'),'Date'[Date] = TODAY()-1))

Along with the date intelligence metrics described in the following section, a rich set of
date-based metrics give users of Power BI reports and dashboards visibility for both short
and long-term results.

Developing DAX Measures and Security Roles Chapter 4

[176]

Date intelligence metrics
Date intelligence metrics are typically the first set of measures to be added to a dataset
following base measures. These measures reference the base measures and add a custom
filtering condition to the Date dimension table, thus providing visibility to multiple distinct
time intervals, such as year-to-date and the previous year-to-date. Given their built-in date
filtering logic, Power BI reports and dashboards can be developed faster and without
manual maintenance costs of updating date filter conditions.

The following four measures apply custom filter contexts to either return the current year,
month, and week by default, or the latest of these time intervals given the date filters
applied in a report:

Internet Net Sales (CY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date'),
 'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] >= MIN('Date'[Date]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (YTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) &&
 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (MTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Month Number] =
MAX('Date'[Calendar Year Month Number]) &&
 'Date'[Date] <= MAX('Date'[Date])))

Internet Net Sales (WTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Week Number] =
MAX('Date'[Calendar Year Week Number]) &&
 'Date'[Date] <= MAX('Date'[Date])))

The use of the MIN() and MAX() functions within the FILTER() function invokes the filter
context of the report query. For example, if a report page is filtered to the second quarter of
2016 (2016-Q2), the CY measure will only return the sales from these three months while the
YTD measure will include both the first and second quarter of 2016. The month-to-date
(MTD) and week-to-date (WTD) measures will return the sales for June of 2016 and Week
27 of 2016, the last month and week in the filter context.

Developing DAX Measures and Security Roles Chapter 4

[177]

The date dimension table only contains rows through the current date. Therefore, in the
absence of any other date filters applied in a report, these measures default to the current
YTD, MTD, and WTD totals for net sales per the following multi-row card visual:

Date intelligence metrics for the current year

The (CY) measure returns the same value as the YTD measure when no other date filters are
applied.

The MTD and WTD measure both references a numeric column on the
date table that corresponds to the given granularity. For example,
December of 2016 and January of 2017 are represented by the values 96
and 97 in the Calendar Year Month Number column. As shown in the
previous chapter, these sequential columns are critical for date intelligence
and are also used by the Sort By column property.

The following set of DAX measures return the prior year, month, and week given the filter
context of the report:

Internet Net Sales (PY) = CALCULATE([Internet Net
Sales],FILTER(ALL('Date'),
 CONTAINS(VALUES('Date'[Prior Calendar Year Date]),'Date'[Prior Calendar
Year Date],'Date'[Date])))

Internet Net Sales (PYTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1
&&
 'Date'[Date] <= MAX('Date'[Prior Calendar Year Date])))

Internet Net Sales (PMTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Month Number] =
MAX('Date'[Calendar Year Month Number])-1 &&
 'Date'[Date] <= MAX('Date'[Prior Calendar Month Date])))

Internet Net Sales (PWTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Week Number] =
MAX('Date'[Calendar Year Week Number])-1 &&
 'Date'[Date] <= MAX('Date'[Prior Calendar Week Date])))

Developing DAX Measures and Security Roles Chapter 4

[178]

The Calendar Year, Calendar Year Month Number, and Calendar Year Week
Number columns used by the current period measures are also referenced by the prior
period measures. However, the prior period measures subtract a value of one from the
result of the MAX() function to navigate to the given preceding period.

In the PY measure, the CONTAINS() function used within the filtering parameter of
the FILTER() function returns a true or false value for each prior calendar year date based
on the date column. The date column reflects the filter context of the report query and thus
only the corresponding prior year dates are passed to FILTER() as the modified filter
context.

DAX provides a number of functions dedicated to date intelligence, such
as DATEADD() and SAMEPERIODLASTYEAR(). These functions are much
less verbose than the techniques from these examples, but they're also
generally limited to standard calendars. The approach described in this
section leveraging core DAX functions, such as FILTER() and ALL(), can
also be applied to financial calendars. Additionally, the filter navigation
(for example, MAX() - 1) implemented in the prior period measures is
applicable to more advanced date intelligence expressions.

Each prior period measure references a column containing date values that have been
adjusted relative to the date column. The following screenshot of the date dimension table
in SQL Server highlights these three columns relative to the date column:

Prior date columns in the date dimension

Given the value of date intelligence measures and the relative static nature of the date
dimension, it's recommended to develop a robust date dimension table. If the necessary
columns cannot be implemented in the source database itself, the columns can be computed
within the SQL view or the M query of the Date table.

Developing DAX Measures and Security Roles Chapter 4

[179]

Current versus prior and growth rates
With date intelligence measures developed for the current and prior periods, growth or
variance measures can be added to the dataset, comparing the two values. In the following
example, a year-over-year (YOY) and a year-over-year year-to-date (YOY YTD) measure have
been created based on the current year and prior year measures from the preceding section:

Internet Net Sales (YOY) = [Internet Net Sales (CY)] - [Internet Net Sales
(PY)]
Internet Net Sales (YOY YTD) = [Internet Net Sales (YTD)] - [Internet Net
Sales (PY YTD)]

Finally, growth percentage measures can be added, which express the variance between the
current and prior period measures as a percentage of the prior period. The following
measures reference the above YOY measures as the numerator within a DIVIDE() function:

Internet Net Sales (YOY %) = DIVIDE([Internet Net Sales (YOY)],[Internet
Net Sales (PY)])
Internet Net Sales (YOY YTD %) = DIVIDE([Internet Net Sales (YOY
YTD)],[Internet Net Sales (PY YTD)])

The DIVIDE() function returns a blank value if the denominator is zero or
a blank value by default. The divide operator (/), however, will return an
infinity value when dividing by zero or a blank. Given the superior error-
handling behavior and performance advantages of DIVIDE(), the
DIVIDE() function is recommended for computing division in DAX.

Rolling periods
Rolling period and trailing average measures are also very common in datasets, as they
help to smooth out individual outliers and analyze longer-term trends. For example, a
significant business event or variance 10 months ago will have a relatively small impact on
a trailing 12 month total. Additionally, this variance will not impact trailing 30 day or 3, 6,
and 9-month rolling period measures.

The following two measures capture the trailing 60 days of sales history and the 60 days of
history prior to the trailing 60 days:

Internet Net Sales (Trailing 60 Days) =
VAR MaxDate = MAX('Date'[Date])
VAR StartDate = MaxDate - 59
RETURN
CALCULATE([Internet Net Sales],FILTER(ALL('Date'),'Date'[Date] >= StartDate

Developing DAX Measures and Security Roles Chapter 4

[180]

&& 'Date'[Date] <= MaxDate))

Internet Net Sales Trailing (60 to 120 Days) =
VAR MaxDate = MAX('Date'[Date])
VAR EndDate = MaxDate - 60
VAR StartDate = EndDate - 59
RETURN
CALCULATE([Internet Net Sales],FILTER(ALL('Date'), 'Date'[Date] >=
StartDate && 'Date'[Date] <= EndDate))

The two 60-day measures compute the dates for the filter condition within DAX variables
and then pass these values into the FILTER() function. The two measures help to answer
the question "Is Internet sales growth accelerating?". The following table visual in Power BI
Desktop displays the measures by date and as a subtotal value:

Trailing 60 and 60 to 120-day measures

With this logic, the value for the trailing 60 days measure on November 15th, 2017 includes
Internet sales since September 17th, 2017. The 60 to 120 days measure, however, includes
sales history from July 19th, 2017 through September 16th, 2017. The subtotal value reflects
the latest date in the filter context—November 15th, 2017, in this example.

Rolling period or trailing average measures generally require the
sequential numeric date dimension columns in the date suggested in both
previous chapters. Very similar to the prior period measures from the
previous section (for example, PY YTD), rolling period measures can
reference sequential columns for the given granularity and modify the
date filter by adding or subtracting values.

Developing DAX Measures and Security Roles Chapter 4

[181]

Dimension metrics
The majority of DAX measures will apply aggregating functions to numeric columns of fact
tables. However, several of the most important metrics of a dataset are those which identify
the presence of dimensions in fact tables such as the count of customers who've purchased
and those who haven't. It can also be necessary to count the distinct values of a dimension
column such as the number of postal codes sold to or the number of distinct marketing
promotions over a period of time.

In the dataset for this project, the customer dimension table is exclusive to the Internet
Sales fact table, and the measure should only count customers with internet sales history.
Additionally, slowly changing dimension logic has been implemented so that a single
customer defined by the Customer Alternate Key column could have multiple rows
defined by the Customer Key column.

The following two DAX measures count the number of unique customers and products
with internet sales history:

Internet Sales Customer Count =
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]), 'Internet
Sales')

Internet Sales Products Sold Count =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),'Internet Sales')

By invoking the Internet Sales fact table as a filtering parameter to CALCULATE(), any
filter applied to a related dimension table such as Sales Territory will also impact the
measure. This behavior is the same as bidirectional cross-filtering between the Internet
Sales and Customer table. However, in the event that no filters have been applied in the
reporting tool (for example, Power BI or Excel), the Internet Sales table filter ensures
that only customers with Internet Sales histories are counted.

Missing dimensions
Missing dimension measures are commonly used in churn and exception reporting and
analyses. For example, a report may be needed which displays the specific products that
haven't sold or the past customers who haven't made a purchase in a given filter context.
Additionally, missing dimension measures give greater meaning to other dimension
measures. For instance, the count of products sold in a period may not be as useful without
knowing how many products were not sold over this same period.

Developing DAX Measures and Security Roles Chapter 4

[182]

The following DAX measure counts the number of unique customers without Internet Sales
history:

Internet Sales Customers Missing =
CALCULATE(DISTINCTCOUNT('Customer'[Customer Alternate Key]),
 FILTER(VALUES('Customer'[Customer Alternate Key]),
 ISEMPTY(RELATEDTABLE('Internet Sales'))))

Internet Sales Products Missing =
CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
 FILTER(VALUES('Product'[Product Alternate Key]),
 ISEMPTY(RELATEDTABLE('Internet Sales'))))

The Internet Sales Customers Missing measure references the 'Internet Sales'
fact table like the customer count measure does, but only within the ISEMPTY() function.
The ISEMPTY() function operates as the filter parameter of the FILTER() function and
returns a true or a false value for each distinct Customer Alternate Key provided by
the VALUES() function. Only the customer rows without any related rows in the Internet
Sales fact table are marked as true and this filtered set of customer rows is passed to the
DISTINCTCOUNT() function. The same methodology is applied to the Internet Sales
Products Missing measure.

The following matrix visual of a Power BI report has been filtered to four calendar quarters
and broken out by the Sales Territory Group:

Internet Sales Customers and Customers Missing

Developing DAX Measures and Security Roles Chapter 4

[183]

Any other dimension table with a relationship to the Internet Sales fact table, such as
Promotion and Product could also be used to filter the metrics.

In this dataset, the customer dimension has 18,484 unique customers as
defined by the Customer Alternate Key. Therefore, the sum of the
customer count and customers missing measures is always equal to 18,484.
As explained in the Filter context section, the subtotal values execute in
their own filter context. For example, only 9,024 did not make an online
purchase in any of the four quarters, while over 15,000 customers did not
make a purchase in each of the four quarters.

Once core dimension metrics have been established such as in the previous examples,
additional metrics can be developed which leverage their logic. The following measures
identify the count of first year internet sales customers and the count of accessories
products which have not sold online, respectively:

Internet Sales First Year Customer Count =
CALCULATE([Internet Sales Customer Count],'Customer'[Customer History
Segment] = "First Year Customer")

Internet Sales Products Missing (Accessories) =
CALCULATE([Internet Sales Products Missing],'Product'[Product Category] =
"Accessories")

Dimension metrics, just like the base measures described earlier, may be used in reporting
by themselves or may be referenced by other measures. This branching of measures
underlines the importance of clearly defining, documenting, and testing the foundational
measures of a dataset.

Ranking metrics
Many reports and analyses are built around the ranking of dimensions relative to measures,
such as the top 10 salespeople based on YTD sales. Ranking measures can also help deliver
more clean and intuitive report visualizations as they substitute small integer values for
large numbers and decimal places. Ranking measures can be as simple as specifying a
column and a measure, or more complex with unique ranking logic applied in distinct filter
contexts.

Developing DAX Measures and Security Roles Chapter 4

[184]

Ranking measures in DAX are implemented via the RANKX() function, which is an iterator
like SUMX() and FILTER(). As an iterating function, two required input parameters include
a table and the expression to be evaluated for each row of the table. The following two
measures rank products based on the Internet Net Sales measure:

Internet Net Sales Product Rank =
RANKX(ALL('Product'[Product Alternate Key]),[Internet Net
Sales],,DESC,Skip)

Internet Net Sales Product Rank (All Products) =
VAR ProdRankTable =
ALL('Product'[Product Alternate Key],'Product'[Product
Name],'Product'[Product Category Group],'Product'[Product
Category],'Product'[Product Subcategory],'Product'[Product Name])
RETURN
RANKX(ProdRankTable, [Internet Net Sales],,DESC,Skip)

As with date intelligence and other measures, ALL() is used to remove the
filters applied to a table. The ALL() function both removes a filter and
returns a table which can then be evaluated by other functions. ALL() can
remove filters from an entire table, multiple columns of the same table, or
a single column from a table. Additionally, the ALLEXCEPT() function can
be used remove filters from the current and any future columns of a table,
except for one or a specific set of columns.

In the Internet Net Sales Product Rank measure, the ALL() function returns a table
of the unique product's alternate key values. Since only a single column is referenced by
ALL() in this measure, other columns from the Product dimension table are allowed into
the filter context. For example, in the following table, the Product Category column
impacts the Internet Net Sales Product Rank measure so that the HL-U509-R
product is ranked first given that it's the highest selling product in the Accessories
category:

Ranking measures

Developing DAX Measures and Security Roles Chapter 4

[185]

The Internet Net Sales Product Rank (All Products) measure, however, ranks
the product relative to all other products including products in the Bikes category. The
group of columns specified in the ALL() function (the table parameter to RANKX()), defines
the set of rows that the ranking expression will be evaluated against.

For ranking and certain other scenarios, it's necessary to apply alternative
logic for subtotals. For example, the total row of the previous table visual
would show a ranking value of 1 without any modification to the DAX. A
common pattern to address subtotal values is to check whether an
individual item of a column is in the filter context via HASONEVALUE().
The following revised measure uses an IF() conditional function to apply
the ranking for individual products, but otherwise returns a blank value:

Internet Net Sales Product Rank =
IF(HASONEVALUE('Product'[Product Alternate Key]),
RANKX(ALL('Product'[Product Alternate Key]),[Internet Net
Sales],,DESC,Skip),BLANK())

As shown in this example, it's essential to understand the intended ranking logic and it may
be necessary to store alternative ranking measures to suit the requirements of different
reports and projects.

The RANKX() function has five parameters, but only the first two—the
table and the expression to evaluate—are required. In this example, the
third parameter is skipped via the comma and the measure is set to rank in
descending order of the expression. Additionally, the final parameter
(Skip or Dense) determines how tie values are treated. For example, if
two products are tied for the highest sales, both products will be ranked 1,
and the next-highest product will be ranked 3. Descending order and the
skip tie behavior are both defaults, but it's a good practice to explicitly
define these settings in the measures.

Dynamic ranking measures
The ranking measures in the previous section are specific to individual products. These
measures cannot be used, for example, to rank product subcategories or product categories.
Rather than develop many separate measures targeted at one specific column, logic can be
embedded in DAX measures to dynamically adjust to the columns in the filter context.

Developing DAX Measures and Security Roles Chapter 4

[186]

In the following measure, a ranking is applied based on the filter context from three levels
of a product hierarchy:

Internet Net Sales Product Rank (Conditional) =
VAR ProductFilter = ISFILTERED('Product'[Product Name])
VAR SubCatFilter = ISFILTERED('Product'[Product Subcategory])
VAR CatFilter = ISFILTERED('Product'[Product Category])
RETURN
Switch(TRUE(),
 ProductFilter = TRUE(), RANKX(ALL('Product'[Product Name]),[Internet Net
Sales],,DESC,Skip),
 SubCatFilter = TRUE(), RANKX(ALL('Product'[Product
Subcategory]),[Internet Net Sales],,DESC,Skip),
 CatFilter = TRUE(), RANKX(ALL('Product'[Product Category]),[Internet Net
Sales],,DESC,Skip),
 BLANK())

The measure checks for the existence of a filter on the Product Name, Product
Subcategory, and Product Category columns within a SWITCH() function via the
ISFILTERED() function. The first logical condition to evaluate as true will result in the
corresponding RANKX() expression being executed. If no condition is found to be true, then
the BLANK() value is returned.

The dynamic ranking measure can be used in report visuals which drill up/down through
the product hierarchy or in separate visuals dedicated to specific columns. In the following
screenshot, distinct table visuals representing the three levels of the product hierarchy
utilize the Internet Net Sales Product Rank (Conditional) measure:

Dynamic ranking measure

Developing DAX Measures and Security Roles Chapter 4

[187]

For the visuals in the preceding table, a shorter and more intuitive name was used instead
of the full measure name (Internet Net Sales Product Rank (Conditional)). To
change the name of a measure or column used in a report visual, double-click the name of
the measure or column in the Values bucket of the Visualizations pane. The revised name
only applies to the specific visual, and hovering over the revised name identifies the source
measure or column.

Similar to the Internet Net Sales Product Rank measure from the previous section,
the conditional measure allows for other columns to impact the filter context. For example,
if both the Product Category and Product Subcategory columns are included in the
same table visual, the conditional measure will rank the subcategories relative to other
subcategories of the same Product Category. With this dataset, the Tires and Tubes
subcategory, which is ranked fourth overall per the above table, would be ranked number
one for the Accessories product category.

Security roles
Per Chapter 1, Planning Power BI Projects, the required data security for this project is to
limit the visibility of the Adventure Works sales team users to their respective sales territory
groups. There are three sales territory groups (North America Sales Group, Europe
Sales Group, and Pacific Sales Group), and, as described in the previous chapter,
cross-filtering relationships exist between the Sales Territory dimension table, and all
three fact tables (Internet Sales, Reseller Sales, and Sales and Margin Plan).
Therefore, security roles with a filter condition on the given sales territory group will also
filter the fact tables, and business users mapped to these roles will only see data associated
for their Sales Territory group.

Security roles are defined in Power BI Desktop via the Manage roles dialog of the
Modeling tab as shown in the following screenshot:

Developing DAX Measures and Security Roles Chapter 4

[188]

Managing security roles

In this example model, the Sales Territory dimension table has a
single direction one-to-many relationship with the Internet Sales and
Reseller Sales fact tables. For the Sales and Margin Plan fact table,
the Sales Territory filter first flows to the bridge table and then uses a
bidirectional cross-filtering relationship from the Sales Territory
bridge to Sales and Margin Plan. Therefore, a user mapped to the
Europe Sales Group role will only have access to the Internet Sales,
Reseller Sales, and Sales Plan data associated with Europe.

Just like a filter selection on a column of the Sales Territory table in a report, a security
filter also flows across the cross-filtering relationships of the data model. However, unlike
report filters, security filters cannot be overridden by DAX measures. Security filters are
applied to all report queries for the given dataset and any additional filtering logic or DAX
expression respects the security role definition.

Developing DAX Measures and Security Roles Chapter 4

[189]

Given the automatic filtering of security role conditions, it's important to
implement efficient security filters and to test the performance of security
roles. For example, a complex filter condition applied against a large
dimension table could significantly degrade the performance of reports
and dashboards for users or groups mapped to this security role.

In addition to defining security roles, security roles can also be tested in Power BI Desktop
via the View as roles command on the Modeling tab. In the following screenshot, a chart
that displays sales by the sales territory country is only displaying the countries associated
with the European Sales Territory group due to the View as roles selection:

View as roles in Power BI Desktop

Similar to the View as roles feature in Power BI Desktop, a Test as role
option is available in the Power BI service. This feature can be accessed
from the ellipsis next to each RLS role in the Security dialog for the
dataset. Additionally, other users can test the security roles by connecting
to published Power BI apps. In this testing scenario, the user would not be
a member of the app workspace, but a member of an Azure Active
Directory Security group which is mapped to a security of the dataset.

Developing DAX Measures and Security Roles Chapter 4

[190]

Individual users and groups of users are mapped to security roles in the Power BI service.
For this project, and as a strongly recommended general practice, Azure Active Directory
(AAD) security groups should be created for the users accessing Power BI content. The
following screenshot from AAD displays the properties of a North America Sales
security group:

The Azure Active Directory security group

Users can be added or removed from AAD security groups in the Azure
portal or via PowerShell scripts. In the previous screenshot, the Assigned
membership type is used but alternatively, a Dynamic User membership
type can be created based on a membership rule query. With Dynamic
User AAD security groups, a user can be automatically added or removed
from groups as their role in the organization changes.

Developing DAX Measures and Security Roles Chapter 4

[191]

The AAD security groups can then be mapped to their respective security roles for the
published dataset in Power BI. In the following screenshot, the North America Sales AAD
security group is recognized as a potential group to be added as a member of the North
America Row-Level Security (RLS) role:

Member assignment to Row-Level Security roles

With the Azure AD security groups created and mapped to their corresponding RLS roles
of the Power BI dataset, security filters will be applied based on the user's membership of
the Azure AD group. When RLS roles have been applied to a dataset, the users accessing
the reports and dashboards based on that dataset will need to be mapped to at least one of
the roles. For example, if a Power BI app is distributed to a user who is not included in one
of the Azure AD security groups mapped to one of the RLS roles, and this user account is
not mapped individually to one of these RLS roles, the user will receive the following error
message in the Power BI service:

Error message: User Not mapped to an RLS role

Developing DAX Measures and Security Roles Chapter 4

[192]

In the event that a user is mapped to multiple RLS roles, such as both the North America
Sales Group and the Europe Sales Group, that user will see data for both Sales
Territory groups (and not Pacific Sales Group). For users that require access to the
entire dataset, such as administrators or executives, an RLS role can be created on the
dataset that doesn't include any filters on any of the tables. Chapter 11, Creating Power BI
Apps and Content Distribution, and Chapter 12, Administering Power BI for an Organization,
contain additional details on Azure AD's relationship to Power BI and the role of security
groups in securely distributing Power BI content to users.

Dynamic row-level security
Dynamic row-level security (DRLS) models identify the user connected to the dataset via
the USERPRINCIPALNAME() function and apply filters based on this identity. These models
can use DAX functions or tables and relationships to implement a filter context specific to
the given user. For example, a user and a permissions table could be added to the dataset
(and hidden) so that the user table would first filter the permissions table, and the
permission table would then filter the dimension to be secured, such as a Sales
Territory Country.

In the following example of a permissions table, Jen Lawrence is associated with
Germany, Australia, and the United States, and thus should only have visibility to
these countries in any Power BI report or dashboard built on top of the dataset:

User permissions table

The other two tables in the Security Tables query group include a
distinct list of User Principal Names (UPNs) and a distinct list of Sales
Territory Country. The Sales Country table is necessary because the
Sales Territory dimension table is more granular than the country
one. The Sales Country table receives the filter context from the
permissions table and uses a simple one-to-many cross-filtering
relationship with the Sales Territory dimension table to filter the fact
tables.

Developing DAX Measures and Security Roles Chapter 4

[193]

The dynamic RLS role will be defined with the User Principal Name column of the
Users table equal to the USERPRINCIPALNAME() function. The relationships, and, more
specifically, the cross-filtering from the Permissions table, will deliver the intended filter
context for the given user. In the following screenshot from the Relationship view, a
bidirectional cross-filtering relationship is defined between Sales Country Permissions
and Sales Countries so that only the countries associated with the user will filter the
Sales Territory dimension table:

Dynamic RLS model relationships

The Apply security filter in both directions property of the bi-directional relationship
between Sales Country Permissions and Sales Countries is enabled by default.
This property and the relationships-based filtering design is applicable to both import and
DirectQuery datasets. The gray shading indicates that all three security tables should be
hidden from the Report View.

With users or groups assigned to the dynamic security role in the Power BI Service, the role
can be tested via the Test as role feature in Power BI. In the following screenshot, the user
Brett is able to test the dynamic role as himself (Canada, United States), but can also
view the dynamic role as though Jennifer is logged in, viewing the reports:

Developing DAX Measures and Security Roles Chapter 4

[194]

Testing dynamic row-level security in Power BI

In this security testing sample, the chart only displays the sales territory countries
associated with Jennifer, and the three tables to the right reflect the three security tables
added to the dataset. As expected, all three security tables are filtered based on Jennifer's
UPN, and this filter flows through the rest of the data model via relationships among the
Sales Territory dimension and all three fact tables.

It can be useful to create a dedicated security testing report that can be
leveraged as security roles are created and modified. The report may
contain multiple pages of visualizations representing all primary tables
and any sensitive metrics or columns from across the dataset. On this
project, a business analyst or a QA Tester, such as Stacy Loeb, can be
mapped on to the security role and use the report to confirm that the filter
context from the security role has been implemented successfully.

Performance testing
There are often many available methods of implementing business logic and custom filter
contexts into DAX measures. Although these alternatives deliver the essential functional
requirements, they can have very different performance characteristics, which can
ultimately impact user experience and the scalability of a dataset. When migrating a self-
service dataset to a corporate solution or preparing a large and highly utilized dataset, it's
always a good practice to test common queries and the DAX measures used by those
queries.

Developing DAX Measures and Security Roles Chapter 4

[195]

For example, the same common dimension grouping (for example, Product Category
and Year) and the same filter context (Year = 2018) could produce dramatically different
performance results based on the measures used in the query, such as Net Sales versus
Count of Customers. The alternative performance statistics associated with different
measures such as duration and the count of storage engine queries generated could then be
used to focus performance tuning efforts.

In some cases, the DAX measures associated with slow queries cannot be significantly
improved, but the data obtained from the performance testing results can drive other
changes. For example, report authors could be advised to only use certain measures in less
performance intensive visuals such as Cards, or in reports that have been substantially
filtered. In a DirectQuery model, the data source owner of the dataset may be able to
implement changes to the specific columns accessed via the slow-performing measures.

DAX Studio
DAX Studio is a lightweight (5 MB), open source client tool for executing DAX queries
against Power BI datasets and other sources which share the Microsoft Analysis Services
Tabular database engine, such as SSAS in Tabular mode and Azure Analysis Services. DAX
Studio exposes the metadata of the source model (for example, tables, measures,
hierarchies), includes reference panes for DAX functions and Tabular Dynamic
Management Views (DMVs), and also provides query formatting, syntax highlighting, and
IntelliSense for developing DAX queries. Additionally, DAX Studio supports performance
tuning as it can execute traces against its data sources and displays useful performance
statistics, as well as the query plans used to execute the query.

The Server timings and Query plan panes in DAX Studio expose the
storage engine and formula engine query plans, respectively. In most
performance-testing scenarios, the storage engine versus formula engine
results of a trace (for example, 50 ms in the storage engine, 10 ms in the
formula engine) will lead the user to focus on either the slowest storage
engine queries or the most expensive operations in the formula engine.

Developing DAX Measures and Security Roles Chapter 4

[196]

For these reasons, despite improvements to DAX authoring in SQL Server Management
Studio (SSMS), DAX Studio is very commonly used by Microsoft BI developers in Analysis
Services and Power BI environments. Specifically, BI developers will store the DAX queries
created within DAX Studio as .dax or .msdax files and later open these files from DAX
studio for performance testing or troubleshooting scenarios. For example, a team may have
a DAX query that returns the count of rows for three fact tables of a data model by calendar
date, and use this query to troubleshoot issues related to a data-loading
process. Additionally, just as M queries saved within .pq files can be added to version
control systems, DAX query files can be added to version control systems, such as Visual
Studio Team Services.

DAX Studio can be downloaded from http:/ /daxstudio. org.

Tracing a Power BI dataset via DAX Studio
The following steps can be used to trace and analyze a Power BI dataset via DAX Studio:

Within the Power BI Desktop file containing the dataset (import or DirectQuery),1.
create report pages and visuals which represent the most common reporting and
analysis use cases:

To simplify this effort, access two or three existing Power BI reports
which are highly utilized by business users and create the same visuals
in the dataset file.
The formatting of these visuals is not important, but it's essential that
the visuals include the most common DAX measures, filters, and
granularity.

Open the Power BI Desktop file containing the dataset and the sample report2.
visuals from step 1:

Power BI Desktop files which do not include a dataset, such as a file
with a Live connection to Analysis Services or a Live connection to a
published Power BI dataset, will not be visible to DAX Studio.

http://daxstudio.org
http://daxstudio.org
http://daxstudio.org
http://daxstudio.org
http://daxstudio.org
http://daxstudio.org
http://daxstudio.org

Developing DAX Measures and Security Roles Chapter 4

[197]

Open DAX Studio and click the Connect icon on the right-hand side of the Home3.
ribbon:

Specify the Power BI dataset from the Connect dialog as shown in
the following screenshot:

Connecting to the Power BI dataset via DAX Studio

As shown in the preceding image, DAX Studio can connect to Tabular Server,4.
and even PowerPivot Model, if DAX Studio is launched from an Excel Workbook
containing a PowerPivot model.
Click Connect and observe the tables of the Power BI dataset displayed in the5.
metadata pane on the left.
Click the All Queries icon within the group of Traces icons on the Home tab:6.

The Output window at the bottom will explain that the query trace has
started.
Select the All Queries tab at the bottom (to the right of Query History).

In the Power BI Desktop file, apply a filter to a slicer or select one of the values7.
within the visuals to cross-highlight the other visuals:

The intent of these actions is to mimic normal user behavior when
accessing the Power BI report visuals.

Developing DAX Measures and Security Roles Chapter 4

[198]

These actions will generate DAX queries which will be displayed in the
All Queries pane of DAX Studio, as shown in the following screenshot:

Tracing results in DAX Studio – All Queries pane

The All Queries pane can be sorted by the Duration column to quickly identify8.
the slowest query, as illustrated in the preceding screenshot. Additionally,
hovering over the Query field displays a formatted version of the DAX query,
thus making it easy to identify the DAX measure(s) involved.
Stop the trace via the stop icon in the All Queries pane (above StartTime). 9.
Double-click a value from the row of the All Queries pane representing the10.
slowest query (for example, Duration = 111) to add this query to the editor
window:

The values in the User, Database, and Query fields can all be used to
add the query to the editor window.
Alternatively, the Copy All icon (up arrow) in the All Queries pane
can be used to add all queries from the trace to the editor window.

Select the Server Timings icon in the middle of the Home tab to start a new trace: 11.
Select the Server Timings pane that appears at the bottom (to the right
of All Queries)

With the slowest query from step 7 in the editor window, click the Run icon, or12.
hit F5 to execute the DAX query.

Developing DAX Measures and Security Roles Chapter 4

[199]

In the following screenshot, the query from the original trace against the Power BI Desktop
file (AdWorksEnterpriseDQ), which required 111 ms in duration, was executed in 106 ms
from DAX Studio:

The Server Timings window in DAX Studio

As shown in the preceding image, the editor window displays the Internet Net Sales
Amt measure, and the Server Timings pane at the bottom identifies the duration of the
query (106 ms). Given that the dataset for this example is in DirectQuery mode against a
SQL Server database, the T-SQL statement generated and passed to the database server is
displayed in the Query field and window to the right (not shown). This T-SQL statement
can be easily copied into another application, such as SQL Server Server Management
Studio (SSMS), and executed directly against the source or saved as its own .sql file.

Developing DAX Measures and Security Roles Chapter 4

[200]

For DirectQuery datasets, use traces in DAX Studio to collect the SQL
statements associated with the slowest-performing DAX queries. The team
responsible for the DirectQuery source (for example, Teradata) may be
able to identify the cause of the issue such as the columns referenced in the
filter condition. Additionally, if referential integrity is enforced in the
DirectQuery data source, ensure that the SQL statements generated use
inner join conditions. Inner join SQL statements will be generated if the
Assume referential integrity property of the Edit relationship window has
been enabled.

As an alternative to the All Queries trace of a Power BI dataset, a new DAX measure could
be tested against an existing DAX query. For example, a common grouping query built with
the SUMMARIZECOLUMNS() DAX function and stored in a .dax or .msdax file could be
opened in DAX Studio. The new DAX measure contained in the dataset could be referenced
in the editor window and the query could be executed with a trace running (via Server
Timings). The performance results of the new measure could be compared against the
baseline results from common measures (for example, Net Sales and Count of Orders)
to obtain a sense of relative performance.

Additionally, two DAX measures which return the same results but utilize distinct logic or
functions could be tested against each other in DAX Studio to determine which measure is
more performant. DAX measures already added to the Power BI dataset can be accessed via
the Metadata pane, and DAX measures can also be defined within the Power Query Editor
window via the DEFINE clause.

The following URL contains the full syntax of using DAX as a query language http://bit.
ly/2FoRF2y.

Summary
This chapter developed and described several common classes of DAX measures, including
date intelligence, dimension metrics, and ranking metrics. These measures utilized the fact
and dimension tables accessed in Chapter 2, Connecting to Sources and Transforming Data
with M, as well as the data model relationships defined in Chapter 3, Designing Import and
DirectQuery Data Models. In addition to detailed measure examples, primary concepts of the
DAX including filter context, row context, measure evaluation, and DAX variables were
also reviewed. Moreover, examples of standard and DRLS models were shared, and DAX
Studio was presented as a tool for testing and tuning DAX.

http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y
http://bit.ly/2FoRF2y

Developing DAX Measures and Security Roles Chapter 4

[201]

In the following chapter, Power BI reports will be created which leverage the dataset that
has been incrementally developed since Chapter 2, Connecting to Sources and Transforming
Data with M. Report-authoring features, such as the visualization types in Power BI
Desktop, will access the DAX measures from this chapter and the dimensions from
previous chapters to deliver business insights and intuitive, self-service functionality.

5
Creating and Formatting Power

BI Reports
In this chapter, we will create Power BI reports based on the dataset developed over the
past three chapters and published to the Power BI service. We will review a report-planning
and design process as well as all primary report formatting features in the context of
visualization best practices. Additionally, we will look at report behavior and functionality
features, such as alternative filter scopes, slicers, and conditional formatting options.

This chapter also highlights several of the latest and most powerful Power BI report
features, including visual interactions, top N, relative date filters, and What-if parameters.
The reports developed in this chapter can be further supplemented with custom visuals and
advanced analytics from the following chapter to serve as a supporting analysis layer to
Power BI dashboards.

In this chapter, we will review the following topics:

Report planning
Live connections to Power BI datasets
Visualization best practices
Choosing the visual
Visual interactions
Slicers
What-if parameters
Report filter scopes
Relative date filtering
Conditional formatting
Mobile-optimized reports

Creating and Formatting Power BI Reports Chapter 5

[203]

Report planning
Power BI reports can take on a variety of forms and use cases, ranging from executive-level
dashboard layouts to highly detailed and focused reports. Prior to designing and
developing Power BI reports, some level of planning and documentation is recommended
to ensure that the reports are well aligned with the needs of the users and the organization.

Effective report planning can be encapsulated in the following five steps:

Identify the users or consumers of this report:1.
Senior managers generally prefer less self-service interactivity and
value simple, intuitive visuals, such as KPIs.
Analysts often require significant flexibility to filter and interact with
more detailed reports. For example, reports used by analysts generally
include more slicer visuals and may include table or matrix visuals as
well.

Separating reports by user role or group serves to keep reports focused for
users and more manageable for BI teams. In many scenarios, an
organizational hierarchy provides a natural demarcation such that reports
can be designed for specific roles or levels within an organization.

In the project example for the Adventure Works sales team, reports could
align with the Sales Territory hierarchy (Sales Territory Group |
Sales Territory Country | Sales Territory Region). The vice
president of group sales will value high-value corporate-wide metrics and
intuitive dashboard reports. A sales analyst in the United States, however,
will likely need to break out individual regions and even analyze specific zip
codes or individual products.

Define the business question(s) that the report should answer or support:2.
Confirm with the business user(s) or project sponsors that this is the
appropriate focus and scope of the report:

A report architecture diagram described in the next
section can support this communication.
For example, the user could be advised that a particular
business question or metric will be included in a
different report but will be featured on the same
dashboard and will be easily accessible within the same
Power BI app.

Creating and Formatting Power BI Reports Chapter 5

[204]

The most important business question (for example, What were our
sales?) will be addressed in the top-left corner of the report canvas,
likely with a KPI or card visual.

Similar to separating reports by user role or group, a report should not
attempt to resolve widely disparate business questions. A sales report can,
for example, provide high-level metrics on other business processes, such as
customer service, inventory, or shipping. However, the supporting visuals of
a report should almost always be derived from the same business processes
and fact tables as the primary business question, such as Internet Sales
and Reseller Sales.

Confirm that the dataset supports the business questions:3.
The report author should ensure that the dataset includes measures
such as year-over-year (YOY) sales and the dimension columns (for
example, Product Category) necessary to visualize the business
questions.

It's very important that report authors have a solid understanding of the
Power BI dataset. This knowledge includes the logic and business definitions
of DAX measures, the relationships defined between fact and dimension
tables, and any data transformation logic applied to the source data. In many
projects, report authors will regularly collaborate with business stakeholders
or project sponsors in gathering requirements and demonstrating report
iterations. Therefore, the authors will need to explain the values and
behaviors of Power BI reports as well as any current limitations in the
dataset, such as the years of history supported and any DAX logic or
measures not yet created:

If a gap exists between the dataset and the measures required for
the report, the team can determine whether the dataset should be
extended or whether the measure should be created local to the
report
Only measures can be created within Power BI Live connection
reports
Any new columns, tables, or modifications to existing tables or
columns must be implemented within the source dataset

Creating and Formatting Power BI Reports Chapter 5

[205]

The set of base measures described in Chapter 4 (Developing DAX Measures
and Security Roles), as well as the dynamic date dimension columns described
in Chapter 2, Connecting to Sources and Transforming Data with M (for
example, Calendar Month Status = 'Prior Calendar Month'),
should support the most common needs of reports. If a measure required for
a report is considered to be common to other future reports, and if the
measure doesn't violate the single corporate definition of an existing
measure, the measure should generally be added to the dataset. However, if
the report requirement is considered rare or if a measure definition has been
approved only for the specific report, then the measure(s) can be created local
to the report. For version control and manageability reasons, report authors
should not have to implement complex filtering logic or develop many local
report measures. Report authors should communicate with dataset designers
and the overall team if a significant gap exists or is developing between
reports and the dataset.

Determine how the report will be accessed and the nature of any user4.
interactivity:

Reports and dashboards can be optimized for mobile device
consumption if this use case is expected
Power BI Desktop supports slicer visuals, a What-if parameter, and
visual interaction options as standard features:

Reports can, therefore, be designed for static
consumption or to support rich data exploration

Draw a sketch of the report layout:5.
At least for the primary page of the report, document how the area of
the report canvas will be allocated

Creating and Formatting Power BI Reports Chapter 5

[206]

The following sample sketch is created within a PowerPoint presentation file
via the standard shape objects:

Sample report layout sketch

Per the sample layout, the critical sales and margin measures are
located in the top-left corner of the report page:

Slicer (filter) visuals are planned for below these KPI
or card visuals and other visuals will add further
context
Greater space is allocated to the two visuals in the
middle of the page given their importance to the
report

The report layout sketch can be used exclusively for planning
purposes or can be set as the background for a report page

For example, a PowerPoint slide of the same shapes,
background shading, and borders can be saved to a
network directory as a PNG file

Creating and Formatting Power BI Reports Chapter 5

[207]

In Power BI Desktop, the PNG file can be imported
via the Add Image formatting option under Page
Background or via the insert an image icon on the
Home tab in Report view
Page background images with proper alignment,
spacing, and colors can expedite quality report
development

Be willing to modify a report layout or even start afresh with a new layout based on user
feedback. Unlike dataset development, which can require significant time and expertise (for
example, DAX, M, SQL), reports can be developed in a rapid, agile delivery methodology.
Report authors can engage directly with users on these iterations and, although
recommended practices and corporate standards can be communicated, ultimately the
functional value to the user is the top priority. It's important to distinguish flexibility in
report layout and visualization from the report's target users and business questions.
Second and third iterations of reports should not, for example, call for fundamentally
different measures or new report pages to support different user groups. Report authors
and BI teams can work with users and project sponsors to maintain the scope of IT-
supported reports. The interactivity built into Power BI reports and the self-service
capabilities provided by Power BI Pro licenses can broaden the reach of projects without
requiring new or additional reports.

Power BI report architecture
Similar to the data warehouse bus matrix described in Chapter 1, Planning Power BI Projects,
a report architecture diagram can be helpful for planning and communicating Power BI
projects with both business and IT stakeholders. This diagram serves to maintain the scope
and focus of individual reports. For example, certain business questions or entities (such
as Customers, Products) can be assigned to dedicated reports and the individual pages of
these reports can visualize these questions or entities at varying levels of detail.

Most commonly, a single report page will address the top priority of a report at a summary
level. This page includes cards and/or KPI visuals at the top-left of the page and charts
rather than tables or matrices that visualize these metrics at a high level. Additional report
pages, usually 3-4 maximum, would be designed to provide a greater level of detail
supporting the summary page. With this report structure, a user can naturally start their
analysis from an intuitive and visually appealing summary page and then, if necessary,
navigate to pages exposing greater levels of detail.

Creating and Formatting Power BI Reports Chapter 5

[208]

In addition to supporting report pages with greater detail, Drillthrough
report pages can be designed to display the details for an individual item,
such as a specific product or a combination of items, for example the year
2018 and a specific product. The Drillthrough report pages section of
Chapter 6, Applying Custom Visuals, Animation, and Analytics provides
details and examples of this feature.

In the absence of a report architecture or diagram, reports can quickly become less user-
friendly as many report pages are added that address unrelated business questions.
Additionally, the lack of scope or focus for a report can lead to duplicated efforts with the
same business question being visualized in multiple reports.

Guidance from stakeholders on the visuals to be included in or featured
on a dashboard can strongly inform the report design process. If several
dashboard tiles, particularly those intended in the top or left section of the
dashboard, are closely related (for example, profitability %) then it's likely
that multiple reports, each with multiple pages, should be designed to
support further related analysis of these tiles. However, if only one
dashboard tile relates to a particular business question or entity, such as
resellers, then the supporting report may only need 1-2 pages and provide
relatively less detail.

In the following basic example, four reports and one dashboard are planned for the German
sales team:

Sample report architecture diagram

Creating and Formatting Power BI Reports Chapter 5

[209]

In this sample, at least one visual from each of the four reports would be pinned as a tile on
the Germany Sales and Margin dashboard. By default, this would link the reports to the
dashboard such that a user could access the details of any of the four reports by clicking on
a related dashboard tile. Visuals from a single report can be pinned as tiles to multiple
dashboards. Additionally, a dashboard tile can be linked to a separate dashboard or to a
separate report in the Power BI service. Chapter 7, Designing Power BI Dashboards and
Architectures include additional details and examples of Power BI report and dashboard
architectures.

The four reports and the dashboard from the preceding example could be included in a
dedicated app workspace for the German sales team or within a broader workspace that
supports multiple sales teams and related content (for example, marketing) in the
organization. If a Power BI dataset is used as the source for Power BI reports, then
consolidating reports and dashboards into a broader app workspace avoids the need to
duplicate this dataset across other workspaces given the current dependency between
Power BI Live connection reports and datasets within the same workspace. Information on
app workspaces and content distribution via apps are provided in Chapter 8, Managing
Application Workspaces and Content and Chapter 11, Creating Power BI Apps and Content
Distribution. The following section describes Live connection reports to Power BI datasets
published to the Power BI service.

Understand and communicate the differences between Power BI reports
and dashboards. Although report pages can look like dashboards to users,
Power BI dashboards are generally best suited to integrating the essential
visuals from multiple reports. Dashboards deliver a holistic, at-a-glance
view of strategic metrics while reports are more narrowly focused on
specific business questions. Additionally, reports provide interactive,
analytical features (for example, slicer visuals) for users to leverage in a
self-service.

Live connections to Power BI datasets
One of the most important features released in 2017 was the ability to use published Power
BI datasets as a source for Power BI reports. With Live connections to Power BI datasets,
report authors can develop reports in Power BI Desktop files containing only the
visualization layer (for example, report pages of visuals) while leveraging a single dataset.

Creating and Formatting Power BI Reports Chapter 5

[210]

The dataset, which is generally developed and managed by a different user or team, already
includes the data retrieval supporting tables and columns, the data model relationships,
and the DAX measures or calculations as described in previous chapters. Once the Live
connection report is developed and published to Power BI, it will maintain its connection to
the source dataset and will be refreshed with the refresh schedule configured for the
dataset.

Prior to Live connection reports to Power BI datasets, users within teams would frequently
create multiple versions of the same dataset in order to create different reports. As both a
report and a dataset, each individual report would require its own scheduled refresh
process (in import mode), its own data storage, and would create version control problems
as the report author could modify the underlying dataset. Live connection reports therefore
severely reduce resource requirements and promote a single version of the truth. Moreover,
Live connection reports facilitate the isolation of report design and development from
dataset design and development.

Most Power BI report authors will not be interested in or responsible for
dataset design topics, such as data retrieval with M queries, data
modeling, and DAX measures. Likewise, a dataset designer is often less
interested in or responsible for visualization best practices and the
engagement with the actual users of reports and dashboards. As advised
in Chapter 1, Planning Power BI Projects, it's important for the alternative
roles (dataset designer, report author) to regularly collaborate, such as by
identifying measures or columns that need to be added to the dataset to
support reports and dashboards.

To create a Live connection report with a published Power BI dataset as the source, the
report author needs a Power BI Pro license and will need to be a member of the app
workspace hosting the dataset with edit rights.

Creating and Formatting Power BI Reports Chapter 5

[211]

In the following example, the report author is a member of the Corporate Sales app
workspace and creates a new report in Power BI Desktop by connecting to the AdWorks
Enterprise dataset within this workspace:

Creating a Live connection to the Power BI dataset

After selecting the Power BI service from the list of Online Services within the Get Data
dialog, the list of the workspaces of which the report author is a member is prompted. In
this example, either double-clicking the AdWorks Enterprise dataset or clicking the Load
button will establish the Live connection per the status bar in Power BI Desktop:

Live connection status bar

The same field list of measures and tables is exposed in Report View but
the Relationship View and Data View do not appear. Likewise, once the
Live connection has been established, the Get Data dialog is also grayed
out. Live connection reports to Power BI datasets and SQL Server
Analysis Services (SSAS) databases are always limited to a single data
model as a source.

Creating and Formatting Power BI Reports Chapter 5

[212]

Live connection reports are published to the same app workspace as their source dataset. In
the following example, a report file named USA Sales and Margin, which is connected to
the AdWorks Enterprise dataset in the Corporate Sales workspace has been published
from Power BI Desktop:

Published Live connection report

Per the preceding image, the report will appear in the workspace of the source dataset
(Corporate Sales) in Power BI. Since the report was published from Power BI Desktop,
the report (.pbix file) can be downloaded by opening the report and clicking Download
report from the File menu.

It's possible to create reports based on Power BI datasets within the Power
BI online service. However, the .pbix files for these reports cannot be
downloaded and thus all edits must be implemented within the service
without version history. Additionally, several important report authoring
features in Power BI Desktop are not supported in the service, including
the alignment of objects and local report measures. Given these
considerations, Power BI Desktop is recommended for any report
development beyond personal or ad hoc use. Guidance on version history
for Power BI Desktop files (reports and datasets) is included in Chapter 8,
Managing Application Workspaces and Content.

Creating and Formatting Power BI Reports Chapter 5

[213]

Customizing Live connection reports
Although data modeling and retrieval capabilities are removed in Live connection reports,
report authors have the ability to create new measures specific to the given report via the
New Measure icon under the Modeling tab. Additionally, report authors can change the
names of measures and columns displayed in reports. In the following example, the
Internet Net Sales measure and the Customer Country column have been renamed
to Net Sales and Country, respectively:

Renamed measure and column in Visual

Double-clicking the name of the column or measure in the field well(s) for the visual
exposes an input box for the revised name. Per the preceding image, the revised names will
appear in the report visual and the Tooltips in the field wells will indicate the source
column or measure. In this example, the Internet Net Sales measure, with a home table
of the Internet Sales fact table, is the source for the Net Sales alias name.

Although the flexibility to create measures and apply names within
reports is helpful and appropriate in certain scenarios, these revisions can
create complexity and version control issues. For example, users can
become accustomed to specific measures and names that the dataset
designer is not aware of and that may conflict with other measures or
names in the dataset. Therefore, it's generally recommended to incorporate
the necessary measure logic and standard names into the source dataset.

Creating and Formatting Power BI Reports Chapter 5

[214]

Switching source datasets
In many project scenarios, a Power BI report will initially be built against a development or
testing dataset. After this report has been validated or received the proper approvals, the
report's source dataset can be switched to a production dataset and the report can then be
published to the production app workspace used for distributing Power BI content to users.

To switch the Power BI dataset of a Live connection report, click the Data Source settings
icon under the Edit Queries drop-down menu under the Home tab. In the following two
steps with supporting images, a report is switched from a dataset in the Corporate Sales
workspace to a dataset in the North America Sales workspace:

Open the Power BI service data source window via Data source settings:1.

Data source settings for a Live connection report

Select the new dataset to use as the source for the report:2.
Either double-click the dataset or click the Load command button to
establish the connection:

Power BI dataset sources

Creating and Formatting Power BI Reports Chapter 5

[215]

Confirm the source dataset has changed via the status bar:3.

Source Power BI dataset switched

See Chapter 8, Managing Application Workspaces and Content for details on Power BI project
life cycles, such as migrating from development to production environments and version
control.

Visualization best practices
Effective reports are much more than simply answering documented business questions
with the available measures and columns of the dataset. Reports also need to be visually
appealing and provide a logical structure that aids in navigation and readability. Business
users of all backgrounds appreciate a report that is clear, concise, and aesthetically pleasing.

Now that the report-planning phase described earlier is complete, the following list of 15
visualization practices can guide the report development process:

Avoid clutter and minimize nonessential details:1.
Each visual should align with the purpose of the report—to gain
insight into a business question:

Visualizations should not represent wild guesses or
functionality that the author finds interesting

Eliminate report elements that aren't essential for gaining
understanding:

Gridlines, legends, axis labels, text boxes, and images can
often be limited or removed

The report should be understandable at a glance, without supporting
documentation or explanation.

Creating and Formatting Power BI Reports Chapter 5

[216]

A simple but helpful test is to view a Power BI report on a laptop screen
from a distance of 12 to 15 feet, such as from the opposite end of a
conference room. At this distance, it will be impossible to read any small
text and only the shapes, curves, and colors will be useful for deriving
meaning. If the report is still meaningful, this suggests the report is
effectively designed visually.

Provide simple, clear titles on report pages and visuals:2.
Text boxes can be used to name or describe the report, report page, and
provide the last-refreshed date

For chart visuals, use the length of lines and the two-dimensional position of3.
points to aid visual comprehension:

In line charts, users can easily perceive trends and the divergence of
lines relative to each other
In column or bar charts, users can easily distinguish relative
differences in the length of bars
In scatter charts, users can quickly interpret the two-dimensional
position of data points relative to each other

The purpose of these two attributes (line length, 2-D position) as the
primary communication mechanism is to guide the user to an accurate
assessment with minimal effort. Other visual attributes such as color,
shape, and size can also be beneficial, particularly when these properties
are driven by the data, such as with conditional formatting and KPIs.
However, line length and 2-D position (X, Y coordinates) have a natural
advantage in visual perception. For example, the differences between
three items on a clustered column chart is much more obvious than the
same three items presented on a pie chart.

Position and group visuals to provide a logical navigation across the canvas:4.
The most important visuals should be positioned in the top-left corner
of each report page
If multiple visuals are closely related, consider grouping them within a
shape object

Use soft, natural colors for most visuals:5.
Avoid overwhelming users with highly saturated bright or dark colors
Only use more pronounced colors when it's necessary to make an item
stand out, such as conditional formatting

Creating and Formatting Power BI Reports Chapter 5

[217]

Only apply distinct colors to items in chart visuals when the colors convey6.
meaning:

For example, three colors might be useful for the data points of three
separate product categories

Align visuals to common and X and Y pixel positions:7.
For example, if a visual in the top-left corner of a page has X and Y
position values of 20 and 40, respectively, then other visuals on the left
side of the canvas should also have an X Position of 20
Likewise, the top visual(s) on the right side of the canvas should align
with the left visuals at a Y position of 40

Distribute visuals vertically and horizontally to create an equal amount of space8.
between visuals:

The amount of spacing should be adequate to clearly distinguish the
visuals as separate entities

With one or multiple visuals selected in Power BI Desktop, a Format tab will
appear on the ribbon per the following image:

Alignment, distribution, and Z-order format options

The three format options (Align, Distribute, and Bring forward and
Send backward (Z-order)) are consistent with common MS Office
applications, such as Excel and PowerPoint. Between these formatting
options and the four properties available under the general formatting
card for all visuals (X Position, Y Position, Width, and Height). Report
authors can ensure that visuals are properly aligned and spaced. The
Show gridlines and Snap objects to grid options under the View tab also
support alignment.

Choose a page background color that will naturally contrast with visuals, such as9.
the default white or a very light gray.

Creating and Formatting Power BI Reports Chapter 5

[218]

For column and bar charts, sort visuals by their measure to provide an implicit10.
ranking by the given measure:

This sorting is only applicable to nominal categories, such as product
categories, when the individual items in the category don't need to
follow a custom sort order

Fill the available report canvas space; avoid large blank spaces in report pages.11.
Provide supporting context via tooltips and additional lines in charts, such as12.
target values and the min, max, and average:

Several measures related to a given visual can be displayed via tooltips
without incurring performance penalties
The Power BI Analytics pane provides several support lines, including
a trend line and a predictive forecast line

All report pages should follow a common design theme and color palette:13.
Preferably all reports in a project and even for an organization should
follow the same basic design guidelines

A Switch Theme icon on the Home tab of Power BI Desktop in Report View exposes
options for importing a report theme and thus overriding the default color and formatting
properties:

Import report theme

Creating and Formatting Power BI Reports Chapter 5

[219]

Custom Report Themes are a preview feature as of the November 2017
release of Power BI Desktop and allow organizations to apply a custom set
of formatting properties to Power BI reports. For example, an organization
can embed its corporate colors into a report theme (a JSON file) to apply
this set of colors to all Power BI reports. Additionally, more elaborate
formatting properties can be specified in report themes to standardize
report development, such as the font family and font sizes. Existing report
themes are available for download from the Power BI Report Theme
Gallery (http:/ /bit. ly/ 2pyUKpl). Additionally, tools and documentation
are available for easily generating report themes, such as the Power BI
Tips Color Theme Generator (https:/ /powerbi. tips/ tools/color-
theme- generator/).

The quantitative scale for column and bar charts must start at zero:14.
Custom quantitative scales, such as from 12% to 15%, can be applied to
line, scatter, and bubble charts to emphasize specific ranges of values

Consider two items, Product A and Product B, of a clustered column
chart with margin percentage values of 32% and 34%, respectively. With a
base of zero, the two items would correctly appear similar for the given
measure. However, if the base value of the visual starts at 31% and the
max value of the scale is set to 35%, Product B would visually appear as
a dramatically higher value. This distortion is the reason that quantitative
scales for column and bar charts must start at zero.

Lines should only be used to connect interval scale data points, such as time15.
series and ordered bins of values:

A line should not, for example, represent the sales for different product
categories
A line should, however, represent the sales of products by unit price
bins (for example, $0 to $10, $10 to $20, and so forth)

http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
http://bit.ly/2pyUKpl
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/
https://powerbi.tips/tools/color-theme-generator/

Creating and Formatting Power BI Reports Chapter 5

[220]

Visualization anti-patterns
In addition to report planning and generally aligning reports with visualization best
practices, it can be helpful to acknowledge and avoid several common visualization anti-
patterns. For many reports, particularly when report development time and Power BI
experience is limited, simply avoiding these anti-patterns coupled with adequate planning
and appropriate visual type choices is sufficient to deliver quality, sustainable content.

Six of the most common visualization anti-patterns include the following:

A cluttered interface of many visuals and report elements that's complex or
difficult to interpret:

This is often the result of too many visuals per report page or too
high a precision being displayed
Separate reports, report pages, and the removal of unnecessary
details and precision can improve usability

A lack of structure, order, and consistency:
Each report page should naturally guide the user from the essential
top-left visuals to the supporting visuals
A failure to align visuals or to provide proper spacing and borders
can make reports appear disorganized
Mixing widely disparate grains of detail on the same report page
can be disorienting to users

High density and/or high detail visualizations, such as large table visuals or
thousands of points on a scatter chart or map:

The need for a scrollbar is a strong indication that a visual contains
too many values
A table visual should not be used as a raw data extract of many
columns and rows
High density visuals, such as line and scatter charts with thousands
of data points, can cause poor performance

Creating and Formatting Power BI Reports Chapter 5

[221]

The following table visual with six dimension columns and three measures is
an example of a data extract anti-pattern:

Data extract anti-pattern

The small scrollbar on the right indicates that many rows are not displayed.
Additionally, the export data option prompts the warning message (data
exceeds the limit) suggesting the visual contains too much data.

The excessive use of fancy or complex visuals and images:
Reports can be aesthetic and engaging but the priority should be to
inform users, not to impress them.
For example, a column chart or a stacked column chart will usually
be more effective than a treemap.

Suboptimal visual choices such as pie charts, donut charts, and gauges:
Column or bar charts are easier to interpret than the circular shapes
of pie and donut charts.
KPI visuals provide more context than gauge visuals including the
trend of the indicator value.

The misuse of colors, such as utilizing more than five colors and overwhelming
users with highly saturated colors:

Colors should be used selectively and only when the few
alternative colors convey meaning.

Creating and Formatting Power BI Reports Chapter 5

[222]

Choosing the visual
With the report planning phase completed, an essential task of the report author is to
choose the visual(s) best suited to gain insight into the particular questions within the scope
of the report. The choice of the visualization type, such as a column chart or a matrix visual,
should closely align with the most important use case, the message to deliver, and the data
relationship to represent.

Visualization types have distinct advantages in terms of visual perception and types of data
relationships such as part-to-whole and comparisons. Additionally, although several
formatting options are common to all visuals, certain options such as the line style (solid,
dashed, dotted) of a line chart are exclusive to specific visuals.

A standard visual selection process is as as follows:

Plan and document the business question(s) and related measures and dimension1.
columns.
Determine whether a table, a chart, or both will be needed to best visualize this2.
data.
If a chart is needed, choose the chart visual that's best aligned with the3.
relationship (for example, trend, comparison, correlation).

Following these three steps helps to ensure that effective reports are developed with
efficient resources. Many other visualization and analysis features can be used to further
enhance reports but these should only supplement report planning and design.

Power BI currently supports 25 standard visualizations, and many more
custom visualizations can be imported from the MS Office Store. The
standard visuals are aligned with the most common analytical
representations including trend, rankings, part-to-whole, exceptions,
geospatial, and distribution. Several of these visuals can be further
enhanced via the Analytics pane and a vast array of custom visuals can be
easily imported to reports from the MS Office Store. See the following
chapter for additional details on the Analytics pane in Power BI Desktop
and custom visuals.

Creating and Formatting Power BI Reports Chapter 5

[223]

Tables versus charts
An initial step in the visualization selection process is to determine whether a table, a chart,
or a combination of both is most appropriate. Power BI's table visual provides simple row
groups of dimension values and measures, and the matrix visual supports both an X and a
Y axis field like a pivot table in Excel. Both the table and the matrix visuals are superior to
charts in enabling users to look up specific data points. However, despite conditional
formatting options available to table and matrix visuals, charts are superior to table and
matrix visuals in displaying trends, comparisons, and large volumes of distinct data points.

The following matrix visual breaks down the AdWorks Net Sales measure by two
product dimension columns and two promotion dimension columns:

Matrix visual

The product hierarchy created in Chapter 3, Designing Import and DirectQuery Data Models is
used as the rows' input and a promotion table hierarchy is used as the columns' input. Via
the expand all down feature for both the rows and the columns, the matrix provides easy
access to specific data points, including subtotals by both product categories and promotion
types. Although it's clearly possible to visualize the same data with a chart, a matrix visual
(or a table visual) makes it easy to locate individual values and to display the exact values
with no rounding.

Additionally, if a table or matrix is needed to reference individual values but less precision
is required, the field formatting card in the formatting pane allows the report author to
define the display units (for example, thousands (K), millions (M)) and the number of
decimal places for the measure. The same two formatting properties (display units and
value decimal places) are also accessible for chart visuals via the data labels formatting card
in the formatting pane.

Creating and Formatting Power BI Reports Chapter 5

[224]

Although they're rarely used in Power BI dashboards, Power BI's table
and matrix visuals were significantly enhanced throughout 2017 to
provide more granular formatting controls. Matrix features, such as
showing values (for example, multiple metrics) as individual rows, as a
percentage of column or row totals, and full control over subtotals
positions Power BI matrix visuals as an alternative to many Excel pivot
tables and matrix reports in SQL Server Report Services (SSRS).
Additionally, table and matrix visuals are interactive such that user
selections on a row, a specific value, or a row or column header will filter
other visuals.

The following line chart visual breaks down the AdWorks Net Sales measure by the
calendar year week:

Line chart visual

With 18 different data points displayed, the periodic spikes of the line help to identify the
specific weeks with relatively higher net sales. In this example, the AdWorks Net Sales
measure is highest in the fourth or last week of the month and is especially higher at the
end of March—the first quarter. The drawback or tradeoff of this visual relative to the prior
matrix visual is the lack of subtotals and the loss of precision given the rounding to one
decimal place.

Creating and Formatting Power BI Reports Chapter 5

[225]

Line charts are uniquely advantaged to call out patterns, trends, and exceptions in measures
across time. More generally, chart visualizations (for example, bar, column, scatter) are
recommended over table and matrix visuals when the shape or position of the data, such as
trends, comparisons, correlations, and exceptions, is more valuable than the individual
values.

With a date hierarchy or the date columns in the chart axis input field, the
concatenate labels property in the X axis formatting card should be turned
off to provide the grouped layout per the preceding line chart example.
Additionally, also included in the line chart example visual, the X axis
gridlines can be turned on to separate the parent values (for example,
2017-Feb).

Chart selection
Chart visuals can broadly be categorized into the following four types of data relationships:

Comparison: How items compare against each other or over time
Relationship: How items relate (or correlate) to one another across multiple
variables
Distribution: The most common values for a variable and the concentration of
values within a range
Composition: The portion of a total that an item represents relative to other
items, possibly over time

The following table associates specific visuals to these categories and briefly describes their
top use cases:

Creating and Formatting Power BI Reports Chapter 5

[226]

Chart visuals by category

As a table of chart types, map visuals, and the three standard single number visuals
provided in Power BI Desktop—Cards, Gauge, and KPI, are excluded. Single number
visuals are commonly used in dashboards, mobile optimized reports, and in the top-left
section of report pages to deliver easy access to important metrics.

The standard single number visuals (Card, Gauge, KPI) can also be used to
create data alerts when these visuals are pinned to Power BI dashboards.
Alerts can be created and managed in both the Power BI service and on
the Power BI mobile applications. With an alert set on a dashboard tile
representing one of these visuals, whenever the number of the visual
crosses a defined condition (for example, above 100), a notification will be
raised and optionally an email will be sent as well.

Details on standard map visuals are included in the Map visuals section of this chapter and
the ArcGIS Map visual for Power BI is reviewed in Chapter 6, Applying Custom Visuals,
Animation and Analytics.

Creating and Formatting Power BI Reports Chapter 5

[227]

There are several publicly available resources on visualization practices
and visual selection. The Chart Suggestions diagram from Extreme
Presentation (http:/ / bit. ly/1xlXh1x) provides additional details on the
visuals and visual categories described in this section. Additionally, the
SQL BI team provides a Power BI Visuals Reference (http:/ /bit.ly/
2ndtcZj) that categorizes visuals at a more granular level than the table in
this section.

Visual interactions
By default, the filter selections applied to a single visual, such as clicking a bar on a column
chart or a row on a table, will impact all other data visualizations on the given report page
with relationships to the selection. In the following example, the bar representing the
United States sales territory country has been selected and this causes the product category
chart to highlight the portion of each product category related to the United States sales
territory country ($31.3M):

Visual Interactions – Highlighting

Multiple values from the same column can be selected (for example, France and Canada)
and the values from separate columns of the same visual, such as the dimension columns of
a table visual, can also cross-filter other visuals on the report page. The ability to drive
visual interactions from the selections of two or more visuals (for example, United States
and Bikes) is not currently supported excluding slicers.

The highlight interaction option from the preceding example is available and enabled by
default for column, bar, treemap, pie, and donut charts. Only the filter and the none
interaction options are available for cards, KPIs, and line and scatter chart visuals.

http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/1xlXh1x
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj
http://bit.ly/2ndtcZj

Creating and Formatting Power BI Reports Chapter 5

[228]

Per prior chapters, the Sales Territory, Product, and Date dimension
tables are related to all three fact tables—Internet Sales, Reseller
Sales, and Sales and Margin Plan. Therefore, the filters and
selections applied to the columns of these tables will simultaneously
impact measures from other fact tables. This integration within the dataset
supports robust analyses but can also require some training or explanation
to users as they may not initially expect or understand the cross-filtering
behavior.

Edit interactions
Report authors can modify the visual interaction behavior such that selections (user clicks)
on certain visuals don't impact other visuals or only impact certain visuals. Additionally, for
the visuals set to the highlight interaction by default, report authors can revise the
interaction behavior to filter.

In the following example, the United States selection in the middle bar chart has no
impact on the multi-row car visual but causes a filter interaction (rather than highlight) on
the product category chart:

Edit interactions in Power BI Desktop

To edit visual interactions, select the visual that will receive the selections and then enable
the Edit interactions command under the Format tab in Power BI Desktop. In this
example, the None interaction icon has been selected for the multi-row card visual and the
Filter interaction icon has been selected for the Product Category column chart.

Creating and Formatting Power BI Reports Chapter 5

[229]

Like the preceding example, it's often appropriate to disable visual
interactions from impacting the card or KPI visuals in the top-left corner of
the reports. These values can be impacted exclusively by the filters defined
outside of the report canvas, such as report and page level filters, and will
not change during user sessions like other visuals on the page.

Regardless of the design decision, if users will regularly interact with
reports, such as clicking on slicers and other visuals, it's important to
briefly review or explain the visual interaction behavior. This is especially
necessary with new users and with more customized designs, such as 2-3
visuals with interactions enabled and 2-3 visuals with interactions
disabled.

What-if parameters
Power BI Desktop provides a user interface for more easily creating What-if parameters
than the custom slicer parameter demonstrated earlier in this chapter. This option is
currently limited to numeric parameter values but automatically creates a single column
table and a DAX measure that retrieves the input value.

In the following example, two What-if parameters are used to calculate alternative unit
price and unit cost values thereby driving a hypothetical product margin % measure:

What-if parameters applied in report visuals

Creating and Formatting Power BI Reports Chapter 5

[230]

By adjusting the two slider bars, a user is able to quickly model an alternative gross product
margin % scenario, as illustrated by the dotted line in the line chart visual. The slider bar for
modifying a single value is unique to slicers for What-if parameter columns.

