

Inside Microsoft Dynamics AX
2012 R3

The Microsoft Dynamics AX Team

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission
of the publisher.

Library of Congress Control Number: 2014940599
ISBN: 978-0-7356-8510-9

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think
of this book at http://aka.ms/tellpress.

Microsoft and the trademarks listed at http://www.microsoft.com/en-
us/legal/intellectualproperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other marks are property of their
respective owners.

The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted herein are fictitious.
No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be
inferred.

This book expresses the author’s views and opinions. The information
contained in this book is provided without any express, statutory, or
implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Rosemary Caperton
Developmental Editor: Carol Dillingham
Editorial Production: Online Training Solutions, Inc. (OTSI)
Copyeditors: Kathy Krause and Victoria Thulman (OTSI)

mailto:mspinput@microsoft.com
http://aka.ms/tellpress
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

Indexer: Susie Carr (OTSI)
Cover: Twist Creative • Seattle and Joel Panchot

Contents

Foreword

Introduction

PART I A TOUR OF THE DEVELOPMENT ENVIRONMENT

Chapter 1 Architectural overview
Introduction
AX 2012 five-layer solution architecture
AX 2012 application platform architecture

Application development environments
Data tier
Middle tier
Presentation tier

AX 2012 application meta-model architecture
Application data element types
MorphX user interface control element types
Workflow element types
Code element types
Services element types
Role-based security element types
Web client element types
Documentation and resource element types
License and configuration element types

Chapter 2 The MorphX development environment and tools
Introduction
Application Object Tree

Navigating through the AOT
Creating elements in the AOT
Modifying elements in the AOT
Refreshing elements in the AOT

Element actions in the AOT
Element layers and models in the AOT

Projects
Creating a project
Automatically generating a project
Project types

The property sheet
X++ code editor

Shortcut keys
Editor scripts

Label editor
Creating a label
Referencing labels from X++

Compiler
Best Practices tool

Rules
Suppressing errors and warnings
Adding custom rules

Debugger
Enabling debugging
Debugger user interface
Debugger shortcut keys

Reverse Engineering tool
UML data model
UML object model
Entity relationship data model

Table Browser tool
Find tool
Compare tool

Starting the Compare tool
Using the Compare tool
Compare APIs

Cross-Reference tool
Version control

Element life cycle
Common version control tasks
Working with labels
Synchronizing elements
Viewing the synchronization log
Showing the history of an element
Comparing revisions
Viewing pending elements
Creating a build
Integrating AX 2012 with other version control systems

Chapter 3 AX 2012 and .NET
Introduction
Integrating AX 2012 with other systems

Using third-party assemblies
Writing managed code
Hot swapping assemblies on the server

Using LINQ with AX 2012 R3
The var keyword
Extension methods
Anonymous types
Lambda expressions
Walkthrough: Constructing a LINQ query
Using queries to read data
AX 2012 R3–specific extension methods
Updating, deleting, and inserting records
Limitations
Advanced: limiting overhead

Chapter 4 The X++ programming language
Introduction
Jobs

The type system
Value types
Reference types
Type hierarchies

Syntax
Variable declarations
Expressions
Statements
Macros
Comments
XML documentation

Classes and interfaces
Fields
Methods
Delegates
Pre-event and post-event handlers
Attributes

Code access security
Compiling and running X++ as .NET CIL
Design and implementation patterns

Class-level patterns
Table-level patterns

PART II DEVELOPING FOR AX 2012

Chapter 5 Designing the user experience
Introduction
Role-tailored design approach
User experience components

Navigation layer forms
Work layer forms

Role Center pages
Cues

Designing Role Centers
Area pages

Designing area pages
List pages

Scenario: taking a call from a customer
Using list pages as an alternative to reports
Designing list pages

Details forms
Transaction details forms
Enterprise Portal web client user experience

Navigation layer forms
Work layer forms
Designing for Enterprise Portal

Designing for your users

Chapter 6 The AX 2012 client
Introduction
Working with forms

Form patterns
Form metadata
Form data sources
Form queries

Adding controls
Control overrides
Control data binding
Design node properties
Run-time modifications
Action controls
Layout controls
Input controls
ManagedHost control
Other controls

Using parts

Types of parts
Referencing a part from a form

Adding navigation items
MenuItem
Menu
Menu definitions

Customizing forms with code
Method overrides
Auto variables
Business logic
Custom lookups

Integrating with the Microsoft Office client
Make data sources available to Office Add-ins
Build an Excel template
Build a Word template
Add templates for users

Chapter 7 Enterprise Portal
Introduction
Enterprise Portal architecture
Enterprise Portal components

Web parts
AOT elements
Datasets
Enterprise Portal framework controls

Developing for Enterprise Portal
Creating a model-driven list page
Creating a details page
AJAX
Session disposal and caching
Context
Data
Metadata

Proxy classes
ViewState
Labels
Formatting
Validation
Error handling

Security
Secure web elements
Record context and encryption

SharePoint integration
Site navigation
Site definitions, page templates, and web parts
Importing and deploying a web part page
Enterprise Search
Themes

Chapter 8 Workflow in AX 2012
Introduction
AX 2012 workflow infrastructure
Windows Workflow Foundation
Key workflow concepts

Workflow document and workflow document class
Workflow categories
Workflow types
Event handlers
Menu items
Workflow elements
Queues
Providers
Workflows
Workflow instances
Work items

Workflow architecture

Workflow runtime
Workflow runtime interaction
Logical approval and task workflows

Workflow life cycle
Implementing workflows

Creating workflow artifacts, dependent artifacts, and business
logic
Managing state
Creating a workflow category
Creating the workflow document class
Adding a workflow display menu item
Activating the workflow

Chapter 9 Reporting in AX 2012
Introduction
Inside the AX 2012 reporting framework

Client-side reporting solutions
Server-side reporting solutions
Report execution sequence

Planning your reporting solution
Reporting and users
Roles in report development

Creating production reports
Model elements for reports
SSRS extensions
AX 2012 extensions

Creating charts for Enterprise Portal
AX 2012 chart development tools
Integration with AX 2012
Data series
Adding interactive functions to a chart
Overriding the default chart format

Troubleshooting the reporting framework

The report server cannot be validated
A report cannot be generated
A chart cannot be debugged because of SharePoint sandbox
issues
A report times out

Chapter 10 BI and analytics
Introduction
Components of the AX 2012 BI solution
Implementing the AX 2012 BI solution

