

Learn ASP.NET Core 3
Second Edition

Develop modern web applications with ASP.NET Core 3,
Visual Studio 2019, and Azure

Kenneth Yamikani Fukizi
Jason De Oliveira
Michel Bruchet

BIRMINGHAM - MUMBAI

Learn ASP.NET Core 3
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Karan Gupta
Content Development Editor: Pathikrit Roy
Senior Editor: Rohit Singh
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Arvindkumar Gupta

First published: December 2017
Second edition: December 2019

Production reference: 1261219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-013-0

www.packt.com

http://www.packt.com

To my beautiful wife, Eva, my lovely daughters, Amara and Annelise, and my handsome son,
Josh:

Thank you, guys, for enduring my long extra working hours, to the point that Annelise decided
that she no longer wants to become a software programmer anymore because she doesn't like the

fact that I'm always working!

To my parents, Kenneth Jester Fukizi and Emily Mchepa:

You did a good job.

- Kenneth Yamikani Fukizi

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Kenneth Yamikani Fukizi is a software engineer, solutions architect, and consultant with
more than 14 years of experience.

He is passionate about programming and web platforms. His experience includes working
as a software engineering contractor/consultant on various projects for clients based in
South Africa, Australia, the U.S.A, and Canada.

Kenneth is based in Cape Town and is the founder of the AfrikanCoder™ project, on which
he works on a part-time basis. Kenneth is a Microsoft Certified Trainer®, Microsoft
Certified Solutions Developer®, and has other technical qualifications. He holds a
bachelor's degree in computer science and a master's degree in finance and is currently
pursuing a PhD in computer science.

A special thanks to the team of editors at Packt whose professional help and guidance is
second to none; I really enjoyed working with the team.

I would like to acknowledge the authors of the first edition of this book, Jason De Oliveira
and Michel Bruchet, for the tremendous and timeless job they did in the first edition. This
book would have been a much bigger task without their initial contribution.

Jason De Oliveira works as a CTO for MEGA International, a software company in Paris.
He is an experienced manager and senior solutions architect, with high-level skills in
software architecture and enterprise architecture.

He loves sharing his knowledge and experience via blogs, conferences, books, articles,
courses, and the coaching of co-workers in his company. He has also worked on many great
technical books in English and French. He frequently collaborates with Microsoft and can
often be found at the Microsoft Technology Center (MTC) in Paris.

Microsoft has awarded him for over 6 years with the Microsoft Most Valuable Professional
in C#/.NET award for his numerous contributions to the Microsoft community.

I would like to thank my lovely wife, Orianne, and my beautiful daughters, Julia and
Léonie, for supporting me in my work and for accepting long days and short nights during
the week, and, sometimes, even during the weekend. My life would not be the same
without them!

Michel Bruchet works as an application architect for MEGA International, a software
company in Paris. He has over 20 years of experience as a senior architect, working on
complex projects in IT and development departments.

Michel has published several publications on the internet (to be found on SlideShare,
LinkedIn, and more). He has worked for big companies in France, including Sanofi, Pierre
et Vacances – Center Parcs, Banque de France, BPCE, and BNP.

He is also the main driving force and mastermind behind Ingenius Solution, which
provides efficient e-business solutions to customers around the world.

I would like to thank my family for accepting that I had to work hard and, sometimes, late
into the night in my spare time to write this book!

About the reviewer
Alvin Ashcraft is a developer living near Philadelphia. He has spent his 23-year career
building software with C#, Visual Studio, WPF, ASP.NET, and more. He has been awarded
the Microsoft MVP title on nine occasions. You can read his daily links for .NET developers
on his blog, Morning Dew. He works as a principal software engineer for Allscripts,
building healthcare software. He has previously been employed by software companies,
including Oracle. He has reviewed other titles for Packt Publishing, such as Mastering
ASP.NET Core 2.0, Mastering Entity Framework Core 2.0, and Learning ASP.NET Core 2.0.

I would like to thank my wonderful wife, Stelene, and our three amazing daughters for
their support. They were very understanding when I was reading and reviewing these
chapters in the evenings and at weekends to help deliver a useful, high-quality book for
.NET developers.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Introduction and Environment Setup
Chapter 1: What Is ASP.NET Core 3? 13

The history of ASP.NET 14
ASP.NET Core 3 features 16
What is new specifically to ASP.NET Core 3? 17
Cross-platform support 19
Microservice architecture 21

Working with containers 22
Performance and scalability 22
Technology restrictions 23

Common technologies not directly found in ASP.NET Core and .NET Core 24
When to choose ASP.NET Core 3 24
Summary 25

Chapter 2: Setting Up the Environment 26
Visual Studio 2019 as a development environment 27
How to install Visual Studio 2019 Community Edition 28

First steps with Visual Studio 2019 32
Creating your first ASP.NET Core 3 application in Visual Studio 2019 36
Creating your first ASP.NET Core 3 application via the command line 41

Basic debugging with Visual Studio 2019 43
Breakpoints 45
Call stack 46
Autos, Locals, and Watch Panes 47

Visual Studio Code as a development environment 47
How to install Visual Studio Code on Linux 49

Creating your first ASP.NET Core 3 application in Visual Studio Code 52
Creating your first ASP.NET Core 3 application in Linux 54

Introduction to the C# Interactive and LINQPad tools 56
Summary 58

Chapter 3: Continuous Integration Pipeline in Azure DevOps 59
Technical requirements 60
CI, CD, and build and release pipelines 60

Using Azure DevOps for CI and CD 61
Creating a free Azure DevOps subscription and your first Azure DevOps
project 62

Table of Contents

[ii]

Organizing your work via work items 64
Understanding the scrum process 66
Using Git as a VCS 71

Using feature branches 77
Merging changes and resolving conflicts 79

Creating an Azure DevOps build pipeline 83
Creating an Azure DevOps release pipeline 87
Summary 88

Section 2: Section 2: A Practical Demonstration of ASP.NET
Core 3
Chapter 4: Basic Concepts of ASP.NET Core 3 via a Custom
Application: Part 1 90

Preview of the Tic-Tac-Toe demo application 91
Building the Tic-Tac-Toe game 92

Conceiving and implementing your first Tic-Tac-Toe feature 93
Targeting different .NET Core versions in the .csproj files of your projects 97
Using the Microsoft.AspNetCore.App metapackage 98

Introduction to the default ASP.NET Core 3 classes 99
ASP.NET Core 3 start up classes 100

Working with the Program class 100
Working with .NET Generic Host instead of WebHostBuilder 102
Working with the Startup class 103

Preparing the basic project structure 105
Creating the Tic-Tac-Toe home page 107
Giving your web pages a more modern look by using NPM and
layout pages 112

Updating the layout page 115
Creating the Tic-Tac-Toe user registration page 119
Creating the Tic-Tac-Toe user service 122

Using DI to encourage loose coupling 122
Creating the user service 123

Creating a basic communication middleware for the Tic-Tac-
Toe application 127

Working with middleware 127
Creating the communication middleware 130
Working with static files 132
Using routing, URL redirection, and URL rewriting 134

Endpoint routing for ASP.NET Core 3 137
Adding error handling to the Tic-Tac-Toe application 138
Summary 144

Chapter 5: Basic Concepts of ASP.NET Core 3 via a Custom
Application: Part 2 145

Table of Contents

[iii]

Client-side development using JavaScript 146
Preliminary email confirmation functionality 147

Email confirmation by our user 149
Using XMLHttpRequest 153

Optimizing your web applications and using bundling and
minification 158

Bundling and minification in action 159
Working with WebSockets for real-time communication scenarios 163

WebSockets in action 164
Taking advantage of session and user cache management 168

In-memory session providers 169
Distributed session providers 173

Applying globalization and localization for multi-lingual user
interfaces 174

Globalization and localization concepts 174
Using the view localizer 181
Localizing Data Annotations 184

Configuring your applications and services 188
Adding an email service 188
Configuring the email service 190

Implementing advanced dependency injection concepts 194
Method injection 194

Summary 201

Chapter 6: Introducing Razor Components and SignalR 202
Client-side development using C# Razor components 203
Working with SignalR 207

What is SignalR 207
SignalR with server-side Blazor or Razor components 208

Using logging and telemetry for monitoring and supervision
purposes 209
Building once and running on multiple environments 221
Summary 227

Chapter 7: Creating ASP.NET Core MVC Applications 228
Understanding the Model View Controller pattern 229

Models 230
Views 231
Controllers 231
Unit tests 231
Integration tests 232

Creating dedicated layouts for multiple devices 232
The layout page in more detail 233
Optimizing for mobile devices 236

Understanding ASP.NET Core state management 241

Table of Contents

[iv]

Client-state management options 242
Hidden fields 242
Cookies 242
Query string 243

Query string usage 243
Server-based state management options 244

Application state 244
Session state 244

Using view pages, partial views, View Components, and Tag
Helpers 245

Using view pages 246
Using partial views 253
Using View Components 254
Using Tag Helpers 260

Dividing a web application into multiple areas 266
Applying advanced concepts such as view engines, unit tests, and
integration tests 270

Using view engines 270
Providing better quality by creating unit tests and integration tests 277
Adding unit tests 282
Adding integration tests 286

Layering ASP.NET Core 3 applications 288
Determining the required layers 289
Deciding on the distribution for layers and components 290
Determining rules for interactions between layers 290
Identifying cross-cutting concerns 291

Summary 291

Chapter 8: Creating Web API Applications 293
Technical requirements 294
Applying web API concepts and best practices 294

Building RPC-style web APIs 296
Building REST-style web APIs 312
Building HATEOAS-style web APIs 321

Securing your web API 323
ASP.NET Core web API help pages with Swagger/OpenAPI 324
Summary 328

Section 3: Section 3: The ASP.NET Core 3 Supporting
Ecosystem
Chapter 9: Accessing Data Using Entity Framework Core 3 330

Establishing a connection 333
Defining primary keys and foreign keys via Data Annotations 336
Using Entity Framework Core 3 migrations 340
Creating, reading, updating, and deleting data 344

Table of Contents

[v]

Understanding data relationships 346
Primary key 346
Foreign key 347
One-to-one relationships 348
One-to-many relationships 348
Many-to-many relationships 349

Working with queries 350
Querying for one item 350
Querying for all items 351
Querying for filtered items 351

Using transactions 352
Summary 353

Chapter 10: Securing ASP.NET Core 3 Applications 354
Implementing authentication 355

Adding basic user form authentication 369
Adding external provider authentication 377
Working with two-factor authentication 380

Two-factor authentication - step by step 381
Adding forgotten password and password reset mechanisms 390

Implementing authorization 399
Summary 408

Chapter 11: Securing ASP.NET Applications - Vulnerabilities 409
Cross-Site Scripting (XSS) 410

Preventing XSS 411
Cookie stealing 412

Preventing cookie stealing 412
Eavesdropping, message tampering, and message replay 413

Preventing eavesdropping and message replay 413
Open redirects/XSR 414

Open redirects example 414
Preventing open redirects 415

SQL injection 415
Preventing SQL injection 415

Protecting SQL connection strings 416
Using the Persist Security Info default value in connection strings 416

Using object-relational mappers (ORMs) 416
Cross-Site Request Forgery (XSRF/CSRF) 417

XSRF/CSRF example 417
Preventing XSRF/CSRF 418

Domain referrers 418
User-generated tokens 419
Limitations 420

JS/JSON hijacking 420
Preventing JSON hijacking 420

Table of Contents

[vi]

Over-posting 420
Vulnerability example 421
Preventing over-posting 421

Clickjacking 422
Clickjacking example 422
Preventing clickjacking 422

Proper error reporting and stack trace 424
Error reporting vulnerability example 425
Preventing a screen of death 425

Summary 426

Chapter 12: Hosting ASP.NET Core 3 Applications 427
Hosting applications 428
Deploying applications in AWS 430

Deploying applications in AWS Elastic Beanstalk 433
Getting the application running on AWS 445

Deploying applications in Microsoft Azure 458
Deploying applications in Microsoft Azure App Service 462

Getting an Azure App Service instance running 462
Publishing your code on Azure 468

Continuous integration with Azure Repos 469
Connecting the database 472
Deployment through the Web Deploy tool 479

Deploying applications into Docker containers 482
Deploying applications into Docker containers 483
Publishing images to Docker Hub 491

Summary 494

Chapter 13: Managing ASP.NET Core 3 Applications 495
Logging in ASP.NET Core 3 applications 496

Logging in Microsoft Azure 497
Enabling Microsoft Azure App Service 498
Logging in AWS 505

Monitoring ASP.NET Core 3 applications 508
Monitoring on-premises and in Docker 509
Monitoring in Microsoft Azure 512
Monitoring in AWS 528

Summary 533

Other Books You May Enjoy 534

Index 537

Preface
Every day, software developers, application architects, and IT project managers work on
building applications as quickly as possible in order to be leaders in their respective
markets: time-to-market (TTM) is of utmost importance. Unfortunately, the quality and
performance of those applications are often not as expected, since they have not been fully
tested, optimized, and secured.

During the past few years, ASP.NET has evolved into becoming one of the most consistent,
stable, and feature-rich frameworks available on the market for web application
development. It provides all expected characteristics you can think of concerning
performance, stability, and security out of the box.

For some time now, the IT market has been changing. Compliance with different standards
is now required and customers expect industrialized, high-performing, and scalable
applications, while developers ask for frameworks that allow higher productivity and
extensibility to adapt to specific business needs. Accordingly, this has led Microsoft to
completely rethink its web technologies.

As a result, Microsoft has built ASP.NET Core, which gives developers the capacity to do
the following:

Create applications and compile them in a specific environment, but then run
them in any environment (such as Linux, Windows, or macOS).
Use third-party libraries with additional functionalities.
Work with various tools, frameworks, and libraries.
Adopt the most up-to-date best practices for frontend development.
Develop flexible, responsive web applications.

ASP.NET Core 3, together with Microsoft Visual Studio 2019, includes several features to
make your life as a web developer easier and more productive. For example, Visual Studio
offers project templates that you can use to develop your web applications. Visual Studio
also supports several development modes, including using Microsoft Internet Information
Services (IIS) directly to test your web applications during development time and using a
built-in web server to develop your web applications over FTP.

Preface

[2]

With the debugger in Visual Studio, you can run through your application and step
through the critical areas of your code to find problems. With the Visual Studio editor, you
can effectively develop your own custom user interfaces.

And when you are ready to deploy your application, Visual Studio makes it easy to create a
deployment package for deployment on Azure, Amazon Web Services, and Docker, or any
other platform including Linux and macOS. These are but a few of the features built into
the ASP.NET Core framework when paired with Visual Studio.

This book provides the latest best practices and ASP.NET Core guidance to get you up to
speed quickly. Each section of this book presents specific ASP.NET Core 3 features in an
easily readable format with detailed examples. The step-by-step instructions yield
immediate working results. Most of the key features of ASP.NET Core are illustrated using
succinct, easily understandable, and reusable examples. The examples are in-depth, in
order to illustrate features without being overbearing.

In addition to showing ASP.NET Core features by example, this book contains practical
applications of each feature so that you can apply these techniques in the real world. After
reading this book and applying the exercises, you will have a great head start into building
efficient web applications that include modern features, such as MVC architectures, web
APIs, custom view components, and tag helpers.

We hope this book will help you in your daily job as a developer and that reading it will
give you as much joy as writing it has given us.

Once upon a time – NGWS and .NET
Framework
The following is a little bit of history to explain how .NET Framework has evolved over the
years and why you have to consider the .NET Core framework today:

Preface

[3]

Microsoft started working on what we know now as .NET Framework in the late 1990s, and
released a first beta version of .NET Framework 1.0 in late 2001.

Originally, the framework was named NGWS for Next Generation Windows Services
(with an internal codename of Lightning/Project 42). In the beginning, developers could
only use VB.NET as a programming language. More than 10 Framework versions later, a
lot has been achieved. Today, you can choose between a large number of languages,
frameworks, and technologies.

In the beginning, InterDev was the primary development environment to develop ASP
pages, and you had to use a command-line VBC compiler tool to compile your code.

The first version of our beloved Visual Studio development environment was published in
February 2002, bringing with it a common runtime environment for the Windows client
and Windows server family (NT 4, Windows 98, Windows ME, Windows XP, and then
Windows 2000).

Preface

[4]

Around the same time, Microsoft provided a lighter framework, named Compact
Framework, to execute Windows CE on Windows Mobile. The last version was published
in January 2008 as version 3.5 RTM before it was replaced by newer mobile technologies.

The first .NET SDK was published in April 2003 as .NET Framework 1.1 and was included
in Visual Studio 2003. It was the first version to be included in the Windows Server OS and
shipped together with Windows 2003.

.NET Framework 2.0 was released in January 2006 during the time of Windows 98 and
Windows Me. It provided a major upgrade to the Common Language Runtime (CLR). It
was the first version to fully support 64-bit computing and fully integrate with Microsoft
SQL Server. It also introduced a new Web Pages Framework, providing features such as
skins, templates, master pages, and style sheets.

.NET Framework 3 (WinFX) was released in November 2006. It included a new set of
managed code APIs. This version added several new technologies to build new types of
applications, such as Windows Presentation Foundation (WPF), Windows
Communication Foundation (WCF), Windows Workflow Foundation (WWF), and
Windows CardSpace (later integrated into Windows Identity Foundation).

.NET Framework 3.5 extended the WinFX features one year later, in 2007. This version
included key features such as LINQ, ADO.NET, ADO.NET Entity Framework, and
ADO.NET Data Services. Furthermore, it shipped with two new assemblies that would
later be the foundation of the MVC framework: System.Web.Abstraction and
System.Web.Routing.

.NET Framework 4.0 was published in May 2009; it provided some major upgrades to the
CLR and added a parallel extension to improve support parallel computing, dynamic
dispatch, named parameters, and optional parameters, as well as code contracts and the
BigIntegerComplex numeric format.

After the release of .NET Framework 4.0, Microsoft released a set of improvements to build
microservices in the form of the Windows Server AppFabric framework. Essentially, it
provided an in-memory distributed cache and an application server farm.

.NET Framework 4.5 was released in August 2012; it added a so-called Metro-style
application (which later evolved into Universal Windows Platform applications), the Core
features, and the Microsoft Extension Framework (MEF).

Concerning ASP.NET, this version was more compatible with HTML5, and jQuery, and
provided bundling and minification for improved web page performance. It was also the
first to support WebSockets and asynchronous HTTP requests and responses.

Preface

[5]

.NET Framework 4.6.1 was released in November 2015; it required Windows 7 SP1 or later,
and was an important version. Some of the new features and APIs included were support
for SQL connectivity for AlwaysOn, Always Encrypted, and improved connection
resiliency when using Azure SQL databases. It also added Azure SQL Database support for
distributed transactions using the updated System.Transactions APIs and provided
many other performance-, stability-, and reliability-related fixes in RyuJIT, GC, and WPF.

.NET Framework 4.6.2 was released in March 2016; it added support for paths longer than
260 characters, FIPS 186-3 DSA in X.509 certificates, and localization of data annotations,
and the resources files were moved to the App_LocalResources folder. Additionally, the
ASP.NET session provider and local cache manager were made compatible with the
asynchronous framework.

.NET Framework 4.7 was released in April 2017; it was included in the Windows 10
Creators update. Some of the new features included enhanced cryptography with elliptic
curve cryptography and improved Transport Layer Security (TLS) support, especially for
version 1.2. It also introduced the object cache store, which enabled developers to provide
custom providers easily by implementing the ICacheStoreProvider interface.

There was also a better integration between the application and the memory monitor and
the famous memory limits reactions, which enables developers to observe the CLR when it
truncates objects cached in memory and overrides the default behavior.

Then, Microsoft developed a completely new .NET Framework with open source
multiplatform in mind from the beginning. It was introduced as ASP.NET 5 and later
renamed ASP.NET Core Framework.

The first release, 1.0, was announced by Richard Lander (MSFT) in June 2016; the ASP.NET
MVC and web API frameworks were merged into a single framework package that you
could easily add to your projects via NuGet.

The second release, .NET Core Framework 1.1, was published in November 2017; it ran on
more Linux distributions, its performance was improved, it was released with Kestrel, the
deployment on Azure was simplified, and the productivity was improved. Entity
Framework Core started to support SQL Server 2016.

The latest release of the .NET Core framework at the time of writing this book is 3, released
in September 2019. A first preview version was released in late 2018 and subsequent
multiple previews since the beginning of the year (2019).

Microsoft has vastly improved the .NET Core framework. The improvements and
extensions are the results of the vision for .NET Core 3; it enables you to use more of your
code in more places.

Preface

[6]

It is worth noting that most of the regular libraries are available on GitHub. They can be
forked and rebuilt by anyone who wants to extend or change any standard behaviors.

Who this book is for
This book is for developers who would like to build modern web applications using
ASP.NET Core 3. No prior knowledge of ASP.NET or .NET Core is required. However,
basic programming knowledge is assumed. Additionally, previous Visual Studio
experience will be helpful but is not required, since detailed instructions will guide you
through the samples of the book. This book can also help people who work in
infrastructure engineering and operations to monitor and diagnose problems during the
runtime of ASP.NET Core 3 web applications.

What this book covers
This book is organized into chapters that explain ASP.NET Core 3 features in an easy and
understandable format with practical examples. Most of the key features of ASP.NET Core
3 are illustrated using succinct, efficient examples and step-by-step instructions to yield
immediate working results.

You don't have to read the chapters in any order to find the book useful. Each chapter
stands on its own, except for the first chapter, which details the fundamentals of ASP.NET
Core—you might want to read it first if you've never ventured beyond desktop application
development.

The following topics will be covered throughout the book.

Chapter 1, What Is ASP.NET Core 3?, describes the features and functionalities of ASP.NET
Core 3, but also the technical restrictions, which should allow you to understand in which
cases it could be a good fit for your own needs and what to expect.

Chapter 2, Setting Up the Environment, gives a detailed explanation of how to set up your
development environment and how to create your first ASP.NET Core 3 application. You
will learn how to either use Visual Studio 2019 or Visual Studio Code, how to install the
runtime, and how to use NuGet to retrieve all necessary ASP.NET Core 3 dependencies.

Chapter 3, Continuous Integration Pipeline in Azure DevOps, demonstrates how to set up a
complete Azure DevOps Continuous Integration Pipeline. You will learn how to fully
automate building, testing, and deploying your applications using Azure DevOps in the
cloud.

Preface

[7]

Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1, explains the
basic structure and concepts of ASP.NET Core 3 applications. It shows how everything
works internally and what classes and methods can be used to override basic behavior. It
also provides the theoretical background for all the other chapters.

Chapter 5, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2, following up
on the concepts covered in Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom
Application: Part 1, delves deeper into essential ASP.NET Core 3 concepts. You will learn
about the components and features offered by ASP.NET Core to build responsive web
applications.

Chapter 6, Introducing Razor Components and SignalR, gives an introduction to Blazor, a new
offering by Microsoft to cater for frontend development using C# as a language. It prepares
you with the basics that you need to be aware of what is being offered in working with
server-side Blazor.

Chapter 7, Creating ASP.NET Core MVC Applications, provides all the concepts and
everything necessary to create your first ASP.NET Core 3 MVC application. You will learn
the specifics of MVC applications and how to implement them efficiently. Additionally,
you will see how unit tests and integration tests will help you build better applications with
fewer bugs, resulting in lower maintenance costs.

Chapter 8, Creating Web API Applications, covers the web API framework and provides
everything essential to create your first ASP.NET Core 3 web API. You will see different
web API styles, such as RPC, REST, and HATEOAS, and learn when to use them and how
to implement them in an effective way.

Chapter 9, Accessing Data Using Entity Framework Core 3, shows how to access databases
using Entity Framework Core 3, while using all the advanced features (code first, the Fluent
API, data migrations, in-memory databases, and more) it offers.

Chapter 10, Securing ASP.NET Core 3 Applications, explains how to use the built-in
ASP.NET Core 3 features for user authentication and how to extend them by adding
external providers. If you need to secure your applications, then this chapter is where you
want to go.

Chapter 11, Securing ASP.NET Applications - Vulnerabilities, gives us an indication of what
we need to be aware of when building our applications, in terms of areas that can be
exploited, and therefore need more attention.

Preface

[8]

Chapter 12, Hosting ASP.NET Core 3 Applications, is about the various options you have
when it comes to hosting and deploying your ASP.NET Core 3 web applications on-
premises and in the cloud. You will learn how to choose the appropriate solutions for a
given use case, which will allow you to make better decisions for your own applications.

Chapter 13, Managing ASP.NET Core 3 Applications, is finally going to be a chapter on how
to manage and supervise your production-ready applications after deployment. It will
greatly aid you in diagnosing problems for your ASP.NET Core 3 web applications during
runtime and reduce the time to understand and fix bugs.

To get the most out of this book
You will either need Visual Studio 2019 Community Edition or Visual Studio Code, which
are both free of charge for testing and learning purposes, to be able to follow the code
examples found within this book. You could also use any other text editor of your choice
and then use the dotnet command-line tool, but it is advised to use one of the
development environments mentioned earlier for better productivity.

Later in the book, we will work with databases, so you will also need a version of SQL
Server (any version in any edition will work). We advise using SQL Server 2019 Express
Edition, which is also free of charge for testing purposes.

There might be other tools or frameworks that will be introduced during the following
chapters. We will explain how to retrieve them when they are used.

If you need to develop for Linux, then Visual Studio Code and SQL Server 2016 or 2019 are
your primary choices, since they are the only ones running on Linux.

Additionally, you will need an Azure subscription and Amazon Web Services subscription
for some of the examples shown within the book. There are multiple chapters dedicated to
showing you how to take advantage of the cloud.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[9]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for macOS
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at the following repository: https:/
/github.com/PacktPublishing/ Learn- ASP. NET- Core- 3-Second- Edition.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789610130_ColorImages. pdf.

Code in Action
Please visit the following link to see the Code in Action videos: http:/ /bit. ly/39ecHAf.

Conventions used
There are a number of text conventions used throughout this book..

http://www.packt.com
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789610130_ColorImages.pdf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf
http://bit.ly/39ecHAf

Preface

[10]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. "Start Visual
Studio 2019, open the Tic-Tac-Toe ASP.NET Core 3 project you have created, create three
new folders called Controllers, Services, and Views, and then create a subfolder
called Shared in the Views folder."

A block of code is set as follows:

 [HttpGet]
 public IActionResult EmailConfirmation (string email)
 {
 ViewBag.Email = email;
 return View();
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public class Student
{
 public long Id { get; set; }
 public string Name { get; set; }
 public StudentDetails StudentDetails { get; set; }
 public ICollection<StudentSubject> StudentSubjects { get; set; }
 // Added after constructed table
}

Any command-line input or output is written as follows:

sudo apt-get install code

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Open Visual Studio 2019, go to the Team Explorer tab, and click on the Branches button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[11]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction and

Environment Setup
This section will gracefully introduce you to ASP.NET Core 3 and its features, as well as
when it makes sense to use the web framework. By the end of this section, you will
understand the capabilities of ASP.NET Core 3 and have set up a development
environment where the demo application that we'll be using throughout this book will be
developed.

This section comprise the following chapters:

Chapter 1, What Is ASP.NET Core 3?
Chapter 2, Setting Up the Environment
Chapter 3, Continuous Integration Pipeline in Azure DevOps

1
What Is ASP.NET Core 3?

The world's very first form of a web server came into being around the year 1990. It was
called CERN httpd and was developed by Tim Berners-Lee, a name quite synonymous
with the origins of the World Wide Web (WWW).

A web server in its rudimentary form was supposed to handle requests that only expected
the contents of a file as a response, but, with time, there have been additions in
expectations, with a change in the initial need for static files only as opposed to today's
dynamic web applications, which are more demanding.

Nowadays, there are blurred lines on what responsibility a web server has, as opposed to a
web application, and these lines become clearer as we learn more about ASP.NET Core 3 as
a web application framework. It is worth noting that this and other frameworks not
originating from Microsoft, such as Ruby on Rails, act as a buffer between you as a
developer and the web server.

ASP.NET Core 3 includes several benefits over other previous frameworks and the
advantages are elaborated on in subsequent sections when we take a closer look at its
features and what is new specifically to this version.

In this chapter, we will cover the following topics, with an obvious bias toward ASP.NET
Core 3:

The history of ASP.NET
ASP.NET Core 3 features
What is new specifically to ASP.NET Core 3?
Cross-platform support
Microservice architecture
Performance and scalability
Technology restrictions
When to choose ASP.NET Core 3

What Is ASP.NET Core 3? Chapter 1

[14]

The history of ASP.NET
It all began with Active Server Pages in the mid-nineties, with Microsoft trying to keep up
to date with the buzz of serving dynamic content over the web at that time, and that
obviously influenced the name Active Server Pages, conventionally known today as ASP.

As with any worthwhile technology, ASP.NET has been evolving over time with one of the
major shifts being the introduction of ASP.NET Web Forms around the year 2002, which
was influenced heavily by the success of another one of Microsoft's application frameworks
meant for the desktop environment, called Windows Forms, or more commonly known
as WinForms.

With the ease of creating HTML forms and controls in WinForms came a lot of baggage of
unnecessary HTML and JavaScript that slowed down page loading, along with other
factors such as view state and page life cycle that contributed further to slowing down
business applications. This led to the introduction of a series of ASP.NET MVC versions
that tried to solve some of the problems that ASP.NET Web Forms had.

ASP.NET MVC also helped to cater to one of the major tenets of good programming
practices in preferring separation of concerns (SoC) over the tight coupling that was
evident in ASP.NET Web Forms with its code-behind files. This had in itself introduced
ripple benefits in allowing for test-driven development and improving testability in
general.

Another major shift happened in 2016 with the release of ASP.NET Core in its first version,
1.0, which has continued to evolve up to version 3 at the time of writing this book (2019). In
this shift, Microsoft almost completely rewrote ASP.NET, mainly removing its dependency
on the System.Web namespace, which necessitated a reliance on Internet Information
Services (IIS). Since IIS is compatible only with the Windows operating system,
independence from it allowed ASP.NET Core to be truly cross-platform.

It must be mentioned that Microsoft embraced open source visibly from around the year
2014 with a change in business dynamics and while one of the biggest selling points of
ASP.NET Core is that it is open source, we need to be aware that even the previous
versions of ASP.NET, including MVC and the web API, were also eventually released as
open source, and anyone can contribute to their continued development:

What Is ASP.NET Core 3? Chapter 1

[15]

Before version 3, ASP.NET Core applications ran on the .NET Core framework as well as on
full .NET Framework, but a decision was made by Microsoft that, starting from version 3,
ASP.NET Core would run only on .NET Core, to make better use of new developments,
without being tied down to catering for old functionality.

In the following diagram, you can see how the different .NET Framework versions and
components work together:

This book is about ASP.NET Core, and more specifically, its latest version, 3 (at the time of
writing). Therefore, the brief mention earlier of the previous versions suffices to just give us
context, but from now on, we will focus a bit more on ASP.NET Core.

Our focus in this book remains ASP.NET Core 3, which is different from .NET Core 3; the
former being an application framework and the latter being a runtime. An ASP.NET Core
application is traditionally able to run on .NET Core as well as other .NET Framework
versions, and that underlines the fact that they are different.

It is easy to see why some people confuse the two because an ASP.NET Core application
can also be a .NET Core application, the same way it can be a .NET Framework 4.8
application.

It is quite important to note when making decisions about what framework to use for
developing new applications that Microsoft has plans for future releases of ASP.NET
Core to only run on .NET Core and not other .NET Framework versions.

What Is ASP.NET Core 3? Chapter 1

[16]

Having looked at a brief history of ASP.NET Core 3, let's have a look at the features that
define the application framework in the next section.

ASP.NET Core 3 features
The Microsoft.AspNet.Core.All package in ASP.NET Core 2.0 contains all features in a
single library. It includes authentication, Model-View-Controller (MVC), Razor,
monitoring, Kestrel support, and much more.

Referencing Microsoft.ASP.Net.Core.All as a package has been discouraged since
ASP.NET Core version 2.1, and this applies to the current version, 3.

We can still use the namespace by making use of patches, but the preferred replacement is
the Microsoft.AspNetCore.App shared framework, details of which are explained in
Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1, when we
expound the basic concepts of ASP.NET Core 3.

In an effort to make ASP.NET Core as lightweight as possible, and perhaps for better
control, Microsoft decided only to let assemblies developed and maintainable in-house to
be in the shared framework, and excluded third-party assemblies that were available with
the Microsoft.AspNet.Core.All namespace.

Notable casualties that are not fully owned and therefore not fully controlled by Microsoft
that were removed from the framework include Json.NET. We are, however, still able to
use them by adding their references.

ASP.NET Core 3 also allows us to create applications that follow the MVC architectural
style, with a ready-made template that is available for use and we have dedicated a full
chapter to this topic later in this book.

Furthermore, we can build HTTP-based web services as well as RESTful services. A new
addition to the capability in implementing microservices, the gRPC template, that comes
with ASP.NET Core 3 is introduced in the next section on what is new specifically to
ASP.NET Core 3.

ASP.NET Core 3 fully supports Razor, which contains an efficient language for creating our
views and Tag Helpers, which allow logic to be written from the server side to generate
HTML that can be used in Razor views.

What Is ASP.NET Core 3? Chapter 1

[17]

In terms of client-side development, ASP.NET Core 3 integrates and works hand in hand
with several frameworks external to Microsoft including Angular, React, and React-Redux,
although it must be noted that these will become less and less prominent, with an obvious
attempt by Microsoft to handle similar functionality with in-house Razor components,
otherwise known as Blazor.

Additionally, ASP.NET Core provides the following fundamental improvements:

ASP.NET MVC and the web API have been combined into a single framework.
The environment-based configuration system is ready for cloud hosting.
Dependency injection functionalities come by default.
You can host the same application in IIS, Docker, the cloud, and even in your
own processes, or you can self-host.
There's new tooling that simplifies modern web development.
There's a simplified csproj file, making it easier to work with development
environments other than Visual Studio (on Linux and macOS, for example).
Startup.cs has been simplified by moving logging and configuration into the
host builder initialization.
ASP.NET Core apps can now be developed on Visual Studio for Mac.

The features we have seen could apply also to other versions of ASP.NET Core prior to 3,
but others apply only to version 3 and maybe higher, in the future. We will look at them in
the next section.

What is new specifically to ASP.NET Core 3?
ASP.NET Core 3 exists in an ecosystem where everything else is changing as well,
including the .NET Core runtime, which is currently at version 3 as well, and the C#
language itself, which is at version 8. With all of these changes, ASP.NET Core has been
adapting to the ecosystem changes as well, not only to Microsoft-related changes but also
taking into consideration the developer community in general, as evidenced by, for
example, changing the Angular template to Angular 7.

The ASP.NET Core 3 shared framework has been made significantly more lightweight,
being decoupled from other non-core components such as Entity Framework Core, Roslyn
code analysis, and Json.NET.

Changes such as these have inevitably effected other changes in a ripple effect, for example,
in the forced removal of runtime compilation, which is obviously made possible by Roslyn,
and as such, ASP.NET Core 3 is significantly more lightweight than its predecessors.

What Is ASP.NET Core 3? Chapter 1

[18]

ASP.NET Core evolved from being referenced as packages in 1.0 into being a shared
framework in 2.1. However, in 3, we no longer reference Microsoft.AspNetCore.App
through the <PackageReference> element, which is naturally replaced
as <FrameworkReference>.

If your project references the Microsoft.NET.Sdk.Web SDK, then it automatically has
access to the shared framework. Commonly referenced APIs such as MVC, Razor, and
Kestrel, among others, are no longer referenced as NuGet packages but are still available to
us as developers through the same <FrameworkReference> element to
Microsoft.AspNetCore.App.

ASP.NET Core 3 has attempted to improve integration with OpenAPI and has introduced a
system for generating API clients that integrate easily with NSwag and other code
generators.

The following screenshot shows some of the new templates introduced from ASP.NET Core
version 3:

What Is ASP.NET Core 3? Chapter 1

[19]

One of the biggest introductions to ASP.NET Core 3 is the C# Razor components, which
has, to date, been known as Blazor. It was being developed separately as an independent
experimental framework, and with it comes a new .razor extension that helps the
compiler to identify a file with Razor components.

Normally, JavaScript code is what most browsers have been able to understand and
execute, but what Razor components bring to the table is the ability to be able to run C# in
the browser. We will talk a bit more about Razor components in Chapter 6, Introducing
Razor Components and SignalR.

ASP.NET Core 3 comes with a Worker Service template by default. If you're coming from a
desktop development background, you will be familiar with Windows Services, and
similarly daemons for those with Linux experience, and as an answer for the web
environment, ASP.NET Core 3 has introduced a template for us to be able to develop
worker services to cater for long-running services.

Another exciting new feature added with ASP.NET Core 3 is the gRPC Service template,
which is going to be popular with developers who use microservices often. gRPC
originated from Google and uses a bit more lightweight protocol buffer serialization
compared to the common XML/JSON serialization in service-to-service communication
over HTTP/2. A demonstration of this will be included in Chapter 8, Creating Web API
Applications.

There have been significant improvements to the routing model as previous users of
ASP.NET MVC will know, mainly with how it operates with middleware, aptly referred to
as endpoint routing; it was introduced in 2.2 but specifically introduced in 3 is SignalR and
Razor component integration with endpoint routing. More about this will be covered in
Chapter 6, Introducing Razor Components and SignalR.

Now that we have seen many important features associated with ASP.NET Core 3, there is
one feature that deserves a special mention and specific coverage, because of its
significance. In today's diverse technological platforms, it is hugely important to support
different platforms, and therefore we will look at how ASP.NET Core 3 is geared up for
cross-platform support in the next section.

Cross-platform support
As explained before, the ASP.NET Core 3 framework has been built, from the beginning,
with cross-platform support in mind. It supports a wide variety of operating systems and
technologies such as Windows, Linux, macOS, Docker, Azure, and others.

What Is ASP.NET Core 3? Chapter 1

[20]

ASP.NET Core 3 currently supports the following Linux distributions:

Ubuntu 14, 16
Linux Mint 17, 18
Debian 8
Fedora
CentOS 7.1 and Oracle 7.1
SUSE Enterprise Server 64 bits
openSUSE 64 bits

Concerning macOS, it currently only supports the following (other versions might be
added later):

macOS 10.11
macOS 10.12

For application development, you may develop on Windows using Visual Studio or Visual
Studio Code and then deploy your ASP.NET Core 3 application to your target system.

Note that the target system can use a completely different underlying
operating system. For instance, you can develop and test on Windows and
then deploy your applications to a Linux server for performance, stability,
or cost reduction reasons.

If you choose so, you can of course directly develop on Linux and macOS using several
system-specific source code editors. On Linux, you could use Visual Studio Code, Vim/Vi,
Sublime, or Emacs, for example. On macOS, you could use Visual Studio for Mac, Visual
Studio Code, or any other macOS-specific text editor.

The Visual Studio 2019 or Visual Studio Code developer environments would be the
preferred choice, though, since they provide everything necessary to be highly productive
and to be able to debug and understand your code as well as navigate within it easily. That
is why we are going to use those IDEs throughout the rest of this book.

After building your application, you can use several web servers to run it. Here are some
examples:

Apache
IIS
Kestrel self-host
NGINX

What Is ASP.NET Core 3? Chapter 1

[21]

Cross-platform is a huge factor, and we have seen how ASP.NET Core 3 caters to it, but
there's another buzzword in the software engineering fraternity called microservices. Let's
have a look at it with respect to ASP.NET Core 3 in the next section.

Microservice architecture
Microservice architecture, most commonly referred to as just microservices, is a currently
common way of designing and building software applications in a modular way with the
single responsibility principle in mind. It stresses having service modules that are not
tightly coupled with other services when implementing business solutions that are service-
oriented. Microservices can be used to build e-commerce systems, business applications,
and IoT. You will find them quite a popular implementation especially when working with
distributed applications.

ASP.NET Core 3 is the best candidate when you want to embrace this system architecture.
The ASP.NET Core 3 framework is lightweight and its API surface can be minimized to the
scope of a specific microservice. A microservice architecture also allows you to mix
technologies across service boundaries, enabling for a gradual transition to ASP.NET Core.

Notice that microservices built with ASP.NET Core 3 can work together with services using
other technologies such as the full classic .NET Framework, Java, Ruby, and even other
more legacy technologies. This is a big advantage when you need to progressively
transform monolithic applications into more (micro)service-oriented applications.

You are not bound to the specific underlying infrastructure; instead, you have a wide range
of choices since ASP.NET Core 3 supports nearly all of the technologies that you can think
of today. Additionally, you can modify the infrastructure when needed so there is no
technological lock-in for applications that have been developed based on it.

Your primary choice for orchestrating and managing microservices written in C# efficiently
and at a high scale, on-premises, and in the cloud should be Microsoft Service Fabric, also
known as Azure Service Fabric. It was conceived exactly for that and has been used by
Microsoft for various Azure services (such as SQL Database) for many years already.

A microservices Docker container approach might also fit your needs, and we are going to
explain its use cases in the next section. To sum it up, ASP.NET Core 3 is the ideal choice
for implementing and hosting your microservices in any kind of technical environment.

What Is ASP.NET Core 3? Chapter 1

[22]

Working with containers
Containers are popular at the moment as they provide an efficient, lightweight, and self-
contained approach for packaging applications with their dependencies while re-using the
underlying operating system files and resources.

They are a perfect fit for microservice architectures, but can also be used for any other
application archetypes. They work exceptionally well together with ASP.NET Core 3
applications since both have been conceived with modularity, performance, scalability,
lightweight nature, and efficiency in mind.

We must note that there are currently different containers available for use by the
developer community such as CoreOS rkt, Apache Mesos Containerizers, and LXC (short
for Linux Containers), but the most popular by far are Docker containers.

Note that Docker container images including ASP.NET Core 3
applications are much smaller than images with classic ASP.NET
applications, meaning that they are faster to deploy and to start up.

Both Docker containers and the ASP.NET Core 3 framework provide full cross-platform
support (Windows, Linux, and macOS). Furthermore, you can host your containers on-
premises and in the cloud. You can use Azure, for example, either via Infrastructure-as-a-
Service (IaaS) deployments or via Azure Container Service, which is being deprecated in
favor of Azure Kubernetes Service, which additionally allows for mixing and matching
different operating systems and technologies.

Microservices architecture, cross-platform support, and other features might make
ASP.NET Core 3 a great framework to use, but how good is it if it has such great features
without a matching great performance? How does ASP.NET Core 3 fare in terms of being
able to handle applications that need to grow? We will look at both performance and
scalability for ASP.NET Core 3 in the next section.

Performance and scalability
If you need the best possible performance and support for high-scalability scenarios, then
you absolutely need to use ASP.NET Core 3 and the underlying .NET Core Framework
currently in version .NET Core 3.

ASP.NET Core 3 has been built from the ground up for high-performance and high-
scalability scenarios. It really shines in these areas and it can be considered as the best
choice.

What Is ASP.NET Core 3? Chapter 1

[23]

It is many times faster than classic ASP.NET and can be thought of as the fastest web
application runtime in the .NET world currently available!

If we are to go by the tests done by TechEmpower, which measure the performance of
different web frameworks, found here: https:/ /www. techempower. com/benchmarks, you
will note that ASP.NET Core definitely comes out top compared to its .NET peers, and
certainly does quite well too against its competitor frameworks by other providers:

You can run benchmarks for ASP.NET Core using the details found on Microsoft's
ASP.NET Core benchmarks project here: https:/ /github. com/aspnet/ benchmarks.

Furthermore, it provides the best solution for microservices architectures, where
performance and scalability are extremely important. No other technology is as efficient
while consuming such low system resources, which also leads to reduced infrastructure
and cloud hosting costs.

We have so far seen how great using ASP.NET Core 3 as a platform can be, with all of the
features mentioned earlier, but unfortunately, other technologies are not supported by the
platform and its runtime. We look at them in the next section.

Technology restrictions
Please look carefully at the technologies shown in this section. If you use a technology or
framework within your current application that is listed here and that is not (yet)
supported, then you might find it difficult or even impossible to migrate to ASP.NET Core
3.

https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://www.techempower.com/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks
https://github.com/aspnet/benchmarks

What Is ASP.NET Core 3? Chapter 1

[24]

Not all current .NET Framework technologies are available in ASP.NET Core 3 and some
might never be ported over since they do not comply with the new .NET Core-specific
paradigms and patterns.

Common technologies not directly found in
ASP.NET Core and .NET Core
The following list shows the most common technologies not directly found in ASP.NET
Core and .NET Core, though some can be used via multi-targeting features:

ASP.NET Web Forms applications: The legacy Web Forms technology is only
available using the full classic .NET Framework; you cannot use ASP.NET Core
and .NET Core for these types of applications.
ASP.NET Web Pages applications: They are not included in ASP.NET Core 3 as
such, but it is possible to use the Razor web pages engine to provide the same
functionalities.
WCF Services: ASP.NET Core 3 contains a WCF client for accessing WCF
services, but creating WCF services is not supported.

Not all of the templates available for ASP.NET Core 3 support all of the major .NET
languages; for example, the only template available for VB.NET is GtkSharp, with F#
having a few more templates, including the ASP.NET Core web API and F# TypeProvider
templates. A more comprehensive list of what templates are available for what language
can be found at this link: https:/ /github. com/ dotnet/ templating/ wiki/ Available-
templates-for-dotnet- new.

When to choose ASP.NET Core 3
ASP.NET Core 3 and the underlying .NET Core Framework runtime indeed provide some
major enhancements and performance improvements, but there are still some specific
scenarios where those new application patterns do not apply and where the full .NET
Framework will be the best and sometimes even the only choice.

Migrating your whole existing applications to ASP.NET Core right from the start might be
difficult or even impossible to do. You should think about how to transform your
applications progressively to lower the risk of failure or over complication and give
yourself time to really understand the new patterns and paradigms.

https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

What Is ASP.NET Core 3? Chapter 1

[25]

You could start for instance by only using ASP.NET Core 3 for all new developments, then
see how to migrate your legacy code later and sometimes even leave it be since there will be
no real benefits for migrating it over. If you are really interested in the migration topic,
please consider the Appendix since we have a full chapter dedicated to this important topic.

ASP.NET Core and .NET Core Framework get more and more framework and client library
support each day. Microsoft, tool and framework vendors, and the different developer
communities work hard to provide a large set of functionalities for allowing feature-rich
and high-performing web applications. Everybody wants to work on this promising
technology that could sustainably shape the future.

The possibility to use .NET Core and .NET Framework libraries together at the same time
when using .NET Standard 2.0 extends the possibilities even more and gives developers a
temporary solution until every important feature and every major framework will be
available in .NET Core.

To recap what has been discussed in this section, you should use ASP.NET Core 3 for your
server applications if the following is true:

You have cross-platform needs.
You are specifically targeting microservices.
You want to use Docker containers.
You need high-performance and highly scalable applications.
The presented technical restrictions do not apply to your application
requirements.

Summary
In this chapter, you learned about the ASP.NET Core 3 framework and its features. You
have seen that it includes everything necessary to work efficiently in a cross-platform
environment while using microservices architectures and container technologies such as
Docker.

Furthermore, you learned that it provides very good performance and exceptional
scalability for your web applications.

At the end of this chapter, we talked about technical restrictions and when it is advisable to
use the ASP.NET Core 3 framework.

In the next chapter, we will talk about how to set up your development environment
including either Visual Studio 2019 or Visual Studio Code as an IDE.

2
Setting Up the Environment

You have decided to learn about ASP.NET Core 3, the most advanced and efficient cross-
platform web application framework on the market today. A very good choice! You are
surely eager to start programming right away, but before we can begin, we must set up the
required technical prerequisites and tools.

In this chapter, we are going to introduce Visual Studio 2019 Community Edition and
Visual Studio Code, and then install either one of them as a development environment.
Then, we are going to build a simple sample application based on the ASP.NET Core 3
Framework.

After going through the content in this chapter, you will be able to install different kinds of
ASP.NET Core 3 development environment on the Windows operating system, macOS,
and Linux. You will also learn about the basic debugging skills you'll need to troubleshoot
most ASP.NET Core-based applications.

To sum up, in this chapter, we will cover the following topics:

Visual Studio 2019 as a development environment
How to install Visual Studio 2019 Community Edition
Creating your first ASP.NET Core 3 application in Visual Studio and via the
command line
Basic debugging with Visual Studio 2019 Community Edition
Visual Studio Code as a development environment
How to install Visual Studio Code on Linux
Creating your first ASP.NET Core 3 application in Visual Studio Code
Creating your first ASP.NET Core 3 application in Linux
Introduction to C# Interactive and LINQPad as tools

Setting Up the Environment Chapter 2

[27]

Visual Studio 2019 as a development
environment
As a developer, you need an environment for your daily development tasks, and Microsoft
Visual Studio 2019 is just that.

There are many other IDEs available for developers across different programming
languages, with some notable ones being NetBeans, PyCharm, IntelliJ IDEA, Eclipse,
Code::Blocks, and XCode, among others. While you can use many of these to program
using C#, which is the base language that we'll make use of in this book, it must be noted
that the aforementioned IDEs are more suited for other languages, such as Python and Java.

Other IDEs that are more suitable for the C# programming languages include Visual Studio
Code, MonoDevelop, SharpDevelop (#develop), JetBrains Rider, CodeMaid, and .NET
Fiddle.

This book will make use of the two most commonly used IDEs for developers on the
Microsoft tech stack: the Visual Studio series and Visual Studio Code.

Visual Studio 2019 provides a very efficient and productive Integrated Development
Environment (IDE) for creating new software projects and developing, debugging, and
testing them. It will help you build high-quality applications in a very quick and intuitive
way. Many of its features have been built around common developmental tasks and how to
streamline and optimize them within a single tool. By using this tool, you can create web
applications, web services, desktop applications, mobile applications, and many other types
of application that are not covered in this book.

Additionally, you can use a wide range of programming languages such as C#, Visual
Basic, F#, JavaScript, and even Java or other languages that are not maintained by
Microsoft.

There are different editions of Visual Studio 2019, each with its own unique features and
licenses. The Visual Studio 2019 Community Edition, for instance, is free of charge but has
fewer features than the Professional and Enterprise Editions, which we will explain later.
The intended usage of the community version is for private use and learning purposes.

The Visual Studio 2019 Professional and Enterprise Editions contain far more features,
including the necessary licenses to build and run applications in production environments.

The Visual Studio 2019 Professional Edition contains a subset of all the features that are
offered in the Enterprise Edition. It is usually sufficient to start with this edition and then
upgrade to the Enterprise Edition if necessary.

Setting Up the Environment Chapter 2

[28]

Visual Studio 2019 Enterprise Edition contains a lot of additional features that we can use to
improve developer productivity even more, such as time travel debugging, live
dependency validation, live testing, architecture diagrams, architecture validation, code
cloning, and many others. If you need these features, then you need to use this edition.

A full comparison of what features are available for each edition can be found at the
following link: https:/ /visualstudio. microsoft. com/ vs/compare/ .

Note that multiple versions of Visual Studio (2013, 2015, 2017, 2019, and
more) can be installed side by side on a developer machine that has earlier
versions of the Visual Studio IDE installed.

Traditionally, Visual Studio was released only for Windows, but a macOS version has
existed since 2016 called Visual Studio for macOS. You can use it to develop your .NET
applications on this operating system. Visual Studio for macOS supports developing .NET
Core, ASP.NET Core, Mono library (including .NET Standard), and Xamarin apps. You can
build the same kind of ASP.NET Core apps that you can in Visual Studio but the tooling is
not as rich yet.

The Visual Studio 2019 Community Edition is exactly what we need for trying out and
understanding the examples that will be illustrated in this book. This is exactly why we'll
be installing it in the next section.

How to install Visual Studio 2019
Community Edition
Visual Studio 2019 Community Edition can be installed like any other Windows
application.

Note that you need administrator rights during the installation process.
These rights will not be required when developing with Visual Studio
later.

https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/
https://visualstudio.microsoft.com/vs/compare/

Setting Up the Environment Chapter 2

[29]

To install the Visual Studio 2019 Community Edition, you can choose between the
following three different Visual Studio 2019 installation modes:

The express installation installs all of the components that are considered default
components by Microsoft in an easy and quick way. These components are found
on the default Workloads tab and are conveniently grouped into Windows, web
and cloud, mobile and gaming, and other toolsets, which are all available for you
to install by just selecting the respective checkboxes. If you need specific Visual
Studio features that aren't in this list, then you need to use the custom
installation.
The custom installation option gives you complete choice over every Visual
Studio 2019 feature you can install. You may, for instance, install complementary
features such as Visual C++, F#, SQL Server Data Tools, the mobile platform, and
several other SDKs, as well as specific language packs through the Individual
components, Language packs, and Installation locations tabs. Install groups in
the VS Installer are called workloads.
When using the offline installation, you can install Visual Studio 2019 without
having a network connection. This is very handy when you cannot connect to the
internet and nonetheless want to prepare a developer machine. In this case, you
have to prepare external support, such as a mobile hard disk or a USB key, and
put the Visual Studio 2019 installer files on it beforehand.

One way to prepare such external support is to download the necessary Visual Studio
installer (Community, Professional, or Enterprise Edition) from the Visual Studio
website, https://www.visualstudio.com/downloads/, and extract its contents into a folder.
Then, you can retrieve the various install packages by executing the <executable name>
--layout command in a command-line window. After some time, everything will be
downloaded and you'll have external support that can be used for offline installations.

Note that you can use the same procedure to download all of the
installation files to your central network storage and then create a shared
folder so that you can install Visual Studio 2019 from within your own
network to optimize installation times and lower network bandwidth
needs.

https://www.visualstudio.com/downloads/

Setting Up the Environment Chapter 2

[30]

Now, let's learn how to install Visual Studio 2019 Community Edition manually using the
setup program downloaded from the Microsoft Visual Studio website we mentioned
previously:

Start the Visual Studio 2019 Community Edition setup program. You will see a1.
list of various installable workloads. By default, you will see Windows, Web and
Cloud, Mobile and Gaming, and Other Toolsets:

Choose your desired components – they will be installed in the following steps. If2.
that is all you need, then you don't need to do anything else. As we explained
previously, this is the express installation process.

Setting Up the Environment Chapter 2

[31]

If you need to customize installed components or add or remove individual3.
components, then you have to click on Individual components. From here, you
will be doing a custom installation:

You may want to choose your own language, depending on the availability of the4.
prescribed Language packs. This tab currently has Chinese, Czech, English,
French, German, Italian, Japanese, Korean, Polish, Portuguese, Russian, Spanish,
and Turkish as available options. You may also want to specify your custom
installation path, and that can be done from the Installation locations tab.
When you have finished selecting your desired workloads and components, the5.
installation will start. The installation time is dependent on the number of
workloads and components you have selected, as well as your internet
connection speed if you are not using the offline installation method we
described previously.

Setting Up the Environment Chapter 2

[32]

For more advanced scenarios, such as automating and scripting the Visual Studio 2019
installation, you can start the setup program via the Command Prompt. There are a variety
of command-line parameters that can help us define what needs to be installed, and where.

The following is a list of some of the command-line parameters that are available, along
with a brief description of what they do. Please go to
https://docs.microsoft.com/en-us/visualstudio/install/use-command-line-paramete

rs-to-install-visual-studio to find out more, including a full list of all the existing
command-line parameters in addition to the ones described as follows:

Parameter Description
/AddRemoveFeatures This adds the features that have been selected
/AdminFile This specifies a file to install silently

/CreateAdminFile
This specifies that you wish to generate a silent response file after
your installation

/CustomInstallPath This specifies the target path
/ForceRestart This forces your PC to restart
/Full This installs all the necessary features
/noweb This disables internet searching features and downloading
/ProductKey This specifies the key to be used

First steps with Visual Studio 2019
After installing Visual Studio 2019, you can now explore everything it has to offer in terms
of improving developer productivity. The following is a list of some of the features that are
provided.

One of the most important features of Visual Studio is IntelliSense. It helps developers be
much more productive by offering features such as List Member, Parameter Info, Quick
Info, and Complete Word. It has been improved in Visual Studio 2019 with some very
interesting new features, such as IntelliCode, and you can now filter by type (class,
namespace, or keyword) and by camelCase search.

https://docs.microsoft.com/en-us/visualstudio/install/use-command-line-parameters-to-install-visual-studio
https://docs.microsoft.com/en-us/visualstudio/install/use-command-line-parameters-to-install-visual-studio

Setting Up the Environment Chapter 2

[33]

You can use the programming language, platform, and project type as search filters. The
following options will be available for you:

Language: C++, C#, Java, F#, JavaScript, Python, Query Language, TypeScript,
and Visual Basic
Platform: All platforms, Android, Azure, iOS, Linux, macOS, tvOS, Windows,
and Xbox
Project Type: All project types, cloud, console, machine learning, desktop,
extensions, games, IoT, library, mobile, office, service, test, UWP, and web

It is advisable to select the best match from the list of results instead of just picking the top
one as it may not always necessarily be the correct one:

The code refactoring and live code analysis features of Visual Studio 2019 accelerate
development and ensure that you have readable and maintainable code. For example, the
following is an instance where you can add missing namespaces or remove unnecessary
namespaces automatically:

Setting Up the Environment Chapter 2

[34]

The following is an example of a code refactoring suggestion, which shows up as a light
bulb in this instance:

With Visual Studio 2019, you will find that it includes features that were only previously
available as enhancements with external plugins such as ReSharper. An example of this is
the fact that you can now convert foreach loops into more concise and performant LINQ
statements.

Setting Up the Environment Chapter 2

[35]

As its name suggests, the Find All References feature allows a developer to easily and
quickly find all references for a method or an object. Coloring, grouping, and peek preview
functionality aid you visually so that you can navigate within your code and really
understand it:

The Peek Definition and Go To Definition features allow you to examine the definition of
a method, interface, or class, within a popup window, without changing the current
window, or by directly opening the file containing the source code with the requested
definition. The Go To Implementation feature does the same, but navigates to the
implementation instead:

Setting Up the Environment Chapter 2

[36]

Another important feature is Live Unit Testing. You will need Visual Studio 2019
Enterprise Edition to use it. It allows you to automatically run unit tests in the background
after each modification or compilation of your code. It can be configured and activated in
the Test Settings menu. From here, you can set, for instance, the number of test processes,
the maximum duration for each test, and the maximum memory consumption:

There are many more interesting and exciting features in Visual Studio 2019, and we invite
you to visit the official Visual Studio web page at
https://docs.microsoft.com/en-us/visualstudio/welcome-to-visual-studio if you
want to find out more. It is key for a developer to know their developer IDE as best they
can and to familiarize themselves with a lot of its features so that they can do their job
better and faster. So, do take some time to look at this before you start developing your
applications.

Creating your first ASP.NET Core 3 application in
Visual Studio 2019
You have patiently read the previous chapters, understood what you will be learning about
by reading this book, and prepared your developer machine. Now, you are ready to create
your first sample application.

Follow these instructions to create your first ASP.NET Core 3 sample web application:

If you haven't installed the .NET Core 3 SDK yet, then download and install1.
.NET Core 3 from https:/ / dotnet. microsoft. com/download/ dotnet- core/ 3.0.

https://docs.microsoft.com/en-us/visualstudio/welcome-to-visual-studio
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0

Setting Up the Environment Chapter 2

[37]

Start Visual Studio 2019. You will be presented with a page that allows you to2.
clone or checkout code or open an existing project. Here, we are interested in
creating a new project:

Setting Up the Environment Chapter 2

[38]

The same Create a new project page pops up if you click on Create a new3.
project or Continue without code and then File | New | Project:

Select ASP.NET Core Web Application and click Next.

Setting Up the Environment Chapter 2

[39]

After selecting a project template, that is, Visual C# | .NET Core | ASP.NET4.
Core Web Application (.NET Core), and clicking Next, you can name your
project and configure its location:

Setting Up the Environment Chapter 2

[40]

You are now able to select your specific web application type, which is the5.
ASP.NET Core version. Please note that, if we select ASP.NET Core 3.0, then we
only have .NET Core available on the left, but for all the others, we also have
.NET Framework available for selection as well. Scroll down and select Web
Application and leave the Enable Docker Support, and Configure for HTTPS
options unchecked. Also, leave Authentication set to No Authentication:

Setting Up the Environment Chapter 2

[41]

After the sample application project has been generated, a project start page will6.
be displayed. Here, you can configure additional options, such as connected
services (Application Insights, and more) and publishing targets (Microsoft
Azure App Services, IIS, FTP, Folder, and more). Leave everything unchanged:

Now, you can start your application by pressing F5 or clicking on Debug | Start7.
Debugging.

Creating your first ASP.NET Core 3 application
via the command line
In the previous section, you learned how to create your first ASP.NET Core 3 web
application with Visual Studio 2019. This should be the preferred method for most
developers.

However, if you prefer using the command line or Visual Studio Code, which we are going
to introduce a little later on in this book, then using Visual Studio 2019 is not really an
option. Luckily, .NET Core and ASP.NET Core 3 provide full support for the command
line. This may even be your only option on other operating systems such as Linux or
macOS. The same command-line instructions work on all the different operating systems,
so once you get used to them, you can work on any environment.

Setting Up the Environment Chapter 2

[42]

Now, let's learn how to create our first sample application using the Windows command
line:

If you haven't installed the .NET Core 3 SDK yet, then download and install2.
.NET Core 3 from https:/ / dotnet. microsoft. com/download/ dotnet- core/ 3.0.
Create a folder for your sample application called mkdir aspnetcoresample.3.
Move into the new folder: cd aspnetcoresample.4.
Create a new web application based on the empty ASP.NET Core 3 web5.
application template called dotnet new web.

Previous versions of .NET Core required an additional -t parameter for
choosing a template (dotnet new -t web). If you get an error when
executing dotnet new web, it is a good indication that you need to
install .NET Core 2.0.
Note that you can verify your .NET version by entering dotnet (with no
parameters) if you are not sure about your environment since it will
display the current .NET Core version.

Run the sample application by executing dotnet run:5.

https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0

Setting Up the Environment Chapter 2

[43]

Open a browser and go to http://localhost:5000. If everything worked6.
correctly, you should see a Hello World! page:

In this section, you've learned how to create your first sample application by using Visual
Studio 2019 or the command line, and you learned how to use Visual Studio Code and how
it helps you when building an ASP.NET Core 3 application on Linux or macOS.

Now that you have installed Visual Studio 2019 and have your first application up and
running, you need to know what to do when you encounter errors in your application. This
is a matter of when, not if. Do not despair if you do get errors when developing
applications – this happens even to the most experienced. Luckily, Visual Studio helps us to
diagnose errors. We will look at debugging with Visual Studio 2019 in the next section.

Basic debugging with Visual Studio 2019
Whenever we write the logic for software applications, there are times when we manage to
achieve the intended functionality outright without any problems and errors. While it is
often desirable to get it right the first time, this will most definitely not always be the case
for most software developers.

We may have a situation where our code has compiled successfully but we find out that we
don't have the output we wanted, or we may get compile-time or runtime errors. In
this case, it is quite helpful for a developer to find the errors before anything is discovered
after the software has been released.

Errors within an application are syntactical or semantical, in which you as a developer
either haven't followed the prescribed language syntax or are not making logical sense.
These kinds of error are easier to find. The Visual Studio IDE will help you to catch most of
these development errors while downright refusing to compile or throw an exception after
you run your applications in debug mode.

Setting Up the Environment Chapter 2

[44]

There is another set of application errors that arise from not being able to produce intended
behaviors, even though we have done our best to code against the prescribed functionality.
These are best counter-checked by writing unit tests and running them against our code.
Some professionals within the software development industry advocate test-driven
development (TDD), in which the tests are written before any functionality is written,
while others may consider this a duplication of effort and are not so bullish about this.
Whatever the case, unit tests are quite important in an application and we will spend some
time later in the book, when we provide practical examples, demonstrating their worth.

The following screenshot is a snapshot of the debugging functionality that's available in
Visual Studio 2019:

We will not be going through all of the debugging functionality that's available through the
Debug menu shown in the preceding screenshot because this would take a whole book of
its own, but it is well worth exploring as a developer. Knowing the basics of debugging will
save you a lot of time as a developer. In the next section, we will explain a few of the most
important debug items that are available to you in Visual Studio 2019.

Setting Up the Environment Chapter 2

[45]

Breakpoints
A breakpoint is one of the most important tools in debugging and is represented as a red
dot in the preceding screenshot. When you start an application in debugging mode through
the Debug menu, it runs sequentially through your code until it hits a breakpoint you have
placed on any point in your code base, from which point you can choose to step into a code
statement and inspect it, step over it, or step out of a set of statements.

A breakpoint will give you access to the actual values of your objects at that specific
instance, which will help you inspect the behavior of your program at a point of concern,
and therefore help you in troubleshooting whatever problem you may be having.

A program can have as many breakpoints as needed, and you are able to enable or disable
these breakpoints in bulk.

There will be times when you may need Visual Studio to break only in a specific condition,
such as when a property changes or some condition becomes true. Luckily, Visual Studio
provides an out-of-the-box solution for this scenario. You are able to set what is normally
referred to as a conditional breakpoint by right-clicking any normal breakpoint and then
selecting Conditions. When you click on it, a pop up will appear where you can set your
condition, as follows:

Setting Up the Environment Chapter 2

[46]

The preceding screenshot is just a hypothetical example which shows how we can look at
the LastName in a user model and check whether it is equal to our chosen
string, "FUKIZI". In the preceding example, we set another condition called Hit Count
>= 2, which means that our conditional breakpoint will only trigger after it has been hit
two or more times.

We could also set an action to output a message or choose whether we want the execution
to continue. Sometimes, we may need to look back on what was really happening before a
certain point is reached. For this, the call stack comes in handy.

Call stack
A call stack will give you a snapshot history of the calls that have been made by your
program to get you to the point where you are in debugging mode:

This is quite helpful if you wish to inspect what your code has been doing in its immediate
history, and may help you to locate where the problems in your code may have originated.

Setting Up the Environment Chapter 2

[47]

Autos, Locals, and Watch Panes
Apart from hovering over your breakpoints to see what is contained in a variable, the
Autos window is the next most important tool when debugging as it gives you a snapshot
of variable contents in a more persistent way on the screen. You can add a watch to a
specific variable of interest and it will appear in the watch pane. You can manipulate and
modify the values of variables as a way of testing what should have been contained or
passed on in a variable or object to try and get an intended behavior before deciding where
to change your problematic code when troubleshooting a problem:

Apart from the aforementioned tools, and others that are beyond the scope of this book, it
must be said that debugging is a skill that gets cemented with time and experience. The
more applications you write and debug, the more intuitive and natural it will become for
you to discover where your application is misbehaving.

We have covered some ground so far using Visual Studio 2019 as our integrated
development environment. It is such a great tool and is loved by many, but there are also
other tools with great features that can be used to develop ASP.NET Core 3 applications.
One such tool that is loved and used by many is Visual Studio Code, which we will
introduce in the next section.

Visual Studio Code as a development
environment
Visual Studio Code is a lightweight and powerful cross-platform development
environment for Windows, Linux, and macOS.

Setting Up the Environment Chapter 2

[48]

You can use a wide range of programming languages such as JavaScript, TypeScript, and
Node.js, as well as C++, C#, Python, PHP, Go, and .NET Core and Unity runtimes via
language and runtime extensions.

It comes with a streamlined, clean, and very efficient user interface. There's a file and folder
explorer on the left and a source code editor on the right, which shows the contents of the
files you have opened and are currently working on:

The user interface consists of the following areas:

Activity bar: Provides several different views and additional context-specific
indicators, such as outgoing code changes when Git is enabled.
Sidebar: Contains a file and folder explorer for working on your projects.
Editor groups: This is the main area for working with your code and navigating
within it. Up to three source code editor windows can be opened side by side at
the same time.
Panels: Displays panels with output or debug information, errors, and warnings,
or an integrated Terminal.
Status bar: Supplies additional information concerning projects and files you
have edited.

Setting Up the Environment Chapter 2

[49]

Please go to https://code.visualstudio.com/docs for additional
information on Visual Studio Code and its capacities and functionalities. It
will be our primary choice for illustrating how to build ASP.NET Core 3
applications on Linux.

How to install Visual Studio Code on Linux
In this section, we are going to explain how easy and fast it is to install Visual Studio Code
on Linux. One of the most popular Linux distributions, Ubuntu 16.04, will serve as an
example.

If you do not have a physical or virtual installation of Linux Ubuntu available, you can
easily install it in Azure to try out Visual Studio Code and understand the various
ASP.NET Core 3 examples. By doing this, you can connect via the Microsoft Remote
Desktop app.