To create a What-if parameter, click the New Parameter icon on the Modeling tab in
Report View to launch the following dialog:

Creating a What-if parameter

Based on the minimum, maximum, and increment input values specified, a new table with
a single column of values will be created within the Power BI dataset. For the Unit Price
Growth parameter, this column has 20 rows from 0 to .19 with each value representing a
full percentage point (for example, 0% to 19%). Additionally, a new DAX measure is created
automatically to retrieve the user selection, per the following expressions:

Internet Sales Unit Price Growth Value =
SELECTEDVALUE('Internet Sales Unit Price Growth'[Internet Sales Unit Price
Growth], 0)

Internet Sales Product Unit Cost Growth Value =
SELECTEDVALUE('Internet Sales Product Unit Cost Growth'[Internet Sales
Product Unit Cost Growth], 0)

With the second argument to both functions set to 0, both growth values
will return zero if a selection hasn't been made or if multiple values have
been selected. The same SELECTEDVALUE() function, which was added to
the DAX language in 2017, was also used in the custom slicer parameters
example earlier in this chapter.

Creating and Formatting Power BI Reports Chapter 5

[231]

The only remaining step is to create one or more measures that reference the parameter
values in their calculation logic. In this example, the Unit Price and Unit Cost growth
parameters are applied to gross sales and product cost scenario measures, respectively.
These two scenario measures are then used to compute a product margin scenario measure
and a product margin % scenario measure, per the following expressions:

Internet Gross Sales Scenario = SUMX('Internet Sales','Internet
Sales'[Order Quantity]*
 ('Internet Sales'[Unit Price]*(1 + [Internet Sales Unit Price Growth
Value])))

Internet Sales Product Cost Scenario = SUMX('Internet Sales','Internet
Sales'[Order Quantity] *
 ('Internet Sales'[Product Standard Cost] * (1 + [Internet Sales Product
Unit Cost Growth Value])))

Internet Gross Product Margin Scenario =
[Internet Gross Sales Scenario] - [Internet Sales Product Cost Scenario]

Internet Gross Product Margin % Scenario =
DIVIDE([Internet Gross Product Margin Scenario],[Internet Gross Sales
Scenario])

Although it's possible and sometimes necessary to create parameter columns and measures
manually, the What-if parameter feature in Power BI Desktop can simplify this process for
many modeling scenarios. Additionally, the slider bar slicer exclusive to the What-if
parameter columns is the most user-friendly option for selecting parameter values.

To change the range of values available to the parameter, select the
parameter column in the Fields list and modify the min, max, or
increment arguments to the GENERATESERIES() function. Based on the
user interface selections from the Unit Price Growth parameter, Power
BI built the following function: GENERATESERIES(0,20,.01).

Creating and Formatting Power BI Reports Chapter 5

[232]

Slicers
Slicer visuals represent a central element of self-service functionality in Power BI in
addition to the Visual interactions behavior described in the previous section. The standard
slicer visual displays the unique values of a single column enabling report users to apply
their own filter selections. Additionally, Power BI Desktop provides several formatting and
filter condition options available based on the data type of the column. The following image
contains three sample slicer visuals with each slicer representing a different data type
(text, number, date):

Slicer visuals

In this example, the three slicers filter for two sales territory countries (Australia and
France), a range of product list prices ($500 to $2,500), and the last 30 days inclusive of the
current date (11/15/2017 to 12/14/2017). Filter condition rules are available for numeric and
date columns in slicers, such as greater than or equal to $500 and after 5/1/2017,
respectively.

The numeric range slicer, such as the preceding $500 to $2,500 example, is
a preview feature as of the November 2017 release for Power BI Desktop.
In its current state, the numeric range slicer is exclusive to Power BI
Desktop and will appear as a standard list slicer in the Power BI service.
Additionally, only numeric columns can be used for the numeric range
slicers - DAX measures are not supported.

See the Report filter conditions and Relative date filtering sections later in this chapter for
additional details on relative date filters.

Creating and Formatting Power BI Reports Chapter 5

[233]

By default, the Single Select option under the Selection Controls
formatting card is enabled and the Show "Select All... option is disabled.
These settings require users to hold down the Ctrl key to select multiple
items. For slicer visuals with many unique values, and when users
regularly need to exclude only one or a few items, enabling the Show
"Select All... option can improve usability. Additionally, for slicers based
on text data-type columns, users can search for values via the ellipsis in
the top-right corner of the visual.

To preserve space on the report canvas, the slicer visual supports a drop-down option for
all column data types. In the following example, a single value is selected for the country
and date slicers but multiple values are selected for the price slicer:

Slicer visuals as dropdown

The drop-down option is most applicable for columns with many unique values. Slicers are
generally appropriate to empower users with self-service capabilities such that they're not
limited to filter conditions defined outside the report canvas.

It's recommended to group slicer visuals together near the edge of a report
page. Slicers are most commonly aligned on the left side of the page below
the visuals in the top-left corner. If vertical canvas space is limited, slicers
displayed in list format can be presented horizontally rather than
vertically. The orientation formatting property (vertical or horizontal) is
available under the General formatting card.

Unlike other visuals (for example, charts, maps, tables), visual-level filters cannot be
applied to slicer visuals. Report and page-level filters are required to reduce the available
values displayed on a slicer visual. Additional information on these filter scopes and
associated filter conditions supported are included in the Report filter scopes section later in
this chapter.

One of the most powerful features of slicers is the ability to filter both the current report
page and optionally other report pages from a single slicer visual. The details of utilizing
this feature, referred to as Slicer synchronization, are included in the following section.

Creating and Formatting Power BI Reports Chapter 5

[234]

Slicer synchronization
By default, slicer visuals only filter the other visuals on the same report page. However, via
the Sync Slicers pane, report designers can synchronize a slicer visual to also filter all other
report pages or only specific report pages. This feature eliminates the need to include the
same slicer on multiple report pages and thus simplifies the user experience. For example, a
common report may utilize three slicers (for example, Year, Product Category, Sales
Country) and include four report pages. With slicer synchronization configured, the report
user would only need to select values from these slicers on a single report page and the
visuals from all four report pages would be updated to reflect these selections.

The Sync slicers pane can be accessed from the View tab of the ribbon in Report View per
the following image:

Sync slicers pane

Once selected per the preceding image, the Sync slicers pane will appear to the right of the
report page. A slicer visual from the current report page can then be selected to configure its
synchronization with other pages.

In the following image, the Sales Territory Group slicer on the AdWorks Sales report
page has been selected but has not yet been synchronized with other report pages:

Sync slicers Pane with slicer selected

Creating and Formatting Power BI Reports Chapter 5

[235]

To quickly synchronize the slicer to all other report pages, simply click the Add to all link
above the Sync and Visible icons. In this example, the Add to all command would apply
checkmarks under the Sync icon for all four report pages. The Sales Territory Group
slicer would now filter all four report pages but would only be visible on the AdWorks
Sales page per the single checkmark under the Visible icon.

Several other report design features are accessible from the View tab, such
as the Bookmarks and Selection panes, Show gridlines, and Snap objects
to grid. The Bookmarks and the Selection Pane are described in the
Bookmarks section of the following chapter. The Field Properties pane is
described in the Metadata management section of Chapter 8, Managing
Application Workspaces and Content.

Alternatively, the Sync slicers pane can be used to customize the synchronization and
visibility properties of the slicer per report page. For example, the Sales Territory
Group slicer could be set to only filter (synchronize) three of the four report pages by
selecting or unselecting the checkmarks for these pages. Additionally, checkmarks can be
added to the Visible property to display the slicer on other pages. With this approach, the
user would still only need to make a slicer selection once via synchronization but could
view the slicer on other report pages to understand the current slicer selection(s) impacting
the given report page.

For reports with several report pages and common slicers, a single report page could be
dedicated to slicer selections and not contain any other visuals. Report designers could
configure synchronization for each slicer on this page and instruct users to only use this
page for applying their filter selections for all pages on the report. Moreover, a back button
could be added to report pages allowing the user to easily navigate back to the dedicated
slicer report page. An example of using a back button image is included in the Drillthrough
Report Pages section of Chapter 6, Applying Custom Visuals, Animation, and Analytics.

Custom slicer parameters
A powerful use case for slicer visuals is to expose a custom list of parameter values and
drive one or multiple DAX measures based on the user's selection. In the following
example, a slicer visual contains six date intelligence periods and a custom DAX measure
references the date intelligence measure corresponding to the user's selection:

Creating and Formatting Power BI Reports Chapter 5

[236]

Slicer as a measure parameter

The table used for the slicer values could be defined within a source system and retrieved
during data refresh like other tables. Alternatively, since the parameter values are unlikely
to change, the table could be created within Power BI Desktop and loaded to the model but
not included in a data refresh. Like all parameter tables, no relationships would be defined
with other tables.

The custom measure, User Selected Internet Net Sales, utilizes the
SELECTEDVALUE() and SWITCH() functions to retrieve the user selection and then apply
the appropriate date intelligence measure. In this implementation, a DAX variable is used to
store the period selection value, per the following expression:

User Selected Internet Net Sales =
VAR PeriodSelection = SELECTEDVALUE('Date Parameter'[Date Period
Selection],"Year to Date")
RETURN
SWITCH(TRUE(),
 PeriodSelection = "Week to Date", [Internet Net Sales (WTD)],
 PeriodSelection = "Month to Date", [Internet Net Sales (MTD)],
 PeriodSelection = "Year to Date", [Internet Net Sales (YTD)],
 PeriodSelection = "Prior Week to Date", [Internet Net Sales (PWTD)],
 PeriodSelection = "Prior Month to Date", [Internet Net Sales (PMTD)],
 PeriodSelection = "Prior Year to Date", [Internet Net Sales (PYTD)]
)

The second parameter to the SELECTEDVALUE() function ensures that the Year to Date
measure will be used if multiple values have been selected or if no values have been
selected. If several additional DAX measures will be driven by the parameter selection, a
dedicated measure could be created that only retrieves the selected value. This supporting
measure would then eliminate the need for the variable since the support measure could be
referenced directly within the SWITCH() function.

Creating and Formatting Power BI Reports Chapter 5

[237]

See Chapter 4, Developing DAX Measures and Security Roles for example
expressions of date intelligence measures as well as measure support
expressions. It's of course possible to fully define each date intelligence
expression within the parameter-driven measure but, for manageability
reasons, it's almost always preferable to leverage an existing measure. This
is particularly the recommendation when the required measures represent
common logic, such as month-to-date.

Report filter scopes
A fundamental skill and practice in Power BI report development is utilizing the report
filter scopes and the filter conditions available to each scope. For example, a report intended
for the European sales team can be filtered at the report level for the European sales
territory group and specific report pages can be filtered for France, Germany, and the
United Kingdom. Reports can be further customized by implementing filter conditions to
specific visuals, applying more complex filter conditions, and providing drillthrough report
pages to reflect the details of a unique item, such as a product or a customer.

Unlike the slicer visuals and visual interactions reviewed earlier in this chapter, report filter
scopes are defined outside of the report canvas. Report filter scopes, therefore, provide
report authors with the option to eliminate or reduce the need for on-canvas user selections
as well as the canvas space associated with slicer visuals.

In addition to meeting functional requirements and delivering a simplified
user experience, report filter scopes can also benefit performance. Using
the European sales report as an example, the simple filter conditions of
Sales Territory Group = Europe (Report-level filter) and Sales
Territory Country = France (Page-level filter) are efficiently
implemented by the Power BI in-memory engine (import mode) and
almost all DirectQuery data sources. Even if the DAX measures used on
the report page for France are complex, the report filters will contribute to
acceptable or good performance.

With a visual selected on the canvas in the Report View, a filters pane below the
visualizations icon presents the following four input field wells:

Report-level filters:
The filter conditions defined impact all visuals on all report pages

Creating and Formatting Power BI Reports Chapter 5

[238]

Page-level filters:
The filter conditions defined impact all visuals on the given report
page
Report-level filter conditions are respected by the page-level filters
as well
Any Drillthrough filter conditions defined for the report page are
also respected

Visual-level filters:
The filter conditions defined only impact the specific visual
selected
Report and page-level filter conditions are respected by the visual-
level filters as well
Any Drillthrough filter conditions defined for the report page of
the given visual are also respected

Drillthrough filters:
The filter condition, a single value from a column, impacts all
visuals on the given report page.
Report-level filter conditions are respected by the Drillthrough
filters as well.
Any page and visual-level filter conditions defined for the given
report page are respected

Per the prior two chapters, filters are applied to Power BI visuals via the relationships
defined in the dataset (via single or bidirectional cross-filtering) as well as any filtering logic
embedded in DAX measures. All four of the preceding filters (Report, Page, Visual,
Drillthrough) contribute to the initial filter context as described in the Measure Evaluation
Process of Chapter 4, Developing DAX Measures and Security Roles. Therefore, just like filters
applied on the report canvas (for example, Slicers), the filter logic of DAX measures can
supplement, remove, or replace these filters conditions. In the event of a conflict between
any report filter and a DAX measure expression that utilizes the CALCULATE() function, the
DAX expression will supersede or override the report filter.

Creating and Formatting Power BI Reports Chapter 5

[239]

Report filter conditions
Different types of filter conditions can be defined for the distinct filter scopes. For example,
report and page-level filters are limited to relatively simple filter conditions that reference
individual columns of a dataset. However, more complex and powerful conditions such as
filtering by the results of a DAX measure and top N filters can be applied via visual level
filters.

The following outline and matrix (filter conditions by filter scope) summarize the filtering
functionality supported:

Basic Filtering:
A single equality condition for a column to a single value or set of
values, such as "is North America or Europe"
A single inequality condition for a column to a single value or set
of values, such as "is not $25 or $35"

Advanced Filtering
Several condition rules per data type, such as "starts with" for text
and "is greater than or equal to" for numbers:

Supports filtering for blank and non-blank values
Optionally apply multiple conditions per column via logical
operators (and, or)

Relative Date Filtering:
Supports three filter condition rules (is in this, is in the last, is in the
next) for days, weeks, months, and years
Partial period and complete period filter conditions can be defined
The same filter condition rules are available to slicers with date
data-type columns

Top N Filtering:
Filter a visual to a defined number of top or bottom values of a
column based on their values for a measure
For example, the top 10 products based on net sales can be set as a
visual-level filter condition

Filter by Measure:
Filter a visual by applying advanced filtering conditions to the
results of a DAX measure
For example, greater than 45% on the Internet Net Margin %
measure can be set as a visual-level filter condition

Creating and Formatting Power BI Reports Chapter 5

[240]

The following table summarizes the preceding filter conditions available to each of the three
primary report filter scopes:

Filter conditions by filter scope

Multiple filter conditions can be defined per report filter scope. For example, a report-level
filter could include two basic filter conditions and an advanced filter condition.
Additionally, the same column can be used in multiple filter scopes, such as a report-level
filter and a page-level filter on the product subcategory column. All defined filter
conditions are applied to the visuals within their scope provided that the DAX measures
included in the visuals don't contain filtering logic in conflict with the report filter
conditions. Additionally, the columns and measures referenced in the filter conditions do
not need to be displayed in the report visuals. For the top N Filtering condition, the column
to be filtered only has to be displayed in the visual when the filter condition is initially
defined.

A good indicator of Power BI development and solution-specific knowledge is the ability to
accurately interpret the filters being applied to a given visual on a report page. This
includes all Power BI report filters (report-level, page-level, visual-level), any slicer
selections or cross-highlighting, the filter logic of the DAX measures, the cross-filtering
applied via relationships in the data model, and any filter logic built into the M queries of
the dataset. Complex reports and datasets will utilize all or many of these different layers in
various combinations to ultimately affect the values displayed in report visuals.

BI teams will want to limit the complexity built into reports, both for users and the report
authors or developers responsible for the reports. For example, if visual-level filter
conditions are applied to many visuals of a report, the filter condition for each visual will
need to be modified if the requirement(s) of the report change or the columns or measures
used by the filter condition change. Dataset designers and data warehouse teams can often
implement changes or enhancements to simplify the filter conditions needed by report
authors.

Creating and Formatting Power BI Reports Chapter 5

[241]

As one example, a filter condition implemented in multiple reports that specifies several
product categories (hardcoded) could be replaced with a new column on the product
dimension table. The new column would distinguish the group of product categories that
meet this criteria relative to those that don't, and logic could be built into the data source or
retrieval process to dynamically include additional product categories that later meet the
given criteria.

Drillthrough filters, which are used to define drillthrough report pages as
described in Chapter 6, Applying Custom Visuals, Animation, and Analytics,
are unique in that they can be used to implement basic filtering conditions
at the page level as well as their more common filter of a single column
value. For example, three countries can be selected in a Drillthrough filter
condition and the visuals on this report page will reflect these three
countries. However, a user can only drill to the report page from the
context of a single column value. The source drillthrough value (for
example, Germany), will replace the three countries in the previous filter
condition on the drillthrough page when the drillthrough action is
executed.

Additionally, multiple columns can be used as Drillthrough filters and the
values of both columns from a separate report page are applied to the
drillthrough page when a drillthrough action is executed. If only one value
is present from the source report page, the drillthrough action will only
filter this column and remove any filter defined for the other Drillthrough
filter column. See Chapter 6, Applying Custom Visuals, Animation, and
Analytics for additional details on drillthrough report pages.

Report and page filters
Report and page level filters are most commonly used to apply the fundamental filter
context for the report. Columns with few unique values such as Sales Territory
Country are good candidates for report level filters while more granular columns such as
Sales Territory Region are better suited for page level filters.

In the following example, the individual report pages are named according to the report
and page filters applied:

Power BI report pages

Creating and Formatting Power BI Reports Chapter 5

[242]

In the absence of any custom DAX measures that retrieve the filter selections applied, users
of the report will not see the report, page, and visual-level filters applied. Therefore, it's
important to assign intuitive names to each report page per the preceding example and to
include a brief title for each report page via text box.

The following image represents the report and page filters applied to the Northeast report
page of a United States sales report:

Report and page-level filters

Each report page would be filtered for a different sales territory region except the USA
page, which would not contain a page level filter. The Calendar Year Status column,
which was described in the Date dimension view section of Chapter 2, Connecting to Sources
and Transforming Data with M, restricts all visuals to only the current and prior calendar
year. One or two years of history is sufficient for many reports given the pace of change in
business environments and strategies. Additionally, the report-level date filter promotes
both query performance and low maintenance since the dates filtered reflect the latest
dataset refresh.

Creating and Formatting Power BI Reports Chapter 5

[243]

Report filters are not a long-term substitute for poor data quality or a
suboptimal dataset (data model, retrieval queries). If it's necessary to
implement many filter conditions or complex filtering conditions within
reports to return accurate results, it's very likely that the dataset or the
source system itself should be revised. Similarly, if many filter conditions
or complex filter conditions are needed to retrieve the desired results, it's
likely that the dataset can be enhanced (for example, new column, new
measure) to simplify or eliminate these report filter conditions.

Power BI report authors should communicate to the dataset designer(s)
and BI team whenever complex or convoluted report filters are being
applied. Given limited team resources, it may be sufficient to use report
filters to support rare or uncommon reports. For common reporting needs,
however, it's generally appropriate to build or revise the necessary logic in
the data source or dataset.

Page filter or slicer?
Slicer visuals can serve as an alternative to distinct or dedicated report pages. With a slicer,
a user has the flexibility to select one or multiple values on the same report page, such as
Northeast and Southwest, without needing to navigate to a dedicated page. Additionally,
by consolidating dedicated report pages, slicers can simplify report development and
management.

Slicers are often the best choice when there's nothing unique to the
different values of the slicer. For example, if all sales regions are always
analyzed by the same measures, dimensions, and visuals it may be
unnecessary to duplicate these pages of visuals. Slicers are also very
helpful or necessary when users regularly need to analyze the data by the
same dimensions or by custom dimensions, such as price and date ranges.

However, dedicated report pages are valuable for supporting email subscriptions, data
alerts, and dashboard visuals specific to a particular value such as a sales region. In the
following image from the Power BI service, an email subscription can be set to any of the
report pages within the USA SALES AND MARGIN report:

Creating and Formatting Power BI Reports Chapter 5

[244]

Email subscription in Power BI

As one example, the visuals from the Northeast report page could potentially be pinned to
a Northeast dashboard (or other dashboard) and used in data alerts and notifications for the
Northeast team as well. These region-specific capabilities are made possible by the distinct
report pages of visuals filtered for the given sales territory region.

Relative date filtering
Relative date filtering is available for date columns at all filter scopes (report, page, and
visual) and for slicer visuals. These dynamic filter conditions, such as the last 30 days
(relative to the current date) promote both data freshness and query performance since the
minimal amount of history required can be retrieved. Additionally, relative date filters can
often avoid the need to create custom DAX measures to support specific date filter
conditions.

Creating and Formatting Power BI Reports Chapter 5

[245]

In the following example, five report pages are dedicated to a specific relative date filter
condition:

Relative date filter conditions per page

A page-level filter is used for each report page with the following conditions, per the
following example:

Relative date filter condition

As of 12/14/2017, the five report pages are filtered to the following date ranges with the
Include today option enabled:

Is in the last 12 months 12/15/2016 through 12/14/2017
Is in the last 12 weeks 9/22/2017 through 12/14/2017
Is in this month 12/1/2017 through 12/31/2017
Is in the next 12 weeks 12/14/2017 through 3/7/2018
Is In the next 12 months 12/14/2017 through 12/13/2018

A report design such as this would make it simple for users to analyze immediate, near-
term, and longer-term trends and issues.

Creating and Formatting Power BI Reports Chapter 5

[246]

Three types of relative date filter conditions can be set—is in the last, in this, and in the
next. Each of these filter conditions supports day, week, month, and year intervals. For the
in the last and in the next filter conditions, calendar week, month, and year conditions can
also be specified. These conditions represent full or completed calendar periods only. For
example, as of November 28th, 2017, the last one-calendar month and last one-calendar year
would include all dates of October 2017 and all dates of 2016, respectively. The week of
11/19/2017 through 11/25/2017 would represent the last one-calendar week.

Visual-level filtering
Visual-level filters provide the most powerful filter conditions in Power BI exclusive of
custom filter conditions specified in DAX expressions. Unlike report and page-level filters,
DAX measures can be used in visual-level filter conditions, such as Net Sales greater than
$5,000. Additionally, top N filter conditions can be implemented referencing a column and
measure that are included or excluded from the visual per the Top N visual-level filters
section following this example.

In the following example, a table visual of customers has been filtered by the Internet
Net Sales and Internet Sales Orders measures:

Table with visual-level filters applied

Creating and Formatting Power BI Reports Chapter 5

[247]

Specifically, the visual only displays items (customers) with more than $8,000 in net sales
and more than three sales orders. Per the sales-ranking measure, certain customers that
meet the net sales condition are excluded based on the sales order condition. Unlike the top
N visual-level filter condition, filters based on measures, such as the following conditions,
are only applied when items (for example, customers, products) are displayed on the visual:

Visual-level filter conditions

By removing the two customer columns, the remaining measures (Internet Sales
Orders, Internet Net Sales) are not filtered by the visual-level filter conditions. In
other words, the visual-level filters based on measures are only applied against the
dimension column or columns in the visual, such as Customer Name or Customer Postal
Code.

Although analytically powerful, report authors should exercise caution with visual-level
filters. From a usability standpoint, reports can become confusing when visuals on the same
report page reflect different filter conditions. Additionally, executing complex filter
conditions against large or dense report visuals can result in performance degradation. If a
complex filter condition is repeatedly needed at the visual level, it's likely the case that the
dataset should be modified to include some or all of this logic.

Creating and Formatting Power BI Reports Chapter 5

[248]

Top N visual-level filters
In the following example, a table visual is filtered based on the top five products for the
Internet Net Sales (PYTD) measure:

Top N visual-level filter

For this visual, the prior year-to-date (PYTD) measure used for the filter condition is not
one of the three measures displayed. Nonetheless, the following Top N condition filters out
all products, including the top-selling product for the current year, that weren't one of the
top five products in the prior year:

Top N filter condition

Creating and Formatting Power BI Reports Chapter 5

[249]

With a Top N filter defined between a column and a measure, the report author can
optionally remove the column being filtered from the visual or replace it with a different
column. For example, the $2,980,475 in Internet Net Sales (YTD) associated with the
top five products from the prior year could be visualized by customer country instead of
the product name. Alternatively, all columns except the Internet Net Sales (YTD)
measure could be removed from the table visual and a card or KPI visual could be used to
visualize the $2,980,475 value. The column referenced by the Top N filter condition only
needs to be included in the visual when the filter condition is originally defined.

The TOPN() DAX function returns a filtered table based on an expression
(such as a net sales measure). As a table, the results of this function can be
passed as a filter argument to CALCULATE() in a separate measure. For
example, a measure could be created to compute the sales for the top 100
customers based on prior year-to-date sales.

Visualization formatting
A final step in report development is configuring the formatting options for each visual.
Several of these options, such as data labels, background colors, borders, and title are
common to all visuals and are often essential to aid comprehension. Several other
formatting options, such as fill point for scatter charts, are exclusive to particular visuals
and report authors are well served to be familiar with these features.

In addition to giving reports a professional appearance, features such as tooltips can be
used to provide visuals with additional or supporting context. Furthermore, formatting
features can be used to implement conditional logic to dynamically drive the color of data
points by their values.

Visual-level formatting
Formatting visuals primarily refer to modifying the format properties of a visual via the
format cards associated with that visual. Additionally, report authors can use the options
exposed on the Format tab in the Report View of Power BI Desktop to control the
alignment, distribution, and Z-position of visuals.

Creating and Formatting Power BI Reports Chapter 5

[250]

Whenever a visual is selected on the canvas, the Format pane presents a number of
formatting cards specific to the visual. In the following image, the 10 formatting cards
currently available to the Power BI column chart visual are displayed:

Visual formatting cards

Expanding and enriching the available formatting options across all visuals has been a
priority for the Power BI team. As an example, for the column chart, the X-Axis card
includes a concatenate labels property that can be useful for maintaining context while
navigating through the levels of a hierarchy. Additionally, the Data labels card contains
options for positioning labels inside the base of the column and changing the scale (for
example, thousands, millions) and decimal places of the values displayed.

For some visuals, such as column, line, and scatter charts, the Analytics
pane (next to the Format pane) provides additional formatting options.
These options are reviewed in the following chapter.

Creating and Formatting Power BI Reports Chapter 5

[251]

Line and column charts
Line, column, and bar charts are the most common chart visualization types given their
advantages in visual perception, as explained in the Visualization best practices section.
Power BI includes clustered and stacked versions of column and bar charts in addition to
two combination charts that display both a line and either a clustered or stacked column.

The ribbon chart visualization was added to Power BI Desktop in September 2017 and
represents a variation of the stacked column chart. Unlike the stacked column chart, the
ribbon chart sorts the category items within each column based on their values and
connects the items across columns with a ribbon.

In the following example of a ribbon chart, four product subcategories are displayed across
months by their net sales:

Ribbon chart

Helmets subcategory overtook the Tires and Tubes category in September 2017 to become
the top-selling product subcategory in the visual. Per the tooltip included in the preceding
image, hovering over the curved ribbon connecting the months on the X-axis displays the
values for each month, the variance and percentage change between the months, and the
change in rank for the given category (for example, from first to second for Tires and
Tubes). Insights into the rankings of categories and their changes across periods wouldn't
be as easily identified in a standard stacked column chart.

Creating and Formatting Power BI Reports Chapter 5

[252]

The ribbons formatting card allows for spacing, transparency, and a
border to further aid comprehension. In the example visual, the ribbon
border is enabled, the transparency of the ribbon is set to 50, and the
ribbon spacing is set to 5. Currently, unlike the stacked column chart, the
Ribbon chart doesn't include a Y-axis to identify the total value of each
column. Additionally, the individual ribbons are currently distinguished
by color. Formatting options available to other visuals, such as
customizing each series or the legend using alternative styles and markers,
are not yet supported.

Tooltips
Chart and map visuals include a Tooltips field well in the Fields pane to allow report
authors to define additional measures that will display when the user hovers over the items
in the visual. These tooltip values will reflect the same filter context of the data labels for the
visual and thus provide the user with additional context. In the following example, four
measures have been added to the Tooltips field well for a column chart:

Additional measures displayed as tooltips

By hovering over the column for online net sales in August of 2017, the tooltip is displayed,
which includes both the Internet Net Sales measure used for the chart as well as the
four tooltip measures.

Creating and Formatting Power BI Reports Chapter 5

[253]

In this example, the tooltip measures indicate that Internet Net Sales was below the
plan for this month by $72,970 in addition to other potentially useful metrics (Intenet
Sales Per Customer, Internet Net Margin %). In the absence of the tooltips, the user
may have to search for other reports or visuals to find this information or may miss
important insights related to the visual.

Tooltips are a great way to enhance the analytical value of a visual without adding
complexity or clutter. Additionally, given the features of the DAX query engine, such as
measure fusion, the additional measures displayed as tooltips will generally not negatively
impact performance. For example, the internet sales and margin measures are based on the
same fact table. Therefore, the necessary source columns for both measures will be accessed
by one storage engine query via measure fusion.

Report page tooltips
The standard tooltips described in the previous section may be sufficient for most reporting
scenarios. However, Power BI Desktop also provides report page tooltips that allow report
authors to display a custom page of report visuals as an alternative to the default tooltips.
The following steps can be used to configure a report page tooltip:

Add a new blank report page to a report. 1.
On the Format pane for the report page, enable the Tooltip property under the2.
Page Information formatting card.
Also on the Format pane, specify a Tooltip page size per the following image:3.

Report page tooltip

Creating and Formatting Power BI Reports Chapter 5

[254]

On the Tooltip page from step 3, set the Page View to Actual Size via the Page4.
View icon on the View tab.
From the Fields pane of the Tooltip page, drag a measure or multiple measures to5.
the tooltip Fields field well:

 Columns can also be specified as tooltip fields (for example, Product
Name)

Create report visuals on the tooltip report page that relate to the tooltip field well6.
measure(s) or column(s):

For example, if the tooltip page will support a sales measure, consider
building visuals that display sales versus plan, budget, or sales growth
measures
Given the limited size of the Tooltip report page, KPI and card visuals
are recommended

By default, other visuals in the report that utilize the measure(s) or column(s) specified as
tooltip fields in step 5 will display the tooltip report page when the user hovers over the
items of the visual.

The Tooltip Page Size from step 3 is not required for utilizing tooltip
report pages. However, this property makes the purpose of the page clear
to the other report authors and has been provided by the Power BI team as
at a good starting point for most report page tooltips. Likewise, viewing
the report page tooltip in actual size per step 4 is technically not required
but is very helpful in designing these pages.

Alternatively, a tooltip formatting card is available at the bottom of the Format pane for
charts and map visuals. This formatting card can be used to specify a particular tooltip
report page for the given visual or to disable tooltip report pages. If report page tooltips
have been disabled for a visual, the visual will display the default tooltips as described in
the previous section.

Column and line chart conditional formatting
Column and line charts are two of the most common visuals in reports given their flexibility
and advantages in visualizing comparisons and trends. However, these classic visuals don't
have to be static or simple—report authors can embed custom rules to dynamically drive
formatting properties based on source data. Similar to tooltips, conditional formatting
techniques help users more quickly derive insights from visuals without the added
complexity of more data points or additional visuals.

Creating and Formatting Power BI Reports Chapter 5

[255]

Column chart conditional formatting
Conditional formatting can be applied to column charts by specifying a measure, such as
product margin in the color saturation field well. By default, the value of this measure will
drive the saturation of color for each column in the visual. To take further control of the
formatting or to apply a conditional formatting rule, the Diverging formatting options
under the Data colors card can be modified.

In the following example of a column chart, a product margin percentage measure is used
as the Color saturation field (above tooltips) and threshold values have been entered to
define the formatting rule:

Diverging Data colors formatting

With the Diverging property enabled this rule associates three colors (red, yellow, and
green) with Minimum, Center, and Maximum values of -6.5%,0%, and 6.5%, respectively.
This rule will make it easy for users to distinguish the columns, such as fiscal periods or
product categories, associated with low, average, and high product margins.

By disabling the Diverging property, a rule can be specified for only a
minimum and a maximum value. This can be useful to change the color of
a column only when a threshold is reached. In other words, the chart will
at most display two distinct colors with one of the colors (for example,
red) flagging the exceptions. To implement this rule, simply specify the
same value for both minimum and maximum inputs and then associate
different colors for each.

Creating and Formatting Power BI Reports Chapter 5

[256]

Line chart conditional formatting
Conditional formatting can be applied to line charts by applying distinct colors to separate
DAX measures. In the following example, a DAX measure is created that only returns the
sales per order value when its value is below $600:

Internet Net Sales Per Order Below $600 =
IF([Internet Net Sales Per Order] < 600,[Internet Net Sales Per
Order],BLANK())

Using this measure and the Internet Net Sales Per Order measure on the same line
chart allows for separate colors to be applied:

Contrasting colors for line chart measures

For this example, a default light green can be used for the Internet Net Sales Per
Order measure and red can be applied for the below $600 measure. Additionally, the below
$600 line can be formatted with a slightly larger stroke width and a dotted line style via the
customize series formatting options to better contrast these values.

The line chart will appear as a single line that changes colors and styles when it goes below
$600:

Conditionally-formatted line chart

Creating and Formatting Power BI Reports Chapter 5

[257]

The stroke width, join type, line style, and marker shape formatting properties provide a
wide range of options for contrasting lines beyond their colors. These additional properties
are recommended to aid general comprehension and to support users who cannot easily
distinguish colors.

Table and matrix
Per the Choosing the visual section earlier in this chapter, table and matrix visuals are good
for looking up individual values and for displaying precise values. For example, all seven
digits of the value $7,847,292 would be displayed on a table or matrix visual but this same
value would likely need to be rounded to $7.8M in a column or line chart to maintain
readability.

Table and matrix visuals support the same Display units and Value decimal places
formatting properties as other visuals. In the following example from a table visual, both
measures have been formatted to display their values in terms of millions with one decimal
place:

Display Units and Decimal Places for Table and Matrix Visuals

Per the preceding example, these properties are available within the Field formatting card
of the Format pane. Display unit options range from the thousands (K) to the trillions (T).
By default, the Display units property is set to None for table and matrix visuals and thus
displays the full value.

Creating and Formatting Power BI Reports Chapter 5

[258]

Prior to the availability of the Display units and Value decimal places properties, it was
necessary to use the FORMAT() function in separate DAX measures to display custom
formats in table or matrix visuals. The following two measures apply a custom rounded
currency format to the results of the Internet Net Sales measure:

Internet Net Sales (Format Thousands) = FORMAT([Internet Net
Sales],"$0,.0K")

Internet Net Sales (Format Millions) = FORMAT([Internet Net
Sales],"$0,,.0M")

Both measures use the FORMAT() function to convert the input value (the
Internet Net Sales measure) to a string in a custom, rounded format.
Specifically, the comma or commas immediately to the left of the decimal
are used to divide the value by 1,000 and round as necessary. The zero to
the right of the decimal displays a digit or a zero. For example, the
$541,613 value would be displayed as $541.6K and $0.5M by the format
thousands and format millions of measures, respectively.

Table and matrix conditional formatting
Default and custom conditional formatting rules can be applied to table and matrix visuals
to make it easier to identify exceptions and outlier values. Power BI currently supports
background color scales, font color scales, and data bar conditional formatting for table and
matrix visuals. To apply conditional formatting to a table or matrix, click the drop-down
arrow next to the field name of the measure (for example, Internet Net Sales) in the
Values field well of the Visualizations pane. A conditional formatting menu item will
appear with an arrow providing access to the three types of conditional formatting.

Creating and Formatting Power BI Reports Chapter 5

[259]

In the following table, data bar conditional formatting has been applied to four measures
related to internet sales:

Data bars conditional formatting

Although the visual has been filtered to the top 10 customer state provinces for France, it
would be difficult or time-consuming to gain insight from the 40 distinct data values. The
length of the data bars helps to call out high or low values and alternative colors can be
applied per measure.

The direction of data bars is particularly helpful in distinguishing negative
from positive values per the Internet Net Sales (YOY YTD %)
measure in the preceding example visual. For large table and matrix
visuals with many values, or when the relative differences between values
are more important than the individual values themselves, the option to
show only the data bar can be very useful.

Creating and Formatting Power BI Reports Chapter 5

[260]

Custom conditional formatting rules can be applied to the background and font color scales
of table and matrix visual cells similar to Microsoft Excel. In the following example, the
Color by rules option is enabled and Rules are defined to format the cells of a measure as
green if over 25%, yellow when between -25% and 25%, and red if the value is less than
-25%:

Custom conditional formatting rules

The conditional formatting rules are evaluated from the bottom to the top. Therefore, if a
cell meets the condition of multiple rules, the lower rule will be applied. The order of rules
can be adjusted via the up and down arrows to the right of the color icons.

Multiple conditional formatting types can be applied against the same measure. For
example, the same three conditional rules used for the background color scales in the
preceding image could also be implemented as font color scale rules. However, the font
colors specified for each rule (for example, white) could be chosen to contrast with the
conditional background colors (for example, red) to further help call attention to the value.

Creating and Formatting Power BI Reports Chapter 5

[261]

As of the November 2017 release of Power BI Desktop, only hardcoded
values can be specified in the custom formatting rules. In a future release,
DAX measures will likely be supported as inputs to conditional formatting
rules. This functionality would make it easier to implement more complex
rules, such as greater than the prior year-to-date sales value.

Values as rows
An additional and highly requested enhancement to matrix visuals is the ability to show
measures as rows. The following matrix visual breaks out six DAX measures by a date
hierarchy across the columns:

Values on rows in matrix visual

Displaying multiple measures as rows, particularly with one or multiple date dimension
fields across the columns, is a very common layout for Excel pivot table reports. To enable
this feature in Power BI, simply enable the Show on rows feature within the values
formatting card of the matrix visual.

Scatter charts
Scatter charts are very effective at explaining the relationship or correlation between items
against two variables. Optionally, a third variable can be used to drive the size of the data
points and thereby convert the visual to a bubble chart.

Creating and Formatting Power BI Reports Chapter 5

[262]

In the following example, three countries from the Sales Territory Country column
are used as the details input to a scatter chart:

Scatter chart

To provide additional detail, three product subcategories are included in the legend input,
such that nine total points (3 X 3) are plotted on the chart. The scatter chart naturally calls
out the differences among the items based on their X Position (Reseller Net Sales) and
Y Position (Internet Net Sales). Moreover, to make the visual even easier to interpret,
the marker shapes have been customized for each product subcategory (for example,
triangles, diamonds, squares) and the size of the shapes have been increased to 40%.

By default, Power BI applies different colors to the items in the legend. If
the legend is not used, the report author can customize the colors of the
individual items from the details input column. Although color can be
effective for differentiating values, customized marker shapes, such as this
example, are helpful for users with visual disabilities.

Creating and Formatting Power BI Reports Chapter 5

[263]

Map visuals
As of the November 2017 release, Power BI currently provides four map visuals including
the bubble map, filled map, shape map (in preview), and the ArcGIS Map. The bubble map
plots location points over a world map and varies the size of the bubbles based on a value.
The points on bubble maps can also be broken out across a dimension to provide additional
context. The filled map and shape map visuals are forms of heat maps that use color and
color intensity to distinguish specific areas of a map by a value, such as postal codes by
population.

The ArcGIS Map visual is the most powerful of the available geospatial
visualizations and several custom map visuals are available in the Office
Store including the Globe Map and the Flow Map. See Chapter 6,
Applying Custom Visuals, Animation, and Analytics for details on the ArcGIS
Map visual and using custom visuals. The Shape Map visual is currently
still in preview and thus should only be used for testing purposes. The
following URL provides documentation on the Shape Map http:/ /bit.
ly/2zS2afU.

Per the Data category section in Chapter 3, Designing Import and DirectQuery Data Models, it's
important to assign geographic data categories to columns. This information aids the map
visuals in plotting the correct location when a value is associated with multiple locations
(ambiguous locations). The following image from the Data view highlights the city category
for a column:

Data category per column

http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU
http://bit.ly/2zS2afU

Creating and Formatting Power BI Reports Chapter 5

[264]

Data categories can be assigned to columns from the modeling tab in Data
view or the Report View. For DirectQuery datasets, these metadata
properties can only be assigned from the Report View. Report authors
should engage the dataset designer or BI team responsible for a dataset if
data categories have not been assigned to columns needed for report
development.

Additionally, for bubble and filled map visuals, hierarchies can be added to the location
field well to avoid ambiguous results. For example, by adding the following hierarchy to
the Location field well, the map visuals will only use the locations associated with their
parent values, such as only the states of Australia.

Geographic hierarchies in map visuals

For greater precision and performance with map visuals (excluding the
Shape Map), latitude and longitude input field wells are available as
alternative inputs to Location.

Bubble map
Bubble maps are particularly useful when embedding an additional dimension column or
category to the legend input. When a geographic boundary column, such as country or
postal code, is used as the location input, the added dimension converts the bubbles to pie
charts of varying sizes. Larger pie charts reflect the measure used for the Size input field
and the components of each pie are color-coded to a value from the legend column
providing even greater context.

Creating and Formatting Power BI Reports Chapter 5

[265]

The following bubble map example uses the postal code as the location input, the Internet
Net Sales measure as the size input, and the Customer History Segment column as
the legend input:

Map visual

For this map, the Grayscale theme is applied from the Map styles formatting card and the
auto-zoom property under the Map controls card has been disabled. These two settings,
along with a bubble size of 15% via the Bubbles card, makes it easy for users to analyze the
data associated with postal codes north of Los Angeles.

The bubble map also includes a color saturation input to help distinguish
bubbles beyond their relative sizes. This input, however, can only be used
when the legend field well is not used.

See the Customer history column section of Chapter 2, Connecting to
Sources and Transforming Data with M for details on creating a history
segment column within an M query.

Creating and Formatting Power BI Reports Chapter 5

[266]

Filled map
A filled map visual includes several of the same formatting properties of a bubble map but
utilizes color as its primary means to contrast the locations. In the following filled map, a
diverging color scheme has been applied via the Data colors formatting card to highlight
individual states based on their online net sales:

Filled map visual with diverging colors

Exactly like the color scheme described in the column and line chart conditional formatting
section, three distinct numeric values and colors are assigned to the Minimum, Center, and
Maximum properties. For this visual, the values of $1M, $2M, and $3M are associated with
red, yellow, and green; this causes the South Australia state to appear as red while the New
South Wales states are green.

Creating and Formatting Power BI Reports Chapter 5

[267]

Additionally, like the previous bubble map example, a grayscale map-style theme has been
applied and the auto-zoom property has been disabled. Other map themes, such as dark,
light, road, and aerial, are also available for filled and bubble maps. These alternative
themes, particularly when contrasted with the bright or rich colors of a filled map, can
significantly add to the aesthetic appeal of a report.

Per the drill-up/down icons above the visual, a hierarchy of geographical
columns (Country, State, City) has been added to the location field
well. These additional columns help the Bing Maps API to display the
correct location, such as only Victoria in Australia. To ensure that Bing
Maps respects the parent column (for example, Country) when plotting
child locations (for example, States/Provinces), the user can enable the drill
mode via the drill-down button in the top-right corner of the visual. With
drill mode enabled, the user can click the specific parent value on the map,
such as the United States, and Bing will plot states by only searching for
states within the United States.

Alternatively, with drill mode not enabled, the user can click the expand
all down one level icon in the top-left of the visual. From the initial state of
the parent value (country), this will also plot the states within each parent
value. The other drill option at the top-left of the visual, the go to the next
level drill, only plots the child values without the context of the parent
value.

Mobile-optimized reports
A critical use case for many reports is mobile access via the Power BI mobile applications
for iOS, Android, and Windows platforms. A report that is perfectly designed for a laptop
or PC monitor may be difficult to use on a tablet or mobile device. To account for multiple
form factors, including both small and largescreen phones, report authors can create
mobile-optimized reports via the Phone Layout view in Power BI Desktop.

Creating and Formatting Power BI Reports Chapter 5

[268]

In the following example, the Phone Layout of a report page in Power BI Desktop is
accessed via the View tab:

Phone Layout

Creating and Formatting Power BI Reports Chapter 5

[269]

From the Phone Layout view, the visuals created and formatted for the report page can be
arranged and sized on a mobile layout grid. In the following example, the two KPI and card
visuals included in the preceding image from the Report View, as well as a line chart, are
arranged on the phone canvas:

Phone Layout

Creating and Formatting Power BI Reports Chapter 5

[270]

Single-number visuals, such as cards and KPIs, are natural candidates for
mobile-optimized layouts. More complex and data-intensive visuals, such
as scatter charts and combination charts, are generally less effective
choices for mobile layouts. Given the one-to-one relationship between
report pages and the phone layout, one design option is to create a
dedicated report page with the visuals needed for the phone layout.

The size and position of visuals can be adjusted by dragging visual icons along the phone
layout grid. A mobile-optimized layout can be defined for each report page or any number
of the pages contained in a report. The formatting and filter context of report visuals is
always aligned between the Phone Layout and the default Report View. For example, to
change the format or filter for a visual accessed via the Phone Layout, the visual can be
modified from the standard Desktop Layout view.

When a report page is accessed from the Power BI mobile application, the Phone Layout
created in Power BI Desktop will be rendered by default in the phone report mode. If a
phone-optimized layout doesn't exist, the report opens in landscape view.

Power BI dashboards can also be optimized for mobile devices. The
mobile layout for dashboards is implemented in the Power BI service and
is reviewed in Chapter 7, Designing Power BI Dashboards and Architectures.

Responsive visuals
Certain Power BI visuals, such as line, column, and scatter charts, can be configured to
dynamically display the maximum amount of data possible given the available screen size.
For example, a responsive column chart visual will display fewer gridlines and columns as
the height and width properties of the visual are reduced. This setting can benefit the
mobile layouts for both reports and dashboards as visuals will retain their most valuable
elements as they're resized.

Creating and Formatting Power BI Reports Chapter 5

[271]

To enable the responsive feature, select the visual on the report page in Desktop Layout and
enable the Responsive (Preview) property under the General formatting card, per the
following example:

Responsive visuals property

The Responsive (Preview) formatting property, currently in preview, is disabled by default
and can only be enabled per report visual.

Report design summary
As a data visualization and analytics platform, Power BI provides a vast array of features
and functionality for report authors to develop compelling content to help users derive
insights. Given the volume of features and possible formatting configurations, report
authors and BI teams will want to follow a set of report planning and design practices to
ensure consistently, quality report content is delivered to stakeholders. These practices
include report planning in terms of scope, users and use cases, data visualization practices,
and the selection of visuals.

The Report planning, Visualization best practices, and Choosing the visual sections earlier in this
chapter provided details on many of the recommended practices to develop effective and
sustainable report content. At a standard summary-level review of a report and the
implementation of these practices, perhaps at the conclusion of a development phase and
prior to deployment, the following list of questions can be asked:

Does the report have a clear scope and use case?1.
The report addresses specific business questions of value to specific
users or teams that will consume the report

Creating and Formatting Power BI Reports Chapter 5

[272]

The relationship and distinction between this report and other reports
or dashboards that the users will have access to is understood
The pages of the report naturally relate to one another to address the
same or closely-related business questions, perhaps at alternative levels
of detail

Have standard visualization practices been followed?2.
The visuals have proper spacing, alignment, and symmetry
The reports use colors selectively and there are clear titles on report
pages and visuals
The report is intuitive and not cluttered with unnecessary details

Have the right visuals been chosen to represent the data?3.
Tables and matrices were used when cross-referencing or looking up
individual values was necessary
The type of data relationship to represent (for example, comparison)
and the relative advantages of the different visuals, such as line charts
for the trends of a value, drove the visual choice

 Does the report enable the user to easily apply filters and explore the data?4.
Slicer visuals for common or important columns have been utilized
and are easily accessible to users
The filtering and cross-highlighting interactions between the visuals on
the report pages have been considered and configured appropriately
Hierarchies of columns have been built into certain visuals to allow a
simple drill-up and drill-down experience

Does the report aid the user in identifying insights or exceptions?5.
Dynamic formatting, such as with KPI visuals and conditional
formatting rules and techniques, has been applied
Tooltips have been added to report visuals to provide the user with
additional context hovering over the visual such as the columns in a
column chart or the data points in a line chart.

Have simple and sustainable filter conditions been applied at the appropriate6.
scope?

Report and page-level filter scopes have been applied to minimize the
resources required by the queries generated by the report:

Visual-level filters are only used when the visual needs
to reflect an alternative filter context of the report and
page-level filter scopes

Creating and Formatting Power BI Reports Chapter 5

[273]

Report filter conditions are not being used to address issues with data
quality or the source dataset:

 Efforts have been made (or will be made) to enhance the
source dataset to better support the report

Filter conditions on the date dimension are dynamic and sustainable
(for example, Current Year and Prior Year) rather than hardcoded
values (for example, 2018 and 2017)

Summary
In this chapter, we walked through the fundamental components of Power BI report design,
including visualization best practices, Live connections to Power BI datasets, and the filter
scopes available in Power BI Desktop. We reviewed top report development techniques and
examples, such as conditional formatting, tooltips, and user parameters. Furthermore, we
looked at powerful self-service and mobile report features, including slicers, visual
interactions, and mobile-optimized reports.

The following chapter is also dedicated to the report development but goes well beyond the
fundamental design concepts and features introduced in this chapter. That chapter will
leverage the latest, most powerful report authoring features of Power BI, including
drillthrough report pages, bookmarks, the analytics pane, and custom visuals.

6
Applying Custom Visuals,
Animation, and Analytics

The previous chapter's emphasis on report planning, visualization best practices, and
standard visuals in Power BI Desktop serve as a foundation for effective Power BI report
development. However, more advanced visualization and report development features,
such as the Analytics pane, Bookmarks, and drillthrough report pages are available to
create even more compelling and insightful content. Additionally, a vast array of custom
visuals created by Microsoft and a community of third parties can be leveraged to address
specific use cases or provide extended functionality.

This chapter reviews many of the latest and most powerful analytical and visualization
features in Power BI. This includes the design and utilization of drillthrough report pages,
the ArcGIS Map for Power BI, and the use of Bookmarks and related features to easily store
and share the insights contained in reports. Additionally, several of the more powerful and
popular custom visuals are described including the Power KPI by Microsoft and the Impact
Bubble Chart.

In this chapter, we will review the following topics:

Drillthrough report pages
Bookmarks
Custom report navigation
The Analytics Pane
Quick Insights

Applying Custom Visuals, Animation, and Analytics Chapter 6

[275]

Trend and prediction lines
Custom visuals
ArcGIS Map visual for Power BI
Waterfall chart
Microsoft Power KPI visual
Animation and storytelling visuals

Drillthrough report pages
Drillthrough report pages enable report authors to anticipate the needs of users to view the
details associated with a particular item such as a product or customer. Since it's unknown
which specific item the user will need to analyze during a self-service session in Power BI,
generic drillthrough report pages can be designed that highlight the most relevant
dimensions and metrics such as the product list price or the first purchase date of the
customer. Drillthrough report pages update to reflect the filter context of the user's selection
(for example, Product ABC) on a separate report page.

Drillthrough was one of the most requested features in 2017 and its
availability closes a gap with other Microsoft BI products. In paginated
SQL Server Reporting Services (SSRS) reports, drillthrough actions can
be defined in a source report to open a target report based on the
parameters of the source report. The Drillthrough filters defined in Power
BI report pages serve the same purpose as the parameters defined in the
target reports of SSRS drillthrough actions.

In the following example, a report page has been designed with a drillthrough filter set to
the Product Name column:

Applying Custom Visuals, Animation, and Analytics Chapter 6

[276]

Drillthrough report page

The drillthrough report page provides a mix of high-level sales and margin metrics as well
as seven product dimension columns in the Product Details table at the bottom. With
the drillthrough report page configured, when the Product Name column is exposed on a
separate page within the report, the user will have a right-click option to drill to this page as
per the following image:

Drillthrough source page

Applying Custom Visuals, Animation, and Analytics Chapter 6

[277]

Only the column or columns specified as Drillthrough filters can be used
as drill columns. For example, even if the product's Alternate key column
has a 1-to-1 relationship with the Product Name column, the drillthrough
option will not be available to visuals based on the product alternate key
column unless it's also been specified as a drillthrough filter like the
Product Name column. Therefore, if some report visuals use Product
Name and others use the product alternate key, both columns can be
configured as Drillthrough filters on the drillthrough report page to
support both scenarios.

In the preceding example, the user has drilled down through the four levels of the product
hierarchy created in Chapter 3, Designing Import and DirectQuery Data Models (Product
Category Group, Product Category, Product Subcategory, Product Name) to
display a bar chart by the Product Name column. The same right-click drillthrough option
is exposed via table, matrix, and other chart visuals including the scatter chart and the
stacked column and bar charts.

The Bottom level column of a hierarchy such as the preceding Product Name example is
often a good candidate to support with a drillthrough report page. For example, a common
analysis pattern is to apply a few slicer selections and then to drill down through the
hierarchy levels built into chart and matrix visuals. Each level of the hierarchy provides
supporting context for its parent value, but ultimately the report user will want to
investigate a specific value (for example, Customer 123) or a specific combination of
values (Customer 123 and Calendar Year 2018).

Custom labels and the back button
Two of the most important components of the drillthrough report page include the Custom
Product Name and back button image at the top of the report page. The Product Name
message at the top of the page uses the following DAX Measure expression:

Selected Product Name =
VAR ProdName = SELECTEDVALUE('Product'[Product Name], "Multiple Product
Names")
RETURN "Product Name: " & ProdName

Applying Custom Visuals, Animation, and Analytics Chapter 6

[278]

The SELECTEDVALUE() function returns either the single value currently selected for a
given column or an alternative expression if multiple values have been selected. For
drillthrough report pages, it's a given that the drill column will only have a single value
as each drillthrough column is limited to a single value. To provide a dynamic label or
title to the page, the DAX variable containing the Product Name expressions is
concatenated with a text string. In this example, the Selected Product Name measure is
displayed in a similar card visual.

The custom back button image was added to the report via the insert image command on
the Home tab of the Report view. Once positioned in the top left of the page, selecting the
image exposes the format image formatting cards. As per the following image, the Link
formatting card is enabled and the Type is set to Back:

Back button image

The Power BI Desktop adds a back button arrow shape by default when a drillthrough page
is created, but this shape is less intuitive for users than the custom image. With the back
button configured, Ctrl + click is used to return to the source page in Power BI Desktop.
Only a single click is needed to use the back button in the Power BI service.

The single row Product Details table at the bottom of the drillthrough
report page has been filtered to only display the current, active values of
the product. As described in the Slowly changing dimensions section of
Chapter 2, Connecting to Sources and Transforming Data with M, the
Products table contains multiple rows per product, representing different
points in time. To ensure that only one row is displayed by the table
visual, a visual level filter was applied, setting the Product Status
column equal to Current. Alternatively, the visual level filter condition
could specify that the Product End Date column is blank via the
advanced filter condition type.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[279]

Multi-column drillthrough
In many scenarios, a more specific filter context is needed for drillthrough report pages to
resolve analyses. For example, the user may be interested in one specific year for a given
Product Subcategory. To support these needs, multiple columns can be added as
drillthrough page filters. When one or both columns are exposed in a report visual on a
separate page, the drillthrough right-click option can be used to apply multiple filter
selections to the drillthrough page.

In the following stacked column chart of Internet Sales by year and Product
Subcategory, right-clicking on the Road Bikes column for 2015 ($4.2M) exposes the
Drillthrough option to the Subcategory-Year Details drillthrough report page:

Drillthrough by multiple columns

Applying Custom Visuals, Animation, and Analytics Chapter 6

[280]

The Subcategory-Year Details report page contains Drillthrough filters for both the
Calendar Year and the Product Subcategory columns. Report visuals which only
expose one of these two columns can still drill to this multi-column drillthrough report
page. In this scenario, no filter would be applied to the column not contained in the source
visual.

Executing the drillthrough action from the preceding chart results in the drillthrough report
page filtered for both column values:

Multi-column drillthrough report page

The drillthrough report page (Subcategory-Year Details) in this scenario would be
designed to display the values of the two drillthrough columns and provide supporting
analysis for this given filter context. In the following example, the $4.2M of Internet Net
Sales from the source page is identified in a card visual and also visualized by the calendar
months of 2015 in a stacked column chart to break out the product models for the Road
Bikes subcategory:

Multi-column drillthrough report page

Applying Custom Visuals, Animation, and Analytics Chapter 6

[281]

In the preceding drillthrough report example, the user obtains details on both Internet
Net Sales and Reseller Net Sales for the given year and Product category. Visuals
which utilize measures from any fact table (for example, Sales Plan) with a cross-filtering
relationship to the drillthrough column tables can be added to the drillthrough report page
to provide additional context.

In addition to stacked column charts, matrix visuals are also a common choice for initiating
a drillthrough action based on two columns. For example, the Calendar Year column
could be the columns input and the Product Subcategory could be the rows input.
Additionally, a pie chart with the two columns used in the legend and detailed input fields
can also be used to drillthrough based on two columns.

Bookmarks
Bookmarks enable report authors to save specific states of reports for easy access and
sharing with others. For example, an important or common view of a report page which
involves filter conditions across several columns can be saved as a bookmark for easy access
at a later time. By persisting the exact state of a report page, including any cross-
highlighting, drilling, and sorting, each bookmark can serve as a distinct report page, thus
amplifying the scope and usability of Power BI reports.

By default, bookmarks represent the entire state of a report page, including all filter
selections and the properties of the visuals (for example, hidden or not). However,
bookmarks can also optionally be associated with only a few visuals on a report page.
Additionally, report authors can choose to avoid persisting any filter or slicer selections and
rather only save visual properties on the page. These granular controls, along with the
Selections pane and linking support from images and shapes, enable report authors to
create rich and compelling user experiences.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[282]

In the following example, 12 Bookmarks have been created for a European sales report:

Bookmarks Pane

Bookmarks are created via the Add icon at the top of the Bookmarks Pane. With the
Bookmarks Pane visible via the View tab in Report view, a report author can develop a
report page with the filters and visual layout required and then click the Add icon to save
these settings as a bookmark. As per the preceding image, the ellipsis at the right of the
bookmark's name can be used to update Bookmarks to reflect the current state and to
rename and delete visuals. Additionally, the second and third groups of bookmark options
allow report authors to customize what is stored by the bookmark.

The Data category includes report, page, and visual level filters, slicer
selections, the drill location if a visual has been drilled into, any cross-
highlighting of other visuals, and any sort orders applied to visuals. The
Display category includes whether a visual is hidden or not, the Spotlight
property, focus mode, and the Show Data view. By disabling the Data
category for a bookmark, a user's selections on slicers or other visuals will
not be overridden when the bookmark is accessed.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[283]

In the preceding report, three Bookmarks have been applied for each of four report
pages—Europe, United Kingdom, Germany, and France. For example, selecting the
France: Bikes Only bookmark from the Bookmarks Pane displays the France report page
filtered for both France and Bikes, as per the following image:

Bookmarks and Filters Pane

Switching to the France: Excluding Bikes book simply changes the filter condition on the
Product Category Group column to Non-Bikes and selecting the France: Summary
bookmark removes the Product Category Group filter. By using Page level filters
within Bookmarks, a single report page (France) can more easily be re-used to address
additional business questions. Additionally, Bookmarks and off-canvas filters avoid the
need for users to interact with slicer visuals and also eliminates the canvas space that slicer
visuals would otherwise consume.

Selection pane and the Spotlight property
The Selection Pane and the Spotlight property for visuals are both closely related features
to Bookmarks. For example, with the Selection Pane exposed via the View tab of the Report
view, certain textboxes on a report page can be hidden while a specific text box associated
with a bookmark is left visible.

In the following example, three textboxes have been created for the Europe report page, but
only one of the three textboxes is visible for each of the three Europe Bookmarks:

Selection Pane and Bookmarks Pane

Applying Custom Visuals, Animation, and Analytics Chapter 6

[284]

The Selection Pane can be accessed via the View tab in Report view and
displays all objects of the selected report page including visuals, images,
and shapes. Although most commonly used with Bookmarks, the
Selection Pane is also helpful when developing report pages that contain
many visuals and objects. Selecting an object from the Selection Pane
provides access to the properties associated with that object (for example,
field inputs, formatting cards) as though the object was selected on the
report canvas.

The icons next to the objects can be toggled between visible (eye symbol) and hidden (dash
symbol). In the preceding example, only the text box containing the title Europe Sales
and Margin: Summary is visible for the Europe: Summary bookmark. The other two
textboxes on the Europe report page contain a title corresponding to the other two Europe
Bookmarks (Europe: Bikes Only, Europe: Excluding Bikes). Like the Europe: Summary
bookmark, only the text box containing the title associated with the given bookmark is
visible for these two other Bookmarks.

The Spotlight property, accessed via the ellipsis in the top-right corner of each visual, draws
attention to the specific visual by making all other visuals on the report page fade into the
background.

Spotlight is particularly useful in supporting presentations via Bookmarks.
For example, in the View mode described later in this section, one
bookmark could display a report page of visuals normally and the
following bookmark could highlight a single visual to call out a specific
finding or an important trend or result. Spotlight may also be helpful for
presenters to explain more complex visuals with multiple metrics and/or
dimension columns.

As an alternative to Spotlight, Focus mode can also be saved as a
bookmark. Focus mode can be applied via the diagonal arrow icon in the
top right corner of chart visuals and fills the entire report canvas with the
single visual.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[285]

In the following example, the Spotlight property has been enabled for a scatter chart on the
Europe report page:

Report page with Spotlight enabled on the scatter chart

In the preceding report page, four other visuals (three cards and a bar chart) are still visible,
but the scatter chart is emphasized via the Spotlight property. With Spotlight enabled, the
report author could add a bookmark with an intuitive name (for example, Europe
Summary: Customer Segment and Country Scatter) to save this specific view.
Referencing this bookmark in a meeting or presentation makes it easier to explain the
meaning and insights of the scatter chart.

Custom report navigation
Bookmarks can also be assigned as links to shapes and images. With multiple Bookmarks
created across multiple report pages, a visual table of contents can be created to aid the
user's navigation of a report. Rather than opening and browsing the Bookmarks Pane, users
can simply click images or shapes associated with specific Bookmarks, and a back button
can be used to return to the table of contents page.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[286]

In the following example, nine images have been positioned within a rectangle shape and
linked to Bookmarks in the report:

Custom navigation to Bookmarks

The rectangle shape and three line shapes are used to form the matrix of
icons. Shapes and images can be added from the insert group of icons on
the Home tab of Report view. With a shape or image selected, the Format
tab appears, allowing the author to align and distribute the objects as well
as move certain objects forward or backward on the canvas. Grouping
similar objects within shapes is a common practice to improve usability.

With an image or a shape selected, a Link formatting card can be enabled to choose
between a Bookmark link and a Back link. In the following example, the France flag image
positioned in the top right of the table of contents is linked to the France: Excluding Bikes
bookmark:

Link formatting card for images and shapes

In this report, the back button image introduced in the Drillthrough report pages section
earlier in this chapter is also inserted in each page of the report. Rather than return to the
source page of a drillthrough action, a Back type link is set to allow users to return to the
table of contents.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[287]

In the following image, a custom back button image has been inserted and set as a Back
type link to aid navigation:

Back link for an image

The combination of custom navigation and Bookmarks representing many specific views or
reports contributes to an easier, more productive experience for users. When designed
properly, the user often doesn't need to know which page or bookmark to navigate to or
which filters to apply as this logic is already built into the report.

View mode
The View icon in the Bookmarks Pane can be used in both Power BI Desktop and in the
Power BI service to navigate between visuals similar to a slideshow. When View mode is
enabled, the following navigation bar appears at the bottom of the screen and the user can
close other panes and/or launch full screen mode in the Power BI service to further support
the presentation:

View mode navigation

Applying Custom Visuals, Animation, and Analytics Chapter 6

[288]

As per the preceding image, the number and order of Bookmarks, bookmark names, and
navigation arrows are included in the View mode navigation. Bookmarks are ordered
based on their position in the Bookmarks Pane from the top to the bottom. To revise the
order, Bookmarks can be dragged and dropped to higher or lower positions in the
Bookmarks Pane.

ArcGIS Map visual for Power BI
The ArcGIS Map visual for Power BI enables report authors to develop map visualizations
far beyond the capabilities of the bubble and filled map visuals described in Chapter 5,
Creating and Formatting Power BI Reports. Created by Esri, a market leader in Geographic
Information Systems (GIS), the ArcGIS Map supports all standard map types (for example,
bubble and heatmap), but also provides many additional features including a clustering
map theme for grouping individual geographic points and the ability to filter a map by the
points within a geographical area. The ArcGIS Map also enables deep control over the logic
of the size and color formatting, such as the number of distinct sizes (classes) to display and
the algorithm used to associate locations to these classes. Additionally, reference layers and
cards of demographic and economic information can be embedded into visuals to provide
greater context.

The ArcGIS Map visual is included in the standard visualizations pane and enabled by
default in Power BI Desktop. However, as noted in Chapter 10, Deploying the Power BI
Report Server, the ArcGIS Map visual is not currently supported for the Power BI Report
Server and thus is not available in the Power Desktop application optimized for the Power
BI Report Server. Additionally, an option is available in the Tenant settings page of the
Power BI admin portal to enable or disable the use of the ArcGIS Maps visual. Details on
utilizing the Power BI admin portal to configure tenant settings and other options are
included in Chapter 12, Administering Power BI for an Organization.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[289]

In the following example, customer addresses in the state of Washington have been plotted
as diamonds of different sizes and colors based on the Internet Sales measure and the
Customer History Segment column, respectively:

ArcGIS Map visual for Power BI

For the most visually engaging ArcGIS Map, use the Dark Gray Canvas
basemap and bright, saturated colors for the data points plotted. The Light
Gray Canvas basemap, however, avoids the risk of overwhelming the user
with colors, as described in the previous chapter. The Streets and
OpenStreetMap basemap types are practical choices whenever
transportation between the data points or pinned locations is expected. In
the preceding example, the Streets basemap supports the sales team that
may drive from the pinned office location on 11th street in Bremerton,
Washington to the plotted customer addresses.

The visual has been zoomed into the Bremerton, Washington area near several large
customers and a fictional sales office location denoted by a red pin icon on 11th street near
downtown Bremerton. Pin locations are often used in conjunction with the Drive Time
feature to plot an area relative to specific locations such as the group of customers who are
within a 20-minute drive of an office.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[290]

To configure these options and all other layout and formatting settings, click the ellipsis in
the top right corner and select Edit. The following image displays the edit mode of an
ArcGIS visual with the Pins menu selected:

ArcGIS Map for Power BI toolbar options

For this visual, the Streets basemap type has been selected and the Map theme is set to Size
& Color. The reference layer USA Median Age is used to distinguish areas based on age
(via color intensity). Finally, two infographic cards have been selected—population and age
by gender—to display these specific metrics as the user selects and hovers over the map.

A column named Customer Full Address has been applied to the
Location input field. This column includes the street address, city, state,
and postal code such as the following example: 1097 Kulani Lane,
Kirkland, WA, 98033.