Implementing the prerequisites
Configuring an SSAS server
Deploying cubes
Deploying cubes in an environment with multiple partitions
Processing cubes
Provisioning users

Customizing the AX 2012 BI solution
Configuring analytic content
Customizing cubes
Extending cubes
Integrating AX 2012 analytic components with external data
sources
Maintaining customized and extended projects in the AOT

Creating cubes
Identifying requirements
Defining metadata
Generating and deploying the cube
Adding KPIs and calculations

Displaying analytic content in Role Centers
Providing insights tailored to a persona
Choosing a presentation tool based on a persona
SQL Server Power View
Power BI for Office 365

Comparing Power View and Power BI
Authoring with Excel
Business Overview web part and KPI List web part
Developing reports with Report Builder
Developing reports with the Visual Studio tools for AX 2012

Chapter 11 Security, licensing, and configuration
Introduction
Security framework overview

Authentication
Authorization
Data security

Developing security artifacts
Setting permissions for a form
Setting permissions for server methods
Setting permissions for controls
Creating privileges
Assigning privileges and duties to security roles
Using valid time state tables

Validating security artifacts
Creating users
Assigning users to roles
Setting up segregation of duties rules

Creating extensible data security policies
Data security policy concepts
Developing an extensible data security policy
Debugging extensible data security policies

Security coding
Table permissions framework
Code access security framework
Best practice rules
Security debugging

Licensing and configuration

Configuration hierarchy
Configuration keys
Using configuration keys
Types of CALs
Customization and licensing

Chapter 12 AX 2012 services and integration
Introduction
Types of AX 2012 services

System services
Custom services
Document services
Security considerations
Publishing AX 2012 services

Consuming AX 2012 services
Sample WCF client for CustCustomerService
Consuming system services
Updating business documents
Invoking custom services asynchronously

The AX 2012 send framework
Implementing a trigger for transmission

Consuming external web services from AX 2012
Performance considerations

Chapter 13 Performance
Introduction
Client/server performance

Reducing round trips between the client and the server
Writing tier-aware code

Transaction performance
Set-based data manipulation operators
Restartable jobs and optimistic concurrency
Caching
Field lists

Field justification
Performance configuration options

SQL Administration form
Server Configuration form
AOS configuration
Client configuration
Client performance
Number sequence caching
Extensive logging
Master scheduling and inventory closing

Coding patterns for performance
Executing X++ code as common intermediate language
Using parallel execution effectively
The SysOperation framework
Patterns for checking to see whether a record exists
Running a query only as often as necessary
When to prefer two queries over a join
Indexing tips and tricks
When to use firstfast
Optimizing list pages
Aggregating fields to reduce loop iterations

Performance monitoring tools
Microsoft Dynamics AX Trace Parser
Monitoring database activity
Using the SQL Server connection context to find the SPID or
user behind a client session
The client access log
Visual Studio Profiler

Chapter 14 Extending AX 2012
Introduction
The SysOperation framework

SysOperation framework classes

SysOperation framework attributes
Comparing the SysOperation and RunBase frameworks

RunBase example: SysOpSampleBasicRunbaseBatch
SysOperation example: SysOpSampleBasicController

The RunBase framework
Inheritance in the RunBase framework
Property method pattern
Pack-unpack pattern
Client/server considerations

The extension framework
Create an extension
Add metadata
Extension example

Eventing
Delegates
Pre and post events
Event handlers
Eventing example

Chapter 15 Testing
Introduction
Unit testing features in AX 2012

Using predefined test attributes
Creating test attributes and filters

Microsoft Visual Studio 2010 test tools
Using all aspects of the ALM solution
Using an acceptance test driven development approach
Using shared steps
Recording shared steps for fast forwarding
Developing test cases in an evolutionary manner
Using ordered test suites for long scenarios

Putting everything together
Executing tests as part of the build process

Using the right tests for the job

Chapter 16 Customizing and adding Help
Introduction
Help system overview

AX 2012 client
Help viewer
Help server
AOS

Help content overview
Topics
Publisher
Table of contents
Summary page

Creating content
Walkthrough: create a topic in HTML
Adding labels, fields, and menu items to a topic
Make a topic context-sensitive
Update content from other publishers
Create a table of contents file
Creating non-HTML content

Publishing content
Add a publisher to the Web.config file
Publish content to the Help server
Set Help document set properties

Troubleshooting the Help system
The Help viewer cannot display content
The Help viewer cannot display the table of contents

PART III UNDER THE HOOD

Chapter 17 The database layer
Introduction
Temporary tables

InMemory temporary tables
TempDB temporary tables
Creating temporary tables

Surrogate keys
Alternate keys
Table relations

EDT relations and table relations
Foreign key relations
The CreateNavigationPropertyMethods property

Table inheritance
Modeling table inheritance
Table inheritance storage model
Polymorphic behavior
Performance considerations

Unit of Work
Date-effective framework

Relational modeling of date-effective entities
Support for data retrieval
Run-time support for data consistency

Full-text support
The QueryFilter API
Data partitions

Partition management
Development experience
Run-time experience

Chapter 18 Automating tasks and document distribution
Introduction
Batch processing in AX 2012

Common uses of the batch framework
Performance

Creating and executing a batch job
Creating a batch-executable class

Creating a batch job
Configuring the batch server and creating a batch group
Managing batch jobs
Debugging a batch task

Print management in AX 2012
Common uses of print management
The print management hierarchy
Print management settings

Chapter 19 Application domain frameworks
Introduction
The organization model framework

How the organization model framework works
When to use the organization model framework
Extending the organization model framework

The product model framework
How the product model framework works
When to use the product model framework
Extending the product model framework

The operations resource framework
How the operations resource framework works
When to use the operations resource framework
Extending the operations resource framework
MorphX model element prefixes for the operations resource
framework

The dimension framework
How the dimension framework works
Constraining combinations of values
Creating values
Extending the dimension framework
Querying data
Physical table references

The accounting framework

How the accounting framework works
When to use the accounting framework
Extensions to the accounting framework
Accounting framework process states
MorphX model element prefixes for the accounting
framework

The source document framework
How the source document framework works
When to use the source document framework
Extensions to the source document framework
MorphX model element prefixes for the source document
framework

Chapter 20 Reflection
Introduction
Reflection system functions

Intrinsic functions
typeOf system function
classIdGet system function

Reflection APIs
Table data API
Dictionary API
Treenodes API
TreeNodeType

Chapter 21 Application models
Introduction
Layers
Models
Element IDs
Creating a model
Preparing a model for publication