In this case, select the Linux Ubuntu 18.04 LTS image from the Azure Marketplace and
create a new Linux Ubuntu VM in Azure. Leave all of the default options and configure it
to allow remote desktop connections (install a compatible desktop, install xrdp, open port
3389, and more):

https://code.visualstudio.com/

Setting Up the Environment Chapter 2

[50]

Let's learn how to install Visual Studio Code on Linux Ubuntu:

First, download the Linux Ubuntu installation .deb package (64-bit) from1.
https:// go. microsoft. com/ fwlink/ ?LinkID= 760868

Open a new Terminal window in Ubuntu.2.
Install the downloaded package via sudo dpkg -i <file>.deb.3.
Then, enter sudo apt-get install -f.4.
Set Visual Studio Code as your default text file editor by typing in the xdg-mime5.
default code.desktop text/plain command.

https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868
https://go.microsoft.com/fwlink/?LinkID=760868

Setting Up the Environment Chapter 2

[51]

The installation will begin and automatically install the APT repository and
signing key to enable automatic package updates, as well as Visual Studio Code:

You can also manually install the repository and signing key, update the package cache,
and start the Visual Studio Code package installation, as follows:

Open a new Terminal window in Ubuntu:1.

curl https://packages.microsoft.com/keys/microsoft.asc | gpg --
 dearmor>microsoft.gpg

sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg

sudo sh -c 'echo "deb [arch=amd64]
 https://packages.microsoft.com/repos/vscode stable main" >
 /etc/apt/sources.list.d/vscode.list'

sudo apt-get update

sudo apt-get install code

Set Visual Studio Code as your default text file editor by typing in the xdg-mime2.
default code.desktop text/plain command.

Setting Up the Environment Chapter 2

[52]

For more information on how to install Visual Studio Code on other Linux
distributions, such as RHEL, Fedora, CentOS, openSUSE, SLE, and others,
please go to https://code.visualstudio.com/docs/setup/linux.

At this point, we have our environment ready and can create our first ASP.NET Core
application in our new Linux environment.

Creating your first ASP.NET Core 3 application in
Visual Studio Code
Now, you will learn how to initialize your first ASP.NET Core 3 application using the built-
in Visual Studio Code Terminal window. Then, you are going to install all of the necessary
extensions so that you can run and debug it:

Start Visual Studio Code.1.
Click on Open Folder and click on Create Folder. Name the folder2.
aspnetcoremvcsample and click on OK:

https://code.visualstudio.com/docs/setup/linux

Setting Up the Environment Chapter 2

[53]

Display the integrated Terminal window via View | Integrated Terminal and3.
initialize a new ASP.NET Core 3 MVC project by entering dotnet new mvc:

When opening a C# file, you will be asked to install additional project4.
dependencies and Visual Studio Code extensions. You need to do this to be able
to build, run, and debug your application in the steps that follow:

Setting Up the Environment Chapter 2

[54]

Modify the launch.json file in the .vscode folder and set the debugger to5.
.NET Core Launch (web):

Set a breakpoint anywhere in the code and start debugging by either pressing F56.
or clicking on the green flash in the debugging viewlet. Try hitting the
breakpoint; everything should work correctly.

Creating your first ASP.NET Core 3 application in
Linux
To create and run your first sample application using only the Terminal window in Linux,
follow these steps:

If you haven't installed the .NET Core 3 SDK yet, then download and install it1.
from https:/ /dotnet. microsoft. com/ download/ dotnet- core/ 3.0 for your
Linux distribution. The following is an example of how to do that for Ubuntu:

sudosh -c 'echo "deb [arch=amd64]
 https://apt-mo.trafficmanager.net/repos/dotnet-release/
 xenial main" > /etc/apt/sources.list.d/dotnetdev.list'

https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0
https://dotnet.microsoft.com/download/dotnet-core/3.0

Setting Up the Environment Chapter 2

[55]

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
 --recv-keys 417A0893
sudo apt-get update
sudo apt-get install dotnet-sdk-2.0.0-preview2-006497

Create a folder for your sample application called aspnetcoremvcsample:2.
 mkdir ~/Documents/aspnetcoremvcsample.
Move into the new folder, that is, cd ~/Documents/aspnetcoremvcsample.3.
Create a new web application based on the ASP.NET Core 3 MVC web4.
application template and called dotnet new mvc:

Setting Up the Environment Chapter 2

[56]

Run the sample application by executing dotnet run:5.

Open a browser and go to http://localhost:50006.

In this section, we've seen our first application running on different operating systems and
briefly explored the tools that are available within the Integrated Development
Environment. We will look at C# Interactive in the next section. There are also other
external tools that can help make development as painless as possible. One such tool is
LINQPad, which we will introduce in the next section as well.

Introduction to the C# Interactive and
LINQPad tools
C# Interactive is a read-eval-print-loop (REPL) tool that is commonly ignored by many
developers who use Visual Studio, but it has amazing functionality that will help you
experiment with a notion quickly before you implement it. You can use it to play around
with C# language features and any .NET technologies. For example, if you are not too sure
how a certain ASP.NET Core 3 feature works, you can reference it in the pane and, interact
with it, and view the output immediately. This makes it much easier and faster than
experimenting with a full application.

Setting Up the Environment Chapter 2

[57]

In the following simple example, we'll declare a function called SquareNumber, which
takes in an integer, x, multiplies it by itself, and gives us the answer when it's called in the
next line:

With its high interactivity, you can write and test scripts and get an output immediately,
which you can then use by just copying your code into the pane and pasting it into a script
file that you name with the .csx extension; you can then run it through the Developer
Command Prompt with the csi keyword.

You can also use C# Interactive to learn about external APIs that you can play around with
interactively, but this is beyond the scope of this book.

In Chapter 9, Accessing Data Using Entity Framework Core 3, we will use LINQPad to
demonstrate how to work with and debug LINQ queries. This is the right moment to
introduce LINQPad, which can be downloaded from https:/ /www. linqpad. net/.

Please note that LINQPad 5 supports .NET Framework and that LINQPad
6 supports the .NET Core 3.0 SDK.

LINQPad can be used for many other things, including as a testing ground for statements,
expressions, and scripts in Microsoft's major languages (C#, F# and VB.NET), but our
interest lies in using it to help us understand Language-Integrated Queries (LINQs) when
we tackle that subject in Chapter 9, Accessing Data Using Entity Framework Core 3.

https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/

Setting Up the Environment Chapter 2

[58]

Summary
In this chapter, you have learned how to set up your development environment so that you
can work with ASP.NET Core 3 by installing either Visual Studio 2019 or Visual Studio
Code.

Then, you then created your first ASP.NET Core 3 web application in both development
environments and built a project in Linux to showcase their cross-platform capabilities.

In the next chapter, we will talk about how to set up a continuous integration pipeline by
using Visual Studio Azure DevOps, including work items, Git branches, and build and
release pipelines.

3
Continuous Integration Pipeline

in Azure DevOps
Building great applications is not a trivial task. On the contrary, it is a difficult and complex
endeavor in which many professionals need to work together efficiently to create
applications that correspond to high end user expectations.

Today, everything moves very fast, and time to market is very important for success. This
chapter is going to introduce methods, processes, and tools to help you optimize your
development processes, thus building high-quality software with short release cycles.

Traditionally, building software involves planning whole projects from beginning to end,
writing detailed specifications, developing and testing (often in a rush), while hoping that
everything will work as expected (as illustrated by the V-model approach).

Sometimes, this approach works, and sometimes, it does not. When it does not work,
developers implement features while only testing manually, with the objective of adding
unit tests later. Then, at the end of the project, they have to speed up to assure on-time
delivery, and hence often run out of time.

This leads to projects with significant technical, functional, and quality flaws, with a high
number of bugs and tremendous maintenance effort, resulting in long release cycles. In the
worst-case scenario, end users will not like the delivered features; hence, the final product
could be considered to be a complete failure. There is a better way of doing things, and this
is something people have been talking about for some time now, and that you have surely
already heard of—agile methodologies!

Agile methodologies, when combined with continuous integration (CI) and continuous
deployment (CD), provide solutions for building better software with a fast time to market,
lower maintenance costs, better overall quality, and higher customer satisfaction.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[60]

While this book is not about agile methodologies as such, we recommend familiarizing
yourself with the subject, and we are going to explain all of the tools and processes related
to it.

In this chapter, we will cover the following topics:

CI, CD, and build and release pipelines
Using Azure DevOps for CI and CD
Creating a free Azure DevOps subscription and your first Azure DevOps project
Organizing your work via work items
Using Git as a version control system (VCS)
Creating an Azure DevOps build pipeline
Creating an Azure DevOps release pipeline

Technical requirements
In order to go through this chapter, the following is required:

Microsoft account
Azure DevOps subscription
GitHub account

CI, CD, and build and release pipelines
When using CI, development teams write code. After a code review, this gets integrated
into a VCS, from where it is built and tested automatically. This normally happens multiple
times a day. Thus, a development team can detect problems and bugs quickly, and fix them
as early as possible, enabling what is commonly called fail fast.

CD is a natural extension of CI since it assures that every application modification, after
being built and tested, is releasable. Development, testing, staging, and production systems
are automatically upgraded through CD.

A pipeline defines a complete development and release workflow. It contains all of the
steps required for conception, development, quality assurance, and testing, until delivery of
the final product. It includes CI and CD processes for building high-quality applications in
an industrialized way.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[61]

Note that you can separate your development process into two different
pipelines—a build pipeline and a release pipeline—or have only one
single pipeline that does it all, depending on your specific needs.

There are various technologies and tools to help you implement an efficient, productive,
fully automated, and industrialized software development process based on CI and CD. We
are going to use Microsoft Azure DevOps in the following examples:

Using Azure DevOps for CI and CD
If you need to collaboratively work together and share code, plan and manage your user
stories and development tasks, track the progress of your features and bugs, all in an agile
environment, then Azure DevOps is perhaps one of the best solutions you can find in the
cloud.

It supports many different programming languages (C#, Java, JavaScript, and more),
various development tools (Visual Studio, Eclipse, and more), and is scalable to any team
size.

Additionally, it is free of charge for up to five users in a private team project, which is very
helpful for trying out the examples shown in this book.

Azure DevOps provides the following main features:

Work items and the Kanban board: Plan and assign work and tasks.
Source code management: Share code in a VCS.
Testing: Create and execute test plans containing test cases.
Azure Artifacts: Share your own NuGet package or any other packages.
Build pipeline: Build code for creating application packages.
Release pipeline: Deploy application packages to different release targets.

For further information on Azure DevOps and all of its features, please go
to https:/ / azure. microsoft. com/ en-us/ services/ devops/ .

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

Continuous Integration Pipeline in Azure DevOps Chapter 3

[62]

Creating a free Azure DevOps subscription and
your first Azure DevOps project
We will now explain how to create your own free Azure DevOps subscription and your
first Azure DevOps project. You are going to use this information later to try out and
understand the examples illustrated within this book:

Go to https:/ /azure. microsoft. com/ en- us/services/ devops/ and click on the1.
Start free button:

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

Continuous Integration Pipeline in Azure DevOps Chapter 3

[63]

Log in with your work, school, or personal Microsoft account:2.

If you are connecting for the first time, enter additional information such as your3.
name, your country, and your email address, and then click on Continue.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[64]

Now that your account is created, let's create a new project. For our example,4.
select Git as Version control, click on Change Details, and then choose Work
item process as Scrum:

Your new project gets generated, and you are now ready to create your first work5.
items and Git repositories, as will be shown in this chapter.

Before you do any application, it is recommended to plan for it. Azure DevOps helps you in
this respect by allowing you to create and manage work items, and we will have a look at
this feature in the next section.

Organizing your work via work items
Work items are used to plan, assign, track, and— more generally speaking—organize your
work during a software development project. They help to better understand what needs to
be done and give insights on the status of your project.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[65]

Some common work item usages are as follows:

Create, prioritize, and track user stories for application features.
Create and track development tasks necessary to implement user stories.
Create, prioritize, and track application bugs.
Determine application quality and application release dates.
Display the progress of user stories, tasks, and bugs in a single Kanban board.

As you have seen before, you can choose the work item process during the Azure DevOps
project creation. This choice defines the standard work item types (WITs) available (agile,
basic, CMMI, and scrum work item processes).

There are more than 14 WITs by default, and you can create your own custom WITs for
advanced scenarios. Most of the time, you will not need to create your own custom WITs.

Possible work item process choices are as follows:

Scrum, if your team uses the scrum methodology and if you want to track your
product backlog items (PBI) on a Kanban board.
Agile, if your team practices an agile methodology but does not want to comply
with specific scrum constraints and terminologies.
CMMI, if your team requires a more formal development task follow-up. With
this, you can track requests, changes, risks, and reviews.

Here is a list of WITs, depending on the work item process:

Domain Scrum Agile CMMI

Product planning PBI
Bug

User story
Bug

Requirement
Change
Bug

Portfolio Epic
Feature

Epic
Feature

Epic
Feature

Task and sprint planning Task Task Task
Bug backlog management Bug Bug Bug

Issue and risk management Impediment Issue
Issue
Risk
Review

Continuous Integration Pipeline in Azure DevOps Chapter 3

[66]

In our examples, we have chosen to use the scrum process. This methodology is one of the
most commonly used in the world to manage and track work items, and if we understand
scrum, it will be easier to apply the knowledge to other scenarios. Therefore, we look at
scrum practical processes next, in the following section.

Understanding the scrum process
In the scrum process, product owners create epics, features, and product backlog items (the
equivalent to user stories). During the sprint planning development, tasks are defined and
linked to product backlog items. Everything is visible to the whole team via a Kanban
board in the cloud:

Testers create and execute test cases by using the Azure DevOps web portal or Microsoft
Test Manager. They create and assign bugs, and code defects and blocking issues can be
tracked, just like the following screenshot shows:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[67]

Azure DevOps allows you to hierarchically organize your work. You can drill up, drill
down, reorder, and modify parent items, as well as use filters in hierarchical views.

For even more information, go to
https://www.visualstudio.com/en-us/docs/work/backlogs/create-you

r-backlog.

Let's now look at the different elements in more detail. An epic can be described as a large
user story with a large amount of work. It must be broken down into features and smaller
product backlog items to be able to fully understand its requirements, and then be
implemented efficiently during multiple sprints:

https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog
https://www.visualstudio.com/en-us/docs/work/backlogs/create-your-backlog

Continuous Integration Pipeline in Azure DevOps Chapter 3

[68]

Features decompose epics into smaller comprehensible parts. They consist of a group of
product backlog items that correspond to the detailed expected functionalities:

A product backlog item is a unit of work that has business value and is small enough to be
completed during a single sprint. If you cannot finish it in a single sprint, then it has to be
considered a feature, and must be decomposed further:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[69]

Tasks describe the development or testing work necessary for implementing the expected
product backlog item functionalities during the sprint. They are linked to product backlog
items for trackability and are able to automatically calculate project advancement.

During a sprint, there are times when a finished task does not entirely do what it was
meant to do in the correct way, or it may cause other parts of a system to behave
incorrectly. These are called bugs and contain issues that have been raised by testers and/or
system users, within the duration of a sprint, which is typically organized in two-week
cycles. Bugs may be assigned to be resolved during a sprint, and they are linked to their
corresponding product backlog items:

After defining epics, features, and product backlog items, you can do your sprint planning
and decide what needs to be done in which iteration. Additionally, the Kanban board
provides a great visual representation, for better understanding:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[70]

The working capacity for each team member can be defined for each sprint, and a work
details report allows you to follow their work achievements in real time:

Furthermore, each work item has a state that changes over time. The state allows you to
track work achievements and filter work items, for better understanding and to detect
issues.

The following table shows the various default work item states, depending on the work
item process:

Scrum Agile CMMI

Work Item States

New
Approved
Committed
Done
Removed

New
Active
Resolved
Closed
Removed

Proposed
Active
Resolved
Closed

Please note that you do not have to follow each status, as defined for
scrum, agile, or CMMI. You can customize and add in different statuses as
you see fit in your specific organization. For example, there are other
enterprises that decide to add in custom statuses to complement the
existing steps, as follows:

Committed-Developed (development is done, ready for QA)
Committed-Tested (QA is finished, ready for product owner
demo and sign-off).

You can query for work items, create graphs, and publish them to your Azure DevOps
project home page. This is a very useful feature if you need to retrieve specific work items
or need to get a holistic view of your project.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[71]

Now, let's look at the following screenshot:

The preceding screenshot shows a query for work items whose title contains the
word game, and respective results are shown in the same window on a lower pane.

Using Git as a VCS
Over the last few years, Git has had considerable success and is now the preferred
distributed VCS among the developer community.

There is great integration between Azure DevOps and Git, and you have some powerful
and productive features at your
disposal (https://www.visualstudio.com/en-us/docs/work/backlogs/connect-work-ite
ms-to-git-dev-ops), including the following:

Git branches can be created from within your backlog or Kanban board.
Git feature branches can easily be created for multiple work items, directly from
the Azure DevOps website.
Pull requests and commits are automatically linked to corresponding work items.
A build Summary page shows work items, which are linked to a commit, as
associated work items.

https://www.visualstudio.com/en-us/docs/work/backlogs/connect-work-items-to-git-dev-ops
https://www.visualstudio.com/en-us/docs/work/backlogs/connect-work-items-to-git-dev-ops

Continuous Integration Pipeline in Azure DevOps Chapter 3

[72]

Let's see how to create a new Git repository, clone it locally, use it within Visual Studio
2019, and create your first commit:

In your Azure DevOps project, click in the left-hand menu on Repos, and then1.
click on the Clone in Visual Studio button:

A new window will be displayed; select Microsoft Visual Studio Web Protocol2.
Handler Selector:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[73]

Visual Studio 2019 is started automatically, and you can authenticate with your3.
work, school, or personal Microsoft account:

Choose the destination folder for your local Git repository, and click on the4.
Clone button to start the download:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[74]

Go to Team Explorer - Home and click on Settings:5.

In Team Explorer - Settings, click on Repository Settings:6.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[75]

In the Ignore & Attributes Files section, click on Add for the ignore file and the7.
attributes file:

Return to Team Explorer - Home, and this time click on Changes, enter a8.
comment for your first commit, and click on the Commit Staged button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[76]

Your first commit was created locally when you clicked on the Commit Staged9.
button; click on the Sync link to push it to the server:

Go to the Azure DevOps website and click on Code in the upper menu; you can10.
see that your created files have been uploaded:

That's it! You have created and initialized your Git repository. It's as easy as that! From
here, you have multiple paths you can follow. For instance, leaving everything in the same
branch is not really a very good idea, especially when you have to maintain multiple
versions of your application.

For guidance on different branching strategies, see https:/ /docs.
microsoft. com/ en- us/ azure/ devops/ repos/ git/ git- branching-
guidance? view= azure- devops.

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops

Continuous Integration Pipeline in Azure DevOps Chapter 3

[77]

Using feature branches
The philosophy behind feature branches is that the first thing you have to do each time you
begin working on a new Azure DevOps feature (or even, Azure DevOps product backlog
item) is to create a new so-called feature branch.

You then work on this branch in complete isolation until you are ready to push your tested
and validated modifications to your master branch (or, in more sophisticated
environments, your development branch). Until it is pushed, it will not interfere with your
other features, neither will it cause bugs or lower the overall quality.

If a project deadline approaches and you have not finished all of the planned features in
time, you do not need to stress anymore! Why? Because you can integrate only the features
that are ready for release. You will have a product with fewer features, but you can be
confident that those features are going to work as expected, without any risks.

Let's look at how to create a feature branch, using Visual Studio 2019 and Git:

Open Visual Studio 2019, go to the Team Explorer - Home tab, and click on the1.
Branches button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[78]

In Team Explorer - Branches, click on the New Branch link:2.

Enter a new feature branch name (use the FEA- prefix), and then click on the3.
Create Branch button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[79]

It must be noted that we're using the FEA- prefix just as good practice, to enable other
members of the team to identify that this is a feature branch. It is not mandatory to put the
FEA- prefix. Different teams agree on different naming conventions for branches.

Merging changes and resolving conflicts
Sometimes, team members work on the same files at the same time, leading to conflicts.
Let's see how to merge changes and resolve conflicts in such a scenario:

Create a text file called HelloWorld.txt and add it to your local repository.1.
Push the file to the server, and update the file both on the server and in your
local repository.
If you try to push a HelloWorld.txt file that has been modified both locally2.
and in the remote repository, you get an error message, and the push fails:

When looking in the output window, you get additional information on the3.
possible reason why your push failed, as follows: Error: Hint: Updates were rejected
because the remote contains work that you do not have locally. This is usually caused
by another repository pushing to the same reference. You may want to first
integrate the remote changes (for example, git pull) before pushing again.

Continuous Integration Pipeline in Azure DevOps Chapter 3

[80]

Click on the Pull link and you will get the remote changes, which will result in a4.
conflict between your local copy and the remote one. Click on either the Resolve
the conflicts or the Conflicts link:

You will now see a list of conflicting files. Click on the conflict you want to5.
resolve, and then click on the Merge button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[81]

You will see the conflicting modifications. Choose which ones you want to keep6.
(the left one, the right one, or both), and click on the Accept Merge button:

Back in the Team Explorer - Resolve Conflicts window, click on the Commit7.
Merge button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[82]

Enter a comment, and click on the Commit All button to finalize and commit the8.
merge locally:

After the commit has been created locally, click on the Sync link, and then on the9.
Push link:

You should now see that the changes have been uploaded to the remote10.
repository:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[83]

In this section, we have seen the basic usage of Git, using mainly the Visual Studio
development environment, but it must also be noted that you can also use the command
line to effect the same commands. There are other software applications—such as GitHub
Desktop, Git Extensions, and many more—that are designed to help you interact with your
repositories, as an abstraction, but they all use the same git commands as underlying
instructions to the VCS, and they all use similar terminology for most commands.

Creating an Azure DevOps build pipeline
After having planned and organized your work and created your Git repository, you
should now configure an Azure DevOps build pipeline, which will allow you to do CI for
your application:

Open Visual Studio 2019, go to the Team Explorer - Home tab, and then click on1.
the Builds button:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[84]

Next, click on the New Build Definition link:2.

The Azure DevOps website is opened, and when you click the new pipeline3.
button and then select your source as Azure Repos, you are presented with a
choice of build definition templates. Select the ASP.NET Core template:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[85]

In the new build definition, enter a name, and select your default agent pool. We4.
recommend using the option Hosted Windows 2019 with VS2019:

To choose a source repository, click on Get sources. For our example, we use the5.
default values (this project, branch: master):

Continuous Integration Pipeline in Azure DevOps Chapter 3

[86]

To enable CI, click on Triggers in the build definition menu, and then tick the6.
Enable continuous integration checkbox:

After verifying that the Git repository and master branch have been selected7.
correctly, click on the Save or Save & queue button. The configuration has been
finished, and a build will automatically be triggered each time code is committed
to the repository:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[87]

Creating a build pipeline is as simple as that. After building, it's only natural that we want
to release our code, so we will look at how we can create a release pipeline next, in the
following section.

Creating an Azure DevOps release pipeline
Alongside your application getting integrated continuously, you have also seen some great
benefits, such as detecting and fixing bugs, and other issues, much faster. Let's not stop
there; improving your development process even further is much easier than you think!

We will now see how to adopt the CD of your application by creating an Azure DevOps
release pipeline:

Open the Azure DevOps website, click on Pipelines in the menu, click on1.
Releases, then on the New definition button, and then select the Empty job
definition template:

Continuous Integration Pipeline in Azure DevOps Chapter 3

[88]

You can now select the Project and the Source (build pipeline), enable the CD,2.
and then click on the Create button:

The release definition gets created, and you can see it in the list.3.

The sample release definition shown does not really do very much for now. We will see a
much more advanced version later that deploys to Azure, in the corresponding Azure
chapters.

Summary
In this chapter, we have learned about CI, CD, and build and release pipelines, including
what the benefits are and how to implement them using Azure DevOps.

We have created a new Azure DevOps subscription and have initialized a new project. We
then explored some of the basic concepts, such as work items and Git for source control.
Finally, we illustrated how to configure an Azure DevOps build pipeline, as well as an
Azure DevOps release pipeline, via a practical example.

In the next two chapters, we will explain the basic concepts of ASP.NET Core 3, including
the start up class, using middleware, routing, error handling, and much more.

2
Section 2: A Practical

Demonstration of ASP.NET
Core 3

In this section, you will learn how to develop a real-world ASP.NET Core 3 application,
from the basics all the way to having a fully functional application. Toward the end of this
section, we'll piece together all the basic concepts we introduced earlier into a usable
application.

This section comprises the following chapters:

Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1
Chapter 5, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2
Chapter 6, Introducing Razor Components and SignalR
Chapter 7, Creating ASP.NET Core MVC Applications
Chapter 8, Creating Web API Applications

4
Basic Concepts of ASP.NET

Core 3 via a Custom
Application: Part 1

In the last three chapters, you have seen what ASP.NET Core 3 is about from a global point
of view, as well as how to set up your development environment, including Visual Studio
2019 (or Visual Studio Code). We have also seen how to set up CI (short for continuous
integration) and CD (short for continuous delivery) pipelines in Azure DevOps with a Git
repository.

This is all really interesting, but very theoretical. Now it is time to do something practical,
time to get right to it, time to build something by yourself!

In this chapter, we are going to build an application to showcase the basic concepts of the
ASP.NET Core 3 Framework. In the following chapters, we will constantly be improving
this application, while using and illustrating the various features of ASP.NET Core 3 and
the technologies surrounding it.

Having gone through the chapter's content, you will have acquired skills in working with
ASP.NET Core 3 start up classes, targeting different .NET Frameworks, working with
middleware, and performing error handling in ASP.NET Core 3.

In this chapter, we will cover the following topics:

The Startup and Program classes
Creating pages and services
Using Node Package Manager (NPM) and layout pages
Applying dependency injection
Using the built-in middleware
Creating your own middleware

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[91]

Working with static files
Using routing, URL redirection, and URL rewriting
Error handling and model validation

Preview of the Tic-Tac-Toe demo application
Let's do something fun! We will build a Tic-Tac-Toe game, also known as noughts and
crosses, or Xs and Os.

In this game that we will build, players will choose who takes the Xs and who takes the Os.
Then, they will be taking turns to mark spaces in a 3×3 grid, one mark per turn. The player
who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row wins
the game, as shown:

x 0
0 x 0
x 0 x

In the preceding diagram, the player with Xs will have won the game because there are
three crosses in a diagonal row, from the top-left corner to the bottom-right corner.

Players will have to enter their emails and names for registration to create an account
before being able to start a game. They will receive a game score after each match, which is
going to be added to their total score.

We will have a leaderboard that is aimed at providing information on player rankings and
top scores, for a series of games played.

When creating a game, a player will have to send an invitation to another player, and then
a specific waiting page will be displayed for them until another player has responded.

Following receipt of the invitation email, the other player can then confirm the request and
join the game. When the two players are online, the game starts.

That is a preview of what we are going to build our demo application around, but talk is
cheap. Let's get started building it up from the next section.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[92]

Building the Tic-Tac-Toe game
As explained in the last chapter, we can use Azure DevOps and its work items to organize
and schedule the implementation of our Tic-Tac-Toe game application. For that, we have to
create epics, features, and product backlog items, and then do sprint planning to prioritize
and decide what has to be implemented first.

As you can see in the following screenshot, we have decided to work on five product
backlog items in the first sprint and have added them to the sprint backlog:

Do you remember what needs to be done next, before implementing any of the new
features? You don't remember? Perhaps feature branches ring a bell?

In the previous chapter, we showed the best practices for creating development branches,
which are isolated and easier to maintain and release. They consist of creating a feature
branch in the Git repository for every new feature that you want to add to your application.

Hence, every developer can work on their specific features within their specific feature
branch, until they have decided that it is ready to be released.

At the end, all of the features ready for release are merged into a development (either
release or master) branch. Then, integration tests are carried out and, if everything is
working as expected, a new application version is delivered.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[93]

The feature we have chosen to work on first is user registration, so the first thing we have
to do is to create a feature branch called FEA-UserRegistration. If you do not know how
to do that, you can go to Chapter 3, Continuous Integration Pipeline in Azure DevOps, and get
a full step-by-step procedure with thorough explanations.

After you have created your feature branch for user registrations in Azure DevOps, it will
look as shown in the following screenshot:

At this point, this is still an empty project with only a history of previous commits, and a
HelloWorld text file that we used to demonstrate how to resolve conflicts.

We will be creating and building an ASP.NET Core 3 solution together on a step-by-step
basis, starting from the following sections.

Conceiving and implementing your first Tic-Tac-
Toe feature
Before we can implement the user registration feature, we have to understand it and decide
how everything should work. We have to define user stories and workflows. For that, we
need to analyze the Tic-Tac-Toe game description mentioned previously in more detail, in
the preview section.

As explained previously, a user can only create and join games if they have a user account.
To create this account, the user has to enter their first name, last name, email address, and a
new password. The system will then verify whether the email address entered is already
registered. A given email address can only be registered once. If the email address is new,
the user account will be generated; if the email address is known, an error will be
displayed.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[94]

Let's look at the user registration process and the different components that have to interact
in order to implement it:

There will be a home page with a link for user registration, where a new user1.
must click on Register in order to create their player account. Clicking on the
user registration link redirects the user to a dedicated registration page.
The registration page will contain a registration form, where the user must enter2.
their personal information and then confirm it.
A JavaScript client will validate the form, submit and send the data to a3.
communication middleware, and then await an outcome.
The communication middleware will receive the request and route it to a4.
registration service.
The registration service will receive the request, verify the integrity of the data,5.
check whether the email has already been used for registration, and either
register the user or return an error message.
The communication middleware will receive the result and route it to the waiting6.
JavaScript client.
The JavaScript client will then redirect the user to start playing games if the result7.
is a success, and it will display an error message if the result is a failure.

The following sequence diagram shows the user registration process. It is often much
easier and quicker to comprehend a process with a more visual representation:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[95]

To get started, we need to create a new empty ASP.NET Core 3 web application, which will
be used for adding various components and packages in this chapter and during the
remainder of the book. We will then add new concepts and functionalities progressively,
which will allow you to really understand what is going on and how everything works:

Start Visual Studio 2019 and click on File | New | Project.1.
In the .NET Core section, choose ASP.NET Core Web Application, enter the2.
application name, the location of your repository, the solution name, and then
click on Create:

Note that if you have not created a Git repository for your application code
yet, you can do it here by ticking the Create new Git repository checkbox.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[96]

Choose the Empty template:3.

A new empty ASP.NET Core 3 web application project will be generated,4.
containing only the Program.cs and Startup.cs files:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[97]

Great! We have created our project and are now ready to implement our first feature! But,
before doing that, let's take some time and see what Visual Studio 2019 has done for us
behind the scenes.

Targeting different .NET Core versions in the
.csproj files of your projects
For every project that Visual Studio 2019 generates, it creates a corresponding .csproj file,
which includes several project-wide settings such as the referenced assemblies, the .NET
Framework target versions, the included files, and folders, as well as multiple others.

For example, when opening the ASP.NET Core 3 project you created previously, you can
see the following structure:

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 </PropertyGroup>

</Project>

You can see the TargetFramework setting, which allows you to define what .NET
Framework versions should be included and used for building and executing the source
code.

In our example, it has been set to netcoreapp3.0, the specific value for using the .NET
Core 3 Framework:

 <TargetFramework>netcoreapp3.0</TargetFramework>

Note that you can refer to multiple .NET Framework versions within your
library projects. In this case, you have to replace the TargetFramework
element with the TargetFrameworks element.
For instance, if you want to cross-target .NET Core 3 and .NET Core 2,
you have to use the following
settings:<TargetFrameworks>netcoreapp3.0;netcoreapp2.0</Targ
etFrameworks>

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[98]

When executing your application in Debug mode by hitting the F5 key, you can see that
multiple folders and files have been created in the application's Debug folder
(/bin/Debug):

If you change the .csproj file and add other target frameworks, you will see that
additional folders will be generated. The DLLs for each specific .NET Framework version
are then put into the corresponding folders:

The preceding example uses the TargetFrameworks settings for .NET Core 2 and .NET
Core 3.

Using the Microsoft.AspNetCore.App
metapackage
When looking in Solution Explorer in the Dependencies | SDK section, you can
see something very interesting, specific to ASP.NET Core 3 projects:
the Microsoft.AspNetCore.App metapackage:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[99]

The Microsoft.AspNetCore.App project dependency was added automatically when
you created your ASP.NET Core 3 web application. This is done by default for this type
of project.

However, Microsoft.AspNetCore.App is not a standard NuGet package, since it does
not contain any code or DLLs. Instead, it acts as a metapackage, referencing other packages
that it depends on. To be more specific, it includes most of the important packages for
ASP.NET Core and Entity Framework Core, together with their internal and external
dependencies, and takes advantage of the .NET Core runtime store.

The main difference between the new Microsoft.AspNetCore.App metapackage, which
targets the .NET Core 3 SDK or later, and the older
Microsoft.AspNetCore.All metapackage, which targeted previous versions of .NET
Core, is the fact that the App metapackage no longer includes third-party dependencies,
which are not primarily supported by Microsoft.

If your project is targeting Microsoft.NET.Sdk.Web then automatically you have access
to the shared framework, and that includes packages for Application Insights,
authentication, authorization, Azure App Services, and many others. In older versions of
.NET Core (version 1.0 and 1.1), you had to add a horde of NuGet packages all by yourself.

Now that Microsoft has created the concept of the ASP.NET Core metapackage, you can
find everything in one place. Furthermore, package trimming excludes binaries, which are
not used, so that they are not published when deploying your applications.

Apart from what is already available to you with the shared framework, there are several
classes that come already installed when you are using the ASP.NET Core 3 Framework,
and we will take a look at them in the next section.

Introduction to the default ASP.NET Core 3
classes
When you create an ASP.NET Core 3 application from any template, be it an MVC
application or an empty template, it will always have the Program class and the Startup
class by default. We now take a look at the most important features in these default classes.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[100]

ASP.NET Core 3 start up classes
For every ASP.NET Core 3 application that you will build, regardless of the template, be it
MVC or indeed an empty template, there will always be minimal plumbing of classes that
are used to make sure you have a working application. For an ASP.NET Core 3 application
to be able to start, there are two main classes that are quite important: the Program class
and the Startup class; both of these are explained in the following section.

Working with the Program class
The Program class is the main entry point for ASP.NET Core 3 applications. In fact,
ASP.NET Core 3 applications are very similar to standard .NET Framework console
applications in this regard. Both have a Main method that is executed when running the
application.

Even the basic signature of the Main method, which accepts an array of strings as
arguments, is the same, as you can see in the following code. To no one's surprise, this is
due to the fact that an ASP.NET Core application is, in reality, a console application hosting
a web application:

 namespace TicTacToe
 {
 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }
 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
 }

Normally, you do not need to touch the Program class in any way. By default, everything
necessary to run your application is already there and pre-configured.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[101]

However, you might want to activate some of the more advanced functionalities.

For instance, you could enable the capturing of errors during server startup and display an
error page. In this case, you just have to use the following instruction:

 webBuilder.CaptureStartupErrors(true);

By default, this setting is not enabled, which means that in case of errors, the host will just
exit. This might not be the desired behavior and we recommend changing this parameter
accordingly.

Two other useful parameters that work together are PreferHostingUrls and UseUrls.
You can indicate whether the host should listen on the standard URLs defined by
Microsoft.AspNetCore.Hosting.Server.IServeror-specific URLs you have
provided. The URLs can have different formats depending on your needs, such as:

An IPv4 address with host and port (for
example, https://192.168.57.12:5000)
An IPv6 address with port (for
example, https://[0:0:0:0:0:ffff:4137:270a]:5500)
A hostname (for example, https://mycomputer:90)
A localhost (for example, https://localhost:443)
A Unix socket (for example, http://unix:/run/dan-live.sock)

Here is an example of how you could set those parameters:

 webBuilder.PreferHostingUrls(true);
 webBuilder.UseUrls("http://localhost:5000");

Here is an example of a Program class, which includes all of the concepts shown
previously:

 public class Program
 {
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[102]

 webBuilder.PreferHostingUrls(true);
 webBuilder.UseUrls("http://localhost:5000");
 });
 }

The default code in the Program class came into being from ASP.NET Core version 2.1,
including version 3. Previous versions made use of WebHostBuilder, instead of a generic
web host that we shall cover in the following section.

Working with .NET Generic Host instead of
WebHostBuilder
Prior to ASP.NET Core 2.1, the Main method defined a host as WebHostBuilder as
follows:

public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseStartup<Startup>()
 .Build();
 host.Run();
 }

This meant that every application was tied to be hosted as a web application. ASP.NET
Core 2.1 introduced the generic host, which allows for applications that do not necessarily
have to process web-based HTTP requests.

There are other applications, such as messaging and background applications, where it
doesn't make sense to be tied to WebHostBuilder abstraction as before and, therefore, a
more generic HostBuilder program initialization abstraction was introduced. An example
of this in its raw form is shown as follows:

public static Task Main(string[] args)
{
 var host = new HostBuilder()
 .Build();
 host.Run();
}

Previous versions of ASP.NET had a CreateWebHostBuilder() method in the Main
method, which is being replaced by the CreateHostBuilder() method in ASP.NET Core
3, and, instead of using a WebHost.CreateDefaultBuilder(args) method, we now
have Host.CreateDefaultBuilder(args).

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[103]

Working with the Startup class
Another autogenerated element, which exists in all types of ASP.NET Core 3 projects, is the
Startup class. As you have seen previously, the Program class mainly handles everything
associated with the hosting environment. The Startup class is all about the preloading and
configuration of your services and middleware. Those two classes are the foundations of all
ASP.NET Core 3 applications.

Let's now look at the basic structure of the Startup class to get a better understanding of
what is provided and how to make the best use of its functionalities:

 public class Startup
 {
 public void ConfigureServices(IServiceCollection services) { }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 { app.UseDeveloperExceptionPage(); }

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 });
 }

There are two methods that will require your attention since you will be working with
them on a fairly regular basis:

The ConfigureServices method, called by the runtime and used to add
services to the container
The Configure method used to configure the HTTP pipeline

We said at the beginning of the chapter that we wanted more practical work, so let's get
back to our Tic-Tac-Toe game and see how to use the Startup class in a real example!

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[104]

We are going to use MVC for implementing the application, but, since you have used the
empty ASP.NET Core 3.0 Web Application template, nothing has been added by Visual
Studio 2019 during project generation. You have to add everything by yourself; what a
wonderful opportunity for a better understanding of how everything works!

The first thing to do is to add MVC to the services configuration. You do that by using the
ConfigureServices method and just adding the MVC Middleware:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews();
 }

You might say that this was too easy; so, what's the catch? There is no catch! Everything in
ASP.NET Core 3 was developed around simplicity, clarity, and developer productivity.

You can see this again when configuring your MVC Middleware and setting the routing
path (we will explain routing in more detail later):

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });

Again, we have here very clear and short instructions that make our lives as developers
easier and more productive. Now is a really good time to be a developer!

In the next step, you need to enable the use of static content within your ASP.NET Core 3
application, in order to use HTML, CSS, JavaScript, and images.

Do you know how to do that? Yes, you are right; you need to add another middleware. You
do that just like before by calling the corresponding app method:

 app.UseStaticFiles();

The following is an example of a Startup.cs class you could use for the Tic-Tac-Toe game
after having configured the various service settings seen previously:

 public class Startup {
 public void ConfigureServices(IServiceCollection services)
 { services.AddControllersWithViews(); }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env){
 if (env.IsDevelopment())

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[105]

 app.UseDeveloperExceptionPage();
 else
 app.UseExceptionHandler("/Home/Error");
 app.UseStaticFiles();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });
 }

Please note that there are many other services that you can add to the ConfigureServices
method, examples of which include services.AddAuthorization(), or
services.AddAspnetCoreIdentity(), already provided for by the ASP.NET Core
Framework, and which, indeed, could be created on your own. Whatever is configured
here is accessible throughout your entire application through dependency injection (DI),
and we have dedicated a section on this in Chapter 5, Basic Concepts of ASP.NET Core 3 via a
Custom Application: Part 2.

Now that we have an idea of the classes that are there by default as start up classes for an
ASP.NET Core application, now is a good time to look at what a basic project structure will
look like, as discussed in the following section.

Preparing the basic project structure
You will surely want to see something running after building the Tic-Tac-Toe game
application. Now that we have defined how everything should work from a functional
point of view, we need to start by creating the basic project structure for the application.

For ASP.NET Core 3 web applications, it is best practice to have the following structure for
your projects:

A Controllers folder, containing all of the controllers of your application.
A Services folder, containing all the services of your application (for example,
external communication services).
A Views folder, containing all the views of your application. This folder should
contain a single Shared subfolder as well as one folder per controller.
A _ViewImports.cshtml file, to define some namespaces to be available in all
views.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[106]

A _ViewStart.cshtml file, to define some code to be executed at the start of
each view rendering (for example, setting the layout page for all views).
A _Layout.cshtml file, to define a common layout for all of your views.

Let's create the project structure:

Start Visual Studio 2019, open the Tic-Tac-Toe ASP.NET Core 3 project you have1.
created, create three new folders called Controllers, Services,
and Views, and then create a subfolder called Shared in the Views folder:

Create a new view page called _ViewImports.cshtml in the Views folder:2.

 @using TicTacToe
 @addTagHelper*, Microsoft.AspNetCore.Mvc.TagHelpers

Create a new view page called _ViewStart.cshtml in the Views folder:3.

 @{ Layout = "~/Views/Shared/_Layout.cshtml"; }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[107]

Right-click on the Views/Shared folder, select Add | New Item, enter Layout4.
in the search box, select MVC View Layout Page, and then click on Add:

Note that the layout page concept will be detailed a little bit later in this
chapter, but don't worry too much; it is not a very complicated concept.

Creating the Tic-Tac-Toe home page
Since the basic project structure is now in place, we need to implement the different
components that need to work together to provide the Tic-Tac-Toe game web application:

Update the Program.cs and Startup.cs files, as explained previously.1.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[108]

Add a new controller, right-click within Solution Explorer on the Controllers2.
folder, and then select Add | Controller...:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[109]

In the Add Scaffold pop-up window, choose MVC Controller - Empty, and3.
name your new controller HomeController:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[110]

Your MVC home controller gets autogenerated, containing a single method. You4.
now need to add a corresponding view by right-clicking on the Index method
name and selecting Add View... from the menu:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[111]

The Add View window helps to define what needs to be generated. Leave the5.
default empty template and enable the usage of the layout page we are going to
modify in the next section of this chapter:

Congratulations! Your view gets autogenerated and you can test your application6.
by pressing F5, or by clicking Debug on the Visual Studio 2019 menu and then
Start Debugging. We will finalize the view later in this chapter by adding more
relevant content to it.

The preceding view generated appears as plain as it could possibly be, and may not
provide the best of user experiences on our web application. To help with making sure that
we create more meaningful content, and systematically so, we will be using layout pages
and NPM to pull in packages that will help advance the look and feel of applications that
we build with ASP.NET Core 3. Let's look at how we can do that in the next section.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[112]

Giving your web pages a more modern look
by using NPM and layout pages
We just saw how to create a basic web page. Knowing how to do that technically is one
thing, but creating web applications that succeed is a different matter entirely. It is not only
about the technical implementation, but also about how to make your application visually
appealing and user-friendly. While this book is not about web design and user experiences,
we want to give you some quick and easy means for building better web applications in
this regard.

For that, we advise using NPM (https:/ /www. npmjs. com/), the most commonly used
package manager on the web, in conjunction with ASP.NET Core layout pages.

NPM has had some remarkable success in the web development community in the last few
years. It helps to install client-side packages with static content such as HTML, CSS,
JavaScript, fonts, and images, including their dependencies.

There is some great integration and support available for NPM in Visual Studio 2019; you
just have to configure it correctly in order to use it efficiently. Let's see how to do that:

Right-click on the Tic-Tac-Toe project, select Add | New Item, enter NPM in the1.
search box, select npm Configuration File, and click on Add:

https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[113]

Adding the npm Configuration File should have added a package.json file.2.
Update this file with the following content:

 {
 "version": "1.0.0",
 "name": "asp.net",
 "private": true,
 "devDependencies": {
 "bootstrap": "4.3.1",
 "jquery": "3.3.1",
 "jquery-validation": "1.17.0",
 "jquery-validation-unobtrusive": "3.2.11",
 "popper.js": "1.14.7"
 }
 }

Build the project and, following a successful build, there will be a folder named3.
npm, which will be created under Dependencies. Right-click on
Dependencies and then click on Restore Package:

The client-side packages (bootstrap, jquery, and more) are then downloaded4.
into the folder you have defined and, by default, it will be (wwwroot/lib). The
static content can now be used within your application:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[114]

In the wwwroot folder, create a folder called css. Add a new style sheet called5.
site.css within this folder:

 body {
 padding-top: 50px;
 padding-bottom: 20px;
 }

 .body-content {
 padding-left: 15px;
 padding-right: 15px;
 }

 /* Set width on the form input elements since they're
 100% wide by default */
 input,
 select,
 textarea {
 max-width: 280px;
 }

The preceding CSS styling code allows our views to be a bit more presentable by setting
padding to keep content from hitting the edges and setting a custom width that we will use
for our input areas, for example, where the user will be typing their name and other details
for registration.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[115]

For validation styles, add the following code to the same site.css file:

 .field-validation-error {
 color: #b94a48;
 }

 .field-validation-valid {
 display: none;
 }

 input.input-validation-error {
 border: 1px solid #b94a48; }

 input[type="checkbox"].input-validation-error {
 border: 0 none; }

 .validation-summary-errors {
 color: #b94a48; }

 .validation-summary-valid {
 display: none;
 }

This will help us to have validation messages with the right look and feel, with a
customized color that will make a user automatically recognize that an error has occurred.
You might have heard the term UX Design, and this is a simple example of UX (short for
user experience) considerations that you will have to make for most applications that you
will ever build.

A successful web application should have a common layout with consistent user experience
when navigating from page to page. This is key for user adoption and user satisfaction.
ASP.NET Core layout pages are the right solution for that.

They can be used to define templates for views in your web applications. All of your views
can either use the same template or different templates that can be used depending on your
specific needs.

Updating the layout page
Go to the head section in _Layout.cshtml and add the following code snippet:

<meta name="viewport" content="width=device-width,
 initial-scale=1.0" />
<title>@ViewData["Title"] - TicTacToe</title>
<environment include="Development">

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[116]

 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
</environment>
<environment exclude="Development">
 <link rel="stylesheet" href="https://stackpath.bootstrapcdn
 .com/bootstrap/4.3.1/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css
 /bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-
 property="position" asp-fallback-test-value="absolute"
 crossorigin="anonymous"
 integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784
 /j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"/></environment>
 <link rel="stylesheet" href="~/css/site.css" />

Create a body section with the following tags, <body></body> and, within the body, create
a header navigation bar with the following code snippet:

<header><nav class="navbar navbar-expand-sm navbar-toggleable-sm
 navbar-light bg-white border-bottom
 box-shadow mb-3">
 <div class="container">
 <a class="navbar-brand" asp-area="" asp-controller="Home" asp-
 action="Index">TicTacToe
 <button class="navbar-toggler" type="button" data-toggle=
 "collapse" data-target=".navbar-collapse" aria-controls=
 "navbarSupportedContent" aria-expanded="false" aria-label=
 "Toggle navigation">
 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-
 reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
 controller="Home" asp- action="Index">Home
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
 controller="Home" asp-action="Privacy">
 Privacy</div></div></nav></header>

Within the same body section, outside of the navigation section, after the closing
</header> tag, add container body content as follows:

 <div class="container body-content">
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 <footer class="border-top footer text-muted">

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[117]

 <div class="container">
 © 2019 - TicTacToe - <a asp-area="" asp-
 controller="Home" asp-action="Privacy">Privacy
 </div>
 </footer>
 </div>

Then, after the body content, add the following references at the bottom that will be used in
a development environment:

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <script src="~/js/site.js" asp-append-version="true"></script>
 @RenderSection("Scripts", required: false)

Additionally, in the case of a production environment, which we will not be using within
the scope of this book, we would have something like the following code snippet:

 <environment exclude="Development">
 <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery
 /3.3.1/jquery.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o
 /NMZxltwRo8QtmkMRdAu8=">
 </script>
 <script src="https://stackpath.bootstrapcdn.com
 /bootstrap/4.3.1/js/bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js
 /bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery &&
 window.jQuery.fn && window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-xrRywqdh3PHs8keKZN+8zzc5TX0GRT
 LCcmivcbNJWm2rs5C8PRhcEn3czEjhAO9o">
 </script>
 </environment>

We are going to use the layout page, as updated with the preceding series of code snippets,
for our sample application.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[118]

Before creating the user registration page in the next section, let's update the home page
created beforehand to show some basic information on the Tic-Tac-Toe game while using
the layout page shown previously:

@{ ViewData["Title"] = "Home Page";
 Layout = "~/Views/Shared/_Layout.cshtml"; }
<div class="row">
 <div class="col-lg-12">
 <h2>Tic-Tac-Toe</h2>
 <div class="alert alert-info">
 <p>Tic-Tac-Toe is a two-player turn-based game.</p>
 <p>Two players will choose who takes the Xs and who takes the Os.
 They will then be taking turns and mark spaces in a
 3×3 grid by putting their marks, one mark per turn.</p>
 <p>A player who succeeds in placing three of his arks in a
 horizontal, vertical, or diagonal row wins the
 game.</p>
 </div>
 <p><h3>Register by clicking <a asp-controller="User
 Registration"asp-view="Index">here</h3</p>
 </div>
</div>

When starting the application, you will see a new home page design, with the text that has
been added earlier, as follows:

You can see in the screenshot that we have a link to allow our application users to register
so that they can play our game. Therefore, we are now at a good point in terms of looking
at how we can create a registration page. We will do that in the following section.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[119]

Creating the Tic-Tac-Toe user registration
page
You will now integrate the second component, the user registration page with its form,
which will allow new users to register to play the Tic-Tac-Toe game:

Add a new folder called Models to the project.1.
Add a new model by right-clicking on the Models folder in your project and2.
selecting Add | Class, and name it UserModel:

 public class UserModel
 {
 public Guid Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Password { get; set; }
 public bool IsEmailConfirmed { get; set; }
 public System.DateTime? EmailConfirmationDate { get;
 set; }
 public int Score { get; set; }
 }

Add a new controller and call it UserRegistrationController (if you do not3.
know how to do this, then refer to the Creating the Tic-Tac-Toe home page section).
Right-click on the method called Index and choose Add View. This time, select4.
the Create template, choose UserModel as the Model class, as mentioned in the
previous point, and enable the usage of the layout page:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[120]

Note that you can leave the layout page empty if you want to use the
_ViewStart.cshtml file in the Shared folder to define a unified
common layout for all your views.
The _ViewStart.cshtml file is used to share settings between views,
while the _ViewImports file is used to share using namespaces and
inject DI instances. Visual Studio 2019 includes two templates for these
files.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[121]

Remove the autogenerated Id, IsEmailConfirmed, EmailConfirmationDate,5.
and Score elements from the view; we do not need them for the user registration
form.
The view is now ready; display it by pressing F5 and clicking on the registration6.
link on the home page:

You will be presented with a form that can be used to fill user details such as first name,
last name, email, and password. Note that the input fields are shorter; to be precise, they
are 280 pixels long because of the CSS styling we did in a previous section; otherwise, they
would span the entire length of the screen.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[122]

We have done the user registration page, but you will quickly notice that a user is a central
part of the application. A user will have to sign in and sign out, be validated in different
ways, and will have other functionalities apart from just being registered. It is not
surprising that we will need to have a user service that will co-ordinate everything that is
happening for a user with the rest of the application. We are going to create a user service
in the next section.

Creating the Tic-Tac-Toe user service
One of the biggest problems faced by developers while developing applications is inter-
component dependencies. These dependencies make it hard to maintain and evolve your
components individually because modifications may adversely impact other dependent
components. For our demo application, we want to make sure that we are able to update
and modify a single component or service, without needing to go and change other
dependent components.

However, be assured, there are mechanisms that allow those dependencies to be broken up,
one of them being DI.

While providing loose coupling, DI allows components to work together. A component
only needs to know the contract implemented by another component to work with it. With
a DI container, components are not directly instantiated, nor are static references used to
find an instance of another component. Instead, it is the responsibility of the DI container to
retrieve the correct instance during runtime.

When a component is designed with DI in mind, it is very evolutive by default and is not
dependent on any other components or behaviors. For example, an authentication service
can use providers for authentication that uses DI, and, if new providers are added, existing
ones will not be impacted.

Using DI to encourage loose coupling
ASP.NET Core 3 includes a very simple built-in DI container, which supports constructor
injection. To make a service available for the container, you have to add it within the
ConfigureService method of the Startup class. Without knowing it, you have already
done that before for MVC:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews();
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[123]

In fact, you have to do the same thing for your own custom services; you have to declare
them within this method. This is really easy to do when you know what you are doing!

However, there are multiple ways of injecting your services and you need to choose which
one best suits your needs:

Transient injection: Creates an instance every time the method is called (for
example, stateless services):

 services.AddTransient<IExampleService, ExampleService>();

Scoped injection: Creates an instance once per request pipeline (for example,
stateful services):

 services.AddScoped<IExampleService, ExampleService>();

Singleton injection: Creates one single instance for the whole application:

 services.AddSingleton<IExampleService, ExampleService>();

Note that you should add the instances for your services by yourself if
you do not want the container to automatically dispose of them. The
container will call the Dispose method of each service instance it creates
by itself.
Here is an example of how to instantiate your services by yourself:
services.AddSingleton(new ExampleService());

Now that you understand how to use DI, let's apply your knowledge and create the next
component for our sample application.

Creating the user service
We have created a home page as well as a user registration page. Users can click on the
register link and fill out a registration form, but the form data is not yet processed in any
way. We are going to add a user service that will have the responsibility of processing user-
related tasks, such as user registration requests. Furthermore, you are going to apply some
of the ASP.NET Core 3 DI mechanisms that you just learned:

Add a new class called UserService.cs to the Services folder.1.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[124]

Add new methods for user registration, and check whether a user is online, with2.
the model created in the previous section as a parameter:

 using TicTacToe.Models;

 public class UserService
 {
 public Task<bool>RegisterUser(UserModel userModel)
 {
 return Task.FromResult(true);
 }
 public Task<bool> IsOnline(string name)
 {
 return Task.FromResult(true);
 }
 }

Right-click on the class and choose Quick Actions and Refactorings, and then3.
click on Extract Interface...:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[125]

Leave all of the default values in the pop-up window and click on OK:4.

Visual Studio 2019 will generate a new file called IUserService.cs, containing5.
the extracted interface definition, as shown here:

 public interface IUserService
 {
 Task<bool>RegisterUser(UserModeluserModel);
 Task<bool> IsOnline(string name);
 }

Update the UserRegistrationController created previously and apply the6.
constructor injection mechanism:

 using TicTacToe.Services;

 public class UserRegistrationController : Controller
 {
 private IUserService _userService;
 public UserRegistrationController(IUserService
 userService)
 {

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[126]

 _userService = userService;
 }

 public IActionResult Index()
 {
 return View();
 }
 }

Add some simple code for processing the user registration7.
within UserRegistrationController (we are adding validation later in the
chapter):

 [HttpPost]
 public async Task<IActionResult> Index(UserModel
 userModel)
 {
 await _userService.RegisterUser(userModel);
 return Content
 ($"User {userModel.FirstName} {userModel.LastName}
 has been registered successfully");
 }

Go to the Startup class and declare UserService within the8.
ConfigureServices method to make it available to the application:

 using TicTacToe.Services;
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews();
 services.AddSingleton<IUserService, UserService>();
 }

Test your application by pressing F5, filling out the registration page, and then9.
clicking on OK. You should get a User has been registered
successfully output.

At this point, you have already created multiple components of the Tic-Tac-Toe application,
and this is very good progress! Please stay focused, since the next section is very important,
as it explains middleware in detail.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[127]

Creating a basic communication middleware
for the Tic-Tac-Toe application
As you have seen before, the Startup class is responsible for adding and configuring
middleware in your ASP.NET Core 3 applications. But what is a middleware? When and
how do you use it, and how do you create your own middleware? Those are all the
questions we are going to discuss now.

Essentially, multiple middleware compose the functionalities of your ASP.NET Core
applications. Even the most basic functionalities, such as serving up static content, are
performed by them, as you may have already noticed.

Working with middleware
Middleware are part of the ASP.NET Core 3 request pipeline for handling requests and
responses. When they are chained together, they can pass incoming requests from one to
another and perform actions before and after the next middleware is called within the
pipeline:

Using middleware allows your applications to be more flexible and evolutive since you can
add and remove middleware easily in the Configure method of the Startup class.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[128]

Furthermore, the order in which you call the middleware in the Configure method is the
order in which they are going to get invoked. It is advisable to call middleware in the
following order so as to ensure better performance, functionality, and security:

Exception handling middleware1.
Static files middleware2.
Authentication middleware3.
MVC Middleware4.

If you do not call them in this order, you might get some unexpected behavior and even
errors, since middleware actions might be applied too late or too early within the request
pipeline.

For example, if you do not call the exception handling middleware first, you might not
catch all of the exceptions that occur before its invocation. Another example is when you
call the response compression middleware after the static files middleware. In this case,
your static files will not be compressed, which might not be the desired behavior. So, take
care of the ordering of your middleware calls; it can make a huge difference.

The following are some of the built-in middleware you can use in your applications (the list
is not exhaustive; there are many more):

Authentication OAuth 2 and OpenID authentication, based on the newest version
of IdentityModel

CORS Cross-origin resource sharing protection, based on HTTP headers
Response caching HTTP response caching
Response compression HTTP response gzip compression
Routing HTTP request routing framework
Session Basic local and distributed session object management

Static files HTML, CSS, JavaScript, and image support including directory
browsing

URL rewriting URL SEO optimization and rewriting

The built-in middleware will be sufficient for the most basic requirements and standard use
cases, but you will surely need to create your own middleware. There are two ways of
doing that: creating them inline in the Startup class or creating them within a self-
contained class.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[129]

Let's look at how to define inline middleware first. Here are the methods available:

Run

Map

MapWhen

Use

The Run method is used to add middleware and immediately return a response, thus short-
circuiting the request pipeline. It does not call any of the following middleware and ends
the request pipeline. It is therefore advisable to place it at the end of your middleware calls
(refer to middleware ordering, discussed previously).

The Map method allows a certain branch to be executed and the corresponding middleware
to be added if the request path starts with a specific path, which means you can effectively
branch the request pipeline.

The MapWhen method provides basically the same concept of branching the request pipeline
and adding a specific middleware, but with control over the branching conditions, since it
is based on the result of a Func<HttpContext, bool> predicate.

The Use method adds middleware and either allows the next middleware to be called in
line or the request pipeline to be short-circuited. However, if you want to pass on the
request after executing a specific action, you have to call the next middleware manually by
using next.Invoke with the current context as a parameter.

Here are some examples of how to use these extension methods, first with ApiPipeline
and WebPipeline:

 private static void ApiPipeline(IApplicationBuilder app) {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to Api
 Pipeline.");
 }); }

 private static void WebPipeline(IApplicationBuilder app) {
 app.MapWhen(context =>
 {
 return context.Request.Query.ContainsKey("usr");
 }, UserPipeline);

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to Web

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[130]

 Pipeline.");
 }); }

Then, there is UserPipeline and the Configure method, which makes use of the
pipelines created:

 private static void UserPipeline(IApplicationBuilder app) {
 app.Run(async context =>
 {
 await context.Response.WriteAsync("Branched to User
 Pipeline.");
 }); }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironmentenv) {
 app.Map("/api", ApiPipeline); app.Map("/web", WebPipeline);

 app.Use(next =>async context =>
 {
 await context.Response.WriteAsync("Called Use.");
 await next.Invoke(context); });

 app.Run(async context =>
 {
 await context.Response.WriteAsync("Finished with Run.");
 }); }

As shown before, you can create your middleware inline, but this is not recommended for
more advanced scenarios. We advise you to put your middleware in self-contained classes
in this case, and the process for doing so is really easy. Middleware is just a class with a
certain structure that is exposed via an extension method.

Creating the communication middleware
Let's perform the following steps:

Create a new folder called Middleware within your project, and then add a new1.
class called CommunicationMiddleware.cs, with the following code:

 using Microsoft.AspNetCore.Http;
 using TicTacToe.Services;
 public class CommunicationMiddleware
 {
 private readonly RequestDelegate _next;
 private readonly IUserService _userService;

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[131]

 public CommunicationMiddleware(RequestDelegate next,
 IUserService userService)
 {
 _next = next;
 _userService = userService;
 }
 public async Task Invoke(HttpContext context)
 {
 await _next.Invoke(context);
 }
 }

Create a new folder called Extensions within your project, and then add a new2.
class called CommunicationMiddlewareExtension.cs, with the following
code:

 using Microsoft.AspNetCore.Builder;
 using TicTacToe.Middleware;
 public static class CommunicationMiddlewareExtension
 {
 public static IApplicationBuilder
 UseCommunicationMiddleware(this IApplicationBuilder app)
 {
 return app.UseMiddleware<CommunicationMiddleware>();
 }
 }

Add a using directive for TicTacToe.Extensions in the Startup class, and3.
then add the communication middleware to the Configure method:

 using TicTacToe.Extensions;
 ...
 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
 {
 ...
 app.UseCommunicationMiddleware();
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}
 /{id?}");
 endpoints.MapRazorPages();
 });
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[132]

Set some breakpoints in the communication middleware implementation and4.
start the application by pressing F5. You will see that the breakpoints will be hit
if everything is working correctly:

This is just a basic example of how to create your own middleware; there are no functional
changes visible between this section and the others. You are going to further implement the
various functionalities for finalizing the Tic-Tac-Toe application in the next chapters, and
the communication middleware seen in this chapter is going to do some real work shortly.

Working with static files
When working with web applications, most of the time, you have to work with HTML,
CSS, JavaScript, and images, which are considered static files by ASP.NET Core 3.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[133]

Access to these files is not available by default, but you saw what needs to be done to allow
static files to be used within your applications at the beginning of the chapter. In fact, you
must add and configure the corresponding middleware to the Startup class to be able to
serve static files:

 app.UseStaticFiles();

Note that, by default, all static files served by this middleware are public
and anyone can access them. If you need to protect some of your files, you
need to either store them outside the wwwroot folder or you need to use
the FileResult controller action, which supports the authorization
middleware.

Furthermore, directory browsing is disabled by default for security reasons. You can,
however, activate it easily if you need to allow users to see folders and files:

Add DirectoryBrowsingMiddleware to the ConfigureService method of1.
the Startup class right after calling the AddControllersWithViews() method:

 services.AddDirectoryBrowser();

From within the Configure method of the Startup class, call the2.
UseDirectoryBrowser method (after calling the
UseCommunicationMiddleware method) to activate directory browsing:

 app.UseDirectoryBrowser();

The preceding code allows us to view the following root folders from the
browser:

Remove the call to the UseDirectoryBrowser method from the Startup class;3.
we do not need it for the sample application.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[134]

Using routing, URL redirection, and URL
rewriting
When building applications, routing is used to map incoming requests to route handlers
(URL matching) and to generate URLs for the responses (URL generation).

The routing capabilities of ASP.NET Core 3 combine and unify the routing capabilities of
MVC and web API that have existed before. They have been rebuilt from the ground up to
create a common routing framework with all of the various features in a single place,
available to all types of ASP.NET Core 3 projects.

Now, let's look at how routing works internally to better understand how it can be useful in
your applications and how to apply it to our Tic-Tac-Toe application example.

For each request received, a matching route is retrieved, based on the request URL. Routes
are processed in the order they appear within the route collection.

To be more specific, incoming requests are dispatched to the corresponding handlers. Most
of the time, this is done based on data in the URL, but you could also use any data in your
requests for more advanced scenarios.

If you are using the MVC Middleware, you can define and create your routes in the
Startup class, as shown at the beginning of the chapter. This is the easiest way to get
started with URL matching and URL generation:

 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });

There is also a dedicated routing middleware that you can use for working with routing in
your applications, which you have seen in the previous section on middleware. You just
have to add it to the Startup class:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddRouting();
 }

The following is an example of how to use it to call the UserRegistration service in the
Startup class.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[135]

Firstly, we add UserService and routing to ServiceCollection:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews();
 services.AddSingleton<IUserService, UserService>();
 services.AddRouting();
 }

Then we make use of them in the Configure method as follows:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{ app.UseStaticFiles();
 var routeBuilder = new RouteBuilder(app);
 routeBuilder.MapGet("CreateUser", context =>
 { var firstName = context.Request.Query["firstName"];
 var lastName = context.Request.Query["lastName"];
 var email = context.Request.Query["email"];
 var password = context.Request.Query["password"];
 var userService = context.RequestServices.
 GetService<IUserService>();
 userService.RegisterUser(new UserModel { FirstName =
 firstName, LastName = lastName, Email = email,
 Password = password });
 return context.Response.WriteAsync($"User {firstName} {lastName}
 has been successfully created.");
 });
 var newUserRoutes = routeBuilder.Build();
 app.UseRouter(newUserRoutes);
 app.UseCommunicationMiddleware();
 app.UseStatusCodePages("text/plain", "HTTP Error - Status Code:
 {0}"); }

If you call it with some query string parameters, you will get the following result:

Another important middleware is the URL rewriting middleware. It provides URL
redirection and URL rewriting functionalities. However, there is a crucial difference
between both that you need to understand.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[136]

URL redirection requires a round-trip to the server and is done on the client-side. The client
first receives a moved permanently 301 or moved temporary 302 HTTP status code, which
indicates the new redirection URL to be used. Then, the client calls the new URL to retrieve
the requested resource, so it will be visible to the client.

URL rewriting, on the other hand, is purely server-side. The server will internally retrieve
the requested resource from a different resource address. The client will not know that the
resource has been served from another URL as it is not visible to the client.

Coming back to the Tic-Tac-Toe application, we can use URL rewriting to give a more
meaningful URL for registering new users. Instead of using UserRegistration/Index,
we can use a much shorter URL, such as /NewUser:

 var options = new RewriteOptions()
 .AddRewrite("NewUser", "/UserRegistration/Index", false);
 app.UseRewriter(options);

Here, the user thinks that the page has been served from /NewUser, while, in reality, it has
been served from /UserRegistration/Index without the user noticing:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[137]

This comes in handy for user experience on your application, when you want the URLs to
be meaningful, and can play a part in search engine optimization, where it is important for
the web crawlers to match what is in the URL and the page content.

Endpoint routing for ASP.NET Core 3
Endpoint routing, which was also known as a dispatcher in its early conception, was
introduced in version 2.2 of ASP.NET Core, and is, by default, recommended for ASP.NET
Core 3.

If you have worked with ASP.NET Core 2.0 and earlier versions, you will find that most
applications either use RouteBuilder, as shown in previous examples, or route attributes
if you are developing APIs, which we will tackle in a later chapter. You will be familiar
with UseMVC() and/or UseRouter() methods, which continue to work in ASP.NET Core
3, but endpoint routing is designed to allow developers to work with applications that are
not meant to use MVC and still use routing to handle requests.

Here is an example of what you will normally find in the Startup class, Configure
method, in applications prior to ASP.NET Core:

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "
 {controller=Home}/{action=Index}/{id?}");
 });

We must note that before we used app.UseMvc, or app.UseRouting in the Configure
method, we always had to define services.AddMvc() in the ConfigureServices
method.

Compare this with the default implementation in an ASP.NET Core 3 application as
follows:

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[138]

 endpoints.MapRazorPages();
 endpoints.MapControllers();
 });

With this implementation, we use endpoints instead of MVC, and therefore we need not
add MVC specifically to the ConfigureServices method, and that alone makes this
implementation a bit more lightweight, cutting out the overhead that comes with MVC,
while it is quite important when we are building applications that do not necessarily need
to follow the MVC architecture.

Our application is starting to grow, and so are the chances of encountering errors. Let's
have a look at how we are going to add error handling to our application in the next
section.

Adding error handling to the Tic-Tac-Toe
application
When developing applications, the question is not whether errors and bugs will occur, but
when they will occur. Building applications is a very complex task and it is nigh on
impossible to think about all of the cases that might occur during runtime. Even if you
think that you have thought about everything, then the environment is not behaving as
expected; for example, a service is not available, or processing a request is taking much
longer than anticipated.

You have two solutions to this problem, which need to be applied at the same time—unit
tests and error handling. Unit tests will ensure correct behavior during development time
from an application point of view, while error handling helps you to be prepared during
runtime for environmental issues. We are going to look at how to add efficient error
handling to your ASP.NET Core 3 applications in this section.

By default, if there is no error handling at all and if an exception occurs, your application
will just stop, users will not be able to use it anymore, and, in the worst-case scenario, there
will be an interruption of service.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[139]

The first thing to do during development time is to activate the default development
exception page; it displays detailed information on exceptions that occur. You have already
seen how to do this at the beginning of the chapter:

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

On the default development exception page, you can deep dive into the raw exception
details for analyzing the stack trace. You have multiple tabs that allow you to look at query
string parameters, client-side cookies, and request headers.

Those are some powerful indicators that enable you to better understand what has
happened and why it has happened. They should help you pinpoint problems and resolve
issues more quickly during development time.

The following is an example of what happens if an exception has occurred:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[140]

However, it is not recommended to use the default development exception page in
production environments because it contains too much information about your system,
which could be used to compromise your system.

For production environments, it is advised to configure a dedicated error page with static
content. In the following example, you can see that the default development exception page
is used during development time and that a specific error page is displayed if the
application is configured to run in a non-development environment:

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

By default, no information is displayed in the case of HTTP error codes between 400 and
599. This includes, for example, 404 (not found) and 500 (internal server error). Users will
just see a blank page, which is not very user-friendly.