The Data Category for this column has been set to Address in Power BI
Desktop to further improve the accuracy of the geocoding process in
which the location input value (the address) is converted to a latitude and
longitude. Latitude and longitude fields are available as well, and these
inputs are recommended over street addresses for greater performance
and scale. A max of 1,500 street addresses can be geocoded without a plus
subscription and up to 5,000 addresses can be geocoded with a monthly
plus subscription.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[291]

The Customer History Segment column, described in Chapter 2, Connecting to Sources
and Transforming Data with M, evaluates to one of four values based on the relationship
between the Current Date and the Customer First Purchase date column. In this
example, first year, second year, and third year customers are assigned the colors purple,
green, and blue, respectively. Legacy customers have been formatted as orange. The size
and color formatting can be customized via the Symbol Style menu, and these options
alone make it relatively easy for users to gain insights from the visual such as identifying
the location of first year customers.

To provide greater analytical flexibility and to support presentations, the Date column from
the Date dimension table has been applied to the Time input field, thus creating the
timeline scrollbar. Similar to the play axis of the scatter chart described later in this chapter,
the timeline for the ArcGIS Map supports both animation via the play and pause buttons
and slider controls to define a specific time frame.

The left and right end points of the timeline can be used in combination
with the animated playback. For example, a time frame of three months
can be defined at the beginning of the timeline, and each frame of the
animation will represent a distinct three month time frame. At each frame,
the user can optionally pause the animation to call attention to specific
points on the visual. These intervals can be set for 3, 6, 9, and 12 months.

The timeline and two measures are further supplemented with two date intelligence
measures in the Tooltips field input. In the following example, the user has hovered over
the address location of a First Year Customer (a purple diamond) and the two date
intelligence measures (year-to-date and prior year-to-date), as well as the Date column
from the timeline, which leads to them being exposed:

Applying Custom Visuals, Animation, and Analytics Chapter 6

[292]

ArcGIS visual with Tooltips

To avoid the limit of addresses geocoded (1,500, or 5,000 with a Plus
subscription), and to focus the visual on more meaningful data points, a
visual level filter can be applied to a measure. In this example, a visual
level filter has been applied to the Internet Net Sales measure to only
include data points (customer addresses) with over $100. By removing the
small customers, this filter reduced the count of addresses from 1,799 to
921 and retained over 97 percent of the Internet Sales.

Selections of ArcGIS Map locations also impact other visuals on the report page. For
example, the selection of one address location on the map could cause a bar chart visual to
filter or highlight the specific product subcategories associated with that location.
Additionally, rather than selecting one location at a time, areas of locations can be selected
via the Select Multiple Locations option and the areas of a reference layer can also be used
to select locations. The multi-select options under the cursor icon and the cross-filtering of
other related Power BI visuals provide powerful self-service geospatial analysis
capabilities.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[293]

The Use ArcGIS Maps for Power BI option should be checked in the
Global Security options of Power BI Desktop. An equivalent option is
exposed in the Power BI service via the Settings menu (Gear icon |
Settings | ArcGIS Maps for Power BI), and this should be checked as
well to render ArcGIS Maps in the online service.

Additionally, a Use ArcGIS Maps for Power BI setting is available in the
Tenant settings page of the Power BI admin portal. Power BI service
administrators can optionally disable this feature to prevent all users from
using ArcGIS Maps for Power BI. The configuration of Tenant settings in
the Power BI admin portal is described in Chapter 12, Administering Power
BI for an Organization. The ArcGIS Map visual is the only standard Power
BI visual not currently supported by the Power BI Report Server.

ArcGIS Maps Plus subscriptions
The ArcGIS Map visual is free, and Power BI reports using the ArcGIS Map visual can be
published for users to view in the Power BI service and on mobile devices at no extra cost.
However, in many scenarios, the limit of 1,500 geocoding addresses may prove insufficient.
Additionally, the four basemaps available (Light Gray Canvas, Dark Gray Canvas, Streets,
and OpenStreetMap) may not provide the desired details, such as satellite imagery.

With an ArcGIS Plus subscription, currently priced at $5 per user, per month, up to 5,000
addresses can be geocoded and plotted on a map. In the following image, the Plus icon
appears above the zoom buttons of an ArcGIS Map visual:

ArcGIS Plus subscription icon

Applying Custom Visuals, Animation, and Analytics Chapter 6

[294]

Plus subscriptions also enable eight additional basemaps, several of which including
satellite imagery and access to many additional reference layers and infographics. The
following site maintained by Esri provides further details on Plus subscriptions: http:/ /
arcg.is/2jG5DnG.

It's necessary for both report authors and users or consumers of the Power
BI reports containing the ArcGIS Map visual to have Plus subscriptions.
When an ArcGIS Maps visual contains premium content (via a Plus
subscription), that content is only visible to other subscribed Plus users.

Waterfall chart breakdown
The waterfall chart is one of the most powerful standard visuals in Power BI given its
ability to compute and format the variances of individual items between two periods by
default. The items representing the largest variances are displayed as columns of varying
length, sorted and formatted with either an increase (green) or decrease (red) color. This
built-in logic and conditional formatting makes waterfall charts both easy to create and
intuitive for users.

In the following example, the Internet Sales of the last two completed months is broken
down by Sales Territory Country:

Waterfall chart with breakdown

http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG
http://arcg.is/2jG5DnG

Applying Custom Visuals, Animation, and Analytics Chapter 6

[295]

The waterfall chart naturally walks the user from the starting point
category on the left (2017-Oct) to the ending point category on the right
(2017-Nov). As per the preceding image, hovering the cursor over a bar
results in the details for this item being displayed as a tooltip. In this
example, hovering over the ($15K) red bar for the United States displays
the Internet Sales for both months, the variance, and the variance as a
percentage. These four tooltip values are provided by default and report
authors can optionally add measures to the Tooltips field to deliver even
greater context.

The Internet Net Sales measure is applied to the y axis input field, and the Calendar
Yr-Mo and Sales Territory Country columns are applied to the Category and
Breakdown input fields, respectively. For this visual, the Max breakdowns property
available under the Breakdown formatting card is set to 4 and thus only four countries are
displayed. The other breakdown item, formatted in yellow by default, is used to summarize
the variances for all items not displayed as a breakdown column. In the preceding example,
the relatively smaller variances from Australia and Germany are automatically rolled into
the other item.

As with other visuals, a Show Data and an Export data option is available
in both Power BI Desktop and when viewing the visual in the Power BI
service. These options are exposed under the ellipsis (three dots) in the top
right corner of each visual. As one example, the user could select Show
Data for the waterfall chart to view the sales data for all the countries
(including Germany and Australia) in a table format. Report authors can
adjust the Max breakdowns property to display greater detail and reduce
the size of the other breakdown. However, waterfall charts with fewer
breakdown columns are easier for users to interpret.

As per the following image, a filter is applied to the Calendar Month Status column to
only include the Prior Calendar Month and the 2 Mo Prior Calendar Month values:

Filter impacting the waterfall chart

This filter results in only two month values being available to the visual and ensures that
the visual will update over time. For example, in March of 2018, the visual will
automatically update to compare January of 2018 versus February of 2018. This filter can be
applied at the report level, page level, or visual level scope, depending on the scenario.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[296]

Details on building date dimension columns such as Calendar Month
Status into a Power BI dataset are included in the Date dimension view
section of Chapter 2, Connecting to Sources and Transforming Data
with M. Additionally, filter scopes and the filter conditions available to
each scope was reviewed in the Report filter scopes section in Chapter
5, Creating and Formatting Power BI Reports.

Analytics pane
In addition to the Field and Formatting panes used to create report visuals, an Analytics
pane is also available for cartesian visuals such as Line and clustered column charts. This
pane allows report authors to add constant and dynamic reference lines such as average,
max, and min to visuals to provide greater context and analytical value. Additionally, trend
and forecast lines can be added to display the results of advanced analytical techniques
such as exponential smoothing to support predictive analytics.

A simple but important use case of the Analytics pane, exemplified in the Trend lines section
below, is to add a constant line that represents a goal or threshold to compare a measure
against. Dynamic reference lines representing an aggregation (for example, a median)
behave just like DAX measures and thus, in some scenarios, avoid the need to create new
DAX measures into the source dataset.

The reference lines available in the Analytics pane depend on the type of
visual. For example, reference lines are currently not supported for any
custom visuals and only a constant line can be applied to the stacked
column and bar charts. Additionally, the trend line is exclusive to the Line
and clustered column chart, while the forecast line is exclusive to the line
chart. Moreover, a date or a numeric column is required in the axis to
utilize the trend and forecast lines.

New features and capabilities are planned for the Analytics pane, including an expanded
list of visuals supported. Similar to the Tooltips feature described in the previous chapter,
Chapter 5, Creating and Formatting Power BI Reports, Power BI report authors should be
conscious of the Analytics pane and its ability to enhance report visuals with additional
context and insights.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[297]

Trend Line
A Trend Line is available in the Analytics pane for the clustered column chart and the line
chart. The Trend Line is particularly valuable when a chart contains many data points and
significant variation exists among the points, making it difficult to observe the trend of the
metric visually.

In the following example, a trend line and two additional reference lines (average and
constant) have been added to a clustered column chart to provide greater insight and
context:

Trend, constant, and average reference lines

The Label Density property of the Data labels formatting card has been
set to 100 percent. Additionally, the position property of the data labels
has been set to an inside end with a white color and text size of 11. Clear
visibility of the data labels for each column, in addition to the two
reference lines (Average and Goal), avoids the need to display the Y-AXIS
and gridlines.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[298]

Excluding the three reference lines from the Analytics pane, the clustered column chart
simply plots the Internet Sales Customer Count measure against the Calendar
Month Ending Date column. The Calendar Month Ending Date column (for example,
11/30/2017) is required for the axis input in this scenario as both the trend line and the
forecast line require either a date or a number data type for the axis. For example, if the
Calendar Yr-Mo column was used for the axis (for example, 2017-Oct), both the trend
line and the forecast line cards would not appear in the Analytics pane.

The DAX expression used for this measure is included in the Dimension
metrics section of Chapter 4, Developing DAX Measures and Security
Roles. To ensure that the current month's data does not impact on the trend
line, the Calendar Month Status column was used as a page level filter.
The filter condition applied (Is Not Current Calendar Month) excludes
the latest month from the visual and any other visuals on the report page.
Additional information on the Calendar Year and Month Status
columns is included in Chapter 2, Connecting to Sources and Transforming
Data with M.

With the essential column chart built, the three reference lines can be added from the
Analytics pane per the following image:

Analytics pane

Applying Custom Visuals, Animation, and Analytics Chapter 6

[299]

As per the preceding image, the Style of the Trend Line is set to Dashed with a
transparency of 0 percent. This formatting ensures that the trend reference line can be easily
distinguished from other data on the chart such as the other two reference lines. The
Combine Series property is not relevant to this visual as there is only one series (Internet
Sales Customer Count), and Use Highlight Values is the default setting for calculating
the Trend Line.

The numeric symbols (1) next to the Constant Line and Average Line cards denote that a
reference line of each type has also been applied to the visual. For these reference lines, a
Dotted line style has been used, and custom names have been configured (for example,
Goal, Average) to be displayed via Data labels. These two additional lines make it easy for
users to identify the columns which are above or below the average value for the visual (89)
and the constant goal value of 120.

Forecast line
The Forecast line, exclusive to standard line chart visuals, utilizes predictive forecasting
algorithms to generate both specific forecast data points as well as upper and lower
boundaries. The report author has control over the number of data points to forecast, the
confidence interval of the forecast (for example, 80 percent, 95 percent), and can apply
formatting to distinguish the forecast from the actual data points. Additionally, the
forecasting feature allows authors to optionally exclude a number from the last data points.
This Ignore last property is useful for excluding incomplete periods as well as evaluating
the accuracy of the forecast relative to recently completed periods.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[300]

In the following example, the clustered column chart from the Trend Lines section has been
switched to a Line chart and a Forecast line for the next two months has been added:

Forecast line

By hovering over the first forecast point, December of 2017, the Forecasted
Customer Count value of 139 is displayed along with the upper (167) and
lower (112) boundaries. The user can easily distinguish the last actual data
point, 131 for November of 2017, from the forecast via the Dotted style of
the Forecast line and the dark fill of the Confidence band style. The
Trend, Average, and Goal reference lines applied in the previous section
provide further context to the Forecast.

Like the Trend Lines section example, the Calendar Month Ending Date column is used
as the axis, and the Current Month (2017-Dec) has been excluded with a page level filter
condition on the Calendar Month Status column. This filter condition avoids the need to
utilize the Ignore last property of the forecast analytics card. The Label Density property
has been reduced to 72 percent to reduce clutter given in the additional reference line.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[301]

As per the following image, the Forecast length, Confidence interval, and a custom name
(Forecasted Customer Count) have been applied to the Forecast line:

Forecast properties in the Analytics pane

The Seasonality property is optional, but since the data reflects calendar months, a value of
12 overrides the automatically detected season value. Likewise, for quarterly data, a value
of 4 could be applied.

The Confidence interval property defines the distance between the upper and lower
boundaries from the forecasted data points. For example, the minimum confidence interval
of 75 percent would produce a more narrow range, and the maximum confidence interval
of 99 percent would widen the boundaries of the first forecast point to an upper limit of 194
and a lower limit of 84.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[302]

The Ignore last property can be used to evaluate how accurately the
forecast would've predicted recent data points. In this example, an Ignore
last value of 2 would result in forecast values for October and November
of 2017—the last two completed months. The forecast algorithm would
use all available data points through September of 2017 to generate the
two forecast points.

If the actual data points for these two months fall outside the confidence
interval (upper and lower bounds) of the forecast, the forecast may not be
valid for the given data, or the Confidence Interval may be too
narrow. This testing technique is referred to as hindcasting.

Quick Insights
Quick Insights is one of the most analytically advanced features in Power BI as it enables
sophisticated machine learning algorithms to be executed against datasets or specific
subsets of those datasets. The results of these computations automatically generate highly
formatted Power BI visuals which can be integrated into reports as though they were
created from scratch. Quick Insights is only generally available in the Power BI service for
import mode datasets and dashboard tiles reflecting those datasets. However, the essential
capabilities of Quick Insights are also now available in preview for Power BI Desktop.

In the following image, Quick Insights has been executed against the AdWorks
Enterprise dataset in the Power BI service:

Quick Insights for a dataset in the Power BI Service

Applying Custom Visuals, Animation, and Analytics Chapter 6

[303]

To execute Quick Insights against an entire dataset, see the Get quick insights option
under the Actions ellipsis menu in the Power BI service. Once the insights have been
generated, a View insights menu option replaces the Get quick insights option. The
visuals generated from the insights, such as the clustered bar chart on the left, advise of the
algorithm used (for example, outlier, cluster, and correlation). Most importantly, the visuals
can be pinned to dashboards and are displayed without the supporting text like normal
dashboard tiles. In Power BI Desktop, Quick Insights are currently limited to specific data
points represented by report visuals.

Quick Insights cannot be executed against datasets which contain row-
level security roles as described in Chapter 4, Designing DAX Measures and
Security Roles. Additionally, Quick Insights cannot be executed against
DirectQuery datasets, Live connection datasets to Analysis Services
models, and realtime streaming datasets.

Explain the increase/decrease
Quick Insight features are enabled in Power BI Desktop by default, allowing users to right-
click data points in visuals and execute the relevant analysis. In the following example, the
user has right-clicked the data point for 2017-Apr, and as a result, an option to explain the
decrease is exposed in the Analyze menu:

Explaining the decrease in Power BI Desktop

Applying Custom Visuals, Animation, and Analytics Chapter 6

[304]

Clicking Explain the decrease executes machine learning algorithms against the dataset and
populates a window with visuals representing the insights retrieved. The user can scroll
vertically to view the different insights obtained such as the Customer Gender column
accounting for a majority of the decrease, or Product Name XYZ, which had the largest
decrease among all products.

By default, a waterfall visual is used to display each insight, but other visuals such as the
scatter chart and the 100 percent stacked column chart are available too. In the following
example, the user has scrolled to an insight based on the Customer History Segment
column and views the data as a waterfall chart:

Explain the decrease in Power BI Desktop

Applying Custom Visuals, Animation, and Analytics Chapter 6

[305]

Clicking the plus sign at the top right corner of the text box explaining the insight adds the
visual to the report page. Adding the visual to the report page automatically populates the
associated field wells and visual level filters as though the visual was created manually. If
necessary, the report author can apply further formatting to align the visual with the design
and layout of the page.

Currently, Quick Insights in Power BI Desktop is limited to the local
dataset and is exclusive to import mode datasets. For example, the Explain
the decrease option will not appear when connecting to a published
Power BI dataset or a SSAS database via Live connection. Given the
importance of isolating reports from a central dataset as described in the
previous chapter, Chapter 5, Creating and Formatting Power BI Reports this
limitation represents a significant obstacle to utilize this feature in
corporate deployments.

Additionally, there are several limitations on the kinds of measures and
filters supported. For example, measures which use the
DISTINCTCOUNT() and SUMX() functions are not supported, and
measures containing conditional logic (for example, IF()) cannot be
either.

Custom visuals
In addition to the standard visuals included in the Visualizations pane of Power BI
Desktop, a vast array of custom visuals can be added to reports to deliver extended
functionality or to address specific use cases. These visuals, many of which have been
created by Microsoft, are developed with the common framework used by the standard
visuals and are approved by Microsoft prior to inclusion in Microsoft AppSource. Given the
common framework, custom visuals can be integrated into Power BI reports with standard
visuals and will exhibit the same standard behaviors such as filtering via slicers and report
and page filters.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[306]

This section highlights four powerful custom visuals and the distinct scenarios and features
they support. Power BI report authors and BI teams are well-served to remain conscience of
both the advantages and limitations of custom visuals. For example, when several measures
or dimension columns need to be displayed within the same visual, custom visuals such as
the Impact Bubble Chart and the Dot Plot by Maq Software may exclusively address this
need. In many other scenarios, a trade-off or compromise must be made between the
incremental features provided by a custom visual and the rich controls built into a standard
Power BI visual.

Custom visuals available in AppSource and within the integrated custom visuals store for
Power BI Desktop are all approved for running in browsers and on mobile devices via the
Power BI mobile apps. A subset of these visuals have been certified by Microsoft and
support additional Power BI features such as email subscriptions and export to PowerPoint.
Additionally, certified custom visuals have met a set of code requirements and have passed
strict security tests. The list of certified custom visuals and additional details on the
certification process is available at the following link: http://bit.ly/2AFAC9W.

Adding a custom visual
Custom visuals can be added to Power BI reports by either downloading .pbiviz files
from Microsoft AppSource or via the integrated Office Store of custom visuals in Power BI
Desktop. Utilizing AppSource requires the additional step of downloading the file;
however, it can be more difficult to find the appropriate visual as the visuals are not
categorized. However, AppSource provides a link to download a sample Power BI report
(.pbix file) to learn how the visual is used, such as how it uses field inputs and formatting
options. Additionally, AppSource includes a short video tutorial on building report
visualizations with the custom visual.

http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W
http://bit.ly/2AFAC9W

Applying Custom Visuals, Animation, and Analytics Chapter 6

[307]

The following image reflects Microsoft AppSource filtered by the Power BI visuals Add-
ins category:

Power BI custom visuals in AppSource

The following link filters AppSource to the Power BI custom visuals per
the preceding image: http:/ /bit. ly/2BIZZbZ.
The search bar at the top and the vertical scrollbar on the right can be used
to browse and identify custom visuals to download. Each custom visual
tile in AppSource includes a Get it now link which, if clicked, presents the
option to download either the custom visual itself (.pbiviz file) or the
sample report for the custom visual (.pbix file). Clicking anywhere else in
the tile other than Get it now prompts a window with a detailed overview
of the visual, a video tutorial, and customer reviews.

http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ
http://bit.ly/2BIZZbZ

Applying Custom Visuals, Animation, and Analytics Chapter 6

[308]

To add custom visuals directly to Power BI reports, click the Import from store option via
the ellipsis of the Visulaizations pane, as per the following image:

Importing custom visuals from the store

If a custom visual (.pbiviz file) has been downloaded from AppSource,
the Import from file option can be used to import this custom visual to the
report. Additionally, both the Import from store and Import from
file options are available as icons on the Home tab of the Report view in
Power BI Desktop.

Selecting Import from store launches an MS Office Store window of Power BI Custom
Visuals. Unlike AppSource, the visuals are assigned to categories such as KPIs, Maps, and
Advanced Analytics, making it easy to browse and compare related visuals. More
importantly, utilizing the integrated Custom Visuals store avoids the need to manage
.pbiviz files and allows report authors to remain focused on report development.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[309]

As an alternative to the VISUALIZATIONS pane, the From Marketplace and From File
icons on the Home tab of the Report view can also be used to add a custom visual. Clicking
the From Marketplace icon in the follow image launches the same MS Office Store window
of Power BI Custom visuals as selecting Import from store via the VISUALIZATIONS
pane:

From Marketplace ribbon icon

In the following image, the KPIs category of Custom visuals is selected from within the MS
Office store:

Custom visuals via the Office Store in the Power BI Desktop

Applying Custom Visuals, Animation, and Analytics Chapter 6

[310]

The Add button will directly add the custom visual as a new icon in the Visualizations
pane. Selecting the custom visual icon will provide a description of the custom visual and
any customer reviews. The Power BI team regularly features new custom visuals in the blog
post and video associated with the monthly update to Power BI Desktop. The visual
categories, customer reviews, and supporting documentation and sample reports all assist
report authors in choosing the appropriate visual and using it correctly.

Organizations can also upload custom visuals to the Power BI service via the organization
visuals page of the Power BI Admin portal. Once uploaded, these visuals are exposed to
report authors in the MY ORGANIZATION tab of the custom visuals MARKETPLACE as
per the following example:

My Organization custom visuals

This feature can help both organizations and report authors simplify their use of custom
visuals by defining and exposing a particular set of approved custom visuals. For example,
a policy could define that new Power BI reports must only utilize standard and
organizational custom visuals. The list of organizational custom visuals could potentially
only include a subset of the visuals which have been certified by Microsoft. Alternatively,
an approval process could be implemented so that the use case for a custom visual would
have to be proven or validated prior to adding this visual to the list of organizational
custom visuals. Additional details on managing organizational custom visuals are included
in Chapter 12, Administering Power BI for an Organization.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[311]

Power KPI visual
Key Performance Indicators (KPIs) are often prominently featured in Power BI dashboards
and in the top left area of Power BI report pages, given their ability to quickly convey
important insights. Unlike card and gauge visuals which only display a single metric or a
single metric relative to a target respectively, KPI visuals support trend, variance, and
conditional formatting logic. For example, without analyzing any other visuals, a user could
be drawn to a red KPI indicator symbol and immediately understand the significance of a
variance to a target value as well as the recent performance of the KPI metric. For some
users, particularly executives and senior managers, a few KPI visuals may represent their
only exposure to an overall Power BI solution, and this experience will largely define their
impression of Power BI's capabilities and the Power BI project.

Given their power and important use cases, report authors should become familiar with
both the standard KPI visual and the most robust custom KPI visuals such as the Power KPI
Matrix, the Dual KPI, and the Power KPI. Each of these three visuals have been developed
by Microsoft and provide additional options for displaying more data and customizing the
formatting and layout.

The Power KPI Matrix supports scorecard layouts in which many metrics
can be displayed as rows or columns against a set of dimension categories
such as Operational and Financial. The Dual KPI, which was featured in
the Microsoft Power BI Cookbook (https://www.packtpub. com/big- data-
and-business- intelligence/ microsoft- power-bi-cookbook), is a good
choice for displaying two closely related metrics such as the volume of
customer service calls and the average waiting time for customer service
calls.

One significant limitation of custom KPI visuals is that data alerts cannot
be configured on the dashboard tiles reflecting these visuals in the Power
BI service. Data alerts are currently exclusive to the standard card, gauge,
and KPI visuals.

In the following Power KPI visual, Internet Net Sales is compared to Plan, and the
prior year Internet Net Sales and Year-over-Year Growth percent metrics are included
to support the context:

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Applying Custom Visuals, Animation, and Analytics Chapter 6

[312]

Power KPI custom visual

The Internet Net Sales measure is formatted as a solid, green line
whereas the Internet Sales Plan and Internet Net Sales (PY)
measures are formatted with Dotted and Dot-dashed line styles
respectively. To avoid clutter, the Y-Axis has been removed and the Label
Density property of the Data labels formatting card has been set to 50
percent. This level of detail (three measures with variances) and
formatting makes the Power KPI one of the richest visuals in Power BI.

The Power KPI provides many options for report authors to include additional data and to
customize the formatting logic and layout. Perhaps its best feature, however, is the Auto
Scale property, which is enabled by default under the Layout formatting card. Similar to the
responsive visuals feature described in the Mobile optimized reports section of the previous
chapter, Chapter 5, Creating and Formatting Power BI Reports, Auto Scale causes the visual to
make intelligent decisions about which elements to display given the available space.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[313]

For example, in the following image, the Power KPI visual has been pinned to a Power BI
dashboard and resized to the smallest tile size possible:

Minimal Power BI dashboard tile

As per the preceding dashboard tile, the less critical data elements such as July through
August and the year-over- year % metric were removed. This auto scaling preserved space
for the KPI symbol, the axis value (2017-Nov), and the actual value ($296K). With Auto
Scale, a large Power KPI custom visual can be used to provide granular details in a report
and then re-used in a more compact format as a tile in a Power BI dashboard.

Another advantage of the Power KPI is that minimal customization of the data model is
required. The following image displays the dimension column and measures of the data
model mapped to the field inputs of the aforementioned Power KPI visual:

Power KPI field inputs

Applying Custom Visuals, Animation, and Analytics Chapter 6

[314]

As described in previous chapters, the Sales and Margin Plan data is available at the
monthly grain and thus the Calendar Yr-Mo column is used as the Axis input. In other
scenarios, a Date column would be used for the Axis input provided that the actual and
target measures both support this grain.

The order of the measures used in the Values field input is interpreted by the visual as the
actual value, the target value, and the secondary value.

In this example, Internet Net Sales is the first or top measure in the Values field and
thus is used as the actual value (for example, $296K for November). A secondary value as
the third measure in the Values input (Internet Net Sales (PY)) is not required if the
intent is to only display the actual value versus its target.

The KPI Indicator Value and Second KPI Indicator Value fields are also optional. If left
blank, the Power KPI visual will automatically calculate these two values as the percentage
difference between the actual value and the target value, and the actual value and the
secondary value respectively. In this example, these two calculations are already included
as measures in the data model and thus applying the Internet Net Sales Var to Plan
% and Internet Net Sales (YOY %) measures to these fields further clarifies how the
visual is being used.

If the metric being used as the actual value is truly a critical measure (for
example, revenue or count of customers) to the organization or the
primary user, it's almost certainly appropriate that related target and
variance measures are built into the Power BI dataset. In many cases, these
additional measures will be used independently in their own visuals and
reports. Additionally, if a target value is not readily available, such as the
preceding example with the Internet Net Sales Plan, BI teams can
work with stakeholders on the proper logic to apply to a target measure,
for example, 10 percent greater than the previous year.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[315]

The only customization required is the KPI Indicator Index field. The result of the
expression used for this field must correspond to one of five whole numbers (1-5) and thus
one of the five available KPI Indicators. In the following example, the KPI Indicators KPI 1
and KPI 2 have been customized to display a green caret up icon and a red caret down icon
respectively:

KPI Indicator formatting card

Many different KPI Indicator symbols are available including up and down arrows, flags,
stars, and exclamation marks. These different symbols can be formatted and then displayed
dynamically based on the KPI Indicator Index field expression. In this example, a KPI
index measure was created to return the value 1 or 2 based on the positive or negative value
of the Internet Net Sales Var to Plan % measure respectively:

Internet Net Sales vs Plan Index = IF([Internet Net Sales Var to Plan %] >
0,1,2)

Given the positive 4.6 percent variance for November of 2017, the value 1 is returned by the
index expression and the green caret up symbol for KPI 1 is displayed. With five available
KPI Indicators and their associated symbols, it's possible to embed much more elaborate
logic such as five index conditions (for example, poor, below average, average, above
average, good) and five corresponding KPI indicators.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[316]

Four different layouts (Top, Left, Bottom, and Right) are available to
display the values relative to the line chart. In the preceding example, the
Top layout is chosen as this results in the last value of the Axis input
(2017-Nov) to be displayed in the top left corner of the visual. Like the
standard line chart visual in Power BI Desktop, the line style (for example,
Dotted, Solid, Dashed), color, and thickness can all be customized to help
distinguish the different series.

Chiclet Slicer
As per the previous chapter, the standard slicer visual can display the items of a source
column as a list or as a dropdown. Additionally, if presented as a list, the slicer can
optionally be displayed horizontally rather than vertically. The custom Chiclet Slicer,
developed by Microsoft, allows report authors to take even greater control over the format
of slicers to further improve the self-service experience in Power BI reports.

In the following example, a Chiclet Slicer has been formatted to display calendar months
horizontally as three columns:

Chiclet Slicer

Additionally, a dark green color is defined as the Selected Color property under the
Chiclets formatting card to clearly identify the current selections (May and June). The
Padding and Outline Style properties, also available under the Chiclets card, are set to 1
and Square respectively, to obtain a simple and compact layout.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[317]

Like the slicer controls in Microsoft Excel, Chiclet Slicers also support cross highlighting. To
enable cross highlighting, specify a measure which references a fact table as the Values
input field to the Chiclet Slicer. For example, with the Internet Net Sales measure set
as the Values input of the Chiclet Slicer, a user selection on a bar representing a product in
a separate visual would update the Chiclet Slicer to indicate the calendar months without
Internet Sales for the given product. The Disabled Color property can be set to control
the formatting of these unrelated items.

Chiclet Slicers also support images. In the following example, one row is used to display
four countries via their national flags:

Chiclet Slicer with images

For this visual, the Padding and Outline Style properties under the Chiclets formatting
card are set to 2 and Cut respectively. Like the Calendar Month slicer, a dark green color is
configured as the Selected Color property helping to identify the country or countries
selected—Canada, in this example.

The Chiclet Slicer contains three input field wells—Category, Values, and Image. All three
input field wells must have a value to display the images. The Category input contains the
names of the items to be displayed within the Chiclets. The Image input takes a column
with URL links corresponding to images for the given category values. In this example, the
Sales Territory Country column is used as the Category input and the Internet Net
Sales measure is used as the Values input to support cross highlighting. The Sales
Territory URL column, which is set as an Image URL data category, is used as the Image
input. For example, the following Sales Territory URL value is associated with the
United States: http:/ /www. crwflags. com/ fotw/ images/u/ us.gif.

A standard slicer visual can also display images when the data category of
the field used is set as Image URL. However, the standard slicer is limited
to only one input field and thus cannot also display a text column
associated with the image. Additionally, the standard slicer lacks the
richer cross-highlighting and formatting controls of the Chiclet Slicer.

http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif
http://www.crwflags.com/fotw/images/u/us.gif

Applying Custom Visuals, Animation, and Analytics Chapter 6

[318]

Impact Bubble Chart
One of the limitations with standard Power BI visuals is the number of distinct measures
that can be represented graphically. For example, the standard scatter chart visual is limited
to three primary measures (X-AXIS, Y-AXIS, and SIZE), and a fourth measure can be used
for color saturation. The Impact Bubble Chart custom visual, released in August of 2017,
supports five measures by including a left and right bar input for each bubble.

In the following visual, the left and right bars of the Impact Bubble Chart are used to
visually indicate the distribution of AdWorks Net Sales between Online and Reseller
Sales channels:

High Impact Bubble Chart

The Impact Bubble Chart supports five input field wells: X-AXIS, Y-AXIS,
SIZE, LEFT BAR, and RIGHT BAR. In this example, the following five
measures are used for each of these fields respectively: AdWorks Net
Sales, AdWorks Net Margin %, AdWorks Net Sales (YTD),
Internet Net Sales, and Reseller Net Sales.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[319]

The length of the left bar indicates that Australia's sales are almost exclusively derived from
online sales. Likewise, the length of the right bar illustrates that Canada's sales are almost
wholly obtained via Reseller Sales. These graphical insights per item would not be
possible for the standard Power BI scatter chart. Specifically, the Internet Net Sales
and Reseller Net Sales measures could only be added as Tooltips, thus requiring the
user to hover over each individual bubble.

In its current release, the Impact Bubble Chart does not support the formatting of data
labels, a legend, or the axis titles. Therefore, a supporting text box can be created to advise
the user of the additional measures represented. In the top right corner of this visual, a text
box is set against the background to associate measures to the two bars and the size of the
bubbles.

Dot Plot by Maq Software
Just as the Impact Bubble Chart supports additional measures, the Dot Plot by Maq
Software allows for the visualization of up to four distinct dimension columns. With three
Axis fields and a Legend field, a measure can be plotted to a more granular level than any
other standard or custom visual currently available to Power BI. Additionally, a rich set of
formatting controls are available to customize the Dot Plot's appearance, such as orientation
(horizontal or vertical), and whether the Axis categories should be split or stacked.

In the following visual, each bubble represents the internet sales for a specific grouping of
the following dimension columns: Sales Territory Country, Product Subcategory,
Promotion Type, and Customer History Segment:

Dot Plot by Maq Software

Applying Custom Visuals, Animation, and Analytics Chapter 6

[320]

For example, one bubble represents the Internet Sales for the Road Bikes Product
Subcategory within the United States Sales Territory Country, which is associated
with the volume discount promotion type and the first year Customer History Segment.
In this visual, the Customer History Segment column is used as the legend and thus the
color of each bubble is automatically formatted to one of the three customer history
segments.

In the preceding example, the Orientation property is set to Horizontal
and the Split labels property under the Axis category formatting card is
enabled. The Split labels formatting causes the Sales Territory
Country column to be displayed on the opposite axis of the Product
Subcategory column. Disabling this property results in the two columns
being displayed as a hierarchy on the same axis with the child column
(Product Subcategory) positioned inside the parent column (Sales
Territory Country).

Despite its power in visualizing many dimension columns and its extensive formatting
features, data labels are currently not supported. Therefore, when the maximum of four
dimension columns are used, such as in the previous example, it's necessary to hover over
the individual bubbles to determine which specific grouping the bubble represents, such as
in the following example:

Four dimension columns per bubble of the Dot Plot visual

Applying Custom Visuals, Animation, and Analytics Chapter 6

[321]

If only three dimension columns are used, which is still a detailed grain,
then the lack of data labels is much less of a limitation. For example, the
Sales Territory Country and Product Subcategory columns could
be applied to the Axis category I and Axis category II field wells
respectively, and the promotion type column could be added to the
Legend. The two axis labels and the color of each bubble (per promotion
type) would visually indicate the three-column grouping each bubble
represents.

Animation and data storytelling
A top responsibility for many data professionals is the ability to convey their findings to
others in a clear and compelling fashion. Common scenarios for data storytelling include
recurring performance review meetings (for example, fiscal period close) and special project
or ad hoc meetings with senior managers and executives. For these meetings, the data
professional or team has already identified the insights to highlight, but must plan to
properly communicate this message to the specific stakeholders or audience.

Power BI animation features, including bookmarks described earlier in this chapter, provide
powerful support for data storytelling. In addition to the play axis available to the standard
Scatter chart visual, many custom visuals support animation features such as the LineDot
Chart and the Pulse Chart.

Play axis for scatter charts
The scatter chart is the only standard visual in Power BI Desktop which supports
animation. By applying a time series column to the scatter chart's Play Axis field, animated
playback and trace features are enabled. For example, a visual can be paused at a specific
point along the time series, allowing the user to provide additional context. The user can
also select one or multiple items which have been plotted (for example, product categories)
to display data points representing the previous time periods.

In the following visual, the user has paused the animation on the month of September via
the Play Axis and selected the icon associated with the Touring Bikes product
subcategory:

Applying Custom Visuals, Animation, and Analytics Chapter 6

[322]

Scatter chart with Play axis

With the Touring Bikes subcategory selected, a trace line appears connecting the latest
data point for this subcategory to its preceding data points. In this example, the user can
explain that Touring Bikes weren't introduced until May of 2017 (the first data point), but
by September was almost equal to the Road Bikes subcategory for both Online and
Reseller Sales. Additionally, the user can hover the cursor over the four preceding data
points representing May through August to provide the details for these months.

Date, number, and text columns can be used in the Play Axis for the
scatter chart. As per Chapter 3, Designing Import and DirectQuery Data
Models, the Sort By column property can be used to define a logical sort
order for text columns such as sorting a Month name column by a Month
number column.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[323]

Pulse Chart
The Pulse Chart custom visual, developed by Microsoft, provides both animation and
annotation features to support data storytelling. The Pulse Chart animates the value of a
single measure over time and pauses at dates associated with events to display pop-up
boxes of annotations describing these events. During this pause, which can also be applied
manually via playback buttons, other Power BI visuals on the same report page are filtered
by the event date. Additionally, a second measure can be visualized as a counter at the top
of the chart via the Runner Counter field.

In the following example, a year-to-date (YTD) online sales measure and four events with
annotations are plotted on a Pulse Chart:

Pulse Chart

Applying Custom Visuals, Animation, and Analytics Chapter 6

[324]

The YTD sales measure is visualized via the animated line (and dots) in
relation to the Y axis. For this example, a YTD customer count measure
has also been applied to the Runner Counter field input. With the visual
paused on the shipping promotion event of October 12, 2017, the Y axis
indicates a sales value of approximately $8.00 M, and the Runner Counter
displays a count of 8,344 customers. Alternatively, the same measure can
be applied to both the Values and Runner Counter fields, thus providing
the precise value at each pause in addition to the trend via the line.
Examples of defining YTD and customer count measures are included in
Chapter 4, Developing DAX Measures and Security Roles.

If event annotations are not needed, only the Timestamp and Values input fields are
required to render the Pulse Chart. Event Title, Event Description, and Event Size
input fields are available to display events and annotations as pop-up boxes. Additionally,
the formatting pane provides several cards for defining the look and behavior of the Pulse
Chart, including the size and color of the pop-up textboxes and the speed of the animation.
For example, white text at size 14 can be formatted against a black fill background and the
pause at each event can be set to four seconds.

To support the Pulse Chart in the preceding example, a separate table of events has been
added to the dataset as per the following image:

Events table

The Event Date column is used to define a one-to-many relationship from the Events
table to the Date dimension table with single direction cross-filtering. The Date column
from the Date dimension table is applied to the Pulse Chart's Timestamp input field, and
the Event Title and Event Description columns from the events table are applied to
their respective input fields.

Applying Custom Visuals, Animation, and Analytics Chapter 6

[325]

The formatting options for the X and Y axes of the Pulse Chart are much
less robust than the standard line chart. As one example, the Y Axis
gridlines cannot be disabled. Gridlines are not visible in the preceding
example purely because the axis color was set to match the background
color. Additionally, the second and later lines of event descriptions in pop-
up boxes are displayed without spaces. Report authors can adjust the
width of pop-ups or reduce the length of event descriptions to account for
this.

Summary
This chapter reviewed many advanced analytical and visualization features that are
available to deliver powerful and compelling report content. This included the design of
drillthrough report pages, the configuration of custom navigation controls via Bookmarks,
and advanced analytics such as predictive forecasting with the Analytics pane.
Additionally, the ArcGIS Map visual for Power BI and custom visuals was introduced as a
means to support specific use cases and to extend solutions beyond the capabilities of
Power BI's standard visuals.

The next chapter utilizes the report visualizations and design patterns described in this
chapter and the previous chapter to create Power BI dashboards. This includes simple,
single dashboard projects and more elaborate multi-dashboard architectures representing
different levels of detail. Although some users may only view or interact with Power BI via
dashboards, the quality and sustainability of this content, and particularly the ability to
analyze the supporting details, is largely driven by the report design concepts and features
from Chapter 5, Creating and Formatting Power BI Reports.

7
Designing Power BI

Dashboards and Architectures
This chapter leverages the dataset and report development features and concepts from prior
chapters to plan and develop Power BI dashboards. Alternative dashboard architectures are
described, including an organizational methodology that seeks to align business teams at
various levels within an organization to a common set of corporate KPIs. The design and
implementation of these dashboards, including layout, custom links, and mobile-optimized
dashboards are described in this chapter. Additionally, other top features and capabilities of
dashboards are reviewed, including live report pages and the integration of content from
other report types, including SQL Server Reporting Services (SSRS) paginated reports and
Microsoft Excel workbooks.

In this chapter, we will review the following topics:

Dashboards versus reports
Dashboard design
Multi-dashboard architectures
Dashboard tiles
Custom links
Live report pages
Mobile-optimized dashboards
SQL Server Reporting Services integration
Excel Workbook integration

Designing Power BI Dashboards and Architectures Chapter 7

[327]

Dashboards versus reports
Executives and high-level stakeholders require a holistic yet streamlined view of the top
metrics, or Key Performance Indicators (KPIs), established by their organization. While
Power BI reports deliver a rich, self-service analytical experience, optionally at a very
detailed level, Power BI dashboards provide an integrated and simplified consumption
layer. From a technical architecture standpoint, Power BI dashboards are exclusive to the
Power BI online service and are primarily composed of tiles representing visuals from one
or many reports. Although each Power BI report is limited to a single source dataset, a
dashboard's tiles can represent multiple datasets from highly disparate sources to help
provide a 360 degree view on a single canvas.

To less experienced users and BI team members, the terms and capabilities associated with
dashboards and reports can be misunderstood.

For example, the data-driven alert is exclusive to Power BI dashboards, while embedding in
SharePoint online is specific to reports. More fundamentally, the user experience with slicer
selections, bookmarks, and cross-highlighting available in reports and Power BI Desktop is
not available in dashboards, exclusive of pinned live report pages.

Although several capabilities, such as email subscriptions and printing, are common to
reports and dashboards, BI teams are well served to design dashboards and reports
according to their distinct roles in Power BI. For example, a dashboard should not contain
granular details or complex visuals, but rather the essential metrics describing the
stakeholder's area of responsibility or influence.

The following table compares dashboards to reports across 19 capabilities:

Capability Dashboard Report

Visualization pages One page One or multiple pages

Authoring
environment Power BI service Power BI Desktop and Power BI

service

Viewing
environment

Power BI service and Power BI mobile
apps

Power Desktop, Power BI
service, and Power BI mobile
apps

Pinning
Can pin existing dashboard tiles to
other dashboards in the current
workspace

Can pin report visualizations as
tiles in dashboards, and can also
pin report pages as tiles in
dashboards

Designing Power BI Dashboards and Architectures Chapter 7

[328]

Email
subscriptions Can subscribe to a dashboard Can subscribe to a report page or

multiple report pages

Filtering Can only filter or interact with live
report page tiles

Can filter, cross-highlight, and
slice

Data alerts Can configure data-driven alerts for
standard KPI, card, and gauge tiles Can’t set alerts on report visuals

Customization

Can alter layout, tile size, names, and
links, and also the data and
visualization types are read-only
.

Can control visual types,
visualization data field inputs,
and report formatting in Edit
mode of the Power BI service and
Power BI Desktop

Natural language
queries (Q and A)

Available for dashboards based on
import mode Power BI datasets and
Live connections to SSAS Tabular
Models.Not available for DirectQuery
datasets

Currently available as a preview
in Power BI Desktop

Visibility to data
detail Can export data for a dashboard tile

Can export both summarized
and underlying data, also have
Show Data option to view data
of visual in a tabular format.

Printing Can print currently-selected
dashboard Can print current report page

Featured and
favorites

A dashboard can be set as featured
and as a favorite. A user's default
landing page in Power BI is a featured
dashboard.

Reports can only be set as
favorites

Publish to web Not supported—exclusive to reports
All pages of a report can be
published online for public
access

Embed in
SharePoint Not supported—exclusive to reports

A report page can be embedded
in a SharePoint online site page
via the Power BI web part

Mobile optimized Can optimize dashboards for phones Can optimize reports for phones

Create visuals
Limited to adding tiles containing
text, image, video, web content, and
streaming data

Can create many report visuals
using both standard and custom
visuals

Designing Power BI Dashboards and Architectures Chapter 7

[329]

Dataset sources
A dashboard can contain tiles pinned
from Excel Workbooks, SSRS, and
Power BI datasets

A Power BI report exclusively
creates Power BI visuals

Datasets The tiles on a dashboard can reflect
one or multiple datasets

A Power BI report is limited to a
single source dataset, however,
this dataset can represent the
integration of multiple data
sources

Data caching
Dashboard tiles store and represent
cached query results, and the cache is
updated on a schedule

Power BI reports generate
queries against their source
dataset when opened and based
on user interactions with the
visuals

Per the preceding table, data-driven alerts are exclusive to Power BI dashboards in the
Power BI service. Data alerts and their corresponding notifications are not available to
Power BI reports, including reports published to the Power BI Report Server. The ability to
embed custom alert rules and the deep integration of data alerts with the Power BI mobile
apps is a top reason to leverage dashboards in the Power BI service. Data alerts and email
subscriptions to reports and dashboards in the Power BI service is reviewed in Chapter 11,
Creating Power BI Apps and Content Distribution.

The subsequent sections of this chapter describe many core dashboard features and
capabilities including dashboard tiles, mobile optimizations, and alternative sources,
including Excel and SSRS.

Dashboard design
The design of dashboards and their relationship to both reports and other dashboards is
critical to provide a consistent and robust package of information assets for an organization.
Report authors and BI teams can use visual selection, layout, and supporting tiles to
maximize the value and usability of dashboards.

Designing Power BI Dashboards and Architectures Chapter 7

[330]

Report authors are best positioned to produce initial drafts of dashboards based on their
knowledge of the most utilized or valued report visuals. Ultimately, a well-designed
dashboard delivers both at-a-glance visibility to the most important metrics for the
consumer as well as accessibility to supporting and related details.

Particularly for executives and senior management, the dashboard should support all
essential business questions and metrics, thus not requiring any user clicks. If an executive
or senior manager regularly has to access underlying reports, make filter selections on live
pages, or utilize several dashboards to answer core questions, the architecture and scope of
the Power BI app should be reconsidered.

The following dashboard leverages the Power KPI custom visual from Microsoft, described
in Chapter 6, Applying Custom Visuals, Animation, and Analytics, and custom images to
organize the dashboard by Sales Territory Group:

Global sales dashboard

Designing Power BI Dashboards and Architectures Chapter 7

[331]

In this example, three KPIs are displayed at a global or corporate level and for each of the
three sales territory groups. The Power KPI custom visual is chosen for these metrics as it
presents greater detail and context than other related visuals, such as the standard KPI. For
example, the Total Net Sales vs. Plan tile at the global level provides the actual value
for the latest month ($2.5M for 2017-Nov) as well as the YOY growth for this month (2.3%)
in addition to the ability to hover over points on the line to see individual values for
particular months.

Distinct line styles are applied to each of the three lines displayed by the
Power KPI visuals. Solid, dotted, and dot-dashed line styles are associated
with the net sales, net sales plan, and net sales (PY) lines, respectively. The
solid style of the net sales line, the actual KPI value, helps to highlight this
line relative to the two other less important lines. The distinct line styles
are particularly helpful when the tile is being viewed in focus mode or the
visual is being viewed with greater space in a report.

The user, such as the vice president of global sales, can quickly monitor overall performance
relative to plan via the KPI symbol icons in the top-right corner of the tiles (green caret up,
red caret down). Additionally, two standard KPI visuals and a 100% stacked column chart
have been added specific to the global level to deliver YTD sales and margin performance
information and the recent mix of reseller and internet sales channels.

To view the details of a dashboard tile, such as the individual monthly values of one of the
smaller tiles, a user can open the tile in focus mode. Focus mode fills the entire screen with
the single visual and thus makes it easy to perceive differences in the length and shape of
columns and lines, respectively. Focus mode can be accessed by hovering over the top-right
corner of a dashboard tile and then clicking the more options ellipsis (three dots) command.
The following example exposes the more options available for the Total Net Sales vs.
Plan dashboard tile:

Dashboard tile options

Designing Power BI Dashboards and Architectures Chapter 7

[332]

The Open in focus mode, Export to Excel, and Manage alerts options (if
applicable for the visual) are also available when the dashboard is being
viewed in the full screen mode. The other tile options (Edit details, Pin
tile, Delete tile) are not available in full screen mode.

The 12 Power KPI dashboard tiles, combined with focus mode, provide
the user with a simple interface for a robust suite of information. For a
user at the global level of the sales organization, this level of detail may be
more than sufficient for most scenarios, precluding the need to access
other dashboards or reports.

Most importantly, the same three KPIs (Total Net Sales vs. Plan, Reseller Net
Sales vs. Plan, Internet Net Sales vs. Plan), are also featured in separate,
dedicated dashboards for each sales territory group.

For example, the total net sales visual for North America indicating a miss to plan of -2.3%
is also displayed in a North America sales dashboard. Simply clicking this tile on the
Global sales dashboard opens the North America dashboard, providing several additional
visuals specific to this Sales Territory Group. Additionally, the North America sales
dashboard follows the same structure as the Global sales dashboard and thus contains sets
of tiles dedicated to the United States and Canada.

If necessary, a third layer of dashboards could be created for each country within each sales
territory group, thus enabling even greater dashboard navigation flexibility (for example,
Global | Europe | Germany). With the same Power BI dataset being used for all reports
and dashboards in the app workspace, the row-level security roles described in Chapter
4, Developing DAX Measures and Security Roles, can ensure users do not have access to KPIs
outside the scope of their assigned role. Additional details and considerations for planning
multiple dashboards and creating links between dashboards and reports are described later
in this chapter.

Visual selection
Although any report visual can be pinned to a dashboard, only the visuals that either align
with a corporate standard or that represent a critical insight or starting point should be
represented on dashboards. Additionally, dense or relatively complex visuals, such as
tables, matrices, and scatter charts should rarely be pinned to dashboards. Per the Global
sales dashboard in the previous section, KPI visuals with built-in conditional formatting
logic and supporting context are usually the best choices for dashboards.

Designing Power BI Dashboards and Architectures Chapter 7

[333]

For example, if a table or matrix is considered to be the most valuable visual within a
report, a KPI or card visual could be created targeting, but summarizing, the same business
question. The KPI or card visual would be more intuitive on the dashboard and single-click
access to the underlying report with the detailed table or matrix could be retained.
Additionally, the KPI or card visual would support a data-driven alert as well.

The visual in the top-left corner of a report page, the user's logical starting
point for understanding the report, is often a good candidate to be pinned
to a dashboard. Every report should have at least one summary level
visual (for example, card, KPI, gauge) aligned to the primary business
question or purpose of the report.

Additionally, given that dashboards are limited to a single page (one canvas), visuals that
provide supporting context, such as the standard KPI and the Power KPI custom visuals,
should generally be favored over simple cards and gauges. The additional details provided
by these visuals may not be visible in small dashboard tiles but are very valuable if
additional space is allocated to the tile and when tiles are accessed in focus mode.

In the following example, the Total Net Sales vS. Plan KPI dashboard tile at the
Global level (top set of tiles) is accessed in focus mode:

Focus mode of dashboard tile – Power KPI custom visual

Designing Power BI Dashboards and Architectures Chapter 7

[334]

In the preceding scenario, the user accessed focus mode by hovering over the top-right
corner of the visual, clicking the More options command that appears, and then selecting
Open in focus mode. For example, as perhaps the most important tile on the dashboard,
the user could observe the (3.4%) miss to the sales plan (via the red down arrow KPI icon)
and choose to open this tile in focus mode. Given the full pane of additional space provided
by focus mode, the supporting metric lines of the Power KPI visual and the individual data
points of those lines are exposed to the user.

Focus mode is also available in reports via the Focus mode icon in the top-
right corner of each report visual. This can certainly be useful as well, but
remember, per the dashboards versus reports table shared earlier in this
chapter, that opening reports always results in new queries being
generated. With the exception of streaming dataset tiles, dashboards tiles
store the cached results of prior queries. Therefore, leveraging focus mode
in dashboards, and dashboards generally (rather than reports), to address
a significant portion of user analysis needs can reduce the query workload
on the underlying dataset and resources (for example, the Power BI
Premium capacity) and help ensure a more optimal user experience.

The Power KPI visual in the preceding example automatically adjusts to the additional
space of focus mode to display data labels for all months. The distinct line styles (solid,
dotted, dot-dashed) of the actual net sales, sales plan, and prior year's sales measures are
also more transparent to the user. Additionally, the three measures (net sales, sales plan,
prior year sales) and the two variances (actual versus plan, actual versus prior year) are
displayed as tooltips via hovering over the data points.

These additional data details, formatting options, and other capabilities are not available in
the standard KPI visual and therefore, although the Power KPI visual requires additional
configuration, it ultimately delivers more analytical value and serves to reduce the need for
users to search for additional visuals and reports to resolve their questions. However, only
the standard KPI, Card, and Gauge visuals are supported for data alerts so this could be a
factor in choosing the standard KPI. Additional details on configuring data alerts in the
Power BI service are included in Chapter 11, Creating Power BI Apps and Content
Distribution.

Designing Power BI Dashboards and Architectures Chapter 7

[335]

Layout
The position and size of dashboard tiles should align with the primary purpose or priorities
of the dashboard and standard visual comprehension techniques. For example, the Total
Net Sales vs. Plan KPI at the global level is the most important tile of the Global sales
dashboard. Therefore, this tile is positioned at the top-left corner of the dashboard and
twice as much width is allocated to it relative to reseller sales and internet sales tiles. Via
this layout, the user can naturally start at the top-left of the dashboard and navigate to the
right (Reseller and Internet Sales) and down (North America, Europe, Pacific) to
add greater context to the Total Net Sales vs. Plan KPI.

Another top consideration for layout is to maximize the available canvas space. Unlike
reports, which can contain multiple pages and bookmarks, a dashboard is always a single
canvas of tiles. Therefore, although a dashboard should not contain empty space, users
should not have to scroll vertically or horizontally to view dashboard tiles. Given the
limited space, typically a compromise must be made between larger tile sizes for more
important visuals versus the inclusion or exclusion of tiles for less essential visuals. As one
example, the trailing six month channel mix tile (Stacked Column chart) in the Global sales
dashboard could be removed thereby allowing the internet and reseller net sales KPI visuals
to be enlarged to the same size as the total net sales KPI tile.

Navigation pane
Additional space for dashboard tiles can be obtained by hiding the navigation pane. To
toggle between hiding or showing the navigation pane, click the three lines above the
Favorite icon (star symbol), per the following image:

Hidden navigation pane

Designing Power BI Dashboards and Architectures Chapter 7

[336]

URL parameters can also be used to open dashboards with the navigation pane hidden by
default. In the following example, a string of text from the question mark through the true
property has been appended to the end of the URL for a dashboard:

https://app.powerbi.com/groups/abc123/dashboards/d8465?collapseNavigation=t
rue

The modified URL could be shared with users such that users of the dashboard aren't
required to click on the navigation pane icon.

Full screen mode
Another technique for obtaining more space on dashboards is to utilize the full
screen mode. The full screen mode can be accessed via the diagonal arrow icon in the top
menu bar next to the notifications text box icon, per the following image:

Full screen mode icon

The full screen mode removes all chrome including the the navigation pane, Power BI
menus, and the bars associated with the web browser (for example, tabs, address bar,
bookmarks bar). This view alone substantially increases the available space for larger tiles
or a higher volume of dashboard tiles. If certain dashboard tiles are still not visible in the
full screen Mode, a Fit to Screen option is available in the lower-right corner via the four
diagonal arrows, per the following image:

Fit to Screen

Designing Power BI Dashboards and Architectures Chapter 7

[337]

The Fit to Screen option, exclusive to the full screen mode, is also referred to as TV mode
and is frequently used to to display Power BI dashboards on large monitors in corporate
hallways. Additionally, URL parameters can also be used to access dashboards in full
screen mode by default. In the following example, a text string from the question mark
through the true property has been appended to the URL of the dashboard such that the
dashboard will be opened in full screen mode:

https://app.powerbi.com/groups/abc123/dashboards/d8465?chromeless=true

Ultimately, BI teams must align the layout of tiles with the use cases for the dashboard and
the preferences of the stakeholders.

For example, if a dashboard is almost exclusively going to be used in full screen mode, a
layout that requires some level of scrolling to view all tiles outside of full screen mode may
be acceptable. Alternatively, if users will regularly access the dashboard via the browser on
their laptops or desktop monitors, they may not want to have to collapse the navigation
pane or view the dashboard in full screen mode to see all the tiles. As the position and size
of dashboard tiles can be easily adjusted via drag-and-drop handles within the Power BI
service, multiple iterations of dashboard layouts can be quickly evaluated.

Supporting tiles
Custom images can be pinned from reports to dashboards to help structure and organize
dashboard tiles. In the Global sales dashboard described earlier, four custom images were
used to distinguish the global tiles from those associated with each of the three sales
territory groups (North America, Europe, Pacific). The position and size of the supporting
tiles help to clarify the priority and scope of the dashboard.

For example, without any knowledge of the dashboard's title, the top position of the global
tile and the additional space allocated to the global section of the dashboard helps to
confirm that the dashboard is primarily focused on the global level.

Supporting tiles used for organizational purposes in dashboards, such as those in the
Global sales dashboard, can be created with basic shape and image tools in Office and
Windows applications, such as Excel, PowerPoint, Paint, and Paint 3D. Specifically, a
rectangle shape can be inserted into an Excel worksheet or a PowerPoint slide and the
necessary text (for example, North America) and fill background color can then be applied.
Most importantly, the dimensions of the formatted shape can be set in accordance with the
4 X 3 aspect ratio or a multiple of this ratio such that the image clearly fills the space of a
dashboard tile.

Designing Power BI Dashboards and Architectures Chapter 7

[338]

For example, the three sales territory group shapes are created with a width and height of
1.4" and 1.05" (4 X 3), respectively. The global shape, however, has a width and height of
1.4" and 2.1" (4 X 6), respectively, per the following image:

Support tile shapes

Once the shapes have been created with the proper formatting and size ratios given their
role on the dashboard, they can be saved as PNG files (images) with image-editing
applications, such as MS Paint and Paint 3D for Windows.

As images, the three sales territory groups have 136 X 102 pixel
dimensions (4 X 3). The global image has 136 X 203 pixel dimensions (4 X
6).

Finally, the images can be inserted into a Power BI report that will be published in the same
app workspace of the dashboard. To further eliminate any white space in the dashboard
tiles, the Scaling property of the image can be set to Fit, per the following example:

Image scaling property: Fit

With the Scaling property for all images set to Fit, the report can be published to the Power
BI service and each image can be pinned to the dashboard. Like all tiles in Power BI
dashboards, the diagonal arrow handles in the lower-right corner of each tile containing an
image can be used to change the size of the tile. Additionally, a tile can be selected and
dragged to a different location on the canvas.

Designing Power BI Dashboards and Architectures Chapter 7

[339]

Custom date filters
For this package of dashboards, the requirement was for each KPI visual to include the last
12 completed months. Additionally, the sales channel mix visual was to display the last six
completed months. These two filter conditions ensure that only complete months are
included and help to focus the dashboard on recent trends.

The exclusion of the current month can be implemented via the Calendar Month Status
described in the Date dimension view section of Chapter 2, Connecting to Sources and
Transforming Data with M. However, to support the last 12 completed periods condition, an
additional dynamic column (Trailing 3 Calendar Month Periods) was added to the
SQL view of the date dimension. These two columns can be utilized as page-level filters in
the reports containing the KPI visuals, per the following image:

Page-level filters: dynamic date columns

Per the preceding page-level filter condition, the Trailing 3 Calendar Month Periods
column contains eight custom trailing values representing 3-month intervals relative to the
current month. For example, when the current month is December of 2017, the Trailing
1-3 Calendar Months value includes September, October, and November of 2017.
Selecting four of the values as page-level filters ensure that each visual on the given report
page will not contain more than the last 12 completed months.

Designing Power BI Dashboards and Architectures Chapter 7

[340]

The DATEDIFF() T-SQL function and the standard CURRENT_TIMESTAMP() SQL function is
utilized within a case expression to produce the Trailing 3 Calendar Month Periods
column. The logic for this additional column is embedded in the SQL view object accessed
by the date dimension table of the Power BI dataset, per the following example:

CASE
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) = 0
 THEN 'Current Calendar Month'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(1,2,3)
 THEN 'Trailing 1-3 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(4,5,6)
 THEN 'Trailing 4-6 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(7,8,9)
 THEN 'Trailing 7-9 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(10,11,12)
 THEN 'Trailing 10-12 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(13,14,15)
 THEN 'Trailing 13-15 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(16,17,18)
 THEN 'Trailing 16-18 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(19,20,21)
 THEN 'Trailing 19-21 Calendar Months'
 WHEN DATEDIFF(MONTH,D.[Date],CAST(CURRENT_TIMESTAMP AS date)) IN
(22,23,24)
 THEN 'Trailing 22-24 Calendar Months'
 ELSE 'Older Periods'
 END AS [Trailing 3 Calendar Month Periods]

The Current Calendar Month value of the Trailing 3 Calendar
Month Periods column is not visible in the page-level filter due to the
existing filter on the Calendar Month Status column (is not Current
Calendar Month). The Trailing 3 Calendar Month Periods
column has also been used as a visual-level filter on the 100% stacked
column chart. For this visual, only the trailing 1 through 3 and trailing 4
through 6 values have been selected to display the last 6 completed
months.

Designing Power BI Dashboards and Architectures Chapter 7

[341]

The Date dimension view section of Chapter 2, Connecting to Sources and Transforming Data
with M includes additional details on the SQL view for the date dimension table. This
includes the WHERE clause (filter condition) and the Calendar Year and Calendar Month
Status columns. Filter conditions associated with the report, page, and visual-level filters
were described in the Report filter scopes section of Chapter 5, Creating and Formatting Power
BI Reports.

Multi-dashboard architectures
For small projects and the early iterations of an agile BI project, a single dashboard and a
few supporting reports may be sufficient. For many dashboard users, however, multiple
dashboards with their own distinct reports are needed to adequately reflect the broader set
of metrics they're responsible for. Both of these approaches, single dashboard, and multiple
dashboards are geared towards a specific stakeholder or group of consumers, such as the
vice presidents of sales group. Although these methodologies may meet the needs of their
intended users, a potential risk is a lack of coordination across teams.

For example, business units would reference distinct metrics included in their dashboard
and these metrics may not be included in the dashboards of senior managers or other
business units.

To promote greater consistency and coordination across groups of users, BI teams can
pursue an integrated, organizational dashboard architecture. In this approach, the same
metrics and KPIs considered strategic for the organization are available in multiple
dashboards specific to levels in an organizational hierarchy or distinct business units. The
Global sales dashboard, described in the Dashboard design section earlier, represents this
methodology as separate dashboards specific to individual sales territory groups that
would include the same KPIs as the global dashboard. This approach ensures that
dashboard tiles are relevant to the specific users and make it possible to analyze up and
down a natural organizational hierarchy. Additionally, a common dashboard layout with
integrated KPIs makes Power BI solutions much easier to manage with limited BI resources.

Designing Power BI Dashboards and Architectures Chapter 7

[342]

Single-dashboard architecture
In the following diagram, a single dashboard focused on Reseller Sales contains tiles
representing report visuals from four separate Power BI reports:

Single-dashboard architecture

By default, a user selection on any of the dashboard tiles opens the report page of the
underlying report. For example, a dashboard tile reflecting the percentage of bike sales
versus other product categories would be linked to the Reseller Product Mix report
and the specific page of this report containing the source visual.

Each Power BI report is based on a Live connection to the AdWorks Enterprise dataset.
As described in the Live connections to Power BI datasets section in Chapter 5, Creating and
Formatting Power BI Reports, leveraging this feature avoids the duplication of datasets since
each Power BI Desktop report file (PBIX) only contains the visualization layer (for example,
visuals, formatting). Although relatively simple to build and support, the single Reseller
Sales dashboard architecture provides both a summary overview of a diverse set of
essential metrics and visuals (represented as dashboard tiles) as well as an entry point to
reports containing the details supporting this dashboard. As described in the previous two
chapters, the Power BI reports could include multiple report pages of visuals related to the
dashboard and leverage interactive features, such as slicers and bookmarks, to enable users
to more easily explore these reports.

Designing Power BI Dashboards and Architectures Chapter 7

[343]

All of the content in this architecture - the dashboard, reports, and dataset
would be hosted in a single app workspace in the Power BI
service. Chapter 8, Managing Application Workspaces and Content explains
the role and configuration of app workspaces.

Multiple-dashboard architecture
In the following diagram, a Reseller Margin dashboard and a Reseller Margin
Trends report have been added to the solution described in the previous section:

Multiple-dashboard architecture

In this design, a visual from the Reseller Margin Analysis report has been pinned to
both the Reseller Sales and the Reseller Margin dashboards, per the preceding
diagram. This is not required but is recommended for usability such that users can maintain
context as they navigate between both dashboards. The new Reseller Margin Trends
report, built via a Live connection to the published AdWorks Enterprise dataset,
exclusively supports the Reseller Margin dashboard.

Designing Power BI Dashboards and Architectures Chapter 7

[344]

This architecture extends the scope of the solution to provide greater visibility to margin
metrics and trends not available via the single dashboard. For example, rather than
navigating through the multiple pages of the two reseller margin reports (Reseller
Margin Analysis, Reseller Margin Trends), users could access the Reseller
Margin dashboard for a more simplified dashboard experience. In addition to user
convenience and the limited scope of a single dashboard, utilizing dashboards and their
cached data helps to reduce the workload on the underlying dataset and resources.

Like the single dashboard architecture, all content (Dashboards, Reports,
Datasets) from this multi-dashboard architecture is included in the same
app workspace in the Power BI service. Given this common workspace,
each dashboard tile can be linked to a report or dashboard in the same
workspace. For example, the one margin-related tile on the sales
dashboard could be linked to the margin dashboard rather than the
default source report. The Dashboard tiles section later in this chapter
contains an example of configuring custom links.

Organizational dashboard architecture
In the following diagram, four dashboards contain corporate KPIs at the global level and for
the three sales territory groups:

Organizational dashboard architecture

Designing Power BI Dashboards and Architectures Chapter 7

[345]

Since the same KPIs or metrics are included in each of the four dashboards, users of these
dashboards are able to remain aligned with the same goals and can more clearly share their
findings and results across teams and levels in the organization. From the perspective of an
executive at the global level, the Global Sales dashboard provides an intuitive entry point
into the individual sales territory groups and potentially further layers, if necessary.

For example, the Europe Sales territory group missed the total net sales plan by 11.6% for
the month of November 2017, per the Global Sales dashboard described in the Dashboard
design section. The executive could simply click this tile to access the Europe Sales
dashboard to determine whether the sales miss was driven by a particular country (for
example, France, Germany, United Kingdom) and how European sales performed across
the online and reseller sales channels.

The following European sales dashboard follows the design (layout, visual selection) of the
Global sales dashboard:

Europe sales dashboard

Designing Power BI Dashboards and Architectures Chapter 7

[346]

The three tiles aligned at the top of the Europe sales dashboard are exactly the same tiles as
presented on the Global sales dashboard. The only difference is that the values are
formatted in thousands rather than millions, given the smaller numbers for several of the
European sales dashboard tiles. In this example, the executive interested in the -11.6% miss
to sales plan for November of 2017 could access the Europe sales dashboard with a single
click from the Global sales dashboard and determine that Germany and France were
responsible for the underperformance with misses of -15% and -19.8%, respectively.