Setting the model manifest
Exporting the model

Signing the model
Importing model files

Upgrading a model
Moving a model from test to production

Creating a test environment
Preparing the test environment
Deploying the model to production
Element ID considerations

Model store API

PART IV BEYOND AX 2012

Chapter 22 Developing mobile apps for AX 2012
Introduction
The mobile app landscape and AX 2012
Mobile architecture

Mobile architecture components
Message flow and authentication
Using AX 2012 services for mobile clients
Developing an on-premises listener

Developing a mobile app
Platform options and considerations
Developer documentation and tools
Third-party libraries
Best practices
Key aspects of authentication
User experience
Globalization and localization
App monitoring
Web traffic debugging

Architectural variations
On-corpnet apps
Web apps

Resources

Chapter 23 Managing the application life cycle
Introduction
Lifecycle Services
Deploying customizations
Data import and export

Test Data Transfer Tool
Data Import/Export Framework
Choosing between the Test Data Transfer Tool and DIXF

Benchmarking

Index

About the authors

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

http://microsoft.com/learning/booksurvey

Foreword

The release of Microsoft Dynamics AX 2012 R3 and this book coincide
with the tenth anniversary of my involvement with the development of this
product. I’ve had the pleasure to work with a great team of people
throughout that period. When I reflect on the modest ambition we set out
with a decade ago, I’m excited to see all that we have achieved and am
grateful for all the support we received along the way from our customers,
partners, and the community around this product.

We set out to build a next-generation line-of-business system that
empowered people. We wanted to go beyond traditional ERP in multiple
ways:

 First and foremost was to create a system of empowerment, not a
system of records. Microsoft Dynamics AX is designed to help
people do their jobs, not to record what they did after they did it.

 Second, we wanted to maintain an agile system that allowed
businesses to change at their own pace and not at the pace of
previous generations of electronic concrete.

 Third, we wanted to provide functional depth and richness while
maintaining simplicity of implementation, to allow both midsize and
large organizations to use the same system.

The embodiment of our first goal is role-tailored computing and
pervasive BI. Those new to the Microsoft Dynamics AX community after
AX 2009 can’t imagine a day when that wasn’t a standard part of the
product. AX 2012 takes that richness to a whole new level with more than
80 predefined security roles, and Role Centers for more than 40 distinct
functions in an organization.

The implementation of our second goal is in the richness of the AX
2012 metadata system and tools, combined with the fact that all of our
solutions and localizations are designed to work together. AX 2012
enhances those capabilities even further while adding the organizational
model, self-balancing dimensions, date effectivity, and other powerful
application foundation elements.

The realization of the third goal came in the form of deep industry
solutions for manufacturing, distribution, retail, service industries, and the
public sector, along with a comprehensive set of life cycle services for
design, development, deployment, and operations.

This book focuses on the enhancements to the Microsoft Dynamics AX
developer toolset and is written by the team that brought you those tools.
It’s truly an insider’s view of the entire AX 2012 development and runtime
environment (now updated for the AX 2012 R3 release). I hope you enjoy
it as much as we enjoyed writing the book and creating the product.

Here’s to the next ten years of our journey together.
Thanks,
Hal Howard
Head of Product Development, Microsoft Dynamics AX
Corporate Vice President, Microsoft Dynamics Research and

Development

Introduction

Microsoft Dynamics AX 2012 represents a new generation of enterprise
resource planning (ERP) software. With more than 1,000 new features and
prebuilt industry capabilities for manufacturing, distribution, services,
retail, and the public sector, AX 2012 provides a robust platform for
developers to deliver specialized functionality more efficiently to the
industries that they support. AX 2012 is a truly global solution, able to
scale with any business as it grows. It is simple enough to deploy for a
single business unit in a single country, yet robust enough to support the
unique requirements for business systems in 36 countries/regions—all
from a single-instance deployment of the software. With AX 2012 R3,
Microsoft Dynamics AX delivers new levels of capability in warehouse
and transportation management, demand planning, and retail.

AX 2012 R3 also represents an important step forward in the evolution
of Microsoft Dynamics AX for the cloud. As Microsoft Technical Fellow
Mike Ehrenberg explains:

Microsoft is transforming for a cloud-first, mobile-first world. As
part of that transformation, with the AX 2012 R3 release, we are
certifying the deployment of Microsoft Dynamics AX on the
Microsoft Azure cloud platform, which uses the Azure
Infrastructure as a Service (IaaS) technology. This opens up the
option for customers ready to move to the cloud to deploy the
power of Microsoft Dynamics AX to run their business; for
customers that favor on-premises deployment, it complements the
option to harness the Microsoft Azure cloud platform for training,
development, testing, and disaster recovery—all workloads with
the uneven demand that the cloud serves so well. One of the most
exciting new capabilities introduced with AX 2012 R3 is Lifecycle
Services, our new Azure cloud-based service that streamlines
every aspect of the ERP deployment, management, servicing, and
upgrade lifecycle—regardless of whether AX 2012 itself is
deployed on-premises or in the cloud. We are leveraging the cloud
to deliver rapidly evolving services to help all of our customers
ensure that they are following best practices across their AX 2012
projects. We are already seeing great results in rapid
deployments, streamlined support interactions, and performance
tuning—and this is only the beginning of our very exciting

journey.
Customers have also weighed in on the benefits of Microsoft Dynamics

AX 2012:

Microsoft Dynamics AX 2012 allows us to collaborate within our
organization and with our constituents ... using built-in controls
and fund/encumbrance accounting capabilities to ensure
compliance with Public Sector requirements ... and using out-of
the-box Business Analytics and Intelligence ... so executives can
make effective decisions in real time.

Mike Bailey
Director of Finance and Information Services

City of Redmond (Washington)

With AX 2012, developing for and customizing Microsoft
Dynamics AX will be easier than ever. Developers will be able to
work with X++ directly from within Microsoft Visual Studio and
enjoy more sophisticated features in the X++ editor, for example.
Also, the release includes more prebuilt interoperability with
Microsoft SharePoint Server and SQL Server Reporting Services,
so that developers spend less time on mundane work when setting
up customer systems.

Guido Van de Velde
Director of MECOMS™

Ferranti Computer Systems

AX 2012 is substantially different from its predecessor, which can mean
a steep learning curve for developers and system implementers who have
worked with previous versions. However, by providing a broad overview
of the architectural changes, new technologies, and tools for this release,
the authors of Inside Microsoft Dynamics AX 2012 R3 have created a
resource that will help reduce the time that it takes for developers to
become productive.