You should activate the specific UseStatusCodePages middleware in the Startup class.
This will help you to customize what needs to be displayed in this case. Meaningful
information will help users to better understand what happens within your applications
and will lead to better customer satisfaction.

The most basic configuration could be to just display a text message:

 app.UseStatusCodePages("text/plain", "HTTP Error - Status Code:
 {0}");

The preceding code generates the following:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[141]

But, you can go even further. For instance, you can redirect to specific error pages for
specific HTTP error status codes.

The following example shows how to send a moved temporary 302 (found) HTTP status
code to the client and then redirect them to a specific error page:

 app.UseStatusCodePagesWithRedirects("/error/{0}");

This example shows how to return the original HTTP status code to the client and then
redirect them to a specific error page:

 app.UseStatusCodePagesWithReExecute("/error/{0}");

You can disable HTTP status code pages for specific requests as shown
here:

var statusCodePagesFeature =
 context.Features.Get<IStatusCodePagesFeature>();
 if (statusCodePagesFeature != null)
 {
 statusCodePagesFeature.Enabled = false;
 }

Now that we have seen how to handle errors on the outside, let's look at how to handle
them on the inside, within your applications.

If we go back to the UserRegisterController implementation, we can see that it has
multiple flaws. What if the fields have not been filled in correctly or not at all? What if the
model definition has not been respected? For now, we do not require anything and we do
not validate anything.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[142]

Let's fix that and see how to build an application that is more robust:

Update UserModel, and use decorators, otherwise known as attributes, to set1.
some properties such as Required and DataType. The Required attribute
denotes that the following field has to have a value, and will cause an error
should it not be supplied with one. The DataType attribute specifies that a
field requires a certain data type:

 public class UserModel
 {
 public Guid Id { get; set; }
 [Required()]
 public string FirstName { get; set; }
 [Required()]
 public string LastName { get; set; }
 [Required(), DataType(DataType.EmailAddress)]
 public string Email { get; set; }
 [Required(), DataType(DataType.Password)]
 public string Password { get; set; }
 public bool IsEmailConfirmed { get; set; }
 public System.DateTime? EmailConfirmationDate { get;
 set; }
 public int Score { get; set; }
 }

Update the specific Index method within UserRegistrationController, and2.
then add the ModelState validation code:

 [HttpPost]
 public async Task<IActionResult> Index(UserModel userModel)
 {
 if (ModelState.IsValid)
 {
 await _userService.RegisterUser(userModel);
 return Content($"User {userModel.FirstName}
 {userModel.LastName} has been registered
 successfully");
 }
 return View(userModel);
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[143]

If you do not fill the required fields or you give an invalid email address and3.
click on OK, you will now get a corresponding error message:

For us to reach this stage, we have gone through the process of creating a Model such as the
UserModel, a View such as the preceding one, and a Controller such
as UserRegistrationController. In other words, we have already managed to create a
functioning MVC application in a nutshell! Pat yourself on the back for having come this
far, and expect more exciting stuff as we will be expounding more on ASP.NET Core MVC
applications in the later chapters.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1 Chapter 4

[144]

Summary
In this chapter, you have learned about some of the basic concepts of ASP.NET 3. There was
much to understand and much to see, and we hope you have had some fun trying
everything out by yourself. You have surely made some tremendous progress!

At the beginning, you created the Tic-Tac-Toe project, and then you started implementing
its different components. We explored the Program and Startup classes, saw how to use
NPM and layout pages, learned how to apply DI, and used static files.

Furthermore, we introduced middleware and routing for more advanced scenarios. At the
end, we illustrated how to add efficient error handling to your applications via a practical
example.

In the next chapter, we will continue on and introduce additional concepts such as
WebSockets, globalization, localization, and configuration. We will also learn how to build
our application once and use the same build to run on multiple environments.

5
Basic Concepts of ASP.NET

Core 3 via a Custom
Application: Part 2

The previous chapter gave you some insights into the various functionalities and features
you have at your disposal while using ASP.NET Core 3 for building efficient and more
maintainable web applications. We have explained some of the basic concepts and you
have seen multiple examples of how to apply them to a real-world application called Tic-
Tac-Toe.

You have progressed quite nicely so far since you have assimilated how ASP.NET Core 3
applications are internally structured, how to configure them correctly, and how to extend
them with custom behaviors, which is key for building your own applications in the future.

But let's not stop there! In this chapter, you are going to discover how to best implement the
missing components, evolve the existing ones even further, and add client-side code to
allow you to have a fully-running end-to-end Tic-Tac-Toe application at the end of this
chapter.

In this chapter, we will cover the following topics:

Optimizing client-side development using JavaScript, bundling, and minification
Working with WebSockets for real-time communication scenarios
Taking advantage of session and user cache management
Applying globalization and localization for multilingual user interfaces
Configuring your applications and services
Implementing advanced dependency injection concepts
Building once and running on multiple environments

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[146]

Client-side development using JavaScript
In the previous chapter, you created a home page and a user registration page using the
MVC pattern. You implemented a controller (UserRegistrationController) as well as a
corresponding view for processing user registration requests. Then, you added a service
(UserService) and middleware (CommunicationMiddleware), but we have only just
started, so they aren't finished yet:

Compared to the initial workflow of the Tic-Tac-Toe application, we can see that there are
still multiple things missing, such as working with the whole client-side part,
actually working with the communication middleware, as well as multiple other features
we still need to implement.

Let's start by working on the client-side part and learn how to apply more advanced
techniques. Then, we will learn how to optimize everything as best as possible.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[147]

As you may recall, last time, we stopped after a user had submitted their data to the
registration form, which was sent to the UserService. Here, we just displayed a plain text
message, as follows:

However, processing doesn't stop here. We need to add the whole email confirmation
process using client-side development and JavaScript, and that is what we are going to do
next.

Preliminary email confirmation functionality
In this section, we are going to build a tentative email confirmation functionality to
demonstrate client-side development. This functionality will evolve along the course of this
book and will be perfected in later chapters. But for now, let's create our email confirmation
functionality as follows:

Start Visual Studio 2019 and open the Tic-Tac-Toe project. Add a new method1.
called EmailConfirmation to UserRegistrationController:

 [HttpGet]
 public IActionResult EmailConfirmation (string email)
 {
 ViewBag.Email = email;
 return View();
 }

Right-click on the EmailConfirmation method, generate the corresponding2.
view, and update it with some meaningful information:

 @{
 ViewData["Title"] = "EmailConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <h2>EmailConfirmation</h2>
 An email has been sent to @ViewBag.Email, please
 confirm your email address by clicking on the
 provided link.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[148]

Go to UserRegistrationController and modify the Index method to3.
redirect to the EmailConfirmation method from the previous step, instead of
returning the text message:

 [HttpPost]
 public async Task<IActionResult> Index(UserModel userModel)
 {
 if (ModelState.IsValid)
 {
 await _userService.RegisterUser(userModel);
 return RedirectToAction(nameof(EmailConfirmation),
 new { userModel.Email });
 }
 else
 {
 return View(userModel);
 }
 }

Start the application by pressing F5, register a new user, and verify that the new4.
EmailConfirmation page is displayed correctly:

Here, you have implemented the first set of modifications in order to finalize the user
registration process. In the next section, we need to check that the user has confirmed their
email address.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[149]

Email confirmation by our user
The following steps will help us check the email confirmation:

Add two new methods, GetUserByEmail and UpdateUser, to the1.
IUserService interface. These will be used for handling the email confirmation
updates:

 public interface IUserService
 {
 Task<bool> RegisterUser(UserModel userModel);
 Task<UserModel> GetUserByEmail(string email);
 Task UpdateUser(UserModel user);
 }

Implement these new methods, use a static ConcurrentBag to2.
persist UserModel, and modify the RegisterUser method in UserService, as
follows:

public class UserService : IUserService
{
 private static ConcurrentBag<UserModel> _userStore;
 static UserService() { _userStore = new ConcurrentBag
 <UserModel>(); }

 public Task<bool> RegisterUser(UserModel userModel) {
 _userStore.Add(userModel);
 return Task.FromResult(true); }

 public Task<UserModel> GetUserByEmail(string email) {
 return Task.FromResult(_userStore.FirstOrDefault
 (u => u.Email == email)); }

 public Task UpdateUser(UserModel userModel) {
 _userStore = new ConcurrentBag<UserModel>(_userStore.Where
 (u => u.Email != userModel.Email))
 { userModel };
 return Task.CompletedTask;
 }
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[150]

Add a new model called GameInvitationModel to the Models folder. This will3.
be used for game invitations after successful user registration:

 public class GameInvitationModel
 {
 public Guid Id { get; set; }
 public string EmailTo { get; set; }
 public string InvitedBy { get; set; }
 public bool IsConfirmed { get; set; }
 public DateTime ConfirmationDate { get; set; }
 }

Add a new controller called GameInvitationController and update its Index4.
method to automatically set the InvitedBy property:

using TicTacToe.Services;
public class GameInvitationController : Controller
{
 private IUserService _userService;
 public GameInvitationController(IUserService userService)
 {
 _userService = userService;
 }

 [HttpGet]
 public async Task<IActionResult> Index(string email)
 {
 var gameInvitationModel = new GameInvitationModel
 {InvitedBy = email };
 return View(gameInvitationModel);
 }
 }

Generate a corresponding view by right-clicking on the Index method, selecting5.
the Create template, and selecting
GameInvitationModel(TicTacToe.Models) as the Model class, as shown in
the following screenshot:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[151]

Modify the auto-generated view and remove all the unnecessary input controls,6.
except the EmailTo input control:

@model TicTacToe.Models.GameInvitationModel

<h4>GameInvitationModel</h4>
<div class="row">
 <div class="col-md-4">
 <form asp-action="Index">
 <div asp-validation-summary="ModelOnly" class="text
 -danger"></div>
 <div class="form-group">
 <label asp-for="EmailTo" class="control-label"></label>
 <input asp-for="EmailTo" class="form-control" />
 <span asp-validation-for="EmailTo" class="text
 -danger">
 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-
 primary" />
 </div>
 </form>
 </div>
</div>

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[152]

Now, update the EmailConfirmation method7.
in UserRegistrationController. The user has to be redirected
to GameInvitationController after their email has been confirmed. As you
can see, we are going to simulate this confirmation in the code for now:

 [HttpGet]
 public async Task<IActionResult> EmailConfirmation(
 string email)
 {
 var user = await _userService.GetUserByEmail(email);
 if (user?.IsEmailConfirmed == true)
 return RedirectToAction("Index", "GameInvitation",
 new { email = email });

 ViewBag.Email = email;
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);
 return View();
 }

Start the application by pressing F5, register a new user, and verify that the8.
EmailConfirmation page is displayed. In Microsoft Edge, press F5 to reload the
page, and, if everything is working as expected, you should be redirected to the
game invitation page, as shown in the following screenshot:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[153]

Great—some more progress! Everything is working up until the game invitation now, but
unfortunately, user intervention is still necessary. The user has to manually refresh the
email confirmation page by pressing F5 until their email has been confirmed; only then will
they be redirected to the game invitation page.

The entire refresh process must be automated and optimized in the next step. Your options
are as follows:

Place an HTML meta refresh tag in the head section of the page.
Use simple JavaScript, which does the refresh programmatically.
Implement XMLHttpRequest (XHR) using jQuery.

HTML5 has introduced the meta refresh tag for automatically refreshing pages after a
certain amount of time. However, this method is not advisable because it creates a high
server load. Also, the security setting in Microsoft Edge may completely deactivate it and
some ad blockers will stop it from working. So, if you use it, you cannot be sure that it is
going to work correctly.

Using simple JavaScript may very well automate the page refresh programmatically, but it
has mainly the same flaws and so it isn't recommended either.

Using XMLHttpRequest
We've just mentioned that it's not recommended to use simple JavaScript and meta refresh
tags for the refreshing process, so let's introduce XHR, which is what we are really looking
for. It provides exactly what we need for our Tic-Tac-Toe application as it allows the
following:

Updating web pages without reloading them
Requesting and receiving data from the server, even after page load
Sending data to the server in the background

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[154]

This can be seen in the following diagram:

Now, you are going to use XHR for automating and optimizing the client-side
implementation of the user registration email confirmation process. The steps for doing so
are as follows:

Create a new folder called app in the wwwroot folder (this folder will contain all1.
the client-side code shown in the following steps) and create a subfolder within
this folder called js.
Add a new JavaScript file called scripts1.js to the wwwroot/app/js folder2.
that contains the following content:

 var interval;
 function EmailConfirmation(email) {
 interval = setInterval(() => {

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[155]

 CheckEmailConfirmationStatus(email);
 }, 5000);
 }

Add a new JavaScript file called scripts2.js to the wwwroot/app/js folder3.
that contains the following content:

 function CheckEmailConfirmationStatus(email) {
 $.get("/CheckEmailConfirmationStatus?email=" + email,
 function (data) {
 if (data === "OK") {
 if (interval !== null)
 clearInterval(interval);
 alert("ok");
 }
 });
 }

Open the layout page in the Views\Shared_Layout.cshtml file and add a4.
new development environment element before the closing body tag (it is good
practice to put it here):

 <environment include="Development">
 <script src="~/app/js/scripts1.js"></script>
 <script src="~/app/js/scripts2.js"></script>
 </environment>

Update the Invoke method in the communication middleware and add a new5.
await to access a ProcessEmailConfirmation method called
ProcessEmailConfirmation:

 public async Task Invoke(HttpContext context)
 {
 if (context.Request.Path.Equals(
 "/CheckEmailConfirmationStatus"))
 {
 await ProcessEmailConfirmation(context);
 }
 else
 {
 await _next?.Invoke(context);
 }
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[156]

The ProcessEmailConfirmation method is going to simulate email
confirmation functionality. We define the method as follows:

 private async Task ProcessEmailConfirmation(HttpContext
 context)
 {
 var email = context.Request.Query["email"];
 var user = await _userService.GetUserByEmail(email);

 if (string.IsNullOrEmpty(email))
 { await context.Response.WriteAsync("BadRequest:Email is
 required"); }

 else if ((await _userService.GetUserByEmail
 (email)).IsEmailConfirmed)
 { await context.Response.WriteAsync("OK"); }
 else
 {
 await context.Response.WriteAsync(
 "WaitingForEmailConfirmation");
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 _userService.UpdateUser(user).Wait();
 }
 }

Update the EmailConfirmation view, under the UserRegistration folder, by6.
adding a call to the JavaScript EmailConfirmation function (from the previous
step) at the bottom of the page, as follows:

 @section Scripts
 {
 <script>
 $(document).ready(function () {
 EmailConfirmation('@ViewBag.Email');
 });
 </script>
 }

Update the EmailConfirmation method in UserRegistrationController.7.
Since the communication middleware is going to simulate the
effective email confirmation, remove the following lines:

 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[157]

Start the application by pressing F5 and register a new user. You will see a8.
JavaScript alert box returning WaitingForEmailConfirmation and, after some
time, another with ok:

Now, you have to update the CheckEmailConfirmationStatus method in the9.
scripts2.js file to redirect our users to the game invitation page, in case of a
confirmed email. For that, remove the alert("OK"); instruction and add the
following instruction in its place:

 window.location.href = "/GameInvitation?email=" + email;

Start the application by pressing F5 and register a new user. Everything should10.
be automated and you should be automatically redirected to the game
invitation page at the end:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[158]

Note that, if you still see the alert box, even though you have updated the
project in Visual Studio, you might have to delete the cached data in your
browser to have the JavaScript refreshed correctly in your browser and see
the new behavior.

Optimizing your web applications and using
bundling and minification
As you saw in Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part
1, we have chosen the community-proven Node Package Manager (NPM) as a client-side
package manager. We have left the appsettings.json file untouched, which means that
we have restored the four default packages and added some references within the
ASP.NET Core 3 layout page to use them:

In today's world of modern web application development, it is good practice to separate
client-side JavaScript code and CSS style sheets into multiple files during development.
However, having so many files may lead to performance and bandwidth problems during
runtime in production environments.

That is why, during the build process, everything must be optimized before generating the
final release packages, which means that JavaScript and CSS files must be bundled and
minified. TypeScript and CoffeeScript files must be transcompiled into JavaScript.

Bundling and minification are two techniques you can use to improve the overall page load
performance of your web applications. Bundling allows you to combine multiple files into a
single file, whereas minification optimizes the code of your JavaScript and CSS files for
smaller payloads. They work together to reduce the number of server requests, as well as
the overall request size.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[159]

ASP.NET Core 3 supports different solutions for bundling and minification:

Visual Studio Bundler & Minifier extension
Gulp
Grunt

Bundling and minification in action
Let's learn how to bundle and minify multiple JavaScript files in the Tic-Tac-Toe project by
using the Visual Studio Bundler & Minifier extension with the bundleconfig.json file:

In the top menu, select Extensions, click on Online, enter Bundler in the search1.
box, select Bundler & Minifier, and click on Download:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[160]

Close Visual Studio; the installation will continue. Next, click on Modify:2.

Restart Visual Studio. Now, you are going to optimize the number of opened3.
connections, as well as the bandwidth usage by bundling and minifying. For that,
add a new JSON file called bundleconfig.json to the project.
Update the bundleconfig.json file so that you can bundle the two JavaScript4.
files into a single one called site.js and to minify the site.css and site.js
files:

 [
 {"outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"]},
 {"outputFileName": "wwwroot/js/site.js",
 "inputFiles": [
 "wwwroot/app/js/scripts1.js",
 "wwwroot/app/js/scripts2.js"],
 "sourceMap": true,
 "includeInProject": true },
 {"outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": ["wwwroot/js/site.js"],
 "minify": {
 "enabled": true,
 "renameLocals": true },
 "sourceMap": false }
]

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[161]

Right-click on the project and select Bundler & Minifier | Update Bundles:5.

When looking in the Solution Explorer, you will see that two new files called6.
site.min.css and site.min.js have been generated:

When looking in the Task Runner Explorer, you will see the bundling and7.
minifying process you have configured for the project:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[162]

Right-click on Update all files and select Run. Now, you can see and understand8.
what the process is doing in more detail:

Schedule the process for execution after each build by right-clicking on Update9.
all files and selecting Bindings | After build. A new file called
bundleconfig.json.bindings will be generated, and, if you remove the
wwwroot/js folder and rebuild the project, the files will be auto-generated.
To see the newly generated files in action, go to the Debug* tab in the 10.
project settings and set the ASPNETCORE_ENVIRONMENT variable to Staging.
Then, click Save:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[163]

Start the application by pressing F5, open the developer tools by pressing F12 in11.
Microsoft Edge, and redo the registration process. You will see that only the
bundled and minified site.min.css and site.min.js files have been loaded
and that the load times are faster:

OK, now that we know how to implement the client-side and benefit from bundling and
minification in modern web application development, let's return to the Tic-Tac-Toe game
and optimize it even further and add the missing components.

First, we will look at using Web Sockets for real-time communication.

Working with WebSockets for real-time
communication scenarios
At the end of the previous section, everything was working fully automated, as expected.
However, there is still some room for additional improvements.

As it is, the client-side sends periodical requests to the server-side to see if the email
confirmation status has changed. This may lead to a lot of requests to see if there has been a
status change or not.

Furthermore, the server-side cannot inform the client-side as soon as an email has been
confirmed since it has to wait for a client request to respond to.

In this section, you will learn about the concepts of WebSockets
(https://docs.microsoft.com/en-us/aspnet/core/fundamentals/websockets) and how
they will allow you to optimize your client-side implementations even more.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/websockets

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[164]

WebSockets enable persistent two-way communication channels over TCP, which is
especially interesting for applications that need to run real-time communication scenarios
(chat, stock tickers, games, and more). It just so happens that our example application is a
game, which is one of the main application types that largely benefits from working
directly with a socket connection.

Note that you could also consider SignalR as an alternative. SignalR
provides a better solution for real-time communication scenarios and
encapsulates some of the functionalities that are missing from WebSockets
that we may have implemented manually.
We will cover SignalR in the next chapter, that is, Chapter 6, Introducing
Razor Components and SignalR.

WebSockets in action
Let's optimize the client-side implementation of the Tic-Tac-Toe application by using
WebSockets for real-time communication:

Go to the Tic-Tac-Toe Startup class in the Configure method and add the1.
WebSockets middleware just before the communication middleware and the
MVC middleware (remember that the middleware invocation order is important
for assuring correct behavior):

 app.UseWebSockets();
 app.UseCommunicationMiddleware();
 ...

Update the communication middleware and add two new methods, with the first2.
one being SendStringAsync, as follows:

 private static Task SendStringAsync(WebSocket socket,
 string data, CancellationToken ct =
 default(CancellationToken))
 {
 var buffer = Encoding.UTF8.GetBytes(data);
 var segment = new ArraySegment<byte>(buffer);
 return socket.SendAsync(segment,
WebSocketMessageType.Text,
 true, ct);
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[165]

The second one is ReceiveStringAsync and is used for WebSockets
communication:

private static async Task<string> ReceiveStringAsync(
 WebSocket socket, CancellationToken ct =
 default(CancellationToken))
 {
 var buffer = new ArraySegment<byte>(new byte[8192]);
 using (var ms = new MemoryStream()) {
 WebSocketReceiveResult result;
 do
 { ct.ThrowIfCancellationRequested();
 result = await socket.ReceiveAsync(buffer, ct);
 ms.Write(buffer.Array, buffer.Offset, result.Count);
}

 while (!result.EndOfMessage);
 ms.Seek(0, SeekOrigin.Begin);
 if (result.MessageType != WebSocketMessageType.Text)
 throw new Exception("Unexpected message");

 using (var reader = new StreamReader(ms, Encoding.UTF8))
 { return await reader.ReadToEndAsync(); }
 }
 }

Update the communication middleware and add a new method called3.
ProcessEmailConfirmation for email confirmation processing via
WebSockets:

public async Task ProcessEmailConfirmation(HttpContext context,
WebSocket currentSocket, CancellationToken ct, string email)

 {
 UserModel user = await _userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue &&
 user?.IsEmailConfirmed == false) {
 if (user.IsEmailConfirmed)
 await SendStringAsync(currentSocket, "OK", ct);
 else
 { user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);
 await SendStringAsync(currentSocket, "OK", ct); }

 Task.Delay(500).Wait();
 user = await _userService.GetUserByEmail(email);

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[166]

 }
 }

Update the Invoke method in the communication middleware and add calls to4.
the WebSockets-specific methods from the previous step, while still keeping the
standard implementations for browsers that do not support WebSockets:

public async Task Invoke(HttpContext context) {
 if (context.WebSockets.IsWebSocketRequest)
 {
 var webSocket = await context.WebSockets.
 AcceptWebSocketAsync();
 var ct = context.RequestAborted;
 var json = await ReceiveStringAsync(webSocket, ct);
 var command = JsonConvert.DeserializeObject<dynamic>(json);

 switch (command.Operation.ToString()) {
 case "CheckEmailConfirmationStatus":
 {await ProcessEmailConfirmation(context, webSocket,
 ct, command.Parameters.ToString());
 break; }
 }
 }
 else if
(context.Request.Path.Equals("/CheckEmailConfirmationStatus"))
 //... keep the rest of the method as it was
}

Modify the scripts1.js file and add some WebSockets-specific code for5.
opening and working with sockets:

 var interval;
 function EmailConfirmation(email) {
 if (window.WebSocket) {
 alert("Websockets are enabled");
 openSocket(email, "Email");
 }
 else {
 alert("Websockets are not enabled");
 interval = setInterval(() => {
 CheckEmailConfirmationStatus(email);
 }, 5000);
 }
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[167]

Modify the scripts2.js file but keep6.
the CheckEmailConfirmationStatus function the same. Add some
WebSockets-specific code for opening and working with sockets and also
redirecting the user to the game invitation page if their email has been confirmed:

 var openSocket = function (parameter, strAction) {
 if (interval !== null) clearInterval(interval);

 var protocol = location.protocol === "https:" ? "wss:" : "ws:";
 var operation = ""; var wsUri = "";

 if (strAction == "Email") {
 wsUri = protocol + "//" + window.location.host
 + "/CheckEmailConfirmationStatus";
 operation = "CheckEmailConfirmationStatus"; }

 var socket = new WebSocket(wsUri);
 socket.onmessage = function (response) {
 console.log(response);
 if (strAction == "Email" && response.data == "OK") {
 window.location.href = "/GameInvitation?email=" +
 parameter; } };

 socket.onopen = function () {
 var json = JSON.stringify({ "Operation": operation,
 "Parameters": parameter });
 socket.send(json); };

 socket.onclose = function (event) { };
};

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[168]

When you start the application and proceed with the user registration, you will7.
get the necessary information if WebSockets are supported. If they are, you will
be redirected to the game invitation page like before, but with the benefit of a
much faster processing time:

This concludes our look at client-side development and optimization under ASP.NET Core
3 for the moment. Now, you are going to learn how to further extend and finalize the Tic-
Tac-Toe application with additional ASP.NET Core concepts that will help you in your
daily work while building multi-lingual, production-ready web applications.

As a web application gets busier, we might want to minimize unnecessary round trips that
are requesting data that can be kept for a period of time for retrieval and usage. Let's look at
how to do this by introducing session and user cache management.

Taking advantage of session and user cache
management
As a web developer, you might know that HTTP is a stateless protocol, which means that,
by default, there is not a notion of sessions as such. Each request is handled independently
and no values are retained between different requests.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[169]

Nonetheless, there are different methods for working with data. You can work with query
strings, submit form data, or you can use cookies to store data on the client. However, all
of those mechanisms are more or less manual and need to be managed by yourself.

If you are an experienced ASP.NET developer, you will be familiar with the concepts of
session state and session variables. Those variables are stored on the web server and you
can access them during different user requests so that you have a central place to store and
receive data. Session state is ideal for storing user data specific to a session, without the
need for permanent persistence.

Note that it is good practice to not store any sensitive data in session
variables due to security reasons. Users might not close their browsers;
thus, session cookies might not be cleared (also, some browsers keep
session cookies alive).

Also, a session might not be restricted to a single user, so other users
might continue with the same session, which could cause security risks.

ASP.NET Core 3 provides session state and session variables by using a dedicated session
middleware. Basically, there are two distinct types of session providers:

In-memory session providers (locally to a single server)
Distributed session providers (shared between multiple servers)

In-memory session providers
Let's learn how to activate the in-memory session provider in the Tic-Tac-Toe application
for storing the user interface's culture and language:

Open the layout page in the Views\Shared_Layout.cshtml file and add a1.
new User Interface Language Drop-Down to the main navigation menu. This
will be placed after the other menu items. This will allow users to select between
English and French:

 <li class="dropdown">
 <a class="dropdown-toggle" data-toggle="dropdown"
 href="#">Settings
 <ul class="dropdown-menu multi-level">
 <li class="dropdown-submenu">
 <a class="dropdown-toggle" data-toggle="dropdown"
 href="#">Select your language (@ViewBag.Language)

 <ul class="dropdown-menu">

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[170]

 <li @(ViewBag.Language == "EN" ? "active" : "")>
 <a asp-controller="Home" asp-action="SetCulture"
 asp-route-culture="EN">English
 <li @(ViewBag.Language == "FR" ? "active" : "")>
 <a asp-controller="Home" asp-action="SetCulture"
 asp-route-culture="FR">French

Open HomeController and add a new method called SetCulture. This will2.
contain the code for storing the user culture settings in a session variable:

using Microsoft.AspNetCore.Http;
public IActionResult SetCulture(string culture)
{
 Request.HttpContext.Session.SetString("culture", culture);
 return RedirectToAction("Index");
}

Update the Index method of HomeController in order to retrieve the culture3.
from the culture session variable:

 public IActionResult Index()
 {
 var culture =
 Request.HttpContext.Session.GetString("culture");
 ViewBag.Language = culture;
 return View();
 }

Go to the wwwroot/css/site.css file and add some new CSS classes for a4.
more modern look for the User Interface Language Drop-Down, firstly for
relative positions, and then for different browsers and hovering:

.dropdown-submenu {
 position: relative;
 }

 .dropdown-submenu > .dropdown-menu {
 top: 0;
 left: 100%;
 margin-top: -6px;
 margin-left: -1px;
 -webkit-border-radius: 0 6px 6px 6px;
 -moz-border-radius: 0 6px 6px;
 border-radius: 0 6px 6px 6px;

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[171]

 }

 .dropdown-submenu:hover > .dropdown-menu {
 display: block;
 }

Do the same in site.css by adding the following styling:

 .dropdown-submenu > a:after {
 display: block;
 content: " ";
 float: right;
 width: 0;
 height: 0;
 border-color: transparent;
 border-style: solid;
 border-width: 5px 0 5px 5px;
 border-left-color: #ccc;
 margin-top: 5px;
 margin-right: -10px;
 }

 .dropdown-submenu:hover > a:after {
 border-left-color: #fff;
 }

Finally, add the following snippet:

 .dropdown-submenu.pull-left {
 float: none;
 }

 .dropdown-submenu.pull-left > .dropdown-menu {
 left: -100%;
 margin-left: 10px;
 -webkit-border-radius: 6px 0 6px 6px;
 -moz-border-radius: 6px 0 6px 6px;
 border-radius: 6px 0 6px 6px;
 }

Add the built-in session middleware of ASP.NET Core 3 to the5.
ConfigureServices method of the Startup class:

 services.AddSession(o =>
 {
 o.IdleTimeout = TimeSpan.FromMinutes(30);
 });

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[172]

Activate the session middleware in the Configure method of the Startup class6.
by adding it just after the static files middleware:

 app.UseStaticFiles();
 app.UseSession();

Update the Index method in GameInvitationController by setting the email 7.
session variable, as follows:

 [HttpGet]
 public async Task<IActionResult> Index(string email)
 {
 var gameInvitationModel = new GameInvitationModel {
 InvitedBy = email };
 HttpContext.Session.SetString("email", email);
 return View(gameInvitationModel);
 }

Start the application by pressing F5. You should see the new User Interface8.
Language Drop-Down with the options to select between English and French:

Here, we have used an in-memory session provider, but there is a different type of session
provider that works well in other scenarios and is called a distributed session provider. We
will look at this in the next section.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[173]

Distributed session providers
So far, you have learned how to activate and use session state. However, most of the time,
you will have multiple web servers, not just one, especially in today's cloud environments.
So, how do you store session state out of memory in a distributed cache?

Well, that's easy – you just have to register additional services within the Startup class.
These additional services will provide this functionality. Here are some examples:

Distributed Memory Cache:

 services.AddDistributedMemoryCache();

Distributed SQL Server Cache:

 services.AddDistributedSqlServerCache(o =>
 {
 o.ConnectionString =
_configuration["DatabaseConnection"];
 o.SchemaName = "dbo";
 o.TableName = "sessions";
 });

Distributed Redis Cache:

 services.AddDistributedRedisCache(o =>
 {
 o.Configuration =
_configuration["CacheRedis:Connection"];
 o.InstanceName = _configuration
 ["CacheRedis:InstanceName"];
 });

We have added a new User Interface Language Drop-Down in this section, but you
haven't learned how to handle multiple languages within your applications yet. There's no
time to lose; let's learn how to do this and use the drop-down and session variable for
changing the user interface language on the fly.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[174]

Applying globalization and localization for
multi-lingual user interfaces
Sometimes, your applications achieve success, sometimes even very considerable success,
and so you want to provide them internationally to a wider audience and deploy them at a
larger scale. However, you can't do this easily because you haven't thought of localizing
your applications from the beginning, and now you have to modify your already-running
application with the risk of regressions and destabilizations.

Don't fall into this trap! Think about your target audience and future deployment strategy
from the start!

Localizing your applications should be considered from the beginning of your projects,
especially since it is very easy and straightforward to do when using the ASP.NET Core
3 Framework. It provides existing services and middleware for this purpose.

Building applications that support different languages and cultures for display, input, and
output is called globalization, whereas adapting a globalized application to a specific
culture is called localization.

There are three different methods for localizing ASP.NET Core 3 web applications:

The string localizer
The view localizer
Localizing Data Annotations

Let's take a look at these concepts in more detail.

Globalization and localization concepts
In this section, you will learn about the concepts of globalization and localization and how
they will allow you to further optimize your websites for internationalization.

For additional information on globalization and localization, please visit
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/locali

zation.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[175]

So, how do you get started? Well, first of all, let's look at how to make the Tic-Tac-Toe
application localizable by using the String Localizer:

Go to the Services folder and add a new service called1.
CultureProviderResolverService. This will retrieve the culture set by
looking at the Culture query string, the Culture cookie, and the
Culture session variable (created in the previous section of this chapter).
Implement CultureProviderResolverService by inheriting it2.
from RequestCultureProvider and overriding its specific methods:

 public class CultureProviderResolverService :
 RequestCultureProvider
 {
 private static readonly char[] _cookieSeparator =
 new[] {'|' };
 private static readonly string _culturePrefix = "c=";
 private static readonly string _uiCulturePrefix = "uic=";
 //...
 }

Add the DetermineProviderCultureResult method to the3.
CultureProviderResolverService class:

public override async Task<ProviderCultureResult>
 DetermineProviderCultureResult(HttpContext httpContext)
 {
 if (GetCultureFromQueryString(httpContext,
 out string culture))
 return new ProviderCultureResult(culture, culture);

 else if (GetCultureFromCookie(httpContext, out
culture))
 return new ProviderCultureResult(culture, culture);

 else if (GetCultureFromSession(httpContext, out
 culture))
 return new ProviderCultureResult(culture, culture);

 return await NullProviderCultureResult;
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[176]

Add the following method, which will allow us to get Culture from a query4.
string:

private bool GetCultureFromQueryString(HttpContext httpContext,
out string culture)
 {
 if (httpContext == null)
 {
 throw new ArgumentNullException(nameof(httpContext));
 }

 var request = httpContext.Request;
 if (!request.QueryString.HasValue)
 {
 culture = null;
 return false;
 }

 culture = request.Query["culture"];
 return true;
 }

Add the following method, which will allow us to get Culture from cookies: 5.

private bool GetCultureFromCookie(HttpContext httpContext, out
 string culture)
 {
 if (httpContext == null)
 {
 throw new ArgumentNullException(nameof(httpContext));
 }

 var cookie = httpContext.Request.Cookies["culture"];
 if (string.IsNullOrEmpty(cookie))
 {
 culture = null;
 return false;
 }

 culture = ParseCookieValue(cookie);
 return !string.IsNullOrEmpty(culture);
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[177]

Here's the method that we will use to parse a cookie value: 6.

public static string ParseCookieValue(string value)
{
 if (string.IsNullOrWhiteSpace(value)) return null;
 var parts = value.Split(_cookieSeparator,
 StringSplitOptions.RemoveEmptyEntries);
 if (parts.Length != 2) return null;

 var potentialCultureName = parts[0];
 var potentialUICultureName = parts[1];

 if (!potentialCultureName.StartsWith(_culturePrefix) ||
 !potentialUICultureName.StartsWith(_uiCulturePrefix))
return null;

 var cultureName = potentialCultureName.
 Substring(_culturePrefix.Length);
 var uiCultureName = potentialUICultureName.Substring
 (_uiCulturePrefix.Length);
 if (cultureName == null && uiCultureName == null) return null;
 if (cultureName != null && uiCultureName == null) uiCultureName =
 cultureName;

 if (cultureName == null && uiCultureName != null) cultureName =
uiCultureName;
 return cultureName;
}

Now, add the following method, which allows us to get Culture from the7.
session:

private bool GetCultureFromSession(HttpContext httpContext,
 out string culture)
{
 culture = httpContext.Session.GetString("culture");
 return !string.IsNullOrEmpty(culture);
}

Add the localization service at the top of the ConfigureServices method in the8.
Startup class:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddLocalization(options => options.
 ResourcesPath = "Localization");
 //...
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[178]

Add the localization middleware to the Configure method in the Startup class9.
and define the supported cultures.

Note that the order of adding middleware is important, as you have already seen.
You have to add the localization middleware just before the MVC middleware:

 ...
 var supportedCultures =
 CultureInfo.GetCultures(CultureTypes.AllCultures);
 var localizationOptions = new RequestLocalizationOptions
 {
 DefaultRequestCulture = new RequestCulture("en-US"),
 SupportedCultures = supportedCultures,
 SupportedUICultures = supportedCultures
 };

 localizationOptions.RequestCultureProviders.Clear();
 localizationOptions.RequestCultureProviders.Add(new
 CultureProviderResolverService());

 app.UseRequestLocalization(localizationOptions);

 app.UseMvc(...);

Note that you can use different methods to change the culture of your applications:

Query strings: Provide the culture in the URI
Cookies: Store the culture in a cookie
Browser: Browser page language settings
Custom: Implement your own provider (shown in this example)

In the Solution Explorer, add a new folder called Localization (it will be used10.
to store the resource files) and create a subfolder called Controllers.
Then, within this folder, add a new resource file called
GameInvitationController.resx:

Note that you can put your resource files either into subfolders (for
example, Controllers, Views, and so on) or directly name your files
accordingly (for
example, Controllers.GameInvitationController.resx,
Views.Home.Index.resx, and so on). However, we advise that you use
the folder approach for clarity, readability, and better organization of your
files.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[179]

If you see errors while using your resource files with .NET Core, right-
click on each file and select Properties. Then, check each file to ensure that
the Build Action is set to Content instead of Embedded Resource. These
are bugs that should have been fixed by the final release, but if they
haven't you can use this handy workaround to make everything work as
expected.

 Open the GameInvitationController.resx resource file and add a new11.
GameInvitationConfirmationMessage in English:

In the same Controllers folder, add a new resource file for the12.
French translations called GameInvitationController.fr.resx:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[180]

Go to GameInvitationController, add stringLocalizer, and update13.
the constructor implementation:

 private IStringLocalizer<GameInvitationController>
 _stringLocalizer;
 private IUserService _userService;
 public GameInvitationController(IUserService userService,
 IStringLocalizer<GameInvitationController>
stringLocalizer)
 {
 _userService = userService;
 _stringLocalizer = stringLocalizer;
 }

Add a new Index method to GameInvitationController. This will return a14.
localized message, depending on the application locale settings:

 [HttpPost]
 public IActionResult Index(
 GameInvitationModel gameInvitationModel)
 {
 return Content(_stringLocalizer[
 "GameInvitationConfirmationMessage",
 gameInvitationModel.EmailTo]);
 }

Start the application in English (the default culture) and register a new user until15.
you get the following text message, which should be in English:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[181]

Change the application language to French by using the User Interface Language16.
Drop-Down. Then, register a new user until you get the following text message,
which should now be in French, as shown in the following screenshot:

In this section, you have learned how to localize any type of string within your
applications, which can be useful for some of your specific application use cases. However,
this is not the recommended approach when working with views.

Using the view localizer
The ASP.NET Core 3 Framework provides some powerful features for localizing views.
You are going to use the view localizer approach in the following example:

Update the ConfigureServices method in the Startup class and add the view1.
localization service to the MVC service declaration:

 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix,
 options => options.ResourcesPath = "Localization");

Modify the Views/ViewImports.cshtml file and add the view localizer2.
functionalities so that they will be available for all the views:

 @using Microsoft.AspNetCore.Mvc.Localization
 @inject IViewLocalizer Localizer

Open the home page view and add a new title, which is going to be localized3.
further, as follows:

 <h2>@Localizer["Title"]</h2>

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[182]

In the Solution Explorer, go to the Localization folder and create a subfolder4.
called Views. Then, add two new resource files called Home.Index.resx and
Home.Index.fr.resx to this folder:

Open the Home.Index.resx file and add an entry for the English title:5.

Open the Home.Index.fr.resx file and add an entry for the French title:6.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[183]

Start the application and set the user interface language drop-down to English:7.

Change the application language to French using the User Interface Language8.
Drop-Down. The title should now be displayed in French:

In this section, you've seen how to easily localize your views, but how do you localize
forms that are using Data Annotations within your views? Let's look at this in more detail;
you will be surprised at what the ASP.NET Core 3 Framework has to offer!

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[184]

Localizing Data Annotations
We are going to completely localize the user registration form in the following examples:

In the Solution Explorer, go to the Localization/Views folder and add two1.
new resource files called UserRegistration.Index.resx
and UserRegistration.Index.fr.resx.
Open the UserRegistration.Index.resx file and add a Title and a2.
SubTitle element with English translations:

Open the UserRegistration.Index.fr.resx file and add a Title and a3.
SubTitle element with French translations:

Update the User Registration Index View so that it uses the View Localizer:4.

 @model TicTacToe.Models.UserModel
 @{
 ViewData["Title"] = Localizer["Title"];
 }
 <h2>@ViewData["Title"]</h2>
 <h4>@Localizer["SubTitle"]</h4>
 <hr />
 <div class="row">
 ...

Start the application, set the language to French using the User Interface5.
Language Drop-Down, and go to the user registration page. The titles should be
displayed in French. Click on Create without entering anything in the input
fields and see what happens:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[185]

Something is missing here. You have added localization for the page title, as well as the
subtitle of the user registration page, but we are still missing some localizations for the
form. But what are we missing?

You should have seen for yourself that the error messages haven't been localized and
translated yet. We are using the Data Annotation framework for error handling and form
validation, so how do we localize Data Annotation validation error messages? This is what
we are going look at now:

Add the Data Annotation localization service to the MVC service declaration in1.
the ConfigureServices method of the Startup class:

 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix, options =>
 options.ResourcesPath = "Localization")
 .AddDataAnnotationsLocalization();

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[186]

Go to the Localization folder and create a subfolder called Models. Then, add2.
two new resource files called UserModel.resx and UserModel.fr.resx.
Update the UserModel.resx file with English translations:3.

Next, update the UserModel.fr.resx file with French translations:4.

Go to the Models folder and update the UserModel implementation for the5.
FirstName, LastName, Email, and Password fields so that you can use the
preceding resource files:

 ...
 [Display(Name = "FirstName")]
 [Required(ErrorMessage = "FirstNameRequired")]
 public string FirstName { get; set; }

 [Display(Name = "LastName")]
 [Required(ErrorMessage = "LastNameRequired")]
 public string LastName { get; set; }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[187]

 [Display(Name = "Email")]
 [Required(ErrorMessage = "EmailRequired"),
 DataType(DataType.EmailAddress)]
 [EmailAddress]
 public string Email { get; set; }

 [Display(Name = "Password")]
 [Required(ErrorMessage = "PasswordRequired"),
 DataType(DataType.Password)]
 public string Password { get; set; }
 ...

Rebuild the solution and start the application. You will see that the whole user6.
registration page, including the error messages, is completely translated when
we change the user interface language to French:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[188]

In this section, you have learned how to localize strings, views, and even error messages
using Data Annotations. For that, you have used the built-in features of ASP.NET Core 3
since they contain everything for developing multi-lingual localizable web applications.
The next section is going to give you some insights into how to configure your applications
and services.

Configuring your applications and services
In the previous sections, you have advanced by adding missing components to the user
registration process and even localizing parts of the Tic-Tac-Toe application. However, you
have always simulated the confirmation email by setting the user confirmation
programmatically in code. In this section, we will modify this part so that we really do send
emails to newly registered users and make everything fully configurable.

Adding an email service
First, you are going to add a new email service, which will be used to send emails to users
who have freshly registered on the website. Let's get started:

Within the Services folder, add a new service called EmailService and1.
implement a default SendEmail method, which we will update later:

 public class EmailService
 {
 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 return Task.CompletedTask;
 }
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[189]

Extract the IEmailService interface:2.

Add the new email service to the ConfigureServices method of the Startup3.
class (we want a single application instance, so add it as a singleton):

 services.AddSingleton<IEmailService, EmailService>();

Update UserRegistrationController so that it is able to4.
access EmailService, which we created in the previous step:

 readonly IUserService _userService;
 readonly IEmailService _emailService;
 public UserRegistrationController(IUserService userService,
 IEmailService emailService)
 {
 _userService = userService;
 _emailService = emailService;
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[190]

Update the EmailConfirmation method in UserRegistrationController so5.
that you can call the SendEmail method of EmailService by inserting the
following code between var user=await
_userService.GetUserByEmail(email); and the
user?.IsEmailConfirmed conditional statement check:

 var user = await _userService.GetUserByEmail(email);
 var urlAction = new UrlActionContext
 {
 Action = "ConfirmEmail",
 Controller = "UserRegistration",
 Values = new { email },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

 var message = $"Thank you for your registration on
 our website, please click here to confirm your
 email " + $"
 {Url.Action(urlAction)}";

 try
 {
 _emailService.SendEmail(email,
 "Tic-Tac-Toe Email Confirmation", message).Wait();
 }
 catch (Exception e) { }

Great – you have an email service now, but you aren't done yet. You need to be able to
configure the service so that you can set environment-specific parameters (SMTP server
name, port, SSL, and more) and then send the emails.

Configuring the email service
Nearly all of the services you create in the future will have some kind of configuration,
which should be configurable from the outside of your code.

ASP.NET Core 3 has a built-in Configuration API for this purpose. It provides various
functionalities for reading configuration data from multiple sources during application
runtime. Name-value pairs, which can be grouped into multi-level hierarchies, are used for
configuration data persistence. Furthermore, the configuration data can be automatically
deserialized into Plain Old CLR Objects (POCO), which contain private members and
properties.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[191]

The following configuration sources are supported by ASP.NET Core 3:

Configuration files (JSON, XML, and even classic INI files)
Environment variables
Command-line arguments
In-memory .NET objects
Encrypted user stores
Azure Key Vault
Custom providers

For more information about the Configuration API, please visit https:/ /
docs. microsoft. com/ en- us/aspnet/ core/ fundamentals/ configuration?
tabs= basicconfiguration.

Let's learn how to make the email service quickly configurable by using the ASP.NET Core
3 Configuration API with a JSON configuration file:

Add a new appsettings.json configuration file to the project and add the1.
following custom section. This will be used to configure the email service:

 "Email": {
 "MailType": "SMTP",
 "MailServer": "localhost",
 "MailPort": 25,
 "UseSSL": false,
 "UserId": "",
 "Password": "",
 "RemoteServerAPI": "",
 "RemoteServerKey": ""
 }

In the Solution Explorer, create a new folder called Options at the root of the2.
project. Add a new POCO class called EmailServiceOptions to this folder and
implement some private members, as well as public properties, for the options
we saw previously:

public class EmailServiceOptions
{
 private string MailType { get; set; }
 private string MailServer { get; set; }
 private string MailPort { get; set; }
 private string UseSSL { get; set; }
 private string UserId { get; set; }

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration?tabs=basicconfiguration

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[192]

 private string Password { get; set; }
 private string RemoteServerAPI { get; set; }
 private string RemoteServerKey { get; set; }

 public EmailServiceOptions() { }

 public EmailServiceOptions(string mailType, string mailServer,
 string mailPort, string useSSL,
 string userId, string password, string
 remoteServerAPI,string remoteServerKey) {
 MailType = mailType;
 MailServer = mailServer;
 MailPort = mailPort;
 UseSSL = useSSL;
 UserId = userId;
 Password = password;
 RemoteServerAPI = remoteServerAPI;
 RemoteServerKey = remoteServerKey; }
}

Update the EmailService implementation, add EmailServiceOptions, and3.
add a parameterized constructor to the class:

 private EmailServiceOptions _emailServiceOptions;
 public EmailService(IOptions<EmailServiceOptions>
 emailServiceOptions)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 }

Add a new constructor to the Startup class so that you can configure your email4.
service:

 public IConfiguration _configuration { get; }
 public Startup(IConfiguration configuration)
 {
 _configuration = configuration;
 }

Update the ConfigureServices method of the Startup class:5.

 services.Configure<EmailServiceOptions>
 (_configuration.GetSection("Email"));
 services.AddSingleton<IEmailService, EmailService>();

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[193]

Update the SendEmail method in EmailService. Use the email service options6.
to retrieve the settings from the configuration file, as shown here:

 public Task SendEmail(string emailTo, string
 subject, string message)
 {
 using (var client =
 new SmtpClient(_emailServiceOptions.MailServer,
 int.Parse(_emailServiceOptions.MailPort)))
 {
 if (bool.Parse(_emailServiceOptions.UseSSL) ==
 true)client.EnableSsl = true;

 if (!string.IsNullOrEmpty(_emailServiceOptions.UserId))
 client.Credentials =
 new NetworkCredential(_emailServiceOptions.UserId,
 _emailServiceOptions.Password);

 client.Send(new MailMessage("example@example.com",
 emailTo, subject, message));
 }
 return Task.CompletedTask;
 }

Put a breakpoint into the EmailService constructor and start the application in7.
debug mode by pressing F5. Now, verify that the email service options values
have been retrieved correctly from the configuration file. If you have an SMTP
server, you can also verify that the email has really been sent:

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[194]

In this section, you have learned how to configure your applications and services by using
the built-in Configuration API of ASP.NET Core 3, which allows you to write less code and
be much more productive, all while providing a far more elegant and more maintainable
solution.

Another feature of ASP.NET Core 3 that helps us have maintainable code is its intrinsic
dependency injection (DI) capabilities. Among other advantages, DI ensures that we don't
have too much coupling between classes. We'll have a look at DI in the context of ASP.NET
Core 3 in the next section.

Implementing advanced dependency
injection concepts
In the previous chapter, you saw how DI works and how to use the constructor injection
method. However, if you need to inject many instances during runtime, this method can be
quite cumbersome and can make it complicated to understand and maintain your code.

Therefore, you can use a more advanced technique of DI called method injection. This
allows you to access instances directly from within your code.

Method injection
In the following example, you are going to add a new service for handling game invitations
and updating the Tic-Tac-Toe application. This facilitates email communication, which is
used for contacting other users to join a game, while using method injection:

Add a new service called GameInvitationService in the Services folder for1.
managing game invitations (adding, updating, removing, and more):

public class GameInvitationService
{
 private static ConcurrentBag<GameInvitationModel>
 _gameInvitations;
 public GameInvitationService(){ _gameInvitations = new
ConcurrentBag<GameInvitationModel>();}

 public Task<GameInvitationModel> Add(GameInvitationModel
 gameInvitationModel)
 { gameInvitationModel.Id = Guid.NewGuid();
 _gameInvitations.Add(gameInvitationModel);
 return Task.FromResult(gameInvitationModel); }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[195]

 public Task Update(GameInvitationModel gameInvitationModel)
 { _gameInvitations = new ConcurrentBag<GameInvitationModel>
 (_gameInvitations.Where(x => x.Id !=
gameInvitationModel.Id))
 { gameInvitationModel };
 return Task.CompletedTask; }

 public Task<GameInvitationModel> Get(Guid id)
 { return Task.FromResult(_gameInvitations.FirstOrDefault(x =>
 x.Id == id)); }
}

Extract the IGameInvitationService interface:2.

Add the new game invitation service to the ConfigureServices method of the3.
Startup class (we want a single application instance, so add it as a singleton):

 services.AddSingleton<IGameInvitationService,
 GameInvitationService>();

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[196]

Update the Index method in GameInvitationController and inject an4.
instance of the game invitation service via method injection using the
RequestServices provider:

public IActionResult Index(GameInvitationModel gameInvitationModel,
[FromServices]IEmailService emailService)
{
 var gameInvitationService =
Request.HttpContext.RequestServices.GetService
<IGameInvitationService>();
 if (ModelState.IsValid) {
 emailService.SendEmail(gameInvitationModel.EmailTo,
 _stringLocalizer["Invitation for playing a Tic-Tac-Toe game"],
 _stringLocalizer[$"Hello, you have been invited to play the
 Tic-Tac-Toe game by {0}. For joining the game, please
 click here {1}", gameInvitationModel.InvitedBy,
 Url.Action("GameInvitationConfirmation", GameInvitation",
 new { gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo }, Request.Scheme,
 Request.Host.ToString())]);
 var invitation = gameInvitationService.Add
 (gameInvitationModel).Result;
 return RedirectToAction("GameInvitationConfirmation",
 new { id = invitation.Id }); }
 return View(gameInvitationModel);
}

Don't forget to add the following using statement at the beginning of the
class: using Microsoft.Extensions.DependencyInjection;, If you
don't, the .GetService<IGameInvitationService>(); method can't
be used and you will get build errors.

Add a new method called5.
GameInvitationConfirmation to GameInvitationController:

 [HttpGet]
 public IActionResult GameInvitationConfirmation(Guid id,
 [FromServices]IGameInvitationService
gameInvitationService)
 {
 var gameInvitation =
gameInvitationService.Get(id).Result;
 return View(gameInvitation);
 }

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[197]

Create a new view for the GameInvitationConfirmation method you added6.
previously. This will display a waiting message to the user:

 @model TicTacToe.Models.GameInvitationModel
 @{
 ViewData["Title"] = "GameInvitationConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <h1>@Localizer["You have invited {0} to play
 a Tic-Tac-Toe game
 with you, please wait until the user is connected",
 Model.EmailTo]</h1>
 @section Scripts{
 <script>
 $(document).ready(function () {
 GameInvitationConfirmation('@Model.Id');
 });
 </script>
 }

Add a new method called GameInvitationConfirmation to the scripts1.js7.
file. You can use the same basic structure we used for the existing
EmailConfirmation method:

 function GameInvitationConfirmation(id) {
 if (window.WebSocket) {
 alert("Websockets are enabled");
 openSocket(id, "GameInvitation");
 }
 else {
 alert("Websockets are not enabled");
 interval = setInterval(() => {
 CheckGameInvitationConfirmationStatus(id);
 }, 5000);
 }
 }

Add a method called CheckGameInvitationConfirmationStatus to the8.
scripts2.js file. You can use the same basic structure we used for the existing
CheckEmailConfirmationStatus method:

 function CheckGameInvitationConfirmationStatus(id) {
 $.get("/GameInvitationConfirmation?id=" + id,
 function (data) {
 if (data.result === "OK") {
 if (interval !== null)
 clearInterval(interval);

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[198]

 window.location.href = "/GameSession/Index/" + id;
 }
 });
 }

Update the openSocket method in the scripts2.js file and add the specific9.
game invitation case:

...
if (strAction == "Email") {
 wsUri = protocol + "//" + window.location.host +
"/CheckEmailConfirmationStatus";
 operation = "CheckEmailConfirmationStatus";
}
else if (strAction == "GameInvitation") {
 wsUri = protocol + "//" + window.location.host +
"/GameInvitationConfirmation";
 operation = "CheckGameInvitationConfirmationStatus";
}

var socket = new WebSocket(wsUri);
socket.onmessage = function (response) { console.log(response);
 if (strAction == "Email" && response.data == "OK") {
 window.location.href = "/GameInvitation?email=" + parameter;
 }else if (strAction == "GameInvitation") {
 var data = $.parseJSON(response.data);

 if (data.Result == "OK") window.location.href =
"/GameSession/Index/" + data.Id; } };
 ...

Add a new method called ProcessGameInvitationConfirmation in the10.
communication middleware. This will process game invitation requests without
using WebSockets for browsers that don't support this feature:

private async Task ProcessGameInvitationConfirmation(HttpContext
context)
{
 var id = context.Request.Query["id"];
 if (string.IsNullOrEmpty(id))await context.
 Response.WriteAsync("BadRequest:Id is required");

 var gameInvitationService = context.RequestServices.GetService
 <IGameInvitationService>();
 var gameInvitationModel = await
 gameInvitationService.Get(Guid.Parse(id));

 if (gameInvitationModel.IsConfirmed) await

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[199]

 context.Response.WriteAsync(
 JsonConvert.SerializeObject(new
 {
 Result = "OK",
 Email = gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo
 }));
 else {
 await context.Response.WriteAsync(
 "WaitGameInvitationConfirmation");
 }
 }

Don't forget to add the following using statement at the beginning of the
class:
using Microsoft.Extensions.DependencyInjection;.

Add a new method called ProcessGameInvitationConfirmation with11.
additional parameters to the communication middleware. This will process game
invitation requests while using WebSockets for the browsers that support this:

private async Task ProcessGameInvitationConfirmation(HttpContext
context,
 WebSocket webSocket, CancellationToken ct,
 string parameters)
{
 var gameInvitationService = context.RequestServices.GetService
 <IGameInvitationService>();
 var id = Guid.Parse(parameters);
 var gameInvitationModel = await gameInvitationService.Get(id);
 while (!ct.IsCancellationRequested && !webSocket.
 CloseStatus.HasValue &&
 gameInvitationModel?.IsConfirmed == false) {
 await SendStringAsync(webSocket, JsonConvert.

 SerializeObject(new
 { Result = "OK",
 Email = gameInvitationModel.InvitedBy,
 gameInvitationModel.EmailTo,
 gameInvitationModel.Id }), ct);

 Task.Delay(500).Wait();
 gameInvitationModel = await gameInvitationService.Get(id);
 }
}

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[200]

Update the Invoke method in the communication middleware. This will work12.
with email confirmations and game invitation confirmations from now on, with
and without WebSockets:

public async Task Invoke(HttpContext context)
{
 if (context.WebSockets.IsWebSocketRequest)
 {
 ...
 switch (command.Operation.ToString())
 {
 ...
 case "CheckGameInvitationConfirmationStatus":
 { await
 ProcessGameInvitationConfirmation(context,webSocket, ct,
 command.Parameters.ToString());
 break; }
 }
 }
 else if (context.Request.Path.Equals
 ("/CheckEmailConfirmationStatus"))
 { await ProcessEmailConfirmation(context); }
 else if (context.Request.Path.Equals
 ("/CheckGameInvitationConfirmationStatus"))
 { await ProcessGameInvitationConfirmation(context); }
 else { await _next?.Invoke(context); }
}

In this section, you have learned how to use method injection in your ASP.NET Core 3 web
applications. This is the preferred method for injecting your services and you should use it
whenever applicable.

You have advanced well with the implementation of the Tic-Tac-Toe game. Mostly
everything around user registration, email confirmation, game invitation, and game
invitation confirmation has now been implemented.

Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2 Chapter 5

[201]

Summary
In this chapter, you have learned about some more advanced concepts of ASP.NET Core 3
and implemented some of the missing components of the Tic-Tac-Toe application.

First, you created the client-side parts of the Tic-Tac-Toe web application using JavaScript.
We have explored how to optimize our web applications by using bundling and
minification, as well as WebSockets for real-time communication scenarios.

Furthermore, you have seen how to benefit from the integrated user and session handling,
which was shown in an easy-to-understand example.

Then, we introduced globalization and localization for multilingual user interfaces,
application and service configuration, as well as logging to better understand what is
happening within our applications during runtime.

Finally, using a practical example, we illustrated how to build our applications once and
then adapt them to different environments by using the concepts of multiple
ConfigureServices and Configure methods, as well as multiple Startup classes,
depending on deployment targets.

In the next chapter, we will introduce client-side development with Razor components, or
Blazor, and we will deal with logging for our demo application.

6
Introducing Razor Components

and SignalR
We have so far seen a number of changes that have been introduced in ASP.NET Core 3
compared to previous versions of the framework, including the early-phase offerings of
.NET Core. These have been mentioned in previous chapters through the use of our demo
application, but it's now time to introduce what will be described by many as quite a
significant introduction to ASP.NET Core 3: server-side Blazor, formerly known as Razor
components.

In one section in Chapter 5, Basic Concepts of ASP.NET Core 3: Part 2, we explored at client-
side development using JavaScript. For many developers who are used to the strong typing
and other syntax benefits that come with working on Microsoft tech stacks, Blazor comes to
the rescue. Blazor is an alternative to JavaScript.

Blazor integrates with .NET Core as server-side Blazor, and WebAssembly as client-side
Blazor, and makes it possible to actually run C# directly on the browser and fully replace
JavaScript.

WebAssembly (abbreviated to Wasm), as defined on its official
page, https:/ /webassembly. org/ , is a binary instruction format for a
stack-based virtual machine. Wasm is designed as a portable target for the
compilation of high-level languages such as C/C++/Rust (and, in our case,
C#), enabling deployment on the web for client and server applications.

Client-side Blazor works exclusively from the client-side. Currently, in preview, there is a
prospect of it being shipped with later versions of ASP.NET Core.

Server-side Blazor at this point relies on existing technology, SignalR. A brief introduction
is worthwhile, and we will duly cover what you need to know about it in a later section.

https://webassembly.org/
https://webassembly.org/
https://webassembly.org/
https://webassembly.org/
https://webassembly.org/
https://webassembly.org/
https://webassembly.org/
https://webassembly.org/

Introducing Razor Components and SignalR Chapter 6

[203]

You will learn how to build a simple Blazor application, and how it differs from normal
ASP.NET Core 3. You will learn about the components that constitute a basic Blazor page.
We finish the chapter by explaining logging and telemetry to help with debugging in
production environments. You will learn about different options you have in logging
important information for your application and you will learn how to configure your
applications for logging using a file logger.

You will learn how to configure your application so you can run it in different hosting
environments, be it in development, staging, or production.

The following topics will be covered in this chapter:

Client-side development using C# Razor components
Working with SignalR
Using logging and telemetry for monitoring and supervision purposes
Building once and running on multiple environments

Client-side development using C# Razor
components
In its quest to provide a true full-stack experience on the .NET Core framework, Microsoft
has been experimenting with client-side development using C# Razor components; at the
time of writing, this is called server-side Blazor. There are future plans to release client-side
Blazor, which runs directly on the WebAssembly, but that is beyond the scope of this book.

Microsoft initially released a C# Razor component template for ASP.NET Core 3, but this
has now been renamed the Blazor (server-side) template.

Note that C# Razor and Blazor (server-side) components are essentially
the same. Agreement was reached on using the name server-side Blazor,
influenced by the long-running previously experimental Blazor
project: https:/ /dotnet. microsoft. com/apps/ aspnet/ web- apps/ client

The name server-side Blazor can be misleading because Blazor is primarily meant to enhance
client-side development with dynamic and rich user interfaces.

Let's take a break from our Tic-Tac-Toe demo application and create a simple web app
using the server-side Blazor template. Create a new project using the ASP.NET Core
application framework first and then the Blazor template as follows:

https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client

Introducing Razor Components and SignalR Chapter 6

[204]

When the web application is created, you will immediately notice that it has a project
structure that is generally similar to any ASP.NET Core template with Startup and
Program classes as follows:

Introducing Razor Components and SignalR Chapter 6

[205]

One difference that you will notice immediately is the new .razor file extension that is
meant to identify any Razor components, for example, App.razor, as seen in the preceding
screenshot. Another difference where we call the AddServerSideBlazor() method to the
service collection is found in the Startup class in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddServerSideBlazor();
 ...
}

In the previous code block, we can see that server-side Blazor is added as a service, and
next, in the Configure method, endpoints for Blazor are configured, mainly in order to
accept incoming connections for interactive components via the MapBlazorHub() method:

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapBlazorHub();
 endpoints.MapFallbackToPage("/_Host");
 });

Run the application as it is without changing anything, and you should be able to see the
following in your browser:

The home page displays the Hello, world! text, which is defined in the Index.razor
component, and likewise we have Counter.razor and FetchData.razor components
that determine what is displayed when the respective tabs are clicked.

Introducing Razor Components and SignalR Chapter 6

[206]

As shared components for the whole app, we have MainLayout.razor, which is
responsible for the application's layout, and NavMenu.razor, which defines navigation
items on the left.

In this example template, the Counter component performs all its functionality by itself,
but the FetchData component relies on an external C# service class to provide it with the
data that it needs.

If you take a closer look at the counter functionality, most developers would expect to use
JavaScript, but you will notice that there is no JavaScript in the Counter component. Take a
closer look at any of the Razor components, and you will find no JavaScript or any
reference to it! In fact, in the wwwroot section, for any traditional ASP.NET Core template,
there will be a js folder, which is a glaring omission from our BlazorDemo! All this is by
design; if you are like many backend C# developers who don't do too well with JavaScript,
Blazor will be a relief to you!

Blazor is designed in such a way that you, as a developer, will be able to use C# instead of
JavaScript on the client-side. It must be noted that Blazor can also work side by side with
JavaScript.

Now, let's look at the following code block:

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" onclick="@IncrementCount">Click me</button>

@functions {
 int currentCount = 0;

 void IncrementCount()
 {
 currentCount++;
 }
}

The preceding code snippet represents the basic page component in a Blazor application. It
all starts with routing, in which the exact URL for a page is specified after the @page
directive. In the preceding example, you can access this page by adding /counter to the
URL and will be able to get to this specific page.

Introducing Razor Components and SignalR Chapter 6

[207]

Before we give body some content, just under the @page directive, you can have @using
directives, for example, @using BlazorDemo.Data, should you need to access another
part of the application.

You can also have DI, where you can inject a service such as @inject
WeatherForecastService ForecastService into a page should you need it.

Finally, we have the @functions section, where you can add as many C# functions as you
may need, and this is normally where you would place your JavaScript functions.

Server-side Blazor is so named because, for all the preceding code to work, it is actually
executed on the server. What communication channel does it use to ensure real-time
rendering? We answer this question in the next section:

Working with SignalR
SignalR is a technology that powers the real-time functionality required for server-side
Blazor. But first, let's try and understand what this technology really is, and how
everything fits together.

What is SignalR
SignalR existed prior to the introduction of the ASP.NET Core family of framework
versions, and it was simply designed as a library to cater to real-time communication
between the server and its clients.

It leveraged and improved upon the use of the WebSockets technology, which we covered
in the previous chapter. If you read around the World Wide Web (WWW), you will notice
that most examples for SignalR explain its usage on real-time chat applications, and rightly
so, but there are a lot of applicable situations where it can be utilized as well, including
dashboards, real-time stock trade applications, and so on.

SignalR has been evolving and maturing as a technology, and consequently it works
together with Blazor or Razor components, whose client-side nature relies on robust, but
powerful, communication with the server. We explain how this technology powers server-
side Blazor in the next section.

Introducing Razor Components and SignalR Chapter 6

[208]

SignalR with server-side Blazor or Razor
components
We have had a brief look at server-side Blazor, but one thing we need to always have in
mind is the fact that server-side Blazor uses SignalR to push content from the server to the
client-side instantaneously. SignalR is a library that was designed to deal with situations
where we need real-time, client-side, and server interactions in web applications, using
hubs.

There is a well-documented usage of SignalR for chat applications, but a simple guide as to
when to use SignalR is to look at scenarios where there is a need for a lot of updates from
the server. In the case of server-side Blazor, there are a lot of updates between the client and
the server, all channeled through SignalR. The following diagram illustrates this:

Introducing Razor Components and SignalR Chapter 6

[209]

For this book, which concerns ASP.NET Core 3, it's enough just to know the ecosystem
surrounding the use of SignalR. Most SignalR implementations you will come across
actually work in the background (as in the case of server-side Blazor), abstracted from you,
and therefore we will not delve into how to use it.

Using logging and telemetry for monitoring
and supervision purposes
When you are developing your applications, you use one of the well-known integrated
development environments such as Visual Studio 2019 or Visual Studio Code, as described
in the initial chapters of the book. You do this every day, and most of the things you do
become second nature and you perform them automatically after some time.

It is natural for you to be able to debug your applications and understand what is
happening during runtime by using the advanced debugging features of Visual Studio
2019, for example. Looking up variable values, seeing what methods get called in what
order, understanding what instances are injected, and capturing exceptions, are key to
building applications that are robust and respond to business needs.

Then, when deploying your applications to production environments, you suddenly miss
all of those features. Rarely will you find a production environment where Visual Studio is
installed, but errors and unexpected behaviors will happen and you will need to be able to
understand and fix them as fast as possible.

That is where logging and telemetry come into their own. By instrumenting your
applications and logging when entering and leaving methods, as well as important variable
values or any kind of information you consider important during runtime, you will be able
to go to the application log and see what is happening in the production environment in the
event of issues.

In this section, we go back to our Tic-Tac-Toe demo application, where we are going to
show you how to use logging and exception handling to provide an industrialized solution
to the problem where we only get an exception in production, without the finer details that
can help you to debug the issue.

Introducing Razor Components and SignalR Chapter 6

[210]

ASP.NET Core 3 provides built-in support for logging to the following targets:

Azure App Services
Console
Windows event source
Trace
Debugger output
Application Insights

However, files, databases, and logging services are not supported by default. If you want to
send your logs to these targets, you need to use a third-party logger solution such as
Log4net, Serilog, NLog, Apache, ELMAH, or Loggr.