The three tiles representing the second row of the Global and Europe sales dashboard (Net
Sales YTD versus Plan, Net Margin % YTD versus Plan, Sales Channel Mix) do
not have to be the same across the dashboards since these are not the approved KPIs for the
organization. Maintaining a 1:1 match in terms of tiles across the dashboards can be
beneficial as this allows users to navigate between dashboards for further analysis of any
given tile. However, in many scenarios, there are metrics or visuals that are more pertinent
to the given business unit and users may rarely need to analyze non-KPIs across multiple
dashboards.

Per the organizational dashboard architecture diagram, a set of three dedicated European
sales reports support the Europe sales dashboard. The pages of these reports may provide
sufficient detail or, depending on the organizational structure and requirements, an
additional layer of dashboards dedicated to each sales territory country could be added.
Other forms of the organizational dashboard architecture include dedicated dashboards by
product group, such as Bikes, Clothing, and Accessories in the case of Adventure
Works. Ultimately, these implementations serve to align the different business units on
common corporate goals while also providing a rich set of insights relevant to each business
unit or organizational level.

Multiple datasets
A single dataset, AdWorksEnterprise, was utilized to support all reports and dashboards
in each of the three dashboard architectures reviewed in the previous sections. This level of
integration is not technically necessary and there are valid scenarios where multiple
datasets could be used in the same Power BI solution and even by the same dashboard.
However, additional or multiple datasets can quickly create problems due to separate data
refresh processes, separate data source dependencies, and separate data security rules to
implement.

Designing Power BI Dashboards and Architectures Chapter 7

[347]

Additionally, version control issues can arise as each dataset may include differences in the
structure and definitions of tables common to both datasets. Moreover, the integration of
visuals from the separate dataset on a dashboard may be insufficient to support analytical
requirements.

In many cases, business users eventually need to analyze the data stored
in separate datasets in the same report. For example, viewing dashboard
tiles based on shipment and sales reports may be a helpful starting point
but ultimately a user will need to filter both tables by product category,
date, department, and other dimensions common to both business
processes. A Power BI report is always limited to a single dataset as its
source and thus an integrated dataset is always required whenever cross-
analysis is required.

As one use case for multiple datasets, an organization may not have a particular data
source, such as an Oracle database, integrated into its data warehouse system (for example,
Teradata) but still wish to provide essential visualizations of this data in Power BI to
supplement other reports and dashboards. In this scenario, a Power BI dataset could be
built against the Oracle database, and reports utilizing this dedicated dataset could then
support one or multiple dashboards. Once the necessary data warehouse integration was
completed, the dedicated dataset could be retired and its reporting replaced with new
reports based on an Analysis Services model (which uses Teradata as its source) that
supports other Power BI reporting content for the organization.

The import versus DirectQuery dataset decision described earlier in this
book significantly impacts the need for multiple datasets. For example, if
the default import mode is used, a BI team could choose to load the
separate data source (for example, Oracle) into the same dataset
containing data from Teradata or another source. If a DirectQuery model
was created, however, this model would be limited to its own source and
database thus implying a separate dataset to support the Oracle database
source.

In other scenarios, a dataset is chosen (or was already implemented) for one or a few
business processes that aren't closely related to other business processes. For example, one
dataset was built to include sales- and marketing-related data, while a separate dataset
includes inventory and shipment data. The reasoning for this isolation may have been that
the users of each dataset don't need access to the other dataset or that a large, integrated
dataset would be complex to develop and use.

Designing Power BI Dashboards and Architectures Chapter 7

[348]

For example, it's not uncommon for datasets with multiple fact tables to require hundreds
of DAX measures and Power BI Desktop currently doesn't support display folders or
perspectives, such as Analysis Services, to help simplify the user interface. Additionally, if
the Power BI Premium capacity is not available and Power BI datasets are used, the 1 GB
file limit could force a team to utilize separate Power BI files to store the required data.

In general, corporate BI projects should limit the use of multiple datasets for the reasons
described and the long-term value of a centralized data store. However, in environments
lacking a data warehouse and other scalable resources, such as an Analysis Services
instance or Power BI Premium capacity, multiple datasets can be considered as an option
and potentially the only option to support one or multiple dashboards in the same Power BI
solution.

Dashboard tiles
Most dashboard tiles are created in the Power BI service by pinning a visual, image, or
shape from a report to a new or existing dashboard in the same app workspace. However,
dashboard tiles can also be created by adding a tile directly from the dashboard itself and
by pinning from an Excel Workbook or an SSRS report.

With a report open in the Power BI service, hovering over the top-right corner of a visual
exposes the Pin visual icon, per the following image from the Global Reseller Sales
report:

Pin visual icon for report visual

Designing Power BI Dashboards and Architectures Chapter 7

[349]

Report visuals can be pinned to dashboards from both the Reading view and the Editing
view. The preceding image is from the Reading view, but clicking the Edit report button
next to the File and View drop-downs menus opens the Editing view. Reports generally
open by default in the Reading view, and the Editing view is only available to the user who
created the report or members and admins of the app workspace for the report, such as
AdWorks Enterprise Sales in this example.

The following URL from MS Docs provides a complete comparison of the functionality
differences between the Reading view and Editing view for Power BI reports http:/ /bit.
ly/2HztVsY.

Power BI Desktop is always in the Editing view and offers more report-
editing functionality than the Editing view in the Power BI service, such
as the ability to write DAX-measure expressions scoped to the specific
report. Additionally, since reports created in the Power BI service cannot
be downloaded as PBIX files, almost all report creation and edit activities
occur in Power BI Desktop. Dashboards, workspaces and all content
distribution options, such as Power BI apps are configured in the Power BI
service, described in later chapters.

Once pinned to the dashboard, several options are available for configuring tiles depending
on the type of tile and the content it contains. In the Global and Europe sales dashboards
described in previous sections, for example, a subtitle was added to each tile (for example,
France) and custom links were applied to allow direct navigation from the Global
dashboard to the Europe dashboard.

SSRS 2016, and later versions, support integration with the Power BI
service. Once integration has been configured in the Report Server
Configuration Manager, certain SSRS report items, such as charts and
maps, can be pinned to Power BI dashboards. A reporting services
subscription is automatically created for pinned report items to manage
the data refresh of the dashboard tile.

The Power BI publisher for Excel add-in, available for Excel 2007 and later,
allows users to pin Excel ranges and objects, such as pivot tables and
charts, directly from Excel workbooks to dashboards. This add-in includes
the ability to update pinned items and to connect to published datasets in
the Power BI service to create pivot-table Excel reports. Additionally,
ranges within Excel workbooks uploaded to the Power BI service can also
be pinned to dashboards.

http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY
http://bit.ly/2HztVsY

Designing Power BI Dashboards and Architectures Chapter 7

[350]

The details of creating SSRS and Excel-based dashboard tiles is beyond the
scope of this chapter. However, several examples of these integrations
were included in the Microsoft Power BI Cookbook (https://www.packtpub.
com/big- data- and- business- intelligence/ microsoft- power- bi-
cookbook). Additionally, the Power BI Report Server, which includes the
full SQL Server Reporting Services functionality, is described in Chapter
10, Deploying the Power BI Report Server.

Dashboard tiles can be thought of as snapshots of a specific visual and filter context. When
a visual is pinned from a report to a dashboard, the specific filter context (for example,
slicers, page-level filters), visualization, and formatting at that time are captured by the
dashboard. Subsequent changes to the report, such as a modified filter or a different
visualization type, are not reflected by the dashboard tile. The dashboard tile will, however,
continue to reflect the latest data refreshes of the underlying dataset. Additionally, by
default, the dashboard tile will continue to be linked to the report from which the visual
was pinned.

To maintain the synchronization between report visuals and dashboard tiles, changes to
reports that impact the pinned visuals require the updated report visual to be pinned again.
The existing dashboard tile, reflecting the original filter context and visualization, can be
deleted. One exception to the snapshot behavior of dashboard tiles is live report pages, as
described later in this chapter.

One exception to the snapshot behavior of dashboard tiles is live report
pages. When an entire report page has been pinned as a single tile to a
dashboard, any changes to the report page are automatically reflected on
the dashboard as well. The Live report pages section later in this chapter
includes additional details and an example.

Tile details and custom links
Custom links are an important component of multi-dashboard architectures, and
particularly the organizational dashboard architecture described in the previous section. In
the absence of custom links, clicking a dashboard tile opens the report page from which the
visual was pinned to the dashboard. Custom links allow BI teams to take control of the
navigation experience and enable users to navigate directly to another dashboard with
related information or even to an external site, such as a team site on SharePoint Online.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Power BI Dashboards and Architectures Chapter 7

[351]

Tile details can be accessed by hovering over the top-right corner of a dashboard tile,
clicking the ellipsis, and then selecting Edit details. In the following image from the Tile
details window, a Subtitle (Europe) is added to one of the Total Net Sales vs. Plan
KPI tiles:

Tile details

Additionally, per the preceding Tile details image, the Set custom link property has been
enabled and the Europe Sales (dashboard) has been selected for the target of the link.
Clicking Apply at the bottom of the dialog (not included in the preceding screenshot)
confirms the selection. Different options are available in the tile details window for widgets
added directly on the dashboard (not pinned), such as text boxes and images, per the
following section.

Designing Power BI Dashboards and Architectures Chapter 7

[352]

Images and text boxes
In addition to pinning custom images with text, as described in the Supporting tiles section,
it may be necessary to add supporting widget tiles directly on the dashboard. These
widgets, created via the Add tile icon above each dashboard, can include web content,
images (via URL), text boxes, video, and real-time data.

The following three tiles represent the video, image, and text box widgets created via the
Add tile functionality:

Image and text box tiles

The tile details for the video and image flag include a required URL input box to reference.
For the video, the URL must reference either YouTube or Vimeo. Other common tile details
can be configured as well, including title, subtitle, and a custom link. Likewise, the video
widget tile includes a required video URL to either Youtube or Vimeo (https://vimeo. com/
210508392).

The text box tile supports common text formatting options as well as hyperlinks, per the
following image:

https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392
https://vimeo.com/210508392

Designing Power BI Dashboards and Architectures Chapter 7

[353]

In the preceding text box, hyperlinks are provided to IS Support, a company data and
analytics site, and a data governance site. A common text box with essential links to
documentation and support can be applied to all corporate BI-supported dashboards.

SQL Server Reporting Services
SSRS 2016, and later versions as well as the Power BI Report Server, supports integration
with the Power BI service. Once integration has been configured between the on-premises
report server and the Power BI tenant, certain SSRS report items, such as charts and maps,
can be pinned to Power BI dashboards. Additionally, a reporting services subscription is
automatically created for pinned report items, allowing for report server administrators to
manage the data refresh schedule of the dashboard tile.

In the following image of the Report Server Configuration Manager, a Power BI Report
Server has been configured:

Power BI integration with Power BI Report Server

Designing Power BI Dashboards and Architectures Chapter 7

[354]

In the preceding image, the Power BI Report Server (PBIRS) instance installed on the
ATLAS server has been configured for integration with the Power BI service. The same
Power BI integration is available for SQL Server Reporting Services 2016 and 2017 via the
same interface in the Report Server Configuration Manager. The following documentation
includes all the requirements for integration with the Power BI service as well as technical
details on the integration and pinning process http:/ /bit. ly/2CnCkOU.

As described in Chapter 10, Deploying the Power BI Report Server, the
Power BI Report Server includes all the functionality of the SSRS,
including paginated (RDL) reports, report subscriptions, folder security,
and the reporting services web portal. Power BI Report Server, however,
provides several additional features and benefits, with the ability to view
and interact with Power BI reports (PBIX files) topping this list.

In the following image from the Power BI Report Server web portal, a paginated (RDL)
report containing a map has been opened:

Pin to Power BI icon in Power BI Report Server

http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU
http://bit.ly/2CnCkOU

Designing Power BI Dashboards and Architectures Chapter 7

[355]

Selecting the Pin to Power BI Dashboard icon in the top-right window prompts the user to
select the specific report item to pin. In this report, the map is selected and this launches the
following dialog for identifying the dashboard in the Power BI service as well as defining
the refresh schedule of the tile:

Pin SSRS item to Power BI Dashboard

In this example, the map is pinned to the Customer Distribution dashboard in the
Corporate Sales app workspace. The Daily, Hourly, and Weekly tile refreshes can be
configured via the Frequency of updates drop-down menu and this setting defines the
report subscription supporting the tile. Report subscriptions can be managed via the My
Subscriptions (Settings | My Subscriptions) interface on the Reporting Services web
portal.

App workspaces replaced group workspaces in 2017 and are utilized by
Power BI Pro users to create and manage content. App workspaces and
related topics (for example, version control) are explained in Chapter 8,
Managing Application Workspaces and Content.

Designing Power BI Dashboards and Architectures Chapter 7

[356]

Unlike visuals from Power BI reports, which can only be pinned to dashboards in the
workspace of the given report, SSRS report items can be pinned to any dashboard in any
workspace. In the following image from the Power BI service, the dashboard tile reflecting
the pinned SSRS report item has been moved and sized to the top-left corner of the canvas:

SSRS report item as Power BI Dashboard tile

By default, the SSRS-based dashboard tile is linked back to the on-premises SSRS report.
This link, as well as the title and subtitle for the tile, can be modified via the Tile details
window like other dashboard tiles.

Paginated SSRS reports (RDL files) created with SQL Server Data Tools (SSDT) for Visual
Studio or SQL Server Report Builder cannot currently be published to the Power BI service.
However, just as Power BI reports (PBIX files) can now be published to the Power BI Report
Server, the Power BI and Reporting Services teams have advised that support for RDL files
in the Power BI service is planned. Once this is accomplished, the three primary Microsoft
report types (Power BI, Excel, and SSRS) will all be available in both the Power BI cloud
service as well as on-premises via the Power BI Report Server.

Additional information on the Power BI Report Server including the
deployment and scheduled refresh of Power BI reports is included in
Chapter 10, Deploying the Power BI Report Server.

Designing Power BI Dashboards and Architectures Chapter 7

[357]

Excel workbooks
The Power BI Publisher for Excel add-in, available for Excel 2007 and later, allows Power BI
Pro users to pin Excel ranges and objects, such as pivot tables and charts, directly from local
Excel workbooks to Power BI dashboards in app workspaces. This add-in includes the
ability to update pinned items and to connect to published datasets in the Power BI service
to create pivot-table Excel reports. Additionally, report content from Excel workbooks
published to the Power BI service can also be pinned to dashboards.

Scheduled data refreshes can be configured in the Power BI service for Excel workbooks
containing data models. However, given the size limitations of Excel data models as well as
the additional capabilities of Power BI reports, such as custom visuals, role security, and
advanced analytics, it's generally recommended to migrate Excel data models to Power BI
datasets (PBIX files). Per the following image, the Power BI content contained in an Excel
workbook can be imported to a Power BI Desktop file:

Import Excel to Power BI

The migration process includes the data retrieval M queries, data model tables and
relationships, DAX measures, and even any Power View report pages contained in the
source workbook.

Designing Power BI Dashboards and Architectures Chapter 7

[358]

Only when Excel reports are deeply dependent on Excel-specific
functionality, such as worksheet formulas and customized conditional
formatting rules, should the model not be migrated to Power BI. Power BI
Desktop's enhanced table and matrix visuals and conditional formatting
options now support many of the most common Excel report use cases.
Therefore, the usually limited effort is required to develop the equivalent
or a preferable report in Power BI Desktop relative to Excel.

In the following image, the filtered Excel pivot table is pinned to the Customer Distribution
dashboard in the Corporate Sales workspace via the Power BI Publisher for Excel:

Pin Excel content to Power BI Dashboard

Just like SSRS report items, Excel content can also be pinned to any dashboard in any
workspace in the Power BI service. However, when pinning from a local workbook, such as
this example, the owner of the Excel workbook is responsible for updating the dashboard
tile with any data refreshes or changes in filter conditions. The push updates from the user's
workbook to the dashboard in the Power BI service can be executed via the Pin Manager
dialog. This interface, which also provides visibility to pinned Excel items in any
workspace, is accessed via the Power BI ribbon of the Power BI Publisher for Excel add-in,
per the preceding image.

Designing Power BI Dashboards and Architectures Chapter 7

[359]

In the following image of the Customer Distribution dashboard, a custom title and subtitle
have been applied to the tile containing the pinned Excel pivot table:

Power BI Dashboard with Excel and SSRS content

Also like SSRS-based dashboard tiles, the details of dashboard tiles containing Excel content
can be configured, including title, subtitle, and a custom link. Moreover, Excel and SSRS
dashboard tiles can also be included in dashboard layouts dedicated to consumption via
smartphones. The Mobile-optimized dashboards section later in this chapter describes this
feature.

Although Excel and SSRS report content are not designed to be as visually engaging as
Power BI visuals, the ability to leverage these common reporting tools and to consolidate
their distinct content on the same dashboard is a unique capability of Power BI.
Additionally, the data refresh of Excel workbooks containing external connections to
sources, such as Power BI datasets and Analysis Services data models, is a highly requested
feature that may be delivered by the fall of 2018.

Designing Power BI Dashboards and Architectures Chapter 7

[360]

Per the following image, only workbooks containing data models can currently be
refreshed:

External workbook connections not supported

Given this current limitation, the two slicers above the pivot table (Country, Calendar
Year Status) from the earlier example cannot be used in the Power BI service. This is
because the Excel report was based on a connection to a published Power BI dataset via
Power BI Publisher for Excel.

The details of developing SSRS and Excel-based content as complements
to a Power BI solution is beyond the scope of this chapter. However,
several examples of these integrations, as well as considerations in
choosing among the three tools, were included in the Microsoft Power BI
Cookbook (https:/ / www. packtpub. com/ big-data-and- business-
intelligence/ microsoft- power- bi- cookbook).

Live report pages
For some users, the self-service data exploration experience provided within Power BI
report pages is the most valuable use case of Power BI content. Although a dashboard of
tiles may initiate or contribute to an analysis, these users often have more complex and
unpredictable analytical needs such that greater flexibility is needed. Additionally, these
users are generally much more comfortable and experienced in interacting with Power BI
content, such as modifying slicer selections and drilling up and down through hierarchies.

https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/microsoft-power-bi-cookbook

Designing Power BI Dashboards and Architectures Chapter 7

[361]

To provide both the self-service experience of a report page as well as the consolidation
benefits of a dashboard, an entire report page can be pinned as a single tile to a
dashboard. In the following dashboard for the United States, a live report page of eight
visuals has been pinned to supplement the corporate standard KPI tiles:

Dashboard with live report page

Designing Power BI Dashboards and Architectures Chapter 7

[362]

In this dashboard, the user can leverage the robust filtering options on the sales and margin
live page to explore the dataset while maintaining visibility to standard metrics via the top
six tiles. In the preceding example, the user has filtered on the Southwest sales territory
region, the second and third quarters of the year (2017-Q2 and 2017-Q3), and also selected
the Bikes product category via the bar chart. These selections impact the other five visuals
on the page via either highlighting, in the case of the Net Sales by Calendar Month
column chart, or filtering, in the case of the other four visuals. Filter selections on the live
page do not, however, impact the dashboard tiles outside of the live page.

Defining the interaction behavior between visuals, such as switching
between highlight and filter, is described in the Visual interactions section
of Chapter 5, Creating and Formatting Power BI Reports.

Like standard dashboard tiles, a live page tile can be moved around the canvas and the title
and subtitle can be configured via the Tile details window. However, custom links cannot
be configured for live report pages. In the United States dashboard example, the report
page itself included a textbox with a title and thus the display title and subtitle property of
the dashboard tile has been disabled.

Unlike the snapshot behavior of normal dashboard tiles, any saved changes to the report
containing the live report page, such as a different filter condition, are automatically
reflected by the live page tile on the dashboard. This automatic synchronization avoids the
need to delete dashboard tiles reflecting the original state of the report and re-pinning
visuals to reflect changes in the source report.

Designing Power BI Dashboards and Architectures Chapter 7

[363]

Just like individual visuals within reports, a report page can be pinned from both the
Reading view and the edit mode in the Power BI service. The Pin Live Page menu icon,
next to the refresh icon in Reading view, generates the following window:

Pin Live Page

Live report page tiles can also be included in mobile-optimized views of dashboards.
However, given their size, live pages are generally more valuable in larger form factors and
with full screen mode.

Mobile-optimized dashboards
Just like the phone layout view in Power BI Desktop described in Chapter 5, Creating and
Formatting Power BI Reports, the Power BI service provides a phone view to customize a
mobile-optimized layout for dashboards. With a phone view configured for a dashboard,
the specific tiles, sizes, and order of tiles defined for the phone view will be presented to the
user when the dashboard is accessed via the Power BI mobile app on their phone.

The Phone view can be accessed via the drop-down menu of Web view in the top-right
corner of the dashboard, per the following image:

Designing Power BI Dashboards and Architectures Chapter 7

[364]

Dashboard Phone view

Once in Phone view, the same drag and resize options available in phone layout for Power
BI Desktop are also available for the dashboard. In the following example, the three most
important total net sales KPI visuals from the Global Sales dashboard have been positioned
at the top of the phone view (Global, North America, Europe) and several less important
tiles have been unpinned:

Phone view of dashboard in Power BI service

Designing Power BI Dashboards and Architectures Chapter 7

[365]

Power BI saves the phone layout automatically and the defined Phone view will be the new
default view for phones accessing the dashboard. However, the user can still turn their
phone sideways to view the dashboard in the standard web view.

The subtitles applied to the dashboard tiles are particularly valuable in Phone view. In the
standard web view, the four supporting tiles with custom images (Global, North America,
Europe, Pacific) make it easy to determine the scope of each tile. These image tiles are likely
not, however, desired in Phone view and thus the subtitles can be relied on to convey the
scope of each tile.

Summary
This chapter demonstrated how dashboards can be planned and developed as part of a
large, integrated corporate BI solution. All essential features and processes of Power BI
dashboards were highlighted, including the configuration of dashboard tiles, their links to
other dashboards and reports, and mobile-optimized dashboards. Additionally, the unique
capability of dashboards to integrate BI content from the SSRS reports and Excel workbooks
was reviewed.

The next chapter transitions from the development of Power BI content to the management
of Power BI content. This includes the application of version control to Power BI Desktop
files and the migration of content across test and production environments with app
workspaces.

8
Managing Application

Workspaces and Content
The preceding six chapters have focused on the design and development of Power BI
datasets, reports, and dashboards. While the creation of impactful and sustainable content is
essential, this chapter reviews the processes and features that IT organizations can leverage
to manage and govern this content through project life cycles and ongoing operational
support. This includes application workspaces in the Power BI service, staged deployments
between test and production environments, and maintaining version control of Power BI
Desktop files. Additional features and practices highlighted in this chapter include data
classifications for dashboards, documenting Power BI datasets, and utilizing the Power BI
REST API to automate and manage common processes.

In this chapter, we will review the following topics:

Application workspaces
Workspace roles and rights
Staged deployments
Power BI REST API
OneDrive for Business version history
Source control for M and DAX code
Dashboard data classifications
Dataset field descriptions
Metadata reporting

Managing Application Workspaces and Content Chapter 8

[367]

Application workspaces
Application workspaces are containers in the Power BI service of related content (reports
and dashboards). As a Power BI Pro feature as discussed in the Power BI licenses section of
Chapter 1, Planning Power BI Projects, members of application workspaces, are able to create
and test content, such as new dashboards and changes to reports, without impacting the
content being accessed by users outside of the workspace. Once the new or revised content
in the workspace is determined to be ready for consumption, the workspace can be
published or updated as a Power BI app, as described in Chapter 11, Creating Power BI Apps
and Content Distribution.

"We intend workspaces just for creation...it's the place where content gets created in Power BI."

– Ajay Anandan, Senior Program Manager.

In addition to the default isolation or staging between content creation (workspaces) and
content consumption (apps), BI teams can utilize multiple app workspaces to stage their
deployments as per the Staged deployments section later in this chapter. For example, reports
and dashboards can be initially created in a development workspace, evaluated against
requirements in a test workspace, and finally deployed to a production workspace. The
production app workspace would support the app which large numbers of business users
would access and therefore could be assigned to Power BI Premium capacity to provide
dependable performance and the flexibility to scale resources according to the needs of the
workload.

Chapter 13, Scaling with Premium and Analysis Services, provides details on
the features and benefits of Power BI Premium. These include the cost
advantage of capacity-based pricing versus per-user licensing in large-
scale deployments, managing Premium capacities (hardware), such as
scaling up or out, and assigning workspaces to Premium capacities.
Additional capabilities exclusive to content stored in Premium capacity,
such as incremental data refresh, larger Power BI datasets, and more
frequent scheduled data refreshes (for example, every 30 minutes), are also
described in Chapter 13, Scaling with Premium and Analysis Services.

Managing Application Workspaces and Content Chapter 8

[368]

The following diagram and four-step process depicts the essential role of app workspaces in
the life cycle of Power BI content:

App workspaces and apps

A Power BI Pro user creates an App Workspace and adds other Power BI Pro1.
users as members with edit rights
The members of the App Workspace publish reports to the workspace and create2.
dashboards in the workspace
All content or a subset of the content in the App Workspace is published as a3.
Power BI app
Users or groups of users access content in the published app from any device4.

All users within the app workspace will need a Power BI Pro license. All users consuming
the published Power BI app will also need a Power BI Pro license, unless the app
workspace has been assigned to Power BI Premium capacity. If the app workspace has
been assigned to Power BI Premium capacity, users with Power BI (free) licenses and,
optionally, external guest users from outside the organization with free licenses, can read or
consume the Power BI app. As described in Chapter 13, Scaling with Premium and Analysis
Services, it is, of course, necessary to provision the appropriate resources (for example, CPU
cores and RAM) to support the workload generated by the Power BI app.

In small team scenarios (5–15 users) in which maximum self-service
flexibility is needed, all users can be assigned Pro licenses and collaborate
on content within the app workspace. This approach negates the isolation
benefit of workspaces from apps but provides immediate visibility to the
latest versions of the content. Additionally, Power BI Pro users within the
workspace can create their own Power BI and Excel reports based on
connections to the published dataset in the workspace.

Managing Application Workspaces and Content Chapter 8

[369]

Workspace roles and rights
Every app workspace has one or multiple administrators who manage the access of other
Power BI Pro users to the workspace. The user who initially creates the app workspace is
the workspace admin by default and can add other users as members of the workspace,
thus providing access to the datasets contained in the workspace. With the privacy level of
the workspace set to allow members to edit content, workspace members can create and
store content in the workspace as well as publishing content from the workspace to a Power
BI app.

Workspace admins
Workspace admins can modify the name of the workspace, the privacy level for workspace
members (edit or view only), and the role of each member (admin or member). For
example, once users have been added to the workspace as members, the workspace admin
can revise the role of one or multiple users from members to admins so that this user(s) can
add other members and contribute to the management of the workspace.

If Power BI Premium capacity has been provisioned for the organization and if the
workspace administrator has been granted assignment permissions to Premium capacity,
the workspace admin can assign the workspace to a Premium capacity. This action moves
the content in the workspace to dedicated hardware (capacity) exclusive to the organization
and enables many additional features, such as the distribution of apps to Power BI free
users. Further information on the assignment of app workspaces to Power BI Premium
capacity is included in Chapter 12, Administering Power BI for an Organization. The
additional capabilities provided by Power BI Premium and considerations in allocating
Premium capacity are included in Chapter 13, Scaling with Premium and Analysis Services.

Workspace admins also have the exclusive right to delete an app workspace and thus
remove all of its content (dashboards, reports, and datasets) from the Power BI service.
Additionally, workspace admins can only leave an app workspace if another user has been
assigned as an admin of the workspace.

Managing Application Workspaces and Content Chapter 8

[370]

Prior to deleting an app workspace, check to see if an app has been
published from the workspace. If an app has been published, unpublish
this app via the ellipis (three dots) next to the Update app button. If the
app workspace has been deleted but the published app has not been
unpublished, users of the published app will see errors when attempting
to access or refresh its content.

The following screenshot displays the app workspace options available to a workspace
administrator:

App Workspace options for workspace admin

The Edit workspace dialog, as illustrated in the following section, is exclusively available to
workspace administrators. Workspace members (non-admins) with edit rights, however,
can also update and unpublish apps as well as leave the app workspace.

Workspace members
The members added to the workspace are most commonly report authors who will connect
to dataset(s) to develop reports in Power BI Desktop. These reports can then be published
back to the app workspace and their visuals can be pinned to dashboards in the Power BI
service as per the previous Chapter 7, Designing Power BI Dashboards and Architectures.

Since app workspaces have a one-to-one relationship with Power BI apps, workspace
administrators are often familiar with the users or groups of users who will consume the
content as well as other subject matter experts, such as the dataset designer described in the
Project roles section of Chapter 1, Planning Power BI Projects.

Managing Application Workspaces and Content Chapter 8

[371]

In the following screenshot, Jennifer has created an app workspace and added Mark as a
member with edit rights:

Edit app workspace

The Edit workspace dialog is exclusive to workspace admins. In this example, Mark's edit
rights as a member may be sufficient or Jennifer can revise Mark's role from Member to
Admin so that he can also add other members. A security group in Azure Active Directory
cannot be used to add members to a workspace. However, security groups can be
referenced when publishing an app workspace as a Power BI app to enable groups of users
to view the content of the workspace.

Managing Application Workspaces and Content Chapter 8

[372]

In almost all scenarios, only users who create and manage Power BI
content are added as members of app workspaces. However, if a report
page from the app workspace is going to be embedded in a SharePoint
Online site, the members of the SharePoint Online site will need to be
added as members of the app workspace. Both Power BI Pro and Power BI
free users can view embedded Power BI content from SharePoint Online.
In the case of Power BI free users, however, the app workspace containing
the embedded content needs to be assigned to Power BI Premium
capacity. Additional information on embedding Power BI content in
SharePoint Online is included in Chapter 11, Creating Power BI Apps and
Content Distribution.

Users with Power BI free licenses can technically be added to app workspaces via the Edit
workspace dialog. The free user will see the name of the app workspace in the Power BI
service but the following dialog will be prompted when trying to access the workspace:

Power BI free user attempting to access an app workspace

The preceding dialog is also prompted to free users when trying to utilize other Power BI
Pro features, such as sharing a dashboard, accessing a shared dashboard from shared (non-
Premium) capacity, or creating an email subscription to a report or dashboard.

Administrators of Power BI deployments have the ability to view the
creation of Pro trial versions via the Office 365 audit logs. For example, a
user assigned to the Power BI admin role (a role in Office 365), could
analyze the level of activity for Pro trial users and assign available Pro
licenses. Additionally, the process of assigning Pro licenses to users can be
automated via PowerShell scripts so that administrators can focus on other
governance and security issues. The Office 365 audit logs and options for
accessing this data is described in Chapter 12, Administering Power BI for an
Organization.

Managing Application Workspaces and Content Chapter 8

[373]

My Workspace
All Power BI users, including those with free licenses, are assigned a My Workspace in the
Power BI service. This workspace should only be used and thought of as a private
scratchpad for content specific to the individual user. My Workspace can be accessed via
the same Workspaces menu as APP WORKSPACES, as shown in the following screenshot:

My Workspace

Any Power BI content which requires access by other users should be stored in an app
workspace and distributed from the app workspace. Although My Workspace can host the
same content types as APP WORKSPACES, any content distributed from My Workspace,
such as via the dashboard sharing feature described in Chapter 11, Creating Power BI Apps
and Content Distribution, is dependent on the individual user's account. Additionally, Power
BI apps are exclusive to APP WORKSPACES and the Power BI team has advised that
future administration and governance features will also be exclusive to APP
WORKSPACES.

The Power BI team has advised of a future setting in the Power BI admin
portal allowing administrators to disable the My Workspace for Power BI
free users. If enabled, Power BI free users would only see the four
consumption-related menu items (Favorites, Recent, Apps, Shared with
me) and the user experience for these items will remain simple and
intuitive. Application workspaces, denoted by the darker shading, will
increasingly contain more options for report authors and content creators
to customize their solutions.

Managing Application Workspaces and Content Chapter 8

[374]

Staged deployments
Multiple application workspaces and their corresponding apps can be used to stage and
manage the life cycle of Power BI content. Similar to the development, test, and production
release cycles familiar to IT professionals, staged deployments in the Power BI service are
used to isolate data, users, and content appropriate to each stage of the process. Effectively
implementing a staged Power BI deployment serves to raise the quality of the content
delivered as well as the productivity of project team members.

The following diagram and nine-step process describe the primary elements of a staged
deployment life cycle:

Staged deployment life cycle

A development app workspace is created and Power BI content is built into the1.
workspace:

A Power BI Desktop file containing the dataset is published to the
development workspace

Managing Application Workspaces and Content Chapter 8

[375]

Reports are developed in Power BI Desktop based on Live
connections to the development workspace dataset
Dashboards are created within the development workspace in the
Power BI service

An app is published or updated and made available to a small number of users2.
for their review
The BI manager or project lead reviews the status of content being developed and3.
provides feedback to the developers:

In other scenarios, certain business stakeholders are allowed early
access to content under development

The Power BI REST API is used to migrate completed content from the4.
development workspace to the test workspace:

Supported REST API operations, such as a clone report and a
rebind report, are called via PowerShell scripts

A TEST App is published or updated and made available to a small number of5.
users for their review
A user acceptance testing (UAT) user or team reviews the content relative to6.
requirements and provides feedback:

If necessary, revisions are implemented in the TEST Workspace
and the TEST App is updated for further review

The Power BI REST API is used to migrate approved content from the7.
TEST Workspace to the production workspace:

Supported REST API operations, such as a clone report and rebind
report, are called via PowerShell scripts

A production app is published or updated and made available to groups of users8.
for their consumption:

Publishing and accessing apps is described in Chapter 11, Creating
Power BI Apps and Content Distribution

Managing Application Workspaces and Content Chapter 8

[376]

Groups of business users access and consume the dashboards and reports via the9.
production app from any device:

Measuring and monitoring the usage of the published app is also
described in Chapter 11, Creating Power BI Apps and Content
Distribution

Creating and managing app workspaces as well as publishing apps for testing or
consumption are all simple processes that can be handled via the user interface in the Power
BI service. Properly utilizing the Power BI REST API to copy or migrate content across
workspaces, however, requires some level of custom scripting. IT organizations familiar
with managing Azure and on-premises resources via Windows PowerShell can leverage
these skills as well as sample scripts provided by the Power BI team as per the Power BI
REST API section later in this chapter.

Workspace datasets
As per the staged deployment life cycle diagram, this architecture requires distinct Power
BI datasets per app workspace. To minimize resource usage and for data security reasons,
the development workspace dataset could include the minimal amount of data necessary
and exclude all sensitive data. This would allow the organization to comfortably provide
development access to teams of content developers, potentially from outside of the
organization. Access to the test workspace could be limited to a small number of trusted or
approved users within the organization and thus could include sensitive data. Finally, the
production workspace dataset would have the same schema as the other datasets but
include the full volume of data as well as sensitive data.

If a common schema exists between the different datasets in each workspace, the source
dataset of a Power BI Desktop report file can be revised to a dataset in a separate workspace
as per the Switching source datasets section in Chapter 5, Creating and Formatting Power BI
Reports.

For example, the report file (.pbix) approved for migration from the development
workspace to the test workspace could be opened, modified to reference the test workspace
dataset, and then published to the test workspace. This approach represents a manual
alternative to the Power BI REST API described in the following section.

Managing Application Workspaces and Content Chapter 8

[377]

A new feature is expected in 2018 that will allow a Power BI report to reference a dataset in
an external app workspace. The availability of this feature will help eliminate the resource
cost and manageability issues of duplicated datasets across multiple app workspaces.

For example, distinct Power BI apps developed for the finance, sales, and marketing teams
could all leverage a single production dataset in a dedicated workspace rather than
individual datasets within each workspace. The availability and implementation of this
feature will revise the architecture of staged deployments of Power BI content via large
Power BI datasets.

Another alternative to avoid the duplication of a dataset across multiple apps is Analysis
Services. With Analysis Services, either on-premises via SSAS or in the cloud via AAS,
Power BI reports can be created with Live connections to development, test, and production
data models. Information on utilizing Analysis Services and its advantages as the data
modeling tool and engine for Power BI is included in Chapter 13, Scaling with Premium and
Analysis Services.

Power BI REST API
The Power BI REST API provides programmatic access to resources in the Power BI service
including content (datasets, reports, and dashboards), application workspaces, and the
users of these resources. This access enables organizations to automate common workflows,
such as cloning a report to a different workspace or triggering a dataset refresh operation
via familiar tools, such as Windows PowerShell. The goal of the REST API is to fully
support all functionality available in the Power BI service, including capabilities exclusive
to the Power BI admin portal, thus providing complete administrative and automation
capabilities. The following URL provides updated documentation on the REST API
including the request syntax and a sample result set for each operation: http:/ /bit. ly/
2AIkJyF.

As more REST API operations are developed, they will initially be exposed exclusively via
REST API calls. This allows organizations comfortable with the programmatic interface to
get started with automation scripts and for a user interface to be developed on top of the
API operations. The following sections describe the components needed to get started with
the REST API, including the ID for a registered application, the IDs for core Power BI
objects, and sample PowerShell scripts provided by the Power BI team.

Windows PowerShell is a task-based command-line shell and scripting
language. It's primarily used by system administrators to automate
administrative tasks. For example, PowerShell script files (.ps1) are
commonly used in scheduled data refresh processes for SSAS models.

http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF
http://bit.ly/2AIkJyF

Managing Application Workspaces and Content Chapter 8

[378]

Client application ID
To use the Power BI REST API, a client application ID must be obtained by registering an
application with Azure Active Directory. This registration can be completed via the four-
step process at the following portal: https:/ / dev.powerbi. com/ apps:

Sign in with the Azure Active Directory account:1.

This is the account used for logging into the Power BI service

Describe the application being registered:2.

Provide an application name and Home Page URL
Select Native app from the App Type dropdown
Use the following Redirect URL: urn:ietf:wg:oauth:2.0:oob

Choose the Power BI APIs to access:3.

Select all available boxes (Dataset APIs, Report and Dashboard
APIs, and Other APIs)

Click Register App4.

Once the app is registered, the Client ID required for authentication will be exposed at the
bottom, as shown in the following screenshot:

Power BI app Registration portal

https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps
https://dev.powerbi.com/apps

Managing Application Workspaces and Content Chapter 8

[379]

Alternatively, an application can be registered via the App registrations menu of Azure
Active Directory. Registered applications can be managed in the Azure portal, as shown in
the following screenshot of the Frontline Power BI Automation app:

Registered app in Azure Active Directory

In addition to the Application ID property, which is the Client ID to use for authentication,
the Required permissions menu in Azure Active Directory provides access to all Power BI
APIs including those currently in preview. For example, the permissions of the Frontline
Power BI Automation app from the preceding image could be expanded to include the
view all reports API currently in preview.

Workspace and content IDs
In addition to the client ID of the registered application, the REST API operations require an
ID associated with the given object or collection of objects referenced by the API operation.
For example, to clone a report to a separate app workspace and then bind the report to a
dataset in the new workpace, the IDs (GUID values) associated with the report, the source
and target workspace, and the dataset must be obtained. These ID values can then can be
passed into the variables of PowerShell script files and executed on demand or as part of a
scheduled process, such as with dataset refresh operations.

The IDs for Power BI objects can be obtained by executing scripts which reference the
appropriate REST API, such as Get Reports. Alternatively, the necessary IDs can be found
by navigating to the specific object or collection of objects in the Power BI service and
noting the URL.

Managing Application Workspaces and Content Chapter 8

[380]

For example, to retrieve both the group ID and the dataset ID, navigate to an app
workspace and open the Settings menu for a dataset, as shown in the following screenshot:

Access to dataset Settings

In this example, opening the Settings menu for the AdWorks Enterprise dataset of the
AdWorks Global Sales workspace results in the following URL in the address bar of the
browser https://app.powerbi.com/groups/c738f14c-648d-47f5-91d2-ad8ef234f
49c/settings/datasets/61e21466-a3eb-45e9-b8f3-c015d7165e57

Based on this URL, the following two IDs can be used in PowerShell scripts calling the
REST APIs:

AdWorks Global Sales (app workspace): c738f14c-648d-47f5-91d2-
ad8ef234f49c

AdWorks Enterprise (dataset): 61e21466-a3eb-45e9-b8f3-c015d7165e57

Just as the terms groups and datasets precede the IDs for these objects, respectively, the term
reports precedes the ID for a specific report the URL when a report is selected in the Power
BI service.

PowerShell sample scripts
Several self-documenting sample PowerShell scripts that leverage the Power BI REST API
are available at the following GitHub repository https:/ /github.com/ Azure-Samples/
powerbi-powershell.

https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell
https://github.com/Azure-Samples/powerbi-powershell

Managing Application Workspaces and Content Chapter 8

[381]

As shown in the following screenshot, this repository includes PowerShell scripts (.ps1
files) for the refresh of a dataset, the rebinding of a report (to a dataset), and other common
use cases:

Power BI REST API samples

In addition to Windows PowerShell or the PowerShell Integrated Scripting Environment
(ISE), Azure PowerShell cmdlets must also be installed to execute the REST API scripts. The
following links can be used to install the necessary components:

Windows PowerShell: http:/ /bit. ly/2FkaSmc

Azure PowerShell cmdlets: https:/ /aka. ms/webpi-azps

The necessary cmdlets can also be installed from PowerShell via the following commands:

Install-Module AzureRM
Install-Module AzureAD

The variables in each sample advise of the parameters needed to successfully execute the
script, such as the client ID of the registered application. The following sample script
includes a variable for the client ID of the registered application described earlier and a
function for authenticating against Azure Active Directory with this client ID:

$clientId = " FILL ME IN "
function GetAuthToken
{
 $adal =
"${env:ProgramFiles}\WindowsPowerShell\Modules\AzureRM.profile\4.1.1\Micros
oft.IdentityModel.Clients.ActiveDirectory.dll"
 $adalforms =
"${env:ProgramFiles}\WindowsPowerShell\Modules\AzureRM.profile\4.1.1\Micros
oft.IdentityModel.Clients.ActiveDirectory.WindowsForms.dll"

http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
http://bit.ly/2FkaSmc
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps
https://aka.ms/webpi-azps

Managing Application Workspaces and Content Chapter 8

[382]

 [System.Reflection.Assembly]::LoadFrom($adal) | Out-Null
 [System.Reflection.Assembly]::LoadFrom($adalforms) | Out-Null
 $redirectUri = "urn:ietf:wg:oauth:2.0:oob"
 $resourceAppIdURI = "https://analysis.windows.net/powerbi/api"
 $authority =
"https://login.microsoftonline.com/common/oauth2/authorize";
 $authContext = New-Object
"Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext" -
ArgumentList $authority
 $authResult = $authContext.AcquireToken($resourceAppIdURI, $clientId,
$redirectUri, "Auto")
 return $authResult
}
$token = GetAuthToken

The sample PowerShell script files can be edited to contain the appropriate variable (for
example, client IDs and group IDs) and then saved to a secure network location. The user
with rights to the Power BI resources, such as a BI manager or an IT administrator assigned
the Power BI admin role, can run the PowerShell scripts as an administrator.

A top use case for the Power BI REST API is to synchronize the data refresh of Power BI
datasets with the refresh process of data sources utilized by those datasets. For example, the
refresh for certain production datasets in the Power BI service can be dynamically triggered
to begin once the update process for a data source is completed, such as a nightly data
warehouse extract-transform-load (ETL) or extract-load-transform (ELT) process or job.
This synchronization ensures that Power BI reports and dashboards reflect the latest
possible updates.

Additionally, the dynamic refreshes help to eliminate variances between Power BI reports
and dashboards and any reporting tools which generate queries directly against the data
source. Data refresh synchronization, along with incremental data refresh (expected in
2018), reduces one of the advantages of DirectQuery datasets relative to import mode
datasets.

Managing Application Workspaces and Content Chapter 8

[383]

The refresh dataset API requires the group ID for the given app workspace
and the dataset ID. These values can be obtained manually as per the
Workspace and content IDs section earlier or via the Get Groups and Get
datasets API operations, respectively. The following URL contains
documentation on the Refresh dataset operation: http:/ /bit.ly/2EpWLKL

Dashboard data classifications
Dashboard data classifications allow administrators of Power BI to define data security
classifications for dashboards in the Power BI service. Once configured in the Power BI
admin portal, Power BI Pro users responsible for creating and editing dashboards in app
workspaces can associate one of the available classifications to each dashboard.
Additionally, the classification tags can be linked to external URLs to provide users with
additional information, such as the organization's definitions and policies for each data
classification.

The data security tags, such as Confidential or Public, serve to raise awareness regarding
the sensitivity of the content and thus reduce the risk that protected data is inappropriately
exposed or distributed.

For example, an organization could allow certain security groups of users to share Power BI
content with users outside of the organization but, as an organizational policy, require that
this content matches certain data classifications, such as public or low business impact.

In the following screenshot from the Power BI admin portal, four dashboard data
classifications have been configured:

http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL
http://bit.ly/2EpWLKL

Managing Application Workspaces and Content Chapter 8

[384]

Dashboard data classifications

In the preceding example, the Organizational classification has been defined as the default
data classification. This setting causes all new dashboards and any existing dashboard
which have not been assigned to a different classification to be tagged as Organizational.
For usability and reference purposes, a three-letter shorthand acronym and a URL link to a
corporate site have been assigned to each classification, respectively.

The Power BI admin portal can be accessed via the Settings (gear) icon in
the top-right corner of the Power BI service. Only Office 365 global admins
or users mapped to the Power BI admin role will have visibility to tenant
settings within the Power BI admin portal, which includes data
classification for dashboards.

Chapter 12, Administering Power BI for an Organization, reviews the Power
BI admin role as well as the settings available in the Power BI admin
portal extensively. Additionally, the Power BI project roles section in
Chapter 1, Planning Power BI Projects, introduces the Power BI admin role
and contains an example of assigning the Power BI service administrator
role to a user in the Office 365 admin center.

Managing Application Workspaces and Content Chapter 8

[385]

With the data classifications for the organization configured, a user with edit rights to a
dashboard can assign a classification via the Dashboard settings menu, as shown in the
following screenshot:

Dashboard settings

In the preceding example for the Global Sales dashboard, the default Organizational
classification is switched to Confidential. The Dashboard settings menu can be accessed
from within a dashboard by clicking the ellipsis (three dots) to the right of the Web
view/Phone view dropdown. Alternatively, the settings for a dashboard can be accessed
from outside the dashboard via the gear icon in the ACTIONS group within the app
workspace.

Managing Application Workspaces and Content Chapter 8

[386]

In the following screenshot, the shorthand tag of the Data classification assigned to each
dashboard is populated in the workspace:

Dashboards in app workspace

Just like the icons under the ACTIONS group, hovering the cursor over the
CLASSIFICATION tag (for example, CON,) creates a pointing icon and displays the full
name of the classification (Confidential) as a tool tip. Clicking the tag will open the URL
associated with the given classification in a separate browser tab.

Data classifications are deleted if the feature is turned off in the the Power
Admin Portal. Additionally, if a classification is removed, any dashboards
assigned to the removed classification will be assigned back to the default
until the dashboard owner changes the classification. Finally, if the default
classification is changed, all dashboards that weren't already assigned a
classification type will change to the new default.

Given the importance of data security and the risk involved in re-creating
work for both the Power BI Admin(s) and report and dashboard authors,
the teams responsible for deploying Power BI should ensure these
classifications align with corporate data governance standards.

Version control
Version history and source control are very common, highly valued elements of an IT
organization's application lifecycle management (ALM).

Managing Application Workspaces and Content Chapter 8

[387]

For example, changes to an Analysis Services data model, such as new DAX measures, are
typically committed to a source control repository and tools such as Visual Studio Team
Services (VSTS) provide features for teams to manage and collaborate on these changes.
Perhaps most importantly, these tools enable teams to view and revert back to prior
versions.

Power BI Desktop files (.pbix) do not integrate with these robust systems and are not
expected to in the foreseeable future. As an alternative, Microsoft recommends OneDrive
for Business, given it's support for version history and its current 15 GB file size limit.
Additionally, for longer term and larger scale projects, BI teams can optionally persist the
core DAX and M code contained in a dataset into a structure suitable for implementing
source control.

OneDrive for Business version history
In the following screenshot, a Power BI Desktop file containing an import mode dataset has
been uploaded to a OneDrive for Business folder:

OneDrive for Business file options

Managing Application Workspaces and Content Chapter 8

[388]

Selecting the ellipsis (three dots) exposes several file options including Version history. As
changes are implemented and saved in the PBIX file, such as a revised DAX measure or a
new M query, the updated PBIX file could be uploaded to OneDrive for Business.
Given the same name as the existing file, OneDrive for Business will require the user to
confirm that the file should be replaced, as illustrated in the following screenshot:

Uploading updated PBIX file

Once the replacement is confirmed, only the new file is accessible from the folder but the
prior file and other versions of the file are still accessible via Version history. As shown in
the following screenshot, the Version History window makes it easy to view the history of
changes to a file and to restore an earlier version:

File options in Version History

Managing Application Workspaces and Content Chapter 8

[389]

In this example, selecting the ellipsis (three dots) for the Version 1.0 row exposes three file
options, including Restore. Selecting Restore creates a new version (Version 4.0), which is
an exact copy of the file restored. This restored file replaces the current file accessible in the
OneDrive for Business folder. Finally, from the standard folder view in OneDrive for
Business, the Download option displayed in the first image of this section can be used to
retrieve the restored PBIX file.

As described in the Live connections to Power BI datasets section in Chapter
5, Creating and Formatting Power BI Reports, reports should be created with
Power BI Desktop files rather than within the Power BI service to enable
Version history. However, as per the previous chapter, dashboards are
exclusively created within the Power BI service. Therefore, while Version
history can be maintained with datasets and reports, Version history is
currently not possible with dashboards.

Source control for M and DAX code
Although the version history of M and DAX code within Power BI Desktop files is
technically available via OneDrive for Business, some BI organizations may also choose to
utilize more robust version control tools on essential queries and measures. For example,
the M query used to retrieve the Customer dimension table could be saved as a .pq file and
synchronized with a team project code repository in VSTS. This approach would improve
the visibility of the code to project team members and, for M queries, provide the code
editing benefits of colorization and IntelliSense.

In the following screenshot, a Power Query project containing multiple folders of PQ files
(M queries) has been added to a solution in Visual Studio and synchronized with a Git
repository in a VSTS project:

Managing Application Workspaces and Content Chapter 8

[390]

Power Query project in Visual Studio

In this example, all M queries (.pq files) are checked into source control via the lock icon in
the Solution Explorer window except for the Customer query which is pending an edit
(checkmark icon). The revised Customer dimension table query would be implemented
within the Power BI Desktop file first but also saved within the Power Query project in
Visual Studio.

As an enterprise tool, many version control options are available in Visual Studio, including
Compare with Unmodified... and Blame (Annotate). By clicking Commit, a message
describing the change can be entered and the updated file can be synced to the source
control repository in VSTS.

Managing Application Workspaces and Content Chapter 8

[391]

In the following screenshot from VSTS, the updated Customer dimension query file
(Customer.pq), including the latest commit date (5 minutes ago), is visible:

Files view in VSTS

Given the additional maintenance overhead, enterprise source control tools may not be
suitable for smaller, simpler Power BI projects or the very early stages of projects. In
addition to sound requirement gathering efforts, teams can minimize the maintenance effort
required of the version control project by only including the essential M queries and DAX
measures. For example, only the DAX measures containing fundamental business logic,
such as the base measures described in Chapter 3, Designing Import and DirectQuery Data
Models, could be saved as (.msdax) files.

Metadata management
As Power BI projects grow to support more teams and business processes, the dataset(s)
supporting the reports and dashboards for these projects will also grow. For example,
integrating the general ledger into the existing AdWorks Enterprise dataset would
require new fact and dimension tables, new relationships, and additional measures with
their own unique business rules or definitions. Additionally, it's common for hundreds of
DAX measures to be built into datasets over time to support more advanced analytics and
address new requirements.

Managing Application Workspaces and Content Chapter 8

[392]

Given this added complexity, BI teams and specifically the dataset designer described in
Chapter 1, Planning Power BI Projects can embed descriptions to aid report authors
incorrectly utilizing the data model. Additionally, the dynamic management views
(DMVs) for Analysis Services models can be leveraged to generate metadata reports
providing detailed visibility to all essential objects of the dataset. The combination of field
descriptions and metadata reporting can help drive consistent report development as well
as facilitate effective collaboration within the project team and between the project team and
other stakeholders.

Field descriptions
A FIELD PROPERTIES pane in the Report view of Power BI Desktop allows dataset
designers to enter descriptions for the measures, columns, and tables of a dataset. This
metadata is then exposed to report authors who connect to this dataset as they hover over
these objects in the FIELDS list and within the input field wells of visualizations. Although
field descriptions are not a full substitute for formal documentation, descriptions of the
logic, definition, or calculation of various objects enable report authors to develop content
more efficiently. For example, rather than searching an external resource such as a data
dictionary or contacting the dataset designer, the report author could simply hover over
measures and column names from within Power BI Desktop.

Creating descriptions
To create a description, open the Power BI Desktop file containing the dataset and enable
the FIELD PROPERTIES pane under the View tab of the Report view. In the following
screenshot, the Internet Gross Sales measure is selected on the FIELDS List and a
sentence is entered into the description box of the FIELD PROPERTIES pane:

FIELD PROPERTIES pane

Managing Application Workspaces and Content Chapter 8

[393]

Just like the preceding example with measures, selecting a table or a column in the FIELDS
list will expose the name of this object and a description box in the FIELD PROPERTIES
pane. Table and column descriptions can be valuable but measures are likely the best use
case for this feature given the volume of measures in a dataset and the variety of
calculations or logic they can contain.

Identify the most important measures in a dataset and apply concise,
consistent descriptions using business-friendly terms. The set of measures
described in the Base measures section of Chapter 4, Developing DAX
Measures and Security Roles,would represent good candidates for
descriptions as these measures are often reused in many other custom
measures, such as date intelligence measures. For example, it's essential
that the report author knows that the net sales measure includes discounts
while the gross sales measure does not.

Although the Name field in the FIELD PROPERTIES pane can also be used to revise the
names for measures, columns, and tables, this is rarely necessary as these changes can be
implemented in other ways. Particularly for tables and columns, the Power Query Editor
described in Chapter 2, Connecting to Sources and Transforming Data with M, should be used
to define table and column names.

It's likely that a future release of Power BI Desktop will expose the FIELD
PROPERTIES window to the Data view and/or the Relationships view as
well. Additionally, other metadata properties may be added to the FIELD
PROPERTIES pane, such as formatting and data categories, giving dataset
designers a more centralized and robust means to configure dataset
objects.

View field descriptions
The descriptions embedded in Power BI datasets can be viewed in the FIELDS lists, the
input field wells of visualizations, and the FIELD PROPERTIES pane as well. With a Power
BI report based on a Live connection to a published Power BI dataset, as described in the
Live connections to Power BI datasets section in Chapter 5, Creating and Formatting Power BI
Reports, the report author can view but not edit the descriptions.

Managing Application Workspaces and Content Chapter 8

[394]

In the following screenshot, the report author has built a matrix visual and hovers over the
Customer History Segment column used in the Rows input field well:

Field description via visualization field wells

As shown in the preceding image, the report author can view the description of the field
(column or measure) via the tool tip to understand the essential definition, such as first
purchase date relative to current date in this example. Likewise, the author can also hover
over the Internet Gross Sales measure in the Values field well to view this description
or hover over the measures, columns, and table names in the in the FIELDS list, as shown
in the following screenshot:

Description of measure via FIELDS list

For the Internet Gross Product Margin measure and other measures in the dataset,
the description applied uses proper casing when referring to DAX measures. This approach
helps to keep each description concise and advises the user of the other measures they may
need to review. In this example, the user may need to hover over the Internet Gross
Sales measure and/or the Internet Sales Product Cost measure to fully understand
the Internet Gross Product Margin measure.

Managing Application Workspaces and Content Chapter 8

[395]

Although it's likely unnecessary, the report author can also view the
descriptions via the FIELD PROPERTIES pane. When the FIELD
PROPERTIES pane is enabled from a Live connection report, Power BI
Desktop advises that these properties are read-only given that they are
from a model stored outside of the Power BI Desktop file.

Field descriptions cannot be viewed by hovering over names or values in the visuals
themselves on the report canvas. However, as per the Visualization formatting section of
Chapter 5, Creating and Formatting Power BI Reports, chart visuals contain a Tooltips input
field well that provide a very similar experience to viewing field descriptions. Tooltips are
typically used to display DAX measures related to the measures in the visual, such as the
net margin percentage for a chart that visualizes net sales. However, measures can also
return text strings and, thus, if necessary to aid the users viewing reports, measures can be
created containing field descriptions and utilized as Tooltips.

In the following screenshot, a DAX measure containing the description of the Internet
Gross Product Margin measure is used as an input to the Tooltips field well:

Field description measure as tooltip

Managing Application Workspaces and Content Chapter 8

[396]

In the preceding screenshot, hovering over the individual columns (or points if a line chart)
displays the description built into the dedicated measure (Internet Gross Product
Margin description). Although potentially useful for report consumers, BI teams should be
cautious that the DAX measures used for descriptions are isolated from the actual field
descriptions. Therefore, in the event of a change in description, both the description
measure and the field description would need to be updated. Additionally, if measures
containing descriptions are used extensively, a dedicated measure support table, as
described in Chapter 2, Connecting to Sources and Transforming Data with M, and Chapter
3, Designing Import and DirectQuery Data Models, may be necessary to organize these
measures.

Field descriptions applied to Analysis Services data models will also flow
through to Power BI reports just like the examples in this section with a
Power BI dataset. However, field descriptions applied to Power BI
datasets are not visible when connecting via Microsoft Excel.

Metadata reporting
Analysis Services DMVs are available to retrieve the descriptions applied to datasets and
related information. These DMVs can be leveraged for both simple, ad hoc extracts via
common dataset tools, such as DAX Studio, as well as more robust and standardized
reports in Power BI or Excel. Official documentation of Analysis Services DMVs, including
a reference and description of each DMV, query syntax, and client-tool access is available
via the following link: http:/ /bit. ly/ 2A81lek

Query field descriptions
The following query can be used to retrieve the measures in a dataset with descriptions as
well as their DAX expression:

SELECT
 [Name] as [Measure Name]
 , [Description] as [Measure Description]
 , [Expression] as [DAX Expression]
FROM
$SYSTEM.TMSCHEMA_MEASURES
WHERE LEN([Description]) > 1
ORDER BY [NAME];

http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek
http://bit.ly/2A81lek

Managing Application Workspaces and Content Chapter 8

[397]

As shown in the following screenshot, the query can be executed from DAX Studio against
the open Power BI Desktop file:

Measure descriptions via DMV query in DAX Studio

The WHERE clause in this query ensures that only measures with a description applied are
returned. Removing or commenting out this clause (for example, --WHERE
LEN([Description]) > 1) will return all measures whether they have a description or
not. Additionally, column aliases of Measure Name, Measure Description, and DAX
Expression improve the usability of the DMV columns.

Just as measure descriptions can be retrieved via the the TMSCHEMA_MEASURES DMV, the
following query retrieves the column descriptions from the TMSCHEMA_COLUMNS DMV:

SELECT
 [ExplicitName] as [Column Name]
 , [Description] as [Column Description]
FROM $SYSTEM.TMSCHEMA_COLUMNS
WHERE LEN([Description]) > 1
ORDER BY [ExplicitName];

As per the official documentation referenced earlier in this section, the query engine for
DMVs is the Data Mining parser and the DMV query syntax is based on the SELECT (DMX)
statement. Therefore, although the queries appear to be standard SQL statements, the full
SQL SELECT syntax is not supported, including the JOIN and GROUP BY clauses. For
example, it's not possible to join the TMSCHEMA_COLUMNS DMV with the TMSCHEMA_TABLES
DMV within the same SELECT statement to retrieve columns from both DMVs. Given these
limitations, it can be helpful to build lightweight data transformation processes on top of
DMVs, as described in the following section.

Managing Application Workspaces and Content Chapter 8

[398]

Standard metadata reports
For larger datasets with many measures, relationships, and tables, a dedicated metadata
report can be constructed using Power BI. In this approach, the Analysis Services data
connector is used to access the DMVs of the Power BI dataset and this data is transformed
via M queries. Finally, a set of report pages are created to visualize the primary objects of
the model and support common ad hoc questions, such as which relationships use
bidirectional cross-filtering?

Implementing the DMV-based Power BI report consists of the following four steps:

Obtain the server and database parameter values of the Power BI dataset1.
Query the DMVs of the Power BI dataset from a separate Power BI Desktop file2.
Integrate and enhance the DMV data to support the visualization layer3.
Develop the report pages4.

Server and database parameters
The server value of the Power BI dataset is visible in the status bar (bottom-right corner)
when connected to the dataset from DAX Studio, as shown in the following screenshot:

Server value of Power BI dataset via DAX Studio

In the following code, the server parameter is localhost:52809. To obtain the database
parameter, run the following query in DAX Studio:

 SELECT
 [CATALOG_NAME]
 , [DATABASE_ID]
 FROM $SYSTEM.DBSCHEMA_CATALOGS

Both columns will retrieve the same GUID value that can be used as the database
parameter.

Managing Application Workspaces and Content Chapter 8

[399]

There are other methods of obtaining the server parameter, such as
finding the process ID (PID) in Task Manager and then running netstat
-anop tcp from Command Prompt to find the port associated with the
PID. Connecting to the dataset from DAX Studio is more straightforward
and it's assumed that experienced Power BI dataset designers will have at
least a basic familiarity with DAX Studio.

The server parameter (for example, localhost:52809) can also be used to
connect to the running Power BI dataset via SQL Server Profiler. This can
be useful for identifying the DAX queries generated by report visuals and
user interactions. Alternatively, Power BI Desktop can generate a trace file
via the Enable tracing setting within the Diagnostics option (File |
Options and Settings | Diagnostics).

Querying the DMVs from Power BI
With the server and database known, parameters and queries can be created in Power BI
Desktop to stage the DMV data for further transformations. In the following screenshot
from the Power Query Editor, three query groups are used to organize the parameters, the
DMV queries, and the enhanced queries (Metadata Report Tables) used by the report:

Power Query Editor in Power BI Desktop

Managing Application Workspaces and Content Chapter 8

[400]

As per the TablesDMV query, the two parameters (AnalysisServicesServer and
AnalysisServicesDatabase) are passed to the AnalysisServices.Database()
function for each DMV query. As indicated by the gray font of the DMV queries and the
parameters, these queries are not loaded to the data model layer.

To update the metadata report in a future session to reflect changes to the
dataset, the server and database parameter values would need to be
retrieved again. These values could then be passed to the data model
parameters, thus allowing all queries to update. This manual update
process is necessary with Power BI Desktop files, given changes to the port
and database ID, but is not necessary for metadata reports based on
Analysis Services models.

Given the small size of the DMV data and the limitations of SQL SELECT
queries against DMV data, a simple SELECT * is used to expose all
columns and rows. The Metadata Report Table queries contain all the
joins and transformations to prepare the data for reporting.

Integrating and enhancing DMV data
The following M query produces the Relationships table by implementing joins to
retrieve the table and column names on each side of each relationship:

let
 FromTableJoin = Table.NestedJoin(
 RelationshipsDMV,{"FromTableID"},TablesDMV,{"ID"},"TableDMVColumns",
JoinKind.Inner),
 FromTable = Table.ExpandTableColumn(FromTableJoin, "TableDMVColumns",
{"Name"}, {"From Table"}),
 ToTableJoin = Table.NestedJoin(
 FromTable,{"ToTableID"},TablesDMV,{"ID"},"TableDMVColumns",
JoinKind.Inner),
 ToTable = Table.ExpandTableColumn(ToTableJoin, "TableDMVColumns",
{"Name"}, {"To Table"}),
 FromColumnJoin = Table.NestedJoin(
 ToTable,{"FromColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns",
JoinKind.Inner),
 FromColumn = Table.ExpandTableColumn(FromColumnJoin,
"ColumnsDMVColumns",
 {"ExplicitName"}, {"From Column"}),
 ToColumnJoin = Table.NestedJoin(
 FromColumn,{"ToColumnID"},ColumnsDMV,{"ID"},"ColumnsDMVColumns",
JoinKind.Inner),
 ToColumn = Table.ExpandTableColumn(ToColumnJoin, "ColumnsDMVColumns",

Managing Application Workspaces and Content Chapter 8

[401]

 {"ExplicitName"}, {"To Column"}),
 CrossFilteringColumn = Table.AddColumn(ToColumn, "Cross-Filtering
Behavior", each
 if [CrossFilteringBehavior] = 1 then "Single Direction"
 else if [CrossFilteringBehavior] = 2 then "Bidirectional" else
"Other", type text),
 RenameActiveFlag =
Table.RenameColumns(CrossFilteringColumn,{{"IsActive", "Active Flag"}})
in
 RenameActiveFlag

The Relationships DMV (TMSCHEMA_RELATIONSHIPS) includes table and column ID
columns, which are used for the joins to the tables (TMSCHEMA_TABLES) and columns
(TMSCHEMA_COLUMNS) DMVs, respectively. Additionally, a more intuitive cross-filtering
behavior column is added based on a conditional (if..then) expression.

Metadata report pages
With the enhanced DMV data loaded, report pages can be created, visualizing the most
important columns. In the following screenshot, the table and column names retrieved via
the M query joins in the previous section, Integrating and enhancing the DMV data, are
included in a simple table visual:

Metadata report page

Managing Application Workspaces and Content Chapter 8

[402]

In the slicer visual on the left, the table is filtered to only display relationships in which the
Internet Sales and Product tables are on the From Table side of the relationship. In
other words, only the relationships in which the Internet Sales and Product tables are
on the many side of a one-to-many relationship are displayed. The Active Flag column
identifies the two inactive date relationships based on Due Date and Ship Date.
Additionally, the cross-filtering behavior column and slicer makes it easy to identify any
relationships with bidirectional cross-filtering enabled.

A Power BI Desktop file containing the M queries and report pages from
this example is included with the code bundle for this book. Additionally,
Chapter 2, Connecting to Sources and Transforming Data with M, and
Chapter 3, Designing Import and DirectQuery Data Models, describe the
essential concepts of M queries and relationships contained in this section,
respectively.

Summary
This chapter introduced application workspaces and their fundamental role in managing
and delivering Power BI content to groups of users in the Power BI service. A staged
deployment architecture across development, test, and production workspaces was
described, including calls to the Power BI REST API to manage this process. Additionally,
several features and processes related to content management and governance were
reviewed, including version history via OneDrive for Business, field descriptions, and
accessing the DMVs of datasets to document datasets.

The next chapter examines the On-premises data gateway and the configuration of data
refresh processes in the Power BI service. This includes the administration of the gateway,
such as authorizing users and data sources, as well as monitoring gateway resource
utilization.

9
Managing the On-Premises

Data Gateway
For many organizations, the data sources for Power BI datasets or reports are located in on-
premises environments. The On-premises data gateway provides a means to securely
connect to these sources to support scheduled data refreshes or, in the case of DirectQuery
and Analysis Services Live connections, only return the results of queries requested by
users in the Power BI service. As a critical component of many Power BI solutions and
potentially other solutions utilizing Microsoft cloud services, such as Azure Analysis
Services, MS Flow, and PowerApps, a sound understanding of the On-premises data
gateway is essential.