The history of Microsoft Dynamics AX
Historically, Microsoft Dynamics AX encompasses more than 25 years of
experience in business application innovation and developer productivity.
Microsoft acquired the predecessor of Microsoft Dynamics AX, called
Axapta, in 2002, with its purchase of the Danish company Navision A/S.
The success of the product has spurred an increasing commitment of

research and development resources, which allows Microsoft Dynamics
AX to grow and strengthen its offering continuously.

The development team that created AX 2012 consists of three large
teams, two that are based in the United States (Fargo, North Dakota, and
Redmond, Washington) and one that is based in Denmark (Copenhagen).
The Fargo team focuses on finance and human resources (HR), the
Redmond team concentrates on project management and accounting and
customer relationship management (CRM), and the Copenhagen team
delivers supply chain management (SCM). In addition, a framework team
develops infrastructure components, and a worldwide distributed team
localizes the Microsoft Dynamics AX features to meet national regulations
or local differences in business practices in numerous languages and
markets around the world.

To clarify a few aspects of the origins of Microsoft Dynamics AX, the
authors contacted people who participated in the early stages of the
Microsoft Dynamics AX development cycle. The first question we asked
was, “How was the idea of using X++ as the programming language for
Microsoft Dynamics AX conceived?”

We had been working with an upgraded version of XAL for a while
called OO XAL back in 1996/1997. At some point in time, we stopped
and reviewed our approach and looked at other new languages like
Java. After working one long night, I decided that our approach had to
change to align with the latest trends in programming languages, and
we started with X++.

Erik Damgaard
Cofounder of Damgaard Data

Of course, the developers had several perspectives on this breakthrough
event.

One morning when we came to work, nothing was working. Later in
the morning, we realized that we had changed programming
languages! But we did not have any tools, so for months we were
programming in Notepad without compiler or editor support.

Anonymous developer

Many hypotheses exist regarding the origin of the original product
name, Axapta. Axapta was a constructed name, and the only requirement
was that the letter X be included, to mark the association with its
predecessor, XAL. The X association carries over in the name Microsoft

Dynamics AX.

Who should read this book
This book explores the technology and development tools in AX 2012
through the AX 2012 R3 release. It is designed to help new and existing
Microsoft Dynamics AX developers by providing holistic and in-depth
information about developing for AX 2012—information that may not be
available from other resources, such as SDK documentation, blogs, or
forums. It aids developers who are either customizing AX 2012 for a
specific implementation or building modules or applications that blend
seamlessly with AX 2012. System implementers and consultants will also
find much of the information useful.

Assumptions
To get full value from this book, you should have knowledge of common
object-oriented concepts from languages such as C++, C#, and Java. You
should also have knowledge of relational database concepts. Knowledge of
Structured Query Language (SQL) and Microsoft .NET technology is also
advantageous. Transact-SQL statements are used to perform relational
database tasks, such as data updates and data retrieval.

Who should not read this book
This book is not aimed at those who install, upgrade, or deploy AX 2012.
It is also beyond the scope of this book to include details about the sizing
of production environments. For more information about these topics, refer
to the extensive installation and implementation documentation that is
supplied with the product or that is available on Microsoft TechNet,
Microsoft Developer Network (MSDN), and other websites.

The book also does not provide instructions for those who configure
parameter options within AX 2012 or the business users who use the
application in their day-to-day work. For assistance with these activities,
refer to the help that is included with the product and available on TechNet
at http://technet.microsoft.com/en-us/library/gg852966.aspx.

Organization of this book
Although Inside Microsoft Dynamics AX 2012 R3 does not provide
exhaustive coverage of every feature in the product, it does offer a broad
view that will benefit developers as they develop for AX 2012.

This book is divided into four sections, each of which focuses on AX

http://technet.microsoft.com/en-us/library/gg852966.aspx

2012 from a different angle. Part I, “A tour of the development
environment,” provides an overview of the AX 2012 architecture that has
been written with developers in mind. The chapters in Part I also provide a
tour of the internal AX 2012 development environment to help new
developers familiarize themselves with the designers and tools that they
will use to implement their customizations, extensions, and integrations.

Part II, “Developing for AX 2012,” provides the information that
developers need to customize and extend AX 2012. In addition to
explanations of the features, many chapters include examples, some of
which are available as downloadable files that can help you learn how to
code for AX 2012. For information about how to access these files, see the
“Code samples” section, later in this introduction.

Part III, “Under the hood,” is largely devoted to illustrating how
developers can use the underlying foundation of the AX 2012 application
frameworks to develop their solutions, with a focus on the database layer,
system and application frameworks, reflection, and models.

Part IV, “Beyond AX 2012,” focuses on developing companion apps for
mobile devices that allow AX 2012 users to participate in critical business
processes even when they are away from their computers. It also describes
exciting new techniques and tools, such as Lifecycle Services, that help
partners and customers manage every aspect of the application life cycle.

Conventions and features in this book
This book presents information by using the following conventions, which
are designed to make the information readable and easy to follow.

 Application Object Tree (AOT) paths use backslashes to separate
nodes, such as Forms\AccountingDistribution\Methods.

 The names of methods, functions, properties and property values,
fields, and nodes appear in italics.

 Registry keys and T-SQL commands appear in capital letters.
 User interface (UI) paths use angle brackets to indicate actions—for
example, “On the File menu, point to Tools > Options.”

 Boxed elements with labels such as “Note” provide additional
information or alternative methods for completing a step
successfully.

 Text that you type (apart from code blocks) appears in bold.
 A plus sign (+) between two key names means that you must press
those keys at the same time. For example, “Press Alt+Tab” means

that you hold down the Alt key while you press the Tab key.

System requirements
To work with most of the sample code, you must have the RTM version of
AX 2012 installed. For the Language-Integrated Query (LINQ) samples,
you must be using AX 2012 R3. For information about the system
requirements for installing Microsoft Dynamics AX 2012, see the
Microsoft Dynamics AX 2012 Installation Guide at

http://www.microsoft.com/en-us/download/details.aspx?id=12687
You must also have an Internet connection to download the sample files

that are provided as supplements to many of the chapters.

 Note

Some of the features described in this book, such as data
partitioning and the EP Chart Control, apply only to AX 2012
R2 and AX 2012 R3. That is noted where those features are
discussed.