You can also easily create your own provider by implementing the ILoggerProvider
interface, as follows:

Add a new Class Library (.NET Core) project to the solution and call1.
it TicTacToe.Logging (delete the autogenerated Class1.cs file):

Introducing Razor Components and SignalR Chapter 6

[211]

Add the Microsoft.Extensions.Logging and2.
Microsoft.Extensions.Logging.Configuration NuGet
packages, via NuGet Package Manager:

Add a project reference from the TicTacToe web application project so that we3.
can use assets from the TicTacToe.Logging class library:

Add a new POCO (short for Plain Old CLR Object) class called LogEntry to the4.
TicTacToe.Logging project. This will contain log data, with an event id, the
message for the actual log, the log level, the level (information, warning, or
critical), and finally a timestamp when a log is created:

 public class LogEntry
 {
 public int EventId { get; internal set; }
 public string Message { get; internal set; }
 public string LogLevel { get; internal set; }
 public DateTime CreatedTime { get; internal set; }
 }

Introducing Razor Components and SignalR Chapter 6

[212]

Add a new class called FileLoggerHelper, which will be used for file5.
operations. Then we add field definitions and a constructor. The constructor
makes sure that, every time FileLoggerHelper is instantiated, it is forced to
accept a filename and make it available for use in internal methods such
as InsertLog, as follows:

 public class FileLoggerHelper
 {
 private string fileName;

 public FileLoggerHelper(string fileName)
 {
 this.fileName = fileName;
 }

 static ReaderWriterLock locker = new ReaderWriterLock();

 //....
 }

 }

Let's then add an InsertLog method to the FileLoggerHelper class. The
method creates a file directory if it doesn't already exist, logs events to a file after
acquiring a lock, and then releases them after use. InsertLog is implemented as
follows:

public void InsertLog(LogEntry logEntry)
{
 var directory = System.IO.Path.GetDirectoryName(fileName);

 if (!System.IO.Directory.Exists(directory))
 System.IO.Directory.CreateDirectory(directory);

 try
 {
 locker.AcquireWriterLock(int.MaxValue);
 System.IO.File.AppendAllText(fileName,
 $"{logEntry.CreatedTime} {logEntry.EventId} {logEntry.LogLevel}
 {
 logEntry.Message}" + Environment.NewLine);
 }
 finally
 {
 locker.ReleaseWriterLock();
 }

Introducing Razor Components and SignalR Chapter 6

[213]

Add a new class called FileLogger and implement the ILogger interface. The
file logger concrete class will allow us to make use of the logging functionality
that is available in the ILogger interface template provided by Microsoft in the
.NET Core framework:

public sealed class FileLogger : ILogger
{
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }
 public bool IsEnabled(LogLevel logLevel)
 {
 return (_filter == null || _filter(_categoryName, logLevel));
 }
 public void Log<TState>(LogLevel logLevel, EventId eventId,
 TState state, Exception exception, Func<TState,
Exception, string> formatter)
 {
 throw new NotImplementedException();
 }
}

Before we implement the Log method, let's create our constructor and field
definitions. We make sure that the category name, log level, and filename are all
supplied, and we also create a new instance of FileLoggerHelper as follows:

 private string _categoryName;
 private Func<string, LogLevel, bool> _filter;
 private string _fileName;
 private FileLoggerHelper _helper;

 public FileLogger(string categoryName, Func<string,
 LogLevel,
 bool> filter, string fileName)
 {
 _categoryName = categoryName;
 _filter = filter;
 _fileName = fileName;
 _helper = new FileLoggerHelper(fileName);
 }

Introducing Razor Components and SignalR Chapter 6

[214]

And then there is our main Log method, now implemented as follows:

public void Log<TState>(LogLevel logLevel, EventId eventId, TState
state, Exception exception, Func<TState, Exception, string>
formatter)
{
 if (!IsEnabled(logLevel)) return;
 if (formatter == null) throw new
 ArgumentNullException(nameof(formatter));
 var message = formatter(state, exception);
 if (string.IsNullOrEmpty(message)) return;
 if (exception != null) message += "\n" + exception.ToString();
 var logEntry = new LogEntry
 {
 Message = message,
 EventId = eventId.Id,
 LogLevel = logLevel.ToString(),
 CreatedTime = DateTime.UtcNow
 };
 _helper.InsertLog(logEntry);
}

Add a new class called FileLoggerProvider and implement the6.
ILoggerProvider interface. This is used to supply FileLogger instances of
ILogger when required by ASP.NET Core, and will be injected later:

 public class FileLoggerProvider : ILoggerProvider
 {
 private readonly Func<string, LogLevel, bool> _filter;
 private string _fileName;

 public FileLoggerProvider(Func<string, LogLevel, bool>
 filter, string fileName)
 {
 _filter = filter;
 _fileName = fileName;
 }

 public ILogger CreateLogger(string categoryName)
 {
 return new FileLogger(categoryName, _filter,
_fileName);
 }

 public void Dispose() { }
 }

Introducing Razor Components and SignalR Chapter 6

[215]

To simplify calling the file logging provider from the web application, we need7.
to add a static class called FileLoggerExtensions (with the configuration
section, filename, and log verbosity level as parameters):

 public static class FileLoggerExtensions
 {
 const long DefaultFileSizeLimitBytes = 1024 * 1024 *
 1024;
 const int DefaultRetainedFileCountLimit = 31;
 }

Our FileLoggerExtensions class will have three different overloads on
the AddFile method. Now, let's add our first implementation of the AddFile
method:

public static ILoggingBuilder AddFile(this ILoggingBuilder
loggerBuilder, IConfigurationSection configuration)
{
 if (loggerBuilder == null) throw new
 ArgumentNullException(nameof(loggerBuilder))
 if (configuration == null) throw new
 ArgumentNullException(nameof(configuration));
 var minimumLevel = LogLevel.Information;
 var levelSection = configuration["Logging:LogLevel"];
 if (!string.IsNullOrWhiteSpace(levelSection))
 {
 if (!Enum.TryParse(levelSection, out minimumLevel))
 {
 System.Diagnostics.Debug.WriteLine("The minimum level setting
 `{0}` is invalid", levelSection);
 minimumLevel = LogLevel.Information;
 }
 }
 return loggerBuilder.AddFile(configuration[
 "Logging:FilePath"], (category, logLevel) => (logLevel >=
 minimumLevel), minimumLevel);
 }

And then there is the second overload for the AddFile method:

public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggerBuilder, string filePath, Func<string, LogLevel,
 bool> filter, LogLevel minimumLevel =
 LogLevel.Information)
 {
 if (String.IsNullOrEmpty(filePath)) throw
 new ArgumentNullException(nameof(filePath));

Introducing Razor Components and SignalR Chapter 6

[216]

 var fileInfo = new System.IO.FileInfo(filePath);

 if (!fileInfo.Directory.Exists)
 fileInfo.Directory.Create();

 loggerBuilder.AddProvider(new FileLoggerProvider
 (filter, filePath));

 return loggerBuilder;
 }

Then, there is the third overload implementation for the AddFile method:

public static ILoggingBuilder AddFile(this ILoggingBuilder
 loggerBuilder, string filePath, LogLevel minimumLevel =
 LogLevel.Information)
 {
 if (String.IsNullOrEmpty(filePath)) throw
 new ArgumentNullException(nameof(filePath));

 var fileInfo = new System.IO.FileInfo(filePath);

 if (!fileInfo.Directory.Exists)
 fileInfo.Directory.Create();

 loggerBuilder.AddProvider(new FileLoggerProvider
 ((category,
 logLevel) => (logLevel >= minimumLevel), filePath));

 return loggerBuilder;
 }

In the TicTacToe web project, add two new options, called8.
LoggingProviderOption and LoggingOptions, to the Options folder:

 public class LoggingProviderOption
 {
 public string Name { get; set; }
 public string Parameters { get; set; }
 public int LogLevel { get; set; }
 }
 public class LoggingOptions
 {
 public LoggingProviderOption[] Providers { get; set; }
 }

Introducing Razor Components and SignalR Chapter 6

[217]

In the TicTacToe web project, add a new extension called9.
ConfigureLoggingExtension to the Extensions folder:

 public static class ConfigureLoggingExtension
 {
 public static ILoggingBuilder
AddLoggingConfiguration(this
 ILoggingBuilder loggingBuilder, IConfiguration
 configuration)
 {
 var loggingOptions = new LoggingOptions();
 configuration.GetSection("Logging").
 Bind(loggingOptions);

 foreach (var provider in loggingOptions.Providers)
 {
 switch (provider.Name.ToLower())
 {
 case "console": { loggingBuilder.AddConsole();
 break;
 }
 case "file": {
 string filePath = System.IO.Path.Combine(
 System.IO.Directory.GetCurrentDirectory(),
 "logs",
 $"TicTacToe_{System.DateTime.Now.ToString(
 "ddMMyyHHmm")}.log");
 loggingBuilder.AddFile(filePath,
 (LogLevel)provider.LogLevel);
 break;
 }
 default: { break; }
 }
 }
 return loggingBuilder;
 }
 }

Go to the Program class of the TicTacToe web application project, update10.
the BuildWebHost method, and call the extension:

 public static IHostBuilder CreateHostBuilder(string[] args)
 =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);

Introducing Razor Components and SignalR Chapter 6

[218]

 webBuilder.PreferHostingUrls(true);
 webBuilder.UseUrls("http://localhost:5000");
 webBuilder.ConfigureLogging((hostingcontext,
 logging) =>
 {
 logging.AddLoggingConfiguration(
 hostingcontext.Configuration);
 });
 });

Don't forget to add the following using statement at the beginning of the
class:
using TicTacToe.Extensions;.

Add a new section called Logging to the appsettings.json file:11.

 "Logging": {
 "Providers": [
 {
 "Name": "Console",
 "LogLevel": "1"
 },
 {
 "Name": "File",
 "LogLevel": "2"
 }
],
 "MinimumLevel": 1
 }

Start the application and verify that a new log file has been created in a folder12.
called logs within the application folder:

Introducing Razor Components and SignalR Chapter 6

[219]

This is the first step and is straightforward and quick to complete. You now have a log file
to which you can write your logs. You will see that it is just as easy to use the integrated
logging functionalities to create logs from anywhere within your ASP.NET Core 3
applications (Controllers, Services, and more).

Let's quickly add some logs to the Tic-Tac-Toe application:

Update the UserRegistrationController constructor implementation so that1.
we supply a logger instance for the entire controller:

 readonly IUserService _userService;
 readonly IEmailService _emailService;
 readonly ILogger<UserRegistrationController> _logger;
 public UserRegistrationController(IUserService userService,
 IEmailService emailService,
 ILogger<UserRegistrationController>
 logger)
 {
 _userService = userService;
 _emailService = emailService;
 _logger = logger;
 }

Update the EmailConfirmation method in2.
UserRegistrationController and add a log at the start of the method:

 _logger.LogInformation($"##Start## Email confirmation
 process for {email}");

Update the EmailService implementation, and add a logger to its constructor3.
so that it is available to the email service:

public class EmailService : IEmailService
 {
 private EmailServiceOptions _emailServiceOptions;
 readonly ILogger<EmailService> _logger;
 public EmailService(IOptions<EmailServiceOptions>
 emailServiceOptions, ILogger<EmailService> logger)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 _logger = logger;
 }
 }

Introducing Razor Components and SignalR Chapter 6

[220]

And then replace the SendMail method in EmailService with the
following:

 public Task SendEmail(string emailTo, string subject,
 string message)
 {
 try
 {
 _logger.LogInformation($"##Start sendEmail## Start
 sending Email to {emailTo}");

 using (var client = new
 SmtpClient(_emailServiceOptions.MailServer,
 int.Parse(_emailServiceOptions.MailPort)))
 {
 if (bool.Parse(_emailServiceOptions.UseSSL)
 == true)
 client.EnableSsl = true;

 if (!string.IsNullOrEmpty
 (_emailServiceOptions.UserId))
 client.Credentials = new NetworkCredential
 (_emailServiceOptions.UserId,
 _emailServiceOptions.Password);

 client.Send(new MailMessage
 ("ken@afrikancoder.co.za", emailTo, subject,
 message));
 }
 }
 catch (Exception ex) { _logger.LogError($"Cannot
 send email {ex}"); }

 return Task.CompletedTask;
 }

Introducing Razor Components and SignalR Chapter 6

[221]

Then, open the generated log file and analyze its contents, after running the 4.
application and registering a new user:

You will notice that the start of the email confirmation process and the start of sending an
email have all been duly recorded in the logs. The failure to send an email itself has also
been logged as an exception with its stack trace.

Building once and running on multiple
environments
After building your applications, you have to think about deploying them to different
environments. As you have already seen in the previous section on configuration, you can
use configuration files to change the configuration of your services and even your
application.

In the case of multiple environments, you have to duplicate the appsettings.json file for
each environment and name it accordingly: appsettings.{EnvironmentName}.json.

Introducing Razor Components and SignalR Chapter 6

[222]

ASP.NET Core 3 will automatically retrieve configuration settings in hierarchical order,
first from the common appsettings.json file and then from the corresponding
appsettings.{EnvironmentName}.json file, while adding or replacing values if
necessary.

However, developing conditional code that uses different components based on different
deployment environments and configurations seems to be complicated at first. In
traditional applications, you must create a lot of code to handle all of the different
operations by yourself and then maintain it.

In ASP.NET Core 3, you have a vast number of internal functionalities at your disposal to
achieve this goal. You can then simply use environment variables (development, staging,
production, and more) to indicate a specific runtime environment, thus configuring your
application for that environment.

As you will see during this section, you can use specific method names and even class
names to use existing injection and override mechanisms, provided by ASP.NET Core 3 out
of the box, to configure your applications.

In the following example, we are adding an environment-specific component (SendGrid) to
the application, which only has to be used if the application is deployed to a specific
production environment (Azure):

Add the Sendgrid NuGet package to the project. This will be used for future1.
Azure production deployments of the Tic-Tac-Toe application:

Introducing Razor Components and SignalR Chapter 6

[223]

Add a new service called SendGridEmailService within the Services folder.2.
This will be used to send emails via SendGrid. Have it inherit the
IEmailService interface and implement the specific SendEmail method.
Firstly, the constructor:

 public class SendGridEmailService : IEmailService
 {
 private EmailServiceOptions _emailServiceOptions;
 private ILogger<EmailService> _logger;
 public SendGridEmailService(IOptions<EmailServiceOptions>
 emailServiceOptions, ILogger<EmailService> logger)
 {
 _emailServiceOptions = emailServiceOptions.Value;
 _logger = logger;
 }
 //....
 }

And then add a SendMail method to the same SendGridEmailService class:3.

public Task SendEmail(string emailTo, string subject, string
 message)
{
 _logger.LogInformation($"##Start## Sending email via
 SendGrid to :{emailTo} subject:{subject} message:
 {message}");
 var client = new SendGrid.SendGridClient(_emailServiceOptions.
 RemoteServerAPI);
 var sendGridMessage = new SendGrid.Helpers.Mail.SendGridMessage
 {
 From = new SendGrid.Helpers.Mail.EmailAddress(
 _emailServiceOptions.UserId)
 };
 sendGridMessage.AddTo(emailTo);
 sendGridMessage.Subject = subject;
 sendGridMessage.HtmlContent = message;
 client.SendEmailAsync(sendGridMessage);
 return Task.CompletedTask;
}

Add a new extension method to more easily declare specific email services for4.
specific environments. For that, go to the Extensions folder and add a
new EmailServiceExtension class:

 public static class EmailServiceExtension
 {
 public static IServiceCollection AddEmailService(

Introducing Razor Components and SignalR Chapter 6

[224]

 this IServiceCollection services, IHostingEnvironment
 hostingEnvironment, IConfiguration configuration)
 {
 services.Configure<EmailServiceOptions>
 (configuration.GetSection("Email"));
 if (hostingEnvironment.IsDevelopment() ||
 hostingEnvironment.IsStaging())
 {
 services.AddSingleton<IEmailService, EmailService>();
 }
 else
 {
 services.AddSingleton<IEmailService,
 SendGridEmailService>();
 }
 return services;
 }
 }

Update the Startup class to use the created assets. For better readability and5.
maintainability, we will go even further and create a
dedicated ConfigureServices method for each environment we have to
support, remove the existing ConfigureServices method, and add the
following environment-specific ConfigureServices methods. First, we
configure the definitions and constructor:

public IConfiguration _configuration { get; }
 public IHostingEnvironment _hostingEnvironment { get; }
 public Startup(IConfiguration configuration,
 IHostingEnvironment hostingEnvironment)
 {
 _configuration = configuration;
 _hostingEnvironment = hostingEnvironment;
 }

Secondly, we configure common services:

public void ConfigureCommonServices(IServiceCollection services)
{
 services.AddLocalization(options => options.ResourcesPath =
 "Localization");
 services.AddMvc().AddViewLocalization(
 LanguageViewLocationExpanderFormat.Suffix, options =>
 options.ResourcesPath =
"Localization").AddDataAnnotationsLocalization();
 services.AddSingleton<IUserService, UserService>();
 services.AddSingleton<IGameInvitationService,

Introducing Razor Components and SignalR Chapter 6

[225]

 GameInvitationService>();
 services.Configure<EmailServiceOptions>
 (_configuration.GetSection("Email"));
 services.AddEmailService(_hostingEnvironment, _configuration);
 services.AddRouting();
 services.AddSession(o =>
 {
 o.IdleTimeout = TimeSpan.FromMinutes(30);
 });
 }

And finally, we configure a few specific services:

 public void ConfigureDevelopmentServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

 public void ConfigureStagingServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

 public void ConfigureProductionServices(
 IServiceCollection services)
 {
 ConfigureCommonServices(services);
 }

Note that you could also apply the same approach to the
Configure method in the Startup class. For that, you just remove the
existing Configure method and add new methods for the environments
you would like to support, such as ConfigureDevelopment,
ConfigureStaging, and ConfigureProduction. The best practice
would be to combine all common code into a ConfigureCommon method
and call it from the other methods, as shown here for
specific ConfigureServices methods.

Start the application by pressing F5 and verify that everything is still running6.
correctly. You should see that the added methods will automatically be used and
that the application is fully functional.

Introducing Razor Components and SignalR Chapter 6

[226]

That was easy and straightforward! No specific conditional code for the environments,
nothing complicated to evolve and to maintain; just very clear and easy-to-understand
methods that contain the environment name they have been developed for. This constitutes
a very clean solution to the problem of building once and running on multiple
environments.

But that is not all! What if we told you that you do not need to have a single Startup class?
What if you could have a dedicated Startup class for each environment with only the code
applicable to its context? That would be great, right? Well, that is exactly what ASP.NET
Core 3 provides.

To be able to use dedicated Startup classes for each environment, you just have to update
the Program class, the main entry point for ASP.NET Core 3 applications. You change a
single line in the BuildWebHost method to pass the assembly name
.UseStartup("TicTacToe") instead of .UseStartup<Startup>(), and then you can
use this fantastic feature:

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .CaptureStartupErrors(true)
 .UseStartup("TicTacToe")
 .PreferHostingUrls(true)
 .UseUrls("http://localhost:5000")
 .UseApplicationInsights()
 .Build();
 }
 }

Now, you can add dedicated Startup classes for different environments, such
as StartupDevelopment, StartupStaging, and StartupProduction. As with the
method approach before, they will be used automatically; nothing else needs to be done on
your side. Just update the Program class, implement your environment-specific Startup
classes, and it works. ASP.NET Core 3 really makes our lives much easier by providing
these useful features.

Introducing Razor Components and SignalR Chapter 6

[227]

Summary
In this chapter, we were introduced to server-side Blazor, which, in all aspects, deserves a
book on its own, and you are encouraged to find extra reading material on Blazor should
you want to be proficient in using this new addition to ASP.NET Core. We looked at how to
create a basic application with server-side Blazor, and we looked at the most important
components for every Blazor application.

We then introduced SignalR as one of the underlying technologies that make server-side
Blazor work, and again, additional reading is recommended for more advanced readers.
For most developers, just having an awareness of how SignalR fits within the Blazor
ecosystem will be fine for now.

We had a look at telemetry and logging to help us with troubleshooting problems when we
publish our applications in production. We learned in detail how to configure and use file
logging.

Lastly, we introduced you to the fact that you can change settings, and even configure what
services you want to run, depending on the environment.

Having had a walkthrough and a high-level view of most important building blocks for
ASP.NET Core 3, all the way from the first chapter, we are now well placed to go into
somewhat more detail, starting with ASP.NET Core MVC in the next chapter.

7
Creating ASP.NET Core MVC

Applications
Most of today's modern web applications are based on the Model View Controller pattern,
also commonly called MVC. You may have noticed that we also used it in the previous
chapters to build the foundations of the Tic-Tac-Toe demo application. So, you have
already worked with the MVC architecture in multiple places, without even knowing what
was happening in the background and why it was important to apply this specific pattern.

Since its first release in 2007, the ASP.NET MVC framework has proven itself over the
years, until effectively becoming the market standard. Microsoft has successfully evolved it
into an industrialized and efficient framework with high developer productivity. There are
many examples of web applications that take full advantage of the multiple features MVC
has to offer. One great example is Stack Overflow. It provides information to developers
and has a very high user base, with the need to scale to thousands, or even millions, of
users at the same time.

In this chapter, you will acquire the skills that will allow you to create an MVC application
and ascertain what kind of device is accessing your application. You will also learn how to
use Tag Helpers and create View Components and partial views, and will also be equipped
with the skills you need to be able to create unit and integration tests.

First, we will start by dissecting what an MVC application consists of from a high-level
view and then go a bit deeper into the finer details, such as view pages and components.
Then, we will look at view engines, how to structure projects, and layering our project.

Creating ASP.NET Core MVC Applications Chapter 7

[229]

In this chapter, we will cover the following topics:

Understanding the Model View Controller pattern
Creating dedicated layouts for multiple devices
Understanding ASP.NET Core state management
Using view pages, partial views, View Components, and Tag Helpers
Dividing a web application into multiple areas
Applying advanced concepts such as view engines, unit tests, and integration
tests
Layering ASP.NET Core 3 applications

Understanding the Model View Controller
pattern
The MVC pattern separates applications into three main layers: models, views,
and controllers. One of the benefits of this pattern is the separation of concerns (SoC),
which can also be described as the Single Responsibility Principle (SRP), which makes it
possible for us to develop, debug, and test application features independently.

In software engineering, it is considered good practice to keep similar
functionality as a unit. Mixing different responsibilities in a unit is
considered an anti-pattern. There are other terms, such as heavy coupling,
that describe a similar scenario where, for example, changing one aspect
of a class requires changes in others to create a ripple effect. To avoid this
effect, concepts of SoC and SRP were coined and are encouraged as they
greatly help in unit testing as well, making sure the required functionality
does what it purports to do.

When using the MVC pattern, a user request is routed to a Controller, which will use
a Model to retrieve data and perform actions. The Controller selects a corresponding View
for the user while providing it with the necessary data from the Model. There is less of an
impact if a layer (for example, the Views layer) changes since it is now loosely coupled to
the other layers of your applications (for example, controllers and models). It is also much
easier to test the different layers of your applications. In the end, you will have better
maintainability and more robust code by using this pattern:

Creating ASP.NET Core MVC Applications Chapter 7

[230]

It must be mentioned that this is a simplistic diagram and shows the main concentration
areas for unit testing and integration testing. A better understanding of each component
and how it relates to the others will be provided in the following sections.

Models
A model contains the logical data structures as well as the data of your
applications, independent of their visual representations. In the context of ASP.NET Core 3,
it also supports localization and validation, as you have seen in the previous chapters.

Models can be created in the same project with your views and controllers or in a
dedicated project for better organization of our solution project.

In ASP.NET Core 3, scaffolding uses models to auto-generate views. Furthermore, models
can be used to bind forms to entity objects automatically. In terms of data persistence,
various data storage targets can be used. In the case of databases, you should be using
Entity Framework Core's object-relational mapper (ORM), which will be introduced in
Chapter 9, Accessing Data Using Entity Framework Core 3. Models are serialized when we
work with web APIs.

Creating ASP.NET Core MVC Applications Chapter 7

[231]

Views
A view provides a visual representation and user interface elements of your applications.
When using ASP.NET Core 3, views are written using HTML, Razor markup, and Razor
components. Views generally have a .cshtml file extension and in the case of using the
Blazor template, which we introduced in Chapter 6, Introducing Razor Components and
SignalR, they have a .razor file extension.

A view either contains a complete web page, a web page part (called a partial view), or
a layout. In ASP.NET Core 3, a view can be separated into logical subdivisions with
their own behaviors, which are called View Components.

Additionally, Tag Helpers allow you to centralize and encapsulate HTML code in a
single tag and use it across all your applications.

ASP.NET Core 3 already includes many already existing Tag Helpers that improve
developer productivity.

Controllers
A controller manages the interactions between models and views. It provides the logical
behavior and business logic of your applications. It chooses which view has to be
rendered for a specific user request.

Generally speaking, since controllers provide the main application entry point, this means
that they control how applications should respond to user requests.

Unit tests
The main goal of unit tests is to validate business logic. Normally, unit tests are put into
their own external unit test projects. Multiple test frameworks are available for you to use,
with the main ones being xUnit, NUnit, and MSTest.

As we mentioned previously, since everything is completely decoupled when using the
MVC pattern, you can test your controllers at any point independently from the other parts
of your applications by using unit tests.

Creating ASP.NET Core MVC Applications Chapter 7

[232]

Integration tests
The end-to-end validation of application functionalities is done via integration tests.

Integration tests check that everything is working as expected from an application user
point of view. Therefore, controllers and their corresponding views are tested together.
Like unit tests, integration tests are normally put into their own testing projects and
you can use a variety of testing frameworks (xUnit, NUnit, or MSTest). You may, however,
also need to use a web server automation toolkit for this type of test, an example of which is
Selenium. It must be noted that there is a thin line between integration tests and functional
tests, which is a term that other developers use interchangeably, but nonetheless, they are
different. Functional tests are more involved than integration tests in the sense that they are
used for end-to-end testing and cover the functionality in an application. Integration tests
are mainly there to see how certain components actually work with different components.
In other words, how do they integrate?

Now that we have looked at the general and high-level picture of what an MVC application
consists of, let's get some hands-on experience working with it. The best place to start is
with views. This is what our users will be seeing; after all, we all know the term customers
first, right? Our users may actually prefer to browse our application through a mobile
phone instead of using a desktop PC. How are we going to know which device is accessing
our application? How do we make our views responsive so that we can cater for different
sized browser screens? We'll answer these questions in the next section.

Creating dedicated layouts for multiple
devices
Modern web applications use web page layouts to provide a consistent and coherent
style. It is good practice to use HTML in combination with CSS to define this layout. In
ASP.NET Core 3, the common web page layout definition is centralized on a layout page.

The layout page, usually called _Layout.cshtml, includes all the common user interface
elements, such as the header, the menu, the sidebar, and the footer. Furthermore, common
CSS and JavaScript files are referenced in the layout page so that they can be used
throughout your entire application. This allows you to reduce code in your views, thus
helping you to apply the Don't Repeat Yourself (DRY) principle.

Creating ASP.NET Core MVC Applications Chapter 7

[233]

We have been using a layout page since the very early versions of the Tic-Tac-Toe demo
application, that is, when we added it for the first time in Chapter 4, Basic Concepts of
ASP.NET Core 3 via a Custom Application: Part 1, to give our application a modern look, as
you can see here:

Up until this point, our application has been more or less set up for the default browser,
which is the PC. Is there any way we can differentiate our code based on respective
devices? We'll look at the steps to achieve this in the next section.

The layout page in more detail
In this section, we will take a look at the layout page in more detail to understand what it is
and how to take advantage of its features so that we can create dedicated layouts for
multiple devices with different form factors (PCs, mobile phones, tablets, and more).

In Chapter 4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1, we added a
layout page called _Layout.cshtml within the Views/Shared folder. When opening this
page and analyzing its content, you can see that it contains common elements that are
applicable to all the pages within your application (header, menu, footer, CSS, JavaScript,
and more):

Creating ASP.NET Core MVC Applications Chapter 7

[234]

The common head section within the layout page contains CSS links but also search engine
optimization (SEO) tags such as title, description, and keywords. As you have already
seen, ASP.NET Core 3 provides a neat feature that allows you to include environment-
specific content automatically via environment tags (development, staging, production, and
more).

Bootstrap has become a quasi-standard for rendering menu and navigation bar
components, which is why we have also used it for the Tic-Tac-Toe application.

It is good practice to put common JavaScript files at the bottom of your layout page; they
can also be included depending on ASP.NET Core environment tags.

Creating ASP.NET Core MVC Applications Chapter 7

[235]

We will use the Views/_ViewStart.cshtml file to define the layout page for all our pages
in a central place. Alternatively, if you want to set a specific layout page manually, you can
set it at the top of your page:

@{
 Layout = "_Layout";
}

To structure your layout pages, you can define sections so that you can organize where
certain page elements, including common script sections, should be placed. An example is
the script section that can be seen within the layout page, which we added in one of the
first examples of the Tic-Tac-Toe application. By default, it has been put at the bottom of the
page, which was done by adding a dedicated meta tag:

@RenderSection("Scripts", required: false)

You can also define sections in your views so that you can add files or client-side scripts.
We have already done that in the context of the email confirmation view, where we added
a section for calling the client-side JavaScript EmailConfirmation method:

@section Scripts{
 <script>
 $(document).ready(function () {
 EmailConfirmation('@ViewBag.Email');
 });
 </script>
}

We can also use NuGet packages. There is a package called
DeviceDetector.NET.NetCore that is quite thorough in what it is able to detect, not only
in terms of mobile devices but also other devices, including desktops, television sets, and
even cars.

We can install and use the preceding package through the Package Manager Console by
using the following command:

Install-Package DeviceDetector.NET.NetCore

For now, let's get practical and do the mobile detection functionality ourselves! Let's learn
how to optimize the Tic-Tac-Toe application for mobile devices.

Creating ASP.NET Core MVC Applications Chapter 7

[236]

Optimizing for mobile devices
Follow these steps take to make our Tic-Tac-Toe demo application more and more
responsive for mobile devices, with the end goal of having a more convenient interface:

We want to change the display so that it's specifically for mobile devices. To do1.
this, start Visual Studio 2019, go to the Solution Explorer, create a new folder
called Filters, and add a new class called DetectMobileFilter that inherits
from the IActionFilter interface. Then, we will create the MobileCheck
and MobileVersionCheck regular expressions (regex), as follows:

static Regex MobileCheck = new
Regex(@"android|(android|bb\d+|meego).+mobile|avantgo|bada\/|blackb
erry|blazer
|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle
|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm(
os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian
|treo|up\.
(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino",
RegexOptions.IgnoreCase | RegexOptions.Multiline |
RegexOptions.Compiled);

static Regex MobileVersionCheck = new
Regex(@"1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a
wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)
|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s
)|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-
(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-
|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-
s|devi|dica|dmob|do(c|p)o|ds(12|\-
d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(
\-|_)|g1 u|g560|gene|gf\-5|g\-
mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp(
i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-
(20|go|ma)|i230|iac(|\-
|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jig
s|kddi|keji|kgt(|\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg(
g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-
w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-
cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-|
|o|v)|zz)|mt(50|p1|v
)|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne(
(c|m)\-
|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|
d|t)|pdxg|pg(13|\-
([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-

Creating ASP.NET Core MVC Applications Chapter 7

[237]

g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-
)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc
(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-
|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v
)|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-
|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-
|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0
-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-|
)|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-",
RegexOptions.IgnoreCase | RegexOptions.Multiline |
RegexOptions.Compiled);

Now, let's create a method that will check whether a user agent is mobile or not: 2.

 public static bool IsMobileUserAgent(ActionExecuted
 Context context)
 {

 var userAgent = context.HttpContext.
 Request.Headers["User-Agent"].ToString();

 if (context.HttpContext != null && userAgent != null)
 {
 if (userAgent.Length < 4)
 return false;
 if (MobileCheck.IsMatch(userAgent) ||
 MobileVersionCheck.IsMatch(userAgent.
 Substring(0, 4)))
 return true;
 }
 return false;
 }

Let's implement the OnActionExecuted method from IActionFilter, as3.
follows:

 public void OnActionExecuted(ActionExecutedContext context)
 {
 var viewResult = (context.Result as ViewResult);
 if (viewResult == null)
 return;
 if (IsMobileUserAgent(context))
 {
 viewResult.ViewData["Layout"] =
 "~/Views/Shared/_LayoutMobile.cshtml";
 }
 else
 {

Creating ASP.NET Core MVC Applications Chapter 7

[238]

 viewResult.ViewData["Layout"] =
 "~/Views/Shared/_Layout.cshtml";
 }
 }

Duplicate the existing Views/Shared/_Layout.cshtml file and rename the4.
resulting copy _LayoutMobile.cshtml.
Update the home page index view, remove the existing layout definition,5.
and display a different title, depending on the device, by adding two
dedicated sections called Desktop and Mobile:

@{
ViewData["Title"] = "Home Page";
}
<div class="row">
<div class="col-lg-12">
@section Desktop {<h2>@Localizer["DesktopTitle"]</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
<div class="alert alert-info">

These sections will be made use of exclusively when a respective device is in use.6.
This means that if a user is using a mobile phone for browsing, then only the
Mobile section will appear on the screen.

Note that you must also update all the other views of the
application (GameInvitation/GameInvitationConfirmation,
GameInvitation/Index, Home/Index,
UserRegistration/EmailConfirmation, UserRegistration/Index)
with the section tags from the preceding code for now:
@section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
@section Mobile {<h2>@Localizer["MobileTitle"]</h2>}

If you do not add them to your other views, you will get errors when you
complete the steps that follow. However, this is only a temporary
solution; later in this chapter, you will learn how to address this problem
more effectively by using conditional statements.

Update the resource files. Here is an example of the English home page index6.
resource file; you should also add the French translations:

Creating ASP.NET Core MVC Applications Chapter 7

[239]

Modify the Views/Shared/_LayoutMobile.cshtml file by replacing7.
the @RenderBody() element with the following instructions; the Desktop
section should be displayed and the Mobile section should be ignored:

@RenderSection("Desktop", required: false)
@{IgnoreSection("Mobile");}
@RenderBody()

Modify the Views/Shared/_Layout.cshtml file by replacing8.
the @RenderBody() element with the following instructions; the Mobile section
should be displayed and the Desktop section should be ignored:

@RenderSection("Mobile", required: false)
@{IgnoreSection("Desktop");}
@RenderBody()

Go to the Views/_ViewStart.cshtml file and change the layout assignment for9.
all your web pages to be able to use the layout definitions from the
preceding code:

@{Layout = Convert.ToString(ViewData["Layout"]);}

Update the Startup class and add DetectMobileFilter to the MVC service10.
registration as a parameter:

services.AddControllersWithViews(o =>
 o.Filters.Add(typeof(DetectMobileFilter)))

Start the Tic-Tac-Toe application normally in the Microsoft Edge browser. Note11.
that the localized title already shows Desktop as the detected browser:

Creating ASP.NET Core MVC Applications Chapter 7

[240]

Open the Developer Tools in Microsoft Edge by pressing F12, go to the Emulation
tab, and select a mobile device:

Now, reload the Tic-Tac-Toe application; it will be displayed as if you had opened
it on the emulated device:

Creating ASP.NET Core MVC Applications Chapter 7

[241]

In this section, you have learned how to provide specific layouts for specific devices. Now,
you are going to learn how to apply other advanced ASP.NET Core 3 MVC features for
better productivity and better applications. But first, let's have a look at what's available to
us in the state management between different requests, controllers, and views. We will
have to deal with all of these at some point, even in the most basic of applications.

Understanding ASP.NET Core state
management
An ASP.NET Core 3 web application is normally stateless. A brand new Razor web page is
instantiated every time there is a request for the page from the server. As a result, any bit of
data in the Razor page is effectively lost for each back and forth request.

To put things into perspective, we have already looked at a UserRegistration page, and
if we inspect the browser with the developer tools, we will notice that when we fill the form
and submit, our data is sent to the server but the data is not returned to the browser in the
response headers.

This is the natural impediment of producing a meaningful and interactive application for
the web, and we are lucky that ASP.NET Core 3 deals with this impediment for us with
inbuilt features.

One of the ways we can make a decision on what feature functionality to use is by asking
some of the following questions:

Are we going to need to keep a lot of data between the requests?
What are the chances that the user client will accept different kinds of cookies?
Do we want the data to be stored by the server or client?
Is the data in question delicate in that we need to keep it secure?
Are we writing the application for user or client browsers that cannot afford high
bandwidth usage?
Exactly what kind of devices will be accessing our application? Do they have
limitations?
Will every application user need personalized data?
How long do we need the application data to be persisted?
Are we going to host our application in a distributed environment with multiple
instances or a normal environment with a single instance?

Let's take a look at the options we have for managing states, along with their advantages.

Creating ASP.NET Core MVC Applications Chapter 7

[242]

Client-state management options
For client-state management, the server doesn't need to store any data at all for any back
and forth requests within the application. Let's take a look at these options in more detail.

Please note that we're referring to either the Razor pages or the user's
device when we talk about the client.

Hidden fields
Hidden fields are a standard HTML functionality that requires no complex programming
logic. Hidden fields have widespread support for most internet browsers. Since a hidden
field is persisted and read from the Razor view page, no server resources are required.

ASP.NET Core 3 allows us to use hidden fields. Whatever you place in a hidden field will
always be sent with the input data from other HTML elements in the form of a submission.
This will be sent from where they were defined.

You can use Hidden Field to keep data on a .cshtml page and detect when data that's
been stored in the hidden field has changed between postbacks.

It is recommended that you don't use a hidden field to keep sensitive data
since the data can easily be revealed by right-clicking a web page and
selecting View Page Source.

Cookies
Cookies are tiny bits of data stored by an application on a user's computer through a
respective web browser. They can be used to keep customized client data, sessions by the
user on the application, or application data. We can set a deliberate duration time on our
cookies from milliseconds to minutes, hours, days, and even much longer, depending on
how long you want to persist the data.

We will have a look at one of the most important usages for cookies in collaboration with
ASP.NET Core Identity when we deal with authentication later in Chapter 10, Securing
ASP.NET Core 3 Applications.

Creating ASP.NET Core MVC Applications Chapter 7

[243]

We will deal with issues of security from Chapter 10, Securing ASP.NET
Core 3 Applications, onward, but it is worth noting that cookies can present
a vulnerability point to your application as they are often the targets of
hackers. The best advice is to never store valuable information in your
cookies but in tokens, which you use to locate your valuable data.

Query string
Sometimes, we may notice a key/value pair embedded in a url after a question mark tag, :
?. This is an indication of a query string in use. Query strings come in handy when
navigating between web pages and you have some data that you need to pass over to the
next page. An example could be passing a game session id or other parameters for a game,
which we could do for our demo application:

https://example.net/gamesessions?id=002e6431-3eb5-4d98-b3d9-3263490ce7c0

We must remember to always keep our url length relatively short, even though we have
up to 2,048 characters as a maximum for modern browsers.

Query strings are a great tool, but there are scenarios where we shouldn't use them. We'll
talk about this in more detail in the following subsection.

Query string usage
Query strings should be used when we need to request data from a web server using the
GET method. Note that they cannot be used to send data to the web server using the POST
method.

We will learn more about the GET and POST Hypertext Transfer Protocol (HTTP) methods
in the next chapter, that is, Chapter 8, Creating Web API Applications.

Information that is passed in a query string is susceptible and can be
tampered with by hackers. Please make sure you're not using query
strings to pass important data. It must also be noted that an unsuspecting
user can bookmark the URL or send the URL to other users, thereby
passing that sensitive data in the URL along with it.

Query strings, cookies, and hidden fields are examples of client-side state management
options, but most web applications will need to manage the state from the server side. The
next section looks at the options you have for managing the state of the application from
the server.

Creating ASP.NET Core MVC Applications Chapter 7

[244]

Server-based state management options
ASP.NET Core 3 offers a variety of ways to maintain state information on the server,
instead of saving data on the client. When the state is managed from the server side, there is
a reduction in server-client calls. This could also prove to be expensive in terms of
resources. The following sections will describe two server-based state management
features: application state and session state.

Application state
Application state was used in previous frameworks prior to ASP.NET Core, for example, in
ASP.NET MVC 4. It has now transitioned to being known as app state in ASP.NET Core 3.
In its simplest terms, it is just a representation of the state of an application at a snapshot in
time. When we refer to an application state, it will be the same for all the application users
at the specified time. This allows us to keep data that remains constant across all the client
users.

When you have this kind of data in a system that needs to be accessed across sessions and
only changes every once in a while, it is advised to use caching. ASP.NET Core 3 prefers the
usage of caching in favor of the application state.

Caching in ASP.NET Core 3 is achieved by using IMemoryCache and
adding services.AddMemoryCache() to the ConfigureServices
method, but it's out of the scope of this book. You can find more
information at the following link: https:/ / docs. microsoft. com/en- us/
aspnet/ core/ performance/ caching/ memory? view= aspnetcore- 3. 0.

Session state
Session state, as opposed to application state, keeps user-specific data for the duration that
they are using the application. ASP.NET Core 3 makes use of the session middleware,
which is configured in the ConfigureServices method in the Startup class by adding
services.AddSession().

Before using the session object across your application, you need to add
app.UseSession() to the Configure method in the Startup class.

By doing this, you can access the session object through HttpContext.Session, where
you can utilize its methods to get or set your session variables or properties.

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory?view=aspnetcore-3.0

Creating ASP.NET Core MVC Applications Chapter 7

[245]

We have already mentioned that the session state is a server-based state management
option, and that means everything you set will be handled by the server. Note that you can
actually store your session data in a cookie as an option in the AddSession(option)
method, like so:

services.AddSession(options => {options.Cookie.Name =
"yourCustomSessionName";});

We are going to make use of session state in our game sessions later in this book by using
the following code:

 services.AddSession(o =>
 {
 o.IdleTimeout = TimeSpan.FromMinutes(30);
 });

The preceding code snippet is adding a session with a 30-minute timeout to the service
collection in the ConfigureServices method. To be able to use this session, we will need
to configure app.UseSession(), which can be found in the Configure method in the
Startup class. More about sessions will be covered when we configure the game sessions
in Chapter 8, Creating Web API applications, specifically in the Building RPC-style web
APIs section.

Now that we have an idea of state management, let's have a look at the different types of
views that we can make use of to give our application users a proper user interface (UI)
and a good user experience (UX).

Using view pages, partial views, View
Components, and Tag Helpers
ASP.NET Core 3 and Razor, when coupled with Visual Studio 2019, provide
several functionalities that you can use to create your MVC views. In this section, you will
learn how those functionalities can help you be more productive. You can, for instance,
create views by using Visual Studio 2019's integrated scaffolding features, which you have
already used in previous chapters multiple times. This allows you to automatically generate
the following types of views:

View pages
Partial views

Creating ASP.NET Core MVC Applications Chapter 7

[246]

Apart from view pages and partial views, sometimes, you need a bit more advanced
functionality, which can be achieved using View Components and Tag Helpers.

Would you like to understand what they are and how to use Visual Studio 2019 to
work with them efficiently? Stay focused – we are going to explain everything in detail in
this section.

Using view pages
View pages are used to render results based on actions and to give responses to
HTTP requests. In an MVC approach, they define and encapsulate the visible part of
your applications – the presentation layer. Furthermore, they use the .cshtml file
extension and are stored in the Views folder of the application by default.

Visual Studio 2019's scaffolding features provide different view page templates, as you can
see here:

Create: Generates a form for inserting data
Edit: Generates a form for updating data
Delete: Generates a form for displaying a record with a button to
confirm deletion of the record data
Details: Generates a form for displaying a record with two buttons, one for
editing the form and another for deleting the displayed record page
List: Generates an HTML table that shows a list of objects
Empty: Generates an empty page without using any models

If you don't want to use Visual Studio 2019 to generate your page views, you can
implement them manually by adding them to the Views folder yourself. In this case, it is
advised that you respect the MVC conventions. So, add them in a corresponding subfolder
while matching the action name. This helps the ASP.NET engine find your manually
created views.

Creating ASP.NET Core MVC Applications Chapter 7

[247]

Let's create the Leaderboard for the Tic-Tac-Toe game and see all of this in action:

Open the Solution Explorer, go to the Views folder, and create a new subfolder1.
called Leaderboard. Then, right-click on the folder, select Add | New Item |
Razor View page from the wizard, and click on the Add button:

Open the created file and clear its content and associate the Leaderboard view2.
with the User Model by adding the following instruction to the top of the
page: @model IEnumerable<UserModel>.
It is good practice to set its title variable so that it's displayed in the SEO3.
tags: @{ViewData["Title"] = "Index";}.

Creating ASP.NET Core MVC Applications Chapter 7

[248]

Add new two sections, Desktop and Mobile, by using the @section meta tag.4.
Then, add the last updated time by using the @() meta tag:

<div class="row">
 <div class="col-lg-12">
 @section Desktop {<h2>
 @Localizer["DesktopTitle"] (
 Last updated @(System.DateTime.Now))
 </h2>}
 @section Mobile {<h2>
 @Localizer["MobileTitle"] (
 Last updated @(System.DateTime.Now))
 </h2>}
 </div>
 </div>

Add the English and French resource files for the Leaderboard view and define5.
localizations for the DesktopTitle and MobileTitle.
Right-click on the Controllers folder, select Add | Controller, select MVC6.
Controller - Empty, and click on the Add button. Name
it LeaderboardController:

The following code snippet will be auto-generated: 7.

 public class LeaderboardController : Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 }

Creating ASP.NET Core MVC Applications Chapter 7

[249]

Note that Razor matches views with actions with <actionname>.cshtml
or <actionname>.<culture>.cshtml in the
Views/<controllername> folder.

Update the _Layout.cshtml and _LayoutMobile.cshtml files in8.
the Views/Shared folder and add an ASP.NET Tag Helper for calling the
new Leaderboard view within the navbar menu, just after the Home element:

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
 controller="Leaderboard" asp-action="Index">Leaderboard

Start the application and display the new Leaderboard view:9.

Now that we have seen the basics, let's look at some more advanced techniques when
using Razor, such as code blocks, control structures, and conditional statements.
Code blocks, @{}, are used for setting or calculating variables and formatting data.
You have already used them in the _ViewStart.cshtml file to define which specific
layout page should be used:

@{
Layout = Convert.ToString(ViewData["Layout"]);
}

Control structures provide everything that's necessary for working with loops. You could
use @for, @foreach, @while, or @do for repeating elements, for example. They act exactly
the same as their C# equivalents. Let's use them to implement the Leaderboard view:

Add a new HTML table to the Leaderboard view while using the1.
aforementioned control structures:

 <table class="table table-striped">
 <thead> <tr>
 <th>Name</th>
 <th>Email</th>

Creating ASP.NET Core MVC Applications Chapter 7

[250]

 <th>Score</th> </tr>
 </thead>
 <tbody>
 @foreach (var user in Model)
 { <tr>
 <td>@user.FirstName @user.LastName</td>
 <td>@user.Email</td>
 <td>@user.Score.ToString()</td> </tr>
 }
 </tbody>
 </table>

Add a new GetTopUsers method to the IUserService interface for2.
retrieving the top users that will be displayed within the Leaderboard view:

Task<IEnumerable<UserModel>> GetTopUsers(int numberOfUsers);

Implement the new GetTopUsers method within UserService: 3.

 public Task<IEnumerable<UserModel>> GetTopUsers(int
 numberOfUsers)
 {
 return Task.Run(() =>
 (IEnumerable<UserModel>)_userStore.OrderBy(x =>
 x.Score).Take(numberOfUsers).ToList());
 }

Update the leaderboard controller so that you can call the new method:4.

 private IUserService _userService;
 public LeaderboardController(IUserService userService)
 {
 _userService = userService;
 }
 public async Task<IActionResult> Index()
 {
 var users = await _userService.GetTopUsers(10);
 return View(users);
 }

Creating ASP.NET Core MVC Applications Chapter 7

[251]

Press F5 and start the application, register multiple users, and display the5.
leaderboard:

Conditional statements such as @if, @else if, @else, and @switch allow you to render
elements conditionally. They also work exactly the same as their C# counterparts.

As we mentioned previously, you need to define the Desktop and
Mobile sections in all of your views, that is, @section Desktop { }
and @section Mobile { }.

For example, if you remove them temporarily from the Leaderboard Index View and try
to display it while the ASPNETCORE_ENVIRONMENT variable is set to 'Development' so
that the Developer Exception page is activated, you will get the following error message:

Creating ASP.NET Core MVC Applications Chapter 7

[252]

This has happened because we changed the Layout and Mobile layout pages for the
application and used the IgnoreSection instruction. Unfortunately, sections must always
be declared when using IgnoreSection instructions.

But now that you know that conditional statements exist, you can already see a
better solution, right? Yes, exactly; we have to wrap the IgnoreSection instruction with
a conditional if statement within the two layout pages.

Here's how you need to update the layout page using the IsSectionDefined method:

 @RenderSection("Desktop", required: false)
 @if(IsSectionDefined("Mobile")){IgnoreSection("Mobile");}
 @RenderBody()

Here's how you need to update the Mobile layout page:

 @RenderSection("Mobile", required: false)
 @if(IsSectionDefined("Desktop")){IgnoreSection("Desktop");}
 @RenderBody()

If you start the application, you will see that everything is now working as expected, but
this time with a much cleaner, more elegant, and easier-to-understand solution. This is
because we're using the built-in functionalities of ASP.NET Core 3 and Razor.

Creating ASP.NET Core MVC Applications Chapter 7

[253]

Using partial views
So far, we've learned how to create view pages using Razor, but sometimes, we have to
repeat elements within all or some of our view pages. Wouldn't it be helpful if we could
create reusable components within our views? Unsurprisingly, ASP.NET Core 3
implements this feature by default by providing so-called partial views.

Partial views are rendered within calling view pages. Like standard view pages, they
also have the .cshtml file extension. We can define them once and then use them within
all our view pages. What a great way to optimize our code by reducing code
duplication, which leads to better quality and less maintenance!

Let's look at how we can benefit from this right now. To do this, we will be optimizing the
Layout and Mobile layout pages so that they only use a single menu:

Go to the Views/Shared folder and add a new MVC view1.
page called _Menu.cshtml. It will be used as the menu partial view:

Copy the nav bar from one of the layout pages and paste it into the menu2.
partial view:

<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-
reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">

Creating ASP.NET Core MVC Applications Chapter 7

[254]

 <a class="nav-link text-dark" asp-area="" asp-
 controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
 controller="Leaderboard" asp-
 action="Index">Leaderboard

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
 controller="Home" asp-action="Privacy">Privacy

</div>

Replace nav bar with <partial name="_Menu" /> in both layout pages.3.
Start the application and validate that everything is still working. You shouldn't4.
see any differences, but that is a good thing; you have encapsulated and
centralized the menu in a partial view now.

Using View Components
So far, you've learned how to create reusable components by using partial views, which can
be called from any view pages within your applications, and applied this concept to the
top menu of the Tic-Tac-Toe application. But sometimes, even this feature is not enough.
Sometimes, you need something more powerful – something more flexible – that you can
use throughout your whole web application and maybe even for multiple web applications.
That is where View Components come into play.

View Components are used for complex use cases that require some code running on
the server (for example, login panel, tag cloud, and shopping cart), where partial views
are too limited to be used, and where you need to be able to test functionalities extensively.
We are going to add a View Component for managing game sessions in the following
example. You will see that it is very similar to a standard controller implementation:

Add a new model called TurnModel to the Models folder: 1.

public class TurnModel
 {
 public Guid Id { get; set; }
 public Guid UserId { get; set; }
 public UserModel User { get; set; }

Creating ASP.NET Core MVC Applications Chapter 7

[255]

 public int X { get; set; }
 public int Y { get; set; }
 }

Add a new model called GameSessionModel to the Models folder: 2.

public class GameSessionModel
 {
 public Guid Id { get; set; }
 public Guid UserId1 { get; set; }
 public Guid UserId2 { get; set; }
 public UserModel User1 { get; set; }
 public UserModel User2 { get; set; }
 public IEnumerable<TurnModel> Turns { get; set; }
 public UserModel Winner { get; set; }
 public UserModel ActiveUser { get; set; }
 public Guid WinnerId { get; set; }
 public Guid ActiveUserId { get; set; }
 public bool TurnFinished { get; set; }
 }

Add a new service called GameSessionService to the Services3.
folder, implement it, and extract the IGameSessionService interface:

public class GameSessionService : IGameSessionService
 {
 private static ConcurrentBag<GameSessionModel> _sessions;
 static GameSessionService()
 {
 _sessions = new ConcurrentBag<GameSessionModel>();
 }
 public Task<GameSessionModel> GetGameSession(Guid
 gameSessionId)
 {
 return Task.Run(() => _sessions.FirstOrDefault(
 x => x.Id == gameSessionId));
 }
 }

Register GameSessionService within the Startup class, like you did with all4.
the other services:

services.AddSingleton<IGameSessionService, GameSessionService>();

Creating ASP.NET Core MVC Applications Chapter 7

[256]

Go to the Solution Explorer, create a new folder called Components, and add5.
a new class called GameSessionViewComponent.cs to it:

[ViewComponent(Name = "GameSession")]
 public class GameSessionViewComponent : ViewComponent
 {
 IGameSessionService _gameSessionService;
 public GameSessionViewComponent(IGameSessionService
 gameSessionService)
 {
 _gameSessionService = gameSessionService;
 }
 public async Task<IViewComponentResult> InvokeAsync(Guid
 gameSessionId)
 {
 var session = await _gameSessionService.
 GetGameSession(gameSessionId);
 return View(session);
 }
 }

Go to the Solution Explorer and create a new folder called Components6.
within the Views/Shared folder. Within this folder, create a new folder
called GameSession for GameSessionViewComponent. Then, manually add a
new view called default.cshtml:

@model TicTacToe.Models.GameSessionModel
@{ var email = Context.Session.GetString("email"); }
@if (Model.ActiveUser?.Email == email)
{<table>
 @for (int rows = 0; rows < 3; rows++) {<tr style="height:150px;">
 @for (int columns = 0; columns < 3; columns++)
 {<td style="width:150px; border:1px solid #808080">
 @{var position = Model.Turns?.FirstOrDefault(turn => turn.X ==
 columns && turn.Y == rows);
 if (position != null) { if (position.User?.Email == "Player1")
 {<i class="glyphicon glyphicon-unchecked"
 style="width:100%;height:100%"></i> }
 else{<i class="glyphicon glyphicon-remove-circle"
 style="width:100%;height:100%"></i> }
 } else{ <a asp-action="SetPosition"
 asp-controller="GameSession"
 asp-route-id="@Model.Id" asp-route-email="@email"
 class="btn btn-default" style="width:150px;
 min-height:150px;">
 } } </td> } </tr> }
 </table>

Creating ASP.NET Core MVC Applications Chapter 7

[257]

}else{
 <div class="alert">
 <i class="glyphicon glyphicon-alert">Please wait until the other
user has finished his turn.</i> </div> }

This is the view that will tell you to wait for your turn if you're not the active user;
otherwise, it will give you a table where you can play the TicTacToe game.

We advise using the following syntax to put all partial views for your
View Components in their corresponding folders:
Views\Shared\Components\<ViewComponentName>\<ViewName>.

Update the _ViewImports.cshtml file to use the View Component by using7.
the @addTagHelper *, TicTacToe command.
Create a new folder called GameSession within the Views folder. Then, add8.
a new view called Index for the Desktop section, as follows:

@model TicTacToe.Models.GameSessionModel
@section Desktop
{<h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 <div class="alert alert-info">
 <table class="table">
 <tr>
 <td>User 1:</td>
 <td>@Model.User1?.Email (<i class="glyphicon
 glyphicon-unchecked"></i>) </td>
 </tr>
 <tr>
 <td>User 2:</td>
 <td>@Model.User2?.Email (<i class=" glyphicon
 glyphicon-remove-circle"></i></td>
 </tr>
 </table>
</div>}

Creating ASP.NET Core MVC Applications Chapter 7

[258]

Now, do the same for the Mobile section, as follows:

@section Mobile{
 <h1>Game Session @Model.Id</h1>
 <h2>Started at @(DateTime.Now.ToShortTimeString())</h2>
 User 1: @Model.User1?.Email <i class="glyphicon glyphicon-
 unchecked"></i>

 User 2: @Model.User2?.Email (<i class="glyphicon glyphicon-
 remove-circle"></i>)
}
<vc:game-session game-session-id="@Model.Id"></vc:game-session>

Add a public constructor to GameSessionService so that you can get an9.
instance of the user service:

 private IUserService _UserService;
 public GameSessionService(IUserService userService)
 {
 _UserService = userService;
 }

Add a method to GameSessionService for creating game sessions and update10.
the game session service interface:

public async Task<GameSessionModel> CreateGameSession(Guid
invitationId, string invitedByEmail, string invitedPlayerEmail)
 {
 var invitedBy =
 await _UserService.GetUserByEmail(invitedByEmail);
 var invitedPlayer =
 await _UserService.GetUserByEmail(invitedPlayerEmail);
 GameSessionModel session = new GameSessionModel
 {
 User1 = invitedBy,
 User2 = invitedPlayer,
 Id = invitationId,
 ActiveUser = invitedBy
 };
 _sessions.Add(session);
 return session;
 }

Creating ASP.NET Core MVC Applications Chapter 7

[259]

Add a new controller called GameSessionController within the11.
Controllers folder and implement a new Index method:

 private IGameSessionService _gameSessionService;
 public GameSessionController(IGameSessionService
 gameSessionService)
 { _gameSessionService = gameSessionService; }
 public async Task<IActionResult> Index(Guid id)
 {
 var session = await _gameSessionService.
 GetGameSession(id);
 if (session == null)
 {
 var gameInvitationService =
 Request.HttpContext.
 RequestServices.GetService
 <IGameInvitationService>();
 var invitation = await gameInvitationService.
 Get(id);
 session = await _gameSessionService.
 CreateGameSession(
 invitation.Id, invitation.InvitedBy,
 invitation.EmailTo);
 }
 return View(session);
 }

Start the application, register a new user, and invite another user to play a game.12.
Wait for the new game session page to be displayed, as follows:

Creating ASP.NET Core MVC Applications Chapter 7

[260]

In this section, we've learned how to implement an advanced feature called View
Components. In the next section, we will take a look at another advanced and exciting
feature called Tag Helpers. Stay focused.

Using Tag Helpers
Tag Helpers are a relatively new feature since ASP.NET Core 2+ and allow server-side code
to be used when creating and rendering HTML elements. They can be compared to the
well-known HTML helpers for rendering HTML content.

ASP.NET Core 3 provides many built-in Tag Helpers, such as ImageTagHelper and
LabelTagHelper, that you can use within your applications. When creating your own Tag
Helpers, you can target HTML elements based on an element name, an attribute name or a
parent tag. Then, you can use standard HTML tags in your views while presentation logic
written in C# is applied on the web server.

Creating ASP.NET Core MVC Applications Chapter 7

[261]

Additionally, you can even create custom tags. You can use these within the Tic-Tac-Toe
demo application. Let's learn how to create custom tags:

Open the Solution Explorer and create a new folder called TagHelpers. Then,1.
add a new class called GravatarTagHelper.cs that implements
the TagHelper base class.
Implement the GravatarTagHelper.cs class; it will be used to connect to2.
the Gravatar online service for retrieving account photos for users. Let's start
with the plumbing for the class:

[HtmlTargetElement("Gravatar")]
 public class GravatarTagHelper : TagHelper
 {
 private ILogger<GravatarTagHelper> _logger;
 public GravatarTagHelper(ILogger<GravatarTagHelper> logger)
 {
 _logger = logger;
 }
 public string Email { get; set; }
...
}

Now, we can implement the Process method, as follows:

public override void Process(TagHelperContext context,
TagHelperOutput output)
 {
 byte[] photo = null;
 if (CheckIsConnected())
 {
 photo = GetPhoto(Email);
 }
 else
 {
 photo = File.ReadAllBytes(Path.Combine(
 Directory.GetCurrentDirectory(),
 "wwwroot", "images", "no-photo.jpg"));
 }
 string base64String = Convert.ToBase64String(photo);
 output.TagName = "img";
 output.Attributes.SetAttribute("src",
 $"data:image/jpeg;base64,{base64String}");
 }

Creating ASP.NET Core MVC Applications Chapter 7

[262]

The Process method will require a method to check for a connection, called
CheckIsConnected, which can be implemented as follows:

 private bool CheckIsConnected()
 {
 try
 {
 using (var httpClient = new HttpClient())
 {
 var gravatarResponse = httpClient.GetAsync(
 "http://www.gravatar.com/avatar/").Result;
 return (gravatarResponse.IsSuccessStatusCode);
 }
 }
 catch (Exception ex)
 {
 _logger?.LogError($"Cannot check the gravatar
 service status: { ex} ");
 return false;
 }
 }

 We will also need a GetPhoto method, as follows:

private byte[] GetPhoto(string email)
 {
 var httpClient = new HttpClient();
 return httpClient.GetByteArrayAsync(
 new Uri($"http://www.gravatar.com/avatar/ {
 HashEmailForGravatar(email) }")).Result;
 }

Finally, we need a HashEmailForGravatar method, as follows:

 private static string HashEmailForGravatar(string email)
 {
 var md5Hasher = MD5.Create();
 byte[] data = md5Hasher.ComputeHash(
 Encoding.ASCII.GetBytes(email.ToLower()));
 var stringBuilder = new StringBuilder();
 for (int i = 0; i < data.Length; i++)
 {
 stringBuilder.Append(data[i].ToString("x2"));
 }
 return stringBuilder.ToString();
 }

Creating ASP.NET Core MVC Applications Chapter 7

[263]

Open the Views/_ViewImports.cshtml file and verify that the3.
addTagHelper instruction exists. If it doesn't add it to the file by using
the @addTagHelper *, TicTacToe command.
Update the Index method in the GameInvitationController, store the user's4.
email, and display their name (first name and last name) in a session variable:

 [HttpGet]
 public async Task<IActionResult> Index(string email)
 {
 var gameInvitationModel = new GameInvitationModel
 {
 InvitedBy = email,
 Id = Guid.NewGuid()
 };
 Request.HttpContext.Session.SetString("email", email);
 var user = await _userService.GetUserByEmail(email);
 Request.HttpContext.Session.SetString("displayName",
 $"{user.FirstName} {user.LastName}");
 return View(gameInvitationModel);
 }

Add a new model called AccountModel to the Models folder: 5.

 public class AccountModel
 {
 public string Email { get; set; }
 public string DisplayName { get; set; }
 }

Add a new partial view called _Account.cshtml to the Views/Shared folder: 6.

@model TicTacToe.Models.AccountModel
<li class="dropdown">

 @Model.DisplayName

 <ul class="dropdown-menu" id="connected-dp">

 <div class="navbar-login">
 <div class="row">
 <div class="col-lg-4">
 <p class="text-center">
 <Gravatar email="@Model.Email">
 </Gravatar>
 </p>

Creating ASP.NET Core MVC Applications Chapter 7

[264]

 </div>
 <div class="col-lg-8">
 <p class="text-left">@Model.
 DisplayName</p>
 <p class="text-left small">
 <a asp-action="Index" asp-
 controller="Account">
 @Model.Email
 </p>
 </div>
 </div>
 </div>

 <li class="divider">

 <div class="navbar-login navbar-login-session">
 <div class="row">
 <div class="col-lg-12">
 <p>
 <a href="#" class="btn btn-danger btn-
 block">Log off
 </p>
 </div>
 </div>
 </div>

Add a new CSS class to the wwwroot/css/site.css file:7.

#connected-dp {
 min-width: 350px;
 }

Note that you might need to empty your browser cache or force a refresh
for the application so that you can update the site.css file within your
browser.

Creating ASP.NET Core MVC Applications Chapter 7

[265]

Update the menu partial view and retrieve the user display name and email8.
at the top of the page:

@using Microsoft.AspNetCore.Http;
@{
 var email = Context.Session.GetString("email");
 var displayName = Context.Session.GetString("displayName");
}

Update the menu partial view and add the new account partial view that we9.
created previously. This can be found after the privacy element in the menu:

 @if (!string.IsNullOrEmpty(email))
 {
 Html.RenderPartial("_Account",
 new TicTacToe.Models.AccountModel
 {
 Email = email,
 DisplayName = displayName
 });
 }

Create an account on Gravatar with your email and upload a photo. Start the Tic-10.
Tac-Toe application and register with the same email. You should now see a
new dropdown with a photo and display name in the top menu:

Note that you have to be online for this to work. If you want to test your code
offline, you should put a photo in the wwwroot/images folder called no-
photo.jpg; otherwise, you will get an error since no offline photo can be found.

Creating ASP.NET Core MVC Applications Chapter 7

[266]

This should be easy to understand and easy to use, but when should we use View
Components and when should we use Tag Helpers? The following simple rules should
help you decide when to use either:

View Components are used whenever we need templates for views, when we
need to render a group of elements, and when we need to associate server code
with it.
Tag Helpers are used to append behavior to a single HTML element instead of a
group of elements.

Our application is growing. For larger applications, it can become a nightmare to logically
follow the application, especially if you are a new developer that's been placed on an
existing project – it might take you some time to get used to the code base. Luckily,
ASP.NET Core 3 allows us to compartmentalize similar functionality. We'll look at how to
do this in the next section.

Dividing a web application into multiple
areas
Sometimes, when working with larger web applications, it can be interesting to
logically separate them into smaller functional units. Each unit can then have its
own controllers, views, and models, which makes it easier to understand, manage, evolve,
and maintain them over time.

ASP.NET Core 3 provides some simple mechanisms based on the folder's structure
for dividing web applications into multiple functional units, also called Areas; for
example, to separate the standard Area from the more advanced administration
Area within your applications. The standard Area could even enable anonymous access
on some pages while asking for authentication and authorization on others, whereas
the administration Area would always require authentication and authorization on all
pages.

The following conventions and restrictions apply to Areas:

An Area is a subdirectory in the Areas folder.
An Area contains at least two subfolders: Controllers and Views.
An Area may contain specific layout pages, as well as
dedicated _ViewImport.cshtml and _ViewStart.cshtml files.

Creating ASP.NET Core MVC Applications Chapter 7

[267]

You have to register a specific route that enables Areas within its
routing definition to be able to use Areas in your applications.
It is recommended to use the following format for Area URLs:
http://<Host>/<AreaName>/<ControllerName>/<ActionName>.
The asp-area Tag Helper can be used for appending an Area to a URL.

Let's look at how to create a specific administration Area for account management:

Open the Solution Explorer and create a new folder called Areas. Right-click1.
on the folder, select Add | Area..., enter Account as the Area name, and click on
the Add button:

Scaffolding will create a dedicated folder structure for the Account Area, as2.
follows:

Creating ASP.NET Core MVC Applications Chapter 7

[268]

Add a new route for Areas to the UseEndpoints declaration within the3.
Configure method of the Startup class:

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "
 {controller=Home}/{action=Index}/{id?}");
 endpoints.MapRazorPages();
 endpoints.MapAreaControllerRoute(
 name: "areas",
 areaName: "Account",
 pattern : "
 {area:exists}/{controller=Home}
 /{action=Index}/{id?}"
);
 });

Right-click on the Controllers folder within the Account Area and add a new4.
controller called HomeController:

[Area("Account")]
 public class HomeController : Controller
 {
 private IUserService _userService;
 public HomeController(IUserService userService)
 {
 _userService = userService;
 }
 public async Task<IActionResult> Index()
 {
 var email = HttpContext.Session.GetString("email");
 var user = await _userService.GetUserByEmail(email);
 return View(user);
 }
 }

Creating ASP.NET Core MVC Applications Chapter 7

[269]

Add a new folder called Home in the Account/Views folder. Then, add a5.
view called Index in this new folder:

@model TicTacToe.Models.UserModel
<h3>Account Details</h3>
<div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-md-6">
 <div class="well well-sm">
 <div class="row">
 <div class="col-sm-6 col-md-4">
 <Gravatar email="@Model.Email"></Gravatar>
 </div>
 <div class="col-sm-6 col-md-8">
 <h4>@($"{Model.FirstName}
 {Model.LastName}")</h4>
 <p>
 <i class="glyphicon glyphicon
 -envelope"></i>
 @Model.
 Email
 </p>
 <p>
 <i class="glyphicon glyphicon
 -calendar">
 </i> @Model.EmailConfirmationDate
 </p>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

Update the account partial view and add a link to display the preceding6.
view (just after the existing log off link):

<a class="btn btn-default btn-block" asp-action="Index"
asp-controller="Account">View Details

Start the application, register a user, and call the new Area by clicking on the7.
View Details link on the dropdown:

Creating ASP.NET Core MVC Applications Chapter 7

[270]

We will stop the implementation of the administration Area here and come back to it in
Chapter 10, Securing ASP.NET Core 3 Applications, where you will learn how to
secure access to it. For now, let's get a bit more advanced by looking at an exciting feature
called the view engine. The more advanced we get, the more complex our codebase will
become, and one of the best ways to ensure that we always get the intended functionality is
to write unit tests and integration tests. We'll introduce these in the next section as well.

Applying advanced concepts such as view
engines, unit tests, and integration tests
Now that we have seen all the basic features of ASP.NET Core 3 MVC, let's look at some of
the more advanced features that can help you during your daily work as a developer.
You will also learn how to use Visual Studio 2019 to test your applications and
thus provide better quality for your users.

Using view engines
When ASP.NET Core 3 uses server-side code for rendering HTML, it uses a view engine. By
default, when building standard views with their associated .cshtml files, we use
the Razor view engine with the Razor syntax, for example.

By convention, this engine is able to work with views, which are located within the
Views folder. Since it is built-in and it is the default engine, it is automatically bound to the
HTTP request pipeline without us needing to do anything for it to work.

If we need to use Razor to render files that are located outside of the Views folder and don't
come directly from the HTTP request pipeline, such as an email template, we cannot use
the default Razor view engine. Instead, we need to define our own view engine and make it
responsible for generating the HTML code.