This chapter reviews the architecture and behavior of the On-premises data gateway in the
context of Power BI. End-to-end guidance and best practices are provided across the
primary stages of deployment, from planning to installation, and setup to management and
monitoring.

In this chapter, we will review the following topics:

On-premises data gateway planning
Gateway clusters and architectures
Configuration of the On-premises data gateway
Scheduled data refresh
Dashboard tile cache refresh
Managing gateway clusters
Monitoring gateway usage
Live connections to Analysis Services models
Single sign-on DirectQuery

Managing the On-Premises Data Gateway Chapter 9

[404]

On-premises data gateway planning
Planning for the On-premises data gateway involves identifying which data sources require
a gateway and understanding the role of the gateway in each deployment scenario. For
example, if an import mode Power BI dataset or an import mode Azure Analysis Services
model simply needs to be refreshed with on-premises data every night, then gateway
resources (hardware) should be provisioned to support this specific nightly workload. This
deployment scenario, with the refreshed and in-memory data model hosted in the cloud, is
preferable from a user experience or query performance standpoint, as the queries
generated in the Power BI service do not have to access the on-premises source via the On-
premises data gateway.

Alternatively, when the data model or data source accessed directly by Power BI reports is
located in an on-premises environment, the On-premises data gateway is used to facilitate
data transfer between the data source and the queries from the Power BI service. For
example, a DirectQuery Power BI dataset built against an on-premises Teradata database
results in report queries being sent from the Power BI service to the Teradata database via
the On-premises data gateway and the results of those queries being returned to the Power
BI service via the On-premises data gateway. This deployment scenario can naturally
require alternative gateway resources, such as additional CPU cores, given the potentially
high volume of queries being generated dynamically based on user activity.

In addition to on-premises data sources, data sources residing in
Infrastructure-as-a-Service (IaaS) virtual machines (VMs) also require a
data gateway. This is an important exception as cloud data sources
generally do not require a gateway. For example, Platform-as-a-Service
(PaaS) sources, such as Azure SQL Database, and Software-as-a-
Service (SaaS) solutions, such as Google Analytics, do not require a
gateway.

The following two sets of questions address essential, high-level planning topics including
the administration of the installed gateway. The following section, Top gateway planning
tasks, as well as the Gateway architectures section later in this chapter, contain higher detail to
support gateway deployment:

Where is the data being used by the Power BI dataset?1.
Confirm that a gateway is needed to access the data source from Power
BI
This access includes both scheduled data refresh and any DirectQuery
or Live connections to the data source

Managing the On-Premises Data Gateway Chapter 9

[405]

Additional details on sources requiring a gateway are provided in the
next section

If a gateway is needed, is the data source supported with a generally available2.
(GA) data connector?

If a source-specific connector is not available, the gateway supports
Open Database Connectivity (ODBC) and OLE DB connections as
well
The current list of supported data sources is available at http:/ /bit.
ly/ 2EN1BCg

Data connectors labeled as (Beta) in the Get Data window of Power BI
Desktop should only be used for testing

Is the on-premises data or the IaaS data being imported to the Power BI dataset(s)3.
or an Azure Analysis Services model?

If yes, the gateway will support the scheduled refresh/processing
activities for these datasets
If no, the gateway will support user queries of the data source via
DirectQuery or Live connections

Will a standard On-premises data gateway be used or will a personal gateway4.
(personal mode) be used?

In all corporate BI deployments, the default and recommended on-
premises gateway will be installed by the IT organization on IT-owned
and maintained servers.
However, in certain business-led self-service projects or in scenarios in
which an IT-owned gateway server is not available, the personal
gateway could be installed on a business user's machine, allowing that
user to configure scheduled refreshes of import mode datasets.

A single gateway can be used to support multiple datasets, both import and DirectQuery.
However, it can be advantageous to isolate the alternative Power BI workloads across
distinct gateway clusters, such as with an import gateway cluster and a DirectQuery or Live
connection gateway cluster. Without this isolation, the scheduled refresh activities of import
mode datasets (Power BI or Azure Analysis Services) could potentially impact the
performance of user queries submitted via DirectQuery and Live connection datasets.
Additionally, as mentioned earlier, scheduled refresh activities can require far different
gateway resources (for example, memory) than the queries generated via DirectQuery
datasets or Live connections to on-premises SQL Server Analysis Services (SSAS)
databases.

http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg
http://bit.ly/2EN1BCg

Managing the On-Premises Data Gateway Chapter 9

[406]

In addition to provisioning hardware and installing the gateway(s) for each scenario, BI
teams must also plan for the administration and management of the gateway. Answering
the following five questions contributes to planning the implementation:

Which users will administer the gateway in Power BI?1.
This should be more than one user; preferably, a security group of
multiple gateway admins can be configured
These users do not need Power BI Pro licenses if they're only
administering gateway clusters

In larger Power BI deployments, distinct users or security groups could be
assigned as administrators of different gateways. For example, two users
could administer a gateway cluster utilized by enterprise or corporate-
owned BI content while two other users could administer a gateway
cluster used to support self-service BI content and projects.

This isolation of hardware resources between corporate and self-service
BI (that is, business user/team owned) can also be implemented with
Power BI Premium capacities, as described in Chapter 13, Scaling with
Premium and Analysis Services. The essential goal of this isolation is to
provide the self-service projects with resources aligned to these needs
while ensuring that high priority and widely utilized corporate BI assets
are not impacted by self-service content or activities.

Which authentication credentials or method will be used to configure the2.
gateway data sources?

For SSAS and Azure Analysis Services, this should be a server
administrator of the Analysis Services instance
For certain DirectQuery data sources, a single sign-on (SSO) option is
supported in which the Power BI user's identity is passed to the source
system, thus leveraging the source system's security.
The DirectQuery datasets section later in this chapter contains details of
this configuration

Which users will be authorized to use the gateway?3.
Users or security groups of users must be mapped to the data source of
a gateway
These are usually report authors with Power BI Pro licenses

Managing the On-Premises Data Gateway Chapter 9

[407]

Where will the gateway recovery key be stored? 4.
This will be necessary for migrating, restoring, or taking over an
existing gateway

Who will be responsible for updating the On-premises data gateway as new5.
versions are released?

Just like Power BI Desktop, a new version of the On-premises data
gateway is made available each month and includes new features and
improvements, such as the support for datasets with both cloud and
on-premises data sources
The Power BI team recommends staying up to date with new releases
and will not support old gateway versions
For example, as of March 15, 2018, gateway versions older than the
August 2017 release will not be supported

Each monthly gateway version includes the same M Query engine utilized
by that month's release of Power BI Desktop. Examples and considerations
for M Queries were described in Chapter 2, Connecting to Sources and
Transforming Data with M.

In the following image, two users are added to a security group in Azure Active Directory
(AD), dedicated to the administration of the On-premises data gateway:

Security group in Azure Active Directory

Managing the On-Premises Data Gateway Chapter 9

[408]

In this example, mapping the On-Premises Gateway Admins security group to a gateway
in Power BI would allow Anna and Brett to configure data sources for the gateway and to
authorize users or security groups of users to utilize the gateway. The Managing gateway
clusters section later in this chapter includes details on using the gateway portal in the
Power BI service.

Top gateway planning tasks
Since the gateway relates to different areas of IT, including infrastructure, networking, and
data security, subject matter experts in these areas often inquire about the technical
requirements of the gateway and its functionality. Additionally, business intelligence teams
want to ensure that the gateway doesn't become a bottleneck to query performance and that
dependencies on an individual gateway are avoided. Therefore, the BI/IT teams responsible
for deploying Power BI solutions with on-premises data (or IaaS data) must partner with
these other IT stakeholders to resolve questions and to provision the appropriate resources
for the On-premises data gateway.

This section addresses three of the most common gateway planning questions. Information
related to high availability and security is included in the gateway clusters and
architectures, and gateway security sections, respectively.

Determining whether a gateway is needed
As one would expect, an On-premises data gateway is usually not required for connectivity
to cloud data sources. PaaS offerings, such as Azure SQL Database, and SaaS solutions, such
as Salesforce, do not require a gateway.

However, data sources that reside in an IaaS VM do require a gateway. Additionally, the
Web.Page() function used in M Queries also requires a gateway. This function is used by
the Web Data Connector (WDC) (Get Data | Web) to return the contents of an HTML web
page as a table, as shown in the following M Query:

// Retrieve table of data access M functions and their descriptions
let
 Source =
Web.Page(Web.Contents("https://msdn.microsoft.com/en-US/library/mt296615.as
px")),
 PageToTable = Source{0}[Data],
 ChangedType = Table.TransformColumnTypes(PageToTable,

Managing the On-Premises Data Gateway Chapter 9

[409]

 {{"Function", type text}, {"Description", type text}})
in
 ChangedType

In the preceding example, a two-column table (Function, Description) of M functions is
retrieved from an MSDN web page and imported into a table in Power BI.

Additionally, all data sources for a dataset that accesses an on-premises data source must be
added to the list of data sources in the gateway management portal. For example, if a
dataset uses both SharePoint (on-premises) and an Azure SQL database, the URL for the
Azure SQL database must also be added as a data source (via the SQL Server data source
type) in the gateway management portal. If one of the data sources for the dataset is not
configured for the gateway, the gateway will not appear in the dataset settings to support a
refresh.

Identifying where the gateway should be installed
Gateways should be installed in locations that minimize the distance between the Power BI
service tenant, the gateway server, and the on-premises data source. Reduced physical
distance between these three points results in less network latency and thus improved
query performance. Minimizing this latency is especially important when the gateway is
used to support interactive report queries from Power BI to on-premises DirectQuery
sources and Live connections to on-premises SSAS models.

Network latency from an IP location to Azure data regions can be tested at
http:/ / azurespeed. com.
For example, via this free tool, it can quickly be determined that the
average latency to the West US region is 100 ms while the East US region
is only 37 ms. The lower latency of the East US region is due to the
physical proximity of this region to the source IP location (near Boston,
MA).

For example, if the Power BI tenant for your organization is located in the North Central
US region in Microsoft Azure and your on-premises data source (for example, Oracle) is
also located in the upper Midwest region of the United States, then the gateway should be
installed on a server near or between these two locations.

http://azurespeed.com
http://azurespeed.com
http://azurespeed.com
http://azurespeed.com
http://azurespeed.com
http://azurespeed.com
http://azurespeed.com

Managing the On-Premises Data Gateway Chapter 9

[410]

The location of a Power BI tenant can be found by clicking the About Power BI menu item
via the question mark icon in the top-right corner of the Power BI service:

About Power BI: tenant location

In this example, the Power BI content for the organization is being stored in the North
Central US (Illinois) Azure region. Therefore, the gateway should be installed on a location
that minimizes the distance between Illinois and the location of the data source. One
example of this would be to install the gateway on the same subnet of the production data
source server. It's not necessary, or recommended, to install the gateway on the same server
as the production data source.

Currently, there are 36 Azure regions globally with six new regions
planned. This link identifies the Azure regions and the criteria for
choosing a specific region: http:/ / bit.ly/2B598tD.

Defining the gateway infrastructure and hardware
requirements
The recommended starting point for the server on which the gateway will be installed is
eight CPU cores, 8 GB of memory, and the 64-bit version of Windows 2012 R2 (or later).
However, hardware requirements for the gateway server will vary significantly based on
the type of dataset supported (import versus DirectQuery/Live connection), the volume of
concurrent users, and the queries requested.

http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD
http://bit.ly/2B598tD

Managing the On-Premises Data Gateway Chapter 9

[411]

For example, if an M Query or part of an M Query is not folded back to the source system,
as described in Chapter 2, Connecting to Sources and Transforming Data with M, the gateway
server will be required to execute the non-folded M expressions during the scheduled
refresh (import) process. Depending on the volume of data and the logic of these
expressions, a greater amount of RAM would better support these local operations.
Similarly, if many users will be interacting with reports based on a DirectQuery dataset or a
Live connection to a SSAS model (on-premises), additional CPU cores will result in better
throughput.

It's strongly recommended to avoid a single point of failure by installing
instances of the On-premises data gateway on separate servers. These
multiple instances can serve as a single gateway cluster of resources
available to support data refreshes and queries against on-premises data
sources. Gateway clusters and architectures consisting of separate gateway
clusters are described in later sections of this chapter.

Performance counters associated with the gateway and the gateway server can be used to
determine whether adjustments in available resources (RAM and CPU) are necessary.
Guidance on interpreting these counters and a technique to integrate and visualize this data
via Power BI is included in the Monitoring gateway usage section later in this chapter.

In terms of network configuration, the gateway creates an outbound connection to the
Azure Service Bus and does not require inbound ports. The gateway communicates on the
following outbound ports: TCP 443 (default), 5671, 5672, and 9350 through 9354. It's
recommended that organizations whitelist the IP addresses for the data region of their
Power BI tenant (for example, North Central US) within their firewall. The list of IP
addresses for the Azure data centers can be downloaded via the following URL http://
bit.ly/2oeAQyd.

The downloaded list of Azure IP addresses is contained within an XML file which can be
easily accessed via Power BI Desktop, as shown in the following image:

Azure datacenter IP addresses

http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd
http://bit.ly/2oeAQyd

Managing the On-Premises Data Gateway Chapter 9

[412]

The gateway installs on any domain-joined machine and cannot be installed on a domain
controller. Additionally, only one gateway can be installed per computer per gateway mode
(enterprise versus personal). Therefore, it's possible to have both an enterprise mode and a
personal mode gateway running on the same machine.

On-premises data gateway versus personal mode
The first configuration setting when installing a gateway is the mode of the gateway, as
depicted in the following image:

On-premises data gateway installer

The default and recommended gateway mode (commonly referred to as the enterprise
mode) provides all the functionality of the personal mode plus many more features and
management capabilities. These additional benefits include support for DirectQuery and
Live connection datasets, several other Azure services, such as MS Flow, and the
management capabilities described in the Managing gateway clusters section later in this
chapter.

A single personal mode gateway can be installed per Power BI user account and can only
be used for the on-demand or scheduled refresh of the import mode Power BI datasets.
Most importantly, the personal mode gateway is completely tied to the individual user and
cannot be shared. For example, if the gateway is installed in the personal mode on a user's
laptop, that laptop will need to be on and connected to the internet to support any
scheduled data refreshes. Additionally, unlike the administrators of the On-premises data
gateway, a personal mode user cannot authorize other users to leverage the personal mode
gateway and its configured data sources.

Managing the On-Premises Data Gateway Chapter 9

[413]

In the following image, both a personal mode gateway and a standard On-premises data
gateway are available to refresh a dataset:

Dataset gateway connection

In the preceding example, if the user was not authorized to use the On-premises data
gateway (Frontline Gateway), the personal mode gateway could be used to complete the
refresh. This assumes the user has the necessary privileges to the on-premises data sources
of the import mode dataset.

Although the terms in the Dataset settings menu refer to single gateways
(for example, Gateway connection, data gateway), the Frontline Gateway
is actually a cluster of gateway resources. Specifically, the Frontline
Gateway operates as a single logical unit but may have multiple gateways
installed across separate servers. The gateway clusters and architectures
section contains additional details on the configuration of multiple clusters
and multiple gateways within a cluster.

The personal mode gateway is not intended for large datasets or datasets supporting
reports and dashboards that many users depend on. The personal mode gateways should
only be considered for enabling individual business users to work on personal or proof-of-
concept projects. For example, the business user may have several Excel workbooks and
other frequently changing local files that are not configured as data sources on an On-
premises data gateway. If the user has been assigned a Power BI Pro license, the personal
mode gateway allows the user to keep Power BI reports and dashboards based on these
sources updated for review by colleagues. In the event that the user's content requires
reliable, longer-term support, the BI/IT organization can add the data sources to an On-
premises gateway (enterprise mode) and revise removing the dependency on the user's
machine.

Managing the On-Premises Data Gateway Chapter 9

[414]

All the remaining sections of this chapter are exclusively focused on the On-premises data
gateway (that is, the enterprise mode). Although there are overlapping characteristics with
the personal mode, any reference to the On-premises data gateway in this chapter and
elsewhere in this book refers to the default mode (enterprise).

Gateway clusters
Each Power BI dataset is associated with a single gateway cluster, which is composed of one
or many gateway instances. For example, if a Power BI dataset (.pbix) imports data from
both a SQL Server database and an Excel file, the same gateway cluster will be responsible
for the import from both sources. Likewise, if hundreds of business users interact with
reports based on the same DirectQuery dataset or a Live connection to an on-premises SSAS
instance, these user interactions will generate query requests to the same gateway cluster.

Gateway clusters representing multiple gateways (for example, primary and secondary),
each of which must be installed on separate machines as per the Hardware and network
requirements section, provide both high availability and load balancing. From an availability
standpoint, if an individual gateway instance within a cluster is not running, due to a server
failure, for example, the data refresh and user query requests from the Power BI service will
be routed to the other gateway instance(s) within the cluster. In terms of query performance
and scalability, the Power BI service will distribute (load balance) the query requests across
the multiple gateway instances within the cluster.

Data source configurations for the primary gateway of the cluster, which
is the first gateway installed for the cluster, are leveraged by any
additional gateways added to the cluster. For example, when a gateway
cluster is first created on server abc and a data source (for example, SQL
Server) is added to this cluster, the same data source settings (for example,
the authentication method) will be used when another gateway on server
xyz is added to the gateway cluster.

Managing the On-Premises Data Gateway Chapter 9

[415]

In the following image from the gateway installer application, a new gateway is added to an
existing gateway cluster:

Adding a gateway to a gateway cluster

In this example, the new gateway (Frontline Gateway Backup) is added to the Frontline
Gateway cluster as per the checkbox and Available gateway clusters selection. Note that
the Recovery key for the primary gateway instance, which was created when the first
gateway instance of the cluster was installed, is required to add a gateway to a
cluster. Additionally, be aware that the gateway management portal in the Power BI service
only displays the gateway clusters, not the individual gateways within each cluster. Both
the gateway clusters and the individual gateways within each cluster can be accessed and
managed via PowerShell scripts as per the Managing gateway clusters section.

Prior to the release of gateway clusters in late 2017, each Power BI dataset
was dependent on a single gateway (and thus a single server). This was a
significant limitation from both an availability and a performance
standpoint as BI teams and projects would naturally prefer to reuse the
same dataset for many reports and dashboards. Adding a gateway or
multiple gateways from separate servers to a single gateway cluster
eliminates this single point of failure and provides load balancing of the
requested queries by default.

Managing the On-Premises Data Gateway Chapter 9

[416]

Before adding a gateway to a cluster, ensure that the new gateway instance will be able to
connect to the same data sources configured for the cluster. As described in the Top gateway
planning tasks section, the additional gateways added to gateway clusters should also be
installed in locations that minimize the distance between the gateway server, the Power BI
service tenant, and the data source(s).

Gateway architectures
For large-scale deployments of Power BI in which multiple types of datasets and workloads
will be supported (import refreshes, as well as DirectQuery and Live connection queries), BI
teams can consider multiple gateway clusters. In this approach, each gateway cluster is
tailored to meet the specific resource needs (RAM and CPU) of the different workloads,
such as large nightly refreshes or high volumes of concurrent queries in the early mornings.

For example, one gateway cluster could be composed of two gateway instances with a
relatively high amount of available RAM on each gateway server. This cluster would have
resources available during the most intensive scheduled refresh operations (for example, 4
A.M. to 6 A.M.) and would be exclusively used by import mode Power BI datasets and any
Azure Analysis Services models that also regularly import data from on-premises sources.
A separate gateway cluster would be created based on two gateway instances with a
relatively high number of CPU cores on each gateway server. This gateway cluster would
be used exclusively by DirectQuery Power BI datasets and any reports based on Live
connection to an on-premises SQL Server Analysis Services instance.

A third gateway cluster, in addition to an import and a DirectQuery/Live connection
cluster, could be dedicated to business-led BI projects. For example, as described in the On-
premises data gateway versus personal mode section earlier in this chapter, certain data sources
maintained by business teams (for example, Excel workbooks) may require the high
availability and management benefits of the On-premises data gateway. Generally, this self-
service cluster would be oriented toward scheduled refresh operations, but organizations
may also want to empower business users to create DirectQuery datasets or reports based
on Live connections to SSAS instances (on-premises).

Managing the On-Premises Data Gateway Chapter 9

[417]

In the following example from the Manage gateways portal in the Power BI service, two
gateway clusters have been configured:

Manage gateways in Power BI service

As shown in the preceding image, the two Gateway Clusters (Frontline Gateway and
Frontline Gateway 2) have been configured to support different data sources. As noted in
the previous section, the individual gateway instances installed for each cluster are not
currently accessible from the gateway portal but can be accessed via PowerShell scripts.
Each cluster represents a single logical unit of gateway resources for its given data
source(s).

If gateway clusters are created for specific workloads (for example, import
versus DirectQuery), it can be helpful to note this both in the Gateway
Cluster Name and in its Description. It's not recommended to allow a
single point of failure but if only one gateway server is used in a cluster
then the name of this server can be included in the cluster name and
description.

Managing the On-Premises Data Gateway Chapter 9

[418]

The following diagram depicts a gateway cluster being used to support a scheduled data
refresh of a Power BI dataset:

Scheduled data refresh via gateway cluster

With the data source(s) configured in the Manage Gateways portal in the Power BI Service,
a scheduled data refresh for an import mode dataset can be configured to use the Gateway
Cluster. The Gateway Cluster receives the query request at the scheduled time and is
responsible for connecting to the data source(s) and executing the queries that load/refresh
the tables of the Power BI dataset. Once the dataset in the Power BI Service is refreshed,
dashboard tiles based on the dataset will also be refreshed and reports built against the
dataset will issue queries against the dataset.

Given that the report queries are local to the refreshed dataset within the same Power BI
Service tenant, and given the performance optimizations of the engine running within
import mode Power BI datasets (that is, columnar compression, in-memory), query
performance is usually very good with this deployment.

Currently, the entire Power BI dataset must be fully refreshed in each
scheduled refresh operation. This is very inefficient, and in some scenarios
infeasible, for large datasets as resources are needed to load both historical
(unchanged) data and new data. However, incremental data refresh is a
top feature identified on the Power BI Premium roadmap and, along with
other roadmap features, will help support larger Power BI datasets.
Additional details on Power BI Premium are included in Chapter 13,
Scaling with Premium and Analysis Services.

Managing the On-Premises Data Gateway Chapter 9

[419]

The following diagram depicts two gateway clusters being used to support both the
scheduled refresh of an import mode dataset and a Live connection to a SSAS tabular
instance:

Multiple gateway clusters

Gateway Cluster A in the preceding diagram functions just like the previous diagram in
supporting scheduled refreshes of import mode datasets. Gateway Cluster B has been
created to exclusively support queries requested via Live connections to an on-premises
SSAS database—an SSAS Tabular model in this scenario. Given the high volume of query
requests generated by users interacting with Power BI reports based on the SSAS model, the
servers used in Gateway Cluster B can be provisioned with additional CPU cores and
actively monitored via performance counters for changes in utilization.

In addition to the interactive query requests from Live connection reports,
owners of datasets can configure a scheduled refresh for the cache
supporting dashboard tiles based on Live connection reports. Guidance on
configuring this feature is included in the Dashboard cache refresh section at
the end of this chapter.

The description of Gateway Cluster B is also generally applicable to DirectQuery datasets
based on supported sources, such as SQL Server, Oracle, and Teradata. Just like Live
connections to SSAS, reports built against these datasets will also generate high volumes of
queries that must go through the gateway cluster and be returned to the Power BI service
tenant.

Managing the On-Premises Data Gateway Chapter 9

[420]

Given the additional latency created by the requests for queries and the transfer of query
results back to the Power BI service, it's especially important to develop and provision
efficient data sources for DirectQuery and Live connection reports. Two examples of this
include using the clustered columnstore index for SQL Server and optimizing the DAX
expressions used for measures of an SSAS model.

Additionally, organizations can consider Azure ExpressRoute to create a fast, private
connection between on-premises infastructure and Azure. The following URL provides
documentation on this service: http:/ /bit. ly/ 2tCCwEv.

Gateway security
Administrators of the On-premises data gateway, such as the security group mentioned in
the On-premises data gateway planning section, are responsible for configuring the data
sources that can be used with each gateway cluster. Additionally, gateway administrators
have control over the users or security group(s) of users that can utilize a gateway data
source. As shown in the following image from the Manage gateways portal in the Power BI
service, credentials entered for data sources are encrypted:

Encrypted data source credentials

http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv
http://bit.ly/2tCCwEv

Managing the On-Premises Data Gateway Chapter 9

[421]

The data source credentials are only decrypted once the query request reaches the on-
premises gateway cluster within the corporate network. The gateway decrypts the
credentials needed for query requests and, once the query has executed, it encrypts the
results of these query requests prior to pushing this data to the Power BI service. The Power
BI service never knows the on-premises credential values.

Technically, the following five-step process occurs to facilitate communication and data
transfer between the Power BI service and the on-premises sources:

The Power BI service initiates a scheduled refresh or a user interacts with a1.
DirectQuery or a Live connection report.

In either event, a query request is created and analyzed by the data
movement service in Power BI.

The data movement service determines the appropriate Azure Service Bus2.
communication channel for the given query.

A distinct service bus instance is configured per gateway.

The On-premises data gateway polls its service bus channel and obtains the3.
pending request.
 The gateway decrypts the credentials and then sends the query to the data4.
source for execution.
The results of the query (data) are returned to the gateway, encrypted, and then5.
pushed to the Power BI service.

Managing the On-Premises Data Gateway Chapter 9

[422]

The critical component of the gateway's security is the recovery key that's created during
the installation and configuration process. In the following image, a user account has signed
into the the Power BI service and both a name for the gateway and a recovery key are
required to configure the gateway:

Configuration of an On-premises data gateway

The recovery key is used to generate strong RSA and AES encryption keys. As described
earlier in this section, these encyrption keys never leave the gateway machine.

It's strongly recommended to store the gateway recovery key in a safe and secure location.
This should be on a machine other than the gateway server itself as the recovery key can be
used to migrate, restore, or take over an existing gateway, as described in the
Troubleshooting and monitoring gateways section later in this chapter. Additionally, the
recovery key is required when adding a gateway to a cluster to provide high availability
and load balancing.

Gateway configuration
Once the gateway scenario and architecture has been planned per the previous sections, BI
or IT administrators can download and install the gateway (or multiple gateways) on the
chosen server(s). The gateway installation file to be downloaded is small (for example, 508
KB) and the installation process is quick and straightforward. However, gateway
administrators should be aware of primary settings, such as the default Windows service
account used by the gateway, and the option to change this account as well as the option to
switch network communication from TCP to HTTPS.

Managing the On-Premises Data Gateway Chapter 9

[423]

The gateway installer application can be obtained via the Download dropdown in the
Power BI service, as shown in the following image:

Download in Power BI service

The Data Gateway item from the download menu in the preceding image currently links to
a Power BI Gateway page with a large Download Gateway button at the top. Selecting
Download Gateway from this page allows the user to save the installer
(PowerBIGatewayInstaller.exe) locally. If the gateway installation file is downloaded
from a web page other than the Power BI Gateway page, such as Azure Logic Apps
documentation, the option to install the gateway in personal mode will not be included.

The installation and configuration process via the installer application is very
straightforward. Step-by-step instructions have been documented here (see Install the
gateway section) http:/ /bit. ly/ 2rq22Ao.

Once the installation and configuration is complete, an On-premises data gateway
application will be available on the the server machine to help manage the gateway, as
shown in the following image:

On-premises data gateway application

Details on the settings available via this application are included in the Troubleshooting and
monitoring gateways section later in this chapter. When first getting started with the gateway,
you can launch the application after configuration and sign in with a Power BI service
account to check the status of the gateway and to get familiar with the tool.

http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao
http://bit.ly/2rq22Ao

Managing the On-Premises Data Gateway Chapter 9

[424]

The same installation software can be downloaded and run to update an existing On-
premises data gateway to the latest version. For example, the January 2018 version of the
gateway corresponds to version 14.16.6584.1 and this includes the very latest data mashup
engine, bug fixes, and new administrative features. The update process is very quick to
complete and the On-premises data gateway application will reflect the new version
number on the Status page, as shown in the following image:

On-premises data gateway status

It's strongly recommended to regularly update the On-premises data gateway to the latest
version. An out-of-date gateway will be flagged for updating on the Status page of the On-
premises data gateway and may result in data refresh or connectivity issues.

Additionally, administrators should be aware of the following two XML configuration files
for the gateway:

C:\Program Files\On-premises data
gateway\enterprisegatewayconfigurator.exe.config
C:\Program Files\On-premises data
gateway\Microsoft.PowerBI.EnterpriseGateway.exe.config

The configurater.exe file relates to the installation screens that configure the gateway.
The PowerBI.EnterpriseGateway.exe file is for the actual Windows service that handles
the query requests from the Power BI service.

Managing the On-Premises Data Gateway Chapter 9

[425]

The gateway service account
By default, the gateway runs under the NT SERVICE\PBIEgwService Windows service
account. However, as shown in the following image from the On-premises data gateway
desktop application, this account can be changed via the Service Settings tab:

On-premises data gateway application

In the preceding example, a user has opened the gateway application from the server on
which a gateway instance has been installed. Additionally, in order to change the service
account, the user has signed into Power BI from the gateway application with the email
address used to log in to the Power BI service.

If the default account (NT SERVICE\PBIEgwService) is able to access the internet and thus
its Azure Service Bus, ensure that the account can also authenticate to the required on-
premises data sources, such as the production SQL Server instance. In some environments,
the default account cannot access the internet as it is not an authenticated domain user. In
this scenario, the service account can be revised to a domain user account within the Active
Directory domain. To avoid the need to routinely reset the password for the Active
Directory account, it's recommended that a managed service account is created in Active
Directory and used by the gateway service.

Managing the On-Premises Data Gateway Chapter 9

[426]

TCP versus HTTPS mode
By default, the gateway uses direct TCP network communication. However, as shown in
the following image from the On-premises data gateway application, the gateway can be
forced to exclusively use HTTPS via the Network tab:

On-premises data gateway application

In the preceding example, a user has opened the gateway application from the server on
which a gateway instance has been installed. Unlike modifying the service account per the
previous section, however, the user does not need to sign in to Power BI from the gateway
application to enable the HTTPS mode. A restart of the gateway is required to apply the
change to the HTTPS mode and thus this modification should only be implemented when
minimal or no query requests are being processed.

Once the HTTPS mode has been applied, the gateway will strictly use FQDN only and no
communication will happen using IP addresses. As advised in the gateway application,
enabling the HTTPS mode may slow the performance of gateway requests.

Managing gateway clusters
Once a gateway has been installed, the Power BI account used to register the gateway
during installation can access the manage gateways portal in the Power BI service to assign
administrators for the gateway. For example, if Anna Sanders' account was used to register
the gateway during installation, as shown in the following image, Anna would initially be
the only administrator of the gateway:

Managing the On-Premises Data Gateway Chapter 9

[427]

Account registering the gateway

Once registered, Anna can use the manage gateways portal to add a security group of users
as administrators for the gateway. Anna can then optionally remove her individual account
from the list of gateway administrators since she's either already included in the admin
security group or it's not her role to administer this gateway.

The Manage gateways portal is available via the gear icon in the top-right corner of the
Power BI service, as shown in the following image:

Manage gateways

Managing the On-Premises Data Gateway Chapter 9

[428]

The Manage gateways portal exposes all gateway clusters that the user is an administrator
for. The primary functionality and tasks of gateway administrators are described in the
following sections.

Gateway administrators
Administrators of gateway clusters have the ability to add or remove data sources, modify
the authentication to those sources, and to enable or disable users or groups of users from
utilizing the cluster. Given the importance of these responsibilities, more than one gateway
administrator, such as a security group of admins, is strongly recommended. For example,
in the event that the credentials for a data source need to be revised or when a data source
needs to reference a different database, only an admin for the gateway will be able to
implement these changes in the Manage gateways portal.

In the following image from the Manage gateways portal in Power BI, a single security
group (On-Premises Gateway Admins) has been added as the administrator of the
Frontline Gateway cluster:

Power BI gateway administrators

As described in the On-premises data gateway planning section earlier in this chapter, this
security group currently includes two users (Anna Sanders and Brett Powell).

Managing the On-Premises Data Gateway Chapter 9

[429]

Gateway data sources and users
The primary role of gateway administrators is to add data sources per the gateway cluster
and to authorize (or remove) users or groups of users. With the gateway cluster selected
within the Manage gateways portal, clicking ADD DATA SOURCE from the list of
gateway clusters creates a blank new data source, as shown in the following image:

Adding a data source to a gateway cluster

New data sources can also be added via the ellipsis to the right of each cluster name in the
Manage gateways portal. Once data sources have been added, the users who will publish
reports and/or schedule data refreshes via the gateway can be added to the data source.

In the following example, a security group of users is added to the AdWorksDW data
source of the Frontline Gateway:

Adding a security group of users to the gateway data source

The users included in the security group (for example, AdWorks DW Sales Team) will see
the option to use the Frontline Gateway to configure scheduled refreshes in the Data
Source Settings menu. For DirectQuery datasets and Live connections to on-premises SSAS
databases, Power BI Desktop will advise that a gateway has been applied when the PBIX
file is published.

Managing the On-Premises Data Gateway Chapter 9

[430]

PowerShell support for gateway clusters
A PowerShell script module is included in the installation of the On-premises data gateway
to support the management of gateway clusters. Once the module is imported to a session
of PowerShell in which the user has administrator privileges, a login command (Login-
OnPremisesDataGateway) must be be executed to enable other gateway management
commands.

By default, the PowerShell module file (.psm1) can be imported from the following path:

On-premises gateway PowerShell module

Unlike the Manage gateways portal in the Power BI service, the PowerShell commands
provide access to the specific gateway instances configured for each cluster. For example,
properties of a specific gateway within an instance can be modified or a gateway instance
can be removed from a cluster altogether.

In the following example from PowerShell, the gateway admin account
(ASanders@FrontlineAnalytics.onmicrosoft.com) has been used for the Login-
OnPremisesDataGateway command:

Gateway cluster PowerShell commands

Managing the On-Premises Data Gateway Chapter 9

[431]

Once authenticated as Anna Sanders, the Get-OnPremisesDataGatewayClusters
command has been used to retrieve the list of gateway clusters in which Anna is an
administrator. The list of available gateway cluster PowerShell commands and their
parameters can be found here: http:/ /bit. ly/ 2BfXL2e.

Troubleshooting and monitoring gateways
For organizations with significant dependencies on the On-premises data gateway, it's
important to plan for administration scenarios, such as migrating or restoring a gateway to
a different machine. Gateway administrators should also be familiar with accessing and
analyzing the gateway log files and related settings to troubleshoot data refresh issues.
Finally, gateway throughput and resource availability can be consistently monitored via
Windows' performance monitor counters associated with the gateway and the gateway
server.

In the following image, the status and version number of an installed gateway is obtained
via the On-premises data gateway desktop application:

On-premises data gateway application

In the preceding example, a user has accessed the server on which the Frontline Gateway
instance has been installed and then opened the On-premises data gateway application. To
obtain the gateway's status (for example, green check mark), the user is required to sign in
with the email address used to log in to the Power BI service. If the Gateway version
number is out of date, a message will appear advising that a new version of the gateway is
available. It's recommended to regularly update gateways to the latest versions.

http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e
http://bit.ly/2BfXL2e

Managing the On-Premises Data Gateway Chapter 9

[432]

Restoring, migrating, and taking over a gateway
In many scenarios, it's necessary to migrate or restore a gateway to a separate server. For
example, a gateway may have initially been installed on a server with insufficient resources
to support the current workload. In other cases, a hardware failure may have occurred on a
gateway's server and thus it's necessary to quickly restore connectivity. Via the recovery
key that's created when a gateway is first installed and configured, the data sources and
their associated settings (authentication and credentials) can be restored on a new gateway
machine.

In the following image, the gateway installation application
(PowerBIGatewayInstaller.exe) provides the option to Migrate, restore, or takeover an
existing gateway rather than register a new gateway:

Gateway setup options

Choosing to Migrate, restore, or takeover an existing gateway will require the recovery key
that is created when a gateway is originally configured. If this key is not available, the only
option will be to install a new gateway and manually add the data sources and authorized
users for that gateway. Additionally, only an administrator of a gateway can use the
recovery key to restore a gateway to a different server.

Gateway log files
The On-premises data gateway desktop application makes it easy for gateway
administrators to analyze gateway request activity. As shown in the following image, the
Diagnostics tab allows admins to record additional details in the gateway log files and to
export these files for analysis:

Managing the On-Premises Data Gateway Chapter 9

[433]

Diagnostics settings

Applying the additional logging setting requires the gateway to be restarted but provides
visibility to the specific queries requested and the duration of their execution. In a typical
troubleshooting or analysis scenario, a gateway admin would temporarily enable additional
logging, execute a data refresh or query from the Power BI service, and then export the
gateway log files to analyze this activity. Once the log files have been exported, additional
logging should be disabled to avoid reduced query throughput.

Technically, the additional logging setting modifies the
EmitQueryTraces and TracingVerbosity properties of the following
two XML configuration files, respectively:
Microsoft.PowerBI.DataMovement.Pipeline.GatewayCore.dll
Microsoft.PowerBI.DataMovement.Pipeline.Diagnostics.dll

As an alternative to the gateway application setting, both configuration
files can be accessed and modified at the installation location of the
gateway, such as C:\Program Files\On-premises data gateway.

In the following example, a gateway log file with verbose logging has been copied into
Excel and filtered for a specific request ID:

Log file output

Managing the On-Premises Data Gateway Chapter 9

[434]

In the preceding example, a refresh process caused the SELECT * FROM
BI.vDim_Account query to be executed against an on-premises source via the gateway.
The duration of this query was 2.48 seconds (2,484 ms) per the final row containing the
FireActivityCompletedSuccessfullyEvent log event. Note that column headers are
not included in the log files and that the second column of the logs (a GUID) is the Request
ID. This is the column that can be used to match a query with its completion event and
duration.

Performance Monitor counters
Windows performance-monitor counters, specific to both the gateway service and the
servers on which the gateway is running, are helpful in assessing workloads relative to
available resources. For example, a BI team can determine whether a gateway server has
adequate memory available to support the scheduled refreshes of large datasets. Likewise,
the performance counters specific to the On-premises data gateway can be used to identify
spikes or dips in query executions and failures throughout the day. The results of this
analysis could suggest adding a gateway instance to a cluster or migrating a gateway
instance to a server with additional CPU cores.

The Windows Performance Monitor tool can be used to create a collector set of the
necessary counters, as shown in the following image:

On-premises data gateway counters

Managing the On-Premises Data Gateway Chapter 9

[435]

As you can see in the preceding image, several of the same counters are available per query
type, such as ADO.NET, ADOMD, OLEDB, and mashup. The ADO.NET counters are used
by DirectQuery connections and the mashup counters relate to the refresh of imported
datasets. Detailed descriptions of all counters and types can be obtained via the Power BI
docs website under Gateways.

Power BI tools and services are well suited to integrating and analyzing performance-
counter data. A detailed paper describing this solution, as well as a sample Power BI
Desktop file, is available on the Insight Quest blog at http:/ / bit.ly/ 2Dssgbh.

Scheduled data refresh
The scheduled refresh for an import mode dataset can be configured in the Data Source
Settings menu in Power BI. In the following example, a user authorized to use the Frontline
Gateway cluster for the source(s) of the dataset configures a daily refresh:

Scheduled data refresh

http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh
http://bit.ly/2Dssgbh

Managing the On-Premises Data Gateway Chapter 9

[436]

Import mode datasets that are hosted in a shared capacity (non-premium) are currently
limited to eight scheduled refreshes per day. Import datasets hosted in Power BI Premium
capacity, however, can be refreshed up to 48 times per day. Each scheduled refresh for both
Power BI Premium and the shared capacity dataset is separated by a minimum of 30
minutes.

In addition to the scheduled refreshes configured in the Power BI service interface, the
Power BI REST API can be used to trigger a dataset refresh. A sample PowerShell script
(manageRefresh.ps1) for executing these refreshes is available for download and further
details on the Power BI REST API are included in the Staged deployments section of Chapter
8, Managing Application Workspaces and Content.

DirectQuery datasets
For datasets built with DirectQuery connections to on-premises sources, authorized users of
the gateway source will receive the following message when publishing from Power BI
Destop:

Gateway assigned to the DirectQuery dataset

It's essential that the data source settings (for example, server name, database name)
configured for the gateway data source exactly match the entries used by the Power BI
dataset (.PBIX). Once the DirectQuery dataset has been published to the Power BI service,
new reports can be built on top of this dataset via the Power BI service data source
described in the Live connections to Power BI datasets section of Chapter 5, Creating and
Formatting Power BI Reports.

Managing the On-Premises Data Gateway Chapter 9

[437]

Single sign-on to DirectQuery sources via
Kerberos
Many organizations have made significant investments in scalable on-premises data sources
and have implemented user security rules/conditions in these sources. For these
organizations, it's often preferable to use DirectQuery data connections that leverage both
the resources of the source and the custom security rules. To address this scenario, the On-
premises data gateway now supports a single sign-on feature that passes the identity of the
Power BI user to the data source via Kerberos constrained delegation.

In the following image from the Manage gateways portal, the single sign-on setting for a
SQL Server data source is exposed:

Single sign-on for DirectQuery

By default, the single sign-on (SSO) feature is not enabled and thus all DirectQuery queries
(from any user) will execute via the credentials specified in the source. If enabled, the user
principal name (UPN) of the user viewing content in the Power BI service is mapped to a
local Active Directory identity by the gateway. The gateway service then impersonates this
local user when querying the data source.

Managing the On-Premises Data Gateway Chapter 9

[438]

Kerberos constrained delegation must be configured for the gateway and
data source to properly use the SSO for DirectQuery feature. This involves
changing the service account of the gateway to a domain account, as
discussed in the Configuration of on-premises gateway section earlier in this
chapter. Additionally, an SPN may be needed for the domain account
used by the gateway service and delegation settings must be configured
for this account as well. Detailed instructions on configuring Kerberos
constrained delegation can be found here: http:/ /bit. ly/2DsTI82.

Currently this feature is only available for SQL Server, SAP HANA, and Teradata sources,
but Oracle and other common DirectQuery sources are planned.

Live connections to Analysis Services
models
For on-premises SSAS models that Power BI users will access via Live connections, an SSAS
data source must be added in the Manage gateways portal. Critically, the credentials
entered for this data source in the Manage gateways portal must match an account that has
server administrator permissions for the SSAS instance. The following image, from SQL
Server Management Studio (SSMS), exposes the server administrator accounts for the
ATLAS instance of SSAS Tabular:

Analysis Services Server administrators

http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82
http://bit.ly/2DsTI82

Managing the On-Premises Data Gateway Chapter 9

[439]

Both SSAS and Azure Analysis Services instances can be accessed via SSMS. Additionally,
the Analysis Server Properties dialog from the preceding image can be accessed by right-
clicking the instance name. Identification of the Power BI user by SSAS will only work if a
server admin account is specified and thus used when opening connections.

User authentication to SSAS is based on the EffectiveUserName property of SSAS.
Specifically, the user principal name (for example,
JenL@FrontlineAnalytics.onmicrosoft.com) of the Power BI user is passed into this
property and this email address must match a UPN within the local Active Directory. This
allows the SSAS model to apply any row-level security roles built into the model for the
given Power BI user.

Azure Analysis Services refresh
To support the data refresh operations of Azure Analysis Services models based on on-
premises sources, an On-premises data gateway resource is created in Azure and
associated with the Azure Analysis Services resource. As shown in the following image, the
gateway resource is located in the same region (North Central US) as the Power BI service
tenant:

On-premises data gateway resource in Azure portal

Managing the On-Premises Data Gateway Chapter 9

[440]

To create a gateway resource in Azure (for example, FrontlineGateway), either search the
Azure marketplace for On-premises data gateway in the Azure portal or use the link
(Create a gateway in Azure) provided on the Status page of the On-premises data gateway
application. Like other resources in Azure, an Azure subscription and resource group are
required to create and configure the gateway resource. However, the gateway resource only
stores metadata to reference an existing gateway installation and thus there are no billing
charges associated with the gateway itself. The name of the existing (and running) gateway
should appear on the Installation name property of the Create connection gateway blade
in the Azure portal.

Once created, the gateway resource in Azure must be associated with the Azure Analysis
Services resource, as shown in the following image:

Azure Analysis Services connected to gateway

In the preceding example, the AAS resource (frontline) has been configured to use the
FrontlineGateway resource via the On-premises data gateway setting for AAS resources.
The FrontlineGateway, in turn, references an existing installation of the On-premises data
gateway. Because the AAS resource is associated with the gateway in the Azure portal, it
does not need to be added as a data source in the manage gateways portal of Power BI.

From a user authentication and row-level security standpoint, Live connection queries
against AAS provide the Azure Active Directory account of the user. Therefore, the row-
level security models built into AAS models must reflect these AAD identities to be
enforced.

Managing the On-Premises Data Gateway Chapter 9

[441]

Dashboard cache refresh
Dashboard tiles based on import mode datasets are refreshed when the dataset itself is
refreshed in the Power BI service. For dashboard tiles based on DirectQuery or Live
connection datasets, however, the Power BI service maintains a scheduled cache refresh
process for updating dashboard tiles. The purpose of this cache is to ensure dashboards are
loaded extremely quickly since, as described in Chapter 7, Designing Power BI Dashboards
and Architectures, many users, such as executives, exclusively rely on dashboards.

By default, the dashboard tile cache is refreshed once every hour. As shown in the following
image, owners of these datasets can configure this refresh process to occur as frequently as
every 15 minutes or as infrequently as once per week:

Scheduled cache refresh

Managing the On-Premises Data Gateway Chapter 9

[442]

In the preceding example, a Power BI dataset (AdWorksEnterpriseDQ) containing a
DirectQuery connection to an on-premises SQL Server database has been published to an
app workspace in Power BI. The Scheduled cache refresh option will not appear for
datasets that import their data—these datasets can use the scheduled refresh dialog
described earlier in this chapter. Per the settings dialog, the dataset is associated with an
On-premises data gateway (Frontline Gateway), thus allowing queries from the Power BI
service to reach the on-premises database.

It can be helpful to run a trace on the source system to capture the volume
and performance characteristics of the queries associated with dashboard
cache refreshes. If the dataset is used by several dashboards with many
tiles and/or complex tiles with many data points, the cache refresh process
can be expensive on the source system. The trace can be started
immediately prior to a scheduled cache refresh or, if only one dashboard is
being refreshed, prior to a manual dashboard tile refresh.

Switching the Refresh frequency to 15 minutes causes the queries associated with each
dashboard tile dependent on the DirectQuery dataset to be submitted in 15-minute
intervals, as shown in the following image:

Dataset menu in Power BI service

In addition to the Last Refresh and Next Refresh columns, dataset owners can also access
the Refresh history from the same dataset settings menu used to configure the Scheduled
cache refresh.

Users can also manually refresh dashboard tiles via the Refresh
dashboard tiles menu option. This option, exposed via the ellipsis in the
top-right corner of dashboards, also sends queries to the DirectQuery or
Live connection data source like the scheduled cache refresh.

Managing the On-Premises Data Gateway Chapter 9

[443]

Power BI reports (.PBIX files) containing either a Live connection to an Analysis Services
server (AAS or SSAS) or a DirectQuery connection to the data source will be represented as
distinct datasets in the Power BI service. Power BI reports created based on these published
datasets will utilize the scheduled cache refresh configured for the given source dataset. The
Live connections to Power BI datasets section in Chapter 5, Creating and Formatting Power BI
Reports contains details and examples of these reports.

The optimal cache refresh frequency will depend on the business requirements for data
freshness, the frequency with which the source database is updated, and the available
resources of the source system. For example, if the top priority of the source system is OLTP
transactions and the dashboard queries are resource intensive, it may be preferable to limit
the refresh frequency to once a day. However, if the very latest data updates are of top
value to the business users and ample resources are available to the source system, a 15-
minute cache refresh schedule may be appropriate.

Unlike dashboards, a cache is not maintained for Power BI reports based on DirectQuery or
Live connection datasets. These reports issue queries as the user interacts with report
visuals and therefore can result in some latency. The degree of this latency depends on
many factors, including the hardware resources of the data source, whether Power BI
Premium capacity has been provisioned, and the complexity or density of the report visuals
being analyzed. Chapter 13, Scaling with Premium and Analysis Services is dedicated to
scalability and performance-related topics.

Summary
This chapter reviewed the primary planning and management scenarios for the On-
premises data gateway. This included alternative-solution architectures requiring a
gateway, methods for distributing workloads across multiple gateways, and ensuring high
availability via gateway clusters. Additionally, this chapter described the process of
administering a gateway, including the configuration of data sources and the authorization
of users or groups to utilize the gateway per source. Finally, the primary tools and
processes for troubleshooting and monitoring the gateway were reviewed.

While this chapter focused on using the Power BI Cloud service with on-premises data, the
following chapter highlights the option to deploy Power BI exclusively on-premises via the
Power BI Report Server. This includes the publication, refresh, and management of Power
BI reports on-premises as well as the primary differences between the Power BI Report
Server and the Power BI service.

10
Deploying the Power BI Report

Server
The Power BI Report Server is a modern enterprise-reporting platform that allows
organizations to deploy, manage, and view Power BI reports, in addition to other report
types, internally. The Power BI Report Server allows large numbers of users to view and
interact with the same reports created in Power BI Desktop in a modern web portal and via
the same Power BI mobile applications used with the Power BI cloud service. The Power BI
Report Server addresses a current and sometimes long-term need to maintain a fully on-
premises BI solution that includes both data sources and reports. Additionally, the Power BI
Report Server can be used in combination with the Power BI service to support scenarios in
which only certain reports need to remain on premises.

The Power BI Report Server has been built on top of SQL Server Reporting Services
(SSRS), and therefore organizations can continue to utilize existing paginated SSRS reports
and familiar management skills to easily migrate to the Power BI Report Server. In addition
to Power BI and paginated reports, the Office Online Server (OOS) can be configured to
allow for viewing and be interacting with Excel reports in the same report server portal,
thus providing a consolidated hub of BI reporting and analysis. Moreover, when
provisioned with Power BI Premium capacity, organizations can later choose to migrate on-
premises Power BI reports to dedicated capacity in the Power BI service, without incurring
an additional cost.

"Power BI Report Server is extending our journey of giving customers more flexibility in
terms of being able to deploy some of their workloads on-premises behind their firewall."

 – Riccardo Muti, Group
Program Manager

Deploying the Power BI Report Server Chapter 10

[445]

This chapter reviews the primary considerations in planning and deploying the Power BI
Report Server. This includes feature compatibility with the Power BI service, licensing and
configuration details, and an example deployment topology. Additionally, management
and administration topics are reviewed, including the scheduled data refresh of Power BI
reports and monitoring server usage via execution log data.

In this chapter, we will review the following topics:

Planning for the Power BI Report Server
Installation and configuration of Power BI Report Server
Power BI Desktop for Power BI Report Server
Power BI Report Server Portal
Scheduled data refresh and Live connections
Power BI mobile applications
Power BI Report Server administration
Scaling Power BI Report Server

Planning for the Power BI Report Server
Prior to any licensing or deployment planning, an organization should be very clear on the
capabilities of the Power BI Report Server in relation to the Power BI cloud service. The
Power BI Report Server does not include many of the features provided by the Power BI
cloud service, such as the dashboards described in Chapter 7, Designing Power BI
Dashboards and Architectures, or the apps, email subscriptions, Analyze in Excel, and data
alert features reviewed in Chapter 11, Creating Power BI Apps and Content
Distribution. Although new features are included with new releases of the Power BI Report
Server, the Power BI Report Server is not intended or planned to support the features
provided in the Power BI cloud service.

Additionally, for organizations using SSRS, it's important to understand the differences
between the Power BI Report Server and SSRS, such as the upgrade and support life cycle.
Mapping the capabilities and the longer-term role of the Power BI Report Server in relation
to a current and a longer-term BI architecture and cloud strategy is helpful in planning for
the Power BI Report Server.

Deploying the Power BI Report Server Chapter 10

[446]

The following list of five questions can help guide the decision to deploy the Power BI
Report Server:

Do some or all reports currently need to stay on-premises and behind a corporate
firewall?

Power BI Report Server is a fully on-premises solution designed to
meet this specific scenario
Alternatively, organizations can deploy the Power BI Report Server
to virtual machines provisioned in Azure

Is SSRS currently being used?
Power BI Report Server includes SSRS and thus allows a seamless
migration from an existing SSRS server
Paginated (.RDL) reports are not currently supported in the Power
BI service

Are the primary data sources for reports located on-premises and expected to
remain on-premises?

As an on-premises solution, the On-premises data gateway is not
required to connect to on-premises sources
As discussed in the previous chapter, some degree of query
latency, hardware, and administrative costs are incurred by using
on-premises data sources with the Power BI service

Are there features exclusive to the Power BI Service that is needed?
The Power BI Report Server is limited to rendering Power BI
reports (.PBIX) files, as will be discussed in the following section

Will large import mode Power BI datasets be needed or will the Power BI reports
use DirectQuery and Live connections?

The size of files that can be uploaded to the Power BI Report Server
for Scheduled refresh is limited to 2 GB
Additionally, unlike the Power BI service, a single Power BI dataset
cannot be used as a source for other reports
With Power BI Premium capacity in the Power BI Service, 10 GB
and larger files (datasets) are supported

Given these considerations, organizations with significant on-premises investments or
requirements should consider the Power BI Report Server as at least part of their BI
architecture. One example of this is a large on-premises data warehouse with many existing
paginated (.RDL) SSRS reports built against it.

Deploying the Power BI Report Server Chapter 10

[447]

As described in the Hardware and user licensing section later in this chapter, new Power BI
reports deployed to the Power BI Report Server can later be migrated to the Power BI cloud
service via the same licenses. For example, a group of related Power BI reports initially
published to a folder on the Power BI Report Server could later be uploaded to an app
workspace in the Power BI service. The app workspace could be assigned Power BI
Premium capacity and thus the reports could be distributed to all users, including Power BI
Free users, via an app, as per Chapter 11, Creating Power BI Apps and Content Distribution. In
addition to a straightforward migration path, many features exclusive to the Power BI
service, such as dashboards, can leverage reports originally deployed to the Power BI
Report Server.

Feature differences with the Power BI service
The Power BI Report Server renders Power BI reports (PBIX files) for data visualization and
exploration, just like the Power BI web service. In terms of Power BI features and
functionality, this is the essential scope of the Power BI Report Server. For users or
organizations inexperienced with Power BI concepts (datasets, reports, and dashboards)
and the Power BI service, these reports may be considered to be dashboards, and many of
the additional features provided by the Power BI service, such as dashboards, app
workspaces, and apps may not be known or utilized.

Although viewing and interacting with Power BI reports is clearly central to Power BI,
Power BI as a Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) cloud
offering provides many additional benefits beyond the standard infrastructure cost and
maintenance benefits of a cloud solution. These additional features support content
management, collaboration, and the managed distribution of content throughout the
organization. Prior to committing to the Power BI Report Server, it's recommended to
understand the role and benefit of features exclusive to the Power BI service.

The following list of features is exclusive to the Power BI service:

Dashboards
Data Alerts and Notifications
Email Subscriptions to Dashboards and Reports
App Workspaces and Apps
Quick Insights
Natural Language Query (Q & A)
Content Packs
Analyze in Excel

Deploying the Power BI Report Server Chapter 10

[448]

Power BI Publisher for Excel
Streaming Datasets
ArcGIS Map Visual
R Custom Visuals

The most straightforward guide to the Power BI features supported by the Power BI Report
Server is the Power BI Desktop application. With the exception of new Power BI Desktop
features (released in the last 1–3 months), which are not yet available in the latest release of
the Power BI Desktop version optimized for the Power BI Report Server, almost all features
in Power BI Desktop, including the great majority of custom visuals, are supported by the
Power BI Report Server. One additional and important exception to this, however, is row-
level security. As of the October 2017 release of the Power BI Report Server, row-level
security roles implemented in Power BI Desktop, as described in Chapter 4, Developing
DAX Measures and Security Roles, are not supported in the Power BI Report server.

Several of the Power BI service features not available to the Power BI Report Server have
been reviewed in earlier chapters, such as dashboards (Chapter 7, Designing Power BI
Dashboards and Architectures, and Chapter 8, Managing Application Workspaces and Content).
Other features exclusive to the Power BI service, including email subscriptions to
dashboards and reports, Power BI apps, and data alerts, are reviewed in the following
Chapter 11, Creating Power BI Apps and Content Distribution. Finally, the ArcGIS Map Visual,
which may be added to the Power BI Report Server in 2018, was included in Chapter
6, Applying Custom Visuals, Animation, and Analytics.

Content packs of pre-built Power BI datasets, reports, and dashboards for
popular online services such as Google Analytics and Salesforce are
available from the Microsoft AppSource portal (http:/ /bit. ly/2n5NB01)
and via the Get Data page of the Power BI service. These content packs, or
apps, developed and maintained by third parties, allow organizations to
get started quickly in analyzing this data with Power BI. Organizational
content packs developed within an organization for the purpose of
distributing content to users are being replaced by Power BI apps, as
described in the following chapter.

As per the Quick insights section of Chapter 6, Applying Custom Visuals,
Animation, and Analytics, certain Quick Insights features are now available
in Power BI Desktop. Additionally, Q & A (natural language queries) is
currently a preview feature in Power BI Desktop. Given the availability of
these features in Power BI Desktop, a future release of Power BI Desktop
optimized for the Power BI Report Server will very likely include support
for these features as well.

http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01
http://bit.ly/2n5NB01

Deploying the Power BI Report Server Chapter 10

[449]

Since the Power BI Report Server has been built on top of SSRS, a very mature and robust
enterprise reporting platform, it includes several capabilities not currently available in the
Power BI service. For example, paginated reports (.RDLs) developed by tools such as
Report Builder and SQL Server Data Tools (SSDT) can be deployed to the Power BI Report
Server but not the Power BI service. Additionally, the mobile reports introduced in SQL
Server Reporting Services 2016 and built with the Mobile Report Publisher application are
also fully supported.

Furthermore, if an Office Online Server (OOS) has been deployed on-premises, Excel
workbooks with external data connections to sources such as SQL Server Analysis Services
(SSAS) can also be published to the Power BI Report server portal and interacted with like
other reports. The ability to view and interact with Excel reports containing external data
connections is not currently available in the Power BI service, but is expected in 2018.
Additionally, there are plans to bring SSRS reports (.RDL files) to the Power BI Service at
some point in the future.

Per the Dynamics 365 Spring 2018 Release Notes (https://aka.ms/
businessappsreleasenotes), the ability to publish paginated SSRS reports (.RDLs) to
Power BI Premium capacity in the Power BI service is expected later in 2018. This new
capability will remove the requirement of deploying and managing a Power BI Report
Server (or SSRS server) to support these report types. Chapter 13, Scaling with Premium and
Analysis Services, contains additional details on Power BI Premium capabilities exclusive to
the Power BI service.

Parity with SQL Server Reporting Services
A Power BI Report Server is 100% compatible with SSRS. A Power BI Report Server can be
thought of as a superset of an SSRS server in the sense that both modern Power BI reports
and all SSRS features through the latest release of SSRS are included. Therefore, it's not
necessary to deploy both an SSRS report server and a Power BI Report Server to support
existing SSRS workloads.

"There is no reason, except in some edge cases, for you to be running both SSRS and
Power BI Report Server."

 – Christopher Finlan, Senior Program Manager for Power BI Report Server

It's certainly possible to deploy the Power BI Report Server along with an instance of SSRS.
For example, the Power BI Report Server could be dedicated to self-service BI reports built
with Power BI Desktop, while the SSRS server could be dedicated to IT developed
paginated (.RDL) reports.

https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes
https://aka.ms/businessappsreleasenotes

Deploying the Power BI Report Server Chapter 10

[450]

For the majority of organizations, however, the Power BI Report Server and its modern web
portal will be used to consolidate all report types.

There are three main differences between the Power BI Report Server and SQL Server
Reporting Services (SSRS):

Power BI Report (.PBIX) files can only be viewed from the Power BI Report
Server's web portal
Excel workbooks (.XLSX) can only be viewed from the Power BI Report Server's
web portal:

This requires the OOS, as described in the Configuration section
later in this chapter

The upgrade and support cycles are significantly shorter for the Power BI Report
Server:

A new version of the Power BI Report Server is released
approximately every 4 months
Each new version of the Power BI Report Server is supported by
Microsoft for 1 year

New versions of SSRS will continue to be tied to the release of SQL Server. For example,
SSRS 2017 was made generally available (GA) on October 2nd, 2017, along with SQL
Server 2017. Although the upgrade cycle has shortened for SQL Server, it doesn't match the
pace of innovation from Power BI's monthly release cycles. Therefore, to make new Power
BI features available to customers with on-premises deployments, a new Power BI Report
Server is released approximately every 4 months.

Unlike versions of SSRS, which continue to receive support such as cumulative updates for
years following their release, support for each Power BI Report Server release ends after one
year. Therefore, while upgrading to each new version of the Power BI Report Server every 4
months is not required, organizations should plan to upgrade within one year of each
version's release to maintain support. Additional information and considerations on
upgrade cycles are included in the Upgrade cycles section later in this chapter.

Support for multiple instances per server represents one additional
difference between the Power BI Report Server and SSRS. Currently, only
one instance of the Power BI Report Server can be installed per server.
Therefore, unlike SSRS, virtual machines need to be configured if multiple
instances are required for the same server.

Deploying the Power BI Report Server Chapter 10

[451]

There are no plans to deprecate SQL Server Reporting Services or replace it with the Power
BI Report Server. However, given the additional features exclusive to the Power BI Report
Server and the more frequent release cycle, there are strong reasons to choose Power BI
Report Server over SSRS going forward. Additionally, an existing SSRS server can be easily
migrated to Power BI Report Server as discussed in the Migrating from SQL Server Reporting
Services section later in this chapter.

BI teams familiar with SSRS can quickly take advantage of mature features, such as report
subscription schedules and role-based user permissions. For organizations running older
versions of SSRS, the significant features introduced in SSRS 2016, including the modern
web portal and KPIs, can further supplement their BI solution. In summary, the Power BI
Report Server allows organizations to continue to fully support existing and new SSRS
reports, while also enabling the self-service and data visualization features of Power BI
reports.

Data sources and connectivity options
All three connectivity options for Power BI Reports (import, DirectQuery, and Live
connection) are supported by the Power BI Report Server. As one example, corporate BI
teams could develop DirectQuery and Live connection reports based on a Teradata
database and a SQL Server Analysis Services model, respectively. Business users with
Power BI Pro licenses, however, could import data from Excel and other sources to the
Power BI Desktop version optimized for the Power BI Report Server and publish those
reports to the Power BI Report Server.

Power BI reports deployed to the Power BI Report Server cannot currently utilize a single
Power BI dataset (PBIX file) as their data source, as described in the Live connections to
the Power BI Datasets section of Chapter 5, Creating and Formatting Power BI Reports. Given
the resource limitations of the report server and the important goals of reusability and
version control, this implies that DirectQuery and Live connection reports are strongly
preferred for the current version of Power BI Report Server. However, the ability to reuse a
published Power BI dataset (PBIX file) as a source for new Power BI reports is planned for a
future release of the Power BI Report Server. Once released, BI teams will be able to isolate
dataset design topics and users (such as relationships or DAX measures) from report
authors just like with the Power BI service.

Deploying the Power BI Report Server Chapter 10

[452]

Imported Power BI datasets are currently limited to 2 GB file sizes. This compares to the 10
GB file size limit for Power BI datasets published to Premium capacity in the Power BI
server. Therefore, if it's necessary to import data to a Power BI report for deployment to the
Power BI Report Server; only include the minimal amount data needed for the specific
report.

Avoid duplicating imported data across many reports by leveraging
report pages, slicer visuals, and bookmarks. If import mode reports are
required, such as when data integration is needed or when an Analysis
Services model is not available, look for opportunities to consolidate
report requests into a few PBIX reports that can be shared.

One advantage of the Power BI Report Server is that, as an on-premises solution, the On-
premises data gateway section described in Chapter 9, Managing the On-Premises Data
Gateway is not needed. The report server service account, running either as the Virtual
Service Account or as a domain user account within the local Active Directory, will be used
to connect to data sources. Additional information on this connectivity, including Kerberos
constrained delegation, is included in the Installation and Configuration section.

Hardware and user licensing
The rights to deploy the Power BI Report Server to a production environment can be
obtained by purchasing Power BI Premium capacity or via a SQL Server Enterprise Edition
with the Software Assurance agreement. Power BI Premium is the primary and
recommended method as this includes both Power BI service (cloud) dedicated capacity
and the Power BI Report Server at the same cost. For example, a Power BI Premium P2 SKU
includes 16 v-cores of dedicated capacity in the Power BI service, as well as the right to
deploy the Power BI Report Server to 16 processor cores on-premises. Furthermore, the
cores provisioned via Power BI Premium can be allocated to on-premises hardware;
however, the organization chooses them, such as one Power BI Report server with all 16
cores, or two Power BI Report servers with eight cores, each in a scale-out deployment.

Deploying the Power BI Report Server Chapter 10

[453]

A Power BI Premium P2 SKU is highlighted in the following screenshot from the Purchase
Services page of the Office 365 admin center:

Power BI Premium SKU

As shown here, premium capacities represent a subscription-based model, such as $10,000
per month with an annual commitment. Currently, a month-to-month P1 SKU with eight v-
cores (P1 for Students) is available, which doesn't require an annual commitment.

By licensing Power BI Report Server via Power BI Premium capacity, an organization can
choose to migrate Power BI reports to the Power BI service (cloud) at a future date. For
example, some or all of the Power BI reports deployed to the Power BI Report Server in
2018 could be migrated to app workspaces hosted in dedicated Power BI Premium capacity
within the Power BI service in 2019. Additionally, as described in the Hybrid Deployment
Models section later in this chapter, an organization could allow certain solutions to be
developed with the dedicated Premium capacity in the Power BI cloud service, while other
reports could remain on-premises on the Power BI Report server.

Once Power BI Premium capacity has been purchased, a product key required to install the
report server will be available in the Power BI admin portal. The process for retrieving this
key from within the Power BI service is included in the Installation section later in this
chapter. Additionally, the details of Power BI Premium including the management of
premium (dedicated) capacities and the additional capabilities enabled by Premium
capacities for deployments to the Power BI service are included in Chapter 13, Scaling with
Premium and Analysis Services.

Deploying the Power BI Report Server Chapter 10

[454]

As an alternative to licensing via Power BI Premium, organizations with SQL Server
Enterprise Edition with Software Assurance can use their existing SQL Server licenses to
deploy Power BI Report Server.

One of the benefits of the Software Assurance program has been to provide access to new
versions of SQL Server as they're released, and this benefit has been extended to include the
Power BI Report Server. For example, if an organization has already licensed 24 cores to run
SQL Server Enterprise Edition, with a Software Assurance agreement they could allocate 8
of those 24 cores to a server for running Power BI Report Server. Just like current SQL
Server licensing, additional SQL Server products (such as SQL Server Integration Services)
could also be deployed on the same eight-core server. It's essential to realize that, unlike
Power BI Premium, this licensing method does not provide access to the many additional
features exclusive to the Power BI (cloud) service described earlier in this chapter.