Code samples
Most of the chapters in this book include code examples that let you
interactively try out the new material presented in the main text. You can
download the example code from the following page:

http://aka.ms/InsideDynaAXR3
Follow the instructions to download the 9780735685109_files.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer:

1. Unzip the file that you downloaded from the book’s website.
2. If prompted, review the displayed end user license agreement. If you

accept the terms, select the accept option, and then click Next.

 Note

If the license agreement doesn’t appear, you can access it
from the same webpage from which you downloaded the file.

http://www.microsoft.com/en-us/download/details.aspx?id=12687

Using the code samples
The code examples referenced in each chapter are provided as both .xpo
files that you can import into Microsoft Dynamics AX and Visual Studio
projects that you can open through the corresponding .csproj files. Many
of these examples are incomplete, and you cannot import and run them
successfully without following the steps indicated in the associated
chapter.

Acknowledgments
We want to thank all the people who assisted us in bringing this book to
press. We apologize for anyone whose name we missed.

Microsoft Dynamics product team
Special thanks go to the following colleagues, whom we’re fortunate to
work with.

Margaret Sherman, whose Managing Editor duties included wrangling
authors, chasing down stray chapters, translating techno-speak into clear
English, keeping numerous balls in the air, and herding a few cats.
Margaret kept the project moving forward, on schedule, on budget, and
with a real commitment to quality content. Thank you, Margaret! This
project wouldn’t have happened without your leadership!

Mark Baker and Steve Kubis, who contributed ace project management
and editing work.

Margo Crandall, who provided a quick and accurate technical review at
the last minute for Chapter 23.

Hal Howard, Richard Barnwell, and Ann Beebe, who sponsored the
project and provided resources for it.

We’re also grateful to the following members of the product team, who
provided us with the reviews and research that helped us refine this book:

Ned Baker
Ian Beck
Andy Blehm
Jim Brotherton
Ed Budrys
Gregory Christiaens
Ahmad El Husseini
Josh Honeyman
Hitesh Jawa

Vijeta Johri
Bo Kampmann
Vinod Kumar
Arif Kureshy
Josh Lange
Mey Meenakshisundaram
Igor Menshutkin
Jatan Modi
Sasha Nazarov
Adrian Orth
Christopher Read (Entirenet)
Bruce Rivard
Gana Sadasivam
Alex Samoylenko
Ramesh Shankar
Tao Wang
Lance Wheelwright
Chunke Yang

In addition, we want to thank Joris de Gruyter of Streamline Systems
LLC. His SysTestListenerTRX code samples on CodePlex
(http://dynamicsaxbuild.codeplex.com/releases), with supporting
documentation on his blog (http://daxmusings.blogspot.com/), and his
collaboration as we investigated this approach for executing SysTests from
Microsoft Dynamics AX were valuable resources as we prepared the
chapter on testing.

Microsoft Press
Another big thank you goes to the great people at Microsoft Press for their
support and expertise throughout the writing and publishing process.

Carol Dillingham, the Content Project Manager for the book, who
provided ongoing support and guidance throughout the life of the project.

Rosemary Caperton—Acquisitions Editor
Allan Iversen—Technical Reviewer
Kathy Krause—Project Editor and Copyeditor with Online Training

Solutions, Inc. (OTSI)

Errata, updates, & book support
We’ve made every effort to ensure the accuracy of this book. If you
discover an error, please submit it to us via mspinput@microsoft.com. You

http://dynamicsaxbuild.codeplex.com/releases
http://daxmusings.blogspot.com/
mailto:mspinput@microsoft.com

can also reach the Microsoft Press Book Support team for other support
via the same alias. Please note that product support for Microsoft software
and hardware is not offered through this address. For help with Microsoft
software or hardware, go to http://support.microsoft.com.

Free ebooks from Microsoft Press
From technical overviews to in-depth information on special topics, the
free ebooks from Microsoft Press cover a wide range of topics. These
ebooks are available in PDF, EPUB, and Mobi for Kindle formats, ready
for you to download at:

http://aka.ms/mspressfree
Check back often to see what is new!

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback
our most valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress
We know you’re busy, so we’ve kept it short with just a few questions.

Your answers go directly to the editors at Microsoft Press. (No personal
information will be requested.) Thanks in advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

This edition of the book is dedicated to Hal Howard, with many
thanks for your leadership.

—The Microsoft Dynamics AX Team

http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

Part I: A tour of the development
environment

CHAPTER 1 Architectural overview
CHAPTER 2 The MorphX development environment and tools
CHAPTER 3 AX 2012 and .NET
CHAPTER 4 The X++ programming language

Chapter 1. Architectural overview

In this chapter
Introduction
AX 2012 five-layer solution architecture
AX 2012 application platform architecture
AX 2012 application meta-model architecture

Introduction
AX 2012 is an enterprise resource planning (ERP) solution that integrates
financial resource management, operations resource management, and
human resource management processes that can be owned and controlled
by multinational, multicompany, and multi-industry organizations,
including those in the public sector. The AX 2012 solution encompasses
both the AX 2012 application and the AX 2012 application platform on
which the application is built. The application platform is designed to be
the platform of choice for developing scalable, customizable, and
extensible ERP applications in the shortest time possible, and for the
lowest cost. The following key architectural design principles make this
possible:

 Separation of concerns An AX 2012 end-to-end solution is
delivered by many development teams working inside Microsoft, in
the Microsoft partner channel, and in end-user IT support
organizations. The separation of concerns principle realized in the
AX 2012 architecture makes this distributed development possible
by separating the functional concerns of a solution into five
globalized, secure layers. This separation reduces functional overlap
between the logical components that each team designs and
develops.

 Separation of processes An AX 2012 end-to-end solution scales to
satisfy the processing demands of a large number of concurrent
users. The separation of processes principle that is realized in the AX
2012 architecture makes this scaling possible by separating
processing into three-tiers—a data tier, an application tier, and a
presentation tier. The AX 2012 Windows client, the Enterprise Portal
web client, and the Microsoft Office clients are components of the
presentation tier; the Application Object Server (AOS), the

Enterprise Portal extensions to Microsoft SharePoint Server, and
Microsoft SQL Server Reporting Services (SSRS) are components of
the application tier; SQL Server and SQL Server Analysis Services
(SSAS) are components of the data tier.