Creating ASP.NET Core MVC Applications Chapter 7

[271]

In the following example, we will explain how you can use Razor to render an email based
on an email template that isn't coming from the HTTP request pipeline:

Open the Solution Explorer and create a new folder called ViewEngines. Then,1.
add a new class called EmailViewEngine.cs that has the following constructor:

public class EmailViewEngine
 {
 private readonly IRazorViewEngine _viewEngine;
 private readonly ITempDataProvider _tempDataProvider;
 private readonly IServiceProvider _serviceProvider;
 public EmailViewEngine(IRazorViewEngine viewEngine,
 ITempDataProvider tempDataProvider, IServiceProvider
 serviceProvider)
 {
 _viewEngine = viewEngine;
 _tempDataProvider = tempDataProvider;
 _serviceProvider = serviceProvider;
 }
 ...
 }

Within the same EmailViewEngine, let's create a FindView method, as follows:

 private IView FindView(ActionContext actionContext, string
viewName)
 {
 var getViewResult = _viewEngine.GetView(executingFilePath:
 null, viewPath: viewName, isMainPage: true);
 if (getViewResult.Success)
 return getViewResult.View;
 var findViewResult = _viewEngine.FindView(actionContext,
 viewName, isMainPage: true);
 if (findViewResult.Success)
 return findViewResult.View;
 var searchedLocations = getViewResult.
 SearchedLocations.Concat(findViewResult.SearchedLocations);
 var errorMessage = string.Join
 (Environment.NewLine, new[] { $"Unable to
 find view '{viewName}'. The following locations
 were searched:" }.Concat(searchedLocations));
 throw new InvalidOperationException(errorMessage);
 }

Creating ASP.NET Core MVC Applications Chapter 7

[272]

Let's create a GetActionContext method in the same EmailViewEngine class:

private ActionContext GetActionContext()
 {
 var httpContext = new DefaultHttpContext
 {
 RequestServices = _serviceProvider
 };
 return new ActionContext(httpContext, new RouteData(),
 new ActionDescriptor());
 }

We will use the preceding method in the following RenderEmailToString
method, as follows:

public async Task<string> RenderEmailToString<TModel>(string
viewName, TModel model)
 {
 var actionContext = GetActionContext();
 var view = FindView(actionContext, viewName);
 if (view == null)
 throw new InvalidOperationException(string.Format
 ("Couldn't find view '{0}'", viewName));
 using var output = new StringWriter();
 var viewContext = new ViewContext(actionContext,
 view,
 new ViewDataDictionary<TModel>(metadataProvider:
 new
 EmptyModelMetadataProvider(), modelState: new
 ModelStateDictionary())
 {
 Model = model
 },
new TempDataDictionary(actionContext.HttpContext,
 _tempDataProvider), output, new HtmlHelperOptions());
 await view.RenderAsync(viewContext);
 return output.ToString();
 }

After creating the EmailViewEngine class, extract its interface,
IEmailViewEngine, as follows:

public interface IEmailViewEngine
 {
 Task<string> RenderEmailToString<TModel>(string
 viewName, TModel model);
 }

Creating ASP.NET Core MVC Applications Chapter 7

[273]

Create a new folder called Helpers and add a new class to it2.
called EmailViewRenderHelper.cs:

public class EmailViewRenderHelper
 {
 IWebHostEnvironment _hostingEnvironment;
 IConfiguration _configurationRoot;
 IHttpContextAccessor _httpContextAccessor;
 public async Task<string> RenderTemplate<T>(string
 template, IWebHostEnvironment hostingEnvironment,
 IConfiguration configurationRoot,
 IHttpContextAccessor httpContextAccessor, T model
) where T : class
 {
 _hostingEnvironment = hostingEnvironment;
 _configurationRoot = configurationRoot;
 _httpContextAccessor = httpContextAccessor;
 var renderer = httpContextAccessor.HttpContext.
 RequestServices
 .GetRequiredService<IEmailViewEngine>();
 return await renderer.RenderEmailToString<T>(template,
 model);
 }
 }

Add a new service called EmailTemplateRenderService in the3.
Services folder. It will have the following constructor:

public class EmailTemplateRenderService
 {
 private IWebHostEnvironment _hostingEnvironment;
 private IConfiguration _configuration;
 private IHttpContextAccessor _httpContextAccessor;
 public EmailTemplateRenderService(IWebHostEnvironment
 hostingEnvironment, IConfiguration configuration,
 IHttpContextAccessor httpContextAccessor)
 {
 _hostingEnvironment = hostingEnvironment;
 _configuration = configuration;
 _httpContextAccessor = httpContextAccessor;
 }
 }

Now, create a RenderTemplate method, as follows:

public async Task<string> RenderTemplate<T>(string templateName, T
model, string host) where T : class
 {

Creating ASP.NET Core MVC Applications Chapter 7

[274]

 var html = await new EmailViewRenderHelper().
 RenderTemplate(templateName, _hostingEnvironment,
 _configuration, _httpContextAccessor, model);
 var targetDir = Path.Combine(Directory.
 GetCurrentDirectory(), "wwwroot", "Emails");
 if (!Directory.Exists(targetDir))
 Directory.CreateDirectory(targetDir);
 string dateTime = DateTime.Now.
 ToString("ddMMHHyyHHmmss");
 var targetFileName = Path.Combine(targetDir,
 templateName.Replace("/", "_").Replace("\\", "_")
 + "." + dateTime + ".html");
 html = html.Replace("{ViewOnLine}", $"
 {host.TrimEnd('/')}/Emails/{Path.GetFileName
 (targetFileName)}");
 html = html.Replace("{ServerUrl}", host);
 File.WriteAllText(targetFileName, html);
 return html;
 }

 Extract its interface and name it IEmailTemplateRenderService.

Register EmailViewEngine and EmailTemplateRenderService in4.
the Startup class:

services.AddTransient<IEmailTemplateRenderService,
 EmailTemplateRenderService>();
 services.AddTransient<IEmailViewEngine,
 EmailViewEngine>
 ();

 Note that you need to register EmailViewEngine and
EmailTemplateRenderService as transient because of
HTTPContextAccessor injection.

Add a new layout page in the Views/Shared folder5.
called _LayoutEmail.cshtml. First, we'll create the head section, as follows:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-
 scale=1.0" />
 <title>@ViewData["Title"] - TicTacToe</title>
 <environment include="Development">

Creating ASP.NET Core MVC Applications Chapter 7

[275]

 <link rel="stylesheet"
 href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet"
 href="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7
 /css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css
 /bootstrap.min.css"
 asp-fallback-test-class="sr-only"
 asp-fallback-test-property="position"
 asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css"
 asp-append-version="true" />
 </environment>
</head>

Now, we'll create the body section, as follows:

<body>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer> <p>© 2019 - TicTacToe</p> </footer>
 </div>
 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js">
 </script>
 <script src="~/js/site.js" asp-append-
version="true"></script>
 </environment>
 @RenderSection("Scripts", required: false)
</body>

Add a new model called UserRegistrationEmailModel to the Models folder: 6.

public class UserRegistrationEmailModel
 {
 public string Email { get; set; }
 public string DisplayName { get; set; }
 public string ActionUrl { get; set; }
 }

Creating ASP.NET Core MVC Applications Chapter 7

[276]

Create a new subfolder called EmailTemplates in the Views folder and add7.
a new view called UserRegistrationEmail:

@model TicTacToe.Models.UserRegistrationEmailModel
@{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
}
<h1>Welcome @Model.DisplayName</h1>
Thank you for registering on our website. Please click here to confirm your email.

Update the EmailConfirmation method within8.
UserRegistrationController so that we can use the new email view engine
before sending any emails:

var userRegistrationEmail = new UserRegistrationEmailModel
 {
 DisplayName = $"{user.FirstName} {user.LastName}",
 Email = email,
 ActionUrl = Url.Action(urlAction)
 };

 var emailRenderService = HttpContext.RequestServices.
 GetService<IEmailTemplateRenderService>();
 var message = await emailRenderService.RenderTemplate
 ("EmailTemplates/UserRegistrationEmail",
 userRegistrationEmail, Request.Host.ToString());

Start the application and register a new user. Open UserRegistrationEmail9.
and analyze its content (look in the wwwroot/Emails folder):

Creating ASP.NET Core MVC Applications Chapter 7

[277]

If you see the InvalidOperationException: Unable to resolve
service for type

'Microsoft.AspNetCore.Http.IHttpContextAccessor error, you
will need to register IHttpContextAccessor manually in the Startup
class by adding services.AddSingleton<IHttpContextAccessor,
HttpContextAccessor>(); in the ConfigureServices method or by
adding the built-in services.AddHttpContextAccessor(); method.

You have looked at a variety of concepts and code examples throughout this book, but we
still haven't talked about how to ensure excellent quality and maintainability for our
applications. The next section is going to shed some light on this subject, which is dedicated
to application testing.

Providing better quality by creating unit tests
and integration tests
Building high-quality applications and satisfying application users is a difficult
endeavor. Shipping products that have technical and functional flaws can lead to enormous
problems during the maintenance phase of your applications.

The worst-case scenario is that, since maintenance is so demanding on time and resources,
you won't be able to evolve your applications as quickly as possible to lower your time-to-
market, and you will be unable to provide exciting new features. Don't think that your
competition isn't waiting! They will surpass you and you will lose market shares and
market leadership.

But how can you succeed? How can you reduce the time to detect bugs and
functional problems? You have to test your code and your applications – and you have to
do that as much as possible and as soon as possible. It is common knowledge that fixing a
bug during development is cheaper and quicker, whereas fixing a bug during production
takes more time and money.

Having a low MTTR (short for mean time to repair) for bugs can make a big difference
when it comes to becoming a future market leader within your specific markets.

Let's divert a little and do some best practices housekeeping, which we will need to use in
our application. In C#, we can check whether a string is null or empty using the
String.IsNullOrEmpty() method. We need to do this because having a string that's null
and having a string that's empty are two different scenarios altogether. An empty string is
not necessarily null.

Creating ASP.NET Core MVC Applications Chapter 7

[278]

There are also situations when we're dealing with collections and we need to check whether
the collection is null or empty. Unfortunately, we don't have an out-of-the-box
implementation like the one we used for strings, which means we'll create it ourselves.

Let's go to the extensions folder and create a static class called
CollectionsEtensionMethods that contains two methods, as follows:

 public static class CollectionsExtensionMethods
 {
 public static bool IsNullOrEmpty<T>(this IEnumerable<T>
 genericEnumerable)
 {
 return (genericEnumerable == null) ||
 (!genericEnumerable.Any());
 }

 public static bool IsNullOrEmpty<T>(this ICollection<T>
 genericCollection)
 {
 if (genericCollection == null)
 {
 return true;
 }
 return genericCollection.Count < 1;
 }
 }

Now, we'll be able to implement IsNullOrEmpty() checks on any of our collections, that
is, as long as we reference the TicTacToe.Extensions namespace from anywhere in our
application. We will see this in action in the following code snippet, where we will be
looking at game session turns and finding out whether they are null or empty.

Let's continue with the development of the Tic-Tac-Toe application and learn how
to carefully test it in more detail:

Add a new method called AddTurn to GameSessionService and update the1.
game session service interface:

public async Task<GameSessionModel> AddTurn(Guid id, string email,
int x, int y)
{
 var gameSession = _sessions.FirstOrDefault(session => session.Id
 == id);
 List<TurnModel> turns;
 if (!gameSession.Turns.IsNullOrEmpty())
 turns = new List<TurnModel>(gameSession.Turns);
 else turns = new List<TurnModel>();

Creating ASP.NET Core MVC Applications Chapter 7

[279]

 turns.Add(new TurnModel {User = await _UserService.GetUserByEmail
 (email), X = x, Y = y });
 if (gameSession.User1?.Email == email) gameSession.ActiveUser =
 gameSession.User2;
 else gameSession.ActiveUser = gameSession.User1;
 gameSession.TurnFinished = true;
 _sessions = new ConcurrentBag<GameSessionModel>(_sessions.Where(u
 => u.Id != id))
 { gameSession };
 return gameSession;
}

Add a new method called SetPosition to GameSessionController: 2.

 public async Task<IActionResult> SetPosition(Guid id,
 string email, int x, int y)
 {
 var gameSession =
 await _gameSessionService.GetGameSession(id);
 await _gameSessionService.AddTurn(gameSession.Id,
 email, x, y);
 return View("Index", gameSession);
 }

Add a new model called InvitationEmailModel to the Models folder: 3.

public class InvitationEmailModel
 {
 public string DisplayName { get; set; }
 public UserModel InvitedBy { get; set; }
 public DateTime InvitedDate { get; set; }
 public string ConfirmationUrl { get; set; }
 }

Add a new view called InvitationEmail to the4.
Views/EmailTemplates folder:

@model TicTacToe.Models.InvitationEmailModel
@{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
}
<h1>Welcome @Model.DisplayName</h1>
You have been invited by @($"{Model.InvitedBy.FirstName} {
Model.InvitedBy.LastName} ") to play the Tic-Tac-Toe game.
Please click here to join the
game.

Creating ASP.NET Core MVC Applications Chapter 7

[280]

Update the Index method in GameInvitationController to be able to use the5.
invitation email template we mentioned previously:

[HttpPost]
 public async Task<IActionResult> Index(GameInvitationModel
 gameInvitationModel, [FromServices]IEmailService
 emailService)
 {
 var gameInvitationService = Request.HttpContext.
 RequestServices.GetService<IGameInvitationService>();
 if (ModelState.IsValid)
 {
 try
 {
 var invitationModel = new InvitationEmailModel
 {
 DisplayName = $"{gameInvitationModel.
 EmailTo}",
 InvitedBy = await
 _userService.GetUserByEmail
 (gameInvitationModel.InvitedBy),
 ConfirmationUrl =
 Url.Action("ConfirmGameInvitation",
 "GameInvitation",
 new { id = gameInvitationModel.Id },
 Request.Scheme, Request.Host.ToString()),
 InvitedDate = gameInvitationModel.
 ConfirmationDate
 };
 var emailRenderService = HttpContext.
 RequestServices.GetService
 <IEmailTemplateRenderService>();
 var message = await emailRenderService.
 RenderTemplate<InvitationEmailModel>
 ("EmailTemplates/InvitationEmail",
 invitationModel, Request.Host.ToString());
 await emailService.SendEmail(
 gameInvitationModel.EmailTo,
 _stringLocalizer

 ["Invitation for playing a Tic-Tac-Toe
 game"], message);
 }
 catch
 {
 }
 var invitation = gameInvitationService.Add
 (gameInvitationModel).Result;

Creating ASP.NET Core MVC Applications Chapter 7

[281]

 return RedirectToAction
 ("GameInvitationConfirmation", new { id =
 gameInvitationModel.Id });
 }
 return View(gameInvitationModel);
 }

Add a new method called ConfirmGameInvitation to6.
GameInvitationController:

 [HttpGet]
 public IActionResult ConfirmGameInvitation(Guid id,
 [FromServices]IGameInvitationService
 gameInvitationService)
 {
 var gameInvitation = gameInvitationService.
 Get(id).Result;
 gameInvitation.IsConfirmed = true;
 gameInvitation.ConfirmationDate = DateTime.Now;
 gameInvitationService.Update(gameInvitation);
 return RedirectToAction("Index", "GameSession", new
 { id
 = id });
 }

Start the application and verify that everything is working as expected,7.
including the various emails and steps for starting a new game.

Now that we have implemented all this new code, how do we test it? How do we
ensure that it is working as expected? We could start the application in debug mode and
verify that all the variables have been set correctly and that the application flow is correct,
but that would be very tedious and not very efficient.

What would be better than doing this? Using unit tests and integration tests. We will look
at these tests in the upcoming sections.

Creating ASP.NET Core MVC Applications Chapter 7

[282]

Adding unit tests
Unit tests allow you to individually verify the behavior of your various technical
components and ensure that they are working as expected. They also help you
quickly identify regressions and analyze the overall impact of new developments. Visual
Studio 2019 includes powerful features for unit testing.

The Test Explorer helps you run unit tests as well as view and analyze test results. For that,
you can either use the built-in Microsoft testing framework or additional frameworks such
as NUnit or xUnit.

Furthermore, you can automatically execute unit tests after each build so that developers
can react quickly if something isn't working as expected.

Refactoring code can be done without fearing regressions since unit tests ensure
that everything is still working like it was previously. No more excuses for not having the
best code quality possible!

You could even go further and apply test-driven development (TDD), which is where you
write unit tests before writing implementations. Additionally, unit tests become some sort
of design document and functional specifications. A further step would be to apply
behavior-driven development (BDD) and create tests from specifications.

This book is about ASP.NET Core 3, so we won't go into too much detail
about unit tests. It is, however, advised to dig deeper and familiarize
yourself with all the different unit test concepts so that you can build
better applications.

Creating ASP.NET Core MVC Applications Chapter 7

[283]

Let's learn how easy it is to use xUnit, which is the preferred unit testing framework for
ASP.NET Core 3:

Add a new project of the xUnit Test Project (.NET Core) type1.
called TicTacToe.UnitTests to the TicTacToe solution:

Update the xunit and Microsoft.NET.Test.SDK NuGet packages to their2.
latest versions using the NuGet Package Manager:

Creating ASP.NET Core MVC Applications Chapter 7

[284]

Add references to the TicTacToe and TicTacToe.Logging projects: 3.

Creating ASP.NET Core MVC Applications Chapter 7

[285]

Delete the autogenerated class, add a new class called FileLoggerTests.cs4.
for testing a regular class, and implement a new method called
ShouldCreateALogFileAndAddEntry:

public class FileLoggerTests
 {
 [Fact]
 public void ShouldCreateALogFileAndAddEntry()
 {
 var fileLogger = new FileLogger(
 "Test", (category, level) => true,
 Path.Combine(Directory.GetCurrentDirectory(),
 "testlog.log"));
 var isEnabled = fileLogger.IsEnabled
 (LogLevel.Information);
 Assert.True(isEnabled);
 }
 }

Add another new class called UserServiceTests.cs for testing services5.
and implement a new method called ShouldAddUser:

public class UserServiceTests
{
 [Theory]
 [InlineData("test@test.com", "test", "test", "test123!")]
 [InlineData("test1@test.com", "test1", "test1", "test123!")]
 [InlineData("test2@test.com", "test2", "test2", "test123!")]
 public async Task ShouldAddUser(string email, string firstName,
 string lastName, string password)
 { var userModel = new UserModel
 { Email = email,
 FirstName = firstName,
 LastName = lastName,
 Password = password };
 var userService = new UserService();
 var userAdded = await userService.RegisterUser
 (userModel);
 Assert.True(userAdded); }
 }

Open Test Explorer via Test | Windows | Test Explorer and choose to6.
Run All to ensure that all the tests execute successfully:

Creating ASP.NET Core MVC Applications Chapter 7

[286]

Unit tests are great and really important, but also somewhat limited. They only test
each technical component separately, which is the main goal of this type of test.

The idea behind unit tests is to quickly get a glimpse of the current status of all your
technical components, one by one, without slowing down the continuous integration
process. They don't test applications under real production conditions since external
dependencies are mocked. Instead, they are intended to run quickly and ensure that each
method being tested creates no unintended side effects in other methods or classes.
If you stop here, you won't be able to find as many bugs as you usually would during
the development phase. You have to go even further and test all the components together
in a real environment; this is where integration tests come into play.

Adding integration tests
Integration tests are a logical extension of unit tests. They test the integration
between multiple technical components within your applications in a real environment
with access to external data sources (such as databases, web services, and caches).
The goal of this type of test is to ensure that everything is working well together
and providing the expected functionalities when combining various technical components
to create application behavior.

Furthermore, integration tests should always have cleanup steps so that they can
run repeatedly without error and don't leave any artifacts behind in databases or
filesystems.

Creating ASP.NET Core MVC Applications Chapter 7

[287]

In the following example, you will learn how to apply integration tests to the Tic-Tac-Toe
demo application:

Add a new project of the xUnit Test Project (.NET Core) type called1.
TicTacToe.IntegrationTests to the TicTacToe Solution, update the NuGet
packages, and add references to the TicTacToe and TicTacToe.Logging projects
as shown in the preceding unit tests project.
Add the Microsoft.AspNetCore.TestHost NuGet package to the2.
IntegrationTests project, as shown in the following screenshot. This allows
us to create fully automated integration tests using xUnit:

Delete the autogenerated class, add a new class called IntegrationTests.cs,3.
and implement a new method called ShouldGetHomePageAsync:

 [Fact]
 public async Task ShouldGetHomePageAsync()
 {
 var response = await _httpClient.GetAsync("/");
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.
 ReadAsStringAsync();
 Assert.Contains("Welcome to the Tic-Tac-Toe Desktop
 Game!", responseString);
 }

Run the tests in Test Explorer and ensure that they execute successfully.4.

Now that you have learned how to test your applications, you can continue to add
additional unit and integration tests to fully understand these concepts and to build test
coverage that will allow you to provide high-quality applications.

Creating ASP.NET Core MVC Applications Chapter 7

[288]

Layering ASP.NET Core 3 applications
Some of you may have noticed that it may not always be a good idea to cram a lot of
functionality into a single project. Our project's structure currently looks like this:

We have been adding folders upon folders and inside folders, and for large projects, it can
quickly get out of hand and be a nightmare in terms of maintenance. This section serves
only to give you awareness of the best practices to consider while designing our solutions
using a layered architecture, which aims at achieving the following:

A defined SoC.
Less painful maintenance because of low coupling between layers and high
cohesion between the layers.

Creating ASP.NET Core MVC Applications Chapter 7

[289]

The ability to be able to exchange and switch out different implementations of
layer interfaces.
Other solutions should be able to reuse functionality that's been exposed by the
various layers.

Determining the required layers
For most of the applications that you will write, they will have common functionality. It is
advised to group this common functionality into different projects as layers.

In the case of our TicTacToe demo application, we would have all the views grouped into
one project as the presentation layer, services such as the UserService, EmailService,
and others all grouped into the service layer, all the models such as UserModel grouped
into a project as the domain layer, and a data access layer that will contain the database
contexts. This will be explained in Chapter 9, Accessing Data Using Entity Framework Core 3.

The hypothetical layered application for our demo application would look as follows:

It's nice to have a layered application, but don't go on a wanton spree of
randomly creating layers. The key is to look for functionality that makes
sense for it to be grouped together so that you can make your application
more maintainable and more scalable.

We won't be using this layered architecture in this book. We are only mentioning it for the
sake of awareness so that you understand that we can improve on the current design of the
TicTacToe application in many ways.

Creating ASP.NET Core MVC Applications Chapter 7

[290]

Deciding on the distribution for layers and
components
Layers and components should be distributed across separate physical tiers, but only where
it is necessary to do so. There are several reasons for implementing distributed deployment
and that includes security policies, physical constraints, shared business logic, and
scalability.

For the sake of simplifying this book's content, and for the needs of the TicTacToe
application, we are only deploying the application as a single instance, not distributed (we
will cover this in Chapter 12, Hosting ASP.NET Core 3 Applications). Therefore, suffice to say
that there are other ways and means of hosting an application with multiple instances as a
distributed application.

In web applications, you should deploy the business layer and
presentation layer components on the same physical tier to maximize
performance and ease operational management, unless security
restrictions need a trust boundary between them.

Determining rules for interactions between layers
When it comes to a layering strategy, rules must be defined for how the layers will interact
with each other. The main reasons for specifying interaction rules are to minimize
dependencies and eliminating circular references. For example, if two layers each have a
dependency on components in the other layer, then circular dependencies will be
introduced.

Only implement top-down interaction. Higher-level layers can interact
with the layers below them, but a lower level layer should never interact
with the layers above.

Implement a rule that will help you avoid circular dependencies between layers. Events can
be used to make components in higher layers aware of changes in lower layers without
introducing dependencies.

Creating ASP.NET Core MVC Applications Chapter 7

[291]

Identifying cross-cutting concerns
When you separate a project into layers, you will notice some functionality that is
repeatedly done in every layer. For example, you will find that you have to do validation
functionality in each and every layer. Another example is that you have to authenticate
every time in different layers. The best option is to identify these kinds of functionality and
group them into one project as cross-cutting concerns.

The name of a cross-cutting concerns project (layer) does not have to be named exactly like
that. You may choose to call the project your own name as you see fit. Other candidate
functionalities that you could put in the cross-cutting layer include how you manage the
application's exceptions, how you cache frequently used objects, and a logger functionality.

The advantage of getting these cross-cutting functionalities into one layer is that you're
promoting reuse and that it makes our application a bit more maintainable.

Avoid mixing the cross-cutting code with code in the components of each
layer so that the layers and their components only make calls to the cross-
cutting components when they must carry out an action such as logging,
caching, or authentication.

Summary
In this chapter, you learned about the MVC pattern, its different components and
layers, and how important it is for building great ASP.NET Core 3 web applications.

You learned how to use layout pages and the features surrounding it to create device-
specific layouts and thus adapt your user interfaces to the devices they will be running on.
Furthermore, we used view pages to build the visible part, the presentation layer, of our
web applications after learning about the different types of state management in ASP.NET
Core 3.

Then, we discussed partial views, View Components, and Tag Helpers so that we can
encapsulate and reuse our presentation logic throughout the different views of our
applications. Toward the end, we illustrated advanced concepts such as the view engine, as
well as unit tests and integration tests for creating high-quality applications with a low
MTTR for bugs.

Creating ASP.NET Core MVC Applications Chapter 7

[292]

Finally, we learned how important it is to structure our more complex applications using a
layered architecture and the basics that we need to consider.

By reading this chapter, you can now create views, models, and controllers; detect mobile
devices; use View Components; divide an application into areas; and decide what layers to
create for your application.

In the next chapter, we will talk about the ASP.NET Core 3 web API framework and how to
build, test, and deploy web API applications.

8
Creating Web API Applications

You may not know it yet, but this chapter is the chapter you have been waiting for! It is
very special for multiple reasons.

First, we will finish the gaming part and you will be able to start playing the Tic-Tac-Toe
game. Yes – at last, the whole application will be up and running and you will be able to
compete against other users. Very exciting!

Secondly, you will learn how to integrate your applications with other systems and
services. This is very important since modern applications are no longer isolated silos.
Instead, they communicate with each other and continuously exchange data to provide
even more value to customers. How can we do this? We can provide interoperable
web application programming interfaces (web APIs), which allow users to plug in
components, sometimes based on completely different technologies!

Thirdly, using web APIs will not only allow you to integrate with other systems; it will also
help you build more flexible and reusable application components, which you can then
combine to create new applications that respond to more advanced use cases.

The APIs we will be creating in this chapter are not only usable by the MVC web frontend
we have been working on, but also by any new mobile frontends you may build in the
future. This will allow you to reach even more customers. You will be able to provide
omnichannel experiences to your customers, where they start using one device and finish
on another.

Creating Web API Applications Chapter 8

[294]

In this chapter, we will cover the following topics:

Applying web API concepts and best practices
Building RPC, REST, and HATEOAS-style web APIs
Web API security
ASP.NET Core web API help pages with Swagger/OpenAPI

Technical requirements
The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Learn-ASP.NET-Core- 3- Second- Edition/ tree/master/ Chapter08.

Applying web API concepts and best
practices
ASP.NET Core 3 combines the best features of ASP.NET MVC and web APIs into a single
framework. This makes complete sense since they provide many similar functionalities.

Before this merger, developers had to rewrite code when they needed to expose data in
different formats via MVC and web APIs. They had to work with multiple frameworks and
concepts at the same time. Fortunately, this entire process has been completely streamlined
in ASP.NET Core 3, as you will see in this chapter.

The following diagram illustrates how client HTTP requests are handled by ASP.NET Core
3 in terms of web APIs and MVC:

https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-ASP.NET-Core-3-Second-Edition/tree/master/Chapter08

Creating Web API Applications Chapter 8

[295]

Web APIs normally use either JSON or XML as a response format. JSON is the preferred
format since it has become a quasi-standard on the market and most modern applications
use it due to its simplicity and efficiency.

Furthermore, filters and middleware can be used with web APIs since ASP.NET Core 3
manages web APIs the same way it does for standard MVC Controllers. This can be quite
handy in some use cases and developers can apply their skills more widely.

In general, there are three different styles for creating web APIs when using ASP.NET Core
3:

RPC-style
REST-style
HATEOAS-style

Creating Web API Applications Chapter 8

[296]

Note that it is also possible to use the Simple Object Access
Protocol (SOAP) to create web APIs, but it is not recommended. Instead,
SOAP should be used in the context of standard web services, which is
why it is not shown in the following examples.

We will present each style in more detail, along with some practical examples, which will
help you decide on your own integration strategy.

Building RPC-style web APIs
The RPC-style is based on the Remote Procedure Call paradigms, which have existed for a
long time now (since the early 1980s). It is based on including an action name in the URL,
which makes it very similar to standard MVC actions.

One of the big advantages of ASP.NET Core 3 is that you do not need to separate the MVC
parts from the web API parts. Instead, you can use both in your controller implementations.

Controllers are now capable of rendering view results, as well as JSON/XML API
responses, which enables easy migrations from one to the other. Additionally, you can use
a specific route path or the same route path for your MVC actions.

In the following example, you are going to transform a controller action from an MVC view
result into an RPC-style web API:

Add a new method called ConfirmEmail to UserRegistrationController; it1.
will be used to confirm the user registration email. The method accepts an email
as a parameter, gets the user by the supplied email, and if the user is found, it
updates the fact that the user has had their email confirmed and sets the
timestamp of when it was confirmed:

 [HttpGet]
 public async Task<IActionResult> ConfirmEmail(string email)
 {
 var user = await _userService.GetUserByEmail(email);
 if (user != null)
 {
 user.IsEmailConfirmed = true;
 user.EmailConfirmationDate = DateTime.Now;
 await _userService.UpdateUser(user);
 return RedirectToAction("Index", "Home");
 }
 return BadRequest();
 }

Creating Web API Applications Chapter 8

[297]

Update the ConfirmGameInvitation method within2.
GameInvitationController, store the email of the invited user in a session
variable, and register the new user via the user service:

 [HttpGet]
 public async Task<IActionResult> ConfirmGameInvitation
 (Guid id,
 [FromServices]IGameInvitationService
 gameInvitationService)
 {
 var gameInvitation = await gameInvitationService.Get(id);
 gameInvitation.IsConfirmed = true;
 gameInvitation.ConfirmationDate = DateTime.Now;
 await gameInvitationService.Update(gameInvitation);
 Request.HttpContext.Session.SetString("email",
 gameInvitation.EmailTo);
 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo, EmailConfirmationDate =
 DateTime.Now, IsEmailConfirmed =true
 });
 return RedirectToAction("Index", "GameSession", new { id
});
 }

Update the table element in GameSessionViewComponent, which can be found3.
inside the Views/Shared/Components/GameSession/default.cshtml file,
by removing the @if (Model.ActiveUser?.Email == email) wrap.
Next, instead of wrapping the table element with a gameBoard div element (as
shown in the following code), update the wait turn div element, which has an id
called "divAlertWaitTurn", as follows:

 <div id="gameBoard">
 <table>
 ...
 </table>
</div>
<div class="alert" id="divAlertWaitTurn">
 <i class="glyphicon glyphicon-alert">Please wait until
 the other user has finished his turn.</i>
</div>

Creating Web API Applications Chapter 8

[298]

Add a new JavaScript file within the wwwroot\app\js folder called4.
GameSession.js. This will be used to call the web API. The SetGameSession
method accepts a session ID, which is used for the setting the game session:

function SetGameSession(gdSessionId, strEmail) {
 window.GameSessionId = gdSessionId;
 window.EmailPlayer = strEmail;
 }

 $(document).ready(function () {
 $(".btn-SetPosition").click(function () {
 var intX = $(this).attr("data-X");
 var intY = $(this).attr("data-Y");
 SendPosition(window.GameSessionId, window.EmailPlayer,
 intX, intY);
 })
 })

Then, send the position, as follows:

function SendPosition(gdSession, strEmail, intX, intY) {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restApi/v1/SetGamePosition/" + gdSession;
 var obj = {
 "Email": strEmail, "x": intX, "y": intY
 };

Add a temporary alert box for testing purposes:

 var json = JSON.stringify(obj);
 $.ajax({
 'url': url,
 'accepts': "application/json; charset=utf-8",
 'contentType': "application/json",
 'data': json,
 'dataType': "json",
 'type': "POST",
 'success': function (data) {
 alert(data);
 }
 });
 }

Creating Web API Applications Chapter 8

[299]

Add the preceding JavaScript file to the bundleconfig.json file so that you can5.
bundle it with the other files into the site.js file:

 {
 "outputFileName": "wwwroot/js/site.js",
 "inputFiles": [
 "wwwroot/app/js/scripts1.js",
 "wwwroot/app/js/scripts2.js",
 "wwwroot/app/js/GameSession.js"
],
 "sourceMap": true,
 "includeInProject": true
 },

Add a new property called Email to the TurnModel model:6.

 public string Email { get; set; }

Update the SetPosition method within GameSessionController. Here,7.
expose it as a web API so that you can receive AJAX calls from the JavaScript
SendPosition function we implemented previously:

[Produces("application/json")]
[HttpPost("/restapi/v1/SetGamePosition/{sessionId}")]
public async Task<IActionResult> SetPosition([FromRoute]Guid
sessionId)
{
 if (sessionId != Guid.Empty)
 {
 using (var reader = new StreamReader(Request.Body,
 Encoding.UTF8, true, 1024, true))
 {
 ...
 }
 }
 return BadRequest("Id is empty");
}

Then, add the following code to the StreamReader body:

var bodyString = reader.ReadToEnd();
if (string.IsNullOrEmpty(bodyString))
 return BadRequest("Body is empty");
var turn = JsonConvert.DeserializeObject<TurnModel>(bodyString);
 turn.User = await HttpContext.RequestServices.
 xGetService<IUserService>().GetUserByEmail(turn.Email);
 turn.UserId = turn.User.Id;

Creating Web API Applications Chapter 8

[300]

if (turn == null) return BadRequest("You must pass a TurnModel
 object in your body");
var gameSession = await _gameSessionService.
 GetGameSession(sessionId);
if (gameSession == null)
 return BadRequest($"Cannot find Game Session {sessionId}");
if (gameSession.ActiveUser.Email != turn.User.Email)
 return BadRequest($"{turn.User.Email} cannot play this turn");
 gameSession = await _gameSessionService.
 AddTurn(gameSession.Id, turn.User.Email, turn.X, turn.Y);
if (gameSession != null && gameSession.ActiveUser.Email !=
 turn.User.Email)
 return Ok(gameSession);
else
 return BadRequest("Cannot save turn");

Note that it is good practice to prefix web APIs with a meaningful name
and a version number (for example, /restapi/v1), as well as support for
JSON and XML.

Update the Game Session Index View in the Views folder and call the8.
JavaScript SetGameSession function with the corresponding parameters:

 @using Microsoft.AspNetCore.Http
 @model TicTacToe.Models.GameSessionModel
 @{
 var email = Context.Session.GetString("email");
 }
 @section Desktop {
 ...
 }
 @section Mobile{
 ...
 }
 <h3>User Email @email</h3>
 <h3>Active User
 @Model.ActiveUser?.Email</h3>
 <vc:game-session game-session-id="@Model.Id"></vc:game-
 session>
 @section Scripts{
 <script> SetGameSession("@Model.Id", "@email");
 </script>
 }

Creating Web API Applications Chapter 8

[301]

Update the ProcessEmailConfirmation method for WebSockets in the9.
communication middleware:

 public async Task ProcessEmailConfirmation(HttpContext
 context,
 WebSocket currentSocket, CancellationToken ct, string
 email)
 {
 var user = await _userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue &&
 user?.IsEmailConfirmed == false)
 {
 await SendStringAsync(currentSocket,
 "WaitEmailConfirmation", ct);
 await Task.Delay(500);
 user = await _userService.GetUserByEmail(email);
 }

 if (user.IsEmailConfirmed)
 await SendStringAsync(currentSocket, "OK", ct);
 }

Update the ProcessGameInvitationConfirmation method for WebSockets in10.
the communication middleware:

 public async Task ProcessEmailConfirmation(HttpContext
 context, WebSocket currentSocket, CancellationToken ct,
 string email)
 {
 var user = await _userService.GetUserByEmail(email);
 while (!ct.IsCancellationRequested &&
 !currentSocket.CloseStatus.HasValue && user?
 .IsEmailConfirmed == false)
 {
 await SendStringAsync(currentSocket,
 "WaitEmailConfirmation", ct);
 await Task.Delay(500);
 user = await _userService.GetUserByEmail(email);
 }

 if (user.IsEmailConfirmed)
 await SendStringAsync(currentSocket, "OK", ct);
 }

Creating Web API Applications Chapter 8

[302]

Update the CheckGameInvitationConfirmationStatus method in the11.
scripts2.js JavaScript file. It has to verify the returned data:

 function CheckGameInvitationConfirmationStatus(id) {
 $.get("/GameInvitationConfirmation?id=" + id, function
 (data) {
 if (data.result === "OK") {
 if (interval !== null) {
 clearInterval(interval);
 }
 window.location.href = "/GameSession/Index/" + id;
 }
 });
 }

Update the Process method in the Gravatar Tag Helper and handle the case12.
where no photo exists correctly:

 public override void Process(TagHelperContext context,
 TagHelperOutput output)
 {
 byte[] photo = null;
 if (CheckIsConnected()) photo = GetPhoto(Email);
 else
 {
 string filePath = Path.Combine(Directory.
 GetCurrentDirectory(),"wwwroot", "images",
 "no-photo.jpg");
 if (File.Exists(filePath)) photo =
 File.ReadAllBytes(filePath);
 }
 if (photo != null && photo.Length > 0)
 {
 output.TagName = "img";
 output.Attributes.SetAttribute("src",
 $"data:image/jpeg;base64,
 {Convert.ToBase64String(photo)}");
 }
 }

Update the Add method in GameInvitationService:13.

 public Task<GameInvitationModel> Add(GameInvitation
 Model gameInvitationModel)
 {
 _gameInvitations.Add(gameInvitationModel);
 return Task.FromResult(gameInvitationModel);
 }

Creating Web API Applications Chapter 8

[303]

Update the Desktop Layout Page and Mobile Layout Page. Clean this up by14.
removing the development environment tag containing script1.js and
script2.js at the bottom of both pages.
Update the scripts1.js JavaScript file and clean up the previous unnecessary15.
code by removing all the alert boxes that display whether WebSockets are
enabled.

Start the application, register a new user, start a game session by inviting another16.
user, and click on a cell. Now, you will see a JavaScript alert box:

Creating Web API Applications Chapter 8

[304]

So far, you have learned how to transform the existing GameSessionController action
into an RPC-style web API. Since all the different ASP.NET web frameworks have been
centralized into a single framework in ASP.NET Core 3, this can be done easily and quickly
without rewriting any code or changing your existing code too much.

In the next step, we will learn how to add a new method to the RPC-style web API to check
if the turn for the current user has finished, which means that the next user can start their
turn:

Add a new property called TurnNumber to GameSessionModel in order to track1.
the current turn number:

 public int TurnNumber { get; set; }

Add a new property called IconNumber to TurnModel so that you can define2.
what icon (X or O) needs to be used for display later:

 public string IconNumber { get; set; }

Add a new method called GetGameSession, which uses the game session3.
service to get a game session, to the GameSessionController; it will be
exclusive to web API calls:

 [Produces("application/json")]
 [HttpGet("/restapi/v1/GetGameSession/{sessionId}")]
 public async Task<IActionResult> GetGameSession(Guid
 sessionId)
 {
 if (sessionId != Guid.Empty)
 {
 var session = await _gameSessionService.
 GetGameSession(sessionId);

 if (session != null)
 return Ok(session);
 else
 return NotFound($"cannot found session
 {sessionId}");
 }
 else
 return BadRequest("session id is null");
 }

Creating Web API Applications Chapter 8

[305]

Update the AddTurn method in GameSessionService so that it calculates the4.
IconNumber and TurnNumber. To do this, replace the following line of code:

turns.Add(new TurnModel {
 User = await _UserService.GetUserByEmail(email), X = x,
 Y = y });

Write the following code, which allows an icon number to be set:

public async Task<GameSessionModel> AddTurn(Guid id,
 string email, int x, int y)
 {
 ...
 turns.Add(new TurnModel
 {
 User = await _UserService.GetUserByEmail(email),
 X = x,
 Y = y,
 IconNumber = email == gameSession.User1?.
 Email ? "1" : "2"
 });

 gameSession.Turns = turns;
 gameSession.TurnNumber = gameSession.TurnNumber + 1;
 ...
 }

Update the Game Session Index View, user images, and add the possibility to5.
enable and disable the gameboard by replacing the scripts section at the bottom
with the following code snippet. This enables or disables the board, depending
on whether a user is active or not:

 @section Scripts{
 <script>
 SetGameSession("@Model.Id", "@email");
 EnableCheckTurnIsFinished();
 @if(email != Model.ActiveUser?.Email)
 {
 <text>DisableBoard(@Model.TurnNumber);</text>
 }
 else
 {
 <text>EnableBoard(@Model.TurnNumber);</text>
 }
 </script>
 }

Creating Web API Applications Chapter 8

[306]

Add a new JavaScript file called CheckTurnIsFinished.js to the6.
wwwroot\app\js folder using the following EnableCheckTurnIsFinished()
function. This checks whether a playing turn has finished:

function EnableCheckTurnIsFinished() {
 interval = setInterval(() => {CheckTurnIsFinished();},
 2000);
 }
 function CheckTurnIsFinished() {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restapi/v1/GetGameSession/" + window.GameSessionId;

 $.get(url, function (data) {
 if (data.turnFinished === true && data.turnNumber >=
 window.TurnNumber) {
 CheckGameSessionIsFinished();
 ChangeTurn(data);
 }
 });
 }

In the same CheckTurnIsFinished.js file, add a ChangeTurn() function. This
changes the turn of a player and disables or enables the board accordingly:

function ChangeTurn(data) {
 var turn = data.turns[data.turnNumber-1];
 DisplayImageTurn(turn);

 $("#activeUser").text(data.activeUser.email);
 if (data.activeUser.email !== window.EmailPlayer) {
 DisableBoard(data.turnNumber);
 }
 else {
 EnableBoard(data.turnNumber);
 }
 }

Creating Web API Applications Chapter 8

[307]

Add the actual functionality to disable and enable the board, as follows:

 function DisableBoard(turnNumber) {
 var divBoard = $("#gameBoard");
 divBoard.hide();
 $("#divAlertWaitTurn").show();
 window.TurnNumber = turnNumber;
 }

 function EnableBoard(turnNumber) {
 var divBoard = $("#gameBoard");
 divBoard.show();
 $("#divAlertWaitTurn").hide();
 window.TurnNumber = turnNumber;
 }

Finally, add a DisplayImageTurn function, which manipulates the cascading
style sheets according to a respective turn, as follows:

function DisplayImageTurn(turn) {
 var c = $("#c_" + turn.y + "_" + turn.x);
 var css;

 if (turn.iconNumber === "1") {
 css = 'glyphicon glyphicon-unchecked';
 }
 else {
 css = 'glyphicon glyphicon-remove-circle';
 }

 c.html('<i class="' + css + '"></i>');
 }

Update bundleconfig.json so that it includes the new
CheckTurnIsFinished.js file:

{
 "outputFileName": "wwwroot/js/site.js",
 "inputFiles": [
 "wwwroot/app/js/scripts1.js",
 "wwwroot/app/js/scripts2.js",
 "wwwroot/app/js/GameSession.js",
 "wwwroot/app/js/CheckTurnIsFinished.js"
],
 "sourceMap": true,
 "includeInProject": true
 },

Creating Web API Applications Chapter 8

[308]

Update the SetGameSession method in the GameSession.js JavaScript file.7.
Now, set TurnNumber to 0 by default:

 function SetGameSession(gdSessionId, strEmail) {
 window.GameSessionId = gdSessionId;
 window.EmailPlayer = strEmail;
 window.TurnNumber = 0;
 }

Update the SendPosition function in the GameSession.js JavaScript file and8.
remove the temporary testing alert box we added previously. The game will be
fully functional by the end of this section:

// Remove this alert
'success': function (data) {
 alert(data);
 }

Now, we need to add two new methods to GameSessionController. The first9.
one is called CheckGameSessionIsFinished and uses the game session service
to get the session and decide whether the game was a draw or was won by user 1
or 2. As a result, the system will know whether the game session has finished. To
do this, use the following code:

[Produces("application/json")]
[HttpGet("/restapi/v1/CheckGameSessionIsFinished/{sessionId}")]
public async Task<IActionResult> CheckGameSessionIsFinished(Guid
sessionId)
{ if (sessionId != Guid.Empty)
 {
 var session = await
 _gameSessionService.GetGameSession(sessionId);
 if (session != null)
 {
 if (session.Turns.Count() == 9) return Ok("The
 game was a draw.");
 var userTurns = session.Turns.Where(x => x.User ==
 session.User1).ToList();
 var user1Won = CheckIfUserHasWon(session.User1?.Email,
 userTurns);
 if (user1Won) return Ok($"{session.User1.Email} has
 won the game.");
 else
 {
 userTurns = session.Turns.Where(x => x.User ==
 session.User2).ToList();
 var user2Won = CheckIfUserHasWon(session.User2?.

Creating Web API Applications Chapter 8

[309]

 Email, userTurns);

 if (user2Won)return Ok($"{session.User2.Email}
 has won the game.");
 else return Ok("");
 }
 }
 else
 return NotFound($"Cannot find session {sessionId}.");
 }
 else
 return BadRequest("SessionId is null.");
}

Now, we need to implement the second method, that is, CheckIfUserHasWon,
which determines whether a user has won the game and sends this information
to GameSessionController:

private bool CheckIfUserHasWon(string email,
 List<TurnModel> userTurns)
 {
 if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 0) &&
 userTurns.Any(x => x.X == 2 && x.Y == 0))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 1) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 1))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 2) &&
 userTurns.Any(x => x.X == 1 && x.Y == 2) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 0 && x.Y == 1) &&
 userTurns.Any(x => x.X == 0 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 1 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 1 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
 userTurns.Any(x => x.X == 2 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))
 return true;
 else if (userTurns.Any(x => x.X == 0 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 2 && x.Y == 2))

Creating Web API Applications Chapter 8

[310]

 return true;
 else if (userTurns.Any(x => x.X == 2 && x.Y == 0) &&
 userTurns.Any(x => x.X == 1 && x.Y == 1) &&
 userTurns.Any(x => x.X == 0 && x.Y == 2))
 return true;
 else
 return false;
 }

Add a new JavaScript file called CheckGameSessionIsFinished.js to the10.
wwwroot\app\js folder and update the bundleconfig.json file accordingly:

 function CheckGameSessionIsFinished() {
 var port = document.location.port ? (":" +
 document.location.port) : "";
 var url = document.location.protocol + "//" +
 document.location.hostname + port +
 "/restapi/v1/CheckGameSessionIsFinished/" +
 window.GameSessionId;

 $.get(url, function (data) {
 debugger;
 if (data.indexOf("won") > 0 || data == "The game
 was a draw.") {
 alert(data);
 window.location.href = document.location.protocol +
 "//" + document.location.hostname + port;
 }
 });
 }

Start the game, register a new account, open the confirmation email, confirm it,11.
send a game invitation email, confirm the game invitation, and start playing.
Everything should be working now, and you should be able to play the game
until a user has won or until the game ends in a draw:

Creating Web API Applications Chapter 8

[311]

In this section, we've looked at the RPC-style, which is very close to standard MVC
Controller actions. In the following sections, you learn about a completely different
approach, which is based on resources and resource management.

Congratulations; you have finished the implementation of RPC-style and created a
beautiful, modern, browser-based game in which two users can play against each other.

Prepare yourself – in the following sections, you're going to look at more advanced
techniques and discover how to provide web APIs for interoperability using two of the
most famous API communication styles: REST and HATEOAS.

Creating Web API Applications Chapter 8

[312]

To play the game, you can either use two separate private browser windows or use two
distinct browsers, such as Chrome, Edge, or Firefox. To test your web APIs, it is advised
that you install and use Postman (https:/ /www. getpostman. com/), but you can also use any
other HTTP REST-compatible client, such as Fiddler (https:/ / www.telerik. com/ fiddler),
SoapUI (https://www. soapui. org/ downloads/ soapui. html), or even Firefox via its
advanced features.

Building REST-style web APIs
The REST style was invented by Roy Fielding in the 2000s and is one of the best ways to
provide interoperability between systems that are based on multiple technologies, whether
it be in your network or on the internet.

Furthermore, the REST approach is not a technology by itself, but some best practices that
are used for efficiently using the HTTP protocol.

Instead of adding a new layer, like SOAP or XML-RPC does, REST uses different elements
of the HTTP protocol for providing its services:

The URI identifies a resource.
The HTTP verb identifies an action.
The response is not the resource, but a representation of the resource.
The client authentication is passed as a parameter in the header of requests.

Unlike the RPC style, the main purpose is no longer to provide actions and is to manage
and manipulate resources.

To find out even more about the concepts and ideas behind REST, you
should read Roy Fielding's dissertation on this subject, which you can find
at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

As shown in the following diagram, there are mainly three types of resources in the Tic-
Tac-Toe application:

Users
Game invitations
Game sessions:

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
https://www.soapui.org/downloads/soapui.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Creating Web API Applications Chapter 8

[313]

Let's learn how to use the REST style for building a game invitation with the REST API:

Add two new methods, one called All, which returns all game invitations, and1.
another called Delete, which deletes a game invitation according to the
specified game invitation ID. You need to add these two methods
to GameInvitationService and update the game invitation service interface
accordingly:

 public Task<IEnumerable<GameInvitationModel>> All()
 {
 return Task.FromResult<IEnumerable<GameInvitationModel>>
 (_gameInvitations.ToList());
 }

 public Task Delete(Guid id)
 {
 _gameInvitations = new ConcurrentBag<GameInvitationModel>

Creating Web API Applications Chapter 8

[314]

 (_gameInvitations.Where(x => x.Id != id));
 return Task.CompletedTask;
 }

Add a new API controller called GameInvitationApiController, right-click2.
on the Controllers folder, and select Add | Controller. Then, choose the API
Controller with read/write actions template:

Remove the auto-generated code and replace it with the following REST API3.
implementation:

First, insert the following code as a scaffold for the game invitation API1.
controller, where we have the decorators of expected output and the
actual endpoint route. Then, we have a constructor that injects the
game invitations service and the user service into the controller, as
follows:

 [Produces("application/json")]
 [Route("restapi/v1/GameInvitation")]
 public class GameInvitationApiController : Controller
 {
 private IGameInvitationService
 _gameInvitationService;

Creating Web API Applications Chapter 8

[315]

 private IUserService _userService;
 public GameInvitationApiController
 (IGameInvitationService
 gameInvitationService, IUserService userService)
 {
 _gameInvitationService = gameInvitationService;
 _userService = userService;
 }
 ...
 }

Add the following two Get implementation methods. The first returns2.
all the game invitation services, while the other returns a game
invitation service according to the ID being specified as Guid:

 [HttpGet]
 public async Task<IEnumerable<GameInvitationModel>> Get()
 {
 return await _gameInvitationService.All();
 }

 [HttpGet("{id}", Name = "Get")]
 public async Task<GameInvitationModel> Get(Guid id)
 {
 return await _gameInvitationService.Get(id);
 }

Add a method that will be used for the creation or insertion of a game3.
invitation, as follows:

 [HttpPost]
 public IActionResult Post([FromBody]GameInvitationModel
 invitation)
 {
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 var invitedPlayer =
 _userService.GetUserByEmail(invitation.EmailTo);
 if (invitedPlayer == null) return BadRequest();

 _gameInvitationService.Add(invitation);
 return Ok();
 }

Creating Web API Applications Chapter 8

[316]

Add the following method, which will be used for updating a game4.
invitation:

[HttpPut("{id}")]
 public IActionResult Put(Guid id,
 [FromBody]GameInvitationModel invitation)
 {
 if (!ModelState.IsValid)
 return BadRequest(ModelState);

 var invitedPlayer =
_userService.GetUserByEmail(invitation.EmailTo);
 if (invitedPlayer == null) return BadRequest();

 _gameInvitationService.Update(invitation);
 return Ok();
 }

Finally, we need to add our delete functionality so that we can delete a5.
game invitation service according to the ID specified as being Guid:

 [HttpDelete("{id}")]
 public void Delete(Guid id)
 {
 _gameInvitationService.Delete(id);
 }

Note that, for learning purposes, we have just provided a very basic
example of what you could implement. Normally, you should provide the
same functionalities as in your controller implementations (sending
emails, confirming emails, verifying data, and so on) and some advanced
error handling.

Start the application, install and start Postman so that you can do some manual4.
tests on the new REST API you are providing, and send an HTTP GET request to
http://<yourhost>/restapi/v1/GameInvitation. There will be no game
invitations since you haven't created any yet:

Creating Web API Applications Chapter 8

[317]

Create a new game invitation, send an HTTP POST request to5.
http://<yourhost>/restapi/v1/GameInvitation, click on Body, select raw
and JSON, and use "id":"7223160d-6243-498b-9d35-81b8c947b5ca",
"EmailTo":"example@example.com", and
"InvitedBy":"test@test.com" as parameters:

Creating Web API Applications Chapter 8

[318]

Note that we have added the automatic creation of a user if one doesn't
exist for testing purposes in Chapter 4, Basic Concepts of ASP.NET Core 3
via a Custom Application: Part 1. In a real-world scenario, you will have to
implement the user registration web APIs and call them before the game
invitation web APIs. If you don't, you'll get a bad request since we have
added some code to ensure data coherence and integrity.

You can retrieve the game invitation either by sending an HTTP GET request to6.
http://<yourhost>/restapi/v1/GameInvitation or, more specifically, by
sending an HTTP GET request to
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-

9d35-81b8c947b5ca:

Update the game invitation, send an HTTP PUT request to7.
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-

9d35-81b8c947b5ca, click on Body, select raw and JSON, and
use "id":"7223160d-6243-498b-9d35-81b8c947b5ca",
"EmailTo":"updated@updated.com", and
"InvitedBy":"test@test.com" as parameters:

Creating Web API Applications Chapter 8

[319]

Look at the updated game invitation and send an HTTP GET request to8.
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-

9d35-81b8c947b5ca:

Creating Web API Applications Chapter 8

[320]

Delete the game invitation and send an HTTP DELETE request to9.
http://<yourhost>/restapi/v1/GameInvitation/7223160d-6243-498b-

9d35-81b8c947b5ca:

Verify the game invitation's deletion and send an HTTP GET request to10.
http://<yourhost>/restapi/v1/GameInvitation:

Creating Web API Applications Chapter 8

[321]

The REST style is the most common style of web APIs you can find on the market today. It
is easy to understand and has been adapted for interoperability use cases.

In the next section, you will learn about a more advanced style called HATEOAS, which is
especially well suited for constantly evolving web APIs.

Building HATEOAS-style web APIs
The Hypermedia as the Engine of Application State (HATEOS) style is yet another
approach for providing efficient web APIs. It is, however, completely different from the
other two styles we've presented. With this approach, clients can dynamically navigate to a
resource by traversing various hypermedia links, which are provided in the HTTP
responses.

The advantage of this style is that the server doesn't drive the application state anymore;
instead, it is the hypermedia links that are returned by the server that oversee this.

Additionally, compared to the other styles, API changes are handled much better since
clients don't hardcode URIs to actions (RPC-style) or resources (REST-style) anymore.
Instead, they can work with hypermedia links that have been returned by a server for every
response that is received after a request is made. This is an interesting concept in the way
that it allows for more flexible and evolvable web APIs.

Creating Web API Applications Chapter 8

[322]

The following diagram shows an example of how to apply the HATEOAS-style to the Tic-
Tac-Toe application:

An example of the JSON representation of this diagram is as follows:

 {
 "_links": {
 "self": { "href": "/gameinvitations" },
 "next": { "href": "/gameinvitations?page=2" },
 "find": {
 "href": "/gameinvitations{?Id}",
 "templated": "true"
 }
 },
 "_embedded": {
 "gameinvitations": [
 {
 "_links": {
 "self": { "href": "/gameinvitations/f1eaf6ac-c998-40da-
 8eb5-198eaa2cc96f" },
 "confirm": { "href": "/gameinvitations/f1eaf6ac-c998-
 40da-8eb5-198eaa2cc96f/confirm" }
 },
 "isConfirmed": "false",
 "confirmDate": "null",
 "emailTo": {
 "self": { "href": "/user/1" }
 },
 "invitedBy": { "self": "\"{\"href\":\"/user/2\"}" }
 }
]
 }
 }

Creating Web API Applications Chapter 8

[323]

HATEOAS provides some powerful features, all of which allow us to evolve components
independently. Clients can be completely decoupled from the business workflows running
on the server, which manage interaction by using links and other hypermedia artifacts,
such as forms.

Whatever style you use, whether that be RPC, RESTful, or HATEOAS, according to what
works best for what scenario and however elegant it is as a solution, it won't be very useful
unless your APIs are secure. In the next section, you'll learn about the basics of security for
your web APIs.

Securing your web API
At this point, we have managed to create a few API endpoints, but there is a concern that
anyone can hit the endpoints from any browser and even manage to modify/delete our
game invitations, as long as they know what parameters to pass on. This is a security threat,
and you can imagine the implications with an application handling a high level of sensitive
functionality.

We will deal with security for ASP.NET Core 3 in Chapter 10, Securing ASP.NET Core 3
Applications, and Chapter 11, Securing ASP.NET Applications – Vulnerabilities, but it is worth
noting the available security measures for our web API endpoints. Let's have a look at the
following screenshot, which shows the Authorization tab of Postman:

Creating Web API Applications Chapter 8

[324]

Take note of the different types of authorization that Postman expects, including No
Auth, meaning no authorization at all.

Chapter 11, Securing ASP.NET Applications – Vulnerabilities, will give us insight into the
common security vulnerabilities that we have to watch out for. With this in mind, it is
always important to secure our web API endpoints with any of the following authorization
options:

API key
Bearer token
Basic auth
Digest auth
OAuth 1.0
OAuth 2.0
Hawk authentication
AWS signature
NTLM authentication

These authentication options are explained further on the following documentation, which
talks about authorization in Postman: https:/ /learning. getpostman. com/ docs/ postman/
sending-api-requests/ authorization/ .

Apart from making our APIs secure from unwanted users, there are legitimate users that
we need to make sure have a great experience using our APIs. One of the ways of helping
our users do this is by giving them access to documentation using our API specifications.
We will learn how to do this in the next section.

ASP.NET Core web API help pages with
Swagger/OpenAPI
As the size of any application grows, and the number of web API endpoints grows, it is
often a good idea to have documentation about the API itself, the available endpoints, what
they expect as parameters, and what to expect as a normal response from any respective
API calls that are made.

https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/
https://learning.getpostman.com/docs/postman/sending-api-requests/authorization/

Creating Web API Applications Chapter 8

[325]

It can be tedious to document every API endpoint manually, but fortunately,
Swagger/OpenAPI comes to the rescue here. Let's take a look:

Go to our Tic-Tac-Toe demo application, right-click on the TicTacToe project, go1.
to the NuGet Package Manager, and search for Swashbuckle.AspnetCore.
Now, click on the Install button:

You can also install Swashbuckle by going to the Package Manager Console and
typing Install-Package Swashbuckle.AspNetCore -Version 5.0.0-rc4
at the Package Manager's Command Prompt.

Next, add the following code snippet to the ConfigureServices method in the2.
Startup class:

 services.AddSwaggerGen(options =>
 {
 options.SwaggerDoc("v1", new OpenApiInfo {
 Title = "Learning ASP.Net Core 3.0 Rest-API",
 Version = "v1",
 Description = "Demonstrating auto-generated
 API documentation",
 Contact = new OpenApiContact
 {
 Name = "Kenneth Fukizi",
 Email = "example@example.com",
 },
 License = new OpenApiLicense
 {
 Name = "MIT",
 }
 });

Make sure that you import the using
Microsoft.OpenApi.Models; namespace so that you can use
the OpenApiInfo class.

Creating Web API Applications Chapter 8

[326]

Finally, we need to add the following code to the Configure method in the same3.
Startup.cs class:

 app.UseSwagger();

 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
 "LEARNING ASP.CORE 3.0 V1");
 });

Start the TicTacToe demo application and add Swagger to the root URL. You4.
will see all the API endpoints we have created so far, all of which are
documented on the Swagger index page:

Creating Web API Applications Chapter 8

[327]

Swagger can also be used to test out the intended functionality for any API5.
endpoint instead of the other most common tools, such as Postman and Fiddler.
Of course, another common way to test API endpoints is by typing them in
manually as browser URLs. You can test an endpoint using Swagger by clicking
on it (to expand it), clicking on the Try it out button, as shown to the right of the
following screenshot, and entering the expected values:

Creating Web API Applications Chapter 8

[328]

We may want to have the API documentation on the main index page, especially6.
in cases where the whole application is an API that we are developing for other
users. In this case, all we need to do is add an empty RoutePrefix
SwaggerUIOption, as follows:

 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
 "LEARNING ASP.CORE 3.0 V1");
 c.RoutePrefix = string.Empty;
 });

For every additional API endpoint you wish to add, Swagger will pick it up and document
it automatically, leaving you to concentrate on just producing the code and not the
documentation – isn't that liberating?

Summary
In this chapter, you have learned how to build web APIs for your applications for
integration purposes and for loosely coupled application architectures.

We have explored different three styles for our web APIs, that is, RPC, REST, and
HATEOAS. Each of those styles has specific advantages and use cases. You have to choose
carefully, depending on your specific application needs, since there is no one single style
that outclasses the others.

Throughout this chapter, we've looked at examples of how to transform existing controller
actions into RPC-style web APIs and how to build REST-style and HATEOAS-style web
APIs from the ground up. Then, we used Postman to manually test our web APIs and you
have acquired enough knowledge to apply all of these new concepts to your own
environments. Finally, we used OpenAPI's Swagger to automatically produce
documentation for our API endpoints.

To summarize, we've learned how to build REST APIs, acquired skills in terms of how to
transform a controller action into an RPC-style web API, and built them from scratch. We
also learned how to build HATEOAS-style web APIs and configure our APIs so that they
have a help page with API specification documentation.

In the next chapter, we will talk about how to access data by using Entity Framework Core
3 in our ASP.NET Core 3 applications.

3
Section 3: The ASP.NET Core

3 Supporting Ecosystem
In this section, we will walk you through the process of persisting data through the use of
Entity Framework Core 3 and retrieving it when needed. Then, we will deal with the issues
of hosting deployed applications and take you through the process of monitoring them.
Security will be talked about in detail in a chapter dedicated to it in order to underline how
important it is to make sure that applications are safe.

This section comprises the following chapters:

Chapter 9, Accessing Data Using Entity Framework Core 3
Chapter 10, Securing ASP.NET Core 3 Applications
Chapter 11, Securing ASP.NET Applications – Vulnerabilities
Chapter 12, Hosting ASP.NET Core 3 Applications
Chapter 13, Managing ASP.NET Core 3 Applications

9
Accessing Data Using Entity

Framework Core 3
We have come a long way with our implementation of the Tic-Tac-Toe demo web
application, but when we restart the application, none of our user registration and
application data is remembered. This is due to the fact that we are not saving or persisting
any data yet.

To persist data and be able to reload it when the application starts, we have to put it into
some kind of persistent storage, such as files (XML, JSON, CSV) or databases.

A database would be the best choice since it provides better performance and more security
compared to simple file storage, and that is why we are going to use this approach in the
examples in this chapter.

Since the old ASP.NET 3 days, we have been able to use an object-relational
mapping (ORM) framework called Entity Framework to access data in databases in a more
productive and simple way. ASP.NET Core 3 works seamlessly with a dedicated version of
this framework called Entity Framework Core 3, part of Entity Framework 6.3, and can also
work with previous versions.

We will start this chapter by introducing Entity Framework Core 3.0 and how to install it.
Then, we will learn about all the classes we need in order to use a code-first approach to
create the database, after which we will show you how to perform migrations. Next, we'll
explore normal CRUD operations and explain the most common and important data
relationships. Finally, we will explain queries in slightly greater depth and introduce
transactions.

By the end of this chapter, you will be able to connect to a database using Entity
Framework Core, use migrations with updates, carry out basic CRUD operations, work
with the Fluent API, perform complex queries against a database, and use transactions.

Accessing Data Using Entity Framework Core 3 Chapter 9

[331]

In this chapter, we will cover the following topics:

Getting started with Entity Framework Core 3
Working with Entity Framework Core 3 Data Annotations
Using Entity Framework Core 3 migrations
Creating, reading, updating, and deleting data
Understanding data relationships
Working with queries
Using transactions

Getting started with Entity Framework
Core 3
The Microsoft.AspNetCore.App meta-package contains Entity Framework Core 3,
including all the packages you need to work with Microsoft SQL Server and SQLite.

Note that, if you need to work with other databases such as MySQL, you
have to download additional packages from NuGet.

You can find a list of all the currently available Entity Framework Core 3
NuGet packages
here: https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-f
ramework-core%22.

Entity Framework is Microsoft's version of an ORM, and is not the only one that can be
used on ASP.NET Core. Other ORMs of note that work seamlessly with .NET Core include
NHibernate, LINQ to SQL, and Dapper.

ORMs are the recommended way to access databases, especially relational database
management systems (RDBMS), in order to counteract the well documented impedance
mismatch. ORMs abstract you, as a developer, away from the nitty gritty of SQL
manipulations and implementations.

Entity Framework Core 3.0 is a later version of Entity Framework Core 1.0 and subsequent
versions that have been evolving since Entity Framework versions were specifically
designed for the .NET Framework.

https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-core%22
https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-core%22
https://www.nuget.org/packages?page=2&q=Tags%3A%22entity-framework-core%22

Accessing Data Using Entity Framework Core 3 Chapter 9

[332]

You can install Entity Framework Core 3.0 by running the following command on the
Package Manager Console:

Install-package Microsoft.EntityFrameworkCore

By running the preceding command, you will receive the following output:

You will also need to install the SQL Server provider with the following command on the
Package Manager Console since they work hand in hand:

Install-package Microsoft.EntityFrameworkCore.SqlServer

Before you actually start to use EF Core 3.0, it is only natural to try to establish a connection
to the database first, which we will look at in the next section.

Accessing Data Using Entity Framework Core 3 Chapter 9

[333]

Establishing a connection
To open a session to the database and query and update instances of your entities, you need
to use DbContext, which is based on a combination of the unit of work and repository
patterns.

Let's learn how to prepare the Tic-Tac-Toe application so that we can use Entity Framework
Core 3 from scratch to connect to a SQL database via DbContext and a connection string:

Go to the Solution Explorer and add a new folder called Data, add a new class1.
called GameDbContext, and implement a DbSet property for each model
(UserModel, TurnModel, and so on):

 public class GameDbContext : DbContext
 {
 public DbSet<GameInvitationModel> GameInvitationModels
 {get; set; }
 public DbSet<GameSessionModel> GameSessionModels { get;
 set; }
 public DbSet<TurnModel> TurnModels { get; set; }
 public DbSet<UserModel> UserModels { get; set; }
 public GameDbContext(DbContextOptions<GameDbContext>
 dbContextOptions) : base(dbContextOptions) { }
 }

Register GameDbContext in the Startup class. Then, pass the connection string2.
and database provider as parameters within the constructor. Currently, we only
need a single instance, so we will use AddSingleton:

 var connectionString =
 _configuration.GetConnectionString("DefaultConnection");
 services.AddEntityFrameworkSqlServer()
 .AddDbContext<GameDbContext>((serviceProvider,
 options) => options.UseSqlServer(connectionString).
 UseInternalServiceProvider(serviceProvider)
);

 var dbContextOptionsbuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString);
 services.AddSingleton(dbContextOptionsbuilder.Options);

Please note that you will need to add the following using statements for
the code to compile: using TicTacToe.Data; and
using Microsoft.EntityFrameworkCore;.

Accessing Data Using Entity Framework Core 3 Chapter 9

[334]

Update the user service class called UserService.cs so that you can work with3.
the game database context: GameDbContext.cs. Add a new public constructor
and a private member for the game database context:

 private DbContextOptions<GameDbContext> _dbContextOptions;
 public UserService(DbContextOptions<GameDbContext>
 dbContextOptions)
 {
 _dbContextOptions = dbContextOptions;
 }

Update the RegisterUser method in UserService so that you can use the4.
game database context: GameDbContext:

 public async Task<bool> RegisterUser(UserModel userModel)
 {
 using(var Database = new GameDbContext
 (_dbContextOptions))
 {
 Database.UserModels.Add(userModel);
 await Database.SaveChangesAsync();
 return true;
 }
 }

Add a new extension called ModelBuilderExtensions to the Extensions5.
folder. This will be used to define table name conventions:

 public static class ModelBuilderExtensions
 {
 public static void RemovePluralizingTableNameConvention(
 this ModelBuilder modelBuilder)
 {
 foreach (IMutableEntityType entity in
 modelBuilder.Model.GetEntityTypes())
 {
 entity.SetTableName(entity.DisplayName());
 }
 }
 }

Accessing Data Using Entity Framework Core 3 Chapter 9

[335]

Update the OnModelCreating method in the game database context,6.
GameDbContext, to configure the models to configure the models that were
discovered from the entity types exposed in DbSet properties, for example:
public DbSet<UserModel> UserModels { get; set; }. Then, we call the
ModelBuilderExtensions extension class to apply the table name conventions:

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.RemovePluralizingTableNameConvention();
 }

Note that we could also use another method called OnConfiguring in the
database context in order to configure the database context without using
DbContextOptions.