Pro licenses for report authors
In addition to licensing for the Power BI Report Server, each user who will be publishing
Power BI reports (PBIX files) to the report server's web portal will also require a Power BI
Pro license. In most large deployments, these are typically a small number of BI report
developers and self-service BI power users, as described in the Power BI Licenses section of
Chapter 1, Planning Power BI Projects.

Users who only view and optionally interact with reports published to the Power BI Report
Server do not require Power BI Pro licenses or even Power BI Free licenses. This licensing
structure (Premium Capacity + Pro licenses for report authors) further aligns the Power BI
Report Server with the Power BI service. For example, similar to the Hybrid deployment
models described in the following section, a report author with a Power BI Pro license would
have the ability to publish one report to the Power BI Report Server and a different report to
an app workspace in the Power BI service.

Alternative and hybrid deployment models
The Power BI Report Server, along with the ability to embed Power BI content into custom
applications, gives organizations the option to choose a single deployment model (such as
Power BI Report Server only) or a combination of deployment models in which both the
Power BI Report Server and the Power BI service are utilized for distinct scenarios or
content.

Deploying the Power BI Report Server Chapter 10

[455]

With both the Power BI service and the Power BI Report Server available via Power BI
Premium capacity, an organization could choose to match the deployment model to the
unique needs of a given project, such as using the Power BI Report Server if traditional
paginated reports are needed, or if the reports need to remain on-premises for regulatory
reasons.

For example, one Power BI solution for the marketing organization could be completely
cloud-based, such as using Azure SQL Database as the source for Power BI reports and
dashboards hosted in the Power BI service. A different solution for the sales organization
could use the On-premises data gateway to query a SQL Server Analysis Services model
(on-premises) from the Power BI service, as described in Chapter 9, Managing the On-
Premises Data Gateway. Finally, for scenarios in which both the data source(s) and the
report/visualization layer must remain on-premises, such as for sensitive reports used by
the human resources organization. Power BI reports developed against on-premises sources
could be deployed to the Power BI Report server.

The following diagram describes the essential architecture of three distinct Power BI
solutions: cloud only, cloud and on-premises, and on-premises only:

Power BI solutions by deployment model

In this example, Power BI reports and dashboards developed for the marketing department
are hosted in the Power BI service and based on an Azure SQL Database. The sales team
also has access to dashboards and reports in the Power BI service, but the queries for this
content utilize a Live connection to an on-premises SSAS model via the On-premises data
gateway. Finally, Power BI reports developed for the human resources department based
on on-premises data sources are deployed to the Power BI Report Server.

Deploying the Power BI Report Server Chapter 10

[456]

BI solutions that utilize PaaS and SaaS cloud offerings generally deliver reduced the overall
cost of ownership, greater flexibility (such as scale up/down), and more rapid access to new
features. For these reasons, plans and strategies to migrate on-premises data sources to
equivalent or superior cloud solutions, such as Azure SQL Data Warehouse and Azure
Analysis Services, is recommended.

If multiple Power BI deployment models are chosen, BI teams should understand and plan
to manage the different components utilized in different models. For example, identify the
administrators, hardware, and users of the On-premises data gateway. Likewise, identify
the Power BI service administrators and the tenant settings to apply, as described in
Chapter 12, Administering Power BI for an Organization. Additionally, as discussed in the
Upgrade cycles section later in this chapter, organizations can choose either a single Power BI
Desktop version to utilize for both the Power BI Report Server and the Power BI service, or
run separate versions of Power BI Desktop side by side.

BI teams responsible for managing these more complex deployments should have
monitoring in place to understand the utilization and available resources of the alternative
deployment models. For example, rather than adding resources to a Power BI Report Server
or adding another report server in a scale-out deployment, certain Power BI reports could
be migrated to available to premium capacity in the Power BI service. The Power BI
Premium capacities section in Chapter 12, Administering Power BI for an Organization,
includes details on the premium capacity monitoring provided in the Power BI service.

Report Server reference topology
The four main components of a Power BI Report Server deployment include the report
server instance, the Report Server Database, Active Directory, and the data sources used
by the reports. The Active Directory domain controller is needed to securely authenticate
requests by both the data sources and the report server.

Deploying the Power BI Report Server Chapter 10

[457]

In the following diagram, a SQL Server database and an SSAS Tabular model are used as
the data sources by the report server:

Power BI Report Server reference topology

In the diagram, the Report Server Database is hosted on a separate server than the Power
BI Report Server. This is recommended to avoid competition for resources (CPU, memory,
and network) between the Power BI Report Server and the SQL Server database engine
instance required for the Report Server Database. Additional information on the Report
Server Database and configuring this remote connection is included in the following
sections.

Installation
Once capacity (cores) to deploy the Power BI Report Server has been obtained, teams can
prepare to install and configure the environment by downloading the report server
software and the version of Power BI Desktop optimized for the Power BI Report Server.

Both the report server installation software and the report server version of Power BI
Desktop can be downloaded from the Microsoft download center (http:/ /bit.ly/
2As4E4w), as shown in the following screenshot:

http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w
http://bit.ly/2As4E4w

Deploying the Power BI Report Server Chapter 10

[458]

Power BI Report Server installation files

Here, the Details menu exposes the version of the software associated with the given
release. In this example, the version 14.0.600.442 corresponds to the October 2017 version of
the Power BI Report Server. The Advanced download options link at the top of the Power
BI Report Server site (https:/ /powerbi. microsoft. com/en-us/report- server) also links to
the MS download center.

To install Power BI Report Server to a production environment, a product key will need to
be obtained from either the Power BI service or the Microsoft Volume Licensing Service
Center. Additionally, teams should be aware of hardware and software requirements and
other configuration settings, as described in the following sections.

Hardware and software requirements
An instance of the SQL Server Database Engine from 2008 or later must be available to
configure the Power BI Report Server. Each Power BI Report Server instance, such
as ATLAS\PBIRS requires both a Report Server Database and a related report server
temporary database on the same instance of the database engine. The Report Server
Database stores content, such as reports, schedule definitions, folders, data sources, and the
credentials for report data sources. The report server temporary database stores cached
reports, session and execution data, and work tables generated by the report server.

https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server
https://powerbi.microsoft.com/en-us/report-server

Deploying the Power BI Report Server Chapter 10

[459]

Both the Report Server Database and the report server temporary
databases should be regularly backed up but not modified or tuned. In a
restore operation, if the temporary database is not backed-up, it will have
to be recreated. If a backed up temporary database is used in a restore
operation, the contents of the database should be deleted and the report
server windows service should be restarted.

The Power BI Report Server (and SSRS) also requires access to a Read-Write Domain
controller to properly administer the service. The Netdom command-line tool for Windows
Server can be used to determine whether the domain controller is read-only or read-write.
Specifically, the netdom query dc command will return only writable domain controllers.

For the report server instance machine, an operating system of Windows Server 2012 or
later is required, as is 1 GB of RAM, 1 GB of available hard-disk space, and an X64 processor
with a clock speed of 1.4 GHz or higher. 4 GB of RAM and an X64 processor with a 2.0 GHz
or a faster clock speed is recommended. Additional hard disk space will be required on the
database server hosting the Report Server Database and the temporary database.

Analysis Services Integrated
The same columnar, in-memory OLAP database engine used by Analysis Services Tabular
models and Power BI datasets is now built into the Power BI Report Server. This engine is
used to render Power BI reports containing imported data (import mode) and DirectQuery
connections. Therefore, if import mode Power BI datasets (PBIX files) will be deployed to
the report server, especially large import mode files (100 MB+), a significantly greater
amount of RAM will be needed on the server hosting the Power BI Report Server instance
than typical reporting services deployments. Additionally, the Scheduled refresh
operations for these large import mode reports will require both RAM and CPU resources,
and this should be planned for.

The requirement for additional RAM could be significantly mitigated if
the Live connections to Power BI datasets feature described in Chapter
5, Creating and Formatting Power BI Reports, is made available in a future
release of the Power BI Report Server. In this scenario, similar to Power BI
service deployments, a single import mode dataset (PBIX file) and it's data
refresh process could support many Power BI reports.

Deploying the Power BI Report Server Chapter 10

[460]

Alternatively, if the Power BI reports deployed to the Power BI Report Server will use Live
connections or DirectQuery connections to data sources, the Power BI Report server will
have significantly lower resource requirements. As with deployments to the Power BI
service, the main driver of performance for Live connection and DirectQuery reports will be
the data source receiving the query requests from the Power BI Report Server.

Retrieve the Report Server product key
If Power Premium capacity has been purchased, the Power BI Report Server product key
can be retrieved from the Power BI admin portal. The Power BI admin portal can be
accessed by either an Office 365 global administrator or a user assigned to the Power BI
service administrator role. For these users, a link to the Admin portal will be exposed from
the gear icon in the top-right corner of the Power BI service:

Power BI Admin portal link

The Power BI service administrator role and the assignment of this role in Office 365 were
introduced in the Power BI Project roles section of Chapter 1, Planning Power BI Projects.
Additionally, Chapter 12, Administering Power BI for an Organization, provides granular
details on the Tenant settings available in the Power BI Admin portal and other topics
related to governing Power BI deployments.

Deploying the Power BI Report Server Chapter 10

[461]

In the following screenshot, a Power BI service administrator has accessed the Capacity
settings menu of the Admin portal:

Power BI admin portal: Capacity settings

Clicking the Power BI Report Server key icon on the far right of the Capacity settings
menu launches a dialog containing the key. This 25-character key value can be copied and
used to complete the installation of the server:

Installation of Power BI Report Server

If Power BI Report Server is being licensed via SQL Server Enterprise Edition with Software
Assurance, the product key can be downloaded from the Microsoft Volume Licensing
Service Center (VLSC) via the following link: http:/ /bit.ly/2rqefW1.

An instance of the SQL Server Database Engine is not required to complete the standalone
installation of the Power BI Report Server. However, as discussed in the Hardware and
software requirements section, a SQL Server database engine instance is required to configure
the report server. The report server is not available until it's been configured, as described
in the Configuration section.

http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1
http://bit.ly/2rqefW1

Deploying the Power BI Report Server Chapter 10

[462]

Migrating from SQL Server Reporting Services
There is not an in-place upgrade from SSRS to the Power BI Report Server. However,
migrating an existing instance of SSRS running in Native mode to Power BI Report Server
can be accomplished via the following steps:

Back up the database, application, and configuration files of the existing SSRS1.
instance:

The encryption key of the SSRS instance should also be backed up
The configuration files can be found within the SQL Server installation
directory (<install directory>\Reporting Services\Report
Server), as shown in the following screenshot:

Reporting Services config

The default installation directory for SSRS is C:\Program
Files\Microsoft SQL Server\MRS13.MSSQLSERVER

Clone the Report Server Database hosting the reports for the instance of SSRS.2.
Install the Power BI Report Server instance via the PowerBIReportServer.exe3.
file described earlier in this section; this installation can be on the same server as
the existing SSRS instance.
Configure the Power BI Report Server instance to connect to the cloned database4.
via the Report Server Configuration Manager application:

Additionally, also from the Report Server Configuration Manager,
restore the backed-up encryption key
The reports from the existing SSRS instance will then appear in the
Power BI Report Server web portal
The Report Server Configuration Manager is included with the
installation of Power BI Report Server

Deploying the Power BI Report Server Chapter 10

[463]

The following screenshot from Report Server Configuration Manager gives the option to
modify the database of the ATLAS\PBIRS Power BI Report Server instance:

Report Server Configuration Manager

In scenarios where the hardware or topology of a Power BI Report Server deployment
needs to change, the same four-step migration process outlined here applies when
migrating an instance of Power BI Report Server to a different server. The only exception is
that unlike the SSRS (Native mode) to Power BI Report Server migration, new and existing
instances of Power BI Report Server must be installed on separate servers.

Migrating from SSRS instances in SharePoint-integrated mode is more complex, as it
involves copying content from the SharePoint environment to the Power BI Report Server
via report server command-line utilities, such as rs.exe. Of course, if the volume of reports
(.RDL files) to be migrated is limited, the files could be downloaded manually. A sample
script for copying SharePoint content to a report server and further documentation on this
process is available at the following URL: http:/ /bit.ly/2DoBIs9.

Configuration
Once the standalone installation of the new report server is complete (via the
PowerBIReportServer.exe file), it's necessary to configure the report server with the
Report Server Configuration Manager. This tool can be found within the Microsoft
Power BI Report Server folder and includes an interface to 10 distinct groups of
settings.

http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9
http://bit.ly/2DoBIs9

Deploying the Power BI Report Server Chapter 10

[464]

Several of these settings are outside the scope of this chapter, but configuring the following
four are essential to make a report server operational:

Service Account
Web Service URL
Web Portal URL
Database

Default values are provided for the Web Service URL and Web Portal URL, such as a TCP
Port of 80 and the URL of the web portal, respectively. When these four settings have been
configured correctly, the Power BI Report Server portal should be accessible from a web
browser, as shown in the following screenshot:

Power BI Report Server portal

The web portal for the Power BI Report Server instance here (ATLAS\PBIRS) uses the
default URL (<server>/reports) and the default brand package of colors and a logo.
Users assigned to the system administrator role of the report server can apply a custom
brand package, such as a corporate logo and color scheme, by accessing the Site settings
item from the web portal, as shown in the following screenshot:

Power BI Report Server portal: Settings

Details on developing a brand package to upload and apply to a Power BI Report Server
portal are included at the following URL: http:/ /bit.ly/2F35QcO.

http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO
http://bit.ly/2F35QcO

Deploying the Power BI Report Server Chapter 10

[465]

Service Account
As discussed in the Power BI Report Server reference topology section earlier in this chapter,
the database server used to host the Report Server Database is usually a separate machine
than the report server instance. Therefore, a domain account or a service account with
network access must be used to support the remote connection from the report server to the
database server containing the Report Server Database. The Service Account can be
modified via the top tab of the Report Server Configuration Manager, as shown in the
following screenshot:

Report Server Service Account

The Virtual Service Account is selected as the default service account. If the Report Server
Database is created on the same machine (such as ATLAS) as the report server instance, this
account should have no issues. However, as shown in the preceding screenshot, a Network
Service account or a domain account can be specified as well, which can access the Report
Server Database on a remote server. Additional details and considerations on configuring a
Report Server Database connection are included at the following URL: http:/ /bit. ly/
2F5vXA1.

Remote Report Server Database
If a remote database engine instance is being used, TCP/IP network connectivity will need
to be enabled.

http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1
http://bit.ly/2F5vXA1

Deploying the Power BI Report Server Chapter 10

[466]

This can be accomplished by logging on to the database server and opening the SQL Server
Configuration Manager tool, as shown in the following screenshot:

Sql Server Configuration Manager: TCP/IP

Per the screenshot, the SQL Server Network Configuration dropdown menu provides
access to the protocols of the database instance (MSSQLSERVER). Once the TCP/IP
protocol has been enabled (right-click | Enable), the database instance will need to be
restarted. This option is available from the SQL Server Services menu, as shown in the
following screenshot:

SQL Server Configuration Manager: Restart service

Deploying the Power BI Report Server Chapter 10

[467]

Finally, the port that the SQL Server instance listens on will need to be opened. This is
typically port 1433 for TCP/IP connections for the default SQL Server database instance.

Office Online Server for Excel Workbooks
One of the most exciting Power BI Report Server features introduced in 2017 was the ability
to publish and view Excel workbooks on the report server portal. Although Power BI
Desktop is increasingly the preferred choice for data analysis, Excel workbooks and
particularly Excel connections to SQL Server Analysis Services (SSAS) models are still
very important to many business users as well. Having both Excel and Power BI in the same
portal, in addition to paginated reports (.RDLs) gives BI teams the flexibility to meet many
different needs from the same solution.

The Office Online Server (OOS) must be installed to enable Excel online functionality in
the report server. The full process and technical details for deploying the Office Online
Server is available at MS DOCs via the following URL: https:/ /docs. microsoft. com/en-
us/power-bi/report- server/ excel- oos.

If SQL Server Analysis Services is used as a data source, the account for
the Office Online Server should be added as a server administrator for the
instance of SSAS. SSAS admin accounts and how connections to SSAS
models via these accounts enable row-level security roles to be applied to
business users was described in the Live connections to Analysis Services
models section of Chapter 9, Managing the On-Premises Data Gateway.

From a Power BI Report Server configuration perspective, the Office Online Server
Discovery Endpoint URL must be added within the Advanced properties of Site settings
as shown in the following screenshot:

Report Server portal: Site settings

https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos
https://docs.microsoft.com/en-us/power-bi/report-server/excel-oos

Deploying the Power BI Report Server Chapter 10

[468]

This URL is the InternalUrl used when deploying the OOS server, followed by
/hosting/discovery. As described at the beginning of this section, Site settings (Gear
icon | Site settings) can only be accessed by users assigned to the System Administrator
role.

Upgrade cycles
A new version of the Power BI Report Server is released approximately every 4 months. For
example, the June 2017 release was followed by an October 2017 version, which included
additional features, such as support for imported data in Power BI reports. As of this
writing, the next version of Power BI Report Server (following October 2017) will likely be
released in the first quarter of 2018. This new version is expected to incorporate the features
introduced in the monthly updates to Power BI Desktop in Q4 of 2017, such as the
Bookmarks feature described in Chapter 6, Applying Custom Visuals, Animation, and
Analytics.

The following diagram describes the support provided for three hypothetical releases of the
Power BI Report Server (October of 2017, February of 2018, and June of 2018):

Support for Power BI Report Server releases

Per the diagram, a new release and version (for example, February 2018) are made available
approximately four months following the prior version (from October 2017 to February
2018, from February 2018 to June 2018). The latest version of the Power BI Report Server
receives both security and critical updates until a new version is available.

Deploying the Power BI Report Server Chapter 10

[469]

At that point, only security updates will be made available for the remainder of the 12
months. Therefore, assuming a new version is released in June of 2018, organizations with
the February 2018 release would receive security updates from June of 2018 through
February of 2019. At a minimum, these organizations would want to upgrade their
environment prior to February of 2019 to maintain security support.

The upgrade cycle is one of the reasons for choosing the Power BI service
as this process is managed by Microsoft. For example, new features are
automatically added to the Power BI service each month and users can
update to the latest release of Power BI Desktop automatically via the
Windows Store in Windows 10 operating systems. The main reason Power
BI Report Server is not released more frequently, such as every 2 months,
is that most IT organizations will not want to upgrade their BI
environments more than three to four times per year. Some organizations
are expected to skip one or two of the releases per year to coincide with
their internal upgrade policies and schedules.

With each release of the Power BI Report Server, a new version of the Power BI Desktop
optimized for this version of the Power BI Report server is also released. This is a distinct
application from the Power BI Desktop application, which can be downloaded directly from
PowerBI.com and is described more fully in the following section.

To avoid report rendering errors, it's strongly recommended to synchronize the deployment
of the Power BI Report Server with its associated version of the Power BI Desktop. For
example, once an upgrade to the February 2018 version of the Power BI Report Server is
complete, the February 2018 version of Power BI Desktop optimized for the Power BI
Report server will be installed on users machines.

Report Server Desktop Application
As shown in the Installation section earlier, a PowerBIDesktopRS_x64.msi file is also
available for download from the MS Download center. This is the application used to create
Power BI reports to be published to this version (October 2017) of the Power BI Report
Server.

https://powerbi.microsoft.com/en-us/

Deploying the Power BI Report Server Chapter 10

[470]

As shown in the following screenshot, this application can be distinguished from the
standard Power BI Desktop via the title bar (here, October 2017) and the Save As menu:

Power BI Desktop optimized for Power BI Report Server

As suggested by the Save as menu in the preceding screenshot, a report created via the
Power BI Report Server optimized application can be saved directly to the report server. In
other words, a PBIX file doesn't necessarily have to be saved to a user's machine—the
Power BI Report Server can serve as a network file share. If a report needs to be modified,
the user (with a Power BI Pro license), could open the file directly from the web portal
described in the following section and save their changes back to the report server.

At some point in the future, a single version of Power BI Desktop that can be used for both
the Power BI service and the Power BI Report Server may be released. This has been
identified as an important goal that Power BI teams are currently working through, though
no timelines have been suggested as of this writing.

Running desktop versions side by side
It's possible to install and run both versions of Power BI Desktop (standard and Report
Server optimized) on the same machine. This can be useful in organizations deploying
reports to both the Power BI service and the Power BI Report server, as described in the
Hybrid deployment models section.

Deploying the Power BI Report Server Chapter 10

[471]

For example, the standard Power BI Desktop application could be used to create a new
report for an app workspace in the Power BI service, which utilizes the very latest features.
The report server optimized version, however, would be used to create or edit reports that
are deployed to the Power BI Report Server.

In the following screenshot from a Windows 10 machine, both versions of Power BI
Desktop are pinned to the Start menu:

Side-by-side Power BI Desktop

In the preceding screenshot, hovering over the icon or just observing the three dots within
the application tile makes it easy to distinguish the applications. As an alternative to
running both applications side by side, an organization could choose to exclusively use the
Power BI Report Server-optimized version of Power BI Desktop for reports published to
both the Power BI service and the Power BI Report Server. This single application approach
could simplify the management of the overall deployment but would prevent the utilization
of the latest features available in the standard version of Power BI Desktop.

Report Server Web Portal
With the report server installed and configured, Power BI and other types of reports can be
published or uploaded to the report server. This content can then be managed, organized
into folders, and viewed by users from web browsers and the Power BI mobile application.

Deploying the Power BI Report Server Chapter 10

[472]

In the following screenshot, nine report items have been published to the Home page of the
web portal:

Power BI Report Server Web Portal

As illustrated here, Power BI reports can be easily distinguished from other report types
and users can mark reports as favorites (star icon) for quick access from the Favorites page.

KPIs are created exclusively in the web portal via the New dropdown at
the top. Paginated reports (.RDL files) can be created with the Report
Builder application and with Report Server projects in SQL Server Data
Tools (SSDT) for Visual Studio. Additionally, Excel workbooks can be
uploaded and the Mobile Report Publisher application can be used to
create and publish mobile reports (.rsmobile files).

Clicking a Power BI report, such as the Customer Sales Report, opens this report in the
browser and provides the same interactive experience of filtering and cross-highlighting
available in Power BI Desktop and the Power BI service.

Deploying the Power BI Report Server Chapter 10

[473]

Scheduled data refresh
Power BI reports built with a DirectQuery or Live connection to their data sources execute
their queries when the report is accessed by users. For import mode Power BI reports, a
Scheduled refresh can be configured from the Manage page, as shown in the following
screenshot:

Scheduled refresh of Power BI report

The Manage page for a report can be accessed via the ellipsis (three dots) of the report icon
or via right-clicking. A custom refresh schedule can be configured specific to a given report,
or alternatively a shared scheduled can be created in the Site settings menu (Gear icon |
Site settings). In the preceding example, the Product Sales Report has been assigned to a
shared schedule used by other import mode sales reports.

Given the RAM and CPU resources required to complete the refresh
process for large import mode Power BI datasets, separate schedules may
be configured to split this workload. Additionally, once the feature is
available, a single Power BI dataset should be used as the source for other
Power BI reports thus eliminating the need to refresh multiple files.

The refresh schedules created in the Power BI Report Server's web portal are implemented
as SQL Server Agent jobs. The properties of these jobs (schedule and owner) can be
accessed from SQL Server Management Studio (SSMS).

Deploying the Power BI Report Server Chapter 10

[474]

Data source authentication
In addition to configuring a Scheduled refresh, report server administrators can use the
Manage page to modify the data source properties of a report. For example, Power BI
reports based on Live connections to SQL Server Analysis Services (SSAS) models will
attempt to access the SSAS source as the user viewing the report by default. However,
assuming that the SSAS instance is installed on a separate machine than the Power BI
Report Server, Kerberos Constrained Delegation (KCD) is required for this impersonation
to function. To enable this data source connection without KCD, while still respecting any
row-level security defined in the SSAS model, an administrator can modify the data source
properties of the report.

In the following screenshot from the Manage report page, a specific user credential is
specified for accessing an SSAS source:

Manage report data source properties

Deploying the Power BI Report Server Chapter 10

[475]

With the check mark option enabled as in the preceding screenshot, once a connection has
been opened to the SSAS model via the credential specified (ATLAS\Brett Powell), the
identity of the user viewing the report can be passed to the source. In this scenario, the
credential specified should be a server administrator for the source SSAS instance, thus
enabling row-level security to be applied to the user viewing the report. Information on the
SSAS server administrator role and user impersonation via the EffectiveUserName
property is included in the Live connections to Analysis Services Models section of Chapter 9,
Managing the On-Premises Data Gateway. Additionally, the following URL contains
information on KCD in Windows Server 2012 (http://bit.ly/2DMCKCj).

Power BI mobile applications
The same Power BI mobile applications for iOS, Android, and Windows platforms used to
access content published to the Power BI service can also be used with the Power BI Report
Server. As shown in the following screenshot, the user has opened the Settings menu via
the global navigation button (≡) to connect to a report server:

Power BI mobile app: Settings

From the global navigation page, the Settings menu can be accessed via the Gear icon at the
top of the page. Clicking Connect to server opens a page to enter the report server address
and to optionally provide a friendly name for the server, such as AdWorks Report Server .
The server address entered should follow one of two formats:

http://<servername>/reports
https://<servername>/reports

http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj
http://bit.ly/2DMCKCj

Deploying the Power BI Report Server Chapter 10

[476]

The connection between the mobile application and the report server can be created by
opening a port in the firewall, being on the same network (or VPN), or through a Web
Application Proxy from outside the organization. Information on configuring OAuth
authentication via Web Application Proxy is available at the following URL http://bit.
ly/2EepW4J.

Regardless of the platform (iOS or Android), up to five concurrent
connections can be created to different report servers. Each report server
connection will appear in the Settings menu. Additionally, the Favorites
menu will display reports and content marked as favorites, whether that
content is hosted on a Power BI Report Server or in the Power BI service.

From a business user or consumption standpoint, the Phone Layout and the mobile
optimizations described in the Mobile Optimized Reports section of Chapter 5, Creating and
Formatting Power BI Reports, are reflected in Power BI reports accessed from the Power BI
mobile app. Additionally, the KPIs that can be created in the Power BI Report Server's web
portal and the mobile reports created via the Mobile Report Publisher application can also
be viewed from the Power BI mobile app.

Report server administration
BI teams deploying the Power BI Report Server will want to limit user access to specific
reports and groups of reports contained in folders. For example, users or groups of users in
Active Directory (AD) will be granted the right to view certain Power BI reports, while
other users or groups will have the right to edit content. Additionally, BI teams will be
interested in understanding the usage and performance characteristics of the content
deployed to the Power BI Report Server.

The Power BI Report Server inherits mature role-based permission features and the
execution history log data of SSRS. For more granular analysis of report server activity,
administrators can access the Report Server Service Trace Log, the Windows Application
Log, and Windows Performance Counters. Additional details on these sources are
available at the following URL: (http:/ /bit. ly/ 2DFed29).

http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2EepW4J
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29
http://bit.ly/2DFed29

Deploying the Power BI Report Server Chapter 10

[477]

Securing Power BI report content
Several built-in security roles are available to assign to users or groups of users. This
security assignment can be scoped at the folder level and is by default inherited by all
reports within that folder or assigned to a specific report.

In the following screenshot, a security group (AdWorksSales) is assigned to the Browser
role for the Product Sales Report:

Role security in Power BI Report Server

The security configuration page for both reports and folders can be accessed via the
Manage page, as described in the Scheduled data refresh section earlier in this chapter. By
default, the BUILTIN\Administrators group is assigned to a System Administrator
system-level role and the Content Manager item-level role of the Home folder.

Security roles can also be created and customized in SQL Server Management Studio
(SSMS). In the following example, a new user role is created that provides the same
permissions as the default Browser role (such as View Reports), but also enables users to
manage the comments posted to reports:

Deploying the Power BI Report Server Chapter 10

[478]

Power BI Report Server Security Roles

As shown in the preceding screenshot, the new role (Browser with Comment
Management), is allowed to perform seven tasks including managing comments. There are
18 tasks, available to define a user role, which allow users to create, view, and manage
report server content. This customization, along with default item level inheritance of a
parent item's security, provides report server administrators with robust controls to
implement role-based security.

Execution logs
Administrators of Power BI Report Servers can query and potentially build report server
monitoring reports on top of execution log data maintained within the Report Server
Database. This data, which is stored in the ExecutionLogStorage table, is exposed via
Views, such as dbo.ExecutionLog3, and includes all essential attributes of report server
execution history. This includes the report requested, the user requesting the report, the
time, and the data size of the activity.

Deploying the Power BI Report Server Chapter 10

[479]

The names of the Report Server Database and its host server can be found via the Database
page of the Report Server Configuration Manager application, as shown in the following
screenshot:

Report Server Configuration Manager: Database

In this example, any ad hoc analyses or standard monitoring reports based on execution log
data will need to access the ReportServerPBI SQL Server database hosted on the ATLAS
server. As described in the Report Server reference topology section, the Report Server
Database is usually hosted on a separate server than the instance of the Power BI Report
Server (ATLAS\PBIRS).

In the following screenshot from SQL Server Management Studio (SSMS), the
ExecutionLog3 view of the ReportServerPBI database is queried to retrieve execution
history:

Report server execution log views

As shown in the preceding screenshot, the Format field can be used to query for specific
report types, such as Power BI (such as PBIX). The list of columns available in the execution
log view and their descriptions are documented at the following URL: (http://bit.ly/
2nforva).

http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva
http://bit.ly/2nforva

Deploying the Power BI Report Server Chapter 10

[480]

The ExecutionLog and ExecutionLog2 views were created in older
versions of SSRS. Therefore, if no dependencies exist on these views,
ExecutionLog3 is recommended.

By default, log entries are stored for 60 days. However, report server admins can modify
this setting via the Logging page of Server Properties, as shown in the following
screenshot:

Power BI Report Server Logging properties

Server properties are accessible by right-clicking on the context menu of the Power BI
Report Server instance in SSMS. As described in the Report Server reference topology section,
the report server instance and the Report Server Database (which stores the log data) are
usually on separate physical servers.

Scale Power BI Report Server
Both scale-up and scale-out options are available to Power BI Report Server deployments.
In a scale-up scenario, additional CPU cores can be provisioned via Power BI Premium
capacity or an existing SQL Server Enterprise Edition with Software Assurance agreement.
For example, if 16 cores were obtained via Power BI Premium P2 SKU, an additional 8 cores
could be purchased via a P1 SKU. Additionally, particularly if import mode Power BI
datasets are used, additional RAM can be installed on report servers.

In a scale-out deployment, multiple instances of Power BI Report Server are installed on
separate machines. These instances share the same Report Server Database and serve as a
single logical unit exposed to business users via the web portal.

Deploying the Power BI Report Server Chapter 10

[481]

In the following diagram of a scale-out deployment, business user report requests are
distributed between two different instances of the Power BI Report server via a network
Load Balancer:

Scale-out Power BI Report Servers

Servers can be added or removed from a scale-out deployment via the Scale-out
Deployment settings page of the Report Server Configuration Manager application. This is
what points each server to the same Report Server Database. In addition, to support for
more users and greater usage, scale-out deployment of the report server instances also
increases the resiliency of the deployment. To avoid a single point of failure, the scale-out
deployment of the report servers can be coupled with high availability features for the
Report Server Database, such as SQL Server Always On availability groups or a failover
cluster. Additional information on configuring Always On availability groups with a
Report Server Database is available via the following URL: http://bit.ly/2rLtSqY.

Summary
This chapter reviewed the Power BI Report Server as Microsoft's modern, on-premises
solution for enterprise and self-service BI. The main features of the report server and
licensing requirements were described and contrasted with the Power BI cloud service.
Furthermore, the core processes of installing, configuring, and administering the Power BI
Report Server were detailed.

The next chapter returns to the Power BI (cloud) service and focuses on the distribution of
published content to end users. This includes the delivery and management of packages of
related Power BI content to large groups of users via Power BI apps. Additionally, other
content delivery capabilities of the Power BI service are reviewed, including data-driven
alerts and scheduled email subscriptions.

http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY
http://bit.ly/2rLtSqY

11
Creating Power BI Apps and

Content Distribution
This chapter walks through all facets of Power BI apps as the primary method for
distributing content to groups of users. Given the one-to-one relationship between apps and
app workspaces, readers should review Chapter 8, Managing Application Workspaces and
Power BI Content, prior to this chapter.

In addition to apps, other distribution and data access methods are described, including
email subscriptions, data alerts, SharePoint Online embedding, and Analyze in Excel.
Moreover, guidance is provided on leveraging Microsoft Flow to create custom email alert
notifications. Distribution methods available to the Power BI Report Server and
the technical details of integrating Power BI content into custom applications are outside the
scope of this chapter.

In this chapter, we will review the following topics:

Content distribution methods
Power BI apps
Sharing dashboards and reports
Data Alerts and notifications
SharePoint Online embedding
Report and dashboard subscriptions
Analyze in Excel
Custom application embedding

Creating Power BI Apps and Content Distribution Chapter 11

[483]

Content distribution methods
One the of the main value propositions of Power BI is the ability for users to access relevant
analytical content in a context that's best suited to their needs. For example, many read-only
users may log into the Power BI service to view dashboards or reports contained within
Power BI apps specific to their role or department. Other users, however, may only receive
snapshot images of reports and dashboards via Email Subscriptions or respond to data alert
notifications on their mobile device. In other scenarios, certain users may analyze a dataset
hosted in Power BI from an Excel workbook while other users could observe a Power BI
report embedded within a team SharePoint site.

Organizations can choose to distribute or expose their Power BI content hosted in the Power
BI service in one or a combination of methods. The following table summarizes 11 methods
of content distribution and data access:

Content distribution methods in Power BI

The most common corporate BI distribution methods for supporting large numbers of users
are Power BI apps and embedding Power BI content into custom applications, that is,
embed in custom applications. Several other methods, however, are useful for small-scale
and self-service scenarios, such as Analyze in Excel as well as supplements to larger Power
BI solutions. Additionally, email subscriptions, data alerts, and embedding options can
serve to streamline the analysis process and increase user productivity.

Creating Power BI Apps and Content Distribution Chapter 11

[484]

Organizational content packs are currently being replaced by Power BI
Apps and thus are excluded from the preceding table. The ability to enable
users to customize the content that has been distributed to them, which is
currently supported via organizational content packs, will soon be
supported by Power BI apps. Once Power BI apps deliver the same (and
additional) capabilities as organizational content packs, the ability to
create new organizational content packs will likely be removed from the
Power BI service.

The Power BI mobile application aligns with and supports several of the primary
distribution methods including Power BI apps, the sharing of dashboards and reports, and
data alerts. Examples of the relationship between the Power BI service, Power BI mobile
and other Microsoft applications and services are included in the following sections.

Power BI apps
A Power BI app is a published collection of content from an app workspace. The app can
include all or a subset of the dashboards, reports, and any Excel workbooks within an app
workspace. Just as app workspaces are intended for the creation and management of Power
BI content, apps are intended for the distribution of that content to groups of users. With
security and permission to view the app granted, users can view with the dashboards and
reports of the app within the Power BI web service or via the Power BI mobile applications.

Microsoft has been clear that Power BI apps are the future of content consumption within
organizations and that they will remain simple for users to access. The app workspaces
used by report authors and BI professionals to define and manage the apps, however, will
become more robust. Two examples of these enhancements include display folders for
grouping content within an app as well as the automatic installation of published apps for
users.

Licensing apps
Apps are particularly well-suited to large, corporate BI deployments that support the
reporting and analysis needs of many users. In most of these scenarios, the great majority of
users only need to view certain reports or dashboards and don't require the ability to edit or
create any content like Power BI Pro users.

Creating Power BI Apps and Content Distribution Chapter 11

[485]

For example, a salesperson within the northwest region of the United States may only
briefly access a few dashboards or reports 2 – 3 times per week and occasionally interact
with this content, such as via slicer visuals. With the Power BI Premium capacity, these
read-only users can be assigned Power BI Free licenses yet still be allowed to access and
view published apps.

In the absence of the Power BI Premium capacity, a Power BI Pro license would be required
for each user that needs to access the app. In small-scale scenarios, such as when
organizations are just getting started with Power BI, purchasing Power BI Pro licenses for
all users can be more cost-efficient than Power BI Premium capacities. However, at a certain
volume of users, the Power BI Premium capacity becomes a much more cost-efficient
licensing model. Additionally, Power BI Premium enables many other features intended to
support enterprise deployments. The details of provisioning and managing Power BI
Premium capacity is described in Chapter 13, Scaling with Premium and Analysis Services.

App deployment process
A Power BI app is published from an app workspace and inherits the name of its source
workspace. Likewise, an app can only contain content from its source workspace. However,
an app does not have to expose all the content of its source workspace. The members of the
workspace responsible for publishing and updating the app can utilize the Included in App
toggle switch to selectively exclude certain dashboards or reports. For example, two new
reports that have yet to be validated or tested could be excluded from the app in its initial
deployment. Following the validation and testing, the Included in App property (on the far
right of each report and dashboard) can be enabled and the app can be updated, thus
allowing users to access the new reports.

The one-to-one relationship between workspaces and apps underscores
the importance of planning for the scope of an app workspace and
providing a user-friendly name aligned with this scope. Too narrow a
scope could lead to users needing to access many different apps for
relevant reports and dashboards. Alternatively, too broad a scope could
make it more difficult for users to find the reports and dashboards they
need within the app. Additionally, the workspace and app-update process
could become less manageable.

A simple publish (or update) process is available within the app workspace for defining the
users or security groups who can access the app as well as adding a description and
choosing a default landing page for users of the app. The details of the publish process are
included in the Publishing apps section.

Creating Power BI Apps and Content Distribution Chapter 11

[486]

The following diagram and supporting five-step process describe the essential architecture
of apps and app workspaces:

Global Sales app deployment process

In this example, the Global Sales app is accessed by the sales team consisting of 200 users, as
per the Sample Power BI Project template section in Chapter 1, Planning Power BI
Projects. Additionally, the row-level security roles described in Chapter 4, Developing DAX
Measures and Security Roles, and the organizational dashboard architecture reviewed in
Chapter 7, Designing Power BI Dashboards and Architectures, are utilized by the app.

An app workspace is created in the Power BI service and members are added1.
with edit rights to the workspace.

Individual members (not security groups) can be added to app
workspaces.

Members of the app workspace publish reports to the given workspace and2.
create dashboards based on those reports.

Power BI Desktop is used to author and publish reports based on a
Live connection to a Power BI dataset.
Visuals from the published reports are pinned to dashboards, such as
European Sales.

Dashboards are not required to publish an app.

Scheduled data refresh or dashboard cache refresh schedules are configured and3.
the workspace content is validated.

As an import mode dataset, the dashboards and reports are updated
when the scheduled refresh is completed.

Creating Power BI Apps and Content Distribution Chapter 11

[487]

A workspace administrator or a member with edit rights publishes an app from4.
the workspace.

The app is distributed to one or multiple Azure Active Directory
(AAD) security groups of users.

Members of the sales team view and optionally interact with the content in Power5.
BI and Power BI mobile.

The dashboards and reports would reflect the row-level security roles
configured in the dataset.

Certain sales team users requiring Power BI Pro features, such as Analyze in Excel, could
utilize the Power BI app as well. Additional content access methods exclusive to Power BI
Pro users, such as Email Subscriptions to dashboards and reports, are described later in this
chapter.

User permissions
BI teams distributing Power BI content via apps have two layers of control for granting
users permission to view the app's dashboards and reports. The first layer is configured by
choosing the users or security groups of users when publishing the app in the Power BI
service.

In the following image, a security group from AAD (Global Sales Team) is specified
when publishing the Global Sales workspace as an app:

Publish app to a security group

Creating Power BI Apps and Content Distribution Chapter 11

[488]

In this example, a Power BI user will need to be included in the Global Sales Team
security group to see and access the app. The user who published the app will also
automatically be granted permission to the app. Additionally, as per the Install app
automatically checkmark, the published app will be automatically installed for members of
the Global Sales Team. These users will be able to access the installed app in the Apps
menu between the Recent and Shared with me menu. An example of the Apps menu is
included in the Installing apps section later in this chapter.

The Install app automatically option will only appear if this setting has
been enabled in the Power BI admin portal. Specifically, a Power BI admin
can enable the Push apps to end users setting in the Tenant settings page
for an entire organization or for specific security groups of users.
Microsoft recommends that apps should only be pushed to users during
off hours and that teams should verify the availability of the app prior to
communicating to a team that the published app is available. The
configuration of Tenant settings in the Power BI admin portal is described
in the following chapter.

The second layer of control is the row-level security (RLS) roles configured for the dataset
supporting the reports and dashboards. If RLS has been defined within the dataset, all users
accessing the app will need to be mapped to one of the RLS roles in the Power BI service.

In the following example, other Azure Active Directory security groups (for example, BI
Admin) are mapped to four RLS roles:

Dataset security role assignment

Creating Power BI Apps and Content Distribution Chapter 11

[489]

As per the preceding image, a BI Admin security group is mapped to the Executives
security role. Unlike the other three security roles, which filter the Sales Territory
Group column of the Sales Territory table, the Executives role does not have any filters
applied.

The user accessing and consuming the app will, therefore, need to be a member of both the
Global Sales Team security group and one or more of the security groups assigned to an
RLS role. If the user is only a member of the Global Sales Team security group (from the
App Access page), the visuals of the dashboard and report will not render.

Publishing apps
Apps are published from app workspaces in the following way:

A workspace member with edit rights clicks Publish in the top-right corner of the1.
app workspace.

Three pages are launched for configuring the app: Details, Content,
and Access.

On the Details page, a short description of the app is entered, such as the2.
following example:

Publish app

In addition to the description, a background color for the app can be selected at3.
the bottom of the Details page.

Creating Power BI Apps and Content Distribution Chapter 11

[490]

On the Content page, a specific App landing page is selected, such as the Global4.
Sales (dashboard) in the following example:

App landing page

In this example, users accessing the Global Sales app will land on the Global Sales
(dashboard) by default. Alternatively, if None is selected, a list view of the dashboards and
reports of the app will be exposed for the user to choose from. This setting is appropriate
when an app contains many different dashboards and reports and diverse use cases. For
example, if only a few users view the Global Sales (dashboard), all other users will have to
open the list view themselves to navigate to their report or dashboard.

The Content page also provides a consolidated view of the dashboards, reports, and
datasets that will be included in the app given the current settings. In the event that any
dashboard, report, or workbook is included that shouldn't be, the user can navigate to this
item in the workspace and disable the Included in App property.

By default, the Included in App property for new reports and dashboards
is enabled. Therefore, prior to publishing the app, ensure that this
property has been disabled for any internal testing or development
content.

On the Access page, the users or security groups who should have permission to5.
the app are defined:

If the user publishing the app has the right to push apps to end users
via the Push apps to end users in Tenant settings in the Power BI
admin portal, the Install app automatically option will be appearing as
well.
Click the Finish icon in the top-right corner of the Access page to
publish the app.
An example of the Access page was included in the preceding User
permissions section.

Creating Power BI Apps and Content Distribution Chapter 11

[491]

A URL to the app will be provided in a window along with a
SUCCESSFULLY PUBLISHED message, as per the following example:

Published app

The published app can now be accessed by the users or groups of users defined on the
Access page. If the Install app automatically option was used, the user or team publishing
the app can verify with a few users that the app is indeed now installed and available.
Depending on the number of items (reports, dashboards) included in the app, the automatic
installation could take some time. Once the automatic installation has been confirmed, an
email or other communication could then be sent to advise users of the availability of the
published app.

The following section describes the installation of an app if the Install app automatically
(Push apps to end users) feature was not used.

Installing apps
When an app has been published and not pushed to end users via the Install app
automatically feature described in the previous section, a one-time install per user is
necessary. This install can be completed by either sharing the URL for the app with users or
by instructing users to add the app in the Power BI service.

In the following example, a user has logged into the Power BI service and clicked Get apps
from the Apps menu to observe the Global Sales app:

Creating Power BI Apps and Content Distribution Chapter 11

[492]

Installing the Power BI app

The Apps menu can be found below the Recent menu and above the Shared with me
menu. By clicking Get it now, the app will be added to the Apps menu of the user, as
shown in the following screenshot:

App installed

Creating Power BI Apps and Content Distribution Chapter 11

[493]

Users can hover over the app icon, such as GS in this example, to either mark the app as a
favorite or to remove the app. A new feature expected in 2018 is the ability to automatically
install apps for users. For example, once the Global Sales app is published, all users
assigned to the Global Sales Team security group would have the app.

A second option to install the app is to share the URL to the app provided in the Power BI
service. As per the Publishing apps section, this URL is provided in a dialog when the app is
first published. Additionally, this URL can be obtained from the Access page of the Apps
menu, as per the following screenshot:

App URL

In the preceding example, a member of the Global Sales app workspace has clicked Update
app from the top-right corner of the app workspace and navigated to the Access page. The
App URL, as well as other URLs specific to dashboards and reports within the app, is
located below the Permissions input box.

Creating Power BI Apps and Content Distribution Chapter 11

[494]

Apps on Power BI mobile
Just like the Apps menu item in the Power BI service, users can access published Power BI
apps from the main menu within the Power BI mobile application. In the following image, a
user has accessed the Global Sales app on the Power BI mobile application for iOS devices:

App on Power BI mobile

The user can easily swipe between dashboards and reports and take advantage of all
standard mobile features, such as the ability to annotate and share both the annotations and
the content with colleagues. Additionally, any mobile optimizations configured by the
report authors for the reports and dashboards are also reflected through apps.

App updates
One of the main advantages of Power BI apps is their isolation from app workspaces. The
members of the app workspace can continue to develop, test, and modify content in the app
workspace while users only view the latest published app. This single level of built-in
staging could be a sufficient alternative for some teams and projects relative to the multiple
workspaces (Dev, Test, Prod) involved in a staged deployment life cycle, as described in
Chapter 8, Managing Application Workspaces and Content.

Creating Power BI Apps and Content Distribution Chapter 11

[495]

After an app has been published, the Publish app icon in the top-right corner of the app
workspace will be changed to an Update app icon, as shown in the following screenshot:

Update app

In the preceding screenshot, the ellipsis (three dots) to the right of the Update app icon has
been selected from the context of the administrator for the workspace administrator. In
addition to the options to edit and leave the workspace, an Unpublish App option exists to
immediately remove user access to the published app. Workspace members (non-admins)
can also unpublish the app and execute app updates.

Clicking Update app launches the same three pages (Details, Content, Access) described in
the Publishing apps section. In the most common update scenarios, such as adding a new
report or modifying a dashboard, it's unnecessary to change any of these settings and the
Update app icon can be clicked a second time. However, these pages enable fundamental
modifications to be implemented, including the users or groups with permission to access
the app and the default landing page for the app.

Dataset-to-workspace relationship
As described in the Workspace datasets section of Chapter 8, Managing Application Workspaces
and Content, the Power BI reports, based on Live connections to published Power BI
datasets, are currently tied to the app workspace of the dataset. Therefore, in the absence of
an Analysis Services database for Live connection reports or a supported DirectQuery data
source, each app workspace and its corresponding app will require its own import mode
dataset. The ability to utilize a single source Power BI dataset to support reports and
dashboards across multiple app workspaces (and thus apps) is expected in 2018.

Creating Power BI Apps and Content Distribution Chapter 11

[496]

Prior to the availability of this centralized dataset workspace, BI teams can
avoid duplicating datasets by deploying large, consolidated apps. These
apps would contain the reports and dashboards relevant to multiple teams
(for example, Sales, Finance), and the business users could use the
Favorites feature to quickly access the most relevant content. Although not
ideal, this would eliminate the need to manage multiple data-refresh
schedules and to keep multiple datasets synchronized to the same
business definitions.

Despite new features and capabilities that will increase the scalability of Power BI datasets,
particularly Power BI Premium capacity, many organizations will choose either SQL Server
Analysis Services (SSAS) or Azure Analysis Services (AAS) to support large-scale
deployments.

For example, a BI project targeted at a particular business process and team, such as
shipping for the supply chain team, may start out as a large Power BI dataset (.pbix). Once
the Power BI dataset has proven to be valuable and stable in terms of business definitions
and requirements, the dataset could be migrated to an Analysis Services model. The
differences between Power BI datasets and Analysis Services models as well as migration
considerations are contained in Chapter 13, Scaling Up with Power BI Premium.

Self-Service BI workspace
As per the Power BI deployment modes section of Chapter 1, Planning Power BI Projects, some
organizations may choose to empower certain business users to create and manage the
visualization layer (Self-Service Visualization). This hybrid approach gives business users
more flexibility to address rapidly changing analytical needs, yet leverages IT-supported
and validated data sources and resources. When even greater business user flexibility is
required, or when IT resources are not available, the Self-Service BI mode can be
implemented via Power BI Pro licenses and an app workspace.

In the Self-Service BI deployment model, several business users (for example, five to ten)
who regularly collaborate within a team or department are assigned Power BI Pro licenses.
One of these users then creates an app workspace in the Power BI service and adds the
other users who've been assigned Pro licenses as members with edit rights. The BI/IT team
would typically require that at least one member of the BI organization be added as a
workspace administrator. Additionally, if applicable, the BI/IT team would authorize a few
business users in the workspace to utilize an On-premises data gateway for their required
data sources.

Creating Power BI Apps and Content Distribution Chapter 11

[497]

Self-Service content distribution
Given that each user has a Pro license, members of the Self-Service BI Workspace (for
example, Finance Team), a user has the full flexibility to view content in the Power BI
service or mobile app as well utilize pro features, such as Analyze in Excel and Email
Subscriptions. The users could choose to publish an app from the app workspace and
advise workspace members to only use the published app for any production scenarios,
such as printing reports or dashboards or referencing this content in meetings. As a small
team, the users could delegate responsibilities for creating and testing the dataset(s),
reports, dashboards, and any Excel workbooks hosted in the workspace.

A typical example of Self-Service BI is with advanced power users within
finance and accounting functions. These users often have sophisticated
and rapidly changing analytical needs that can't easily be translated into
corporate BI-owned solutions. Additionally, the managers or stakeholders
of this team's work may not require accessing this content themselves. For
example, the analyst team could produce a monthly financial close
package (that is, PowerPoint deck) or a project analysis and either present
this content in person or distribute printed materials.

If it's determined that the business team requires additional resources, such as support for
greater scale or sharing their content with users outside the workspace, the BI/IT team can
consider assigning the workspace to the Power BI Premium capacity. Additionally, if the
needs or the value of the workspace grows, the project could be migrated from Self-Service
BI to one of the other deployment modes.

For example, the Power BI dataset created by the business team could be migrated to an
Analysis Services model maintained by the BI team.

Risks to Self-Service BI
Perhaps no greater risk exists in business intelligence than the potential to motivate or drive
an incorrect decision. Several of the chapters earlier in this book, particularly Chapter
1, Planning Power BI Projects, through Chapter 4, Developing DAX Measures and Security
Roles, are dedicated to topics and practices that aim to reduce that risk. Although business
users and analysts are often comfortable with the visualization layer, the quality and
sustainability of this content rest on the planning, testing, and skills (for example, M
queries, DAX measures) applied to the source dataset. A severe risk, therefore, to Self-
Service BI projects is whether the business user(s) can build and maintain a source dataset
that provides consistent, accurate information.

Creating Power BI Apps and Content Distribution Chapter 11

[498]

Another significant risk is a loss of version control and change management. The workspace
users may not internally manage changes to content and thus inadvertently misinterpret or
share content without the knowledge of changes implemented by other users. For example,
rather than only using the published app for external communication and collaborating on
any updates to the app, the users could view and edit the content of the app workspace
itself thus eliminating all the staging of changes.

A final risk is that the self-service solution created may ultimately need to be discarded
rather than migrated. For example, to quickly respond to new and changing analytical
needs, the source dataset and reports may include many inefficient customizations and
design patterns. These customizations can render the solution difficult to support and
potentially consume unnecessary system resources. As more users and reports become
dependent on these designs or anti-patterns, it can be more difficult and costly to migrate to
a more sustainable solution.

Sharing dashboards and reports
In addition to Power BI apps, Power BI Pro users can share individual dashboards and
reports directly to users, security groups of users, and even guest users from outside the
organization. For example, unlike a Power BI app built for the sales organization containing
several dashboards and many reports, a single dashboard or report could be shared with
two or three users in the customer service department. In this scenario, the few customer
service department users may have limited or undefined reporting needs or the corporate
BI team may not have a full Power BI app for their department prepared yet.

Recipients of shared dashboards and reports receive the same essential benefits of Power BI
apps in terms of easy access as well as the latest updates and modifications to the content.
In terms of user access, the Shared with Me menu is positioned immediately following the
Apps menu in both the Power BI service and the Power BI mobile applications.

Creating Power BI Apps and Content Distribution Chapter 11

[499]

In the following screenshot, the user has accessed the main menu of the Power BI mobile
via the navigation icon (≡) at the top left:

Power BI mobile main menu

Recipients of shared dashboards and reports can also add this content to their list of
Favorites just like Power BI apps.

The Power BI service gives content owners a properties pane to define the recipients of the
shared content and whether the recipients will also be allowed to share the content. This
pane can be accessed via the Share icon at the top right of the given report or dashboard
when these items have been opened or from the ACTIONS group of the app workspace.

The following image identifies the share icon for two dashboards of the Corporate Sales
app workspace:

Share Action in Power BI service

The same sharing icon from the preceding image is also exposed in the ACTIONS
workspace column for Power BI reports.

Creating Power BI Apps and Content Distribution Chapter 11

[500]

Excel workbooks published to the Power BI service cannot be shared
directly. To share a published Excel workbook (indirectly), a dashboard
can be shared containing a tile that was pinned from the Excel workbook.
The user receiving the shared dashboard can access the workbook via the
dashboard tile, just like accessing a Power BI report based on a pinned
report visual.

Once the sharing action has been selected, a sharing properties page is launched to define
the recipients who will receive access. In the following example, the CUSTOMER
SERVICE TRENDS dashboard is being shared with Stacy Loeb and Brett Powell:

Share dashboard

As per the checkmark in the preceding image, the content owner has the option to allow
recipients of the share to also share the dashboard themselves. This feature, referred to as
resharing, expires one month after the share, if enabled originally.

Creating Power BI Apps and Content Distribution Chapter 11

[501]

Sharing dashboards and reports should only be generated from app
workspaces and not from a user's private My Workspace. The app
workspace allows the workspace members to manage both the content
and its distribution, and thus eliminates a dependency on a single user.

Members with edit rights to the app workspace containing the shared dashboard or report
can manage user access following the sharing of the content. For example, several days after
the CUSTOMER SERVICE TRENDS dashboard was shared, it may be necessary to add or
remove users from the share. Additionally, the ability of recipients to reshare the content
can be revoked if this was enabled originally.

In the following image, a member of the Customer Service app workspace has again
selected the Share action for the CUSTOMER SERVICE TRENDS dashboard but has now
navigated to the Access pane:

Manage shared access

By clicking the ellipsis next to each individual user, the app workspace member (with edit
rights) has the option to remove the user's access altogether or to toggle the user's access
between Read only and Read and reshare.

Creating Power BI Apps and Content Distribution Chapter 11

[502]

Sharing scopes
When a dashboard is shared, the reports containing the visuals pinned to that dashboard
are shared as well. The recipient of the shared dashboard can, therefore, access and interact
with the underlying reports by clicking the linked dashboard tile(s). The ability to share a
report directly eliminates the need for the owners of a report to create a dashboard and for
the recipients to leverage this dashboard when they only need to access the report.
However, recipients of a shared dashboard can still add one or more of the underlying
reports as favorites, thus providing the same ease of access as a shared report.

Although a single report may be all that's needed currently, sharing a dashboard provides
greater scalability. For example, a shared dashboard may begin with only one report but
visuals from two or three new reports could be pinned to the dashboard, thus granting
access to these additional reports. This would negate the need to share each new report
individually, and the dashboard could help summarize the reports for the user. When a
report is shared, the only option for adding content is to add report pages to the existing
report, and this can reduce the usability of the report.

Sharing versus Power BI apps
Just like Power BI apps, either Power BI Pro licenses or Power BI Premium capacity can be
used to enable user access. In the example from this section, both Stacy Loeb and Brett
Powell could be assigned Power BI Pro licenses to allow both users to view the shared
content. Alternatively, the app workspace (Customer Service) of the shared content could
be assigned to a Power BI Premium capacity, thus allowing Power BI Free users to access
the content. The same licensing considerations for external guest users described in the
Power BI apps section applies to sharing dashboards and reports.

Also, like Power BI apps, the recipients of the shared dashboard or report will need to be
mapped to an RLS role if RLS has been configured on the source dataset. The users
attempting to access the shared content will receive an error message if this mapping is not
implemented within the security settings of the dataset, as described in the User permissions
section earlier in this chapter.

Creating Power BI Apps and Content Distribution Chapter 11

[503]

Ultimately, Power BI apps provide the best long-term solution for content distribution,
particularly for groups of users. Unlike sharing dashboards and reports, any number of
new dashboards and reports can be added to Power BI apps as needs grow and change.
Additionally, as described earlier in this chapter, owners of the app workspace can stage
and test content prior to republishing the app via the app update process. In the case of
shared dashboards and reports, any revision to the shared content is immediately visible to
the user(s).

SharePoint Online embedding
Many organizations use team sites in SharePoint Online to facilitate collaboration between
colleagues. These sites often contain important team or departmental documents (that is,
Word, PowerPoint), calendars, and relevant links. Via the Power BI report web part for
SharePoint Online, a Power BI report can be embedded into a SharePoint Online page to
further enrich these sites.

Yana Berkovich, Microsoft Data Platform MVP and collaboration
consultant, has co-authored this section.

Technically, the SharePoint Online embedding process consists of two steps within the
Power BI service and two steps within SharePoint Online. However, the following 12 step
process can be used to effectively plan and implement the embedding:

Identify the business users of the team site who will need to view the embedded1.
Power BI report.
Identify the app workspace and the report within that workspace that will be2.
embedded in the team site.
Determine which of the following two options will be used to authorize the3.
SharePoint Online site users:

Assign Power BI Pro licenses to each user and add these users as
members of the app workspace.
Assign the app workspace to the Power BI Premium capacity such that
Power BI Free users can view the content.

Creating Power BI Apps and Content Distribution Chapter 11

[504]

Open the report in the Power BI service and select Embed in SharePoint Online4.
from the File menu dropdown:

The embed URL is provided via a dialog, per the following screeshot:

Embed link to Power BI report

In a modern SharePoint Online page, click the add (+) icon and select the Power5.
BI web part, as shown in the following screenshot:

Add Power BI report web part

The add (+) icon to add a web part is provided by default for new site pages. For6.
existing site pages, clicking the Edit icon in the top right will provide the same
add (+) icon.

If the page's version hasn't already been set to modern, contact the
SharePoint or Office 365 administrator as this is required to use the Power
BI web part.

Select the Add report command button to access the web part property pane for7.
configuring the embedded report.

This will launch the web part property pane on the right, including an
input box for the Power BI Report URL.

Creating Power BI Apps and Content Distribution Chapter 11

[505]

 Paste the Power BI report URL into the Power BI report link input box.8.
Use the Page name dropdown to select the default page that is shown
on the report page.

Configure the web part via the Display (for example, 16:9), Show Navigation9.
Pane, and Show Filter Pane properties.

The Show Navigation Pane should be enabled if users require access
to multiple pages of the report.

In the following screenshot, a Power BI report with two report pages (General,10.
Agents) has been embedded into a SharePoint Online site page:

Power BI report embedded in SharePoint Online site page

Once embedded in the site page, the web part will reflect data refreshes and any11.
report modifications implemented in Power BI.
Click the Publish button on the top-right of the site page to make the embedded12.
report visible to site users.

When finished on the site page, click Save and Close on the left side of
the page.

"Share Power BI reports where team collaboration is done to provide users with greater
context and to drive overall productivity."

 – Yana Berkovich, Microsoft Data Platform MVP

Creating Power BI Apps and Content Distribution Chapter 11

[506]

As described in Chapter 8, Managing Application Workspaces and Content, security groups are
not supported for adding members to app workspaces. Therefore, if large numbers of users
require access to Power BI reports via SharePoint Online, assigning the workspace(s) to the
Power BI Premium capacity can both simplify management and reduce the cost of
individual Power BI Pro licenses.

Custom application embedding
In addition to SharePoint Online embedding, the Power BI API can be leveraged to embed
reports, dashboards, and individual dashboard tiles into any custom application. With the
Power BI Premium capacity provisioned, content developed in the Power BI service can be
embedded in new or existing applications for an organization so that Power BI Free users
are able to view this content. Depending on the Power BI Premium SKU purchased, an
organization can exclusively embed Power BI content in their application(s) or use
embedding along with the Power BI service portal for content consumption.

Two kinds of Power BI Premium SKUs are available in the Office 365 portal that support
embedding: P SKUs and EM SKUs. The EM SKUs are exclusive to custom applications and
other software as a service (SaaS) offerings, such as SharePoint Online and teams. Power BI
Free users are able to view embedded Power BI content in these applications but cannot
view content in the Power BI service (PowerBI.com). Power BI Premium P SKUs, however,
support both embedding content in custom applications as well as user access in the Power
BI service, such as via Power BI apps. For example, an organization could use the same P3
SKU to support four Power BI apps and the embedding of content in a custom application.

The third type of SKU that supports embedding Power BI content in
custom applications is the A SKU. These SKUs are also referred to as
Power BI Embedded and are exclusively available in the Microsoft Azure
portal. A SKUs, or Power BI Embedded, are targeted at independent
software vendors (ISVs) who will provide users from external
organizations with access to the embedded content. As an Azure resource,
the software vendor can utilize familiar development and operations
processes, including the ability to scale up, down, and pause or resume the
provisioned resources as workloads change.

https://powerbi.microsoft.com/en-us/

Creating Power BI Apps and Content Distribution Chapter 11

[507]

Monthly billing and both monthly and yearly commitment options are available for Power
BI Premium EM and P SKUs. Given their more limited scope, EM SKUs are significantly
less expensive than P SKUs. In the following screenshot from the Office 365 admin center,
the Power BI Premium EM SKU is available for purchase:

Power BI Premium – EM3

As shown in the preceding screenshot, the EM3 SKU provides four virtual cores and is
available via month-to-month commitments. Currently, the EM3 SKU is the largest of the
EM Premium SKUs in terms of virtual cores and memory but is the only EM SKU available
in the Office 365 admin center. The EM1 and EM2 SKUs, which have fewer resources and
thus lower prices, must be purchased through Microsoft volume licensing. For example, the
EM1 SKU currently includes one virtual core, 3 GB of RAM, and is priced at $625 per
month.

Publish to web
If enabled by the Power BI administrator, reports in the Power BI service can also be
embedded on any website and shared via URL on the public internet. The Publish to web
feature provides an embed code for the Power BI report, including iFrame HTML and a
report URL. Organizations can utilize Publish to web to expose non-confidential or
publicly available information on their public-facing corporate website.

Creating Power BI Apps and Content Distribution Chapter 11

[508]

In the following screenshot, a Publish to web embed code has been obtained in the Power
BI service:

Publish to web embed code

The Publish to web feature is accessed via the File menu dropdown for a report, just like
the SharePoint Online embedding URL from the previous section. However, unlike the
SharePoint Online embedding feature, the Power BI service stores the Publish to web
embed codes so that both administrators and users with edit rights to the reports can access
and manage these codes.

For example, a member of an app workspace with edit rights can use the settings menu
(Gear icon) to access a Manage embed codes page. This page allows the user to retrieve or
delete any embed codes for the given app workspace.

With the exception of custom visuals built with the R language, custom
visuals are supported in Publish-to-web reports. This is the same
limitation currently in place with the Power BI Report Server as described
in Chapter 10, Deploying the Power BI Report Server. Reports based on
datasets with row-level security roles configured and reports that use on-
premises Analysis Services Tabular models are not supported.

Given the obvious potential risk of users accidentally sharing confidential or protected
information over the public internet, Power BI administrators have granular controls over
this feature including the ability to disable it for the entire organization. Details of these
administrative settings are included in Chapter 12, Administering Power BI for an
Organization.

Creating Power BI Apps and Content Distribution Chapter 11

[509]

Power BI reports accessed via embed codes will reflect the latest data refresh of the source
dataset within approximately one hour of its completion. Additional documentation on
Publish to web, including tips for fitting the iFrame into websites, is available at http://
bit.ly/2s2aJkL.

Data alerts
Data-driven alerts are one of the top capabilities exclusive to dashboards in the Power BI
service. For many users and business scenarios, data-driven alerts are a high-value
complement, or even a substitute, to dashboards and reports as they help to avoid
frequently accessing Power BI to search for actionable information. For example, rather than
opening Power BI in the browser or on a phone every morning and looking for red colors or
certain KPI symbols, the user could view certain dashboards or reports only once a week
and otherwise only respond to data-driven alert notifications sent via email.

With a standard card, KPI, or gauge visual pinned to a dashboard, a data-driven alert can
be configured either in the Power BI service or via the Power BI mobile app. In the
following screenshot, a separate data alert has been configured for the gauge, the KPI, and
the card visual reflecting the current day's average call length, staff versus target, and
service calls, respectively:

Manage alerts in Power BI service

http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL
http://bit.ly/2s2aJkL

Creating Power BI Apps and Content Distribution Chapter 11

[510]

The manage alerts option (bell icon), accessed by clicking the ellipsis in the top right corner
of the tile, is only available for the standard gauge, KPI, and card visuals. In the following
screenshot, an alert rule is set for the Today's Call Length measure, represented by the
gauge visual:

Setting an alert rule

In this screenshot, the target value from the gauge (10) is set as the threshold value of the
alert rule by default. However, per the alert rule dialog in the preceding image, Alert title,
the Threshold value, the Condition (Above or Below), the Maximum notification
frequency, and the email notification can all be configured per alert rule. Only the Set alerts
rule for input box is not configurable as this is based on the measure within the tile, in this
case the Today's Call Length measure.

Creating Power BI Apps and Content Distribution Chapter 11

[511]

Each alert rule is limited to a single condition and thus additional alert
rules can be configured for the same dashboard tile to provide
notifications for multiple conditions. For example, a separate alert rule
could be configured for the gauge tile with a condition of Below 3. When
the underlying dataset of the dashboard tile is refreshed, a value for the
Today's Length Measure of Above 10 or Below 3 would trigger an alert
notification.

Data alerts and notifications are deeply integrated with the Power BI mobile applications. In
the following screenshot from an iPhone, data alert notifications associated with each tile (3)
are promoted to the Power BI mobile app icon:

Data alert notification on iPhone

Additionally, as shown in the preceding screenshot, the notification associated with each
alert rule is presented on the home screen including ALERT TITLE, VALUE,
CONDITION, and THRESHOLD. Clicking on the Power BI mobile app icon provides
access to the notifications pane that, like the Power BI Service, includes a link to the specific
tile for further analysis. Between the mobile alert notifications, the notifications within the
Power BI service, and the optional email delivery of the notification, users are able to
respond quickly as significant data changes occur.

Microsoft Flow integration
Currently, the alert notification emails from Power BI are limited to the the user who
configured the data alert. In many scenarios, however, several users or a group email
account should receive the notification email and it's not practical for each user to
individually configure the data alerts.