 Model-driven applications An AX 2012 application team can
satisfy application domain requirements in the shortest time possible.
The model-driven application principle that is realized in the AX
2012 architecture makes this possible by separating platform-
independent development from platform-dependent development,
and by separating organization-independent development from
organization-dependent development. With platform-independent
development, you can model the structure and specify the behavior
of application client forms and reports, application object entities,
and application data entities that run on multiple platform
technologies, such as the AX 2012 Windows client, SharePoint
Server, SQL Server, and the Microsoft .NET Framework. With
organization-independent development, you can use domain-specific
reference models such as the units of measure reference model;
domain-specific resource models such as the person, product, and
location models; and domain-specific workflow models such as the
approval and review models, which are relevant to all organizations.

AX 2012 five-layer solution architecture
The AX 2012 five-layer solution architecture, illustrated in Figure 1-1,
logically partitions an AX 2012 solution into an application platform layer,
a foundation application domain layer, a horizontal application domain
layer, an industry application domain layer, and a vertical application
domain layer. The components in all architecture layers are designed to
meet Microsoft internationalization, localization, and security standards,
and all layers are built on the Microsoft technology platform.

FIGURE 1-1 AX 2012 five-layer architecture.

 Note

The layers in the AX 2012 five-layer architecture are different
from the model layers that are part of the AX 2012
customization framework described later in this book.
Architectural layers are logical partitions of an end-to-end
solution. Customization layers are physical partitions of
application domain code. For more information, see Chapter
21, “Application models.”

The AX 2012 application platform and application domain components
are delivered on the Microsoft technology platform. This platform consists
of the Windows client, the Office suite of products, Windows Server, SQL
Server, SSAS, SSRS, SharePoint Server, the Microsoft ASP.NET web
application framework, the .NET Framework, and the Microsoft Visual
Studio integrated development environment (IDE).

The following logical partitions are layered on top of the Microsoft
technology platform:

 Layer 1: Application platform The application platform layer
provides the system frameworks and tools that support the
development of scalable, customizable, and extensible application
domain components. This layer consists of the MorphX model–
based development environment, the X++ programming language,
the Windows client framework, the Enterprise Portal framework, the
AOS, and the application platform system framework. For a
description of the component architecture in the application platform
layer, see the “AX 2012 application platform architecture” section
later in this chapter.

 Layer 2: Foundation The foundation layer consists of domain-
specific reference models in addition to domain-specific resource
modeling, policy modeling, event documenting, and document
processing frameworks that are extended into organization
administration and operational domains. Examples of domain-
specific reference models include the fiscal calendar, the operations
calendar, the language code, and the unit of measure reference
models. Examples of domain-specific resource models include the
party model, the organization model, the operations resource model,
the product model, and the location model. The source document
framework and the accounting distribution and journalizing process
frameworks are also part of this layer. Chapter 19, “Application
domain frameworks,” describes the conceptual design of a number of
the frameworks in this layer.

 Layer 3: Horizontal The horizontal layer consists of application
domain workloads that integrate the financial resource, operations
resource, and human resource management processes that can be
owned and controlled by organizations. Example workloads include
the operations management workload, the supply chain management
workload, the supplier relationship management workload, the
product information management workload, the financial
management workload, the customer relationship management
workload, and the human capital management workload. The AX
2012 application can be extended with additional workloads. (The
workloads that are part of the AX 2012 solution are beyond the
scope of this book.)

 Layer 4: Industry The industry layer consists of application domain
workloads that integrate the financial resource, operations resource,
and human resource management processes specific to organizations

that operate in particular industry sectors. Examples of industries
include discrete manufacturing, process manufacturing, distribution,
retail, service, and public sector. Workloads in this layer are
customized to satisfy industry-specific requirements.

 Layer 5: Vertical The vertical layer consists of application domain
workloads that integrate the financial resource, operations resource,
and human resource management processes specific to organizations
that operate in a particular vertical industry and to organizations that
are subject to local customs and regulations. Example vertical
industries include beer and wine manufacturing, automobile
manufacturing, government, and advertising professional services.
Workloads in this layer are customized to satisfy vertical industry
and localization requirements.

AX 2012 application platform architecture
The architecture of the AX 2012 application platform supports the
development of Windows client applications, SharePoint web client
applications, Office client integration applications, and third-party
integration applications. Figure 1-2 shows the components that support
these application configurations. This section provides a brief description
of the application development environments, and a description of the
components in each of the data, middle, and presentation tiers of the AX
2012 platform architecture.

FIGURE 1-2 Application platform architecture of AX 2012.

Application development environments
The AX 2012 application platform includes two model-driven application
development environments:

 MorphX Use this development environment to develop data models
and application code by using the Application Object Tree (AOT)
application modeling tool and the X++ programming language. This
development environment accesses AX 2012 application server
services through remote procedure call (RPC) technology.

 Visual Studio Use this development environment to develop .NET
Framework plug-ins and extensions for AX 2012 clients, servers,
and services; to develop for Enterprise Portal; and to develop SSRS
reports. This development environment accesses the AX 2012
application server services through RPC.

Data tier
The SQL Server database is the only component in the data tier. The
database server hosts the SharePoint Server content and configuration

databases, the AX 2012 model and application database, the SSRS
database, and the SSAS database.

Middle tier
The middle tier includes the following components:

 AOS The AOS executes MorphX application services that are
invoked through RPC technology and Windows Communication
Foundation (WCF) technology in the .NET Framework. The AOS
can be hosted on one computer, but it can also scale out to many
computers when additional concurrent user sessions or dedicated
batch servers are required.

 .NET Framework These components can be referenced in the AOT
so that their application programming interfaces are accessed from
X++ programs. The Windows Workflow Foundation (WF)
component is integral to the AX 2012 workflow framework, and
WCF is integral to the AX 2012 application integration framework.

 SSAS These services process requests for analytics data hosted by
the SQL Server component in the data tier.

 SSRS and AX 2012 reporting extensions The reporting extensions
provide SSRS with features that are specific to the AX 2012
application platform. These extensions access the AOS through
WCF services and access SSAS through HTTP and HTTPS.

 Enterprise Portal framework This framework extends the
SharePoint application platform with features that are specific to the
AX 2012 application platform. The Enterprise Portal framework
composes SharePoint content with AX 2012 content accessed from
the AOS through the .NET Business Connector and RPC, and
content accessed from SSAS and SSRS through HTTP and HTTPS.
Enterprise Portal is typically hosted on its own server or in a cluster
of servers.

 AX 2012 Help web service This web service processes requests for
Help content.

 Web services hosted by Microsoft Internet Information Services
(IIS) AX 2012 system services can be deployed to and hosted by IIS.

 Application Integration services These services provide durable
message queuing and transformation services for integration clients.