Add a new class called GameDbContextFactory to the Data folder. This will be7.
used to instantiate the game database context, GameDbContext, with specific
options:

 public class GameDbContextFactory :
 IDesignTimeDbContextFactory<GameDbContext>
 {
 public GameDbContext CreateDbContext(string[] args)
 {
 var optionsBuilder = new
 DbContextOptionsBuilder<GameDbContext>();
 optionsBuilder.UseSqlServer(@"Server=
 (localdb)\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;
 MultipleActiveResultSets=true");
 return new GameDbContext(optionsBuilder.Options);
 }
 }

Note that you will have to add the following using statements so that the
code compiles: using Microsoft.EntityFrameworkCore; and using
Microsoft.EntityFrameworkCore.Design;.

If you have worked with databases before, you should be familiar with the concept of
connection strings. They contain the configuration (address, username, password, and
more) and settings (encryption, protocol, and more) that are required so that we can
connect to a database.

Accessing Data Using Entity Framework Core 3 Chapter 9

[336]

In ASP.NET Core 3, you can also use an appSettings.<env>.json file to configure
connection strings. Connection strings are loaded automatically when we use the
ConnectionStrings section within this file:

 "ConnectionStrings": {
 "DefaultConnection":
 "Server=(localdb)\\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },

As you can see, you can use the GetConnectionString method to retrieve a connection
string at runtime:

 var databaseConnectionString =
 _configuration.GetConnectionString("DefaultConnection");

This is everything you need to know in order to use the game database context,
GameDbContext, and the corresponding default connection string stored within the
appsettings.json configuration file of the Tic-Tac-Toe application.

Before we start using the game database context on our models, it is important to make sure
that we have grasped all the required basics so that we can use our game database context
to create and access database tables. It is recommended that every database table has a
primary key if it is to qualify as a relational table; it needs to have a foreign key if it is
related to another table. In the next section, we will look at how we are going to define our
primary and foreign keys in our code through Data Annotations.

Defining primary keys and foreign keys via Data
Annotations
Now, we need to modify existing models so we can persist them within a SQL database. To
allow Entity Framework Core 3.0 to create, read, update, and delete records, we need to
specify a primary key for each model. We can do this by using Data Annotations, which
allow us to decorate a property with the [Key] decorator.

The following is an example of how to use Data Annotations for UserModel:

 public class UserModel
 {
 [Key]
 public long Id { get; set; }
 ...
 }

Accessing Data Using Entity Framework Core 3 Chapter 9

[337]

You should apply this to UserModel, GameInvitationModel, GameSessionModel, and
TurnModel in the Tic-Tac-Toe application. You can reuse existing Id properties and
decorate them with the [Key] decorator, or add new ones if a model doesn't contain an Id
property yet.

Note that it is sometimes required to use composite keys as the identity
for your rows in a table. In this case, decorate each property with the
[Key] decorator. Furthermore, you can use Column[Order=] to define
the position of the property if you need to order a composite key.

When working with SQL Server (or any other SQL 92 DBMS), the first thing you should
think about is the relationship between tables. In Entity Framework Core 3, you can specify
foreign keys within models by using the [ForeignKey] decorator.

Concerning the Tic-Tac-Toe application, this means that you have to update
GameInvitationModel and add a foreign key relationship to the user model ID. Perform
the following steps to do so:

Update GameInvitationModel and add a foreign key attribute to the1.
InvitedByUser property:

 public class GameInvitationModel
 {
 [Key]
 public Guid Id { get; set; }
 public string EmailTo { get; set; }

 public string InvitedBy { get; set; }
 public UserModel InvitedByUser {get; set;}
 [ForeignKey(nameof(InvitedByUserId))]
 public Guid InvitedByUserId { get; set; }

 public bool IsConfirmed { get; set; }
 public DateTime ConfirmationDate { get; set; }
 }

This is an already existing GameInvitationalModel class, and we are just
decorating the property Id with a [Key] attribute so that Entity Framework Core
3.0 will be able to identify it as a primary key. The foreign key attribute,
[ForeignKey(nameof(InvitedByUserId)], decorates the GUID called
InvitedUserId so that EF Core 3.0 will be able to see this property as a foreign
key to another table.

Accessing Data Using Entity Framework Core 3 Chapter 9

[338]

Update GameSessionModel and add a foreign key to UserId1:2.

 public class GameSessionModel
 {
 [Key]
 public Guid Id { get; set; }
 ...
 [ForeignKey(nameof(UserId1))]
 public UserModel User1 { get; set; }
 ...
 }

Here, we have a GameSessionModel POCO class that's decorated with a primary
key attribute on its Id property and a secondary key attribute on the user model
called User 1. This will allow EF Core 3.0 to create a GameSessionModel table
with a primary key called Id and a foreign key called User1, respectively.

Update TurnModel and add a foreign key to UserId:3.

 public class TurnModel
 {
 [Key]
 public Guid Id { get; set; }
 [ForeignKey(nameof(UserId))]
 public Guid UserId { get; set; }
 public UserModel User { get; set; }
 public int X { get; set; }
 public int Y { get; set; }
 public string Email { get; set; }
 public string IconNumber { get; set; }
 }

Entity Framework Core 3 maps all properties in a model with a schema
representation by default. But some more complex property types are not
compatible, which is why we should exclude them from auto-mapping. But how
do we do this? Well, by using the [NotMapped] decorator. How easy and
straightforward is that?

For the Tic-Tac-Toe application, it makes no sense to persist the active user for a4.
turn, so you should exclude this from the auto-mapping process by using the
[NotMapped] decorator in GameSessionModel:

 public class GameSessionModel
 {
 [Key]
 public Guid Id { get; set; }

Accessing Data Using Entity Framework Core 3 Chapter 9

[339]

 ...

 [NotMapped]
 public UserModel Winner { get; set; }

 [NotMapped]
 public UserModel ActiveUser { get; set; }
 public Guid WinnerId { get; set; }
 public Guid ActiveUserId { get; set; }
 public bool TurnFinished { get; set; }
 public int TurnNumber { get; set; }
 }

Now that you have decorated all your models using Entity Framework Core 3
Data Annotations, you will notice that you have two properties, User1 and
User2, in GameSessionModel that point to the same UserModel entity. This
results in a circular relationship, and that will give us a problem (when we work
with relational databases) to performing operations such as cascading updates or
cascading deletions.

For more information on Entity Framework Data Annotations, please
visit https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113)
.aspx.

To avoid circular relationships, you need to decorate User1 with the5.
[ForeignKey] decorator and update the OnModelCreating method in the
game database context, GameDbContext, to define the foreign key for User2.
These two modifications will allow you to define the two foreign keys while
avoiding automatic cascading operations, which would cause problems:

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.RemovePluralizingTableNameConvention();
 modelBuilder.Entity(typeof(GameSessionModel))
 .HasOne(typeof(UserModel), "User2")
 .WithMany()
 .HasForeignKey("User2Id").OnDelete(DeleteBehavior.Restrict);
 }

https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx

Accessing Data Using Entity Framework Core 3 Chapter 9

[340]

Now, you need to fix the unit tests. You may have already noticed that the unit6.
test project doesn't build anymore if you try compiling the solution. Here, you
need to update the unit test, since UserService now requires an instance of
DbContextOptions, as follows:

 var dbContextOptionsBuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(@"Server=
 (localdb)\MSSQLLocalDB;Database=TicTacToe;
 Trusted_Connection=True;MultipleActiveResultSets=true");

 var userService = new
 UserService(dbContextOptionsBuilder.Options);

Please note that, while the preceding code snippet fixes the tests, it is not
good practice to work with real database connections inside unit tests.
Ideally, the data connection should be mocked or abstracted in some way.
If you need to use real data for integration tests, the connection
information should come from a config file instead of being hardcoded.

Now, the unit tests cater for a constructor of UserService with the new overload of the
options builder. Now that we have defined our primary and foreign keys in our models, we
can create our initial database schema and prepare our application for migration. In the
next section, we look at EF Core 3 migrations.

Using Entity Framework Core 3 migrations
As you have already seen, when developing applications, your models may change
frequently when you refactor and finalize your projects. This may lead to a database
schema that is out of sync and that needs to be updated manually. You can do this by
creating an upgraded script, but this isn't an ideal solution.

Fortunately, Entity Framework Core 3 includes a feature called migrations to help you with
this tedious task. It automatically keeps your models and their corresponding database
schemas in sync.

Accessing Data Using Entity Framework Core 3 Chapter 9

[341]

After you have updated the models, services, and controllers so that they comply with the
preceding constraints and modified the game database context, GameDbContext,
accordingly, you are ready to use Entity Framework Core 3 migrations. The following steps
will show you how to use Entity Framework Core 3 migrations:

Add a first version of your database schema called InitialDbSchema. To do1.
this, open the NuGet Package Manager by clicking on Tools | NuGet Package
Manager | Package Manager Console and execute the Add-Migration
InitialDbSchema command:

A new folder called Migrations will be automatically added by Visual Studio. It2.
will contain two autogenerated files that will help you manage and upgrade your
database schema in the future:

You can update your database directly from within Visual Studio 2019 if it is accessible
from your development environment. The following steps will walk you through the
update process:

Go to the Package Manager Console and execute the Update-Database1.
command. This will create a database the first time it is used, or update the
database automatically when you change your models:

Accessing Data Using Entity Framework Core 3 Chapter 9

[342]

Then, go to the SQL Server Object Explorer and analyze the database schema2.
that Entity Framework 3 migrations has autogenerated in SQL Server:

After that, right-click on the __EFMigrationsHistory table and select View3.
Data to see how Entity Framework migrations tracks database schema versions:

Accessing Data Using Entity Framework Core 3 Chapter 9

[343]

If your database is not accessible from your development environment (for
example, in staging or production), you have to generate a SQL script file.

Go to the Package Manager Console and execute the Script-Migration4.
command to autogenerate a SQL script file, which can be used to create the Tic-
Tac-Toe application's database:

After that, execute the generated SQL script file on specific environments like5.
staging and production using your preferred database tools (for example, SQL
Server Management Studio, and so on) to create the Tic-Tac-Toe application's
database.

Accessing Data Using Entity Framework Core 3 Chapter 9

[344]

You can also use Entity Framework Core 3 migration directly from within your code to
ensure that the database is constantly in sync with your models. To do this, you need to call
the Migrate method of the GameDbContext instance within the Configure method of the
Startup class. Perform the following steps to do so:

Update the Configure method in the Startup class and add the following1.
instructions at the bottom of the method:

 using (var scope =
 app.ApplicationServices.GetService<IServiceScopeFactory>()
 .CreateScope())
 {
 scope.ServiceProvider.GetRequiredService<GameDbContext>()
 .Database.Migrate();
 }

This places the game database context's Migrate method as a scoped service that
can be resolved at application runtime.

Start the Tic-Tac-Toe application by pressing F52.

Note that if a table or property doesn't exist in the database and if the
connection string provides enough access rights, Entity Framework Core 3
will automatically create the missing table or the property/column that
does not exist.

Now that we've updated the models and the corresponding application database, all the
model data will be persisted and the application state is going to be available, even after an
application restart. This means that you cannot register already existing emails, you have to
add new ones manually, so truncate the database and delete them now.

In the next section, we will focus on creating, reading, updating, and deleting data.

Creating, reading, updating, and deleting data
So far, we have defined our models and got the database up and running in a consistent
and coherent way. In this section, we will learn how to work with data and execute create,
read, update, and delete operations.

Accessing Data Using Entity Framework Core 3 Chapter 9

[345]

Let's learn how to use GameDbContext to work with data:

First, update UserService, remove ConcurrencyBag and the static constructor,1.
and update the GetUserByEmail method:

 public async Task<UserModel> GetUserByEmail(string email)
 {
 using (var Database = new
 GameDbContext(_dbContextOptions))
 {
 return await Database.UserModels.FirstOrDefaultAsync(
 x => x.Email == email);
 }
 }

Update the UpdateUser method in UserService to learn how to update data2.
using the database context:

 public async Task UpdateUser(UserModel userModel)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 gameDbContext.Update(userModel);
 await gameDbContext.SaveChangesAsync();
 }
 }

Update the GetTopUsers method within UserService to learn how to build3.
advanced queries with sorting and filtered data using the database context:

 public async Task<IEnumerable<UserModel>> GetTopUsers(
 int numberOfUsers)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 return await
gameDbContext.UserModels.OrderByDescending(
 x => x.Score).ToListAsync();
 }
 }

Accessing Data Using Entity Framework Core 3 Chapter 9

[346]

Add a new method called IsUserExisting to UserService. This will be used4.
to check whether a user exists. Update the IUserService interface:

 public async Task<bool> IsUserExisting(string email)
 {
 using (var gameDbContext =
 new GameDbContext(_dbContextOptions))
 {
 return await gameDbContext.UserModels.AnyAsync(
 user => user.Email == email);
 }
 }

In this section, you've learned how to configure your applications so that they can use
Entity Framework Core 3 and all of its useful and interesting features. This is a great way of
abstracting complexity and removing time-consuming tasks from your daily life as a
developer.

You don't need to learn about any additional languages (such as SQL), nor do you need to
change environments to create, read, update, and delete records in a database. Everything
can be done from within your code and from within Visual Studio to ensure high developer
productivity and efficiency.

Understanding data relationships
Let's take a breather from our normal demo Tic-Tac-Toe game application and look at a few
Entity Framework Core 3.0 concepts in a little more detail.

Before you understand and make any advanced queries, it is important to understand what
kinds of relationship are possible between two or more entities with respect to data.

We have already looked at the basics in terms of primary keys and foreign keys, but let's go
over their definitions, which will help you understand the terms a bit more.

Primary key
A primary key is designed to uniquely identify every record in a table. For example, in a
student table, it will be the student ID column. We need to be mindful that a primary key
can be a composite key, in which two different columns can be combined into a unique
identifier of records within a table.

Accessing Data Using Entity Framework Core 3 Chapter 9

[347]

Within any table, every record must have a non-empty value in the primary key column,
and it should always be unique and never repeated.

For relational tables, it is imperative to have a primary key defined. After its definition, you
cannot define another primary key within the same table.

An index is used to store a primary key so that it remains unique and ensure that a foreign
key can reference it.

We used the [Key] attribute in the examples earlier in this chapter to define a primary key
on a model.

Foreign key
A foreign key in a table is the column that is set aside to reference a primary key in a
different table. Just like a primary key, a foreign key may also be a combination of multiple
columns.

When you have two different tables or entities that are related to each other, there are
several ways they can be related. For example, you can have one-to-one , one-to-many , and
many-to-many relationships.

We mainly used a [ForeignKey] attribute in the examples in this chapter in order to
decorate a field that we wanted to use as a foreign key, but we can also use the Fluent API
to define our foreign keys. We can use the .HasForeignKey() property for this:

protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity(typeof(GameSessionModel))
 .HasOne(typeof(UserModel), "User2")
 .WithMany()
 .HasForeignKey("User2Id")
 .OnDelete(DeleteBehavior.Restrict);
 }

The preceding code snippet has several other attributes that we can use to define
relationships between tables, examples of which include .HasOne() and .WithMany().
We will explain these later in this chapter.

Accessing Data Using Entity Framework Core 3 Chapter 9

[348]

One-to-one relationships
When we have a one-to-one relationship, we can say that a record in one table will only be
able to have a relationship with exactly one record in another table.

For example, if we have a User class and a UserAvatar class, and a user has one and only
one avatar, then we can represent this using the Fluent API, as follows:

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<User>()
 .HasOne(u => u.UserAvatar)
 .WithOne(a => a.User)
 .HasForeignKey<UserAvatar>(u => u.UserForeignKey);
 }

In the preceding code snippet, we have a one-to-one relationship between the user and
their avatar. This is represented by the code in bold, that is, .HasOne(u =>
u.UserAvatar).WithOne(a => a.User). It applies both ways.

One-to-many relationships
When we have a one-to-many relationship, we can say that a record in one table is related
to multiple records in another table.

An example of a one-to many relationship would be between a user and game sessions.
Assuming that we have a User class and a GameSession class, the one-to-many
relationship can be represented with the Fluent API as follows:

protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<User>()
 .HasOne(u => u.GameSession)
 .WithMany(g => g.User)
 .HasForeignKey<GameSession>(u => u.UserForeignKey);
 }

The preceding code snippet still uses the .HasOne() property, but the difference is that it is
chained to a .HasMany() property, making it a one-to many relationship.

Accessing Data Using Entity Framework Core 3 Chapter 9

[349]

Many-to-many relationships
When we have a many-to-many relationship, we can say that a record in one table is related
to multiple records in another table in a specified relationship, and the other way round is
also true.

An example is a relationship between students and courses.

With Entity Framework Core 3.0, you can't have the Fluent API create a many-to-many
relationship directly, but there is a workaround you can use. To do this, we can construct a
join table and map the two classes. Let's take a look at how to do this.

Let's say we have a class called Student and a class called Course. With these classes, we
can create a StudentCourse table, as follows:

public class Student
{
 public long Id { get; set; }
 public string Name { get; set; }
 public StudentDetails StudentDetails { get; set; }
 public ICollection<StudentSubject> StudentSubjects { get; set; }
 // Added after constructed table
}

Then, we can have a Course table and a StudentCourse join table, as follows:

public class Course
{
 public long Id { get; set; }
 public string CourseName { get; set; }

 public ICollection<StudentCourse> StudentCourses { get; set; }
 // Added after constructed table
}

public class StudentCourse
{
 public long StudentId { get; set; }
 public Student Student { get; set; }

 public long CourseId { get; set; }
 public Course Course { get; set; }
}

Accessing Data Using Entity Framework Core 3 Chapter 9

[350]

Now, we can use the Fluent API to represent our many-to-many relationship, as follows:

protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.HasKey(s => new { s.StudentId, s.SubjectId });

 modelBuilder.HasOne(ss => ss.Student)
 .WithMany(s => s.StudentSubjects)
 .HasForeignKey(ss => ss.StudentId);

 modelBuilder.HasOne(ss => ss.Subject)
 .WithMany(s => s.StudentSubjects)
 .HasForeignKey(ss => ss.SubjectId);
 }

Here, we have made a workaround so that we can have a many-to-many relationship
between the student and course entities.

With these relationships, Entity Framework will create the necessary tables when we
perform migrations and update the database, but what good is data that just sits in the
database? We need to be able to query and utilize it. In the next section, we will talk about
working with queries.

Working with queries
There are several ways you can retrieve data that you have saved in a database, including
raw SQL statements, but by far the most convenient and safest choice is to use LINQ.

In this section, we will go through a couple of the most typical examples of querying a
database using LINQ.

Querying for one item
If we had to get a game session, we would use the following code:

using (var context = new GameDbContext())
{
 var gameSession = context.GameSessions
 .SingleOrDefault
 (g => g.GameSessionId == Guid.Parse("002e6431-3eb5-
 4d98-b3d9-3263490ce7c0"));
}

Accessing Data Using Entity Framework Core 3 Chapter 9

[351]

Querying for all items
If we had to return all the game sessions we've played so far, we would use the following
code:

using (var context = new GameDbContext())
{
 var gameSessions = context.GameSessions.ToList();
}

Querying for filtered items
Let's say we have the following code:

using System.Linq;

using (var db = new GameDbContext())
{
 var users = db.Users
 .Where(u => u.GamesPlayed > 5)
 .OrderBy(u => u.FirstName)
 .ToList();
}

In the preceding code, we are trying to hypothetically return all the users who have played
more than 5 games in total using LINQ. You can also use any other methods and properties
that are available in LINQ, including GroupBy, OrderByDescending, and others. LINQ is
a very powerful library on its own, and it is recommended that you should be familiar with
it. If you are a total beginner to LINQ, it may help you to go through the basics
here: https://docs. microsoft. com/ en- us/dotnet/ csharp/ programming- guide/ concepts/
linq/basic-linq- query- operations.

You will find that a tool called LINQPad, especially version 6, which can
be found at https:/ / www. linqpad. net/ LINQPad6. aspx, is a great resource
for working with LINQ in .NET Core 3.

In more complex scenarios, you may have multiple queries all operating together for one
purpose, and in these situations, it may be desirable that, if one query out of the group fails,
then all the others should be rolled back. This is when transactions come into play. We will
look at transactions in the next section.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx
https://www.linqpad.net/LINQPad6.aspx

Accessing Data Using Entity Framework Core 3 Chapter 9

[352]

Using transactions
A good database implementation will have the Atomicity, Consistency, Isolation, and
Durability (ACID) properties.

Transactions are vital for maintaining data integrity in a database. They help ensure that
data that's logically grouped together is treated as one item in a unit of operation. This goes
a long way to ensure ACID properties are preserved.

When a unit of operation is triggered and saved to the database, all of the constituent
logically grouped operations are successfully saved. This is what is called a transaction. If
part of the transaction fails, then everything is rolled back. Transactions operate in an all-or-
nothing scenario.

Microsoft SQL Server database is one of the many databases that actually support
transactions. This means that, if we call the SaveChanges() method using Entity
Framework Core, then every change gets treated as part of a transaction, so all the changes
get saved – or none get saved in the case of an error.

You don't necessarily need to implement transactions in your own custom way, especially
in most basic applications that you may be required to develop.

For most applications, this default behavior is sufficient. You should only manually control
transactions if your application requirements deem it necessary. But if you are required to,
you can place your processes into a transaction as follows:

using (var gameContext = new GameDbContext())
{
 using (var gameTransaction =
 gameContext.Database.BeginTransaction())
 {
 try
 {
 gameContext.GameInvitation.Add(new GameInvitation { ... });
 gameContext.SaveChanges();

 gameContext.GameSession.Add(new GameSession { ... });
 gameContext.SaveChanges();
 gameTransaction.Commit(); // Both the above
 operations will be in this transaction
 }
 catch (Exception Ex)
 {
 Console.WriteLine(Ex.Message)
 }

Accessing Data Using Entity Framework Core 3 Chapter 9

[353]

 }
}

In the preceding code snippet, we instantiated a new game database context and started a
transaction on it with two processes that added a game invitation and a game session.
These are committed in one go, and if any of them fail individually, then none of them will
be saved at all – it's all or nothing.

This is a good point to end our discussion of Entity Framework Core 3.0 for the purposes of
this book, which mainly focuses on ASP.NET Core 3.

Summary
In this chapter, we have learned how to use Entity Framework Core 3 with ASP.NET Core 3
in order to work with SQL Server databases.

We have seen how to use a database context and connection string to connect to a SQL
Server database. Then, we updated the models in the Tic-Tac-Toe application with primary
and foreign key definitions by using Entity Framework Core 3 Data Annotations, and by
overriding the OnModelCreating method within the database context.

We worked with Entity Framework Core 3 migrations to constantly keep the models in our
code consistent with their corresponding database representations.

Furthermore, we learned how to insert, update, and query data in an easy, productive, and
efficient way. We have also learned how to query databases using the Fluent API and how
to use transactions.

In the next chapter, we will talk about how to secure access to our ASP.NET Core 3
applications using ASP.NET Core 3's integrated authorization features.

10
Securing ASP.NET Core 3

Applications
In today's world of increasing digital crime and internet fraud, all modern web applications
require the implementation of strong security mechanisms for preventing attacks and user
identity usurpation.

Until now, we have mainly concentrated on understanding how to build efficient ASP.NET
Core 3 web applications, without thinking about user authentication, authorization, or any
data protection at all, but since the Tic-Tac-Toe application is getting more and more
complicated, we will have to address security issues before finally deploying it to the
public.

Building a web application and not thinking about security would be a big fail and could
bring down even the greatest and most famous websites. In the case of security breaches
and personal data theft, the negative reputation and user confidence impacts could be
tremendous, and nobody would want to work with those applications and—more
troublesome—companies anymore.

This is a topic that needs to be taken very seriously. You should work with security
companies to execute code verifications and intrusion tests to ensure that you comply with
best practices and high-security standards (the OWASP Top 10, for example, can be found
here: https://www. owasp. org/ index. php/ Category:OWASP_ Top_ Ten_ Project).

Luckily, ASP.NET Core 3 contains everything necessary to help you with this complicated,
but important, topic. Most of the built-in features do not even require advanced
programming or security skills. You will see that it is very easy to understand and
implement secure applications by using the ASP.NET Core 3 Identity framework.

The main skills that you will learn in this chapter include how to authenticate users for
your application and how to authorize your users to be able to carry out different tasks in
the application. You will learn how to use different types of authentication, including how
to implement two-factor authentication.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Securing ASP.NET Core 3 Applications Chapter 10

[355]

We will naturally start by looking at implementing authentication, and then implementing
authorization. In authentication, we will first look at basic forms authentication, before then
looking at adding external authentication, working with two-factor authentication, and
finishing up by adding mechanisms for forgotten passwords and resetting mechanisms,
before we then tackle authorization as a whole.

In this chapter, we will cover the following topics:

Implementing authentication:
Adding basic user form authentication
Adding external provider authentication
Adding forgotten password and password reset mechanisms
Working with two-factor authentication

Implementing authorization

Implementing authentication
Authentication allows applications to identify a specific user. It is not used to manage user
access rights, which is the role of authorization, nor is it used to protect data, which is the
role of data protection.

There are several methods for authenticating application users, such as the following:

Basic user form authentication, using a login form with login and password
boxes
Single Sign-On (SSO) authentication, where the user only authenticates once for
all their applications within the context of their company
Social network external provider authentication (such as Facebook and LinkedIn)
Certificate or Public Key Infrastructure (PKI) authentication

ASP.NET Core 3 supports all these methods, but in this chapter, we will concentrate on
forms authentication with a user login and password, and external provider authentication
via Facebook.

In the following examples, you will see how to use those methods to authenticate
application users, along with a number of more advanced features, such as email
confirmation and password reset mechanisms.

And last but not the least, you will see how to implement two-factor authentication using
the built-in ASP.NET Core 3 authentication features for your most critical applications.

Securing ASP.NET Core 3 Applications Chapter 10

[356]

Let's prepare the implementation of the different authentication mechanisms for the Tic-
Tac-Toe application:

Update the lifetime of UserService, GameInvitationService, and1.
GameSessionService in the Startup class:

 services.AddTransient<IUserService, UserService>();
 services.AddScoped<IGameInvitationService,
 GameInvitationService>();
 services.AddScoped<IGameSessionService, GameSessionService>
 ();

Update the Configure method within the Startup class, and call the2.
authentication middleware directly after the Static Files Middleware:

 app.UseStaticFiles();
 app.UseAuthentication();

Update UserModel to use it with the built-in ASP.NET Core Identity3.
authentication features, and remove the Id and Email properties, which are
already provided by the IdentityUser class:

 public class UserModel : IdentityUser<Guid>
 {
 [Display(Name = "FirstName")]
 [Required(ErrorMessage = "FirstNameRequired")]
 public string FirstName { get; set; }
 [Display(Name = "LastName")]
 [Required(ErrorMessage = "LastNameRequired")]
 public string LastName { get; set; }
 [Display(Name = "Password")]
 [Required(ErrorMessage = "PasswordRequired"),
 DataType(DataType.Password)]
 public string Password { get; set; }
 [NotMapped]
 public bool IsEmailConfirmed{ get {
 return EmailConfirmed; } }
 public System.DateTime? EmailConfirmationDate { get; set;
 }
 public int Score { get; set; }
 }

Note that in the real world, we would advise also removing the Password
property. However, we will keep it in the example for clarity and learning
purposes.

Securing ASP.NET Core 3 Applications Chapter 10

[357]

Add a new folder called Managers, add a new manager in the folder called4.
ApplicationUserManager, and then add the following constructor:

public class ApplicationUserManager : UserManager<UserModel>
{
private IUserStore<UserModel> _store;
DbContextOptions<GameDbContext> _dbContextOptions;
public ApplicationUserManager(DbContextOptions<GameDbContext>
dbContextOptions,
IUserStore<UserModel> store, IOptions<IdentityOptions>
optionsAccessor, IPasswordHasher<UserModel> passwordHasher,
IEnumerable<IUserValidator<UserModel>>
userValidators,IEnumerable<IPasswordValidator<UserModel>>
passwordValidators, ILookupNormalizer
Normalizer,IdentityErrorDescriber errors, IServiceProvider
services,
ILogger<UserManager<UserModel>> logger) :
 base(store, optionsAccessor, passwordHasher, userValidators,
 passwordValidators, keyNormalizer, errors, services, logger)
 {
 _store = store;
 _dbContextOptions = dbContextOptions;
 }
 ...
 }

Let's have a look at the steps to have a fully functioning
ApplicationUserManager class:

Add a FindByEmailAsync method as follows:1.

 public override async Task<UserModel> FindByEmailAsync
 (string email)
 {
 using (var dbContext = new GameDbContext
 (_dbContextOptions))
 {
 return await dbContext.Set<UserModel>
 ().FirstOrDefaultAsync(
 x => x.Email == email);
 }
 }

Add a FindByIdAsync method as follows: 2.

public override async Task<UserModel> FindByIdAsync(string
 userId)

Securing ASP.NET Core 3 Applications Chapter 10

[358]

 {
 using (var dbContext = new GameDbContext
 (_dbContextOptions))
 {
 Guid id = Guid.Parse(userId);
 return await dbContext.Set<UserModel>
 ().FirstOrDefaultAsync(
 x => x.Id == id);
 }
 }

Add an UpdateAsync method as follows: 3.

public override async Task<IdentityResult> UpdateAsync
 (UserModel user)
{
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 var current = await dbContext.Set<UserModel>
 ().FirstOrDefaultAsync(x => x.Id == user.Id);
 current.AccessFailedCount = user.AccessFailedCount;
 current.ConcurrencyStamp = user.ConcurrencyStamp;
 current.Email = user.Email;
 current.EmailConfirmationDate = user.EmailConfirmationDate;
 current.EmailConfirmed = user.EmailConfirmed;
 current.FirstName = user.FirstName;
 current.LastName = user.LastName;
 current.LockoutEnabled = user.LockoutEnabled;
 current.NormalizedEmail = user.NormalizedEmail;
 current.NormalizedUserName = user.NormalizedUserName;
 current.PhoneNumber = user.PhoneNumber;
 current.PhoneNumberConfirmed = user.PhoneNumberConfirmed;
 current.Score = user.Score;
 current.SecurityStamp = user.SecurityStamp;
 current.TwoFactorEnabled = user.TwoFactorEnabled;
 current.UserName = user.UserName;
 await dbContext.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }

Add a ConfirmEmailAsync method as follows: 4.

public override async Task<IdentityResult>
ConfirmEmailAsync(UserModel user, string token)
 {
 var isValid = await base.VerifyUserTokenAsync(user,
 Options.Tokens.EmailConfirmationTokenProvider,

Securing ASP.NET Core 3 Applications Chapter 10

[359]

 ConfirmEmailToken
 Purpose, token);
 if (isValid)
 {
 using (var dbContext = new GameDbContext
 (_dbContextOptions))
 {
 var current = await dbContext.UserModels.
 FindAsync(user.Id);
 current.EmailConfirmationDate = DateTime.Now;
 current.EmailConfirmed = true;
 await dbContext.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }
 return IdentityResult.Failed();
 }
 }

Update the Startup class, and register the ApplicationUserManager class:5.

 services.AddTransient<ApplicationUserManager>();

Update UserService to work with the ApplicationUserManager class, with6.
the constructor as follows:

public class UserService : IUserService
{
 private ILogger<UserService> _logger;
 private ApplicationUserManager _userManager;
 public UserService(ApplicationUserManager userManager,
 ILogger<UserService> logger)
 {
 _userManager = userManager;
 _logger = logger;

 var emailTokenProvider = new EmailTokenProvider<UserModel>();
 _userManager.RegisterTokenProvider("Default",
 emailTokenProvider);
 }
 ...
}

Securing ASP.NET Core 3 Applications Chapter 10

[360]

The following additions are done to make use of the ApplicationUserManager
class, register the authentication middleware and then prepare the database:

Add two new methods, the first one called1.
GetEmailConfirmationCode, as follows:

 public async Task<string> GetEmailConfirmationCode
 (UserModel user)
 {
 return await _userManager.
 GenerateEmailConfirmationTokenAsync(user);
 }

Secondly, add a ConfirmEmail method as follows: 2.

public async Task<bool> ConfirmEmail(string email, string code)
{
 var start = DateTime.Now;
 _logger.LogTrace($"Confirm email for user {email}");

 var stopwatch = new Stopwatch(); stopwatch.Start();

 try
 {
 var user = await _userManager.FindByEmailAsync(email);
 if (user == null) return false;
 var result = await _userManager.ConfirmEmailAsync(user,
 code);
 return result.Succeeded;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot confirm email for user
 {email} - {ex}");
 return false;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Confirm email for user finished in
 {stopwatch.Elapsed}");
 }
 }

Securing ASP.NET Core 3 Applications Chapter 10

[361]

Update the RegisterUser method as follows: 3.

public async Task<bool> RegisterUser(UserModel userModel)
{
 var start = DateTime.Now;
 _logger.LogTrace($"Start register user {userModel.Email} -
 {start}");

 var stopwatch = new Stopwatch(); stopwatch.Start();

 try
 {
 userModel.UserName = userModel.Email;
 var result = await _userManager.CreateAsync
 (userModel,userModel.Password);
 return result == IdentityResult.Success;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot register user
 {userModel.Email} -
 {ex}");
 return false;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"Start register user {userModel.Email}
 finished at {DateTime.Now} - elapsed
 {stopwatch.Elapsed.
 TotalSeconds} second(s)");
 }
 }

Update the GetUserByEmail, IsUserExisting, GetTopUsers,4.
and UpdateUser methods and then update the user service interface:

 public async Task<UserModel> GetUserByEmail(string
 email)
 {
 return await _userManager.FindByEmailAsync(email);
 }

 public async Task<bool> IsUserExisting(string email)
 {
 return (await _userManager.FindByEmailAsync(email)) !=
 null;

Securing ASP.NET Core 3 Applications Chapter 10

[362]

 }

 public async Task<IEnumerable<UserModel>> GetTopUsers(
 int numberOfUsers)
 {
 return await _userManager.Users.OrderByDescending(x =>
 x.Score).ToListAsync();
 }

 public async Task UpdateUser(UserModel userModel)
 {
 await _userManager.UpdateAsync(userModel);
 }

Note that you should also update the UserServiceTest class to work
with the new constructor. For that, you will also have to create a mock for
the UserManager class and pass it to the constructor. For the moment,
you can just disable the unit test by commenting it out and updating it
later. But don't forget to do it!

Update the EmailConfirmation method in UserRegistrationController,7.
and use the GetEmailConfirmationCode method you have added previously
to retrieve the email code:

 var urlAction = new UrlActionContext
 {
 Action = "ConfirmEmail",
 Controller = "UserRegistration",
 Values = new { email, code =
 await _userService.GetEmailConfirmationCode(user) },
 Protocol = Request.Scheme,
 Host = Request.Host.ToString()
 };

Update the ConfirmEmail method in UserRegistrationController; it has to8.
call the ConfirmEmail method in UserService to finish the email confirmation:

 [HttpGet]
 public async Task<IActionResult> ConfirmEmail(string email,
 string code)
 {
 var confirmed = await _userService.ConfirmEmail(email,
 code);

 if (!confirmed)
 return BadRequest();

Securing ASP.NET Core 3 Applications Chapter 10

[363]

 return RedirectToAction("Index", "Home");
 }

Add a new class called RoleModel in the Models folder, and make it inherit9.
from IdentityRole<long>, as it will be used by the built-in ASP.NET Core
Identity Authentication features:

 public class RoleModel : IdentityRole<Guid>
 {
 public RoleModel()
 {
 }

 public RoleModel(string roleName) : base(roleName)
 {
 }
 }

Update GameDbContext, and add a new DbSet for role models:10.

 public DbSet<RoleModel> RoleModels { get; set; }

Register the authentication service and the identity service in the Startup class,11.
and then use the new role model you added previously:

 services.AddIdentity<UserModel, RoleModel>(options =>
 {
 options.Password.RequiredLength = 1;
 options.Password.RequiredUniqueChars = 0;
 options.Password.RequireNonAlphanumeric = false;
 options.Password.RequireUppercase = false;
 options.SignIn.RequireConfirmedEmail = false;
 }).AddEntityFrameworkStores<GameDbContext>
 ().AddDefaultTokenProviders();

 services.AddAuthentication(options => {
 options.DefaultScheme = CookieAuthenticationDefaults.
 AuthenticationScheme;
 options.DefaultSignInScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultAuthenticateScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 }).AddCookie();

Securing ASP.NET Core 3 Applications Chapter 10

[364]

Update the communication middleware, remove the _userService private12.
member from the class, and update the constructor accordingly:

 public CommunicationMiddleware(RequestDelegate next)
 {
 _next = next;
 }

Update the two ProcessEmailConfirmation methods in the communication13.
middleware, as they must be asynchronous in order to work with ASP.NET Core
Identity. Stop using the privately defined private readonly IUserService
_userService; user service, in preference to a locally defined user service in
each of the two methods as follows:

 private async Task ProcessEmailConfirmation(HttpContext
 context,
 WebSocket currentSocket, CancellationToken ct, string
 email)
 {
 var userService = context.RequestServices.
 GetRequiredService<IUserService>();
 ...
 }

 private async Task ProcessEmailConfirmation(HttpContext
 context)
 {
 var userService = context.RequestServices.
 GetRequiredService<IUserService>();
 ...
 }

Update GameInvitationService, and set the public constructor to static.14.
Remove the following DbContextOptions registration from the Startup class;15.
this will be replaced by another one in the next step:

 var dbContextOptionsbuilder =
 new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString);
 services.AddSingleton(dbContextOptionsbuilder.Options);

Update the Startup class, and add a new DbContextOptions registration:16.

var connectionString = Configuration.
GetConnectionString("DefaultConnection");
services.AddScoped(typeof(DbContextOptions<GameDbContext>),
 (serviceProvider) =>

Securing ASP.NET Core 3 Applications Chapter 10

[365]

 {
 return new DbContextOptionsBuilder<GameDbContext>()
 .UseSqlServer(connectionString).Options;
 });

Update the Configure method in the Startup class, and then replace the code17.
that executes the database migration at the end of the method:

 var provider = app.ApplicationServices;
 var scopeFactory = provider.
 GetRequiredService<IServiceScopeFactory>();
 using (var scope = scopeFactory.CreateScope())
 using (var context = scope.ServiceProvider.
 GetRequiredService<GameDbContext>())
 {
 context.Database.Migrate();
 }

Update the Index method in GameInvitationController:18.

 ...
 var invitation =
 gameInvitationService.Add(gameInvitationModel).Result;
 return RedirectToAction("GameInvitationConfirmation",
 new { id = invitation.Id });
 ...

Update the ConfirmGameInvitation method19.
in GameInvitationController, and add additional fields to the existing user
registration:

 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo,
 EmailConfirmationDate = DateTime.Now,
 EmailConfirmed = true,
 FirstName = "",
 LastName = "",
 Password = "Qwerty123!",
 UserName = gameInvitation.EmailTo
 });

Note that the automatic creation and registration of the invited user is
only a temporary workaround that we have added to simplify the
example application. In the real world, you will need to handle this case
differently and replace the temporary workaround with a real solution.

Securing ASP.NET Core 3 Applications Chapter 10

[366]

Update the CreateGameSession method in GameSessionService by passing20.
in the invitedBy and invitedPlayer user models, instead of defining them
internally as previously:

public async Task<GameSessionModel> CreateGameSession(
 Guid invitationId, UserModel invitedBy, UserModel
 invitedPlayer)
 {
 var session = new GameSessionModel
 {
 User1 = invitedBy,
 User2 = invitedPlayer,
 Id = invitationId,
 ActiveUser = invitedBy
 };
 _sessions.Add(session);
 return session;
 }

Update the AddTurn method in GameSessionService by passing in a user
instead of getting the user by email as before, and then re-extract the
GameSessionService interface:

 public async Task<GameSessionModel> AddTurn(Guid id, UserModel
 user, int x, int y)
 {
 ...
 turns.Add(new TurnModel
 {
 User = user,
 X = x,
 Y = y,
 IconNumber = user.Email == gameSession.User1?
 .Email ? "1" : "2"
 });

 gameSession.Turns = turns;
 gameSession.TurnNumber = gameSession.TurnNumber + 1;

 if (gameSession.User1?.Email == user.Email)
 gameSession.ActiveUser = gameSession.User2;
 ...
 }

Securing ASP.NET Core 3 Applications Chapter 10

[367]

Update the Index method in GameSessionController:21.

public async Task<IActionResult> Index(Guid id)
{
 var session = await _gameSessionService.GetGameSession(id);
 var userService = HttpContext.RequestServices.
 GetService<IUserService>();
 if (session == null)
 {
 var gameInvitationService = quest.HttpContext.RequestServices.
 GetService<IGameInvitationService>();
 var invitation = await gameInvitationService.Get(id);
 var invitedPlayer = await userService.GetUserByEmail
 (invitation.EmailTo);
 var invitedBy = await userService.GetUserByEmail
 (invitation.InvitedBy);
 session = await _gameSessionService.CreateGameSession(
 invitation.Id, invitedBy, invitedPlayer);
 }
 return View(session);
}

Update the SetPosition method in GameSessionController, and22.
pass turn.User instead of turn.User.Email (make sure that
IGameSessionService has the following
definition: Task<GameSessionModel> AddTurn(Guid id, UserModel
user, int x, int y);):

 gameSession = await _gameSessionService.AddTurn(gameSession.Id,
 turn.User, turn.X, turn.Y);

Update the OnModelCreating method in GameDbContext, and add a WinnerId23.
foreign key:

 ...
 modelBuilder.Entity(typeof(GameSessionModel))
 .HasOne(typeof(UserModel), "Winner")
 .WithMany()
 .HasForeignKey("WinnerId")
 .OnDelete(DeleteBehavior.Restrict);
 ...

Securing ASP.NET Core 3 Applications Chapter 10

[368]

Update the GameInvitationConfirmation method24.
in GameInvitationController to make it asynchronous. A controller action
must be asynchronous in order to work with ASP.NET Core Identity:

 [HttpGet]
 public async Task<IActionResult>
 GameInvitationConfirmation(
 Guid id, [FromServices]IGameInvitationService
 gameInvitationService)
 {
 return await Task.Run(() =>
 {
 var gameInvitation = gameInvitationService.Get(id).
 Result;
 return View(gameInvitation);
 });
 }

Update the Index and SetCulture methods in HomeController so that they25.
are asynchronous in order to work with ASP.NET Core Identity:

 public async Task<IActionResult> Index()
 {
 return await Task.Run(() =>
 {
 var culture = Request.HttpContext.Session.
 GetString("culture");
 ViewBag.Language = culture; return View();
 });
 }

 public async Task<IActionResult> SetCulture(string culture)
 {
 return await Task.Run(() =>
 {
 Request.HttpContext.Session.SetString("culture",
 culture);
 return RedirectToAction("Index");
 });
 }

Update the Index method in UserRegistrationController and make it26.
asynchronous to work with ASP.NET Core Identity:

 public async Task<IActionResult> Index()
 {
 return await Task.Run(() =>

Securing ASP.NET Core 3 Applications Chapter 10

[369]

 {
 return View();
 });
 }

Open the Package Manager Console and execute the Add-Migration27.
IdentityDb command.
Update the database by executing the Update-Database command in the28.
Package Manager Console.
Start the application and register a new user, and then verify that everything is29.
still working as expected.

Note that you have to use a complex password, such as Azerty123!, to
be able to finish the user registration successfully now, since you have
implemented the integrated features of ASP.NET Core Identity in this
section, which requires complex passwords.

Well done for reaching this far, as our application is now ready to use ASP.NET Core
Identity and, in general, it is now ready to handle different types of authentication, after all
the preparation work in the preceding section. We are now at a good place to start learning
how to add different types of authentication, and we start in the next section by looking at
basic user form authentication.

Adding basic user form authentication
Great! You have registered the authentication middleware and prepared the database. In
the next step, you are going to implement basic user authentication for the Tic-Tac-Toe
application.

The following example demonstrates how to modify the user registration and add a simple
login form with a user login and password textbox for authenticating users:

Add a new model called LoginModel to the Models folder:1.

 public class LoginModel
 {
 [Required]
 public string UserName { get; set; }
 [Required]
 public string Password { get; set; }
 public string ReturnUrl { get; set; }
 }

Securing ASP.NET Core 3 Applications Chapter 10

[370]

Add a new folder called Account to the Views folder, and then add a new file2.
called Login.cshtml within this new folder. It will contain the login view:

 @model TicTacToe.Models.LoginModel
 <div class="container">
 <div id="loginbox" style="margin-top:50px;"
 class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">
 <div class="panel-heading">
 <div class="panel-title">Sign In</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div style="display:none" id="login-alert"
 class="alert alert-danger col-sm-12"></div>
 <form id="loginform" class="form-horizontal"
 role="form" asp-action="Login" asp-
 controller="Account">
 <input type="hidden" asp-for="ReturnUrl" />
 <div asp-validation-summary="ModelOnly"
 class="text-danger"></div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <i
 class="glyphicon
 glyphicon-user"></i>
 <input type="text" class="form-control"
 asp-for="UserName" value=""
 placeholder="username
 or email">
 </div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <i
 class="glyphicon
 glyphicon-lock"></i>
 <input type="password" class="form-control"
 asp-for="Password" placeholder="password">
 </div>
 <div style="margin-top:10px" class="form-group">
 <div class="col-sm-12 controls">
 <button type="submit" id="btn-login" href="#"
 class="btn btn-success">Login</button>
 </div>
 </div>
 <div class="form-group">
 <div class="col-md-12 control">
 <div style="border-top: 1px solid#888;

Securing ASP.NET Core 3 Applications Chapter 10

[371]

 padding-top:15px; font-size:85%">
 Don't have an account?
 <a asp-action="Index"
 asp-controller="UserRegistration">Sign Up
 Here

 </div>
 </div>
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>

Update UserService, add a SignInManager private field, and then update the3.
constructor:

 ...
 private SignInManager<UserModel> _signInManager;
 public UserService(ApplicationUserManager userManager,
 ILogger<UserService> logger, SignInManager<UserModel>
 signInManager)
 {
 ...
 _signInManager = signInManager;
 ...
 }
 ...

Add a new method called SignInUser to UserService:4.

public async Task<SignInResult> SignInUser(LoginModel loginModel,
HttpContext httpContext)
{
 _logger.LogTrace($"signin user {loginModel.UserName}");

 var stopwatch = new Stopwatch(); stopwatch.Start();
 try
 {
 var user = await _userManager.FindByNameAsync
 (loginModel.UserName);
 var isValid = await _signInManager.CheckPasswordSignInAsync
 (user, loginModel.Password, true);
 if (!isValid.Succeeded) return SignInResult.Failed;
 if (!await _userManager.IsEmailConfirmedAsync(user))
 return SignInResult.NotAllowed;

Securing ASP.NET Core 3 Applications Chapter 10

[372]

 var identity = new ClaimsIdentity
 (CookieAuthenticationDefaults.AuthenticationScheme);
 identity.AddClaim(new Claim(ClaimTypes.Name,
 loginModel.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname,
 user.LastName));
 identity.AddClaim(new Claim("displayName", $"
 {user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 identity.AddClaim(new Claim("Score", user.Score.
 ToString()));

 await httpContext.SignInAsync(CookieAuthenticationDefaults.
 AuthenticationScheme,
 new ClaimsPrincipal(identity), new AuthenticationProperties {
 IsPersistent = false });

 return isValid;
 }
 catch (Exception ex)
 {
 _logger.LogError($"cannot sign in user{ loginModel.UserName} -
{
 ex} ");
 throw ex;
 }
 finally
 {
 stopwatch.Stop();
 _logger.LogTrace($"sign in user {loginModel.UserName} finished
 in
 { stopwatch.Elapsed} ");
 }
 }

Add another method, SignOutUser, to UserService and update the user
service interface:

public async Task SignOutUser(HttpContext httpContext)
 {
 await _signInManager.SignOutAsync();
 await httpContext.SignOutAsync(new
 AuthenticationProperties {

Securing ASP.NET Core 3 Applications Chapter 10

[373]

 IsPersistent = false });
 return;
 }

Add a new controller called AccountController to the Controllers folder: 5.

public class AccountController : Controller
 {
 private IUserService _userService;
 public AccountController(IUserService userService)
 {
 _userService = userService;
 }
 }

Let's perform the steps as follows:

Implement a new Login method in AccountController as follows:1.

 public async Task<IActionResult> Login(string returnUrl)
 {
 return await Task.Run(() =>
 {
 var loginModel = new LoginModel { ReturnUrl =
 returnUrl };
 return View(loginModel);
 });
 }
 ...

Add another implementation of the Login method that takes in a login2.
model as a parameter:

[HttpPost]
public async Task<IActionResult> Login(LoginModel
loginModel)
{
 if (ModelState.IsValid)
 {
 var result = await _userService.SignInUser(loginModel,
 HttpContext);

 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(loginModel.ReturnUrl))
 return Redirect(loginModel.ReturnUrl);
 else return RedirectToAction("Index", "Home");

Securing ASP.NET Core 3 Applications Chapter 10

[374]

 }
 else ModelState.AddModelError("",
result.IsLockedOut ?"User
 is locked" : "User is not allowed");
 }
 return View();
}

Add a new Logout method as follows: 3.

 public IActionResult Logout()
 {
 _userService.SignOutUser(HttpContext).Wait();
 HttpContext.Session.Clear();
 return RedirectToAction("Index", "Home");
 }

Update the Views/Shared/_Menu.cshtml file, and replace the existing code6.
block at the top of the method:

 @using Microsoft.AspNetCore.Http;
 @{
 var email = User?.Identity?.Name ??
 Context.Session.GetString("email");
 var displayName = User.Claims.FirstOrDefault(
 x => x.Type == "displayName")?.Value ??
 Context.Session.GetString("displayName");
 }

Update the Views/Shared/_Menu.cshtml file to display either a display name7.
element for already authenticated users or a login element for an authenticated
user; for that, replace the final element:

 @if (!string.IsNullOrEmpty(email))
 {
 Html.RenderPartial("_Account",
 new TicTacToe.Models.AccountModel { Email = email,
 DisplayName = displayName });
 }
 else
 {
 <a asp-area="" asp-controller="Account"
 asp-action="Login">Login
 }

Securing ASP.NET Core 3 Applications Chapter 10

[375]

Update the Views/Shared/_Account.cshtml file, and replace the Log Off and8.
View Details links:

 <a class="btn btn-danger btn-block" asp-
controller="Account"
 asp-action="Logout" asp-area="">Log Off
 <a class="btn btn-default btn-block" asp-action="Index"
 asp-controller="Home" asp-area="Account">View Details

Go to the Views\Shared\Components\GameSession folder, and update the9.
default.cshtml file to improve the visual representation by having our table as
follows:

...
<table>
 @for (int rows = 0; rows < 3; rows++)
 {
 <tr style="height:150px;">
 @for (int columns = 0; columns < 3; columns++)
 {
 <td style="width:150px; border:1px solid #808080;text-
 align:center; vertical-align:middle"
 id="@($"c_{rows}_{columns}")">
 @{
 var position = Model.Turns?.FirstOrDefault(turn =>
 turn.X == columns && turn.Y == rows);
 if (position != null)
 {
 if (position.User == Model.User1)
 <i class="glyphicon glyphicon-unchecked"></i>
 else
 <i class="glyphicon glyphicon-remove-circle"></i>
 }
 else
 {
 <a class="btn btn-default btn-SetPosition"style=
 "width:150px; min-height:150px;"
 data-X="@columns" data-Y="@rows">
 }
 }
 </td>
 }
 </tr>
 }
</table>
 ...

Securing ASP.NET Core 3 Applications Chapter 10

[376]

Start the application, click on the Login element in the top menu, and sign in as10.
an existing user (or register as a user if you have not done so previously):

Click the Log Off button. You should be logged off and get redirected back to the11.
Home page:

That essentially makes up our forms authentication, where we have been able to sign a user
in and out with a login form. In the next section, we will look at how we can add an
external provider as a means of authentication to our application.

Securing ASP.NET Core 3 Applications Chapter 10

[377]

Adding external provider authentication
In the following section, we will showcase external provider authentication by using
Facebook as an authentication provider.

Here is an overview of the control flow in this case:

The user clicks on a dedicated external provider login button.1.
The corresponding controller receives a request indicating which provider is2.
needed, and then a challenge is initiated with the external provider.
The external provider sends an HTTP callback (POST or GET) with a provider3.
name, a key, and some user claims for the application.
The claims are matched with the internal application user.4.
If no internal user can be matched with the claims, the user is either redirected to5.
a specific registration form or is rejected.

Note that the implementation steps are the same for all external providers
if they support OWIN and ASP.NET Core Identity, and that you may
even create your own providers and integrate them in the same way.

We are now going to implement external provider authentication via Facebook:

Update the login form, and add a button called Login with Facebook directly1.
after the standard Login button:

 <a id="btn-fblogin" asp-action="ExternalLogin"
 asp-controller="Account" asp-route-Provider="Facebook"
 class="btn btn-primary">Login with Facebook

Update the UserService class and the user service interface, and then add two2.
new methods called
GetExternalAuthenticationProperties and GetExternalLoginInfoAsyn
c:

 public async Task<AuthenticationProperties>
 GetExternalAuthenticationProperties(string provider,
 string redirectUrl)
 {
 return await Task.FromResult(
 _signInManager.ConfigureExternalAuthentication
 Properties(
 provider, redirectUrl));
 }

Securing ASP.NET Core 3 Applications Chapter 10

[378]

 public async Task<ExternalLoginInfo>
 GetExternalLoginInfoAsync()
 {
 return await _signInManager.GetExternalLoginInfoAsync();
 }

Add another new method called ExternalLoginSignInAsync:

public async Task<SignInResult> ExternalLoginSignInAsync(
 string loginProvider, string providerKey, bool
 isPersistent)
 {
 _logger.LogInformation($"Sign in user with external login
 {loginProvider} - {providerKey}");
 return await _signInManager.ExternalLoginSignInAsync(
 loginProvider, providerKey, isPersistent);
 }

Update AccountController, and add a method called ExternalLogin : 3.

[AllowAnonymous]
public async Task<ActionResult> ExternalLogin(string provider,
string ReturnUrl)
{
 var redirectUrl = Url.Action(nameof(ExternalLoginCallBack),
 "Account", new { ReturnUrl = ReturnUrl }, Request.Scheme,
 Request.Host.ToString());
 var properties = await _userService.
 GetExternalAuthenticationProperties(provider, redirectUrl);
 ViewBag.ReturnUrl = redirectUrl;
 return Challenge(properties, provider);
}

In the same AccountController class, add another method
called ExternalLoginCallBack:

[AllowAnonymous]
public async Task<IActionResult> ExternalLoginCallBack(string
returnUrl, string remoteError = null)
{
 if (remoteError != null)
 {
 ModelState.AddModelError(string.Empty, $"Error from external
 provider: {remoteError}");
 ViewBag.ReturnUrl = returnUrl;
 return View("Login");
 }
 var info = await _userService.GetExternalLoginInfoAsync();

Securing ASP.NET Core 3 Applications Chapter 10

[379]

 if (info == null)
 return RedirectToAction("Login", new { ReturnUrl = returnUrl
});
 var result = await _userService.ExternalLoginSignInAsync(
 info.LoginProvider, info.ProviderKey, isPersistent: false);
 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(returnUrl)) return
 Redirect(returnUrl);
 else return RedirectToAction("Index", "Home");
 }
 if (result.IsLockedOut) return View("Lockout");
 else return View("NotFound");
 }
}

Register the Facebook middleware within the Startup class:4.

 services.AddAuthentication(options => {
 options.DefaultScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultSignInScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 options.DefaultAuthenticateScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
 }).AddCookie().AddFacebook(facebook =>
 {
 facebook.AppId = "123";
 facebook.AppSecret = "123";
 facebook.ClientId = "123";
 facebook.ClientSecret = "123";
 });

Note that you must update the Facebook middleware configuration and
register your application with the Facebook developer portal before being
able perform authenticated logins with a Facebook account.
Please go to https://developer.facebook.com for more information.

Start the application, click on the Login with Facebook button, sign in with your5.
Facebook credentials, and verify that everything is working as expected:

http://developer.facebook.com

Securing ASP.NET Core 3 Applications Chapter 10

[380]

Congratulations on reaching this far and, with similar steps as before, you will be able to
use other external providers such as Google, or indeed Microsoft, for authentication. Now,
let's look at how we can implement two-factor authentication in the next section.

Working with two-factor authentication
The standard security mechanisms you have seen before only require a simple username
and password, which makes it increasingly easy for cyber criminals to gain access to
confidential data, such as personal and financial details, either by hacking the password or
by intercepting user credentials (emails, network sniffing, and such). This data can then be
used to commit financial fraud and identity theft.

Two-factor authentication adds an extra layer of security since it requires not only a
username and password, but also a two-factor code that only the user can provide (physical
device, software-generated, and so on). This makes it much harder for potential intruders to
gain access and thus helps to prevent identity and data theft.

Securing ASP.NET Core 3 Applications Chapter 10

[381]

All major websites provide two-factor authentication as an option, so let's add it to the Tic-
Tac-Toe application as well.

Two-factor authentication - step by step
The following steps will enable your application to have complete two-factor
authentication:

Add a new model called TwoFactorCodeModel to the Models folder:1.

 public class TwoFactorCodeModel
 {
 [Key]
 public long Id { get; set; }
 public Guid UserId { get; set; }
 [ForeignKey("UserId")]
 public UserModel User { get; set; }
 public string TokenProvider { get; set; }
 public string TokenCode { get; set; }
 }

Add a new model called TwoFactorEmailModel to the Models folder:2.

 public class TwoFactorEmailModel
 {
 public string DisplayName { get; set; }
 public string Email { get; set; }
 public string ActionUrl { get; set; }
 }

Register TwoFactorCodeModel within GameDbContext by adding a3.
corresponding DbSet:

 public DbSet<TwoFactorCodeModel> TwoFactorCodeModels { get;
 set; }

Open the NuGet Package Manager Console and execute the Add-Migration4.
AddTwoFactorCode command. Then, update the database by executing the
Update-Database command.
Update ApplicationUserManager, and then add a new method called5.
SetTwoFactorEnabledAsync:

public override async Task<IdentityResult>
SetTwoFactorEnabledAsync(UserModel user, bool enabled)
{

Securing ASP.NET Core 3 Applications Chapter 10

[382]

 try
 {
 using (var db = new GameDbContext(_dbContextOptions))
 {
 var current = await db.UserModels.FindAsync(user.Id);
 current.TwoFactorEnabled = enabled; await
 db.SaveChangesAsync();
 return IdentityResult.Success;
 }
 }
 catch (Exception ex)
 { return IdentityResult.Failed(new IdentityError {Description =
ex.ToString() });}
}

Then we perform the following steps:

Add another method called GenerateTwoFactorTokenAsync: 1.

public override async Task<string>GenerateTwoFactorTokenAsync
 (UserModel user, string tokenProvider)
{
 using (var dbContext = new GameDbContext(_dbContextOptions))
 {
 var emailTokenProvider = new EmailTokenProvider
 <UserModel>();
 var token = await emailTokenProvider.GenerateAsync
 ("TwoFactor", this, user);
 dbContext.TwoFactorCodeModels.Add(new TwoFactorCodeModel
 { TokenCode = token,TokenProvider = tokenProvider,UserId =
 user.Id });
 if (dbContext.ChangeTracker.HasChanges())
 await dbContext.SaveChangesAsync();

 return token;
 }
}

And finally, to the same ApplicationUserManager, add2.
a VerifyTwoFactorTokenAsync method:

 public override async Task<bool>
 VerifyTwoFactorTokenAsync(UserModel user, string
 tokenProvider, string token)
 {
 using (var dbContext = new
 GameDbContext(_dbContextOptions))
 {

Securing ASP.NET Core 3 Applications Chapter 10

[383]

 return await dbContext.TwoFactorCodeModels.AnyAsync(
 x => x.TokenProvider == tokenProvider &&
 x.TokenCode == token && x.UserId == user.Id);
 }
 }

Go to the Areas/Account/Views/Home folder, and update the index view:6.

@inject UserManager<TicTacToe.Models.UserModel> UserManager
@{ var isTwoFactor
=UserManager.GetTwoFactorEnabledAsync(Model).Result; ... }
<h3>Account Details</h3>
<div class="container">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-md-6">
 <div class="well well-sm">
 <div class="row">
 ...
 <i class="glyphicon glyphicon-check"></i><text>Two
 Factor Authentication </text>
 @if (Model.TwoFactorEnabled)<a asp-
 action="DisableTwoFactor">Disable
 else <a asp-action="EnableTwoFactor">Enable
 </div>
 ...

Add a new file called _ViewImports.cshtml to the Areas/Account/Views7.
folder:

 @using TicTacToe
 @using Microsoft.AspNetCore.Mvc.Localization
 @inject IViewLocalizer Localizer
 @addTagHelper *, TicTacToe
 @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Update the UserService class and the user service interface, and then add8.
a new method called EnableTwoFactor:

public async Task<IdentityResult> EnableTwoFactor(string name, bool
enabled)
{
 try
 {
 var user = await _userManager.FindByEmailAsync(name);
 user.TwoFactorEnabled = true;
 await _userManager.SetTwoFactorEnabledAsync(user, enabled);
 return IdentityResult.Success;
 }

Securing ASP.NET Core 3 Applications Chapter 10

[384]

 catch (Exception ex)
 {
 throw;
 }
}

Add another method, GetTwoFactorCode:

public async Task<string> GetTwoFactorCode(string userName, string
tokenProvider)
{
 var user = await GetUserByEmail(userName);
 return await
_userManager.GenerateTwoFactorTokenAsync(user,tokenProvider);
}

Update the SignInUser method in UserService for supporting two-factor9.
authentication, if it is enabled:

 public async Task<SignInResult> SignInUser(LoginModel
 loginModel, HttpContext httpContext)
 {
 ...
 if (await _userManager.GetTwoFactorEnabledAsync(user))
 return SignInResult.TwoFactorRequired;
 ...
 }
 ...
 }

Go to the Areas/Account/Controllers folder, and10.
update HomeController. Update the Index method and then add two new
methods called EnableTwoFactor and DisableTwoFactor:

[Authorize]
public async Task<IActionResult> Index()
{ var user = await _userService.GetUserByEmail(User.Identity.Name);
 return View(user); }

[Authorize]
public IActionResult EnableTwoFactor()
{
 _userService.EnableTwoFactor(User.Identity.Name, true);
 return RedirectToAction("Index");
}

[Authorize]
public IActionResult DisableTwoFactor()

Securing ASP.NET Core 3 Applications Chapter 10

[385]

{
 _userService.EnableTwoFactor(User.Identity.Name, false);
 return RedirectToAction("Index");
}

Note that we will explain the [Authorize] decorator/attribute later in
this chapter. It is used to add access restrictions to resources.

Add a new model called ValidateTwoFactorModel to the Models folder:11.

 public class ValidateTwoFactorModel
 {
 public string UserName { get; set; }
 public string Code { get; set; }
 }

Update the AccountController, and add a new method called12.
SendEmailTwoFactor:

private async Task SendEmailTwoFactor(string UserName)
{
 var user = await _userService.GetUserByEmail(UserName);
 var urlAction = new UrlActionContext
 { Action = "ValidateTwoFactor", Controller = "Account",Values =
 new { email = UserName,
 code = await _userService.GetTwoFactorCode(user.UserName,
 "Email") },
 Protocol = Request.Scheme, Host = Request.Host.ToString() };

 var TwoFactorEmailModel = new TwoFactorEmailModel
 { DisplayName = $"{user.FirstName} {user.LastName}", Email =
 UserName, ActionUrl = Url.Action(urlAction) };
 var emailRenderService = HttpContext.RequestServices.
 GetService<IEmailTemplateRenderService>();
 var emailService = HttpContext.RequestServices.
 GetService<IEmailService>();
 var message = await emailRenderService.RenderTemplate(
 "EmailTemplates/TwoFactorEmail", TwoFactorEmailModel,
 Request.Host.ToString());
 try{ emailService.SendEmail(UserName, "Tic-Tac-Toe Two Factor
 Code", message).Wait(); }
 catch { }
}

Securing ASP.NET Core 3 Applications Chapter 10

[386]

Note that in order to call RequestServices.GetService<T>();, you
must also add using
Microsoft.Extensions.DependencyInjection; as you have done
previously in other examples.

Update the Login method in AccountController:13.

[HttpPost]
public async Task<IActionResult> Login(LoginModel loginModel)
{
 if (ModelState.IsValid)
 {
 var result = await _userService.SignInUser(loginModel,
 HttpContext);
 if (result.Succeeded)
 {
 if (!string.IsNullOrEmpty(loginModel.ReturnUrl)) return
 Redirect(loginModel.ReturnUrl);
 else return RedirectToAction("Index", "Home");
 }
 else if (result.RequiresTwoFactor) await SendEmailTwoFactor
 (loginModel.UserName);
 return RedirectToAction("ValidateTwoFactor");
 else
 ModelState.AddModelError("", result.IsLockedOut ? "User is
 locked" : "User is not allowed");
 }
 return View();
}

Add a new view called ValidateTwoFactor to the Views/Account folder:14.

@model TicTacToe.Models.ValidateTwoFactorModel
@{ ViewData["Title"] = "Validate Two Factor";Layout =
"~/Views/Shared/_Layout.cshtml"; }
<div class="container">
 <div id="loginbox" style="margin-top:50px;" class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">
 <div class="panel-heading">
 <div class="panel-title">Validate Two Factor Code</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div class="text-center">
 <form asp-controller="Account"asp-
 action="ValidateTwoFactor" method="post">
 <div asp-validation-summary="All"></div>

Securing ASP.NET Core 3 Applications Chapter 10

[387]

 <div style="margin-bottom: 25px" class="input-group">
 <i class="glyphicon
 glyphicon-envelope
 color-blue"></i>
 <input id="email" asp-for="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 <div style="margin-bottom: 25px" class="input-group">
 <i class="glyphicon
 glyphicon-lock
 color-blue"></i>
 <input id="Code" asp-for="Code"
 placeholder="Enter your code" class="form-
 control"> </div>
 <div style="margin-bottom: 25px" class="input-group">
 <input name="submit"class="btn btn-lg btn-primary
 btn-block"
 value="Validate your code" type="submit">
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
 </div>

Add a new view called TwoFactorEmail to the Views/EmailTemplates folder:15.

 @model TicTacToe.Models.TwoFactorEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 You have requested a two factor code, please click here to continue.

Update the UserService class and the user service interface, and then add a16.
new method called ValidateTwoFactor:

public async Task<bool> ValidateTwoFactor(string userName,
 string tokenProvider, string token, HttpContext
 httpContext)
{
 var user = await GetUserByEmail(userName);
 if (await _userManager.VerifyTwoFactorTokenAsync
 (user,tokenProvider, token))

Securing ASP.NET Core 3 Applications Chapter 10

[388]

 {
 ...
 }
 return false;
}

In the ValidateTwoFactor method, add the following actual code that17.
performs the validation through identity claims:

if (await _userManager.VerifyTwoFactorTokenAsync(user,
 tokenProvider, token))
 {
 var identity = new ClaimsIdentity
 (CookieAuthenticationDefaults.Authentication
 Scheme);
 identity.AddClaim(new Claim(ClaimTypes.Name,
 user.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname,
 user.LastName));
 identity.AddClaim(new Claim("displayName", $"
 {user.FirstName} {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 identity.AddClaim(new Claim
 (ClaimTypes.HomePhone, user.PhoneNumber));

 identity.AddClaim(new Claim("Score",
 user.Score.ToString()));
 await httpContext.SignInAsync
 (CookieAuthenticationDefaults.
 AuthenticationScheme,
 new ClaimsPrincipal(identity), new
 AuthenticationProperties
 { IsPersistent = false });
 return true;
 }

Update AccountController, and then add two new methods for two-factor18.
authentication validation:

public async Task<IActionResult> ValidateTwoFactor(string email,
string code)
{
 return await Task.Run(() =>
 { return View(new ValidateTwoFactorModel { Code = code, UserName
=

Securing ASP.NET Core 3 Applications Chapter 10

[389]

 email }); });
}

[HttpPost]
public async Task<IActionResult>
ValidateTwoFactor(ValidateTwoFactorModel validateTwoFactorModel)
{
 if (ModelState.IsValid)
 {
 await _userService.ValidateTwoFactor(validateTwoFactorModel
 .UserName, "Email",
 validateTwoFactorModel.Code, HttpContext);
 return RedirectToAction("Index", "Home");
 }
 return View();
}

Start the application, sign in as an existing user, and go to the Account19.
Details page. Enable two-factor authentication (you might need to recreate the
database and register a new user before this step):

Sign out as the user, go to the login page, and then sign in again. This time, you20.
will be asked to enter a two-factor authentication code:

Securing ASP.NET Core 3 Applications Chapter 10

[390]

You will receive an email with the two-factor authentication code:21.

Click on the link in the email and everything should be filled in for you22.
automatically. Sign in and verify that everything is working as expected:

You can see how easy it is to implement two-factor authentication, as we did in the last
section. Having gone through different forms of authentication, there will always be times
when you may forget your password, and therefore we need to be able to reset our
passwords securely so that we can be allowed back into our application after we re-
authenticate our credentials. We will cover this in the next section.