Creating Power BI Apps and Content Distribution Chapter 11

[512]

Microsoft Flow provides a powerful but easy-to-use alternative to the standard Power BI
alert email. For example, without any custom data connections or code, it enables a single
user to fully define one or multiple email recipients of an alert notification and to customize
the content of this message.

Microsoft Flow is an online service that enables the automation of workflows between
applications and services. Since each MS flow is fundamentally composed of a trigger
(starting action) and one or more corresponding actions, a top use case for MS Flow is to
send custom email messages based on various trigger events. For example, when a sales
lead is added in Salesforce, an email could be automatically sent to a sales team member via
MS Flow.

Several pre-built MS Flow templates are available that leverage the Power BI data alert as a
trigger. These templates make it easy to get started and to customize details, such as email
addresses and the data from the alert to include. In the following MS Flow, the Today's
Average Call Length alert described in the Data alerts section is used as the trigger of a
customized email via an Office 365 for Outlook account:

Power BI alert email via MS Flow

Creating Power BI Apps and Content Distribution Chapter 11

[513]

Power BI icons associated with the data alert trigger are available when populating the send
email action via the Outlook for Office 365 connector. In the preceding screenshot, text
labels with a closing colon are positioned in front of the icons to make the alert email
messages easy to understand. The following sample email message reflects the preceding
MS Flow configuration:

Power BI alert email message via MS Flow

MS Flow provides a rich platform for building both simple and complex workflows to
obtain greater value from Power BI assets. Other common MS Flow and Power BI
integrations, beyond custom email notifications, include posting messages to a Slack
channel and triggering an alert in Microsoft Teams based on an alert in Power BI.

Creating Power BI Apps and Content Distribution Chapter 11

[514]

Email Subscriptions
Power BI also provides Email Subscriptions for Power BI Pro users of both reports and
dashboards. With Email Subscriptions configured in the Power BI service, a user is sent a
snapshot of either the report page or the dashboard canvas as well as a link to the content in
the Power BI service. In the following service. In the following screenshot, a user with a
Power BI Pro license has accessed the Global Sales (dashboard) described earlier in this
chapter from within a Power BI app:

Subscribe to dashboard

Clicking the subscribe icon shown in the preceding image opens the following dialog to
confirm the email subscription:

Dashboard Email Subscription

With the yellow slider set to On, selecting Save and close at the bottom of the dialog
enables the email subscription to the dashboard. An email containing an image of the
current state of the dashboard and a link to the dashboard in Power BI will then be sent
when any of the underlying datasets change. If the source datasets refresh more than once
per day, only the first email snapshot of the refresh will be sent.

Creating Power BI Apps and Content Distribution Chapter 11

[515]

A very similar subscription icon and dialog is also available for Power BI
reports. The only significant difference with report subscriptions is that
each subscription is associated with a single page. Therefore, the Power BI
Pro user must choose the page for each subscription and configure
multiple subscriptions to the same report if multiple pages of the report
need to be emailed.

At this time, similar to data alerts, Email Subscriptions are only associated with the user
who creates the subscriptions. However, the Power BI team has advised that they intend to
enhance Email Subscriptions to include subscribing others to emails, such as security
groups of users. Additionally, Email Subscriptions are currently sent with the report's
default filter and slicer states. Per the Power BI team, this limitation is also expected to be
addressed by allowing subscriptions to reports with specific slicer and filter states set.

Finally, emails are only sent to the User Principal Name (UPN) used to log into the Power
BI service. For example, if the Mark Langford user doesn't receive email at his Power BI
account (Mlangford@AdWorks.onmicrosoft.com), he will not receive Email
Subscriptions. The Power BI documentation advises that the Power BI team is working to
relax this limitation as well.

Email Subscriptions do not support most custom visuals. However,
certified custom visuals, such as the Power KPI visual used in the Global
Sales (dashboard), are supported. Additional details on certified custom
visuals can be found in the Custom visuals section of Chapter 10, Deploying
the Power BI Report Server.

Analyze in Excel
Users with Power BI Pro licenses can connect to datasets hosted in the Power BI service
from both Power BI Desktop and Microsoft Excel. Either of these tools will display the fields
list of tables and measures for the dataset and, based on the report visuals created (for
example, pivot tables), send queries to Power BI for execution by the source dataset. In the
case of Power BI Desktop, these reports can be published back to the Power BI service and
will retain their connection to the dataset, as recommended in the Live connections to Power
BI datasets section of Chapter 5, Creating and Formatting Power BI Reports.

Creating Power BI Apps and Content Distribution Chapter 11

[516]

Excel reports based on these connections, however, currently do not retain their connection
and thus cannot be refreshed or interacted with in the Power BI service. Despite this
limitation, and the many additional analytical and visualization features of Power BI
Desktop, Excel remains a very popular tool given its inherent flexibility and its mature,
familiar features. Power BI's deep support for Excel, including both Analyze in Excel and
the Power BI publisher for Excel, is an advantage over other BI platforms.

Additionally, the limitation of external data connections from Excel in the Power BI service
is expected to be removed in 2018. The Power BI Report Server, for example, already
supports Excel workbooks with Live connections as described in the Office Online Server for
Excel workbooks section in Chapter 10, Deploying the Power BI Report Server.

Prior to broadly recommending Excel as a client-reporting tool, consider
whether Power BI Desktop isn't better suited to common use cases, such as
pivot tables. Many new features were added to Power BI Desktop in 2017
that targeted Excel pivot table scenarios, such as showing multiple metrics
on rows, granular formatting, layout controls, and displaying values as a
percentage of the total. Additionally, as the adoption of Power BI
increases, Power BI reports built in Power BI Desktop provide a richer and
more familiar user experience.

The Analyze in Excel feature is exposed as an action for Power BI reports via an Excel
workbook icon in the Power BI service. The action is accessible in both app workspaces and
in published apps for Power BI Pro users. In the following example from an app workspace,
the option to analyze the Monthly Sales Summary report in Excel is available on the
right:

Analyze in Excel icon

Creating Power BI Apps and Content Distribution Chapter 11

[517]

Clicking the Analyze in Excel icon provides a Microsoft Office Data Connection (ODC) file
that can be saved to the local machine. By default, opening this file launches Excel with a
connection to the source dataset of the Power BI report. For example, even though the
Monthly Sales Summary may only utilize a few measures and columns of the dataset, the
entire fields list of the dataset will be exposed with a pivot table connection in Excel, as
shown in the following screenshot:

Excel connection to the Power BI dataset

Similar to the fields list in Power BI Desktop, Excel positions tables with only measures
visible at the top of the list preceding the dimension tables. Just like standard Excel pivot
tables, users can drag measures and columns to the field wells to structure each pivot table
report. Right-clicking a column name, such as Employee department, presents the option to
add the column as a slicer.

Just like interacting with a Power BI report, any RLS roles applied on the source dataset will
be enforced on the user's report queries generated from Excel. The Excel workbook and any
reports created based on the connection can be saved and shared like other Excel
workbooks. However, for other users to refresh and query the source dataset from Excel,
they will need access to the app or app workspace, a Power BI Pro license, and will need to
be mapped to a security role if RLS has been configured.

Creating Power BI Apps and Content Distribution Chapter 11

[518]

Power BI Publisher for Excel
In addition to the Analyze in Excel feature from the Power BI service, even deeper
integration with Excel is possible via the Power BI publisher for Excel add-in. This add-in
can be downloaded from the Power BI service via the same drop-down menu used for the
On-premises data gateway, as illustrated in the Configuration of on-premises gateway section
of Chapter 9, Managing the On-Premises Data Gateway. Once downloaded and installed, a
Power BI tab will be visible on the Excel ribbon:

Power BI Publisher for Excel

Via the Connect to Data button, users can access the reports and datasets of the app
workspaces they have permissions to. For example, rather than navigating to the specific
Power BI report of interest in the Power BI service to access the Analyze in Excel feature, the
user could simply select the workspace and a report or dataset from a dropdown in Excel.

In the following screenshot, the user has clicked the Connect to Data button and navigated
to the World Tour - New York app workspace:

Connect to Data

Creating Power BI Apps and Content Distribution Chapter 11

[519]

The same Power BI workspaces and datasets accessible from Power BI Desktop can be
accessed via the Connect to Data feature. Additionally, the Power BI publisher for Excel
enables users to pin items, such as ranges of cells or charts, to dashboards in the Power BI
service and to manage updates to these local items. Additional information on the Power BI
publisher for Excel is available here: http:// bit.ly/2nuzQIt.

Summary
This chapter provided a broad overview of Power BI's different content distribution and
data access methods. Power BI apps were particularly emphasized as they represent the
primary distribution mechanism supporting large groups of users going forward. The
essential details of utilizing other distribution methods, such as email Subscriptions, data
alerts, and sharing reports and dashboards were also reviewed. Furthermore, guidance was
provided on analyzing the impact or usage of a published app as well as utilizing Microsoft
Flow to drive custom email alerts.

The following chapter looks at Power BI deployments from an administration perspective.
This includes the Power BI service administrator role and the controls available for
administrators to define and manage authentication, monitor user activities, and limit or
disable various features.

http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt
http://bit.ly/2nuzQIt

12
Administering Power BI for an

Organization
The management and administrative processes described in previous chapters have
primarily reflected the role of corporate business intelligence teams and BI professionals. In
this chapter, the features and processes relevant to IT administrators are reviewed, to help
organizations deploy and manage Power BI according to their policies and preferences. This
includes data governance in the context of both self-service BI and corporate BI, the Power
BI admin portal, monitoring user activity and adoption, and the administration of Power BI
Premium capacity.

As in the previous chapter, this chapter exclusively covers the Power BI service.
Administrative topics relevant to the on-premises deployments that were included in
Chapter 10, Deploying the Power BI Report Server. Additionally, although data governance
concepts and implementation guidance are included, readers are encouraged to review
Microsoft documentation for further details on implementing data governance as part of
Power BI deployments.

In this chapter, we will review the following topics:

Data governance for Power BI
Azure Active Directory conditional access policies
Azure Active Directory B2B collaboration
Power BI admin portal
Power BI service Tenant settings
Power BI activities in Audit Logs
Using metrics reports
Administering Power BI Premium capacities

Administering Power BI for an Organization Chapter 12

[521]

Data governance for Power BI
Data governance is defined as a set of policies to secure an organization's data, ensure
consistent and accurate decision making, and to manage access to data. Data governance is
applicable to business intelligence generally, but organizations investing in Power BI for the
long term should consider their data governance strategy and policies in the context of
Power BI. A central component of data governance relates to the three deployment modes
described at the beginning of Chapter 1, Planning Power BI Projects, and seeks to address the
following question: "How can we ensure our data is secure and accurate while still
providing the business with the access and flexibility it needs?"

It's generally understood that some level of self-service BI (SSBI) is appropriate and
beneficial to empower business users to explore and discover insights into data. Tools, such
as Power BI Desktop, and features in the Power BI web service, such as apps, make it easier
than ever for business users to independently analyze data and potentially create and
distribute content. However, experience with SSBI projects has also strongly suggested that
IT-owned and managed administrative controls, enterprise-grade BI tools, and data assets,
such as data warehouses, are still very much necessary. In response to the strengths and
weaknesses of traditional IT-led BI and business-led SSBI, Microsoft has suggested and
internally implemented a managed self-service approach to data governance.

From a BI architecture standpoint, managed self-service BI aligns represents a hybrid
approach of both the Corporate BI and the Self-Service Visualization modes introduced in
Chapter 1, Planning Power BI Projects. As shown in the following diagram, certain projects
are carried out by the BI/IT department, while business users have flexibility to analyze data
and create their own reporting:

Multi-mode Power BI deployments

Administering Power BI for an Organization Chapter 12

[522]

The three capabilities of Corporate BI Projects identified in the preceding screenshot
address the limitations or weaknesses of self-service BI projects and tools. These limitations
include data accuracy, scalability, complex data integration processes, and custom
distributions of reports to groups of users. Certain projects requiring these skills and tools
such as the integration of multiple source systems and the scheduled distribution of user-
specific reports could be exclusively developed and managed by IT. Additionally, the
business stakeholders for certain projects may prefer or insist that certain projects are
wholly owned by IT. From an on-premises perspective, one example of this would include
an extract-transform-load (ETL) package developed in SQL Server Integration Service
(SSIS), an SQL Server Analysis Services (SSAS) data model, and a combination of
paginated and Power BI reports developed for the Power BI Report Server.

Some of the limitations, such as scalability and custom distributions of
reports, may be mitigated in the near future by further enhancements to
Power BI Premium and new features in the Power BI service. However,
despite these new capabilities, certain projects and processes critical to a BI
deployment are likely best suited for IT/BI professionals.

However, as shown in the Business User SSBI mode of the Multi-mode Power BI deployments
diagram, business users are still empowered to leverage SSBI tools, such as Power BI
Desktop, to conduct their own analysis and to internally determine requirements within
their business unit. Most commonly, business users can leverage an IT-owned asset, such as
an Analysis Services model, thus avoiding the data preparation and modeling components
while retaining flexibility on the visualization layer. This Self-Service Visualization model is
very popular and particularly effective when combined with Excel report connections.

Note that continuous monitoring and data governance policies are in effect across the
organization regardless of Corporate BI or Business User SSBI. This is very important to
detect any anomalies in user activity and as a first step in migrating a business developed
solution to a corporate BI solution. For example, monitoring of the Office 365 Audit Log
data for Power BI may indicate high and growing adoption of particular reports and
dashboards based on a particular Power BI dataset. Given this query workload, or possibly
other future needs for the dataset, such as advanced DAX measures, it may be appropriate
to migrate this dataset to an Analysis Services model maintained by IT. An example of this
migration process to an Azure Analysis Services model is included in Chapter 13, Scaling
with Premium and Analysis Services.

Administering Power BI for an Organization Chapter 12

[523]

Implementing data governance
With an overarching strategy in place for deploying Power BI, as shown in the previous
section, concrete tasks can be defined for implementing data governance. Several of these
tasks include the following:

Identify all data sources and tag sources containing sensitive data:1.
Additional access and oversight policies should be applied to data
sources containing sensitive or protected data.
The classifications assigned to dashboards (Confidential,
Organizational) in the Dashboard data classifications section of Chapter
8, Managing Application Workspaces and Content, is an example of data
tagging.

Determine where critical data sources will be stored:2.
For example, determine whether the data warehouse will be hosted on-
premises or in the cloud.
Power BI reporting can be deployed fully on-premises via the Power BI
Report Server, fully in the cloud, or organizations can pursue hybrid
deployment models. Examples of these deployment options are
described in the Hybrid deployment models section of Chapter
10, Deploying the Power BI Report Server
Additionally, determine whether analytical (OLAP) BI tools such as
Analysis Services and SAP BW will be used with these data sources
and whether those tools will be stored on-premises or in the cloud.

Define who can access which data and how this access can be implemented:3.
Defining and managing security groups in Azure Active Directory
(AAD) or Active Directory (AD) is strongly recommended.
Determine whether data security roles will be implemented in a data
warehouse source such as Teradata or if row-level security roles will be
implemented in analytical models such as Analysis Services.

Develop or obtain monitoring solutions to continuously monitor activities:4.
Visibility to the Office 365 Audit log data, as described later in this
chapter, is an essential piece of this task.
Any high-risk or undesired activities should be automatically detected,
enabling swift action.

Administering Power BI for an Organization Chapter 12

[524]

Train business users on data governance and security:5.
This is particularly relevant for any dataset designers within business
units who will leverage Power BI Desktop and to access shape, and
model data.

The extent of data governance policies is driven by the size of the organization, its industry
and associated regulations, and the desired data culture. For example, a large healthcare
provider that wishes to pursue a more conservative data culture will implement many data
governance policies to eliminate security risks and promote data quality and accuracy.
However, a small to mid-sized company in a less regulated industry, and perhaps with less
IT resources available, will likely implement less dense governance policies to promote
flexibility.

For example, with Power BI Desktop and Power BI Premium capacity, a large analysis
model containing complex M queries and DAX expressions could potentially be created and
supported by a business user or team. However, the dataset designer of this model will
need to be familiar with both the governance policy determining the level of visibility users
of the dataset will have, as well as how to implement the corresponding row-level security
roles. Additionally, business users with Power BI Pro licenses responsible for distributing
content such as via Power BI apps will need to know the security groups that should have
access to the app.

Azure Active Directory
As with other Microsoft Azure services, Power BI relies on Azure AD to authenticate and
authorize users. Therefore, even if Power BI is the only service being utilized, organization's
can leverage Azure AD's rich set of identity management and governance features, such as
conditional access policies, multi-factor authentication (MFA) and business-to-business
collaboration. For example, a conditional access policy can be defined within the Azure
Portal which blocks access to Power BI based on the user's network location, or which
requires MFA given the location and the security group of the user. Additionally,
organizations can invite external users as guest users withing their Azure AD tenant to
allow for seamless distribution of Power BI content to external parties, such as suppliers or
customers.

Guidance on configuring Azure AD security groups to support row-level security (RLS) is
included in Chapter 4, Developing DAX Measures and Security Roles. This section reviews
other top features of Azure AD in the content of Power BI deployments.

Administering Power BI for an Organization Chapter 12

[525]

Azure AD B2B collaboration
Azure AD business-to-business (B2B) collaboration enables organizations using the Azure
AD to work securely with users from any organization. Invitations can be sent to external
users, whether the user's organization uses Azure AD or not, and once accepted the guest
user can leverage their own credentials to access resources, such as dashboards and reports
contained in a Power BI app. Just like users within the organization, guest users can be
added to security groups and these groups can be referenced in the Power BI service.

Prior to the existence of Azure AD B2B, it was necessary to create
identities within Azure AD for external guest users, or even develop an
application with custom authentication.

A guest user can be added to Azure AD by sending an invitation from Azure AD and by
sharing content with the external user from the Power BI service. The first method, referred
to as the planned invite method, involves adding a guest user from within Azure AD and
sending an invitation to the user's email address. In the following screenshot from the
Azure portal, Azure Active Directory has been selected and the All users page has been
accessed from the Manage users and groups tab:

Add guest user in Azure AD

Administering Power BI for an Organization Chapter 12

[526]

As shown in the preceding screenshot, the administrator can click New guest user to add
the user, and enter an invitation message, such as in the following screenshot:

Invite a guest user to Azure AD

The guest or external user will be sent an invitation via email containing the personal
message, as well as a Get Started button. The user will need to click Get Started and accept
the invitation. Once accepted, the guest user can be managed and added to security groups
for use in Power BI. In the following screenshot from the All users tab in Azure AD, the
guest user (Brett.Powell@....) has accepted the guest user invite:

Guest User in Azure AD

Guest users are identified in Azure AD with a globe icon and with a Guest value in the
USER TYPE property, as shown in the preceding screenshot.

Administering Power BI for an Organization Chapter 12

[527]

As an alternative to the planned invite method via Azure AD described before, an invite to
an external user can also be generated from the Power BI service directly. In this method,
commonly referred to as ad hoc invites, a guest user's email address is specified when
publishing or updating a Power BI app (via the Access page) or when sharing a Power BI
dashboard or report. The external user would then receive an email invite to the specific
content. Upon accepting this invite, the external user would be added as a guest user in
Azure AD. Details on distributing content to users via apps and other methods are included
in Chapter 11, Creating Power BI Apps and Content Distribution.

Organizations have the option to completely block sharing with external users via the Share
content with external users setting in the Power BI admin portal. As shown in the following
screenshot, this setting can be enabled or disabled for an entire organization, or limited to
certain security groups:

Share content with external users setting in Power BI admin portal

In addition to the Power BI admin portal, additional management options over external
guest users are available in Azure AD. These settings, including whether members in the
organization (non-admins) can invite guest users, are available on the manage user settings
page of Azure AD.

External B2B users are limited to consuming content that has been shared or distributed to
them. For example, they can view apps, export data (if allowed by the organization) and
create email subscriptions, but they cannot access app workspaces or create and publish
their own content. Additionally, external users cannot currently access shared content via
the Power BI mobile apps.

Administering Power BI for an Organization Chapter 12

[528]

Licensing external users
In addition to authentication to the Power BI content, either a Power BI Pro license or Power
Premium capacity is needed to allow the guest user to view the content. The following three
licensing scenarios are supported:

The app workspace of the Power BI app can be assigned to Power BI Premium1.
capacity:

Only Power BI Premium P SKUs support sharing with external users
Differences between P and EM SKUs were included in the Custom
application embedding section in Chapter 11, Creating Power BI Apps and
Content Distribution

The guest user can be assigned a Power BI Pro license by the guest user's2.
organization
A Power BI Pro license can be assigned to the guest user by the sharing3.
organization:

The Power BI Pro license only allows the user to access content within
the sharing organization

In the following screenshot from Azure AD, a guest user (Brett.Powell) is assigned a
Power BI Pro license:

Power BI Pro license assignment in Azure AD

Administering Power BI for an Organization Chapter 12

[529]

The License assignment for the guest user, as shown in the preceding screenshot, can be
accessed via the Manage Licenses page for the given user in Azure AD. From this page,
select the Assign icon (+) and then the Products tab to complete the assignment.

Conditional access policies
Administrators of Azure AD can configure conditional access policies to restrict user access
to Power BI based on the user or security group, the IP address of the user sign-in attempt,
the device platform of the user, and other factors. A very common scenario supported by
conditional access policies is to either block access to Power BI from outside the corporate
network or to require multi-factor authentication (MFA) for these external sign-in
attempts. As a robust, enterprise-grade feature, organizations can use conditional access
policies in conjunction with security groups to implement specific data governance policies.

Each Azure AD conditional access policy is composed of one or more conditions and one or
more controls. The conditions define the context of the sign-in attempt such as the security
group of the user and the user's IP address, while the controls determine the action to take
given the context. For example, a policy could be configured for the entire organization and
all non-trusted IP addresses (the conditions) that requires MFA to access Power BI (the
control). The Azure portal provides a simple user interface for configuring the conditions
and controls of each conditional access policy.

The following steps and supporting screenshots describe the creation of an Azure AD
conditional access policy which requires MFA for users from the sales team accessing
Power BI from outside the corporate network:

Log in to the Azure portal and select Azure Active Directory from the main1.
menu
From the SECURITY group of menu items, select Conditional access, as shown2.
in the screenshot:

Conditional access in Azure AD

Administering Power BI for an Organization Chapter 12

[530]

Select the new policy icon at the top and enter a name for the policy, such as3.
Sales Team External Access MFA

Set the users and group assignment property to an Azure AD security group4.
(such as AdWorks DW Sales Team)
Set the Cloud apps assignment property to Microsoft Power BI service5.
On the Conditions assignment property, configure the locations to include any6.
location and exclude all trusted locations:

With this definition, the policy will apply to all IP addresses not
defined as trusted locations in Azure AD

On the Grant access control property, select the checkbox to require multifactor7.
authentication
Finally, set the Enable policy property at the bottom to On and click the Create8.
command button:

Configure new Azure AD conditional access policy

Administering Power BI for an Organization Chapter 12

[531]

The minimum requirements to create new conditional access policies are the Users and
groups property, the Cloud apps property (Power BI service), and at least one access
control. As with all security implementations, conditional access policies should be tested
and validated. In this screenshot, a user within the AdWorks DW Sales Team could
attempt to log in to Power BI from outside the corporate network. The user should be
prompted (challenged) to authenticate by providing a mobile device number and entering
an access code sent via text message.

It's important to remember that conditional access policies are in addition to the user
permissions defined in the Power BI service and the row-level security roles created in
Power BI datasets or Analysis Services data models. The User Permissions section in Chapter
11, Creating Power BI Apps and Content Distribution, contains additional information on these
security layers.

Azure AD conditional access policies require either an Enterprise Mobility
and Security E5 license or Azure AD Premium P2 license. Enterprise
Mobility and Security (EMS) E5 licenses include Azure AD Premium P2
as well as Microsoft Intune, Microsoft's mobile device management
service. Additional information on features, licensing, and pricing for EMS
is available at the following URL http:/ /bit. ly/2lmHDZt.

The following URL from MS Docs contains best practices for conditional
access policies in Azure AD http:/ / bit.ly/ 2nXAjlA.

Power BI Admin Portal
The Power BI Admin Portal provides controls for administrators to manage the Power BI
tenant for their organization. This includes settings governing who in the organization can
utilize which features, how Power BI Premium capacity is allocated and by whom, and
other settings such as embed codes and custom visuals.

The admin portal is accessible to Office 365 Global Administrators and users mapped to the
Power BI service administrator role. The Power BI service administrator role and the
assignment of a user to this role in Office 365 was described in the Power BI project roles
section of Chapter 1, Planning Power BI Projects. To open the admin portal, log in to the
Power BI service and select the Admin portal item from the Settings (Gear icon) menu in
the top right, as shown in the following screenshot:

http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2lmHDZt
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA
http://bit.ly/2nXAjlA

Administering Power BI for an Organization Chapter 12

[532]

Admin portal in Settings menu

All Power BI users, including Power BI free users, are able to access the Admin portal.
However, users who are not admins can only view the Capacity settings page. The Power
BI service administrators and Office 365 global administrators have view and edit access to
the following seven pages:

Admin portal pages

Administering Power BI for an Organization Chapter 12

[533]

Administrators of Power BI most commonly utilize the Tenant settings and Capacity
settings as described in the Tenant Settings and Power BI Premium Capacities sections later
in this chapter. However, the admin portal can also be used to manage any approved
custom visuals for the organization, as well as any embed codes associated with the Publish
to web feature described in Chapter 11, Creating Power BI Apps and Content Distribution.

Usage metrics
The Usage metrics page of the Admin portal provides admins with a Power BI dashboard
of several top metrics, such as the most consumed dashboards and the most consumed
dashboards by workspace. However, the dashboard cannot be modified and the tiles of the
dashboard are not linked to any underlying reports or separate dashboards to support
further analysis. Given these limitations, alternative monitoring solutions are
recommended, such as the Office 365 audit logs and usage metric datasets specific to Power
BI apps. Details of both monitoring options are included in the app usage metrics and
Power BI audit log activities sections later in this chapter.

Users and Audit logs
The Users and Audit logs pages only provide links to the Office 365 admin center. In the
admin center, Power BI users can be added, removed and managed. If audit logging is
enabled for the organization via the Create audit logs for internal activity and auditing and
compliance tenant setting, this audit log data can be retrieved from the Office 365 Security
& Compliance Center or via PowerShell. This setting is noted in the following section
regarding the Tenant settings tab of the Power BI admin portal.

An Office 365 license is not required to utilize the Office 365 admin center for Power BI
license assignments or to retrieve Power BI audit log activity. Examples of assigning Power
BI Pro licenses and the Power BI service administrator role to users from within the Office
365 admin center are included in Chapter 1, Planning Power BI Projects. Retrieving and
analyzing the Power BI audit log data is described in the Power BI Audit Log Activities
section later in this chapter.

Administering Power BI for an Organization Chapter 12

[534]

Tenant settings
The Tenant settings page of the Admin portal allows administrators to enable or disable
various features of the Power BI web service. For example, an administrator could disable
the Publish to web feature described in Chapter 11, Creating Power BI Apps and Content
Distribution, for the entire organization. Likewise, the administrator could allow only a
certain security group to embed Power BI content in SaaS applications such as SharePoint
Online.

The following diagram identifies the 18 tenant settings currently available in the admin
portal and the scope available to administrators for configuring each setting:

Power BI Tenant settings

From a data security perspective, the first seven settings within the Export and Sharing and
Content packs and apps groups are most important. For example, many organizations
choose to disable the Publish to web feature for the entire organization. Additionally, only
certain security groups may be allowed to export data or to print hard copies of reports and
dashboards. As shown in the Scope column of the previous table and the following
example, granular security group configurations are available to minimize risk and manage
the overall deployment.

Administering Power BI for an Organization Chapter 12

[535]

Currently, only one tenant setting is available for custom visuals and this setting (Custom
visuals settings) can be enabled or disabled for the entire organization only. For
organizations that wish to restrict or prohibit custom visuals for security reasons, this
setting can be used to eliminate the ability to add, view, share, or interact with custom
visuals. More granular controls to this setting are expected later in 2018, such as the ability
to define users or security groups of users who are allowed to use custom visuals.

In the following screenshot from the Tenant settings page of the Admin portal, only the
users within the BI Admin security group who are not also members of the BI Team
security group are allowed to publish apps to the entire organization:

Security group permissions in Tenant settings

For example, a report author who also helps administer the On-premises data gateway via
the BI Admin security group would be denied the ability to publish apps to the
organization given membership in the BI Team security group. Many of the tenant setting
configurations will be more simple than this example, particularly for smaller organizations
or at the beginning of Power BI deployments. However, as adoption grows and the team
responsible for Power BI changes, it's important that the security groups created to help
administer these settings are kept up to date.

Administering Power BI for an Organization Chapter 12

[536]

Embed Codes
Embed Codes are created and stored in the Power BI service when the Publish to web
feature is utilized. As described in the Publish to web section of the previous chapter, this
feature allows a Power BI report to be embedded in any website or shared via URL on the
public internet. Users with edit rights to the workspace of the published to web content are
able to manage the embed codes themselves from within the workspace. However, the
admin portal provides visibility and access to embed codes across all workspaces, as shown
in the following screenshot:

Embed Codes in Power BI admin portal

Via the Actions commands on the far right of the Embed Codes page, a Power BI Admin
can view the report in a browser (diagonal arrow) or remove the embed code. The Embed
Codes page can be helpful to periodically monitor the usage of the Publish to web feature
and for scenarios in which data was included in a publish to web report that shouldn't have
been, and thus needs to be removed. As shown in the Power BI Tenant settings table
referenced in the previous section, this feature can be enabled or disabled for the entire
organization or for specific users within security groups.

Organizational Custom visuals
The Custom Visuals page allows admins to upload and manage custom visuals (.pbiviz
files) that have been approved for use within the organization. For example, an
organization may have proprietary custom visuals developed internally, which it wishes to
expose to business users. Alternatively, the organization may wish to define a set of
approved custom visuals, such as only the custom visuals that have been certified by
Microsoft. The process of obtaining custom visuals via Microsoft AppSource and the details
of certified custom visuals are included in the Custom visuals section of Chapter 6, Applying
Custom Visuals, Animation, and Analytics.

Administering Power BI for an Organization Chapter 12

[537]

In the following screenshot, the Chiclet Slicer custom visual is added as an
organizational custom visual from the Organizational visuals page of the Power BI admin
portal:

Add organizational custom visual

The Organizational visuals page provides a link (Add a custom visual) to launch the form
and identifies all uploaded visuals, as well as their last update. Once a visual has been
uploaded, it can be deleted but not updated or modified. Therefore, when a new version of
an organizational visual becomes available, this visual can be added to the list of
organizational visuals with a descriptive title (Chiclet Slicer v2.0). Deleting an
organizational custom visual will cause any reports that use this visual to stop rendering.

The following screenshot reflects the uploaded Chiclet Slicer custom visual on the
Organization visuals page:

Administering Power BI for an Organization Chapter 12

[538]

Organization Visuals page in Power BI admin portal

Once the custom visual has been uploaded as an organizational custom visual, it will be
accessible to users in Power BI Desktop. In the following screenshot from Power BI
Desktop, the user has opened the MARKETPLACE of custom visuals and selected MY
ORGANIZATION:

 Power BI Custom visuals

In this screenshot, rather than searching through the MARKETPLACE, the user can go
directly to visuals defined by the organization. The marketplace of custom visuals can be
launched via either the Visualizations pane or the From Marketplace icon on the Home tab
of the ribbon. Additional details on adding custom visuals are included in Chapter
6, Applying Custom Visuals, Animation, and Analytics.

Organizational custom visuals are not supported for reports or dashboards shared with
external users. Additionally, organizational custom visuals used in reports that utilize the
publish to web feature will not render outside the Power BI tenant. Moreover,
Organizational custom visuals are currently a preview feature. Therefore, users must enable
the My organization custom visuals feature via the Preview features tab of the Options
window in Power BI Desktop.

Administering Power BI for an Organization Chapter 12

[539]

Usage metrics reports
The Power BI service provides standard usage metrics reports for both dashboards and
reports. These reports, which themselves are Power BI reports, provide quick insights to
fundamental user adoption questions, such as how often the published content is being
viewed and which users are viewing the content the most. These read-only reports can be
generated for specific dashboards and reports and can also be personalized (edited) by
saving a copy. Once a copy of a usage metrics report has been saved, a Power BI dataset of
usage metrics will be created for either all the dashboards or all the reports in the app
workspace. The usage metrics datasets, which are updated by the Power BI service for the
last 90 days of activity, and the saved usage reports can then serve as a foundation for a
lightweight but robust monitoring solution for the app workspace.

For example, the Global Sales app described in the previous chapter contains several
dashboards and reports with some of the reports containing multiple report pages. The
following 11-step process and supporting diagram walk through the creation of two usage
metrics datasets (dashboards and reports), two usage metrics reports, and a dashboard
summarizing usage metrics for the app workspace across dashboards and reports:

Access the app workspace in the Power BI service containing the content to1.
monitor:

A Power BI Pro license and edit rights to the app workspace are
required to access usage metrics data.

From the Dashboards page, select the View usage metrics report icon (line chart2.
symbol) under ACTIONS for one of the dashboards, as shown in the following
screenshot:

View usage metrics action

Administering Power BI for an Organization Chapter 12

[540]

Once prompted, click the View usage metrics button on the Usage metrics ready3.
popup textbox:

Alternatively, click the View usage metrics report icon again for any of
the dashboards in the workspace.

A Power BI report containing usage metrics for the selected dashboard will
be displayed, such as the following:

Dashboard Usage Metrics report

In addition to the slicers and visuals in the preceding screenshot, the usage
metrics report page includes visuals for total views, total viewers (users), and
views by user table that identifies the User Principal Name (login) and
display name of the user.

At this point, usage metrics reports specific to each dashboard in the
workspace will be accessible on demand via the View usage metrics report
icon.

With the usage metrics report opened, click Save as from the File menu4.
dropdown to save a copy of the report:

A report named Dashboard Usage Metrics Report - Copy will be
saved in the reports group.

Administering Power BI for an Organization Chapter 12

[541]

Additionally, a dataset will be created named Dashboard Usage
Metrics Model - Copy.

Open the report saved from step 4 and click Edit report.5.
In edit mode, remove the Report level filters that are specific to a single6.
dashboard, as identified in the following screenshot:

Usage metrics report filtered for dashboard

Create a separate report page that uses the DisplayName column of the7.
Dashboards table to analyze usage of the dashboards within the workspace.
Save the modifications from the file menu dropdown (File | Save). 8.
Repeat steps 1 through 8 for a Power BI report in the same app workspace:9.

Use the DisplayName column from the Reports table and the
ReportPage column from the Views table to design a usage metrics
report for the reports in the workspace.

Create a new dashboard named Usage Metrics.10.
Pin report visuals from both the dashboard usage metrics report and the report11.
usage metrics report to the Usage Metrics dashboard:

By default, the included in app property will be disabled for usage
metrics reports, and the dashboard containing visuals from the usage
metrics reports.

At this point, the workspace will include one usage metrics report for dashboards, one for
reports, and two Power BI datasets supporting these usage reports, as shown in the
following screenshot:

Report and dashboard usage metrics datasets

Administering Power BI for an Organization Chapter 12

[542]

Via the Create report action icons (chart symbol) included in the preceding screenshot,
additional usage reports can be created in the Power BI service. Additionally, new reports
can be created in Power BI Desktop by connecting to either of these two datasets, as
described in the Live connections to Power BI datasets section of Chapter 5, Creating and
Formatting Power BI Reports.

Excluding any new reports or dashboards, the monitoring solution for the Global Sales
workspace is structured as follows:

Usage metrics reporting: Global Sales workspace

Depending on the importance and size of the workspace, more reports and dashboards can
be created to provide further insight into the adoption of the content. For example, the
usage metric reporting may indicate that only one or two reports of an app workspace are
being utilized, or that one particular report page of a report is most important to users. The
BI team can use this information to engage with business stakeholders to better understand
the reasoning behind the usage patterns reported.

The usage metrics data includes both Power BI Pro and Power BI Free users. For example,
this includes Power BI Pro users who are members of the app workspace with edit rights to
the content, as well as Power BI Free users who only access the content via a Power BI app.
A DistributionMethod table in both the dashboard and report usage metrics datasets
contains a Name field, which identifies how the user obtained access to view the specific
item. This access will be one of the following three methods—as a member of the app
workspace, as a recipient of a shared dashboard or report, or by installing an app.

Administering Power BI for an Organization Chapter 12

[543]

User views of content through a Power BI app are currently counted as
content packs but, as mentioned in the previous chapter, content packs are
being replaced by apps. Additional information on the metrics and
columns included in the usage metrics datasets is available in MS Docs via
the following URL: http:/ /bit.ly/ 2nTyua4.

Although very useful for app workspaces that support many users or important scenarios
(such as executive dashboards), usage metrics reports are ultimately limited to individual
workspaces. Additionally, the usage metrics don't include other activities of interest to
administrators, such as when the newly scheduled refresh is configured or when a data
source from a gateway is removed. A more comprehensive monitoring dataset inclusive of
all app workspaces and all Power BI activities is available via the Office 365 audit logs for
Power BI, as described in the following section.

Audit logs
Power BI activities stored in the Office 365 audit logs provide administrators with a
complete view of user activities in the Power BI service. Each log event record identifies the
user, the date and time of the activity, the type of activity, such as printed a report page,
and the item in Power BI, such as the report that was printed. This level of detail at the
tenant level across all primary activities helps administrators answer both high-level usage
and adoption questions, as well as targeted compliance questions.

For example, the audit logs could prove that the volume of users and their level of
engagement with Power BI reports and dashboards is increasing. Alternatively, an
administrator could investigate the activities of just a few users to ensure they're only
engaging in activities aligned with their role. Perhaps most importantly, an IT organization
can understand what Power BI content is being utilized by the business. In the event that a
few reports or dashboards become very popular, some level of engagement may be
appropriate to ensure the underlying dataset is accurate and secure or migrate the content
to an IT-supported solution.

Once enabled in the Power BI admin portal, the audit log data can be retrieved on an ad hoc
basis or, more commonly, retrieved on a recurring basis as part of a continuous monitoring
and governance solution. To minimize the setup and maintenance of these monitoring
solutions, Microsoft has made available PowerShell scripts that export Power BI audit log
data to a CSV file format. Additionally, a Power BI solution template is available with built-
in audit log retrieval and prebuilt monitoring reports.

http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4
http://bit.ly/2nTyua4

Administering Power BI for an Organization Chapter 12

[544]

The first step in utilizing the audit logs is to enable the create audit logs setting in the Power
BI admin portal. This setting in the Audit and Usage settings group of the Tenant settings
page is set at the organizational level, as shown in the following screenshot:

Enable Power BI audit logs

Once the audit log setting is enabled, user activities start to be recorded in the audit logs
with a delay of 12 hours or less from their occurrence and will be stored for 90 days. This
log data can be accessed directly from the Office 365 admin center or remotely via
PowerShell scripts and solution templates. In terms of direct or ad hoc access, an Office 365
global administrator or a user with permission to the Security & Compliance Center can log
in to Office 365 (www.office.com) and select the Security & Compliance app icon, as shown
in the following screenshot:

Office 365 app menu

http://www.office.com

Administering Power BI for an Organization Chapter 12

[545]

Alternatively, a link to the Office 365 admin center is provided on the Audit logs page of the
Power BI admin portal. This links directly to the Audit log search interface of the Security &
Compliance Center described later.

From the Security & Compliance Center, the Search and Investigation menu at the bottom
(magnifying-glass icon) can be expanded to expose an Audit log search item. Select Audit
log search and then specify the Power BI activities to search for, the start and end dates for
the search, and, optionally the users, as shown in the following screenshot:

Audit log search in Security & Compliance Center

In this example, the following four activities are searched for—Created Power BI gateway,
created Power BI dataset, deleted Power BI gateway, and deleted Power BI dataset. The
Filter results button can be used to filter the results of the search by any of the search
columns (User, Activity, Item). The Export results dropdown supports two formats to be
exported to a comma-separated value (CSV) file. Specifically, the Save loaded results
option exports only the columns displayed in the search. The Download all results option
contains many more columns, such as the name of the app workspace and the user's web
browser. However, these details are embedded in a single JSON column (AuditData), such
as the following activity record:

{"Id":"9933734c-0dbd-
ba5b-41ce-42d89b7ac8cd","RecordType":20,"CreationTime":"2018-02-10T21:17:18
","Operation":"CreateDataset","OrganizationId":"77243ddd-
cf6a-466f-9246-06edb8809332","UserType":0,"UserKey":"10033FFFA28BA395","Wor
kload":"PowerBI","UserId":"JenLawrence@abcdef.onmicrosoft.com","ClientIP":"
12.123.645.99","UserAgent":"Mozilla\/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit\/537.36 (KHTML like Gecko) Chrome\/99.0.3539.132
Safari\/537.36","Activity":"CreateDataset","ItemName":"Dashboard Usage

Administering Power BI for an Organization Chapter 12

[546]

Metrics Model","WorkSpaceName":"Global Sales","DatasetName":"Dashboard
Usage Metrics Model","WorkspaceId":"fb70ab4f-0daf-4aa8-
b704-7fae5ff9506f","ObjectId":"Dashboard Usage Metrics
Model","DatasetId":"4465997a-b043-4f7c-
b31f-82e9740ad4f1","DataConnectivityMode":"DirectQuery"}

As shown in the preceding activity record associated with the creation of a Power BI
dataset, many more attributes of the activity are available in the audit logs which aren't
displayed from the main Audit log search results interface. To view these additional details
from the Audit log search page, one of the result records must be selected, thus prompting
a Details window specific to this user activity.

 Object IDs such as WorkspaceID and DatasetID can be used to
programmatically manage Power BI content via the Power BI REST API,
as described in the Staged Deployments section of Chapter 8, Managing
Application Workspaces and Content.

A BI team would expect the creation and deletion of datasets and gateways to be infrequent
activities relative to the creation and deletion of reports and dashboards. If many datasets
are being created, this could be a sign of inefficient resource utilization and version control
issues. For example, rather than four reports using Live connections to a single published
dataset, each report may have its own dataset, which requires its own resources and data
refresh schedule (if import mode).

Excluding global admins, an Exchange Online license is required to access the auditing
section of the Office 365 Security & Compliance Center. Additionally, administrators who
are not global admins need to be mapped to an Exchange admin role that provides access to
the audit log. As shown in the following screenshot, the Permissions menu of the Security
& Compliance Center provides a link to the Exchange Admin center to add users to the
necessary roles to access the audit logs:

Security & Compliance Center: Permissions

Administering Power BI for an Organization Chapter 12

[547]

Clicking the Exchange admin center link highlighted in the preceding screenshot allows a
global admin to assign a user to an Exchange Online role group, such as Compliance
Management, that includes access to audit logs.

There are currently 45 distinct Power BI activities tracked in the audit logs,
including the sharing of dashboards and reports, any updates to an
organization's Power BI settings (Tenant settings), and activities related to
the management of Power BI Premium capacities as described in the next
section. The list of Power BI activities audited and their descriptions is
available and updated at MS Docs via the following URL http:/ /bit. ly/
2skXjAB.

The maximum date range for an audit log search is 90 days and the date/time of each
activity is presented in Coordinated Universal Time (UTC) format. Additionally, a
maximum of 1,000 events (one user and one activity) can be displayed per audit log search.
Given these limitations and the manual nature of audit log searches, a scheduled log
retrieval process is necessary to support a more robust monitoring solution.

Audit log monitoring solutions
To internally develop a monitoring solution based on the audit log data, a PowerShell script
which searches and exports the audit log data to a CSV file can be scheduled. This CSV file
is then used as the source of an extract-transform-load (ETL) or extract-load-
transform (ELT) process to persist the log data in a source system, such as a SQL Server
database. Finally, Power BI Desktop can be used to implement remaining lightweight
transformations, create DAX measures, and develop the monitoring reports.

The following list of steps and supporting screenshots describe the monitoring workflow in
detail:

A PowerShell script (.ps1) is executed on a schedule and generates a CSV file of1.
Power BI activities:

The following sample script searches the audit log for Power BI activities
since yesterday and exports the data to a CSV file:

$UserCredential = Get-Credential
$CurrentDate = get-date
$Yesterday = $CurrentDate.AddDays(-1)
$csvFile = "C:\Users\Brett Powell\Desktop\PowerBIAuditLogs.csv"
$Session = New-PSSession -ConfigurationName Microsoft.Exchange
-ConnectionUri https://outlook.office365.com/powershell-liveid/

http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB
http://bit.ly/2skXjAB

Administering Power BI for an Organization Chapter 12

[548]

-Credential $UserCredential -Authentication Basic -
AllowRedirection

Import-PSSession $Session

$result = Search-UnifiedAuditLog -StartDate $Yesterday -EndDate
$CurrentDate -RecordType PowerBI -ResultSize 5000 | Export-Csv
$csvFile

The ResultSize parameter (count of rows) of the Search-
UnifiedAuditLog cmdlet is limited to 5,000. If not specified, the default
value is 100. Depending on the level of usage in the organization, the
frequency of executing the script and overall process will need to be adjusted
accordingly to capture all Power BI activities.

An ETL (or ELT) process is executed to access the CSV file and load the new data2.
to a data source:

 The results of each audit log search can contain duplicate rows.
However, the Identity column included in the search results can be
used to eliminate these duplicate rows.

In an on-premises MSBI environment, a combination of SQL Server Agent,
SQL Server Integration Services (SSIS), and the SQL Server relational
database engine could be used to implement the data retrieval process. For
example, an Agent Services job could be scheduled to sequentially execute
the PowerShell script, an SSIS package, and optionally a SQL Server stored
procedure.

A Power BI dataset (.PBIX) with a connection to the data source in step 2 is3.
refreshed:

The M query used to load the data model can include transformations
to parse the JSON column and expose all columns to the data model, as
shown in the following screenshot.
As an import mode dataset, additional data sources, such as Active
Directory, could be included in the refresh process.
Additionally, the refresh of this dataset could be triggered to execute
immediately following the completion of step 2 via the Power BI Rest
API, as described in the Power BI REST API section of Chapter 8,
Managing Application Workspaces and Power BI Content.

Administering Power BI for an Organization Chapter 12

[549]

In the following screenshot, audit log search result data has been connected to from Power
BI Desktop:

Power BI Desktop: Parse JSON transformation

As shown in the preceding screenshot, a Parse JSON command is available on the
Transform tab of the Power Query Editor. Selecting the AuditData column containing the
JSON and then the Parse JSON transform converts each cell value into a record value. Once
parsed, select the outward facing arrows next to the AuditData column header to convert
these records into individual columns.

Technically, the two steps described here in the Power Query Editor are
converted into M expressions, which utilize the
Table.TransformColumns() and
Table.ExpandRecordColumn() functions, respectively. As an essential
M query to a monitoring solution, a review of the M syntax via the
Advanced Editor and other enhancements, such as parameterizing the
source file location, is recommended.

With the parsed JSON column expanded, 19 columns with an AuditData prefix will be
available to load to the data model, as shown in the following screenshot:

Transformed audit log data

Administering Power BI for an Organization Chapter 12

[550]

As shown in the preceding screenshot, the columns expanded will be of the Any data type
in M (ABC123 icon). As Any type columns, these columns will be loaded to the data model
as Text data type columns. Therefore, the CreationDate column, which is available
outside the AuditData (JSON) column, should be used on the reporting layer as this
column will be stored as a Date/Time type.

With a sound data retrieval process in place, DAX measures could be authored, such as the
count of active users, the average number of users per day and per month, and the count of
created reports or dashboards. To support security and compliance, measures and
visualizations could be created targeting high-risk or undesirable activities, such as
exporting report visual data or publishing reports to the web. For example, a card visual
representing the count of data export activities could be pinned to a Power BI dashboard
and a data alert could be configured against this dashboard tile.

Audit logs solution template
As an alternative to an internally developed monitoring solution, a Power BI solution
template is now available containing an end-to-end MS Azure architecture for analyzing
Power BI usage. The Power BI Usage metrics solution template created by Neal Analytics
(with collaboration from Microsoft) allows the organization to leverage prebuilt data flows
and Power BI usage reports as well as further customize the monitoring solution to meet
their needs. Specifically, the solution template utilizes Azure Logic Apps for a recurring
ETL process and Azure SQL Database to store the audit log data. Additionally, a robust
Power BI dataset (relationships, measures, formatting) and several well-designed report
pages will be included as a Power BI Desktop file.

Administering Power BI for an Organization Chapter 12

[551]

The following screenshot is from the Apps Summary report page of the Power BI Usage
metrics solution template:

Power BI Usage metrics solution template

Several summary-level report pages similar to this example are included with the solution
template, such as Views Summary and Dataset Summary. Additionally, the template
contains multiple detail report pages (such as User Details and Scheduling Details) that
expose all relevant attributes of specific user actions, or events in the Power BI service, such
as editing a report or exporting a report. Between the dataset, the visualization layer, and
the tested architecture in MS Azure, organizations can quickly derive value from the
solution template and target their efforts to further improve monitoring visibility if
necessary.

Administering Power BI for an Organization Chapter 12

[552]

Links to Power BI solution templates in AppSource are available from PowerBI.com as well
as Power BI Desktop. The following screenshot identifies the Solution Templates link
under the Solutions menu in PowerBI.com:

Power BI Solution Templates

In Power BI Desktop, a Solution Templates icon on the Help tab links to the solution
templates in AppSource as well. The solution templates in AppSource include introductory
videos, a Test Drive feature to interact with the Power BI report containing sample data,
and a cost estimator document under the Learn More section.

Additionally, a Get it Now option provides further details on the architecture and the
requirements of the template. In the following screenshot, the Free Trial option of the new
Power BI Usage metrics solution template has been selected:

Power BI solution template: Get It Now

https://powerbi.microsoft.com/en-us/

Administering Power BI for an Organization Chapter 12

[553]

The preceding screenshot from the Getting Started tab is representative of the Get it Now
option for other solution templates. Specifically, the templates connect to a specific source
or service, process or transform that data, and load Azure SQL Database for analysis by a
Power BI dataset and report. It's assumed that the current Free Trial option will be replaced
with a Get it Now option later in 2018.

The natural trade-off for the solution template, of course, is the monthly cost of utilizing the
underlying Azure resources. This cost will vary significantly based on the volume of users,
and thus the volume of data to process and store. An estimate of this cost is not available as
of this writing, but a cost estimator document is expected, similar to the documents
available for other solution templates in Microsoft AppSource. For many organizations, this
monthly cost (for example, $400) could be of great value relative to the development and
operational costs associated with an internally developed monitoring solution.

Power BI Premium capacities
One of the most important responsibilities of a Power BI administrator is the management
of Power BI Premium capacities. Power BI Premium is fully described in the following
chapter but, from a Power BI service administration perspective, Power BI Premium can be
thought of as an organization's dedicated hardware resources to support the use of the
Power BI service. Not all of an organization's content needs to be hosted in premium
capacity. However, these resources enable the distribution of content to read-only Power BI
Free users and they provide more consistent performance, among other scalability and
management benefits.

Power BI Premium SKUs (such as P1 and P2) are available on the Purchase
services page of the Office 365 admin center. Given that Power BI
Premium can also be used to deploy the Power BI Report Server, an
example of a premium SKU was included in the Power BI Report Server
Licensing section of Chapter 10, Deploying the Power BI Report Server. The
specific actions involved in executing purchases of premium capacities, as
well as cancellations of existing Premium subscriptions, is included via the
following URL http:/ / bit. ly/ 2HeiXtG.

Office 365 global administrators and users assigned to the Power BI service administrator
role automatically have the right to administer premium capacities in the Power BI admin
portal. An administrator's role in relation to premium capacity is to ensure that the
provisioned resources are utilized according to the organization's policies, and that
sufficient resources are available to support the existing workload.

http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG
http://bit.ly/2HeiXtG

Administering Power BI for an Organization Chapter 12

[554]

Power BI Premium administrators should be familiar with the following list of
responsibilities:

Create a new capacity with the available (purchased) v-cores:
An organization may choose to dedicate a premium capacity to a
specific project or application
In other scenarios, one capacity could be dedicated self-service
projects while another capacity could be used by corporate BI
projects.

See Chapter 13 (Scaling with Premium and Analysis
Services) for additional details on allocating premium
capacity.

Grant capacity assignment permissions to users or security groups of users:
This enables Power BI Pro users who are also administrators of app
workspaces to assign their workspaces to premium capacity
This setting can also be disabled or enabled for the entire
organization

Assign workspaces to premium capacity, or remove a workspace from premium
capacity, in the Power BI admin portal:

This is an alternative and complementary approach to capacity
assignment permissions
Power BI service administrators can manage existing capacities and
assign workspaces in bulk:

These bulk assignments can be by user, by security
group of users, or for the entire organization

Monitor the usage metrics of premium capacities to ensure sufficient resources
are available:

The Power BI Admin portal includes utilization monitoring for
each premium capacity
Additionally, activities involving premium capacities such as the
migration of an app workspace to a premium capacity are included
in the audit logs described earlier in this chapter

Change the size on an existing capacity to a larger (scale up) or smaller (scale
down) capacity node:

As more users and content utilize a specific capacity, it may be
necessary to scale up or to allocate certain app workspaces to a
different premium capacity or to shared (free) capacity

Administering Power BI for an Organization Chapter 12

[555]

Assign a user or group of users as capacity administrators for a capacity:
 This can be appropriate to support large, enterprise deployments
with multiple capacities and many app workspaces

Given the importance of performance to any BI project, as well as the cost of Power BI
Premium capacities, it's important for BI/IT teams to plan for an efficient, manageable
allocation of premium capacity as described in the next chapter. This allocation plan and
any project-specific decisions need to be communicated to the premium administrator(s) for
implementation. The following sections describe the responsibilities identified here and
related considerations in greater detail.

Capacity allocation
Power BI Premium provides organizations with significant flexibility for both allocating
their resources to premium capacities, as well as assigning Power BI content to those
capacities. A single premium capacity can be provisioned and created for an organization
or, for larger and more diverse deployments, multiple premium capacities can be created
with different sizes (CPU, memory, bandwidth) appropriate for their specific workloads.

In terms of allocating resources to premium capacities, an organization is only limited by
the number of virtual cores (v-cores) that have been purchased. For example, an
organization could initially purchase a P2 capacity, which includes 16 v-cores. Once
purchased, a P2 capacity could be created in the Capacity settings page of the Admin
portal that utilizes all of these cores. However, at some later date, this capacity could be
changed to a P1 capacity which only uses 8 v-cores. This would allow the organization to
create a second P1 capacity given the eight remaining v-cores available. Alternatively, a
second P2 capacity could be purchased, providing another 16 v-cores. With 32 total v-cores
purchased by the organization, an existing P2 capacity could be increased to a P3 capacity
(32 v-cores).

Administering Power BI for an Organization Chapter 12

[556]

The following diagram illustrates this example of capacity allocation:

Power BI Premium capacity allocation

Regardless of the premium SKU (P1, P2, or P3), the combination of SKUs purchased in the
Office 365 admin center, or the number of specific SKUs (instances), an organization can use
the total number of v-cores purchased as it wishes. For example, purchasing a P3 SKU
provides 32 v-cores, the same as purchasing four instances of a P1 SKU (8 X 4 = 32).

For organizations getting started with Power BI and that are comfortable
with actively managing their premium capacities, individual instances of
the P1 SKU with no annual commitment (month-to-month) could make
sense. For example, a single P1 instance could be purchased to start and
then, if it's determined that more resources are needed, a second P1
instance could be purchased, making 16 cores available for either a P2
capacity or two P1 capacities.

In this diagram, an organization has chosen to isolate the sales and purchasing app
workspaces to their own P1 capacities with eight v-cores each. This isolation ensures that
the resources required for one workspace, such as the user's connection to the Sales app,
will not impact the other workspace (Purchasing). Additionally, the Finance and
Marketing workspaces have been left in shared (free) capacity for now, but could later be
assigned to Capacity A or Capacity B if sufficient resources are available.

Administering Power BI for an Organization Chapter 12

[557]

Whether Power BI workspaces (dashboards, reports, datasets) are allocated to premium
capacity or shared capacity is transparent to end users. For example, the same login and
content navigation experience in the Power BI web service and Power BI mobile apps
applies to both premium and shared capacity. Therefore, organizations can selectively
allocate certain workspaces, such as production workspaces accessed by many Power BI
Free users, to premium capacity while allowing other small or team workspaces to remain
in the shared capacity.

Different patterns for deploying premium capacity are discussed in the following chapters
but, at a minimum, administrators should be familiar with the relationships between
purchased premium capacity and premium capacities configured for an organization, as
well as the assignment of app workspaces to those capacities.

Create, size, and monitor capacities
Office 365 global admins and Power BI service administrators can view, create, and manage
all Power BI Premium capacities via the Admin portal. In the following screenshot from the
Capacity settings page of the Admin portal, eight v-cores have been provisioned for the
organization and a single P1 capacity has been created, which consumes all of these cores:

Admin portal: Capacity settings

Administering Power BI for an Organization Chapter 12

[558]

As shown in the preceding screenshot, a Set up new capacity button is located above the
list of premium capacities that have been configured. In this example, since all purchased v-
cores have been used by a single capacity, the Set up new capacity button is grayed out. In
the event that v-cores are available for a new capacity, clicking Set up new capacity button
would launch a setup window, such as the following:

Set up new Premium Capacity

In this example, nine v-cores are available for the new capacity and thus a P1 capacity
requiring eight v-cores can be created. The capacity is named and the capacity
administrator(s) for the new capacity are defined. The Capacity size dropdown will expose
all different capacity sizes (P2, P3) but sizes requiring more v-cores than the volume of v-
cores currently available will be grayed out. Once these properties have been configured,
click Set up to complete the process.

Note that the Capacity size and Capacity admins properties are required to set up the new
capacity. Each capacity must have at least one capacity admin, who will have full
administrative rights to the given capacity. Additional information on capacity admins is
included in the Power BI Capacity Admins section later in this chapter.

Administering Power BI for an Organization Chapter 12

[559]

Change capacity size
At some point after a capacity has been created, it may be necessary to change the size of
the capacity. For example, given increased adoption of Power BI, the P1 SKU may be
insufficient to support the current workload and thus an additional eight v-cores could be
purchased with the intent to scale up the existing capacity to a P2 capacity size (16 v-cores).
Alternatively, an admin may wish to view the recent utilization of a premium capacity to
help determine whether additional app workspaces can be assigned to the capacity.

To change a capacity size and to view the utilization for a capacity, click the name of the
capacity from the Capacity settings page described earlier. In the following screenshot, the
Capacity P1 #1 8GB model from the Capacity settings screenshot earlier has been selected:

Manage premium capacity

A yellow Change capacity size button is exposed below the three usage metrics (CPU,
Memory thrashing, and Direct Query). Selecting this button launches a simple window
with a Capacity size dropdown, such as the Capacity size dropdown used for setting up a
capacity. In this scenario, all capacity size options are grayed out in the Change capacity
size window since the P1 capacity consumes all available v-cores. Nonetheless, with just a
few clicks in the Admin portal, an admin can scale up or down a capacity.

Monitor premium capacities
The three usage metrics displayed in the manage capacity screen have built-in KPI
formatting and conditional logic for good (green), marginal (yellow), and critical (red)
statuses. Depending on the type of datasets (import, DirectQuery) and many other factors
(such as usage patterns and query complexity), any of the three resources (CPU, memory,
bandwidth) could represent a bottleneck.

Administering Power BI for an Organization Chapter 12

[560]

For example, a P1 capacity has only 25 GB of RAM and thus will not be suitable for very
large import (in-memory) datasets. It's recommended to monitor these metrics and to make
adjustments if necessary to ensure users have an acceptable experience in terms of
performance and responsiveness.

The usage metrics are driven by hourly time windows of activity for the given capacity over
the past seven days. For example, the CPU usage metric (far left) will count the number of
hours out of the last 168 hours (7 days * 24 hours) that experienced CPU utilization over
80%. These instances of high CPU utilization could be driven by the refresh process of an
import mode dataset or users viewing and clicking through reports. During these high-CPU
hours, users may experience poor performance when accessing or interacting with reports.

The refresh process for large, in-memory Power BI datasets and Analysis
Services models is CPU intensive. For this reason, most scale out
deployments of Analysis Services isolate the processing operations from
the query workload. Specifically, a dedicated Analysis Services server
would connect to the source(s) and refresh the model, and then the
updated model would be synchronized to multiple separate servers which
resolve user queries. This architecture is already available in Azure
Analysis Services and a dedicated processing server is identified on the
roadmap for Power BI Premium.

The memory thrashing usage metric (middle) measures how often in-memory datasets are
evicted from memory. Premium capacities opportunistically keep frequently utilized
datasets loaded to memory to reduce load performance. However, with multiple in-
memory datasets assigned to a capacity, and given the fixed amount of RAM provided per
capacity (such as 50 GB for P2), the service may unload a dataset from memory to use this
memory for other datasets. Users requesting to access an unloaded dataset, such as viewing
a report based on the dataset, could experience long wait times for the report to display
data.

The Direct Query usage metric (far right) refers to throughput or concurrent queries over
both Direct Query connections and Live connections to Analysis Services models. In
addition to V-Cores and RAM, each premium capacity includes a connection limit for the
maximum volume of DirectQuery/Live connection queries per second, such as 30 per
second for a P1 capacity. In the event that this limit is exceeded, the incremental queries
beyond the throughput limit will be forced to wait.

Administering Power BI for an Organization Chapter 12

[561]

For example, in the event that 80 DirectQuery or Live connection queries are received by the
P1 premium capacity, 30 queries will be executed in the first second with no delay.
However, another 30 queries will have to wait one second before being executed, and
finally, the remaining 20 queries will have to wait two seconds before executing. This wait
time is in addition to the time required to execute the requested query by the data source
system and thus represents a potential bottleneck for large-scale Power BI deployments
with DirectQuery and Live connection data sources, if appropriate premium capacities are
not provisioned.

As shown in the screenshots and diagram in this section, administrators have tools to
monitor the performance of premium capacities and to scale up and down as an
organization's needs and available resources allow. Once premium capacities have been
created and sized, the next step is to assign app workspaces to these capacities so that an
organization's content is moved from free (shared) capacity to the appropriate dedicated
premium capacity.

Premium capacities can be allocated at a granular level, such as individual app workspaces,
or broadly applied to all workspaces of an organization. Additionally, as described in the
following sections, Power BI administrators can also delegate administrative rights over
premium capacities, as well as authorize certain Power BI users to assign workspaces to
premium capacity.

App workspace assignment
Just as organizations have the flexibility to allocate their purchased v-cores across one or
multiple premium capacities, there are also multiple options for assigning app workspaces
to premium capacity. To bulk assign multiple workspaces to a capacity within the Admin
portal, click the Assign workspaces button for a capacity. This button and the list of
workspaces already assigned to the capacity is below the Change capacity size button
described in the previous section. In the following screenshot, two workspaces have been
selected for assignment to a premium capacity:

Administering Power BI for an Organization Chapter 12

[562]

Assign workspaces

As shown in the preceding screenshot, the workspaces associated with individual users or
groups of users can also be assigned to a premium capacity. If applied to specific users, any
existing workspaces assigned to those users, including workspaces already in a separate
capacity, will be moved to the capacity assigned.

As an alternative or complementary approach to assigning workspaces in the admin portal,
administrators of a capacity can also grant users or groups of users the permission to assign
workspaces to premium capacity. In the following screenshot, a user (brettp76) is granted
assignment permission to a premium capacity:

Assignment Permissions

Administering Power BI for an Organization Chapter 12

[563]

The USER PERMISSIONS options, which also includes Capacity admins described in the
following section, is also just below the Change capacity size button, such as the Assign
workspaces button. Users granted this permission will also require administrative rights to
any app workspace they wish to assign to premium capacity.

In the following screenshot, a Power BI Pro user (brettp76) and administrator of an app
workspace have opened the Edit workspace dialog to assign a workspace to premium
capacity:

App workspace administrator: Assign to premium capacity

The differences between app workspace administrators and members were described in the
Application Workspaces section of Chapter 8, Managing Application Workspaces and Content.

Capacity admins
One or more capacity admins are required for each premium capacity, and these users do
not have to be an Office 365 global admin or a Power BI service admin. Users assigned as
capacity administrators have the same administrative rights to the given capacity as Power
BI Service admins, such as changing capacity size and assigning workspaces or user
assignment permissions.

Administering Power BI for an Organization Chapter 12

[564]

For example, a Power BI Pro user could be assigned as a capacity admin and could access
this capacity via the Admin portal just like a Power BI admin. However, only the capacities
for which the user is a capacity admin would appear on the Capacity settings page.
Additionally, other pages of the Admin portal, such as Tenant settings, would not be
visible or accessible to the capacity admin.

Summary
This chapter reviewed the features and processes applicable to administering Power BI for
an organization. These included the configuration of tenant settings in the Power BI admin
portal, analyzing the usage of Power BI assets, and monitoring overall user activity via the
Office 365 audit logs. Additionally, important administrative capabilities of Azure Active
Directory, such as conditional access policies and external guest users, were also described.
Moreover, the tasks and options available to administer Power BI Premium capacity were
also detailed.

The following chapter looks at the options for scaling Power BI to support increased user
adoption, larger data sets, and enterprise BI solutions. This includes methodologies for
allocating Power BI Premium capacity to workloads, leveraging the additional benefits of
Power BI Premium, and migrating Power BI datasets to Analysis Services.

13
Scaling with Premium and

Analysis Services
For many organizations, the deployment of Power BI entails the reporting and self-service
needs of hundreds or even thousands of users, as well as massive datasets. Power BI
Premium and Analysis Services are positioned to address these needs via workload-based
pricing, flexible scale-up and scale-out options, and enterprise-grade semantic modeling
features. Although organizations and certain projects may start out with Power BI Desktop
and shared capacity in the Power BI service, the utilization of Power BI Premium capacity
and optionally the migration to Analysis Services is often essential to deliver the scale,
return on investment (ROI), and administrative controls of an enterprise BI platform.

This chapter begins with a review of the capabilities enabled by Power BI Premium
capacities and the top considerations in provisioning this capacity. In addition to premium
capacities, Azure Analysis Services (AAS) and SQL Server Analysis Services (SSAS) are
introduced as enterprise BI modeling tools with features that address limitations with
Power BI Desktop. Finally, the steps and considerations in the migration of a Power BI
Desktop file to an Analysis Services model are described.

In this chapter, we will review the following topics:

Power BI Premium
Power BI Premium provisioning factors
Power BI Premium capacity allocation
Analysis Services versus Power BI datasets
Azure Analysis Services and SQL Server Analysis Services
Migration from Power BI dataset to Analysis Services model

Scaling with Premium and Analysis Services Chapter 13

[566]

Power BI Premium
Power BI Premium consists of dedicated capacity (hardware) that an organization can
provision to host some or all of its Power BI content (datasets, reports, and dashboards). As
an alternative to the free clusters of capacity provided by Microsoft and shared by many
organizations, premium capacities are isolated to a specific organization and thus are not
impacted by the use of Power BI by other organizations. Another very important benefit of
this isolation is that the provisioning organization can utilize their capacity as needed and is
not constrained by the limits imposed on shared (free) capacity, such as dataset sizes and
refresh frequencies. Additionally, as a cloud service managed by Microsoft, organizations
have great flexibility to scale, allocate, and manage premium resources according to their
preferred allocation methodology and changing requirements.