Presentation tier

The presentation tier consists of the following components:
 Windows client This client executes AX 2012 MorphX and .NET
programs developed in MorphX and Visual Studio. The client
application communicates with the AOS primarily by using RPC.
The client composes navigation, action pane, area page, and form
controls for rapid data entry and data retrieval. Form controls have
built-in data filtering and search capabilities and their content
controls are arranged automatically by the IntelliMorph rendering
technology. The client additionally hosts Role Center pages rendered
in a web browser control.

 Enterprise Portal web client This client executes MorphX
application models, X++ programs, and .NET Framework programs
developed in the MorphX development environment, Visual Studio,
and the SharePoint Server framework. Enterprise Portal is hosted by
the AX 2012 runtime, the ASP.NET runtime, and the SharePoint
runtime environments. SharePoint and ASP.NET components
communicate by means of the AX 2012 .NET Business Connector.

 Office clients The Microsoft Word client and Microsoft Excel client
are extended by add-ins that work with the AX 2012 platform.

 Third-party clients These clients integrate with the AX 2012
platform by means of integration service components such as the file
system, Message Queuing (also known as MSMQ), Microsoft
BizTalk Server, and a WCF adapter.

AX 2012 application meta-model architecture
AX 2012 application meta-model architecture is based on the principle of
model-driven application development. You declaratively program an
application by building a model of application components instead of
procedurally specifying their structure and behavior with code. The AX
2012 development environment supports both model-driven and code-
driven application development.

A model of an application model is called a meta-model. Figure 1-3
shows the element types in the AX 2012 application meta-model that you
use to develop AX 2012 Windows client applications.

FIGURE 1-3 Element types of the AX 2012 meta-model for developing
Windows client applications.

 Note

To keep the diagram simple, the figure does not list all type
dependencies on model element types.

Application data element types
The following element types are part of the AX 2012 application data
meta-model:

 Base enum Use a base enumeration (base enum) element type to
specify value-type application model elements whose fields consist
of a fixed set of symbolic constants. For example, you can create a
base enum named WeekDay to name a set of symbolic constants that
includes Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
and Saturday.

 Extended data type Use an extended data type element type to
specify value-type application model elements that extend base
enums, in addition to string, boolean, integer, real, date, time,
UtcDateTime, int64, guid, and container value types. The AX 2012

runtime uses the properties of an extended data type to generate a
database schema and to render user interface controls. For example,
you could specify an account number extended data type as an
extension to a string value type that is limited to 10 characters in
length, and that is described by using the Account number label when
bound to a user interface text entry control. Extended data types also
support inheritance. For example, an extended data type that defines
an account number can be specialized by other extended data types
to define customer and vendor account numbers. The specialized
extended data type inherits properties, such as string length, label
text, and Help text. You can override some of the properties on the
specialized extended data type.

 Table Use a table element type to specify data entity types that the
AX 2012 application platform uses to generate a SQL Server
database table schema. Tables specify data entity type fields along
with their base enum or extended data type, field groups, indexes,
relationships, delete actions, and methods. Tables can also inherit the
fields of base tables that they are specified to extend. The AX 2012
runtime uses table specifications to render data entry presentation
controls and to maintain the referential integrity of the data stored in
the application database. The X++ editor also uses table elements to
provide IntelliSense information when you write X++ code that
manipulates data stored in the application database. Tables can be
bound to form, report, query, and view data sources.

 Map Use a map element type to specify a data entity type that
factors out common table fields and methods for accessing data
stored in horizontally partitioned tables. For example, the CustTable
and VendTable tables in the AX 2012 application model are mapped
to the DirPartyMap map element so that you can use one
DirPartyMap object to access common address fields and methods.

 Note

Consider table inheritance as an alternative to using maps,
because it increases the referential integrity of a database
when base tables are referenced in table relationships.

 View Use a view element type to specify a database query that the
AX 2012 application platform uses to generate a SQL Server

database view schema. Views can include a query model element
that filters data accessed from one table or from multiple joined
tables. Views also include table field mappings and methods. Views
are read-only and primarily provide an efficient method for reading
data. Views can be bound to form, report, and query data sources.

 Perspective Use a perspective element type to specify a group of
tables and views that are used together when designing and
generating SSAS unified dimensional models.

 Table collection Use a table collection element type to specify a
group of tables whose data is shared by two or more AX 2012
companies assigned to the same virtual company. An application
administrator maintains virtual companies, their effective company
assignments, and their table collection assignments. The AX 2012
runtime uses the virtual company data area identifier instead of the
effective company data area identifier to securely access data stored
in tables grouped by a table collection.

 Caution

The tables in a table collection should reference only tables
inside the table collection unless you write application
extensions to maintain the referential integrity of the database.

 Query Use a query element type to specify a database query. You
add tables to query element data sources and specify how they
should be joined. You also specify how data is returned from the
query by using sort order and range specifications.

MorphX user interface control element types
The following model element types are part of the MorphX user interface
control meta-model:

 Menu item Use a menu item element type to specify presentation
control actions that change the state of the AX 2012 system or user
interface or that generate reports. If you specify a label for the menu
item, the AX 2012 runtime uses it to name the action when it is
rendered in the user interface. The AX 2012 form engine also
automatically adds a View Details menu item to a drop-down menu,
a menu that appears when a user right-clicks a cell in a column that
is bound to a table field that is specified as a foreign key in a table

relationship. The AX 2012 runtime uses the referenced table’s menu
item binding to open the form that renders the data from the table.
The AX 2012 form and report rendering engines ignore menu items
that are disabled by configuration keys or role-based access controls.

 Menu Use a menu element type to specify a logical grouping of
menu items. Menu specifications can also group submenus. The
menu element named MainMenu specifies the menu grouping for the
AX 2012 navigation pane.

 Form Use a form element type to specify a presentation control that
a user uses to insert, update, and read data stored in the application
database. A form binds table, view, and query data sources to
presentation controls. A form is opened when a user selects a control
bound to a menu item, such as a button.

 Form part Use a form part element type to specify a presentation
control that renders a form in the FactBox area of the user interface.
For more information about the FactBox area, see Chapter 5,
“Designing the user experience.”

 Info part Use an info part element type to specify a presentation
control that renders the result set of a query in the FactBox area of
the user interface.

 Report Use a report element type to specify a presentation control
that renders database data and calculated data in a page-layout
format. A user can send a report to the screen, a printer, a printer
archive, an email account, or the file system. A report specification
binds data sources to presentation controls. A report is opened when
a user clicks an output menu item control, such as a button.