Adding forgotten password and password reset
mechanisms
Now that you have seen how to add authentication to your applications, you have to think
about how you want to help users to reset their forgotten passwords. Users will always
forget their passwords, so you need to have some mechanisms in place.

Securing ASP.NET Core 3 Applications Chapter 10

[391]

The standard way of handling this type of request is to send an email reset link to the user.
The user can then update their password, without the risk of sending the password in clear
text through email. Sending a user password directly to a user email is not secure and
should be avoided at all costs.

You will now see how to add a reset password feature to the Tic-Tac-Toe application:

Update the login form, and add a new link called Reset Password Here1.
directly after the Sign Up Here link:

 <div class="col-md-12 control">
 <div style="border-top: 1px solid#888; padding-top:15px;
 font-size:85%">
 Don't have an account?
 <a asp-action="Index"
 asp-controller="UserRegistration">Sign Up Here
 </div>
 <div style="font-size: 85%;">
 Forgot your password?
 <a asp-action="ForgotPassword">Reset Password Here
 </div>
 </div>

Add a new model called ResetPasswordEmailModel to the Models folder:2.

 public class ResetPasswordEmailModel
 {
 public string DisplayName { get; set; }
 public string Email { get; set; }
 public string ActionUrl { get; set; }
 }

Update AccountController, and then add a new method called3.
ForgotPassword:

 [HttpGet]
 public async Task<IActionResult> ForgotPassword()
 {
 return await Task.Run(() =>
 {
 return View();
 });
 }

Securing ASP.NET Core 3 Applications Chapter 10

[392]

Add a new model called ResetPasswordModel to the Models folder:4.

 public class ResetPasswordModel
 {
 public string Token { get; set; }
 public string UserName { get; set; }
 public string Password { get; set; }
 public string ConfirmPassword { get; set; }
 }

Add a new view called ForgotPassword to the Views/Account folder:5.

 @model TicTacToe.Models.ResetPasswordModel
 @{
 ViewData["Title"] = "GameInvitationConfirmation";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="form-gap"></div>
 <div class="container">
 <div class="row">
 <div class="col-md-4 col-md-offset-4">
 <div class="panel panel-default">
 <div class="panel-body">
 <div class="text-center">
 <h3><i class="fa fa-lock fa-4x"></i></h3>
 <h2 class="text-center">Forgot Password?</h2>
 <p>You can reset your password here.</p>
 <div class="panel-body">
 <form id="register-form" role="form"
 autocomplete="off" class="form"
 method="post" asp-controller="Account"
 asp-action="SendResetPassword">
 <div class="form-group">
 <div class="input-group">
 <i
 class="glyphicon glyphicon-envelope
 color-blue"></i>
 <input id="email" name="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 </div>
 <div class="form-group">
 <input name="recover-submit"
 class="btn btn-lg btn-primary btn-block"
 value="Reset Password" type="submit">
 </div>
 <input type="hidden" class="hide"

Securing ASP.NET Core 3 Applications Chapter 10

[393]

 name="token" id="token" value="">
 </form>

 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

Update the UserService class and the user service interface, and then add a 6.
new method called GetResetPasswordCode:

 public async Task<string> GetResetPasswordCode(UserModel
 user)
 {
 return await _userManager.
 GeneratePasswordResetTokenAsync(user);
 }

Add a new view to the View/EmailTemplates folder called7.
ResetPasswordEmail:

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "View";
 Layout = "_LayoutEmail";
 }
 <h1>Welcome @Model.DisplayName</h1>
 You have requested a password reset, please click here to continue.

Update AccountController, and then add a new method called8.
SendResetPassword:

[HttpPost]
public async Task<IActionResult> SendResetPassword(string UserName)
{
 var user = await _userService.GetUserByEmail(UserName);
 var urlAction = new UrlActionContext
 {
 Action = "ResetPassword", Controller = "Account",
 Values = new { email = UserName, code = await
 _userService.GetResetPasswordCode(user) },
 Protocol = Request.Scheme, Host = Request.Host.ToString()
 };

Securing ASP.NET Core 3 Applications Chapter 10

[394]

 var resetPasswordEmailModel = new ResetPasswordEmailModel
 {
 DisplayName = $"{user.FirstName} {user.LastName}", Email =
 UserName, ActionUrl = Url.Action(urlAction)
 };

 var emailRenderService = HttpContext.RequestServices.
 GetService<IEmailTemplateRenderService>();
 var emailService = HttpContext.RequestServices.
 GetService<IEmailService>();
 var message = await emailRenderService.RenderTemplate(
 "EmailTemplates/ResetPasswordEmail",
 resetPasswordEmailModel,Request.Host.ToString());
 try
 { emailService.SendEmail(UserName,"Tic-Tac-Toe Reset Password",
 message).Wait(); }
 catch { }

 return View("ConfirmResetPasswordRequest",
 resetPasswordEmailModel);
}

Add a new view called ConfirmResetPasswordRequest to the9.
Views/Account folder:

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "ConfirmResetPasswordRequest";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 @section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <h1>@Localizer["You have requested to reset your password,
 an email has been sent to {0}, please click on the
provided
 link to continue.", Model.Email]</h1>

Update AccountController, and then add a new method called10.
ResetPassword:

public async Task<IActionResult> ResetPassword(string email, string
code)
{
 var user = await _userService.GetUserByEmail(email);
 ViewBag.Code = code;
 return View(new ResetPasswordModel { Token = code, UserName =
email });
}

Securing ASP.NET Core 3 Applications Chapter 10

[395]

Add a new view to the Views/Account folder called SendResetPassword:11.

 @model TicTacToe.Models.ResetPasswordEmailModel
 @{
 ViewData["Title"] = "SendResetPassword";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 @section Desktop{<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <h1>@Localizer["You have requested a password reset, an
 email has been sent to {0}, please click on the link to
 continue.", Model.Email]</h1>

Add a new view called ResetPassword to the Views/Account folder:12.

 @model TicTacToe.Models.ResetPasswordModel
 @{
 ViewData["Title"] = "ResetPassword";
 Layout = "~/Views/Shared/_Layout.cshtml";
 }
 <div class="container">
 <div id="loginbox" style="margin-top:50px;"
 class="mainbox
 col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2">
 <div class="panel panel-info">
 <div class="panel-heading">
 <div class="panel-title">Reset your Password</div>
 </div>
 <div style="padding-top:30px" class="panel-body">
 <div class="text-center">
 <form asp-controller="Account"
 asp-action="ResetPassword" method="post">
 <input type="hidden" asp-for="Token" />
 <div asp-validation-summary="All"></div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <i
 class="glyphicon glyphicon-envelope
 color-blue"></i>
 <input id="email" asp-for="UserName"
 placeholder="email address"
 class="form-control" type="email">
 </div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <i
 class="glyphicon glyphicon-lock
 color-blue"></i>

Securing ASP.NET Core 3 Applications Chapter 10

[396]

 <input id="password" asp-for="Password"
 placeholder="Password"
 class="form-control" type="password">
 </div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <i
 class="glyphicon glyphicon-lock
 color-blue"></i>
 <input id="confirmpassword"
 asp-for="ConfirmPassword"
 placeholder="Confirm your Password"
 class="form-control" type="password">
 </div>
 <div style="margin-bottom: 25px" class="input-
 group">
 <input name="submit"
 class="btn btn-lg btn-primary btn-block"
 value="Reset Password" type="submit">
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
 </div>

Update the UserService class and the user service interface, and then add a 13.
new method called ResetPassword:

public async Task<IdentityResult> ResetPassword(string userName,
string password, string token)
{
 _logger.LogTrace($"Reset user password {userName}");
 try
 {
 var user = await _userManager.FindByNameAsync(userName);
 var result = await _userManager.ResetPasswordAsync(user, token,
 password);
 return result;
 }
 catch (Exception ex)
 {
 _logger.LogError($"Cannot reset user password {userName} -
 {ex}");
 throw ex;
 }
}

Securing ASP.NET Core 3 Applications Chapter 10

[397]

Update AccountController, and then add a new method called14.
ResetPassword:

[HttpPost]
public async Task<IActionResult> ResetPassword(ResetPasswordModel
reset)
{
 if (ModelState.IsValid)
 {
 var result = await _userService.ResetPassword(reset.UserName,
 reset.Password, reset.Token);
 if (result.Succeeded)
 return RedirectToAction("Login");
 else
 ModelState.AddModelError("", "Cannot reset your password");
 }
 return View();
}

Start the application and go to the login page. Once there, click on the Reset15.
Password Here link:

Securing ASP.NET Core 3 Applications Chapter 10

[398]

Enter an existing user email on the Forgot Password? page; this will send an16.
email to the user:

Open the Password Reset email and click on the link provided:17.

On the Password Reset page, enter a new password for the user and click on18.
Reset Password. You should be automatically redirected to the Login page, so
sign in with the new password:

Securing ASP.NET Core 3 Applications Chapter 10

[399]

You will be excited to learn that we have now gone through all our authentication
processes, and with the skills acquired, you are now able to provide reasonable
authentication to any application that you may have your hands on. Now that a user is able
to be authenticated, in other words, we know who our user is, we will not stop there.

Getting into the application does not necessarily mean that you are allowed to do anything
that an application offers. We now need to know whether a user is authorized to do this or
that action. And that's what we will look at in the next section.

Implementing authorization
In the first part of the chapter, you saw how to handle user authentication and how to work
with user logins. In the next part, you will see how to manage user access, which will allow
you to fine-tune who has access to what.

The simplest authorization method is to use the [Authorize] meta decorator, which
disables anonymous access completely. Users need to be signed in to be able to access
restricted resources in this case.

Now, let's go and see how to implement it within the Tic-Tac-Toe application:

Add a new method called SecuredPage to HomeController, and remove 1.
anonymous access to it by adding the [Authorize] decorator:

 [Authorize]
 public async Task<IActionResult> SecuredPage()
 {
 return await Task.Run(() =>
 {
 ViewBag.SecureWord = "Secured Page";
 return View("SecuredPage");
 });
 }

Add a new view called SecuredPage to the Views/Home folder:2.

 @{
 ViewData["Title"] = "Secured Page";
 }
 @section Desktop {<h2>@Localizer["DesktopTitle"]</h2>}
 @section Mobile {<h2>@Localizer["MobileTitle"]</h2>}
 <div class="row">
 <div class="col-lg-12">
 <h2>Tic-Tac-Toe @ViewBag.SecureWord</h2>

Securing ASP.NET Core 3 Applications Chapter 10

[400]

 </div>
 </div>

Try accessing the secured page by entering its3.
URL, http://<host>/Home/SecuredPage, manually while not signed in. You
will be redirected automatically to the Login page:

Enter valid user credentials and sign in. You should be automatically redirected4.
to the secured page and now be able to view it:

Another relatively popular approach is to use role-based security, which provides some
more advanced features. It is one of the recommended methods for securing your ASP.NET
Core 3 web applications.

Securing ASP.NET Core 3 Applications Chapter 10

[401]

The following example explains how to work with it:

Add a new class called UserRoleModel to the Models folder, and make it1.
inherited from IdentityUserRole<long>. This will be used by the built-in
ASP.NET Core 3 Identity authentication features:

 public class UserRoleModel : IdentityUserRole<Guid>
 {
 [Key]
 public long Id { get; set; }
 }

Update the OnModelCreating method within GameDbContext:2.

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 ...
 modelBuilder.Entity<IdentityUserRole<Guid>>()
 .ToTable("UserRoleModel")
 .HasKey(x => new { x.UserId, x.RoleId });
 }

Open the NuGet Package Manager Console and execute the Add-Migration3.
IdentityDb2 command. Then, execute the Update-Database command.
Update UserService, and modify the constructor to create two roles called4.
Player and Administrator, if they do not yet exist:

 public UserService(RoleManager<RoleModel> roleManager,
 ApplicationUserManager userManager, ILogger<UserService>
 logger, SignInManager<UserModel> signInManager)
 {
 ...
 if (!roleManager.RoleExistsAsync("Player").Result)
 roleManager.CreateAsync(new RoleModel {
 Name = "Player" }).Wait();

 if (!roleManager.RoleExistsAsync("Administrator").Result)
 roleManager.CreateAsync(new RoleModel {
 Name = "Administrator" }).Wait();
 }

Securing ASP.NET Core 3 Applications Chapter 10

[402]

Update the RegisterUser method within UserService, and then add the user5.
to the Player role or to the Administrator role during user registration:

...
try
{
 userModel.UserName = userModel.Email;
 var result = await _userManager.CreateAsync
 (userModel,userModel.Password);
 if (result == IdentityResult.Success)
 {
 if(userModel.FirstName == "Jason")
 await _userManager.AddToRoleAsync(userModel,"Administrator");
 else
 await _userManager.AddToRoleAsync(userModel, "Player");
 }
 return result == IdentityResult.Success;
}
...

Note that in the example, the code to identify whether a user has the
administrator role is intentionally very basic. You should implement
something more sophisticated in your applications.

Start the application and register a new user, and then open the RoleModel table6.
within SQL Server Object Explorer and analyze its content:

Securing ASP.NET Core 3 Applications Chapter 10

[403]

Open the UserRoleModel table within SQL Server Object Explorer and analyze7.
its content:

Update the SignInUser method within UserService to map roles with claims:8.

 ...
 identity.AddClaim(new Claim("Score",
 user.Score.ToString()));
 var roles = await _userManager.GetRolesAsync(user);
 identity.AddClaims(roles?.Select(r => new
 Claim(ClaimTypes.Role, r)));

 await httpContext.SignInAsync(
 CookieAuthenticationDefaults.AuthenticationScheme,
 new ClaimsPrincipal(identity),
 new AuthenticationProperties { IsPersistent = false });
 ...

Update the SecuredPage method within HomeController, use the9.
administrator role to secure access, and then replace the Authorize decorator
that was there initially with the following:

 [Authorize(Roles = "Administrator")]

Start the application. If you try to access http://<host>/Home/SecuredPage10.
without being logged in, you will be redirected to the Login page. Sign in as a
user who has the player role, and you will be redirected to an Access Denied
page (which does not exist, hence the 404 error) since the user does not have the
administrator role:

Securing ASP.NET Core 3 Applications Chapter 10

[404]

Log out and then sign in as a user who has the administrator role. You should11.
now see the secured page, since the user has the necessary role:

In the following example, you will see how to sign in automatically as a registered user and
how to activate claims-based and policy-based authentication:

Update the SignInUser method, and then add a new method called SignIn to1.
UserService:

public async Task<SignInResult> SignInUser(LoginModel loginModel,
HttpContext httpContext)
{
 ...

 await SignIn(httpContext, user);

 return isValid;
 }
 catch (Exception ex)
 {
 ...
 }
 finally
 {
 ...
 }
}

Implement the SignIn method as follows:

private async Task SignIn(HttpContext httpContext, UserModel user)
{
 var identity = new ClaimsIdentity(CookieAuthenticationDefaults.
 AuthenticationScheme);

Securing ASP.NET Core 3 Applications Chapter 10

[405]

 identity.AddClaim(new Claim(ClaimTypes.Name, user.UserName));
 identity.AddClaim(new Claim(ClaimTypes.GivenName,
 user.FirstName));
 identity.AddClaim(new Claim(ClaimTypes.Surname, user.LastName));
 identity.AddClaim(new Claim("displayName", $"{user.FirstName}
 {user.LastName}"));

 if (!string.IsNullOrEmpty(user.PhoneNumber))
 identity.AddClaim(new Claim(ClaimTypes.HomePhone,
 user.PhoneNumber));
 identity.AddClaim(new Claim("Score", user.Score.ToString()));

 var roles = await _userManager.GetRolesAsync(user);
 identity.AddClaims(roles?.Select(r => new Claim(ClaimTypes.
 Role, r)));

 if (user.FirstName == "Jason")
 identity.AddClaim(new Claim("AccessLevel", "Administrator"));

 await httpContext.SignInAsync(CookieAuthenticationDefaults.
 AuthenticationScheme,
 new ClaimsPrincipal(identity),new AuthenticationProperties {
 IsPersistent = false });
}

Note that, in the example, the code to identify whether a user has
administrator privileges is intentionally very basic. You should implement
something more sophisticated in your applications.

Update the RegisterUser method in UserService, add a new parameter to2.
automatically sign in a user after registration, and then re-extract the user service
interface:

 public async Task<bool> RegisterUser(UserModel userModel,
 bool isOnline = false)
 {
 ...
 if (result == IdentityResult.Success)
 {
 ...
 if (isOnline)
 {
 HttpContext httpContext =
 new HttpContextAccessor().HttpContext;
 await Signin(httpContext, userModel);
 }

Securing ASP.NET Core 3 Applications Chapter 10

[406]

 }
 ...
 }

Update the Index method in UserRegistrationController to automatically3.
sign in a newly registered user:

 ...
 await _userService.RegisterUser(userModel, true);
 ...

Update the ConfirmGameInvitation method4.
in GameInvitationController to sign an invited user in automatically:

 ...
 await _userService.RegisterUser(new UserModel
 {
 Email = gameInvitation.EmailTo,
 EmailConfirmationDate = DateTime.Now,
 EmailConfirmed = true,
 FirstName = "",
 LastName = "",
 Password = "Azerty123!",
 UserName = gameInvitation.EmailTo
 }, true);
 ...

Add a new policy called AdministratorAccessLevelPolicy to the Startup5.
class, just after the MVC Middleware configuration:

 services.AddAuthorization(options =>
 {
 options.AddPolicy("AdministratorAccessLevelPolicy",
 policy => policy.RequireClaim("AccessLevel",
 "Administrator"));
 });

Update the SecuredPage method within HomeController, using Policy6.
instead of Role to secure access, and then replace the Authorize decorator:

 [Authorize(Policy = "AdministratorAccessLevelPolicy")]

Securing ASP.NET Core 3 Applications Chapter 10

[407]

Note that it can be required to limit access to only one specific middleware
since several kinds of authentication middleware can be used with
ASP.NET Core 3 (cookie, bearer, and more) at the same time.
For this case, the Authorize decorator you have seen before allows you
to define which middleware can authenticate a user.

Here is an example allowing cookies and a bearer token:

 [Authorize(AuthenticationSchemes = "Cookie,Bearer",
 Policy = "AdministratorAccessLevelPolicy")]

Start the application, register a new user with an Administrator access level,7.
sign in, and then access http://<host>/Home/SecuredPage. Everything
should be working as before.

Note that you might need to clear your cookies and log in again to create a
new authentication token with the required claims.

Try accessing the secured page as a user who does not have the required access8.
level; as before, you should be redirected to
http://<host>/Account/AccessDenied?ReturnUrl=%2FHome%2FSecuredP

age:

Log out and then sign in as a user who has the Administrator role. You should9.
now see the secured page since the user has the necessary role.

Securing ASP.NET Core 3 Applications Chapter 10

[408]

Summary
In this chapter, you have learned how to secure ASP.NET Core 3 applications, including
managing authentication and authorization for your application users.

You have added basic forms of authentication, and more advanced external provider
authentication via Facebook, to the example application. This should give you some good
ideas on how to approach these important topics in your own applications.

Furthermore, you have learned how to add standard reset password mechanisms, since
users forget their passwords all the time and you need to respond to this type of request as
securely as possible.

We have even talked about two-factor authentication, which can provide an even higher
security level for critical applications.

At the end of the chapter, you also saw how to handle authorizations in multiple ways
(basic, roles, policies), so that you can decide which approach is best suited to your specific
use case.

In general, you have acquired the vital skills of being able to authenticate users for your
application, and being able to authorize them to carry out assigned functions within the
application.

In the next chapter, we will talk about the other different vulnerabilities you may have in
developing ASP.NET Core 3 web applications.

11
Securing ASP.NET Applications

- Vulnerabilities
In the last chapter, we dealt with security mainly from the authentication and authorization
point of view. We saw how to make sure that we know who is accessing our application
and exactly what they are allowed to do within the application.

Unfortunately, unauthenticated logins and unauthorized access are not the only aspects
that we need to guard against. In your quest as an application developer, you will be tasked
with working on different applications of varying security importance. For apps that could
motivate someone to actively seek ways in which they could exploit the application, then
you, as a developer, need to make sure you can fend off potential hackers.

This chapter prepares you to be aware of the most common ways in which your web
applications built with ASP.NET Core 3 could potentially be attacked.

For every application that you build, it is recommended that you look at its security right
from the beginning and not only think about it at deployment time.

For some serious applications, as in the case of enterprise applications, it is not uncommon
to even have a threat modeling session in which you try and analyze whatever possibilities
there are in terms of threats to the application you are about to build, and then take those
threats into consideration throughout the development phase.

In this chapter, you will learn different methods that malicious users usually use to exploit
web applications and, apart from having an awareness, you will learn basic ways in which
you can make sure that your application is safe from any would-be hackers.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[410]

The following topics will be covered in this chapter:

Cross-Site Scripting (XSS)
Cookie stealing
Eavesdropping, message tampering, and message replay
Open redirects/XSR
SQL injection
Cross-Site Request Forgery (XSRF/CSRF)
JS/JSON hijacking
Over-posting
Clickjacking
Proper error reporting and stack trace

Cross-Site Scripting (XSS)
You will often find that Cross-Site Scripting is referred to, in its simplest form, as XSS, and
it can be described as a form of HTML injection attack.

A website will be prone to an XSS attack if there are no measures in place to allow users'
browsers to have scripts that could be executed. In this scenario, most of the time, the
attacker assumes the identity of the user on the website and uses such a script to hijack an
authentic user's session.

Once the session is in the hands of the attacker, then your application is at their mercy for
the duration of the session. They can do just about anything, including making your web
pages look any way they want and they can even launch attacks on other websites through
your web pages. This can happen while an authentic user is still able to do other things, but
an XSS attack can allow a hacker to assume full control of the browser.

If a website allows a user to upload links, then it is also susceptible to an XSS attack in
which they would be able to harvest data uploaded through a form, and also be able to
extract the website's security information.

XSS attacks can also come in the form of a hacker attempting to hijack cookies. These
cookies can have identities for login and/or session identities. Once the cookies are hijacked,
most information about the user is potentially available to the hacker. Through the same
cookie hijacking, a hacker may ride on the user while performing normal functions to
submit malicious content, such as scripts, without them being aware of such activity.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[411]

Preventing XSS
Consider a common, real-life scenario where a user is redirected to a page that has been
carefully designed by hackers to look exactly the same as an authentic application. This can
happen in several ways, including through email content that has links that redirect you to
a compromised URL. A key component that allows XSS attacks to thrive is when input data
is insufficiently validated.

As a way of making sure that your input is thoroughly validated, you must make sure that
you have a maximum length for any kind of input. You must make sure that the type of
input into an input field is limited.

Always make sure that you filter out any possible Unicode characters for tags, for example,
the less than and the greater than symbols: < and >.

HTML encoding that comes automatically with the @ attribute in Razor is an effective way
to prevent XSS attacks, but you still need to take extra steps to secure your site.

There is also a JavaScript encoder that you can inject into your views, as
follows: @inject JavaScriptEncoder jEncoder; and then invoke the encoder directly
for use, as in @jEncoder.encode(...);.

Upon receipt, ASP.NET Core 3 as a framework is always on guard to assess a request. It
checks for scripts and/or any markup in the request, and throws an exception if it
encounters content that feels suspect according to its pre-defined parameters.

Microsoft SDL (short for Security Development Lifecycle) guides you through security
issues through the whole application development life cycle. It is explained in more detail
at this link: https:/ / www. microsoft. com/ en-us/ securityengineering/ sdl and has several
recommendations that you can follow.

Here's an example tip from the SDL: make sure to avoid using the eval()
function in JavaScript, or indeed any similar functions that are meant to
evaluate and subsequently execute a string input as a script, for
example, eval('2019+ 5').

https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[412]

Cookie stealing
User experience is quite an important aspect of any web application. Cookies can play a
part in having a website that enables a great user experience. There are many websites that
actually use cookies to identify their users after they have logged in. On a website such as
this, if you took out the cookies, you would have to log in again and again when navigating
to different pages.

If a hacker can steal your cookies, they can easily pretend to be you. In this regard, you
could be tempted to just disable the usage of cookies from your browser but, at the same
time, there are many applications that force you to have them enabled.

Cookies could be used to store browsing history or site preferences, which are not all
sensitive, but they can also have data that a website may utilize to identify you in between
requests.

If a cookie used for authentication can be stolen, the user's identity can be assumed as well,
therefore access is granted for all capabilities of the hijacked user. For this to be possible,
though, the website must also be vulnerable to XSS, which was described earlier. The
hacker can only steal a cookie if they are able to inject a script into the target website.

Preventing cookie stealing
You can tag your cookies with an HttpOnly attribute. This will make sure that a cookie that
has this tag is only capable of being accessed by the server. This means that the cookie is
safe from being accessed by any sort of script coming from the client side.

HttpOnly tagged cookies make it harder for a bulk of XSS attacks to
succeed.

The HttpOnly attribute can possibly be set in web.config, just like in the following
snippet:

<httpCookies domain=”String” httpOnlyCookies=”true” requireSSL=”true”>

The attribute could also be set individually for each cookie, like this:

Response.Cookies[“CookieExample”].Value= "Value to be remembered";
Response.Cookies[“CookieExample].HttpOnly=true;

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[413]

The "CookieExample" string is meant to contain a name of your choice that you assign to
your cookie as a developer. Both Value and HttpOnly are attributes or properties for your
named cookie that you can assign values to, as seen in the preceding example.

Eavesdropping, message tampering, and
message replay
As implied in the heading, the vulnerabilities of eavesdropping, message tampering, and
message replay are often explained as a group. This is because they are quite similar in the
way that they behave and therefore are identified in the same way. They can also be
prevented in similar ways.

Hackers might utilize a network data capture tool to record requests and responses from a
client to a website. This is an example of eavesdropping.

If you do not put in place counter-measures against eavesdropping, a hacker could capture
an HTTP request, modify it, and then submit it again to the website. This is what is now
called message replay. This is clever on the part of the hacker because a website will be able
to process the request, just like in a normal request, without raising any suspicions. This is
because, in the case of a website that requires authentication, it usually has a required
security token.

When we talk of message tampering, we mean that HTTP requests could be modified for
malicious purposes, including to perform transactions and modify or even delete data.

Preventing eavesdropping and message replay
A commonly accepted way to prevent message replay in web applications using HTTP is
by requiring communication to be carried out via the Secure Sockets Layer (SSL).

By using SSL in non-anonymous mode, you can protect your application from being
instructed to replay messages back to the application server. If you do so, you also prevent
HTTP request and response contents from being exposed to anyone listening in as an
eavesdropper. Your guess is as good as mine as to whether SSL will also prevent message
tampering.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[414]

It is recommended that web applications use SSL in non-anonymous
mode.

When connecting to a server through SSL, this is essentially how SSL works. A client checks
that the identity of the server it is connecting to is correct by verifying that the server URI is
the same as the hostname that is found in the SSL certificate.

There are times when a client may not have a certificate that may be used to verify the
server. There are also times when a server uses protocols for SSL that do not have to have
server identification. In both these instances, the SSL is being used in an anonymous mode.

You can choose, as you see fit, to configure anonymous SSL on some, but not other, web
servers.

It must be noted that when one party poses as another during a client-
server connection, then anonymous SSL cannot protect your application
from spoofing threats or message replay. However, anonymous SSL can
protect you from eavesdropping and tampering.

Open redirects/XSR
Open redirects, just as the name suggests, essentially redirect the user to a random website.
These are also often referred to as Cross-Site Redirects (XSR) and they happen via your
web application's URL.

Once a hacker is successful with a redirect, they can use it for a host of attacks, including
spam and phishing. A hacker could also ride on your web application to serve malware to
others.

XSR threats have more affinity toward web apps that make use of URL redirects through
query strings and/or data in the form of an HTTP request.

Open redirects example
Here's a simplistic, real-world example of an open redirect at play. You might log into a
website as a truly authentic user, but if a hacker has compromised a return URL, changing
parts of the string after you have logged in will result in you being taken outside the
application. You may not notice this as a user because the site that you have been redirected
to could intentionally be created to look exactly like the original site.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[415]

A compromise in the URL is harder to detect with longer URLs, in which just changing a
single letter does the job of tricking you into thinking you are on the same site. A hacker
with intent will have almost an exact replica of the authentic site and when you are on their
compromised site, they might ask you to log in again for a made-up reason, and there goes
your username and password!

Preventing open redirects
It is advisable, just to be on the safe side, to avoid any redirection from within your
application. When you just have to have a redirect, then there is a helper
method, UrlHelper.IsLocalUrl(), that you can use to make sure that you are only
redirected to within the site.

With the UrlHelper.IsLocalUrl() method, you can make certain that
a redirection goes to the same web server as the originating call, and never
taken outside of your web application.

SQL injection
With regard to SQL injection, it's almost a given fact that any application will make use of
queries against the database storage. Obviously, for any hacker, that presents an
opportunity to utilize the queries for what they were not intended to do. They can do this
by modifying the query for their intended purpose.

If you concatenate strings to make SQL statements and/or otherwise use dynamic SQL, this
presents a particularly risky environment that can be exploited with SQL injection.

Preventing SQL injection
It doesn't matter what technology you are using to develop your application: all of them are
susceptible to SQL injection. Therefore, you need to take steps to make sure that your
application is safe from this kind of attack. Here is a recommendation: always use type-safe
parameter encoding when constructing dynamic SQL statements.

In almost all data APIs, you will be allowed to specify exactly what type of parameter you
are passing. This even includes ADO.NET as a technology, which has been around for a
while. These parameters could be integers, Booleans, or other primitive types. Most data
APIs provide for encoding or escaping as a way to guard against hacking attacks.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[416]

Before you deploy your application into production, do a security audit
on both your code and the application in general. Make sure that your
database is locked down, with only the minimally required permissions
for your application.

Protecting SQL connection strings
It's always vital to protect your connection string. It is recommended that you only put it as
plain text in config or app settings. Storing it anywhere else in your code as plain text is
asking for trouble. Through the Microsoft Intermediate Language (MSIL) disassembler, it
is actually quite easy for anyone to see your connection string if you place it in code. A
hacker can use the Ildasm.exe command to view your code's respective MSIL, through
which the string will be laid bare.

Another aspect to consider is the fact that the different forms of connection strings do play
a part. Some forms of connection strings can have a username and password; others just
use the trusted connection or integrated security. If it is possible to do so, it is
recommended to use the options that do not explicitly specify the username and password.

Desist from using a username and password for Windows authentication;
rather, go for Trusted_Connection = true or Integrated Security
= SSPI.

Using the Persist Security Info default value in connection strings
The default value for Persist Security Info is False. Setting it to True allows security-
sensitive information, including the user ID and password, to be obtained from a
connection after it has been opened. When set to False, security information is disposed of
(after it has been used to open the connection), ensuring that any untrusted source does not
have access to it.

Using object-relational mappers (ORMs)
Users of object-relational mappers (ORMs) such as Entity Framework Core 3, introduced
in Chapter 9, Accessing Data Using Entity Framework Core 3, usually work with objects, and
most ORMs offer strong, object-oriented query capabilities and therefore SQL injection is
not as common a threat.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[417]

Note that you could also use stored procedures along with Entity
Framework Core. Usage of stored procedures further reduces the risk of
SQL injection either when used alongside Entity Framework Core or on
their own, mainly because of their parameterized features.

Even when string queries are used, ORMs usually make working with parameters so much
easier than working with ADO.NET parameters, in that there is no drive to use string
concatenation with most ORMs.

However, if you happen to use NHibernate, HQL (short for Hibernate Query Language) is
very similar to SQL and it behaves in a similar manner as executing raw SQL statements.

If you are an NHibernate ORM user, desist from using HQL in your Data
Access Layer (DAL) as it makes your application susceptible to SQL
injection.

Cross-Site Request Forgery (XSRF/CSRF)
There are several mentions of SQL injection and XSS in books and blogs alike, but not too
much is seen about the lesser-known Cross-Site Request Forgery threats, which can be
equally devastating. In short form, it is referred to as either XSRF or CSRF.

In a nutshell, when you authentically log in to an application as a legitimate user, your
identity can be exploited to be used to send requests to a compromised web application,
which will carry out the requests with your identity.

Hackers can easily take advantage of XSRF/CSRF because of the concept
of how the web itself is supposed to work in a stateless manner.

XSRF/CSRF is carried out in the form of a confused deputy attack. This means that an
action can be fooled, unsuspectingly, by some other entity, but with a devastating result by
misusing its legitimate authority.

XSRF/CSRF example
Let's see an example of a simple controller that may be susceptible to an XSRF/CSRF attack.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[418]

At first glance, everything feels safe and secure but, in the following, we'll see how a
controller with code such as this can be mouthwatering to an XSRF/CSRF hacker:

public class ContactController : Controller
{
 public ViewResult ContactDetails()
 { return View(); }
 public ViewResult Update()
 {
 Contact contact = DbContext.GetContact();
 contact.ContactId = Request.Form["ContactId"];
 contact.Name = Request.Form["Name"];
 SaveContact(contact);
 return View();
 }
}

Consider a scenario where a hacker sets up a page that deliberately targets this kind of
controller. The hacker can then persuade a user to visit their page, which will then try to
post to this controller. This controller will not be able to pick up the intended XSRF/CSRF
attack when the user has already been authenticated via forms-based authentication or
Windows authentication. See the following code:

<body onload="document.getElementById('contactForm').submit()">
 <form id="contactForm" action="http://.../Contact/Update"
 method="post">
 <input name="ContactId" value="123456" />
 <input name="Name" value="My Hack Example" />
 </form>
 </body>

This kind of attack is mitigated in different ways, as elaborated on in the next section.

Preventing XSRF/CSRF
The following are the most common ways through which XSRF/CSRF attacks can be
thwarted.

Domain referrers
It is recommended to check and see whether an incoming HTTP request header referrer
domain is indeed yours. When you do so, you can guard against any requests that are
coming from potentially compromised sources from outside of your domain.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[419]

This prevention method is not foolproof, though. If a user has Adobe Flash installed,
hackers could actually take advantage and spoof the header. Some users may also actually
decide not to send referrer headers as a deliberate choice for their privacy.

User-generated tokens
It is recommended to use a hidden HTML field to persist a token for a specific user, which
is usually generated from the origin server, and then verify that the submitted token is
valid. You can use a user's session or an HTTP cookie to keep the token that was generated,
for later retrieval.

In ASP.NET Core MVC, short for Model View Controller, you can verify requests by
creating a token for a specific user that is passed between the view and the controller. If the
token is not the same, this is potentially an XSRF/CSRF attack and you can make provisions
not to allow the request to continue. All this, as described, can be achieved by using an
HTML helper that is available from within ASP.NET Core MVC, which
is @Html.AntiForgeryToken(), used in a form that needs to be submitted and this is in
the views section. For every request, this helper will add a hidden field named
RequestVerificationToken with a token from the view that needs to be verified by the
controller.

You can use the AntiForgeryToken functionality that is available with
ASP.NET Core MVC to prevent XSRF/CSRF attacks.

This approach requires that the corresponding controller works in sync to make sure that it
understands that the form data it is receiving contains an anti-forgery token. This is done
by decorating the specific action in the controller with the ValidateAntiForgeryToken
attribute. This attribute confirms that the HTTP request contains both a cookie value and
the hidden form field, as mentioned previously, and verifies that these values are the same.

It is advisable to decorate every form with an anti-forgery token. This
includes login forms.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[420]

Limitations
As you have seen, anti-XSRF helpers, as described previously, are quite useful, but they
have several limitations. If a user does not accept cookies on their browser, their requests
will be rejected by the controller action decorated with ValidateAntiForgeryToken. You
also need to make sure that your application is safe from XSS threats; otherwise, the anti-
forgery token can be read. You must be mindful as well that the anti-forgery token does not
work with HTTP GET requests, but only works with HTTP POST requests.

JS/JSON hijacking
Most modern web applications make use of JSON to pass data around. JSON hijacking, as
its name suggests, is when a hacker accesses a JSON response from another site.

The motivation for a hacker to try and read a JSON response not meant for them is the fact
that websites, usually, will contain a user's information that can personally identify
someone in a JSON response. That's a gold mine for a would-be malicious user.

Preventing JSON hijacking
It is quite simple to prevent anyone from hijacking your JSON, mainly by making sure that
you never design your APIs to return JSON arrays as an HTTP response.

You can also make use of an HttpPost attribute to decorate a specific action in your
respective controller so that it should only give responses to HTTP requests that use an
HTTP POST action.

Make sure that JSON services always return responses as non-array JSON
objects.

Over-posting
ASP.NET Core MVC has a feature called model binding, which makes your life easy as a
developer to be able to map your user inputs to a specific model automatically.

You can see the motivation for a hacker here to be able to piggyback on this feature to insert
content into your model that a user did not actually fill in on a respective form.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[421]

Vulnerability example
Let's use a hypothetical blog post page where users will be able to post their comments:

public class BlogComment
{
 public int CommentID { get; set; } // Primary key
 public int BlogPostID { get; set; } // Foreign key
 public BlogPost BlogPost { get; set; } // Foreign entity
 public string UserName { get; set; }
 public string Comment { get; set; }
 public bool IsApproved { get; set; }
}

Then we can have a form that needs to be visible to the blog reader:

Name: @Html.TextBox(“UserName”)
Comment: @Html.TextBox(“Comment”)

Now, in this case, our expectation is that we will be getting a blog user to only provide
input to the UserName and Comment fields. A hacker with intent can use advanced browser
tools to find out about, for example, the IsApproved Boolean field, and add it as part of the
data to be posted or in the query string as IsApproved=true.

The feature that we are exploring, called model binding, typically does not know what
fields were legitimately filled in, and will duly oblige and set IsApproved equal to true.

This is quite trivial for this example, but can you imagine if the model was, for example,
'student', and the hacker was able to simply set student.Grade = 99? Yes, that gives a
lot of hope to most of us, but the point you need to note is the fact that this can have serious
consequences. Think of a bank account with an AvailableBalance field that could easily
be manipulated in that way. The importance of having counter-checks is eminent and
explored in the next section.

Preventing over-posting
We can use the BindProperty attribute to decorate either a model or a specific controller
action.

You can either have a blacklist or a whitelist approach in using the BindProperty
attribute. A whitelist approach proves to be safer and simpler because you simply target
those properties you need to bind.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[422]

As another form of mitigation, we can just create a view model with just the properties that
are needed for a user to fill in, and in that way prevent any binding targeted directly at
your full model.

The usage of BlogCommentViewModel will be able to prevent over-posting:

public class BlogCommentViewModel {
 public string UserName { get; set; }
 public string Comment { get; set; }
}

Clickjacking
There are several synonyms associated with clickjacking, including UI redress attack and
UI redressing. UI in these instances means user interface.

This vulnerability happens when a hacker compromises an application's links and buttons
in such a way that users think they are clicking on a link/button to carry out, for example,
function A, while, in reality, they are carrying out function B. This compromised function is
decided by the hacker.

This attack happens mainly in browsers when a hacker has managed to embed a script into
vulnerable links and/or buttons. The user clicks on those links with innocent intent but, in
doing so, they are prone to either revealing sensitive information or the hacker taking full
control of their computer.

Clickjacking example
You can have a scenario in which there is a button aimed at performing function A, but a
hacker will place a replica button with a lower z-index that gets triggered to perform
function B when a user has clicked the normal button that they are able to see.

Preventing clickjacking
We can use an HTTP response header called x-frame-options to combat clickjacking on
our web application. We could do this in any of the following two implementations.

When your application starts up, you can place the following code in a module1.
that implements IHttpModule.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[423]

Set the x-frame-options header to "DENY" when the web application starts up:

public void Init(HttpApplication application)
{
 application.BeginRequest += (new
 EventHandler(this.Application_BeginRequest));
}
private void Application_BeginRequest(object sender, EventArgs e)
{
 HttpContext context = ((HttpApplication)source).Context;
 context.Current.Response.AddHeader("x-frame-options", "DENY");
}

The main thing we are doing here is setting the x-frame-options HTTP header
to DENY, but it is advisable to actually do this within your Internet Information
Services (IIS) if this is your hosting option.

You could do so by going into the IIS Manager, and then with your website2.
selected, do the following:

Select or double-click to edit the HTTP response headers from the list1.
of features.
You will then click Add... from the Actions section on the right. See the2.
following screenshot:

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[424]

A pop-up box will appear and then you can type X-Frame-3.
Options in the Name input box, and SAMEORIGIN in the Value input
box. Instead of SAMEORIGIN, you can also choose to type DENY and it
will all serve the same purpose of protecting you from clickjacking.

Most of the previously mentioned potential attacks originate from an active hacking intent,
devising ways and means to find loopholes to get into vulnerable web applications.
However, as a web application developer with ASP.NET Core 3, the following vulnerability
emanates from a bit of carelessness that you should always avoid.

Proper error reporting and stack trace
A screen of death sometimes referred to in its short form, SOD, could appear when an
unhandled exception or error occurs in an ASP.NET Core 3 web application. An example is
shown here:

This is sometimes referred to as a yellow screen of death because of the yellow color
associated with these exception messages when you are using, say, either Google Chrome
or Firefox as a browser.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[425]

Error reporting vulnerability example
In its simplest terms, it is a bit careless for a web application developer to allow those kinds
of errors to be seen by actual application users. The information that is contained on the
screen of death only belongs to the application developer, not a visitor to your application.
For a determined hacker, this information will give them somewhere to start as it gives out
internal information on the application that may give a lead and an insight into how your
application actually works.

Error handling needs to follow a proper thought process. This applies even in seemingly
trivial situations where an application developer needs to use safe casting and proper type
conversions such as TryParse, as this goes a long way in preventing ad hoc errors that can
result in a screen of death.

Preventing a screen of death
There is a simple solution that will prevent your application from producing a screen of
death, and that is to simply make sure that you configure and specify a custom error page.
Luckily, ASP.NET Core 3 provides ready-made plumbing for you to achieve that through
middleware in the Startup class.

It's not a nice experience on the part of the user to see a screen of death. It
is better to think of your user and give them a friendly error page when
something goes wrong.

You can specify the custom error page in the Startup class of the Configure method:

if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
}
else
{
 app.UseExceptionHandler("/Error");
 app.UseHsts();
}

This determines what kind of error page will be shown to the user according to the
environment, whether it is a development or other kind of environment, including
production.

Securing ASP.NET Applications - Vulnerabilities Chapter 11

[426]

Summary
In this chapter, we have looked at the common vulnerabilities that we need to be aware of
when developing software applications with ASP.NET Core 3. If we are going to effectively
build a secure solution, it is quite important to have an idea from what angle a malicious
attack is going to come from.

We looked at XSS attacks, where a malicious user piggybacks on an authentic user's
identity with the aim of injecting scripts into HTML. We saw that one of the ways a hacker
can gain a user's identity is by cookie stealing, which we can prevent by tagging our
cookies with an HttpOnly attribute.

We looked at eavesdropping, message tampering, and message replay using network
gadgets, and we also had a look at open redirect/XSR attacks, which redirect a user to
external malicious websites. We looked at SQL injection, XSRF/CSRF, JS/JSON hijacking,
over-posting, and clickjacking. We also saw how important it is to do proper error
reporting.

After learning about possible attacks and learning how to make sure that we are prepared
for those kinds of attacks, we are now in a good position to put our application into
production, where it will be exposed to public users. It's a good time to move on to the next
chapter, in which we will be deploying and hosting our secured ASP.NET Core 3
application. Stay focused.

12
Hosting ASP.NET Core 3

Applications
That's it: we are almost at the end of the book, which means that we have nearly finished
the entire application development life cycle, and thus, customers will be able to use your
applications soon! Be proud, because after reading and understanding this penultimate
chapter of the book, you will have acquired strong skills to create and deploy your own
mind-blowing applications with strong technical foundations!

Let's recap: from the beginning of the book until now, you have seen how to set up a
development environment, how to use the various features of ASP.NET Core 3 to develop
modern web applications, how to connect them to a database via Entity Framework Core,
and, finally, in the previous two chapters, how to secure them against any malicious
cybercriminals.

Now, we need to talk about the last step in the development cycle, which consists of
hosting and deploying your applications once they are production-ready.

We will first look at the general hosting of our application, before we go into the specifics of
deploying our application into the cloud, on two of the most common platforms: Amazon
Web Services (AWS) and Microsoft Azure; and finally, we will look at using Docker
containers to host our applications.

The goal of this chapter is to explain the different options you have in hosting your
application, how to choose the right ones, and how to deploy your ASP.NET Core 3 web
applications, using the most current technologies and cloud providers.

In this chapter, we will cover the following topics:

Hosting applications
Deploying applications in AWS
Deploying applications in Microsoft Azure
Deploying applications into Docker containers

Hosting ASP.NET Core 3 Applications Chapter 12

[428]

Hosting applications
You can build the best and most useful applications in the world, but if your customers
cannot access them easily and from any device, you may not get the success you expect. As
you can see in the following diagram, applications increasingly need to be omnichannel,
which means customers need to be able to start on one device and then continue on
another:

Your applications need to be deployable to multiple targets and, in some cases, multiple
operating systems, to allow a high degree of flexibility and device availability. This is
where hosting comes into play.

A host is responsible for application startup and lifetime management, which includes
providing and configuring a server, and request processing. Depending on how you are
hosting your ASP.NET Core 3 applications, you can support different devices for your
applications. The selected technology has a significant impact on the possible choice of
device and operating system.

ASP.NET Core 3 fully supports all current hosting mechanisms on multiple platforms and
operating systems. It all depends on your specific application context.

Hosting ASP.NET Core 3 Applications Chapter 12

[429]

Some hosting examples for your ASP.NET Core applications are as follows:

Host on Windows via Internet Information Services (IIS)
Host in a Windows service
Host on Linux, using NGINX
Host on Linux, using Apache

During development time, or if you don't need to share your applications with others, it
may be interesting to use self-hosting mechanisms or IIS Express, which provides a quick
and easy solution for disconnected, proof of concept (PoC), or test projects.

However, if you start sharing your applications with others, you need more sophisticated
hosting solutions and the corresponding server technologies.

For example, to expose your ASP.NET Core applications over the internet, you will need a
web server that is accessible outside of your local network. There are several possible
solutions to achieve this goal, and here are two of them:

One is using an internet host provider to host your web server. However, you
will need size and will need to manage the server by yourself, which may be
expensive and time-consuming.
Another option is to use public cloud providers, which offer much more
flexibility and scalability while allowing cost reduction, as you only pay for what
you need. The most famous ones are AWS and Microsoft Azure, which have data
centers all around the world.

Furthermore, when using public cloud Platform as a Service (PaaS) offers, you don't even
have to manage the operating system or the platform anymore. The cloud platform does
everything for you. Instead, you can access cloud services, which provide web server or
database server functionalities with high service-level agreements (SLAs). Two examples
are AWS Elastic Beanstalk and Microsoft Azure App Service.

After having seen the various hosting options at your disposal, you will be able to decide
on your deployment targets. For publicly available web applications, you will want to
deploy to a public cloud provider. The next sections will show you how to deploy to the
most common and famous public cloud providers, and how to use the most recent
technologies to do so.

Hosting ASP.NET Core 3 Applications Chapter 12

[430]

Deploying applications in AWS
AWS, a subsidiary of Amazon.com, Inc., provides a public cloud computing platform for
building, testing, deploying, and managing applications and services within globally
available AWS data centers all around the world. It supports many different programming
languages, tools, frameworks, and systems.

We will explore AWS in this section, and will see how to create an account and deploy your
ASP.NET Core 3 applications to AWS Elastic Beanstalk.

First, you have to sign up for an account on AWS; it only takes five minutes, but you will
need a credit card for this.

Let's go through the account registration steps, as follows:

Open a browser, go to https://aws.amazon.com, and click on the Create a Free1.
Account button, as shown in the following screenshot:

https://aws.amazon.com

Hosting ASP.NET Core 3 Applications Chapter 12

[431]

Fill in the Create a new AWS Account form, continue with filling in contact2.
information as well, and then click on Continue, as shown in the following
screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[432]

Fill in the Payment Information, then click Continue. Fill in the Identity3.
Information Verification form and click on Continue, then select a support plan
and click on Continue, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[433]

After the registration has been done, you are automatically redirected to the4.
welcome page, where you should click on the Sign In to the Console button, as
shown in the following screenshot:

After having created your new AWS user account, you are now ready to deploy your first
ASP.NET Core application in AWS.

When working with AWS, you basically have the following two choices in terms of
deploying your ASP.NET Core web applications:

AWS Elastic Beanstalk
AWS EC2 Container Service

The next section will shed some light on how to deploy your applications in AWS Elastic
Beanstalk. So, stay tuned, engage your seat belt, and enjoy the ride!

Deploying applications in AWS Elastic Beanstalk
AWS Elastic Beanstalk is a PaaS offering for web-based applications in AWS that includes
Auto Scaling. In this regard, it is comparable to Microsoft Azure App Service, which you
will see in a later section of this chapter.

Hosting ASP.NET Core 3 Applications Chapter 12

[434]

AWS Elastic Beanstalk removes the need to manage infrastructure and, instead, you only
need to be concerned about building and hosting your applications. For a full DevOps
approach, it is advised that you use this PaaS service if you want to work with AWS.

For more information on AWS Elastic Beanstalk, check out https:/ /aws.
amazon. com/ elasticbeanstalk/ .

The following instructions illustrate step by step how to deploy the Tic-Tac-Toe application
in AWS Elastic Beanstalk.

Let's start with the creation of the AWS Beanstalk application, as follows:

Sign in to AWS and go to the AWS Management Console, enter Beanstalk in1.
the AWS services textbox, and click on the displayed link; you will be redirected
to the Beanstalk welcome page, as follows:

On the Beanstalk welcome page, click on the Get started button, as shown in the2.
following screenshot:

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/

Hosting ASP.NET Core 3 Applications Chapter 12

[435]

This will take you to the page displayed in the following screenshot. Select .NET
(Windows/IIS) as a platform, then click on the Create application button, as
follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[436]

Note that you can change the IIS version and network settings (Network
Load Balancer or single instance) by clicking on the Configure more
options link, shown in the preceding screenshot.

Wait until the Beanstalk application has been created (depending on your 3.
internet connection and AWS, this may take a while), as follows:

The technical environment needs to be prepared in the next steps, before being able to
deploy the Tic-Tac-Toe application and then run it in the end.

As you may have seen in the preceding chapters, the application requires a database to
persist user and application data. For this purpose, we will make provision for a SQL
Server PaaS service called the Amazon Relational Database Service (Amazon RDS) in
AWS, as in the following example:

Return to the AWS Management Console and click on Elastic Beanstalk within1.
the Recently visited services section, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[437]

On the Beanstalk All Applications page, select the desired environment and then2.
click on Default-Environment, and you will see the following resulting screen:

Hosting ASP.NET Core 3 Applications Chapter 12

[438]

On the specific Beanstalk application page, click on Configuration in the left-3.
hand menu, as shown in the following screenshot:

Scroll down, and click on the Modify database link, as shown in the following4.
screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[439]

Select as DB Engine SQL Server Express (sqlserver-ex) and enter a master5.
username and password; leave the rest of the fields at their default values, click
on the Apply button at the bottom of the page, and wait for the database creation
to be finished, as shown in the following screenshot:

Note that, depending on your application's needs, the SQL Server Express
edition may not be enough since it is limited in size, meaning that the
Enterprise or Web editions may be necessary, which will result in higher
cloud-provider costs. For the Tic-Tac-Toe sample application, it is,
however, largely sufficient.

Hosting ASP.NET Core 3 Applications Chapter 12

[440]

Go to the AWS Management Console, enter RDS in the AWS services textbox,6.
and click on the displayed link. You will be redirected to the Amazon RDS page;
click on DB Instances in the Resources menu, as shown in the following
screenshot:

Click on your instance, and the instance dashboard will be displayed. Scroll7.
down to retrieve the endpoint address, which will be used to update the
application connection string before deployment, as shown in the following
screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[441]

Further to the right, in the Connectivity & security tab on the Amazon RDS8.
Instance page, click on the VPC security groups link, as shown in the preceding
screenshot.
On the Security Group page, click on Inbound tab in the menu at the bottom of 9.
the page, then click on Edit, to be able to update the inbound rules for the
security group of the database you have just created, as shown in the following
screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[442]

Click on the Add Rule button, choose MS SQL as the Type, Custom as the10.
Source, and enter a default security group, then click on the Save button, as
shown in the following screenshot:

Note that you should configure stricter security group inbound rules in a
real production environment, and set real IP restrictions. The source
Anywhere should not be used for production environments.

You have an option to use SQL Server Management Studio (SSMS), SQL Server11.
Object Explorer in Visual Studio 2019, or Azure Data Studio, described in a
following note, to work on databases in the cloud. Let's use SQL Server Object
Explorer in Visual Studio 2019. Open it and right-click on SQL Server and then
Add SQL Server, and sign in using the endpoint address, username, and
password from before, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[443]

Create a new database called TicTacToe, as follows:12.

Hosting ASP.NET Core 3 Applications Chapter 12

[444]

Update DatabaseConnectionString in the appsettings.json file, and13.
replace the parameters with the following corresponding values. You might
recall that in Step 7, we mentioned the retrieved endpoint that was going to
be used to update the application connection string before deployment. This is
where we need to update it:

 "Server=<YourEndPoint>;Database=TicTacToe;
 MultipleActiveResultSets=true;
 User id=<YourUser>;pwd=<YourPassword>"

You have successfully configured the technical environment, which means that you are
now able to publish the database schema, as well as deploy the web application.

Note that Azure Data Studio is another great cross-platform option for
working with SQL Server in the cloud. This is useful when you are not in
need of Visual Studio for running Entity Framework (EF) Migrations. A
comparison of its features compared to the commonly used SSMS, to help
you decide when it is best to use Azure Data Studio or SSMS can be found
here: https:/ /docs. microsoft. com/ en- us/sql/ azure- data- studio/
what- is? view= sql- server- ver15.

Are you eagerly waiting to run the application in the cloud? Just stay focused and continue
a little bit further, and you will see your application running in AWS very soon.

You have three choices when it comes to publishing the database schema, as follows:

Generate a SQL script to create the database from within Visual Studio 2019 via
EF Migrations.
Change the default connection string in Data\GameDbContextFactory.cs and
execute the Update-Database instruction within the Package Manager Console.
Run the application to create the database.

The most appropriate solution depends on the type and size of your application and its
database. As a rule of thumb, it is better to generate a script and then create the database for
larger applications, while for smaller applications, it is acceptable to create the database
automatically when the application is running for the first time.

https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/what-is?view=sql-server-ver15

Hosting ASP.NET Core 3 Applications Chapter 12

[445]

Getting the application running on AWS
Let's see what needs to be done before you can see the Tic-Tac-Toe application running in
AWS, as follows:

Open the Package Manager Console in Visual Studio 2019 and execute the1.
Script-Migration instruction, as shown here:

Take the generated script and copy it into a query window for the Amazon RDS2.
database, then execute the script to create the database and the various database
objects.
Download and install the AWS Toolkit for Visual Studio 2017 and3.
2019 from https:/ /marketplace. visualstudio. com/ items? itemName=
AmazonWebServices. AWSToolkitforVisualStudio2017, as shown in the
following screenshot (if you are using Visual Studio Code, you can also get an
AWS Toolkit for Visual Studio Code from https:/ /aws. amazon. com/
visualstudiocode/):

https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/visualstudiocode/
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.AWSToolkitforVisualStudio2017

Hosting ASP.NET Core 3 Applications Chapter 12

[446]

Go to the AWS Management Console, enter IAM in the AWS services textbox,4.
and click on the displayed link; you will be redirected to the Amazon Identity
and Access Management (IAM) page, as shown in the following screenshot:

On the Amazon Identity and Access Management (IAM) page, click on Create5.
individual IAM Users and then on Manage Users and click the Add user button,
as shown in the following screenshot:

On the Add user page, give the new user a meaningful username and grant6.
them Programmatic access, then click on the Next: Permissions button at the
bottom of the page, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[447]

You now have to set the permissions for the new user; for that, click on the7.
Attach existing policies directly button, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[448]

Select AdministratorAccess from the existing policies and click on the Next:8.
Tags button at the bottom of the page, as shown in the following screenshot:

We can ignore tags for now, since we don't intend to have many users, and just9.
go to Next: Review and verify that the User name and AWS access type, as well
as the selected policies, are correct, then click on the Create user button, as
shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[449]

Wait for the new user to be created; when the success page is displayed, you can10.
then download the .csv file, which we will use to configure Visual Studio 2019
with AWS, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[450]

Open Visual Studio 2019 and display AWS Explorer by going to View | AWS11.
Explorer, as shown in the following screenshot:

Click on the New account profile button (the only active button), as shown in the12.
following screenshot:

A wizard will be displayed; leave the Profile Name as default and fill in the13.
Access Key ID and Secret Access Key fields with the values coming from the
.csv file you have downloaded before, during the new user creation process on
AWS, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[451]

Since AWS is based on IIS as the host for .NET Core applications, you now have14.
to add a web.config file to the TicTacToe application, which specifies the IIS
web server properties. The handlers, which are meant to process external
requests and give a response, are assigned aspNetCore attributes and are set to
allow all HTTP verbs such as GET, POST, PUT, DELETE, and many others. The
processing path for the aspNetCore instance is assigned with the our dll path,
and we also make sure that Windows authentication is supported, by setting the
forwardWindowsAuthToken attribute to true, as shown in the following code
block:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule"
 resourceType="Unspecified" />

Hosting ASP.NET Core 3 Applications Chapter 12

[452]

 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\TicTacToe.dll"
 stdoutLogEnabled="true"
 stdoutLogFile=".\logs\stdout"
 forwardWindowsAuthToken="true" />
 </system.webServer>
 </configuration>

Furthermore, we have to enable IIS integration. For us to do that, we open the15.
Program.cs file and change the WebHost builder configuration to enable IIS
integration, by adding webBuilder.UseIISIntegration(), as follows:

 public static IHostBuilder CreateHostBuilder(string[]
 args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);
 webBuilder.PreferHostingUrls(true);
 webBuilder.UseUrls("http://localhost:5000");
 webBuilder.ConfigureLogging((hostingcontext,
 logging) =>
 {
 logging.AddLoggingConfiguration(
 hostingcontext.Configuration);
 });
 webBuilder.UseIISIntegration();
 });

Right-click on the TicTacToe project and click on Publish to AWS Elastic16.
Beanstalk... in the context menu, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[453]

A wizard will be displayed; click on Create a new application17.
environment and click on the Next button, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[454]

You have three options for the environment—whether dev, test, or18.
production—but select the default environment you have created before, then
click on the Next button, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[455]

Verify that the Framework version is set to netcoreapp3.0, signifying an19.
ASP.NET Core 3 application, and leave all default values, then click on the Next
button, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[456]

Select Generate AWSDeploy configuration, which will allow you to redeploy a20.
copy of your application with AWS, then click on the Deploy button, as shown in
the following screenshot:

The deployment will start; you can see the advancement of the deployment21.
process by going to Output | Amazon Web Services, as shown in the following
screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[457]

When the application is deployed, you can use AWS Explorer to get the URL of22.
the application, as follows:

Open a browser and go to the application URL in AWS, start the application, and23.
try to register a new user.

Note that if the application is not working as expected, you will get a 404
Not Found HTTP response. Everything is working locally and the
deployment in AWS was successful, but something is wrong. You will see
in the next chapter, which is about logging and monitoring, how to
analyze, diagnose, understand, and fix this problem.

Hosting ASP.NET Core 3 Applications Chapter 12

[458]

Congratulations—you have successfully deployed your first application in the public cloud.
It is now available to the outside world, and users can connect to it and start working with
it.

This concludes the examples in relation to AWS. However, we still have some compelling
content, since we will explore how to deploy to other targets, such as Microsoft Azure and
Docker containers, in the next sections; so, stay sharp, and continue reading the following
sections.

Deploying applications in Microsoft Azure
Microsoft Azure is a public cloud computing platform provided by Microsoft for building,
testing, deploying, and managing applications and services within globally available
Microsoft data centers all around the world. Microsoft Azure is not only meant to cater for
tooling that comes from Microsoft, in terms of programming languages and frameworks,
but also includes third-party languages, frameworks, and tools, both proprietary or open
source.

When deploying web applications in Microsoft Azure, you basically have four choices, as
follows:

Azure App Service
Azure Service Fabric
Azure Container Service
Azure Virtual Machines

However, before you can start deploying your applications in Microsoft Azure, you need to
sign up for a subscription; so, let's do that right now, as follows:

You need a Microsoft account to be able to sign up for a Microsoft Azure1.
subscription. You can use the same one you have used for your Azure
DevOps subscription, but if you do not have one yet, create it by going to
http://www.live.com and clicking on the Create one! link, as shown in the
following screenshot:

http://www.live.com

Hosting ASP.NET Core 3 Applications Chapter 12

[459]

Go to https://portal.azure.com and log in with your Microsoft account; you2.
will be asked if you want to take a tour. Select Maybe later (you should really
take the tour later, though!), and you will be redirected to the Microsoft Azure
management portal, as shown in the following screenshot:

https://portal.azure.com

Hosting ASP.NET Core 3 Applications Chapter 12

[460]

Click on More services at the bottom of the left-hand menu, then click on the3.
Subscriptions button, as shown in the following screenshot:

Click on the Add button, as shown in the following screenshot:4.

Hosting ASP.NET Core 3 Applications Chapter 12

[461]

Click on the Free Trial button and fill in the different forms until you have5.
created your Microsoft Azure subscription, as follows:

Note that there is no credit card required for Microsoft Azure (unlike
AWS), and this is great, especially if you are a student.

Exciting! You are now ready to provision the technical environment and, then, deploy your
ASP.NET Core 3 web applications to the Microsoft Azure data centers all around the world!

Hosting ASP.NET Core 3 Applications Chapter 12

[462]

Deploying applications in Microsoft Azure App
Service
Azure App Service is a PaaS offering for web-based applications in Microsoft Azure that
which includes Auto Scaling. In this regard, it is comparable to AWS Elastic Beanstalk,
which you have already seen before, in the section on AWS.

Azure App Service removes the need for a managing infrastructure; instead, you only need
to be concerned about building and hosting your applications. For a full DevOps approach,
it is advisable to use this PaaS service, if you want to work with Microsoft Azure.

For more information on Microsoft Azure App Service, check out https:/
/docs. microsoft. com/ en- us/ azure/ app- service/ app- service- web-
overview.

Getting an Azure App Service instance running
The following examples illustrate how we can prepare to deploy the Tic-Tac-Toe
application to Azure App Service step by step:

Go to the Microsoft Azure management portal, and you will find there are many1.
services available for you to use, including the most commonly used ones that
are placed prominently on the welcome page, as shown in the following
screenshot:

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-overview

Hosting ASP.NET Core 3 Applications Chapter 12

[463]

App Services is the one we need at this point, so hover with your mouse pointer2.
over the App Services icon, and it will show the following popup. Click on
Create, as follows:

You will get a new Web App form. Fill in the Project Details. In this screenshot, I3.
already have a Visual Studio Enterprise subscription, but you can use the trial
subscription you created or, indeed, any other subscription you may have. I
already have a Resource Group created, but as you can see, you can create a new
Resource Group; and if you hover on the information icon, it will tell you that a
Resource Group is a simple collection of resources that share the same life cycle,
permissions, and policies. Fill in a unique name for your application, and choose
to publish the application as Code. Choose .NET Core 3.0 (Current) as a runtime
stack, and the operating system will automatically be selected for you. For the
region, I have chosen South Africa North as it is the one closest to me, but you
can choose whatever region you feel is closer to your targeted audience in a real-
life app.

Hosting ASP.NET Core 3 Applications Chapter 12

[464]

If you don't have an App Service Plan that decides what you will be using and
paying for, please create it, and be sure to double-check that you have selected a
free tier that uses shared infrastructure and allows for up to 1 GB memory, as
follows:

After filling in the preceding form and clicking on Next: Monitoring, you will get4.
the following screen, where you can choose if you want to enable Application
Insights. Select Yes, and then click Next: Tags, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[465]

After clicking Next: Tags, you will get to the Tags section. We don't need them5.
for this application, so click on the last Next button to review and create, where
you will be presented with the following summary:

Hosting ASP.NET Core 3 Applications Chapter 12

[466]

Click on the Download a template for automation link, and this will download a6.
template.zip folder, with two files inside: parameters.json and
template.json, which we may need for future use. After the download, go
back to the web app through the navigation link, and it will still have the
summary. Click on Create, and you will get a deployment underway screen and
then a deployment complete screen, as follows:

Click on Go to resource from the preceding screen, and you will then be7.
presented with a dashboard for your deployed application, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[467]

At this point, if you click on the link with the unique name you created in8.
step 3: https://[your-unique-project-name].azurewebsites.net/, you
will see that you already have a website, as shown in the following screenshot:

Congratulations! If you have reached this far, you have a healthy app service running on
Azure, but as you will notice, we still don't have our Tic-Tac-Toe demo application running
on Azure. Let's see how we can do that next, in the following section.

Hosting ASP.NET Core 3 Applications Chapter 12

[468]

Publishing your code on Azure
Now that you know you have your App Service instance running, go ahead and click on
the Deployment Center button shown in the preceding screenshot, and you will get the
screen shown in the following screenshot. You can also go to Deployment Center by going
to the home page, browsing through recent resources, and selecting your project, then
select Deployment Center in the left pane, under Deployment, as follows:

You will be glad to see that you have several options through which you can deploy your
application. You will remember from Chapter 3, Continuous Integration Pipeline in Azure
DevOps that we did have our application in Azure Repos, and you might have been
updating your code throughout the chapter on Azure Repos, or a local Git project. Either
way, we have an option to deploy from Azure Repos or Local Git available to us.

GitHub now has a cool feature called GitHub Actions that makes
deployment much easier. It has a lot of workflows provided by its vibrant
community, such as Deploy to Kubernetes, AWS, and Azure App Service, and
you can create your own actions using the starter workflows
here: https:/ /github. com/ actions/ starter- workflows. You can find out
more about GitHub Actions at https:/ / github. com/ features/ actions.

https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/actions/starter-workflows
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions
https://github.com/features/actions

Hosting ASP.NET Core 3 Applications Chapter 12

[469]

We also have an option to deploy through a GitHub repository or Bitbucket, but we will
need to do some more configurations, and this is not within the scope of this book.

For demonstration purposes, we will use Azure Repos, as demonstrated in the next section.

Continuous integration with Azure Repos
If you have been updating the code on Azure Repos, you can simply click on the Azure
Repos button to continue the process. If you have not been updating, and have been using
a local development environment, please make sure you check out your Azure Repos code
from Chapter 3, Continuous Integration Pipeline in Azure DevOps, update it with the latest,
and commit. Follow these steps:

In the Deployment Center, click on Azure Repos and Continue, as shown in the1.
following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[470]

You will be presented with two options for your build provider, either the App2.
Service build service or the Azure Pipelines (Preview). The main difference
between them is that Azure Pipelines does a bit extra, such as running load tests,
and deploying to staging first and then to production. At this point, make sure
that you do have both a staging and a production slot, which you can add by
clicking on the Deployment slots menu on the left. Select Azure Pipelines
(Preview) and click Continue, as follows:

You then add the configurations for the Azure Repos project you created in3.
Chapter 3, Continuous Integration Pipeline in Azure DevOps, as in the following
screenshot. Click Continue, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[471]

You are then presented with a summary page, which you can use to check if all4.
your parameters are OK. If not, you can go back and correct; but assuming
everything is correct, click Finish, and if everything went correctly, you should
see the following Successfully setup Continuous Delivery and triggered build
message:

Do a refresh, and you will see a deployed successfully message. The message will5.
also contain the release version, and links to the build details and source version,
as follows:

 Click on Sync to make sure that your web app has the latest code, and you will6.
get the message Successfully triggered Continuous Delivery with latest source
code from repository, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[472]

This is good news. Your code is now on the Azure portal, but if you check the URL for your
project—https://[your-unique-project-name].azurewebsites.net/— you will be
faced with an error. Don't despair; it's still a good sign. We have our code on the site, but
we have not connected to any database. That is what we are going to look at in the next
section.

Connecting the database
In previous versions of Microsoft Azure, there used to be an option to have a Web App +
SQL as a single Azure service, but of late they have been split. We will need to create a
separate database instance, and the following are the steps we will need to go through to
get the database up and running, and ready to be used by our demo application:

Go to your personal home page for portal.azure.com and hover on SQL1.
databases, then click on the Create button:

https://portal.azure.com

Hosting ASP.NET Core 3 Applications Chapter 12

[473]

Fill in the required information on the resulting form, as follows: 2.