The top benefit of Power BI Premium is the ability to provide read-only access to Power BI
Free users and thus cost-effectively scale Power BI deployments based on workloads rather
than individual user accounts. This is particularly essential for large organizations with
thousands of users, the majority of which only need the ability to view and optionally
interact with content. If Power BI content is hosted in a premium capacity, the users
consuming content such as via Power BI apps can view and interact with the content, such
as making filter selections on a report or viewing a mobile-optimized dashboard on Power
BI mobile applications. Power BI Premium enables organizations to limit the assignment of
Power BI Pro users to those who will create and distribute content and to focus on
provisioning and allocating premium resources according to the use cases and needs of
workloads within the organization.

Prior to Power BI Premium, the cost and management overhead of
assigning pro licenses to all users in an organization was the main barrier
to large-scale deployments. From a customer's perspective, it simply
doesn't make sense to pay the same price for a user that only views a few
reports and dashboards each week as for a BI developer who's working in
Power BI constantly. Additionally, as usage patterns and the scope of BI
solutions can change rapidly, the ability to quickly scale up or down
premium resources and thus only pay for what's needed, similar to other
cloud services, was a top request from customers.

Scaling with Premium and Analysis Services Chapter 13

[567]

Additionally, Power BI Premium capacity can be used to deliver Power BI content to users
in applications and environments outside of the Power BI service. For example, premium
capacity can be used to embed Power BI visuals in custom applications, in other SaaS
applications such as SharePoint Online, and can be used to license the Power BI Report
Server. Details regarding the Power BI Report Server and alternative content distribution
methods are included in Chapter 10, Deploying the Power BI Report Server, and Chapter
11, Creating Power BI Apps and Content Distribution, respectively.

The premium capacity-based licensing model, which currently starts at $5,000 per month
for a P1 SKU, implies the following three fundamental questions:

How much premium capacity should be provisioned?1.
How should provisioned capacity be allocated? 2.
What can be done to minimize capacity utilization and thus resource costs?3.

Guidance and consideration of these questions are included in the following sections.

Premium Embedded SKUs (EM3), which are exclusive to embedding
Power BI content in applications or services such as SharePoint Online,
have a lower starting price point and less resources. As most organizations
will leverage the Power BI service and mobile apps for large-scale
deployments, Power BI Premium P SKUs are the focus of this chapter.

Power BI Premium capabilities
Power BI Premium already provides several additional capabilities beyond the ability to
distribute content to read-only Power BI Free users. As described in Chapter
12, Administering Power BI for an Organization, organizations have full control over their
provisioned resources and therefore, unlike provisioning on-premises hardware, can
quickly and easily adjust the amount and allocation of premium resources. For example,
with v-core pooling, an organization can choose to distribute the 32 v-cores of a P3 capacity
SKU across two P1 capacities and a single P2 capacity (8 + 8 +16 = 32). Likewise, with single-
click scale up, an organization could provision an additional 8 v-cores by purchasing a P1
SKU and then change an existing P1 capacity to a P2 capacity, which requires 16 v-cores.
The details of the hardware of each premium capacity node (CPU, RAM, and bandwidth)
and the limits imposed on using those nodes are included in the Premium capacity nodes
section.

Scaling with Premium and Analysis Services Chapter 13

[568]

The following table describes 12 capabilities of Power BI Premium that are either currently
available or have been identified by the Power BI team as a potential capability in the
future:

Power BI Premium capabilities

Some of the capabilities identified in this table enable completely new scenarios for projects
involving Power BI datasets created with Power BI Desktop. For example, up to a 10 GB
dataset can be hosted in Premium capacity currently and much larger datasets will be
supported in the future. Likewise, a dataset can be configured to refresh every 30 minutes in
premium capacity and this frequency will also increase in the future. Incremental data
refresh is expected to be delivered by mid-2018, and this will address a critical gap in the
ability to leverage a large Power BI dataset. The following section, Corporate Power BI
datasets, reviews the Single Dataset Across Workspaces (#7) limitation that may also
support this deployment option.

Scaling with Premium and Analysis Services Chapter 13

[569]

The ability to publish SQL Server Reporting Services (SSRS) reports, also referred to as
paginated reports or (.RDL reports), to the Power BI service will be especially valuable for
organizations with significant SSRS investments. Without this capability, these
organizations have needed to deploy the Power BI Report Server (or an SSRS server) as
described in Chapter 10, Deploying the Power BI Report Server. Additionally, connectivity
parity with Analysis Services will allow organizations to utilize familiar development and
management tools such as Visual Studio and SQL Server Management Studio (SSMS) to
apply life cycle management processes to Power BI datasets as they would with Analysis
Services models. Moreover, connectivity parity with Analysis Services will allow
organizations to leverage other common data visualization and BI tools such as Tableau.
For example, both Power BI and Tableau reports could be built against a Power BI dataset
provided the dataset is assigned to a workspace in premium capacity.

To support the largest Power BI deployments, a scale-out option involving read-only
replicas with load balancing and dedicated data refresh nodes is mentioned in the roadmap
section of the Power BI Premium October 2017 whitepaper. This document and other Power
BI whitepapers can be accessed at the following URL http://bit.ly/2Hu57DK.

Corporate Power BI datasets
Given the features described in the previous section, Premium capacity can be used to
support entirely new scenarios with Power BI datasets. For example, rather than migrate a
Power BI Desktop file (.PBIX) to an Analysis Services model, as described later in this
chapter, an organization could choose to provision the necessary Premium capacity and
leverage the scalability (that is, 10 GB+) and data refresh features available to content hosted
in Premium capacity.

Limitation of Corporate BI datasets – Reusability
A significant barrier to leveraging a large Power BI dataset is the link between Power BI
Live connection reports and the dataset(s) in their app workspace. For example, if an
organization wishes to create three Power BI apps targeting three separate business units, a
separate Power BI dataset currently needs to be hosted within the app workspace for each
app. Naturally, any BI/IT organization would want to avoid creating (and managing) copies
of a Power BI dataset, including its data model, queries, and measures.

http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK

Scaling with Premium and Analysis Services Chapter 13

[570]

This barrier or limitation is being worked on by the Power BI team so that, at some point in
the future, a single Power BI dataset is expected to be able to support reports hosted in
multiple workspaces. This isolation between visualizations (reports and dashboards) and
datasets would lend itself to the following solution architecture:

Power BI dataset supporting multiple app workspaces

As shown in the preceding diagram, a team's dataset designer(s) could be responsible for a
single but potentially very large and complex Power BI dataset, including many fact and
dimension tables. The dataset would be hosted in a premium capacity with v-cores and
RAM aligned to its size and incremental data refresh could be configured to only load
recent or new data. From a data visualization and distribution standpoint, report authors
would create Live connection Power BI reports based on the large dataset (AdWorks
Enterprise) and publish these reports to specific app workspaces. These reports would be
refreshed based on the refresh schedule for the source dataset and, in the case of
DirectQuery datasets, a scheduled cache refresh could be configured for the dashboards.

Although the capability suggested previously is not yet available, it's
assumed that both the dataset workspace and the visualization
workspaces (reports, dashboards) would need to be assigned to the same
Premium capacity.

Scaling with Premium and Analysis Services Chapter 13

[571]

As of February 2018, no timeline has been provided on the availability of this feature.
Therefore, even with support for incremental data refresh and very large datasets, the need
to maintain a single, consolidated data model will lead many organizations to choose
Analysis Services models for corporate BI solutions. Additional reasons for choosing
Analysis Services models over Power BI Desktop are included in the Analysis Services
section later in this chapter.

Premium capacity nodes
A premium capacity node can be thought of as a fully managed server in the Azure cloud
which runs the Power BI service. The capacity node is dedicated and isolated to the
organization that provisioned the capacity and the same user experience and functionality
is delivered as the shared (free) capacity provided by the Power BI service. Each capacity
node has a set of processing and memory resources (v-cores and RAM), bandwidth limits,
and a cost that aligns with these resources. For example, a P1 capacity node includes 8 v-
cores and 25 GB of RAM at a cost of $5,000 per month, while a P2 capacity includes 16 v-
cores and 50 GB of RAM at a cost of $10,000 per month. When app workspaces containing
Power BI content (datasets, reports, and dashboards) are assigned to premium capacity
nodes, the resources of the given capacity node are used to execute Power BI activities
associated with this content, such as query processing and data refresh operations.

Chapter 12, Administering Power BI for an Organization, referred to the v-cores (virtual
processing cores) of Premium capacity nodes but didn't provide details on other resources
(RAM and bandwidth) and their relationship to Power BI workloads. For example, if all
Power BI reports will utilize a DirectQuery dataset or a Live connection to an Analysis
Services model, then the amount of RAM provided per capacity will be much less
important than the limits on the number of connections and the max page renders at peak
times. In these deployments, the resources provisioned for the data source system (CPU
cores, clock speed, and RAM), as well as the latency and bandwidth of the connection
between the source system and the data center region of the Power BI tenant, would largely
drive query performance.

Scaling with Premium and Analysis Services Chapter 13

[572]

The following table identifies the resources associated the six EM and P Premium capacity
nodes currently available:

Premium capacity nodes

As shown in this table, as of February 2018 the largest premium capacity node includes 32
v-cores, 100 GB of RAM, and supports a max of 120 DirectQuery or Live connection queries
per second. Larger capacity nodes, such as a P4 with 64 v-cores and 200 GB of RAM, will
likely be released later in 2018 and will complement a scale out (multi-node) capacity as
identified in the Power BI Premium whitepaper for October of 2017.

As shown in the Custom application embedding section of Chapter
11, Creating Power BI Apps and Content Distribution, EM SKUs are exclusive
to embedding Power BI content in applications and do not support
viewing content in the Power BI service or Power BI mobile apps. Given
these more limited workloads, EM SKUs have significantly less resources
and cost less to provision. Premium P SKUs (P1, P2, and P3), however,
support both embedding content in applications and the usage of the
Power BI service.

Microsoft Azure resources such as Azure Analysis Services or Azure SQL Database, which
can be created within the same region as the Power BI service tenant, provide their own
user interface and tools for scaling up and down as the needs of workloads dictate.
Guidance on identifying the location of your Power BI tenant, and thus the preferred
location for Power BI data sources, is included in the Top gateway planning tasks section of
Chapter 9, Managing the On-Premises Data Gateway. The minimal distance between a Power
BI tenant and an Azure data source in the same data center region provides a natural
performance advantage over connections to on-premises sources via the On-premises data
gateway.

Scaling with Premium and Analysis Services Chapter 13

[573]

Frontend versus backend resources
It's important to understand the composition of frontend and backend resources in relation
to Power BI workloads. For example, although a P2 capacity provides 16 total v-cores, only
8 backend cores are dedicated to processing queries, refreshing datasets, and server-side
rendering of reports. Additionally, only the backend of a premium capacity node, such as
the 50 GB of RAM for a P2 capacity, is exclusive to the provisioning organization. If Power
BI is only being used to create reports and dashboards against DirectQuery or Live
connection sources, then these backend resources are less important and the connection
limit (60 per second for a P2 capacity) would be the most relevant resource to understand
and monitor.

The frontend cores (8 for a P2) are shared with other organizations in a pool of servers
responsible for the web service, the management of reports and dashboards,
uploads/downloads, and the user experience in navigating the Power BI service generally.
Organizations that utilize Power BI datasets in the default import (in-memory) mode will
want to ensure sufficient RAM and backend cores are available to support both the data
refresh process and the query workloads.

The following diagram illustrates the distribution of frontend and backend resources for a
P2 capacity node:

Power BI Premium Capacity node (P2)

As shown in this diagram, the backend of a capacity node can be thought of as a dedicated
server or virtual machine with a fixed amount of CPU and RAM. It's the backend server
which is responsible for the most resource-intensive or heavy lifting operations and thus
should always be considered in relation to the resource needs of import mode datasets
assigned to the given capacity.

Scaling with Premium and Analysis Services Chapter 13

[574]

In the near future, organizations will be able to fully utilize the memory included in their
capacity to host even larger Power BI datasets (100 GB+), containing hundreds of millions or
even billions of rows. To support these scenarios, BI teams will want to provision a capacity
node with enough cores and RAM to support the data refresh operation and user queries
against this dataset.

A factor of 2.5X is generally used to size the RAM requirements of in-
memory Power BI datasets and Analysis Services Tabular models. For
example, a 10 GB Power BI dataset (.PBIX), would require 25 GB of RAM
(10 * 2.5 = 25). This estimate is based on 10 GB to store the dataset in-
memory, another 10 GB for a copy of the dataset which is created during
full refresh/processing operations, and an extra 5 GB to support temporary
memory structures that can be required to resolve user queries.

Note that this example is exclusive to import mode datasets hosted in the Power BI
premium capacity (the backend server). A separate architecture and considerations for
capacity nodes apply when query requests are routed to Analysis Services models via Live
connection or a DirectQuery data source such as Teradata or SAP HANA. From a premium
capacity perspective, in these scenarios, the BI team would need to determine via load
testing and the usage metrics described in the Monitor premium capacities section of Chapter
12, Administering Power BI for an Organization, whether the query throughput limit (60 per
second for P2) to these sources will be sufficient. If this throughput level is sufficient yet
performance is still unacceptable, several other components of the overall solution could
represent the performance bottleneck and could be evaluated separately.

These other components or factors impacting performance include the design of the data
model and the efficiency or complexity of DAX measures, the design of the data source and
its available resources, the design of Power BI reports (for example, quantity and type of
visuals), the resources and performance of the gateway server(s) if applicable, the network
connection between the Power BI service and the data source, and the level of user
interactivity with reports. Techniques and practices to optimize data models and the
visualization layer in Power BI are provided in the Data model optimizations and Report and
visualization optimizations sections later in this chapter, respectively.

Scaling with Premium and Analysis Services Chapter 13

[575]

Power BI Premium capacity allocation
Although it's possible to broadly assign all app workspaces (and thus all content) of an
organization to a single premium capacity, most organizations will want to efficiently
allocate and manage these resources. For example, certain Power BI reports and dashboards
that are utilized by executives or which contribute to important business processes will be
identified and prioritized for premium capacity. In an initial deployment of a premium
capacity, a BI/IT team may exclusively assign the workspaces associated with content
considered mission critical to this capacity. This capacity may remain isolated to the specific
workload(s) or, based on testing and monitoring, the BI team may determine that sufficient
resources are available to support additional workspaces and their associated resource
requirements.

Similar to provisioning a premium capacity exclusive to high-value content, a premium
capacity may be provisioned due to the unique requirements of a particular solution. As
one example, a new Power BI dataset may be developed that represents a data source or
business process not currently supported in the data warehouse. In this scenario, a large
import mode Power BI dataset, perhaps initially developed by the business team, would
serve as the source for reports and dashboards which require distribution to many Power BI
Free users or even the entire organization. Given these characteristics, a premium capacity
node could be provisioned and dedicated to the app workspace hosting this dataset and its
visualizations so that no other solution could impact its performance.

The following section describes a capacity planning method.

Corporate and Self-Service BI capacity
As described in the Data governance for Power BI section of Chapter 12, Administering Power
BI for an Organization, certain projects will likely be wholly owned by the BI/IT team
including the report and visualization layer. Other projects, however, may be owned by
business units or teams but still require or benefit from IT-provided resources such as the
On-premises data gateway and premium capacity. The BI department can manage a
continuous life cycle over both project types (Corporate BI, Self-Service BI) by validating
use cases or requirements for premium capacity. Additionally, the migration of Power BI
content across distinct premium capacities could become part of a standard migration
process from a self-service solution to a corporate BI owned solution.

Scaling with Premium and Analysis Services Chapter 13

[576]

The provisioning and allocation of Power BI Premium capacity can further reflect an
organization's support for both Corporate and Self-Service BI solutions. Typically the Power
BI content created and managed by IT is considered mission critical to the organization or is
accessed by a high volume of users. Self-service BI solutions, however, tend to utilize
smaller datasets and usually need to be accessible to a smaller group of users.

The following example allocation includes two premium capacities, a P3, and a P2,
dedicated to Corporate BI Capacity and Self-Service BI Capacity content, respectively:

Power BI Premium Capacity allocation: Corporate and Self-Service BI

As shown in the diagram the sales, and a finance app workspace have been assigned to a P3
capacity dedicated to corporate BI solutions. As described in the Premium capacity nodes
section earlier, a P3 capacity is currently the largest premium capacity available with 32 v-
cores. These additional resources and limits, such as a max of 120 DirectQuery or Live
connection queries per second, may be required to support organization-wide usage and an
optimal user experience.

The Human Resources and Purchasing workspaces, however, have been assigned to a P2
Premium capacity dedicated to self-service BI projects. For example, certain Power BI Pro
users in these departments have developed datasets and reports that have proven to be
valuable to several stakeholders. The assignment of these workspaces to premium capacity
enables these users to make this content accessible to a wider audience, such as the 20
Power BI Free users in the Purchasing department.

Scaling with Premium and Analysis Services Chapter 13

[577]

Remember that not all app workspaces will need to consume premium
capacity resources. A team of Power BI Pro users may collaborate within
an app workspace and still be effective with the content hosted in the
shared capacity. Premium capacity is only needed in scenarios requiring
broad distribution to read-only Power BI Free users or when the
additional capabilities (for example, large datasets) identified in the Power
BI Premium capabilities section earlier in this chapter are required.

In the event that one of the self-service solutions needs to be migrated to the corporate BI
team, the BI team could re-assign the workspace to the existing P3 capacity. Alternatively,
to avoid consuming any additional resources of the existing P3 capacity and potentially
impacting these workloads, a new corporate BI capacity could be created for the workspace.

BI teams will consistently need to evaluate the trade-offs involved with isolating
projects/solutions to specific premium capacities. Assigning a single workspace or multiple
related workspaces to a dedicated capacity ensures that no other project or activity will
impact performance. However, many dedicated premium capacities may become onerous
to manage and could be an inefficient use of resources if the Power BI workload doesn't
fully utilize the resources. Ultimately, teams will need to monitor capacity resource
utilization and either re-allocate and re-assign capacities and workspaces, respectively, or
provision additional premium resources (v-cores) and scale up existing capacities.

Power BI Premium resource utilization
Given the cost of premium capacity, BI teams will want to follow practices to ensure that
these resources are actually required and not being used inefficiently. For example, with
large import mode datasets, a simple design change such as the removal of unused columns
from a fact table can significantly reduce the size of the dataset and thus the amount of
memory needed. By following a series of recommended practices in terms of both modeling
and report design, less premium capacity resources will be required to deliver the same
query performance and scale.

With small-scale self-service BI datasets and reports, performance tuning
and optimization is usually not necessary. Nonetheless, as these models
and reports can later take on greater scale and importance, a basic review
of the solution can be applied before the content is assigned to premium
capacity. For example, the BI/IT team can identify a few small changes to
be implemented prior to assigning the pro user's workspace to premium
capacity.

Scaling with Premium and Analysis Services Chapter 13

[578]

The following two sections identify several of the top data modeling and report design
practices to efficiently utilize hardware resources.

Data model optimizations
For many data models, particularly those that were developed as part of pilot projects or by
business users, a number of modifications can be implemented to reduce resource
requirements or improve query performance. Therefore, prior to concluding that a certain
amount of Premium capacity (or Analysis Services resources) is required, data models can
be evaluated against a number of standard design practices and optimization techniques
such as the following:

Avoid duplicate or near-duplicate data models:
Design and maintain a consolidated, standardized data model of
fact and dimension tables.

Remove tables and columns that aren't needed by the model:
For import mode models, columns with the unique values
(cardinality) will be the most expensive to store and scan at query
time.
The Fact table columns section of Chapter 3, Designing Import and
DirectQuery Data Models provides examples of avoiding derived
columns that, for import mode models, can be efficiently
implemented via DAX measures.

Reduce the precision and cardinality of columns when possible:
If four digits to the right of the decimal place are sufficient
precision, revise a column's data type from a Decimal number to a
Fixed decimal number (19, 4):

Apply rounding if even less precision is required.
Split columns containing multiple values such as a datetime
column into separate columns (date and time).

Limit or avoid high cardinality relationships, such as dimension tables with over
1.5 million rows:

Consider splitting very large dimension tables into two tables and
defining relationships between these tables and the fact table. The
less granular table (such as Product Subcategory grain) could
support most reports while the more granular table (such as
Product) could be used only when this granularity is required.

Scaling with Premium and Analysis Services Chapter 13

[579]

Only use iterating DAX functions such as SUMX(), RANKX(), and FILTER()
when either the table iterated over is small or when the row expression for these
functions can be executed by the storage engine:

Simple expressions such as the multiplication of two columns from
the table being iterated over can be executed by the storage engine.

Use whole number (integer) data types instead of text data types whenever
possible.
If the data model uses a DirectQuery data source, optimize this source such as
with indexes or columnar technologies available such as the Clustered
Columnstore Index for SQL Server:

Additionally, ensure that the source database supports referential
integrity and that the DirectQuery model assumes referential
integrity in its defined relationships. This will result in inner join
queries to the source.

The Fact-to-dimension relationships section of
Chapter 3, Designing Import and DirectQuery Data
Models, contains additional details.

Avoid or limit DISTINCTCOUNT() measures against high cardinality columns:
For example, create the DISTINCTCOUNT() measure expression
against the natural key or business key column identifying the
dimension member (such as Customer ABC), rather than the
columns used in the fact-to-dimension relationship. With slowly
changing dimension processes, the relationship columns could
store many more unique values per dimension member and thus
reduce performance.

Avoid the use of calculated DAX columns on fact tables:
Create these columns in the source system or in the queries used to
load the model to allow for better data compression.
For DirectQuery models, avoid the use of DAX calculated columns
for all tables.

Scaling with Premium and Analysis Services Chapter 13

[580]

Report and visualization optimizations
A well-designed analytical model with ample resources can still struggle to produce
adequate performance due to an inefficient visualization layer. The following list of
techniques can be applied to Power BI reports and dashboards to reduce the query
workload and avoid slower resource-intensive queries:

Create dashboards on top of reports to leverage cached query results
representing the latest data refresh:

Unlike dashboards, report queries are sent and executed on the fly
when Power BI reports are loaded.
Multiple dashboards can be linked together as described in
Chapter 7, Designing Power BI Dashboards and Architectures.
If the dataset uses a DirectQuery or Live connection, take
advantage of scheduled cache refresh as described in the Dashboard
cache refresh section of Chapter 9, Managing the On-Premises Data
Gateway.

Avoid report visuals that return large amounts of data such as tables with
thousands of rows and many columns:

Report visuals that require scrolling or which represent a data
extract format should be filtered and summarized.
Report visuals that return more data points than necessary to
address their business question can be modified to a lower
granularity. For example, a dense scatter chart of individual
products could be modified to use the less granular product
subcategories column.

Ensure that filters are being applied to reports so that only the required data is
returned:

Apply report level filters to only return the time periods needed
(such as current year and last year).
Use visual level filters such as a top N filter as described in the
Visual-level filtering section of Chapter 5, Creating and Formatting
Power BI Reports.

Limit the volume of visuals used on a given report page:
Optionally remove the interactions between visuals (cross-
highlighting) to further reduce report queries.

Scaling with Premium and Analysis Services Chapter 13

[581]

Understand which DAX measures are less performant and only use these
measures when required:

For example, only use expensive measures in card visuals or within
highly filtered visuals exposing only a few distinct numbers.

Premium capacity estimations
The volume of factors involved in premium capacity utilization makes it difficult to forecast
the amount of premium capacity (and thus cost) required. This complexity is particularly
acute for large deployments with diverse use cases to support. Additionally, for
organizations relatively new to Power BI, the level and growth of user adoption, as well as
the requirements for future projects, can be unclear. Nonetheless, to provide an initial
estimate of the cost of deploying Power BI with premium capacities, Microsoft has
developed the Power BI Premium calculator. This online forecasting tool provides free
estimates of the combined monthly cost of Power BI Pro licenses and Power BI Premium
capacity.

In the following screenshot of the Power BI Premium calculator, the user has specified 2,500
total Power BI users and used the two slider bars to distribute those users among the
following profiles—Pro Users, Frequent Users, and Occasional Users:

Power BI Premium calculator

Scaling with Premium and Analysis Services Chapter 13

[582]

In the example, 170 Pro Users results in 170 Pro licenses costing a total of $1,700 per month
(170 * $10/mo). More importantly, the calculator estimates that two P1 nodes (8 v-cores) of
Premium capacity will be required for the organization at a cost of $9,990 per month (2 *
$4,995/mo). Therefore, an organization could use $11,690 per month as an initial and high-
level estimate of their Power BI deployment. The Power BI Premium calculator is accessible
at the following URL http:/ /bit. ly/ 2eKil1I.

Thankfully the P1 month-to-month SKU eliminates the need for organizations to make large
financial commitments in advance of actual usage. The 8 v-cores provided by a Premium P1
capacity (month-to-month) can be acquired in the Office 365 admin center as shown in the
following screenshot:

Premium Capacity: Month to month

In a fiscally conservative approach, an organization could create a single P1 capacity and
test this capacity against different workloads until both the usage metrics described in the
previous chapter and actual load test experiences suggest additional capacity is needed.
Load testing of premium capacity typically consists of multiple users simulating normal
user behaviors in the Power BI service such as clicking a slicer, pausing to view the results
of a selection, and then making another filter selection. Additional options and guidance for
load testing premium capacity are included in the Power BI Premium Capacity Planning and
Deployment Whitepaper available at the following URL http:/ /bit. ly/2Hu57DK.

http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2eKil1I
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK
http://bit.ly/2Hu57DK

Scaling with Premium and Analysis Services Chapter 13

[583]

Once it's determined that additional capacity is needed, an organization can simply
provision another instance of a P1 (month-to-month) thus obtaining 16 total v-cores. In the
following image from the Purchase services page of the Office 365 admin center, the
quantity of an existing P1 (month-to-month) SKU can be revised:

Purchasing additional premium capacity

Selecting the ellipsis (...) at the bottom of the Premium SKU exposes the Change license
quantity option. Once the number of premium instances has been increased and submitted,
the additional v-cores will be available in the Capacity settings page of the Power BI admin
portal. Creating and managing premium capacities, including the assignment of app
workspaces to premium capacities, was described in Chapter 12, Administering Power BI for
an Organization.

With both v-core pooling and single-click scale up capabilities available in the Power BI
admin portal it's very easy to reallocate premium capacity. In this example with 16 total v-
cores purchased, an existing P1 capacity could be scaled up to a P2 capacity. Alternatively, a
new and isolated P1 capacity could be created thus leaving two P1 capacities to handle the
distinct workloads generated by different app workspaces.

The three-step process of purchasing additional v-cores, scaling up existing capacities or
configuring new capacities, and testing workloads against premium capacities by assigning
workspaces to those capacities will be repeated throughout the deployment life cycle. In the
event that usage or resource needs decline, the monthly price for a P1 month-to-month
instance can be avoided thus reducing the amount of v-cores available.

Scaling with Premium and Analysis Services Chapter 13

[584]

The flexibility of premium capacity and other cloud services such as Azure Analysis
Services naturally aligns with the frequently changing needs of BI projects. The following
sections describe both AAS and SSAS as a primary tool to complement Power BI Premium
and to support large-scale enterprise deployments of Power BI.

Analysis Services
Analysis Services has been Microsoft's enterprise Online Analytical Processing (OLAP) BI
engine for many years. The Analysis Services Tabular model including the DAX
programming language, in-memory and columnar storage, and columnar compression was
first introduced with Microsoft's entry to self-service business intelligence with Power Pivot
for Excel 2010. Analysis Services Tabular, which now includes the Power Query M
programming language and the optional DirectQuery storage mode described earlier in this
book, is the default installation mode of SSAS 2017. Additionally, the Analysis Services
Tabular engine is built into Excel, Power BI, and the Azure Analysis Services PaaS offering.

The data model built into Excel workbooks is limited to in-memory
storage mode and does not support bi-directional relationships.
Additionally, Excel workbooks containing data models are limited to 250
MB and cannot be used as sources for Live connection Power BI reports or
via Analyze in Excel like published Power BI datasets. For these reasons
and many other features exclusive to Power BI Desktop and Power BI
datasets, Power BI Desktop is recommended over Excel for creating data
models in almost all scenarios.

SSAS also continues to support multidimensional mode instances, which consist of row and
disk-based storage, and Multidimensional Expressions (MDX) for business logic. Despite
structural advantages of tabular mode, multidimensional mode remains popular as it was
available long before tabular mode and since it included many additional features relative
to the initial releases of tabular mode. Power BI reports can leverage SSAS
multidimensional models as Live connection data sources just like SSAS Tabular models
and Microsoft has been clear that multidimensional mode will not be deprecated. However,
multidimensional mode instances are currently not available in Azure Analysis Services
and many new features and capabilities introduced in the past two years have been
exclusive to tabular models.

Scaling with Premium and Analysis Services Chapter 13

[585]

Analysis Services Tabular, either via SSAS or Azure Analysis Services (Azure AS)
instances, is recommended over multidimensional mode for new enterprise BI models.
Similar to Power BI Desktop over Excel for self-service modeling and reporting, this
recommendation is better aligned with Microsoft's BI roadmap and thus entails access to
new features and capabilities. Additionally, given the common underlying engine between
Power BI and Analysis Services Tabular, experience with Analysis Services Tabular
positions organizations to better manage the relationship between Self-Service BI and
Corporate BI.

Analysis Services Models versus Power BI
Desktop
A local instance of Analysis Services Tabular is used by Power BI Desktop when creating
both import and DirectQuery data models. When these models are published to the Power
BI Service as Power BI Desktop (.PBIX) files, the Power BI service extracts the Analysis
Services database from the Power BI Desktop file and provides an Analysis Services server
instance for running the database in Power BI. However, despite this very deep integration
with Analysis Services, Power BI Desktop is primarily targeted at business analysts and
self-service BI, while Analysis Services is intended for business intelligence professionals
and enterprise BI solutions.

Given these different target personas and use cases, many features and capabilities of
Analysis Services Tabular models are not available to Power BI Desktop. For example, BI/IT
organizations generally utilize robust version control systems such as Visual Studio Team
Services (VSTS) and multiple tools and programmatic interfaces to manage and administer
their solutions. Additionally, there are modeling features of Analysis Services including
Perspectives, Display Folders, and KPIs that are currently not accessible to dataset
designers of Power BI datasets.

Scaling with Premium and Analysis Services Chapter 13

[586]

The following table compares Power BI Desktop models to Analysis Services (Tabular)
models across 19 features:

Power BI Desktop versus Analysis Services feature matrix

Scaling with Premium and Analysis Services Chapter 13

[587]

As shown in the table, Analysis Services Tabular models, whether deployed to SSAS or
Azure AS instances, are able to provide both maximum modeling functionality to aid the
user experience as well as rich administrative tools and interfaces. It's outside the scope of
this chapter to describe each feature, but the following three sections summarize the
primary incremental benefits provided by Analysis Services over Power BI datasets built
with Power BI Desktop.

Per the Power BI Premium capabilities section earlier in this chapter (see
Capability #11), the same tools used to interface with Analysis Services
servers will soon (2018) be available for app workspaces assigned to a
Power BI premium capacity. For example, a BI team could use Visual
Studio and SQL Server Management Studio (SSMS) for development
and management of the Power BI dataset, respectively. Likewise, popular
BI and data visualization tools such as Tableau could be used to connect to
Power BI datasets stored in premium capacity.

In addition to the features identified in the table and described in the following sections,
Analysis Services models avoid the dataset per app workspace limitation described in the
Corporate Power BI datasets section earlier. A single Analysis Services model and its
refresh process can be leveraged across multiple app workspaces and their corresponding
Power BI apps.

Scale
Partitions are the key to scaling in-memory SSAS Tabular models as only certain partitions,
such as the partitions representing the last two months of data, need to be included in a
recurring refresh process.

Scaling with Premium and Analysis Services Chapter 13

[588]

These partitions can be defined in SQL Server Data Tools (SSDT) as shown in the
following screenshot, and many patterns and practices have been documented for
automating the management and refresh of partitions:

Partition Manager in SQL Server Data Tools (SSDT)

In the preceding screenshot, the Reseller Sales table is comprised of multiple yearly
partitions (that is, ResellerSales2018). In most large models, the partitions would be much
smaller (months, weeks) and logic would be built into a refresh process for dynamically
determining which partitions to process and which (if any) to add or delete. Incremental
data refresh for Power BI datasets hosted in Power BI Premium capacities is expected to
offer the same essential as partitions in terms of minimizing refresh times and resources.
However, it's unlikely that incremental data refresh will offer the same level of complete
control.

Scaling with Premium and Analysis Services Chapter 13

[589]

Scaling out query workloads across multiple Analysis Services servers and implementing
load balancing is also a very important feature of enterprise deployments. Azure Analysis
Services greatly simplifies this setup and the planning involved by providing the following
interface in the Azure portal:

Scale out via Replicas in Azure Analysis Services

As shown in the preceding screenshot, up to seven query replicas of an Azure Analysis
Services server can be created. If the processing server responsible for the data refresh
process is not separated from the querying pool, a total of eight analysis services servers
would be available in the Azure cloud to resolve queries from Power BI and other tools
such as Excel and Tableau with load balancing provided automatically by Azure Analysis
Services.

In addition to the Azure portal interface, the Analysis Services REST API
can be used to configure scale-out.

Scale out architectures are certainly also supported with SSAS Tabular in on-premises
environments, but require significantly more planning and coordination to provision and
configure the infrastructure.

Usability
Large enterprise models support many users from across the organization and typically
each user only requires access to a section of the model. For example, a sales team member
may only need to access a sales fact table and several dimension tables and thus shouldn't
have to navigate through many other irrelevant tables that support other business teams.
Perspectives in Analysis Services allow the modeler to map objects of the model (tables,
columns, and measures) to a specific perspective such that users connecting to the model
via the perspective only see those objects.

Scaling with Premium and Analysis Services Chapter 13

[590]

Display folders including hierarchies of folders (that is, subfolders) can be defined for
Analysis Services models to simplify user access to measures and columns. In the following
example from a Power BI Live connection report to an Analysis Services model, the
measures associated with the Internet Sales and Reseller Sales fact tables have been
grouped into display folders for each fact table:

Analysis Services Display Folders

Given the high volume of date intelligence measures, it's often best to isolate these
measures so that the user can easily access the most common and basic measures such as
total sales or the count of the products sold.

Another usability feature of Analysis Services not supported by Power BI currently includes
support for multiple languages:

Multi-language support in Analysis Services

Scaling with Premium and Analysis Services Chapter 13

[591]

In Analysis Services projects within Visual Studio, the model author can export an empty
JSON that contains placeholders for the translations, add string translations to the file, and
then import the JSON file back to the model for access by users.

Development and management tools
Power BI Desktop is much closer to a Microsoft Office application than an integrated
development environment (IDE) tool such as Visual Studio, which offers granular control
over the data model. With Analysis Services, business intelligence developers and the teams
responsible for Analysis Services models can take advantage of the rich development
experience built into SSDT for Visual Studio, as well as familiar management capabilities
available in SQL Server Management Studio (SSMS). Additionally, these same tools can
be used for both AAS and SSAS models.

For example, the following screenshot from an Analysis Services project in Visual Studio
2017 exposes the DAX Editor window (left) and the Tabular Model Explorer interface
(right):

DAX Editor and Tabular Model Explorer in Visual Studio

With the Tabular Model Explorer, the model developer has a central location to find, view,
and optionally edit the objects of the model. This interface, along with the DAX Editor
window, is very helpful when working with large models containing many tables and
complex DAX expressions.

Scaling with Premium and Analysis Services Chapter 13

[592]

In terms of managing deployed models, SSMS provides a familiar object explorer interface
and enhanced support for DAX queries, as shown in the following screenshot:

SQL Server Management Studio (SSMS)

In the preceding screenshot, the same data model (AdWorksImport) from Visual Studio is
accessed from SSMS and an ad hoc DAX query is authored in the query window. In
addition to the new .MSDAX files for DAX queries, Tabular Model Scripting Language
(TMSL) commands can be scripted and executed in SSMS.

Azure Analysis Services versus SSAS
For many organizations, the Power BI service is only a part of an existing and broader
cloud-based data and analytics environment. For example, the organization may already be
using the Azure Data Lake Store (ADLS), Azure SQL Database, or Azure SQL Data
Warehouse cloud services to store and process data for reporting analysis. In other
organizations, the adoption of the Power BI service as a primary BI and collaboration
platform may be part of a larger migration from an on-premises BI environment to the
cloud. As one example of this migration, existing extract-transform-load (ETL) packages
executed via on-premises SQL Server Integration Services (SSIS) servers could be moved
(lift and shift) to virtual machines (VMs) in Azure and managed through the Azure Data
Factory cloud service.

Scaling with Premium and Analysis Services Chapter 13

[593]

Even if neither of these two scenarios applies in the short term, an organization may still
choose Azure Analysis Services over SSAS to reap the cost, performance, and agility
benefits (scale-up/down) of this PaaS offering. With an Azure Analysis Services instance
storing the data model(s) queried from Power BI within the same data region as the Power
BI service tenant, the report and dashboard queries generated by Power BI avoid the latency
incurred by accessing an on-premises SSAS instance via the On-premises data gateway. If
data source(s) of the Analysis Services model remain on-premises, the same On-premises
data gateway described in Chapter 9, Managing the On-Premises Data Gateway, can be used
to support a recurring data refresh process of Azure Analysis Services models from on-
premises sources.

Perhaps even more importantly than query performance, Azure Analysis Services
dramatically reduces the following challenges with deploying SSAS at scale in enterprises:

Planning server resource requirements:1.
It's difficult to accurately predict how much CPU and RAM will be
needed by an Analysis Services server, even for the next 1-2 years.
Additionally, the optimal hardware for Analysis Services, such as CPU
clock speed and NUMA Awareness, is sometimes not fully
communicated or delivered when provisioning these servers.
With Azure AS, optimally tuned Analysis Services resources can be
quickly and easily aligned to changing needs of the workload by
switching pricing tiers.
BI teams can even schedule Azure AS resources to be scaled up at
certain times to support high query volumes (such as every Monday
morning) and then scaled down or even paused at times of low query
volume such as nights and weekends.

Installation and server maintenance:2.
In an on-premises environment, SSAS has to be installed on the
provisioned server and the server itself has to be managed and
patched.
As a PaaS offering, Azure AS servers are fully installed once deployed
and the underlying servers are maintained by Microsoft to support 99.9
percent availability.

Scaling with Premium and Analysis Services Chapter 13

[594]

Implementing scale-out: 3.
Provisioning the read-only query servers, the processing servers, and
configuring load balancing can take weeks or longer in on-premises
environments.
As depicted in the Scale section earlier, Azure Analysis Services
provides a graphical interface to easily configure a pool of read-only
query replicas for distributing or balancing query requests.

These considerations specific to Analysis Services, as well as the broader advantages of a
cloud architecture, serve as powerful motivation to choose Azure Analysis Services over
SQL Server Analysis Services. For example, new features and enhancements to Azure
Analysis Services are released more frequently than versions of SSAS, and some of these
new features such as the Azure Analysis Services web designer are exclusive to the cloud
service. Additionally, Azure AS instances are able to benefit from new capabilities and
ongoing investments in other Azure services such as Azure Automation and Azure
Functions. This is similar to the advantage of the Power BI service over the Power BI Report
Server as described in Chapter 10, Deploying the Power BI Report Server.

SSAS to Azure AS Migration
Organizations with existing SSAS Tabular models may choose to migrate to Azure Analysis
Services to support their Power BI deployment and for other reasons identified in previous
sections. This can be accomplished by deploying an existing on-premises model (.bim file)
to an Azure Analysis Services instance from SSDT in Visual Studio.

In the following screenshot, the deployment server of an existing SSAS model is changed to
an Azure Analysis Services server:

Analysis Services Tabular project: Project properties page

Scaling with Premium and Analysis Services Chapter 13

[595]

This page can be accessed by right-clicking the Analysis Services project name in SSDT and
selecting Configuration Properties. Via the Do Not Process from the Processing Option
property, only the metadata of the model will be deployed to the Azure Analysis Services
server. Additionally, note that the server name to ensure should be the management server
name provided by Azure Analysis Services in the Azure portal as described in the
following section.

With a successful deployment of the model's metadata from SSDT, the user can manage and
process the Azure Analysis Services model in SSMS. In the following screenshot, the same
AdWorksImport model is now deployed to both an on-premises server (ATLAS) and the
Azure Analysis Services server:

SSAS and Azure Analysis Services instances in SSMS

Scaling with Premium and Analysis Services Chapter 13

[596]

As shown in the preceding screenshot, the AdWorksImport database is now deployed to
both an on-premises instance of SQL Server Analysis Services (Tabular) and an Azure
Analysis Services instance. The same functionality SSAS developers and managers are
familiar with in SSMS, such as viewing and processing partitions and tables of models, is
still fully supported with Azure Analysis Services.

Provision Azure Analysis Services
Azure Analysis Services can be found within the Data and Analytics tab in the Azure
Marketplace. Clicking the Analysis Services icon presents a configuration blade to define
the new resource including its location (data center region) and pricing tier.

In the following screenshot, a new Azure AS instance (Frontline) is created in the North
Central US region and for the S0 pricing tier:

Provision Azure Analysis Services Instance

Scaling with Premium and Analysis Services Chapter 13

[597]

The view full pricing details link has been accessed in the preceding screenshot to expose
additional SKUs currently supported. As of this writing, the largest Azure AS instance is an
S9 with 640 Query Processing Units (QPUs) and 400 GB of memory. A single virtual core is
currently approximately equal to 25 QPUs and thus an S9 server instance can be estimated
at 25 to 26 virtual cores (640 / 25 = 25.6). The full list of SKUs, including the Basic tier (B1,
B2) and additional details on pricing, is available at the Analysis Services Pricing page
http://bit.ly/2ooOKQI.

The location of the Azure Analysis Services instance should match the
location of the Power BI service tenant. The location of the Power BI
Service tenant can be found via the About Power BI menu item under the
question mark icon in the Power BI Service as illustrated in the Identify
where the gateway should be installed section of Chapter 9, Managing the On-
Premises Data Gateway.

Once all required input boxes have been completed, clicking create starts the deployment
process, which typically requires less than a minute. By default, the deployed Azure AS
resource will be running but can be paused to avoid incurring any further charges, as
shown in the following screenshot from the Overview page:

Deployed and running Azure Analysis Services instance

As shown in the preceding screenshot, both a Server name and a Management Server
Name are provided on the Overview tab. The Server name is what should be used by client
applications such as Power BI Desktop and Excel. The Management Server Name, which
includes an :rw qualifier, should be used in SSMS, SSDT, and other operational or
administrative tools such as PowerShell.

http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI
http://bit.ly/2ooOKQI

Scaling with Premium and Analysis Services Chapter 13

[598]

A server name alias can be created to provide a more friendly server name
when creating reports. The alias created is specified as an endpoint using
the link:// format and the alias endpoint returns the real server name in
order to connect to the server. Details on created Azure Analysis Services
server aliases are available at the following URL http:/ /bit. ly/2EN2LC3.

In addition to the Azure AS resource itself, if a data model on the Azure AS server needs to
retrieve data from an on-premises source, it will be necessary to create an On-premises data
gateway resource in the Azure portal as well. The Azure Analysis Services section of
Chapter 9, Managing the On-Premises Data Gateway, includes details on creating and
configuring this resource.

Migration of Power BI Desktop to Analysis
Services
The Azure Analysis Services web designer, currently in preview, supports the ability to
import a data model contained within a Power BI Desktop file. The imported or migrated
model can then take advantage of the resources available to the Azure Analysis Services
server and can be accessed from client tools such as Power BI Desktop. Additionally, Azure
Analysis Services provides a Visual Studio project file and a Model.bim file for the
migrated model that a corporate BI team can use in SSDT for Visual Studio.

The following process migrates the model within a Power BI Desktop file to an Azure
Analysis Server and downloads the Visual Studio project file for the migrated model:

Open the Web designer from the Overview page of the Azure Analysis Services1.
resource in the Azure portal
On the Models form, click Add and then provide a name for the new model in2.
the New model form
Select the Power BI Desktop File source icon at the bottom and choose the file on3.
the Import menu

http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3
http://bit.ly/2EN2LC3

Scaling with Premium and Analysis Services Chapter 13

[599]

Click Import to begin the migration process4.

The following screenshot represents these four steps from the Azure Analysis
Services web designer:

Create an Analysis Services model from a Power BI Desktop File

In this example, a Power BI Desktop file (AdWorks Enterprise.pbix) that
contains an import mode model based on two on-premises sources (SQL
Server and Excel) is imported via the Azure Analysis Services web designer.

Scaling with Premium and Analysis Services Chapter 13

[600]

Once the import is complete, the Field list from the model will be exposed on
the right and the imported model will be accessible from client tools like any
other Azure Analysis Services model. For example, refreshing the Azure AS
server in SQL Server Management Studio will expose the new database
(AdWorks Enterprise). Likewise, the Azure Analysis Services database
connection in Power BI Desktop (Get Data | Azure) can be used to connect to
the migrated model, as shown in the following screenshot:

Migrated Model accessed from Azure as server in Power BI Desktop

Just like the SQL Server Analysis Services database connection (Get Data |
Database), the only required field is the name of the server which is provided
in the Azure portal as described in the Provision Azure Analysis Services
section earlier.

From the Overview page of the Azure Analysis Services resource, select the5.
Open in Visual Studio project option from the context menu on the far right, as
shown in the following screenshot:

Context menu in Azure Portal for a model

Scaling with Premium and Analysis Services Chapter 13

[601]

Save the zip file provided by Azure Analysis Services to a secure local network6.
location.
Extract the files from the zip file to expose the Analysis Services project and .bim7.
file, as shown in the following screenshot:

Folder contents downloaded from Azure Analysis Services

In Visual Studio, open a project/solution (File | Open | Project/Solution) and8.
navigate to the downloaded project file (.smproj). Select the project file and click
Open.
Double-click the Model.bim file in the Solution Explorer window to expose the9.
metadata of the migrated model.

All of the objects of the data model built into the Power BI Desktop file including Data
Sources, Queries, and Measures are accessible in SSDT just like standard Analysis Services
projects, as shown in the following screenshot:

Migrated model opened as Analysis Services Project

Scaling with Premium and Analysis Services Chapter 13

[602]

The preceding screenshot from Diagram view in SQL Server Data Tools exposes the two
on-premises sources of the imported PBIX file via the Tabular Model Explorer window. By
default, the deployment server of the Analysis Services project in SSDT is set to the Azure
Analysis Services server, but this can be revised as was described in the SSAS to Azure AS
Migration section earlier.

Since the ability to import a Power BI Desktop file directly in SSDT is not
yet available, BI teams with on-premises SSAS environments could
temporarily provision an Azure Analysis Services server to support
migrations. Once the project file is downloaded from Azure, the Azure AS
server could be paused or deleted and the deployment server property in
the project could be revised to an SSAS server.

As an alternative to a new solution with a single project, an existing solution with an
existing Analysis Services project could be opened and the new project from the migration
could be added to this solution. This can be accomplished by right-clicking the existing
solution's name in the Solution Explorer window and selecting the Existing project from
the Add menu (Add | Existing project).

This approach allows the corporate BI developer to view and compare both models and
optionally implement incremental changes, such as new columns or measures that were
exclusive to the Power BI Desktop file.

The following screenshot from a solution in Visual Studio includes both the migrated model
(via the project file) and an existing Analysis Services model (AdWorks Import):

Scaling with Premium and Analysis Services Chapter 13

[603]

Tabular Model Explorer

The ability to quickly migrate Power BI datasets to Analysis Services models complements
the flexibility and scale of Power BI Premium capacity in allowing organizations to manage
and deploy Power BI on their terms.

Scaling with Premium and Analysis Services Chapter 13

[604]

Summary
This chapter reviewed Power BI Premium and Analysis Services as the primary means to
deploy Power BI at scale and with enterprise BI tools and controls. The current and future
features of Power BI Premium were described, as well as the factors to account for
inefficiently provisioning and allocating premium capacity. Additionally, Analysis Services
was contrasted with Power BI Desktop-based datasets to expose the features and benefits
exclusive to Microsoft's enterprise BI modeling tool. Moreover, details were provided in
comparing Azure Analysis Services with SSAS and in migrating a Power BI Desktop model
to Analysis Services.

Power BI Premium and Analysis Services further Microsoft's goal of providing
organizations with the flexibility to deploy Power BI on their terms. Organizations can
quickly scale up a self-service solution to support many users and they can also migrate
self-service content to IT-owned corporate BI solutions. The common modeling engine
between Power BI and Analysis Services, as well as the elastic nature of cloud resources,
serves to both reduce the friction between self-service and corporate BI, and reduce the time
and costs associated with delivering BI solutions.

Index

A
Active Directory (AD) 476, 523
Analysis Services models
 Azure Analysis Services 439
 Live connection 438
Analysis Services
 about 584
 development and management tools 591
 Power BI Desktop, migration 598, 601
 Provision Azure Analysis Services 596
 scale 587, 589
 SSAS, migrating 594
 usability 589
 versus Power BI Desktop 585
 versus SSAS 592
Analytics pane
 about 296
 forecast line 299
 Trend Line 297, 299
Analyze in Excel 515, 517
animation 321
application lifecycle management (ALM) 386
application workspaces
 about 367
 admins 369
 members 370, 372
 My Workspace 373
 rights 369
 roles 369
ArcGIS Map visual
 about 288, 291, 292
 ArcGIS Maps Plus subscriptions 293
audit logs
 about 543, 545
 monitoring solutions 547, 550
 solution template 550, 553

Azure Active Directory (AAD)
 about 487, 523, 524
 B2B collaboration 525
 conditional access policies 529
Azure Active Directory Privileged Identity

Management (PIM) 21
Azure Analysis Services (AAS) 496, 565, 584,

585

Azure Data Lake Store (ADLS) 592

B
base measures
 about 170
 measure support expressions 172
bidirectional relationships
 about 135
 date dimensions 138
 shared dimensions 136
bookmarks
 about 281, 283
 custom report navigation 285
 selection pane 283
 spotlight property 283
 view mode 287
Bridge Table Queries 81
bubble map 264
business-to-business (B2B) collaboration
 about 525, 527
 external users, licensing 528

C
CALCULATE() function
 about 162
 FILTER() function 164
 related tables 163
chart

[609]

 selection 225
 versus tables 223
Chiclet Slicer 316
column metadata
 about 142
 data category 143
 data format 143
 Default Summarization 142
comma-separated value (CSV) 545
conditional access policies, AAD 529
content distribution methods 483
Coordinated Universal Time (UTC) 84, 547
Corporate BI Capacity 575
Corporate Power BI datasets
 about 569
 limitations 569
CROSSFILTER function 139
custom application embedding 506
custom report navigation 285
custom visuals
 about 305
 adding 306, 310
 Chiclet Slicer 316
 Impact Bubble Chart 318
 Power KPI visual 311, 315
 pulse chart 323

D
dashboard data classifications 383, 384, 386,

421, 422
dashboard tiles
 about 348, 350
 cache, refreshing 441, 443
 custom links 350
 details links 350
 DMVs, querying from Power BI 356
 Excel workbooks 360
 excel workbooks 357
 images 352
 SQL Server Reporting Services 353
 text boxes 352
dashboards
 custom date filters 339
 design 329, 332
 full screen mode 336

 layout 335
 navigation pane 335
 sharing 498
 supporting tiles 337
 versus reports 327
 visual selection 332
data alerts
 about 509, 511
 Microsoft Flow integration 511
Data Analysis Expressions (DAX) 103
data governance
 about 521
 implementing 523
Data Model
 about 107
 bridge tables 125
 Data View 109
 dimension tables 120
 fact tables 112
 Relationships View 107
 Report View 110
data profiling 30, 34
data sources
 about 47
 authentication 48
 CURRENT FILE options 57
 global options 56
 Power BI Desktop options 55
 Power BI, using 54
 privacy levels 51
 settings 49
data storytelling
 about 321
 play axis, for scatter charts 321
data warehouse bus matrix 24
dataset design process
 about 25
 business process, selecting 26
 dimensions, identifying 28
 facts, defining 29
 grain, declaring 27
dataset layers
 about 103
 dataset objectives 104
 external factors 107

[610]

 objectives, competing 106
dataset planning
 about 34
 data transformations 35, 37
 Import mode, versus DirectQuery mode 37
date intelligence metrics
 about 176
 current year measure 179
 growth percentage measures 179
 prior year measure 179
 rolling periods 179
DAX measures
 about 155
 CALCULATE() function 162
 DAX variables 166, 170
 filter context 155
 measure evaluation process 158
 row context 159
 scalar function 161
 SQL equivalent 157
 table function 161
DAX Studio
 about 195
 Power BI dataset, tracing 196, 200
DAX, using as query language
 URL 200
dimension metrics
 about 181
 missing dimensions 181
dimension tables
 about 120
 custom sort 123
 hierarchies 121
DirectQuery datasets
 about 151, 436
 columnstore 152
 HTAP 152
 optimized DAX functions 151
 single sign-on, via Kerberos 437
DirectQuery mode
 about 40
 versus Import mode 37
Dot Plot by Maq Software 319
drillthrough report pages
 about 275

 back button 277
 custom labels 277
 multi-column drillthrough 279, 281
Dynamic Management Views (DMVs) 111, 145,

392

dynamic row-level security (DRLS) 192

E
Email Subscriptions 514
Enterprise Mobility and Security (EMS) 531
environment, installation
 about 457
 Analysis Services Integrated 459
 hardware, requisites 458
 Report Server product key, retrieving 460
 software, requisites 458
 SQL Server Reporting Services, migrating from

462

Excel workbooks 357, 360
extract-load-transform (ELT) 37, 382, 547
extract-transform-load (ETL) 7, 61, 131, 382, 522,

547, 592

F
fact tables
 about 112
 column data types 114
 columns 112
 fact-to-dimension relationships 116
filled map 266
Forecast line 299

G
gateway architectures 416, 420
gateway clusters
 about 414
 data sources 429
 gateway administrators 428
 managing 426
 PowerShell support 430
 users 429
gateway security 420, 422
generally available (GA) 405, 450
Geographic Information Systems (GIS) 288

[611]

H
hindcasting 301
hybrid transactional and analytical processing

(HTAP) 152

I
Impact Bubble Chart 318
Import mode
 versus DirectQuery mode 37
independent software vendors (ISVs) 507
Infrastructure-as-a-Service (IaaS) 46, 404
integrated development environment (IDE) 591
Integrated Scripting Environment (ISE) 381

K
Kerberos Constrained Delegation (KCD) 474
Kerberos
 DirectQuery sources, single sign-on 437
Key Performance Indicator (KPI) 173, 311, 327

L
Live connection
 reports, customizing 213
 to Power BI datasets 209
live report pages 360, 363
Load Balancer 481

M
M editing tools
 about 96
 advanced editor 97
 Visual Studio 100
 Visual Studio Code 98
M queries
 about 68
 Bridge Table Queries 81
 customer history column 90
 Data Source Parameters 70
 data types 79
 derived column data types 91
 dimension queries 74
 DirectQuery report execution 81
 DirectQuery staging 74

 examples 88
 excel workbook 76
 fact queries 74
 item, accessing 80
 parameter tables 83
 product dimension integration 92
 security tables 85
 Source Reference Only 75
 staging queries 72
 summary 76
 three years filter, trailing 88
 transformation 95
 versus SQL views 60
map visuals
 about 263
 bubble map 264
 filled map 266
Master Data Management (MDM) 29
measure evaluation process
 about 158
 Filter Context Modified via DAX 158
 Initial Filter Context 158
 Measure Logic Computation 159
 Relationship Cross-Filtering 158
measure support expressions
 about 172
 current period 174
 KPI targets 173
 prior period 174
metadata management
 about 391, 392
 descriptions, creating 392, 393
 DMV data, enhancing 400
 DMV data, integrating 400
 DMVs, querying from Power BI 399
 field descriptions 392
 metadata, reporting 396
 query field descriptions 396, 397
 report pages 401, 402
 server parameters 398
 standard metadata reports 398
 view field descriptions 393, 394, 395, 396
Microsoft Flow integration 512
Microsoft Office Data Connection (ODC) 517
mobile-optimized dashboards 363, 365

[612]

mobile-optimized reports
 about 267
 responsive visuals 270
model metadata
 about 141
 column metadata 142
 field descriptions 145
 visibility 141
month-to-date (MTD) 176
multi-dashboard architectures
 about 341
 multiple datasets 346
 multiple-dashboard architecture 343
 organizational dashboard architecture 344
 single-dashboard architecture 342
multi-factor authentication (MFA) 524, 529
Multidimensional Expressions (MDX) 584

O
OAuth authentication, configuring
 URL 476
Object Linking and Embedding, Database (OLE

DB) 47
Office Online Server (OOS) 444, 467
On-premises data gateway
 configuration 422, 424
 hardware requisites, defining 410
 infrastructure, defining 410
 installation, identifying 409
 log files 432
 migrate, selecting 432
 monitoring 431
 performance-monitor counters 434
 planning 404, 408
 planning tasks 408
 restore, selecting 432
 service account 425
 take over 432
 TCP, versus HTTPS mode 426
 troubleshooting 431
 usage, determining 408
 versus personal mode 412
Online Analytical Processing (OLAP) 584
online transaction processing (OLTP) 38
Open Database Connectivity (ODBC) 47, 405

P
parameter tables
 about 83, 126
 last refreshed date 128
 measure groups 127
 measure support logic 129
partial query folding 87
performance optimization
 about 146
 columnar compression 147
 DirectQuery 151
 import 147
 memory analysis via DMVs 149
performance testing
 about 194
 DAX Studio 195
personal mode
 versus on-premises data gateway 412
Platform-as-a-Service (PaaS) 404, 447
Power BI admin portal
 about 531
 Embed Codes 536
 Organizational Custom visuals 536
 Tenant settings 534, 535
 usage metrics 533
 Users and Audit logs 533
Power BI apps
 about 484
 app deployment process 485
 dataset-to-workspace relationship 495
 installing 491
 licensing apps 484
 mobile apps 494
 publishing 489, 491
 updates 494
 user permissions 487
 versus sharing dashboards and reports 502
Power BI datasets
 Live connections 209
 source datasets, switching 214
Power BI deployment, modes
 about 8
 Corporate BI 8
 selecting 11

[613]

 Self-Service BI 10
 Self-Service Visualization 10
Power BI Desktop
 migrating, to Analysis Services 598, 601
 versus Analysis Services 585
Power BI licenses
 about 20, 21
 Power BI Premium features 23
 scenarios 22
Power BI mobile applications 475
Power BI Premium administrators
 responsibilities 554
Power BI Premium calculator
 URL 22, 582
Power BI Premium capacities
 about 553
 allocation 555, 557
 app workspace assignment 561
 capacity admins 563
 creating 557
 monitoring 557, 559
 size, modifying 559
 sizing 557
Power BI Premium capacity allocation
 about 575
 Corporate BI Capacity 575
 data model optimizations 578
 report optimization 580
 resource utilization 577
 Self-Service BI capacity 575
 visual optimization 580
Power BI Premium P2 453
Power BI Premium
 about 566
 capabilities 567
 capacity nodes 571
 Corporate Power BI datasets 569
 frontend resource, versus backend resource 573
Power BI project roles
 about 15
 dataset designer 16
 Power BI admin 18
 project role collaboration 19
 report authors 17
Power BI project template

 about 13
 Adventure Works BI 13
Power BI publisher for Excel
 about 518
 URL 519
Power BI Report Server (PBIRS)
 about 354
 alternative deployment models 454
 connectivity options 451
 data sources 451
 feature differences 447
 hardware, requisites 452
 hybrid deployment models 454
 planning 445
 pro licenses, for report authors 454
 reference topology 456
 SQL Server Reporting Services 449
 URL 458
 user licensing 452
Power BI service administrator role 19
Power BI Template (.PBIT) 71
premium capacity estimations 581, 582, 583
prior year-to-date (PYTD) 248
privacy levels
 about 51
 none 53
 organizational 53
 private 53
 public 53
project analysis 40
proof-of-concept (POC) 11
Provision Azure Analysis Services 596
Publish to web 507
Pulse chart 323

Q
query design per dataset mode
 about 44
 DirectQuery dataset queries 46
 import mode dataset queries 45
query folding
 about 86
 partial query folding 87
Query Processing Units (QPUs) 597
Quick Insights

[614]

 about 302
 features 303

R
ranking metrics
 about 183
 dynamic ranking measures 185
relationships
 about 131
 ambiguity 132
 bidirectional relationships 135
 CROSSFILTER function 139
 direct flights only 135
 single-direction relationships 133
 uniqueness 131
report design summary 271
report filter scopes
 about 237
 conditions 239
 page filter 241, 243
 relative date filtering 244
 report filters 241
 slicer 243
 top N visual-level filters 248
 visual-level filtering 246
report planning
 about 203, 207
 Power BI report architecture 207
Report server administration
 about 476
 execution logs 478, 480
 Power BI report content, securing 477
Report Server Configuration Manager
 about 463
 Office Online Server, for Excel Workbooks 467
 Remote Report Server Database 465
 Service Account 465
Report Server Desktop Application
 about 469
 desktop versions, executing side-by-side 470
Report Server product key
 retrieving 460
Report Server Web Portal
 about 471
 data source authentication 474

 scheduled data refresh 473
reports
 sharing 498
 versus dashboards 327
responsive visuals 270
return on investment (ROI) 13, 565
row-level security (RLS) 10, 53, 85, 488, 524

S
scalar function 161
Scale Power BI Report Server 480
scatter charts 261
scheduled data refresh 435
scopes
 sharing 502
security roles
 about 187, 191
 dynamic row-level security 192
security tables 85
Selection Pane 283
self-service BI (SSBI) 521
Self-Service BI Capacity 575
Self-Service BI workspace
 about 496
 content distribution 497
 risks 497
SharePoint Online embedding 503, 506
Single Dataset Across Workspaces 568
single sign-on (SSO) 406
slicers
 about 232
 custom slicer parameters 235
 synchronization 234
Software-as-a-Service (SaaS) 447, 506
Spotlight property 283
SQL Server Analysis Services (SSAS)
 about 9, 60, 212, 405, 467, 474, 496, 522,

565, 584
 migrating, to Analysis Services 594
 versus Analysis Services 592
SQL Server Data Tools (SSDT) 356, 449, 472,

588

SQL Server Integration Service (SSIS) 32, 522,
548, 592

SQL Server Management Studio (SSMS) 196,

199, 438, 473, 477, 591
SQL Server Reporting Services (SSRS)
 about 162, 224, 275, 326, 353, 444, 449
 migrating from 462
SQL view
 about 58, 60
 date dimension view 63
 dimensions, modifying 68
 examples 62
 Mark As Date Table 65
 Product Dimension view 67
 versus M queries 60
staged deployment
 about 374, 375, 376
 client application ID 378, 379
 content IDs 379
 Power BI REST API 377
 PowerShell sample scripts 380, 381
 workspace 379
 workspace dataset 377
 workspace datasets 376
subject matter experts (SMEs) 13

T
table functions 161
tables
 versus charts 223
Tabular Model Scripting Language (TMSL) 592
Team Foundation Server (TFS) 101
Trend Line 297, 299

U
upgrade cycles 468, 469
usage metrics reports 539, 542
user acceptance testing (UAT) 375
User Principal Name (UPN) 193, 515

V
version control
 about 386
 OneDrive, for Business version history 387, 388,

389

 source code, for DAX code 391
 source control, for DAX code 389
 source control, for M code 389, 391
view mode 287
virtual machines (VMs) 404, 593
visual interactions
 about 227
 edit interactions 228
 what-if parameters 229, 231
Visual Studio Team Services (VSTS) 101, 387,

585

visual
 chart selection 225
 selecting 222
 tables, versus charts 223
visualization, formatting
 about 249
 column-chart conditional formatting 255
 line and column 251
 line chart conditional formatting 256
 matrix 257
 matrix conditional formatting 258
 report page tooltips 253
 scatter charts 261
 table 257
 table conditional formatting 258
 tooltips 252
 values as rows 261
 visual-level formatting 249
visualization
 anti-patterns 220
 best practices 215, 219
Volume Licensing Service Center (VLSC) 461

W
waterfall chart breakdown 294, 295
Web Data Connector (WDC) 408
week-to-date (WTD) 176

Y
year-over-year (YOY) 154, 179, 204
year-over-year year-to-date (YOY YTD) 179
year-to-date (YTD) 17, 154, 323

	Contents
	Preface
	Planning Power BI Projects
	Power BI deployment modes
	Project discovery and ingestion
	Power BI project roles
	Power BI licenses
	Data warehouse bus matrix
	Dataset design process
	Data profiling
	Dataset planning
	Sample project analysis
	Summary

	Connecting to Sources & Transforming Data with M
	Query design per dataset mode
	Data sources
	SQL views
	M queries
	Query folding
	M Query examples
	M editing tools
	Summary

	Import & DirectQuery Data Models
	Dataset layers
	The Data Model
	Relationships
	Model metadata
	Optimizing performance
	Summary

	DAX Measures & Security Roles
	DAX measures
	Base measures
	Date intelligence metrics
	Dimension metrics
	Ranking metrics
	Security roles
	Performance testing
	Summary

	Reports
	Report planning
	Live connections to Power BI datasets
	Visualization best practices
	Choosing the visual
	Visual interactions
	Slicers
	Report filter scopes
	Visualization formatting
	Map visuals
	Mobile-optimized reports
	Report design summary
	Summary

	Custom Visuals, Animation & Analytics
	Drillthrough report pages
	Bookmarks
	ArcGIS Map visual for Power BI
	Waterfall chart breakdown
	Analytics pane
	Quick Insights
	Custom visuals
	Animation and data storytelling
	Summary

	Dashboards & Architectures
	Dashboards versus reports
	Dashboard design
	Multi-dashboard architectures
	Dashboard tiles
	Live report pages
	Mobile-optimized dashboards
	Summary

	Application Workspaces & Content
	Application workspaces
	Staged deployments
	Dashboard data classifications
	Version control
	Metadata management
	Summary

	On-Premises Data Gateway
	On-premises data gateway planning
	Gateway clusters
	Gateway architectures
	Gateway security
	Gateway configuration
	Managing gateway clusters
	Troubleshooting and monitoring gateways
	Scheduled data refresh
	DirectQuery datasets
	Live connections to Analysis Services models
	Dashboard cache refresh
	Summary

	Deploying Power BI Report Server
	Planning for the Power BI Report Server
	Installation
	Configuration
	Upgrade cycles
	Report Server Desktop Application
	Report Server Web Portal
	Power BI mobile applications
	Report server administration
	Scale Power BI Report Server
	Summary

	Power BI Apps & Content Distribution
	Content distribution methods
	Power BI apps
	Self-Service BI workspace
	Sharing dashboards and reports
	SharePoint Online embedding
	Custom application embedding
	Publish to web
	Data alerts
	Email Subscriptions
	Analyze in Excel
	Summary

	Administering Power BI for Organization
	Data governance for Power BI
	Azure Active Directory
	Power BI Admin Portal
	Usage metrics reports
	Audit logs
	Power BI Premium capacities
	Summary

	Scaling with Premium & Analysis Services
	Power BI Premium
	Power BI Premium capacity allocation
	Premium capacity estimations
	Analysis Services
	Migration of Power BI Desktop to Analysis Services
	Summary

	Index