Hosting ASP.NET Core 3 Applications Chapter 12

[474]

Enter some values for Server name, Server admin login, and Password,3.
then click on the OK button, as shown here:

Click Next: Networking from the preceding screen, to configure in the following4.
screen whether the public is allowed to access this database. For the purposes of
our application, we need it to only be accessed internally, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[475]

Click Review + create and eventually Create, then you will see a final screen5.
similar to the following one if your deployment was successful:

Hosting ASP.NET Core 3 Applications Chapter 12

[476]

You will need to allow access to the SQL database to execute the database6.
generation scripts for the TicTacToe application. In the left-hand drop-down
menu, or from the home page, click on SQL databases and select the TicTacToe
database, as shown in the following screenshot:

Click on Set server firewall from the preceding screen to be able to add a new7.
rule allowing access to the SQL database from your IP. Click on Add client IP,
verify your IP, and click on Save to add the new rule, which results in the
following screen:

Hosting ASP.NET Core 3 Applications Chapter 12

[477]

Open Visual Studio 2019, go to the SQL Server Object Explorer, and add a new8.
SQL Server, using the connection information from the TicTacToe Azure
database connection string. You will find that this has been filled in
automatically for you if you click on the Azure link, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[478]

Add a new database to the Azure SQL Server instance, as you would have done9.
in the AWS example; it will be used to execute the TicTacToe database
generation scripts, as follows:

If you did not follow the AWS example, open the Package Manager Console in10.
Visual Studio 2019 and execute the Script-Migration instruction; otherwise, you
can reuse the same scripts, as in the previous example.
Take the generated script and copy it into a query window for the Azure11.
TicTacToe database, then execute the script to create the database and the
various database objects, as follows:

If you did not go through the AWS deployment example, please remember to12.
add the same web.config file as in the preceding AWS example, and add
webBuilder.UseIISIntegration() to the CreateHostBuilder method, in
Program.cs, since App Service is based on IIS as the host for .NET Core
applications.

Hosting ASP.NET Core 3 Applications Chapter 12

[479]

At this point, you have done enough in terms of deployment. All the code files are in, and
the database is set up and connected. We will look at what to do next to make sure that
users are able to see a running application, in the next—and final—chapter. But meanwhile,
if you found deployment using CI/CD tools with Azure DevOps a little involved, there's an
easier option for you, which will be discussed in the next section: Deployment through the
Web Deploy tool. Stay focused.

Deployment through the Web Deploy tool
The previous example used deployment through the Azure DevOps CI/CD functionality.
Alternatively, you can use Web Deploy to publish your project to Azure, directly from
Visual Studio 2019, so let's do exactly that—prepare the application and deploy it via Visual
Studio 2019 into the Microsoft Azure App Service instance you created before, as follows:

Since App Service is based on IIS as the host for .NET Core applications, you now1.
have to add a web.config file to the TicTacToe project. You should, however,
already have done that if you have followed the AWS example from before, as
follows:

 <?xml version="1.0" encoding="utf-8"?>
 <configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*"
 verb="*" modules="AspNetCoreModule"
 resourceType="Unspecified" />
 </handlers>
 <aspNetCore processPath="dotnet"
 arguments=".\TicTacToe.dll"
 stdoutLogEnabled="true"
 stdoutLogFile=".\logs\stdout"
 forwardWindowsAuthToken="true" />
 </system.webServer>
 </configuration>

Hosting ASP.NET Core 3 Applications Chapter 12

[480]

Furthermore, you have to enable IIS integration; for that, open the Program.cs2.
file and change the WebHost builder configuration to enable IIS integration. You
should, however, already have done that if you have followed the AWS example
from before, as follows:

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);
 webBuilder.PreferHostingUrls(true);
 webBuilder.UseUrls("http://localhost:5000");
 webBuilder.ConfigureLogging((hostingcontext, logging) =>
 {
 logging.AddLoggingConfiguration(hostingcontext.
 Configuration); });
 webBuilder.UseIISIntegration();
 });

Go to the Microsoft Azure management portal and click on App Services in the3.
left-hand menu. Select the TicTacToe application you have created before, click
on Get publish profile, and download the Azure App Service Publish profile, as
follows:

Right-click on the TicTacToe project, click on Publish in the context menu, then4.
click on the Import profile button, as shown here:

Hosting ASP.NET Core 3 Applications Chapter 12

[481]

Select the downloaded Azure App Service Publish profile, and the 5.
publish process should start automatically, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[482]

You can see the publish process in the Web Publish Activity view, as follows:6.

Open a browser and go to the application URL in Microsoft Azure, start the7.
application, and try to register a new user.

Note that if the application is not working as expected, you will get a 404
Not Found HTTP response. Everything is working locally and the
deployment in Microsoft Azure was successful, but something is wrong.
You will see in the next chapter (which is about logging and monitoring)
how to analyze, diagnose, understand, and fix this problem.

This concludes the examples for Microsoft Azure. The next section will explain how to
deploy your application into Docker containers.

Deploying applications into Docker
containers
Docker simplifies building, deploying, and running applications by using containers.
Containers allow for the packaging of libraries, as well as any other dependencies, into a
single application package (container image), which can then be shipped as a single
coherent resource. This technology assures that the packaged application will run correctly
anywhere the container can be used, regardless of any environment-specific settings or
configurations.

Hosting ASP.NET Core 3 Applications Chapter 12

[483]

Here is a high-level schema of how Docker works:

You basically have three choices when working with Docker containers, as follows:

Use a Virtual Machine (VM) locally or in the cloud with Docker for Windows or
Docker Enterprise (Windows Server 2019 and 2016), depending on the operating
system
Use Docker Hub (https://hub.docker.com)
Use either Microsoft Azure Container Service or AWS EC2 Container Service

For more information on Docker, visit the following links:

https://www.docker.com

https:/ /docs. microsoft. com/ en-us/ dotnet/ core/ docker/
build- container

Deploying applications into Docker containers
Docker for Windows provides everything necessary to start using Docker containers in a
Windows environment, whereas Docker Enterprise (Windows Server 2019 and 2016) is
designed for companies that need to provide the necessary support to production
environments based on the Docker technologies.

https://hub.docker.com/
https://www.docker.com
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container
https://docs.microsoft.com/en-us/dotnet/core/docker/build-container

Hosting ASP.NET Core 3 Applications Chapter 12

[484]

Let's see how to use Docker in Windows and how to deploy your application in this case, as
follows:

If you do not yet have Docker for Windows installed, go to https:/ / hub.docker.1.
com. Sign in with your Docker ID if you have one; otherwise, click on Sign Up
and fill in your Docker ID of choice, along with a password and an email
address, as follows:

You will then fill in personalized details on your account, and after verification,2.
on the welcome page, click on Get Started With Docker Desktop, and you will
be presented with the following popup. Click on Download Docker Desktop for
Windows and install it after the download, as follows:

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Hosting ASP.NET Core 3 Applications Chapter 12

[485]

To install Docker Enterprise Edition for Windows 2016, go to https:/ /
hub.docker. com/ editions/ enterprise/ docker- ee-server- windows and
follow the installation instructions. After the installation, you should skip
the following step, and continue directly with Step 4.

During installation, make sure you select Windows containers, as follows:3.

https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows
https://hub.docker.com/editions/enterprise/docker-ee-server-windows

Hosting ASP.NET Core 3 Applications Chapter 12

[486]

You can also switch to Windows containers after installation by right-clicking on4.
the Docker tray icon and further clicking on Switch to Windows containers... in
the context menu, as follows:

If the container features have not yet been enabled in your Windows installation,5.
Docker will ask if you would like this to be done for you. Click on the Ok button,
as follows:

Open a new elevated Command Prompt with administrator rights, download the6.
official Docker Microsoft SQL Server image, and execute the docker pull
microsoft/mssql-server-windows-express instruction, as follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[487]

Download the official Docker Microsoft ASP.NET Core image, and execute7.
the docker pull microsoft/aspnetcore instruction, like this:

Hosting ASP.NET Core 3 Applications Chapter 12

[488]

To be able to compile and publish applications from Visual Studio 2019 directly8.
into Docker, you will also need to download the specific build image and execute
the docker pull microsoft/aspnetcore-build instruction, as follows:

If you check on the Docker images installed so far, you should have the9.
following:

Hosting ASP.NET Core 3 Applications Chapter 12

[489]

Open Visual Studio 2019, then open the TicTacToe project; in the menu, click10.
on Project | Docker Support and select the Windows operating system, as
follows:

A new project called docker-compose will be autogenerated and added to the11.
solution; it should contain a .dockerignore file (files to be ignored during
deployment) and a docker-compose.yml file (deployment instructions), as
follows:

Hosting ASP.NET Core 3 Applications Chapter 12

[490]

Update the docker-compose.yml file in the Docker Compose Project, like this:12.

 version: '3'
 services:
 sql:
 image: "microsoft/mssql-server-windows-express"
 environment:
 sa_password: "123TicTacToe!"
 ACCEPT_EULA: "Y"
 tictactoe:
 image: tictactoe
 build:
 context: .
 dockerfile: TicTacToe\Dockerfile
 ports:
 - "8081:5000"
 depends_on:
 - sql

Update the DefaultConnection in the appsettings.json file in the13.
TicTacToe application, as follows:

 "DefaultConnection":
 "Server=sql;Database=Master;MultipleActiveResultSets=true;
 User id=sa;pwd=123TicTacToe!"

Update the Program.cs file in the TicTacToe project; remove the IIS14.
Integration, because the Docker ASP.NET Core image is based on Kestrel instead
of IIS, as follows:

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);
 });

Hosting ASP.NET Core 3 Applications Chapter 12

[491]

Start the application by pressing F5 (the docker-compose project should be set15.
as a startup). The application should now have been automatically deployed into
a Docker container; verify that everything is still working as expected, as follows:

Open Command Prompt and execute the docker ps instruction, to see all16.
running Docker processes. There should be multiple running container instances,
as follows:

In this case, we have an instance of the tictactoe application image for the dev environment,
and the microsoft/mssql-server-windows-express version. In the next section, we will see
how to publish such images to Docker Hub.

Publishing images to Docker Hub
You can upload your application images to the central cloud-based Docker repository
called Docker Hub, and then use them in Microsoft Azure, AWS, or any other Docker-
supported environments.

Note that there are also other Docker registries you could use, such as
Azure Container Registry and others. Since Docker provides its own
registry via Docker Hub, it is, however, advised to use that.
For more information on Docker Hub, check
out https://docs.docker.com/docker-hub.

https://docs.docker.com/docker-hub

Hosting ASP.NET Core 3 Applications Chapter 12

[492]

The following example showcases how to publish and upload the sample TicTacToe
application to Docker Hub:

Right-click on the TicTacToe project and select Publish in the context menu;1.
since you have already created a publish profile in the preceding examples, you
have to add a new one. Click on Create new profile, as follows:

Click on the Container Registry button, select Docker Hub, and click on the2.
Publish button, as shown in the following screenshot:

Hosting ASP.NET Core 3 Applications Chapter 12

[493]

Enter your Docker Hub User Name and Password, and click on Save, as shown3.
in the following screenshot:

Your container image will be published to Docker Hub; when it has been4.
finished, go to Docker Hub and verify that the image has been uploaded, as
follows:

Well done for getting this far, and on the application development side of things, we have
pretty much looked at just about every angle of how to come up with a world-class
application. You should pat yourself on the back for finally having your application in a
container hub.

Hosting ASP.NET Core 3 Applications Chapter 12

[494]

Summary
In this chapter, we talked about the various options you have when it comes to hosting and
deploying your ASP.NET Core 3 web applications. You have learned what hosting is, and
how to choose the appropriate solutions for a given use case. This will allow you to make
better decisions for your own applications.

You have seen how to sign up for an AWS account, how to provision the technical
environment, and how to deploy ASP.NET Core 3 web applications. Furthermore, you
have seen how to sign up for a Microsoft Azure account, how to provision the technical
environment, and how to deploy ASP.NET Core 3 web applications using this powerful
public cloud computing platform.

We then talked about Docker and the various deployment choices you have when you use
this modern, increasingly adopted, and impactful technology. You are well prepared for the
future, since Docker may well completely change our way of thinking concerning
deploying and managing applications.

You have gained very important skills any serious developer should have, which include
hosting your web applications, deploying to Docker containers, and deploying to AWS or
Microsoft Azure; and, last but not least, you have gained skills required in continuous
deployment.

In the next chapter, we will explain how to manage and supervise deployed web
applications efficiently, which is very important for a DevOps approach.

13
Managing ASP.NET Core 3

Applications
After having finished the development life cycle, we could have stopped there. However,
this last chapter has been added, to underline the importance of a thorough DevOps
approach.

For now, we have only talked about the development (Dev) side, but you should also
embrace the operations (Ops) side in DevOps, which consists of managing and supervising
your applications during runtime.

This very important subject is often underestimated and, even worse, is sometimes
completely left aside. Developers tend to think that it is not a part of their job. They often
say things such as: But it works on my machine, and: This is your problem, not mine. This is also
commonly called the wall of confusion. Agile methodologies and DevOps aim to avoid
this kind of thinking, and this chapter will give you some advice and examples on how to
better address those issues within your ASP.NET Core 3 applications.

The success of your application will depend on how you can help IT operations understand
what is happening during runtime. This means providing them with the means to manage
and supervise applications quickly and efficiently.

Only then will you be able to provide high-quality applications with a low mean time to
repair (MTTR) for bugs, which can make a difference in becoming a future market leader
within your specific market.

Furthermore, it is easy for you to address these subjects when using ASP.NET Core 3, since
most of the time, you can take advantage of integrated or provided features, without the
need for any bigger code changes.

We will start by having a look at how we can add logging for both Azure and Amazon
Web Services (AWS), and then we will take a look at how we can monitor the application
on-premises and in Docker, before looking at how we can monitor in Azure and AWS.

Managing ASP.NET Core 3 Applications Chapter 13

[496]

In this chapter, we will cover the following topics:

Logging in ASP.NET Core 3 applications
Monitoring ASP.NET Core 3 applications

Logging in ASP.NET Core 3 applications
In Chapter 12, Hosting ASP.NET Core 3 Applications, we explained how to deploy your
ASP.NET Core 3 applications to Microsoft Azure, AWS, and Docker. Let's go further, and
understand how to add logging and monitoring to these environments, which are
important for diagnosing unexpected behavior and errors.

First, some theoretical background, and then some practical examples. Are you ready to
learn what it takes to help IT operations? Come on; it's the last chapter. Let's go!

Logging within applications consists of creating data to help understand what is happening
during runtime. Several types of messages can be logged, such as information, warnings,
and errors.

This data should then be persisted to log files, databases, SaaS solutions, or other
destinations. To improve application performance, it is recommended to allow IT
operations to change the level of verbosity of the collected logging data during application
runtime. For instance, in production environments, only warnings and errors should be
logged, while it makes perfect sense to enable more efficient logging of everything during
development time and to better understand what exactly is happening behind the scenes.

It is advisable to use a standard framework such as Event Tracing for Windows (ETW) to
structure and format logging data so that IT operations can use their preferred monitoring
tools to quickly and easily read and diagnose reasons for errors. Famous logging
frameworks such as Serilog or Log4net also support standard output formats, so you could
also use them if you like.

So, let's look at some concrete examples on how to handle logging for your ASP.NET Core 3
applications, in different environments such as on-premises, in the public cloud, and in
Docker.

In on-premises environments, logging data is stored in a log file most of the time. In this
case, the application needs to have write access to write to the log file, and it is
recommended to store all log files in a central folder called logs under the application
path.

Managing ASP.NET Core 3 Applications Chapter 13

[497]

In Microsoft Azure, you basically have three different solutions to handle logging within
your applications, as follows:

Standard file logging: This is the easiest method, without any code
modifications, but it is also the least powerful. You need to download files to
retrieve logging data for your application.
Azure App Service Diagnostics: This is the recommended solution if you have
no more than a single instance for your application service since there are no log
centralization features provided.
Azure Application Insights: This is the most integrated and most powerful
solution, which works across all application layers.

AWS provides CloudWatch for logging and monitoring. The logging mechanisms
provided are very similar to those for Microsoft Azure. When you have understood how
these work in Microsoft Azure, you will be able to apply your knowledge to AWS easily
and quickly, as you will see in the examples provided.

For more information, you can visit the AWS CloudWatch website at
https://aws.amazon.com/en/cloudwatch.

Docker does not provide any of the integrated monitoring or logging services that exist for
Microsoft Azure or AWS. This means that for adding, logging, and monitoring
functionalities to your ASP.NET Core 3 applications in Docker, you have to use a log file.
Furthermore, you have to provide your own centralized log recovery and analysis
mechanisms to get consistent logging and monitoring data.

However, since applications can be instantiated multiple times, this may not be the best
approach. Instead, you could also directly log to a centralized console, which should be the
most efficient and most appropriate solution in a Docker environment.

Logging in Microsoft Azure
OK; now that you have seen several solutions for logging in different environments, we
will focus on Microsoft Azure. What happens if you take on the role of IT operations, which
need to diagnose why an application is not working as expected in Microsoft Azure? What
are your choices, and what would be the best solution? That is exactly what you will learn
in this section.

https://aws.amazon.com/en/cloudwatch

Managing ASP.NET Core 3 Applications Chapter 13

[498]

If you remember, we have already talked about logging on an application level in Chapter
4, Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1, of this book. There, we
added logging application events to a log file in a logs subfolder of the application folder.
This folder needs to be synchronized and monitored for disk space usage because, when it
gets too big, it may well become a reason for failure in itself.

Furthermore, there are multiple sources of logs, since application logs and environmental
logs (Internet Information Services (IIS), Windows, SQL Server, and so on) are handled
separately. You have to combine all the information to get a holistic view of what is
happening behind the scenes. This is very complicated and very time-consuming.

As you can see, it requires a lot of manual work to read and analyze application logs in this
case. This becomes even more of an issue if you need to monitor and supervise a high
number of applications at the same time. Doing everything manually is not really an
option. We need to find a better solution.

Moreover, there are better and more integrated solutions in Microsoft Azure! If you deploy
your applications in Azure App Service, for instance, you can use the Azure App Service
Diagnostics. This feature can be enabled directly from the portal. Additionally, application
logs and environmental logs are automatically centralized in a single place, which helps to
find problems in a much quicker and more straightforward way.

Enabling Microsoft Azure App Service
Enabling Microsoft Azure App Service Diagnostics is very easy, so let's see how to do that
now:

Open the Tic-Tac-Toe web project in Visual Studio 2019, and add a new1.
extension called AzureAppServiceDiagnosticExtension to the Extensions
folder, as follows:

 public class AzureAppServiceDiagnosticExtension
 {
 public static void AddAzureWebAppDiagnostics
 (IConfiguration configuration, ILoggingBuilder
 loggingBuilder)
 {
 loggingBuilder.AddAzureWebAppDiagnostics();
 }
 }

Managing ASP.NET Core 3 Applications Chapter 13

[499]

Update the AddLoggingConfiguration method in2.
the ConfigureLoggingExtension class, and add a case for the newly added
Azure ApplicationServiceDiagnosticExtension from before, as follows:

 foreach (var provider in loggingOptions.Providers)
 {
 switch (provider.Name.ToLower())
 {
 case "console": { loggingBuilder.AddConsole(); break; }
 case "file": { ... }
 case "azureappservices":
 {
 AzureAppServiceDiagnosticExtension
.AddAzureWebAppDiagnostics(configuration,loggingBuilder);
 break;
 }
 default: { break; }
 }
 }

Update the appsettings.json configuration file, and add a new provider for3.
Azure App Service, as follows:

 "Logging": {
 "Providers": [
 {
 "Name": "Console",
 "LogLevel": "1"
 },
 {
 "Name": "File",
 "LogLevel": "2"
 },
 {
 "Name": "azureappservices"
 }
],
 "MinimumLevel": 1
 }

Update the Program.cs file, change the WebHost builder configuration to4.
enable IIS integration, and add the logging configuration, as follows:

public static IHostBuilder CreateHostBuilder(string[] args) =>
Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>

Managing ASP.NET Core 3 Applications Chapter 13

[500]

 {
 webBuilder.UseStartup<Startup>();
 webBuilder.CaptureStartupErrors(true);
 webBuilder.PreferHostingUrls(true);
 webBuilder.ConfigureLogging((hostingcontext, logging) =>
 {
 logging.AddLoggingConfiguration(hostingcontext.
 Configuration); });
 webBuilder.UseIISIntegration();
 });

Publish the Tic-Tac-Toe web application to Azure App Service. If you do not5.
know how to do that, you can look it up in Chapter 12, Hosting ASP.NET Core 3
Applications.
Go to the Microsoft Azure portal website, click on App Services in the menu,6.
select the Tic-Tac-Toe App Service you have deployed, and scroll down until
you see the Monitoring section, shown in the following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[501]

In the Monitoring section, click on App Service logs, and then set the7.
Application Logging (Filesystem) On button. Select Level as Verbose, enable
Detailed error messages and Failed request tracing, and then click on the Save
button, as follows:

The Tic-Tac-Toe application will now start logging data in the Azure App Service
filesystem. However, this is only the first step. You will need to retrieve the logs to be able
to analyze them.

There are multiple ways of accessing the logs, depending on your specific needs. Some of
them are specified here, as follows:

Using FTP or FTPS to browse the logs folder
Configuring Azure Blob Storage and then downloading the blob content, which
also has the benefit of centralizing logs for multiple services in a single place
Using a dedicated application to retrieve logs automatically

Managing ASP.NET Core 3 Applications Chapter 13

[502]

Fortunately, the community has already worked on an open source solution on GitHub,
called the Azure Web Site Logs Browser extension, which you can use. This solution
consists of adding an extension to your Azure portal.

You will now see how to add the Azure Web Site Logs Browser extension to the Microsoft
Azure portal to analyze logs by following these steps:

Go to the Microsoft Azure portal website, click on App Services in the menu,1.
select the Tic-Tac-Toe App Service you have deployed in the preceding
example, scroll down until you see the Development Tools section, click on
Extensions, and then on the Add button, as shown in the following screenshot:

Select and install the Azure Web Site Logs Browser extension, published by2.
Amit Apple, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[503]

Once installation has finished, the extension will be added to the active3.
extensions for your Tic-Tac-Toe App Service, as follows:

Click on the Azure Web Site Logs Browser extension, and you will see an4.
overview with the extension name, its author, and version number, as well as
other additional information. Click on the Browse button, as shown in the
following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[504]

A new browser window will be opened automatically, where you can see5.
different log file sources. Click on File System - Application Logs, as shown in
the following screenshot:

Select a log file with the diagnostic data you need to analyze, as follows:6.

Managing ASP.NET Core 3 Applications Chapter 13

[505]

Read and scroll through the color-coded log file content. You will automatically7.
see generated log entries, as well as log entries you have added by yourself in the
preceding chapters, as follows:

That is all you need to know in order to have meaningful logs and be able to view them.
Logs are quite important for every application and, if designed properly, they can save you
a lot of time and effort and, in turn, money, which you could potentially lose if, for
example, it took you a long time to find an anomaly because of insufficient logging. Let's
now look at how we can do the same in AWS in the next section.

Logging in AWS
If you are using AWS, then adding logging to your ASP.NET Core 3 application will be
very straightforward for you. You just have to write your application logs to the console,
and the applications—which are deployed in AWS Elastic Beanstalk—will automatically
store their logs in AWS CloudWatch. You will then be able to use the CloudWatch
dashboard to analyze what is happening. This is comparable to Application Insights and its
dashboard, which you have seen in the preceding example.

Managing ASP.NET Core 3 Applications Chapter 13

[506]

You will now learn how to access logs for applications you have deployed to
AWS Elastic Beanstalk, as follows:

Publish Tic-Tac-Toe Web Application to AWS Elastic Beanstalk. If you do not1.
know how to do this, you can look it up in Chapter 12, Hosting ASP.NET Core 3
Applications.
Start the application, go to AWS Management Console, enter Beanstalk in the2.
AWS services Find Services textbox, and click on the displayed link. You will be
redirected to the Elastic Beanstalk welcome page, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[507]

On the Elastic Beanstalk welcome page, select the TicTacToe application you3.
deployed in the preceding step, as shown here:

Click on Logs in the left-hand menu, and then click on Request Logs | Last 1004.
Lines. You can now download the log files you need to analyze, as shown in the
following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[508]

Download a log file and check its content, as follows:5.

You have seen how to handle logging in various environments, on-premises, and in the
cloud. The next section will introduce you to monitoring, and how it can aid you in
analyzing problems in real time.

Monitoring ASP.NET Core 3 applications
In the previous section, you saw how to generate and analyze application logs for your
ASP.NET Core 3 web applications, which will help you better understand unexpected
behavior and application bugs. This will help IT operations to trace the different steps after
an event has occurred until the root cause of a problem has been found.

However, it will not help them to constantly monitor and supervise applications, since
using logging mechanisms, in this case, will result in bad performance and negative overall
impact on the application. Logging is not the right solution for continuous monitoring!

The goal of monitoring is to analyze and supervise a large number of application metrics in
real time, and to automatically detect application anomalies. The metrics need to have a
very low message footprint for this to work efficiently.

Managing ASP.NET Core 3 Applications Chapter 13

[509]

The most commonly known monitoring frameworks for ASP.NET Core 3 are listed here:

EventSource with ETW, which is very fast, and strongly typed. This was
introduced with .NET 4 and works only on Windows
DiagnosticSource, which is very similar to EventSource, works cross-
platform, like EventSource with ETW for Windows, and like LTTng for Linux

For more information on ETW, go to the following website:
https:/ /docs. microsoft. com/ en-us/ windows/ win32/ etw/ about- event-
tracing.
For more information on LTTng, go to the following website:
http://lttng.org.

On top of these frameworks, most public cloud providers supply their own monitoring
solutions. For Microsoft Azure, it is recommended to use Azure Application Insights, for
instance, while you should use CloudWatch for AWS. These two monitoring solutions are
fully SaaS and are much more integrated with the respective public cloud provider portals.

Monitoring on-premises and in Docker
There are no standard monitoring solutions for on-premises and Docker environments as
such, but there are some community-approved monitoring frameworks, such as
EventSource or DiagnosticSource, which you can use to implement your own
solutions.

Since these frameworks respect market standards such as ETW, IT operations will be able
to connect your ASP.NET Core 3 web applications using their standard monitoring tools,
and they will like that very much!

An example would be PerfMon on Windows, which can receive ETW events and generate
diagrams for monitoring purposes.

While using DiagnosticSource, you start by creating a listener. This listener receives
application events and provides event names and parameters. The easiest way to create a
listener is to create a Plain Old CLR Objects (POCO) class, which contains methods that
need to be decorated with the [DiagnosticName] decorator and is designed to accept
parameters of the appropriate types.

https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
http://lttng.org

Managing ASP.NET Core 3 Applications Chapter 13

[510]

The following example explains how to use DiagnosticSource to add monitoring to your
ASP.NET Core 3 applications in on-premises and Docker environments:

Open the Tic-Tac-Toe web project in Visual Studio 2019, and add a new folder1.
called Monitoring; in this folder, add a new class called
ApplicationDiagnosticListener, as follows:

 public class ApplicationDiagnosticListener
 {
 [DiagnosticName("TicTacToe.MiddlewareStarting")]
 public virtual void OnMiddlewareStarting(HttpContext
 httpContext)
 {
 Console.WriteLine
 ($"TicTacToe Middleware Starting, path:
 {httpContext.Request.Path}");
 }

 [DiagnosticName("TicTacToe.NewUserRegistration")]
 public virtual void NewUserRegistration(string name)
 {
 Console.WriteLine($"New User Registration {name}");
 }
 }

Update the Configure method in the Startup class,2.
add DiagnosticListener, and subscribe
to ApplicationDiagnosticListener, as shown here:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, DiagnosticListener
 diagnosticListener)
 {
 var listener = new ApplicationDiagnosticListener();
 diagnosticListener.SubscribeWithAdapter(listener);
 ...
 }

Update CommunicationMiddleware, add a new private member called3.
_diagnosticSource, and update the constructor, as follows:

 private readonly RequestDelegate _next;
 private DiagnosticSource _diagnosticSource;
 public CommunicationMiddleware(RequestDelegate next,
 DiagnosticSource diagnosticSource)
 {
 _next = next;

Managing ASP.NET Core 3 Applications Chapter 13

[511]

 _diagnosticSource = diagnosticSource;
 }

Update the Invoke method in CommunicationMiddleware, and write an event4.
if the diagnostic source is enabled, as follows:

 public async Task Invoke(HttpContext context)
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 if (_diagnosticSource.IsEnabled
 ("TicTacToe.MiddlewareStarting"))
 {
 _diagnosticSource.Write("TicTacToe.
 MiddlewareStarting",
 new
 {
 httpContext = context
 });
 }
 ...

Change the debugging settings in Visual Studio 2019, and set the project and5.
emulator to TicTacToe, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[512]

Start the application in Debug mode by pressing F5. A console will be opened6.
automatically. Register a new user and check the console output; you will see the
TicTacToe Middleware Starting message, as shown here:

As already mentioned, sending logging and monitoring data to the console is a possible
solution for on-premises environments, and is a recommended solution for Docker
environments.

Monitoring in Microsoft Azure
Microsoft Azure provides an integrated solution called Azure Application Insights, which
allows IT operations to monitor applications, resources, and services in real time. It works
for the whole Azure subscription and includes dashboards and diagrams for quick access to
analytic data.

The following diagram illustrates some features of Azure Application Insights:

Managing ASP.NET Core 3 Applications Chapter 13

[513]

Let's use Application Insights in an easy-to-understand example; for that, you will start by
creating a new Azure Application Insights resource in Microsoft Azure with its
corresponding API key, as follows:

Go to the Microsoft Azure portal website, click on App Services in the menu,1.
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the MONITORING section, click
on Application Insights, fill out all the fields, and then click on the OK button. A
new Application Insights resource will be created for you, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[514]

Click on Monitor in the menu. A new tab will be displayed. Go to the2.
SOLUTIONS section and choose Application Insights, and then select the
created Application Insights resource, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[515]

The Application Insights resource tab will be displayed; scroll down until you3.
see the Configure section, and then click on API Access, as shown in the
following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[516]

Click on Create API key to be able to generate a key, which will be used for the4.
Tic-Tac-Toe sample application, as shown in the following screenshot:

Configure the API key access rights (Read telemetry, Write annotations,5.
Authenticate SDK control channel) and give it a meaningful name, as shown in
the following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[517]

You have now finished the creation and configuration of the Application Insights resource
in Microsoft Azure. Visual Studio 2019 contains some advanced built-in features that will
allow you to connect your ASP.NET Core 3 application directly from within the integrated
development environment (IDE).

In the next steps, you will configure the ASP.NET Core 3 web application for Azure
Application Insights as follows:

Open the Tic-Tac-Toe web project, click on Project in the top menu, and select1.
Add Application Insights Telemetry..., as shown in the following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[518]

The Application Insights Configuration page will be displayed. Click on the2.
Start Free button, as shown in the following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[519]

Enter your account and subscription details, select a resource, and click on the3.
Register button, as shown in the following screenshot:

Republish the Tic-Tac-Toe web application to the Microsoft Azure App Service4.
so that the Application Insights configurations are applied.
Go to the Microsoft Azure portal website, click on Monitor in the menu, scroll5.
down to the Solutions section and click on Application Insights, and then select
the newly created Application Insights resource.

Managing ASP.NET Core 3 Applications Chapter 13

[520]

The Application Insights dashboard will be displayed. It serves to get a global6.
overview, as well as to dive deeper into the different monitoring areas, as shown
in the following screenshot:

Click on Search to see the application flow; here, you can see that an error has 7.
occurred during the user registration process, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[521]

You may have already seen these errors in Chapter 12, Hosting ASP.NET Core 3
Applications, after having deployed the Tic-Tac-Toe application to either Microsoft Azure or
AWS, as well as in the preceding logging section in this chapter. Everything is working
locally and in Docker, but when you deploy it to the public cloud, it is not working
anymore. Very strange! We cannot wait any longer; it really needs to be fixed!

We will now analyze the problem in more detail, and try to understand what needs to be
done to solve it, as follows:

In Azure Application Insights, you can clearly see that there is a problem with1.
the user registration: more specifically, a 404 Not Found HTTP response.

Managing ASP.NET Core 3 Applications Chapter 13

[522]

When looking into the log file, as explained in the preceding section, you can see2.
that the UserRegistrationEmail view in the EmailTemplates folder cannot
be found, which then leads to additional errors, as shown in the following
screenshot:

Go to the Microsoft Azure portal website, click on App Services in the menu,3.
select the Tic-Tac-Toe App Service you have deployed and configured in the
preceding example, scroll down until you see the DEVELOPMENT
TOOLS section, click on App Service Editor (Preview), and then click on the Go
link, as shown in the following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[523]

A new window with the App Service Editor page will automatically be opened;4.
click on the SEARCH button and search for the EmailTemplates folder. It
cannot be found because all views were precompiled into a single dynamic-link
library (DLL) called TicTacToe.PrecompiledViews.dll during the
publishing process, as follows:

Apply a temporary fix for this problem by deactivating the precompilation5.
during the publishing process. Open the .csproj file of the Tic-Tac-Toe web
project, and then add the following configuration elements to the
PropertyGroup section:

 <PropertyGroup>
 ...
 <PreserveCompilationContext>true
 </PreserveCompilationContext>
<MvcRazorCompileOnPublish>false</MvcRazorCompileOnPublish>
 </PropertyGroup>

Note that this is only a temporary fix, for example purposes. You should
reactivate precompilation, and target the precompiled views in your code
for a more industrialized and production-ready solution.

Republish the Tic-Tac-Toe web application to the Microsoft Azure App Service.6.
Everything should now be working, including the user registration.

Managing ASP.NET Core 3 Applications Chapter 13

[524]

Note that you have to register a completely new user with a strong
password such as Azerty1234!, for example, otherwise you might get
additional errors if you don't. The application is missing some more
advanced error handling due to a lack of space within the book. Keep in
mind that it was only given to better understand all the ASP.NET Core 3
concepts. You can, however, use the sample application as a base and then
refine it as you like, and add the missing error handling.

You have seen how to configure your ASP.NET Core 3 web applications, and are able to
monitor them by using Azure Application Insights. You have even identified a problem
during the user registration of the application. You have analyzed the logging and
monitoring data, and you were able to solve the problem.

This works exceptionally well with .NET Core code, but, for now, you cannot see whether
any errors occur in the JavaScript parts of your applications. Since modern applications
include a large number of JavaScript code, it would be great if you were able to monitor
these parts also; right? Well, you can do that; you just have to adapt the code a little bit.

Let's see how to adapt the code and be able to monitor JavaScript application flows, as
follows:

Start Visual Studio 2019 and open the Tic-Tac-Toe web project, update the1.
_ViewImports.cshtml file in the Views folder, and add the Application
Insights JavaScript snippet to the bottom of the file, as follows:

 @inject Microsoft.ApplicationInsights.AspNetCore
 .JavaScriptSnippet JavaScriptSnippet

Update the layout page and mobile layout page, and then add the following line2.
to the head section of the two pages:

 @Html.Raw(JavaScriptSnippet.FullScript)

Update the Startup class, and register the Application Insights service, as3.
follows:

 services.AddApplicationInsightsTelemetry(_configuration);

Republish the Tic-Tac-Toe web application to the Microsoft Azure App Service4.
so that the new Application Insights configuration is applied.
Start the application and open the Application Insights dashboard in5.
the Microsoft Azure portal website, click on Search, and then click on Filters and
select Request only, deselecting all the other event types, as shown in the
following screenshot:

Managing ASP.NET Core 3 Applications Chapter 13

[525]

Great! You are able to constantly monitor your entire application, whether it be on the
JavaScript side or on the .NET Core side, which will turn out to be quite useful in the case
of incorrect behavior.

In the last step, you will learn how to add and monitor custom metrics, which will allow
you to trace business metrics in your applications, as follows:

Open the Tic-Tac-Toe web project, and add a new service named1.
AzureApplicationInsightsMonitoringService to the Services folder, as
follows:

 public class AzureApplicationInsightMonitoringService
 {
 readonly TelemetryClient _telemetryClient = new
 TelemetryClient();

 public void TrackEvent(string eventName, TimeSpan
 elapsed,
 IDictionary<string, string> properties = null)

Managing ASP.NET Core 3 Applications Chapter 13

[526]

 {
 var telemetry = new EventTelemetry(eventName);
 telemetry.Metrics.Add("Elapsed",
 elapsed.TotalMilliseconds);

 if (properties != null)
 foreach (var property in properties)
 {
 telemetry.Properties.Add(property.Key,
 property.Value);
 }
 _telemetryClient.TrackEvent(telemetry);
 }
 }

Extract the interface from the Azure2.
ApplicationInsightsMonitoringService class and call it
IMonitoringService.
Add a new option called MonitoringOptions to the Options folder, as follows:3.

 public class MonitoringOptions
 {
 public string MonitoringType { get; set; }
 public string MonitoringSetting { get; set; }
 }

Update the Configure method in the Startup class, and register the Azure4.
ApplicationInsightsMonitoringService class if it has been configured in
the appsettings.json configuration file, as follows:

 ...
 services.AddApplicationInsightsTelemetry(_configuration);
 var section = _configuration.GetSection("Monitoring");
 var monitoringOptions = new MonitoringOptions();
 section.Bind(monitoringOptions);
 services.AddSingleton(monitoringOptions);

 if (monitoringOptions.MonitoringType ==
 "azureapplicationinsights")
 {
 services.AddSingleton<IMonitoringService,
 AzureApplicationInsightsMonitoringService>();
 }

Managing ASP.NET Core 3 Applications Chapter 13

[527]

Update the UserService and add a new private member called5.
_telemetryClient, and then update the constructor to initialize the private
member, as follows:

 ...
 private readonly IMonitoringService _telemetryClient;
 public UserService(RoleManager<RoleModel> roleManager,
 ApplicationUserManager userManager, ILogger<UserService>
 logger, SignInManager<UserModel>
 signInManager,IMonitoringService telemetryClient)
 {
 ...
 _telemetryClient = telemetryClient;
 ...
 }

Update the RegisterUser method in UserService to use the TrackEvent6.
method, and then add a custom metric called RegisterUser, as follows:

 ...
 finally
 {
 stopwatch.Stop();
 _telemetryClient.TrackEvent("RegisterUser",
 stopwatch.Elapsed);
 _logger.LogTrace($"Start register user {userModel.Email}
 finished at {DateTime.Now} - elapsed
 {stopwatch.Elapsed.TotalSeconds} second(s)");
 }
 ...

Update the appsettings.json configuration file, add a new Monitoring7.
section, and then configure it for Azure Application Insights, as follows:

 "Monitoring": {
 "MonitoringType": "azureapplicationinsights",
 "MonitoringSettings": ""
 }

Republish the Tic-Tac-Toe web application to the Microsoft Azure App Service8.
so that the new Application Insights configurations are applied.

Managing ASP.NET Core 3 Applications Chapter 13

[528]

Start the application and open the Application Insights dashboard on the9.
Microsoft Azure portal website, click on Search, and enter RegisterUser as a
search term; you will only see the custom RegisterUser business metric now,
as follows:

That is all we need in order to monitor even reasonably complex applications on Azure,
and if you prefer to host your applications with AWS, the next section will show you how
we can achieve similar functionality in the AWS platform.

Monitoring in AWS
Just like Microsoft Azure, AWS provides an integrated solution, which allows IT operations
to monitor applications, resources, and services in real time. In AWS, this solution is called
CloudWatch. It provides nearly the same features as Application Insights, meaning it
works for the entire AWS subscription, and includes dashboards and diagrams, for quick
access to analytic data.

Managing ASP.NET Core 3 Applications Chapter 13

[529]

The following example illustrates how to use AWS CloudWatch to monitor generic metrics
and custom metrics, so that you can learn how to deploy it for your own needs:

Open the Tic-Tac-Toe web project, and download and install the Amazon Web1.
Services SDK for .NET - Core Runtime NuGet package called AWSSDK.Core, as
well as the Amazon Web Services CloudWatch NuGet package called
AWSSDK.CloudWatch.
Add a new service called AmazonWebServicesMonitoringService to the2.
Services folder, make it inherit the IMonitoringService interface, and
implement the TrackEvent method with the AWS-specific code, as shown in the
following code block:

 public class AmazonWebServicesMonitoringService :
 IMonitoringService
 {
 readonly AmazonCloudWatchClient _telemetryClient = new
 AmazonCloudWatchClient();
 public void TrackEvent(string eventName, TimeSpan
 elapsed,
 IDictionary<string, string> properties = null)
 {
 ...
 }
 }

Here is the actual code in the TrackEvent method: 3.

var dimension = new Dimension { Name = eventName, Value = eventName
};
var metric1 = new MetricDatum
{
 Dimensions = new List<Dimension> { dimension },
 MetricName = eventName, StatisticValues = new StatisticSet(),
 Timestamp = DateTime.Today, Unit = StandardUnit.Count
};

if (properties?.ContainsKey("value") == true)
 metric1.Value = long.Parse(properties["value"]);
else metric1.Value = 1;

var request = new PutMetricDataRequest
{ MetricData = new List<MetricDatum>() { metric1 }, Namespace =
eventName };
 _telemetryClient.PutMetricDataAsync(request).Wait();

Managing ASP.NET Core 3 Applications Chapter 13

[530]

Update the Configure method in the Startup class, and register the Amazon4.
Web Services Cloud Watch Monitoring Service, if it has been configured in the
appsettings.json configuration file, as follows:

 ...
 if (monitoringOptions.MonitoringType ==
 "azureapplicationinsights")
 {
 services.AddSingleton<IMonitoringService,
 AzureApplicationInsightsMonitoringService>();
 }
 else if (monitoringOptions.MonitoringType ==
 "amazonwebservicescloudwatch")
 {
 services.AddSingleton<IMonitoringService,
 AmazonWebServicesMonitoringService>();
 }

Update the Monitoring section in the appsettings.json configuration file,5.
and configure it for AWS CloudWatch, as follows:

 "Monitoring": {
 "MonitoringType": "amazonwebservicescloudwatch",
 "MonitoringSettings": ""
 }

Publish the Tic-Tac-Toe web application to AWS Elastic Beanstalk, so that the6.
new AWS CloudWatch configurations are applied. If you do not know how to do
this, you can look it up in Chapter 12, Hosting ASP.NET Core 3 Applications.
Start the application. Go to the AWS Management Console, enter CloudWatch7.
in the AWS services textbox, and click on the displayed link. You will be
redirected to the AWS CloudWatch welcome page, as follows:

Managing ASP.NET Core 3 Applications Chapter 13

[531]

On the CloudWatch welcome page, click on the TicTacToe application, as8.
follows:

Click on an alarm to get more specific details about it, as follows:9.

Managing ASP.NET Core 3 Applications Chapter 13

[532]

Return to the CloudWatch welcome page, enter RegisterUser as a search term10.
in the textbox, and then click on Browse Metrics, as follows:

You will see a diagram, as shown here, with the custom RegisterUser business11.
metric:

This should suffice to give you a feel of how you can monitor your platform, but it is
advised that you play around to see all the extra capabilities. I'm quite certain that you will
have fun detecting and preventing anomalies in whatever application for which you are
responsible.

Managing ASP.NET Core 3 Applications Chapter 13

[533]

Summary
In this chapter, we discussed how to manage and supervise your ASP.NET Core web
applications to help IT operations better understand what is happening during runtime,
before and after errors occur.

We talked about the concept of logging, and how it can help reduce the time to understand
and fix bugs. We illustrated different logging solutions: on-premises, in Microsoft Azure, in
AWS, and in Docker.

You experienced how to configure logging in a Microsoft Azure environment using Azure
App Service and Azure App Service Diagnostics, as well as the Azure Web Site Log
Browser extension for log file analysis, in a detailed example.

You then saw how to do the same in AWS by accessing and downloading application logs,
using AWS CloudWatch.

We then introduced the concepts of monitoring, and explained how to add monitoring to
on-premises and Docker environments.

You configured Azure Application Insights to monitor your ASP.NET Core web
applications in real time. You were even able to understand and solve the mystery behind
the 404 Not Found problem.

In the last step, we showed you how to work with monitoring in an AWS environment,
using AWS CloudWatch.

In the next chapter, we will…well, there is no next chapter. You have seen everything this
book has to offer. We hope that you liked it and that you have found some value in
understanding and assimilating the numerous examples we have given.

It is now up to you to create your own experiences, and to further improve your ASP.NET
Core skills.

You can now start your journey as a veteran, as Nicolas Clerc (Cloud Architect, Microsoft
France) has stated in his Foreword at the beginning of this book.

Good luck with that, and thank you for having taken the time to read the different chapters,
and for having stayed with us for so long!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Software Architecture with C# 8 and .NET Core 3
Gabriel Baptista, Francesco Abbruzzese

ISBN: 978-1-78980-093-7

Overcome real-world architectural challenges and solve design consideration
issues
Apply architectural approaches like Layered Architecture, service-oriented
architecture (SOA), and microservices
Learn to use tools like containers, Docker, and Kubernetes to manage
microservices
Get up to speed with Azure Cosmos DB for delivering multi-continental
solutions
Learn how to program and maintain Azure Functions using C#
Understand when to use test-driven development (TDD) as an approach for
software development
Write automated functional test cases for your projects

https://www.packtpub.com/programming/hands-on-software-architecture-with-c-8

Other Books You May Enjoy

[535]

Hands-On Design Patterns with C# and .NET Core
Gaurav Aroraa, Jeffrey Chilberto

ISBN: 978-1-78913-364-6

Make your code more flexible by applying SOLID principles
Follow the test-driven development (TDD) approach in your .NET Core projects
Get to grips with efficient database migration, data persistence, and testing
techniques
Convert a console application to a web application using the right MVP
Write asynchronous, multithreaded, and parallel code
Implement MVVM and work with RxJS and AngularJS to deal with changes in
databases
Explore the features of microservices, serverless programming, and cloud
computing

https://www.packtpub.com/application-development/hands-design-patterns-c-and-net-core

Other Books You May Enjoy

[536]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET Core 3
 reference link 36
.NET Core versions
 targeting, in .csproj files 97, 98

A
Active Server Pages 14
Amazon Relational Database Service (Amazon

RDS) 436
Amazon Web Services (AWS)
 about 427, 495
 applications, deploying 430, 431, 432, 433
 applications, running on 445, 446, 447, 448,

449, 450, 451, 452, 454, 455, 456, 458
 logging in 505, 507
application images
 publishing, to Docker Hub 493
applications images
 publishing, to Docker Hub 491
applications
 configuring 188
 deploying, in Amazon Web Services (AWS) 430,

431, 432, 433
 deploying, in AWS Elastic Beanstalk 433, 434,

435, 436, 438, 439, 440, 441, 442, 443, 444,
446

 deploying, in Microsoft Azure 458, 459, 460,
461

 deploying, in Microsoft Azure App Services 462
 deploying, into Docker containers 482, 483,

484, 485, 486, 488, 489, 491
 deploying, on multiple environments 221, 223,

226

 hosting 428, 429
 running, on Amazon Web Services (AWS) 445,

446, 447, 448, 449, 450, 451, 452, 454, 455,
456, 458

ASP.NET Core 3 applications
 .NET Generic Host, working with 102
 about 99
 components, deciding 290
 configuring 517, 519, 520, 522, 524
 creating, in Linux 54
 creating, in Visual Studio 2019 36, 41
 creating, in Visual Studio Code 52, 54
 creating, via command line 41, 43
 cross-cutting concerns, identifying 291
 custom metrics, adding 525
 distribution for layers 290
 Docker environments, monitoring 509
 layering 288
 logging in 496, 497
 monitoring 508
 monitoring, in Amazon Web Services 528, 530,

532

 monitoring, in Microsoft Azure 512, 514, 516
 on-premises monitoring 509
 Program class, working with 100, 101
 project structure, preparing 105, 106
 required layers, determining 289
 rules, determining for interactions between layers

290

 Startup class 100
 Startup class, working with 103, 104
ASP.NET Core 3
 cache in-memory, reference link 244
 endpoint routing, using 137, 138
 features 16, 17, 19
 performance 22
 reference link 42
 scalability 22
 selecting 24, 25

[538]

 technology limitations 23
ASP.NET Core state management
 about 241
 client-state management options 242
 server-based state management options 244
ASP.NET Core web API help pages
 creating, with OpenAPI 324, 325, 326, 327, 328
 creating, with Swagger 324, 325, 326, 327, 328
ASP.NET Web Forms 14
ASP.NET Web Forms applications 24
ASP.NET Web Pages applications 24
ASP.NET
 history 14, 15
Atomicity, Consistency, Isolation, and Durability

(ACID) 352
authentication
 basic user forms authentication, adding 369,

373, 374, 376
 external provider authentication, adding 377,

379

 implementing 355, 356, 357, 359, 362, 365,
368

 two-factor authentication 381, 383, 384, 386,
387, 389, 390

 two-factor authentication, working with 380
authorization
 implementing 399, 400, 402, 403, 404, 406,

407

 in Postman, reference link 324
AWS Elastic Beanstalk
 applications, deploying 433, 434, 436, 438,

439, 440, 441, 442, 443, 444
 reference link 434
AWS Toolkit, for Visual Studio 2019
 installation link 445
Azure Container Services 22
Azure DevOps build pipeline
 creating 83, 84, 85, 86
Azure DevOps project
 creating 62, 64
Azure DevOps release pipeline
 creating 87, 88
Azure DevOps subscription
 creating 62, 64
Azure DevOps
 features 61

 reference link 61
 reference link, for organizing work 67
 using, for continuous deployment 61
Azure Kubernetes Services 22
Azure Repos
 continuous integration with 469, 470, 471, 472

B
behavior-driven development (BDD) 282
Blazor
 about 17
 reference link 203
branching strategies
 reference link 76
bugs 69
build pipeline 60
bundling and minification
 solutions 159
 using 158, 159
 working with 159, 160, 161, 162, 163

C
C# Interactive 56, 57
C# Razor components
 about 19
 used, for client-side development 203, 204, 206,

207

clickjacking
 about 422
 mitigating 422, 423, 424
 vulnerability, example 422
client-side development
 C# Razor components, using 203, 204, 206,

207

client-state management options
 about 242
 cookies 242
 hidden fields 242
 query string 243
 query string usage 243
code-behind files 14
Configuration API
 reference link 191
confused deputy attack 417
containers

[539]

 working with 22
continuous deployment (CD)
 about 59, 60
 Azure DevOps, using 61
continuous integration (CI)
 about 59, 60
 Azure DevOps, using 61
 with Azure Repos 469, 470, 471, 472
controllers 231
cookie stealing
 about 412
 preventing 412, 413
cross-platform support 19, 20
Cross-Site Redirects (XSR) 414
Cross-Site Request Forgery (XSRF/CSRF)
 about 417
 domain referrers 418
 example 417, 418
 limitations 420
 preventing 418
 user-generated tokens 419
Cross-Site Scripting (XSS)
 about 410
 preventing 411

D
Data Annotations
 localizing 184, 185, 186, 187, 188
data relationships
 about 346
 foreign key 347
 many-to-many relationships 349, 350
 one-to-many relationships 348
 one-to-one relationships 348
 primary key, designing 346
database querying, with LINQ
 for all items 351
 for filtered items 351
 for one item 350
dedicated layouts
 creating, for multiple devices 232, 233, 235
dependency injection (DI)
 about 105, 194
 concepts, implementing 194
Development (Dev) 495

DI container
 using, to encourage loose coupling 122
dispatcher 137
distributed session providers
 about 173
 examples 173
Docker containers
 applications, deploying into 482, 483, 484, 485,

486, 488, 489, 491
Docker Enterprise Edition
 installation link 484
Docker environments 512
Docker Hub
 about 491
 application images, publishing 491, 493
 reference link 483
 URL 492
Docker
 reference link 483
Don't Repeat Yourself (DRY) principle 232

E
eavesdropping
 about 413
 preventing 413, 414
Elastic Beanstalk
 applications, deploying 435
email confirmation functionality
 building 147, 148
email confirmation
 by user 149, 150, 151, 152, 153
email service
 adding 188, 189, 190
 configuring 190, 191, 192, 193, 194
endpoint routing
 used, for ASP.NET Core 3 137, 138
Entity Framework (EF) 330, 444
Entity Framework Core 3
 about 330
 connection, establishing 333, 335, 336
 data, creating 345
 data, deleting 345, 346
 data, reading 345
 data, updating 345
 foreign keys, defining via Data Annotations 336,

[540]

337

 migrations feature, using 340, 341, 342, 343,
344

 primary keys, defining via Data Annotations 336,
337

 reference link 331
Entity Framework Data Annotations
 reference link 339
error handling
 adding, to Tic-Tac-Toe application 138, 140,

141, 143
Event Tracing for Windows (ETW)
 about 496
 reference link 509
exception handling middleware 128
external provider authentication
 adding 377, 379

F
fail fast 60
feature branches
 using 77, 78
Fiddler
 URL 312
file logging provider 215
forgotten password mechanism
 adding 390, 393, 395, 396, 398, 399

G
Git
 changes, merging 79, 82
 conflicts, resolving 79, 82
 feature branches, using 77, 78
 reference link 71
 using, as version control system (VCS) 71, 73,

74, 76
GitHub Actions
 URL 469
globalization
 about 174
 applying, for multi-lingual user interfaces 174
 concepts 174, 176, 177, 178, 179, 180, 181
 reference link 174
group 413
gRPC Service template 19

gRPC template 16

H
HATEOAS-style web APIs
 building 321, 322, 323
heavy coupling 229
Hibernate Query Language (HQL) 417
hubs 208
Hypermedia as the Engine of Application State

(HATEOS) 321
Hypertext Transfer Protocol (HTTP) 243

I
in-memory session provider 169, 170, 171, 172
integrated development environment (IDE) 27
integration tests
 about 232
 adding 286, 287
 applying 270
 creating 277
Internet Information Server (IIS) 423
Internet Information Services (IIS) 429, 498
IT Operations 495

J
JavaScript, using for client-side development
 about 146, 147
 email confirmation functionality, building 147,

148

 email confirmation, by user 149, 150, 151, 152,
153

 XMLHttpRequest (XHR), using 153, 154, 155,
156, 157

JavaScript
 client-side development 153
JSON hijacking
 about 420
 preventing 420

L
Language-Integrated Queries (LINQs) 57
layout page
 updating 115, 116, 117, 118
 used, for enhancing web pages 112, 113, 114
LINQ Query Operations

[541]

 reference link 351
LINQPad
 about 56
 reference link 351
Linux Container (LXC) 22
Linux Ubuntu installation
 download link 50
Linux
 ASP.NET Core 3 application, creating 54
 Visual Studio Code, installing 49, 52
localization
 applying, for multi-lingual user interfaces 174
 concepts 174, 176, 177, 178, 179, 180, 181
 reference link 174
Log4net 496
logging functionality
 used, for monitoring and supervision purposes

209, 211, 213, 215, 217, 221
LTTng
 reference link 509

M
mean time to repair (MTTR) 277, 495
message replay
 about 413
 preventing 413, 414
message tampering 413
method injection
 about 194
 using 194, 195, 197, 199, 200
microservice architecture
 about 21
 containers, working with 22
Microsoft Azure App Services
 applications, deploying 462
 database, connecting 474
 instance, running 462, 463, 464, 465, 466, 467
 logging in 498, 499, 502, 503, 504
 reference link 462
Microsoft Azure
 application, deploying 460
 applications, deploying 458, 459, 461
 code, publishing 468
 database, connecting 472, 473, 474, 475, 476,

477, 478

 logging in 497
 subscription link 458
 URL 459
Microsoft Intermediate Language (MSIL) 416
Microsoft SDL
 about 411
 reference link 411
Microsoft.AspNetCore.App metapackage
 using 98, 99
model binding 420
Model View Controller (MVC) pattern
 about 229
 controllers 231
 integration tests 232
 models 230
 unit tests 231
 views 231
models 230
multi-lingual user interfaces
 globalization, applying 174
 localization, applying 174

N
Node Package Manager (NPM)
 about 158
 URL 112
 used, for enhancing web pages 112, 113, 114
noughts and crosses game 91
NSwag 18
NuGET packages 18

O
object-relational mapping (ORM)
 about 230, 330
 using 416, 417
open redirects
 about 414
 example 414
 preventing 415
OpenAPI
 used, for creating ASP.NET Core web API help

pages 324, 325, 326, 327, 328
operations (Ops) 495
over-posting
 about 420

[542]

 mitigating 421
 vulnerability, example 421
OWASP Top 10
 reference link 354

P
partial views
 using 245, 253
password reset mechanisms
 adding 390, 391, 395, 396, 398
Persist Security Info default value
 using, in SQL connection strings 416
plain old CLR objects (POCO) 190, 211
Platform as a Service (PaaS) 429
Postman
 URL 312
product backlog items (PBI) 65
proof of concept (PoC) 429
public key infrastructure (PKI) authentication 355

Q
queries
 working with 350

R
read-eval-print-loop (REPL) tool 56
regular expressions (regex) 236
relational database management systems

(RDBMS) 331
release pipeline 60
Remote Procedure Call (RPC) 296
response compression middleware 128
REST-style web APIs
 building 312, 313, 314, 315, 316, 317, 318,

319, 320, 321
RPC-style web APIs
 building 296, 297, 298, 299, 300, 301, 302,

303, 304, 305, 306, 307, 308, 309, 310, 311,
312

runtime compilation 17

S
scoped injection 123
screen of death (SOD)

 about 424
 mitigating 425
 vulnerability, example 425
scrum process 66, 67, 69, 70
search engine optimization (SEO) 234
Secure Sockets Layer (SSL) 413
Security Development Lifecycle (SDL) 411
separation of concerns (SoC) 229
sequence diagram 94
Serilog 496
server-based state management options
 about 244
 application state 244
 session state 244, 245
service-level agreements (SLAs) 429
services
 configuring 188
session
 using 168
SignalR
 about 207
 using, with Razor components 208, 209
 using, with server-side Blazor 208
 working with 207
Simple Object Access Protocol (SOAP) 296
Single Responsibility Principle (SRP) 229
Single Sign-On (SSO) authentication 355
singleton injection 123
SoapUI
 reference link 312
solutions, for handling logging
 Azure Application Insights 497
 Azure Application Service diagnostic 497
 standard file logging 497
SQL connection strings
 Persist Security Info default value, using 416
 preventing 416
SQL injection
 about 415
 preventing 415
SQL Server Management Studio (SSMS) 442,

444

SQLite 331
starter workflows
 reference link 469

[543]

static files middleware 128
Swagger
 used, for creating ASP.NET Core web API help

pages 324, 325, 326, 327, 328

T
Tag Helpers
 about 231
 using 245, 260, 262, 263, 265, 266
telemetry
 used, for monitoring and supervision purposes

209, 211, 213, 215, 217, 219, 221
templates
 reference link 24
test-driven development (TDD) 44, 282
Tic-Tac-Toe application
 about 145
 communication middleware, creating 127, 130,

132

 communication middleware, working with 127,
128, 130

 error handling, adding 138, 140, 141, 143
 routing, using 134, 136
 static files, working with 132, 133
 URL redirection 134
 URL redirection, using 134, 136
 URL rewriting, using 134, 136
Tic-Tac-Toe demo application
 optimizing, for mobile devices 236, 238, 239,

241

 preview 91
Tic-Tac-Toe game
 .NET Core versions, targeting in .csproj files 97,

98

 building 92, 93
 feature, conceiving 93, 95, 96
 feature, implementing 93, 95, 96
 home page, creating 107, 110, 111
 Microsoft.AspNetCore.App metapackage, using

98, 99
Tic-Tac-Toe user registration page
 creating 119, 121, 122
Tic-Tac-Toe user service
 creating 122, 123, 125, 126
 DI container, using to encourage loose coupling

122

transactions
 using 352, 353
transient injection 123
two-factor authentication
 working with 380, 381, 383, 387, 389, 390

U
UI redress attack 422
UI redressing 422
unit tests
 about 231
 adding 282, 283, 285
 applying 270
 creating 277, 278, 281
URL rewriting middleware 135
user cache management
 using 168
user experience (UX) 115, 245
user forms authentication
 adding 369
 implementing 374, 376
user interface (UI) 245
user stories 93

V
view components
 about 231
 using 245, 254, 256, 257, 259, 260
view engines
 using 270, 272, 273, 274, 276, 277
view localizer
 using 181, 182, 183
view pages
 for scaffolding features 246
 using 245, 246, 247, 249, 251, 252
views 231
Virtual Machine (VM) 483
Visual Studio 2019 Community Edition, installation
 about 28, 30, 31
 ASP.NET Core 3 application, creating 36, 41
 ASP.NET Core 3 application, creating via

command line 43
 express installation 28
 offline installation 29

 reference link 29
Visual Studio 2019
 autos 47
 breakpoints 45, 46
 call stack 46
 code refactoring feature 33
 exploring 35, 36
 live code analysis feature 33
 locals 47
 options 33
 reference link 28
 used, for debugging 43, 44
 using, as development environment 27
 Watch Panes 47
Visual Studio Code, user interface
 activity bar 48
 editor groups 48
 panels 48
 side bar 48
 status bar 48
Visual Studio Code
 ASP.NET Core 3 application, creating 52, 54
 ASP.NET Core 3 application, creating in Linux

54

 installing, on Linux 49, 52
 reference link 49
 URL, for installing on Linux 51
 using, as development environment 47
Visual Studio Team Services (VSTS) 60

W
WCF Services 24

web API
 authorization options 324
 best practices 294, 295
 concepts, applying 294, 295
 creating, styles 295
 securing 323, 324
web application
 optimizing 158, 159
 separating, into multiple areas 266, 267, 269,

270

Web Deploy tool
 using, for deployment 479, 480, 481, 482
web pages
 enhancing, with layout pages 112, 113, 114
 enhancing, with NPM 112, 113, 114
WebSockets
 for real-time communication scenarios 163
 reference link 163
 working with 164, 165, 166, 168
Windows Forms (WinForms) 14
work item types (WITs) 65
work items
 work, organizing 64
Worker Service template 19
workflows 93
World Wide Web (WWW) 207

X
XMLHttpRequest (XHR)
 about 153
 using 153, 154, 155, 156, 157
xrdp
 installing 49

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction and Environment Setup
	Chapter 1: What Is ASP.NET Core 3?
	The history of ASP.NET
	ASP.NET Core 3 features
	What is new specifically to ASP.NET Core 3?
	Cross-platform support
	Microservice architecture
	Working with containers

	Performance and scalability
	Technology restrictions
	Common technologies not directly found in ASP.NET Core and .NET Core

	When to choose ASP.NET Core 3
	Summary

	Chapter 2: Setting Up the Environment
	Visual Studio 2019 as a development environment
	How to install Visual Studio 2019 Community Edition
	First steps with Visual Studio 2019
	Creating your first ASP.NET Core 3 application in Visual Studio 2019
	Creating your first ASP.NET Core 3 application via the command line

	Basic debugging with Visual Studio 2019
	Breakpoints
	Call stack
	Autos, Locals, and Watch Panes

	Visual Studio Code as a development environment
	How to install Visual Studio Code on Linux
	Creating your first ASP.NET Core 3 application in Visual Studio Code
	Creating your first ASP.NET Core 3 application in Linux

	Introduction to the C# Interactive and LINQPad tools
	Summary

	Chapter 3: Continuous Integration Pipeline in Azure DevOps
	Technical requirements
	CI, CD, and build and release pipelines
	Using Azure DevOps for CI and CD
	Creating a free Azure DevOps subscription and your first Azure DevOps project

	Organizing your work via work items
	Understanding the scrum process
	Using Git as a VCS
	Using feature branches
	Merging changes and resolving conflicts

	Creating an Azure DevOps build pipeline
	Creating an Azure DevOps release pipeline
	Summary

	Section 2: A Practical Demonstration of ASP.NET Core 3
	Chapter 4: Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 1
	Preview of the Tic-Tac-Toe demo application
	Building the Tic-Tac-Toe game
	Conceiving and implementing your first Tic-Tac-Toe feature
	Targeting different .NET Core versions in the .csproj files of your projects
	Using the Microsoft.AspNetCore.App metapackage

	Introduction to the default ASP.NET Core 3 classes
	ASP.NET Core 3 start up classes
	Working with the Program class
	Working with .NET Generic Host instead of WebHostBuilder
	Working with the Startup class

	Preparing the basic project structure
	Creating the Tic-Tac-Toe home page
	Giving your web pages a more modern look by using NPM and layout pages
	Updating the layout page

	Creating the Tic-Tac-Toe user registration page
	Creating the Tic-Tac-Toe user service
	Using DI to encourage loose coupling
	Creating the user service

	Creating a basic communication middleware for the Tic-Tac-Toe application
	Working with middleware
	Creating the communication middleware
	Working with static files
	Using routing, URL redirection, and URL rewriting
	Endpoint routing for ASP.NET Core 3

	Adding error handling to the Tic-Tac-Toe application
	Summary

	Chapter 5: Basic Concepts of ASP.NET Core 3 via a Custom Application: Part 2
	Client-side development using JavaScript
	Preliminary email confirmation functionality
	Email confirmation by our user
	Using XMLHttpRequest

	Optimizing your web applications and using bundling and minification
	Bundling and minification in action

	Working with WebSockets for real-time communication scenarios
	WebSockets in action

	Taking advantage of session and user cache management
	In-memory session providers
	Distributed session providers

	Applying globalization and localization for multi-lingual user interfaces
	Globalization and localization concepts
	Using the view localizer
	Localizing Data Annotations

	Configuring your applications and services
	Adding an email service
	Configuring the email service

	Implementing advanced dependency injection concepts
	Method injection

	Summary

	Chapter 6: Introducing Razor Components and SignalR
	Client-side development using C# Razor components
	Working with SignalR
	What is SignalR
	SignalR with server-side Blazor or Razor components

	Using logging and telemetry for monitoring and supervision purposes
	Building once and running on multiple environments
	Summary

	Chapter 7: Creating ASP.NET Core MVC Applications
	Understanding the Model View Controller pattern
	Models
	Views
	Controllers
	Unit tests
	Integration tests

	Creating dedicated layouts for multiple devices
	The layout page in more detail
	Optimizing for mobile devices

	Understanding ASP.NET Core state management
	Client-state management options
	Hidden fields
	Cookies
	Query string
	Query string usage

	Server-based state management options
	Application state
	Session state

	Using view pages, partial views, View Components, and Tag Helpers
	Using view pages
	Using partial views
	Using View Components
	Using Tag Helpers

	Dividing a web application into multiple areas
	Applying advanced concepts such as view engines, unit tests, and integration tests
	Using view engines
	Providing better quality by creating unit tests and integration tests
	Adding unit tests
	Adding integration tests

	Layering ASP.NET Core 3 applications
	Determining the required layers
	Deciding on the distribution for layers and components
	Determining rules for interactions between layers
	Identifying cross-cutting concerns

	Summary

	Chapter 8: Creating Web API Applications
	Technical requirements
	Applying web API concepts and best practices
	Building RPC-style web APIs
	Building REST-style web APIs
	Building HATEOAS-style web APIs

	Securing your web API
	ASP.NET Core web API help pages with Swagger/OpenAPI
	Summary

	Section 3: The ASP.NET Core 3 Supporting Ecosystem
	Chapter 9: Accessing Data Using Entity Framework Core 3
	[Establishing a connection]
	Establishing a connection
	Defining primary keys and foreign keys via Data Annotations
	Using Entity Framework Core 3 migrations
	Creating, reading, updating, and deleting data

	Understanding data relationships
	Primary key
	Foreign key
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships

	Working with queries
	Querying for one item
	Querying for all items
	Querying for filtered items

	Using transactions
	Summary

	Chapter 10: Securing ASP.NET Core 3 Applications
	Implementing authentication
	Adding basic user form authentication
	Adding external provider authentication
	Working with two-factor authentication
	Two-factor authentication - step by step

	Adding forgotten password and password reset mechanisms

	Implementing authorization
	Summary

	Chapter 11: Securing ASP.NET Applications - Vulnerabilities
	Cross-Site Scripting (XSS)
	Preventing XSS

	Cookie stealing
	Preventing cookie stealing

	Eavesdropping, message tampering, and message replay
	Preventing eavesdropping and message replay

	Open redirects/XSR
	Open redirects example
	Preventing open redirects

	SQL injection
	Preventing SQL injection
	Protecting SQL connection strings
	Using the Persist Security Info default value in connection strings

	Using object-relational mappers (ORMs)

	Cross-Site Request Forgery (XSRF/CSRF)
	XSRF/CSRF example
	Preventing XSRF/CSRF
	Domain referrers
	User-generated tokens
	Limitations

	JS/JSON hijacking
	Preventing JSON hijacking

	Over-posting
	Vulnerability example
	Preventing over-posting

	Clickjacking
	Clickjacking example
	Preventing clickjacking

	Proper error reporting and stack trace
	Error reporting vulnerability example
	Preventing a screen of death

	Summary

	Chapter 12: Hosting ASP.NET Core 3 Applications
	Hosting applications
	Deploying applications in AWS
	Deploying applications in AWS Elastic Beanstalk
	Getting the application running on AWS

	Deploying applications in Microsoft Azure
	Deploying applications in Microsoft Azure App Service
	Getting an Azure App Service instance running
	Publishing your code on Azure
	Continuous integration with Azure Repos

	Connecting the database
	Deployment through the Web Deploy tool

	Deploying applications into Docker containers
	Deploying applications into Docker containers
	Publishing images to Docker Hub

	Summary

	Chapter 13: Managing ASP.NET Core 3 Applications
	Logging in ASP.NET Core 3 applications
	Logging in Microsoft Azure
	Enabling Microsoft Azure App Service
	Logging in AWS

	Monitoring ASP.NET Core 3 applications
	Monitoring on-premises and in Docker
	Monitoring in Microsoft Azure
	Monitoring in AWS

	Summary

	Other Books You May Enjoy
	Index