 SSRS report Use an SSRS report element type to reference a Visual
Studio Report Project that is added to the AX 2012 model database.

 Cue Use a cue element type to bind a menu item to a presentation
control that renders a pictorial representation of a numeric metric,
such as the number of open sales orders. A cue is rendered in an AX
2012 Role Center webpage.

 Cue group Use a cue group element type to specify a group of cues
that are displayed together on the AX 2012 Role Center web part.

Workflow element types
Workflow element types define the workflow tasks, such as review and
approval, by binding the tasks to menu items. When a form is workflow-

enabled, it automatically renders controls that support the user in
performing the tasks in the workflow. Workflow elements define
workflow documents and event handlers by using class elements. The
following model element types are part of the AX 2012 workflow meta-
model:

 Workflow type Use a workflow type element type to specify a
workflow for processing workflow documents. A workflow
configuration consists of event handler specifications, custom
workflow task specifications, and menu item bindings.

 Workflow task Use a workflow task element type to specify a
workflow task. A workflow task comprises a list of task outcomes,
event handler registrations, and menu item bindings.

 Workflow approval Use a workflow approval element type to
specify specialized workflow approval tasks. A workflow approval
task consists of approve, reject, request change, and deny task
outcomes, a list of event handler registrations, and menu item
bindings.

 Workflow provider Use a workflow provider element type to
specify the name of a class that provides data to a workflow.
Example data includes a list of workflow participants, a list of task
completion dates, and a structure of users that reflect positions in a
position-reporting hierarchy.

Code element types
The following model element types are part of the AX 2012 code meta-
model:

 Class Use a class element type to specify the structure and behavior
of custom X++ types that implement data maintenance, data
tracking, and data processing logic in an AX 2012 application. You
specify class declarations, methods, and event handlers by using the
X++ programming language. Class methods can be bound to menu
items so that they are executed when users select action, display, or
output menu item controls on a user interface. You can also use a
class model element type to specify class interfaces that only include
method definitions.

 Macro Use a macro element type to specify a library of X++ syntax
replacement procedures that map X++ input character sequences,
such as readable names, to output character sequences, such as
numeric constants, during compilation.

 Reference Use a reference element type to specify the name of a.
NET Framework assembly that contains .NET Framework common
language runtime (CLR) types that can be referenced in X++ source
code. The MorphX editor reads type data from the referenced
assemblies so that Microsoft IntelliSense is available for CLR
namespaces, types, and type members. The MorphX compiler uses
the CLR type definitions in the referenced assembly for type and
member syntax validation, and the AX 2012 runtime uses the
reference elements to locate and load the referenced assembly.

 Job Use a job element type to specify an X++ program that runs
when you click the Go icon on the toolbar or press F5. Developers
often write jobs when experimenting with X++ language features.
You should not use jobs to write application code.

Services element types
The following model element types are part of the AX 2012 services meta-
model:

 Service Use a service element type to enable an X++ class to be
made available on an integration port.

 Service group Use a service group element type to specify a web
service deployment configuration that exposes web service
operations as basic ports with web addresses.

Role-based security element types
The following model element types are part of the AX 2012 role-based
access control security meta-model:

 Security policy Use a security policy element type to specify a
configuration for constraining the view that a user has of data stored
in one or more tables. A security policy configuration consists of a
primary table specification and a policy query.

 Code permission Use a code permission element type to specify one
or more access permissions that secure access to logical units of
application data and functionality. You can specify data access
permissions to secure access to data stored in tables. You can specify
code access permissions to secure access to forms, web controls, and
server methods.

 Privilege Use a privilege element type to specify one or more
permissions that a user requires to perform a task, such as a data
maintenance task; or a step in a task, such as a data view or data

deletion step.
 Duty Use a duty element type to specify a set of privileges that are
required for a user to carry out internal control approval, review, and
inquiry responsibilities and data maintenance responsibilities.

 Role Use a role element type to specify the organization role,
functional role, or application role that a user is assigned to in an
organization. Sales agent is an example of an organization role,
manager is an example of a functional role, and system user is an
example of an application role.

 Process cycle Use a process cycle element type to specify the
operations and administration activities that are repetitively
performed by users who are assigned duties in the security model.
The expenditure cycle, the revenue cycle, the conversion cycle, and
the accounting cycle are examples of process cycles.

Web client element types
The elements of the AX 2012 application meta-model that are used to
develop Enterprise Portal web client applications are illustrated in Figure
1-4.

FIGURE 1-4 Element types of the AX 2012 meta-model for developing
Enterprise Portal applications.

The following model element types are part of the web client meta-
model:

 Web menu item Use a web menu item element type to specify web
navigation actions that change the state of the AX 2012 system or
user interface. If a label is specified for the menu item, the AX 2012
runtime will use it to name the action when that action is rendered in
the user interface.

 Web menu Use a web menu element type to specify a logical
grouping of web menu items. Web menu specifications can group

submenus. Web menus are rendered as hyperlinks on webpages.
 Web content Use a web content element type to reference an
ASP.NET user control. ASP.NET user controls are developed in the
Visual Studio IDE and are stored in the AX 2012 model database.

 Web part Use a web part element type to store a SharePoint web
part in the AX 2012 model database. The web part will be saved to a
web server when deployed.

 Page definition Use a page definition element type to store a
SharePoint webpage in the AX 2012 model database. The page
definition will be saved to a web server when deployed.

 Web control Use a web control element type to store an ASP.NET
user control in the AX 2012 model database. The web controls will
be saved to a web server when deployed.

 List definition Use a list definition element type to store a
SharePoint list definition in the AX 2012 model database. The list
definition will be created on a SharePoint server when deployed.

 Static file Use a static file element type to store a file in the AX 2012
model database. The file will be saved to a SharePoint server when
deployed.

 Web module Use a web module element type to specify the
structure of a SharePoint website. The web modules are created as
subsites under the home site in SharePoint.

Documentation and resource element types
Documentation and resource element types are used to reference Help
documentation and system documentation and to develop localized string
resources and information resources.

The following model element types are part of the AX 2012
documentation and resource meta-model:

 Help document set Use a Help documentation set element type to
reference a collection of published documents. Help document sets
are opened from the Help menu of the AX 2012 Windows client. For
more information about creating and updating Help documents, see
Chapter 16, “Customizing and adding Help.”

 System documentation Use a system documentation element type
to reference system library content and hyperlinks to MSDN content.
System content describes the AX 2012 system reserved words,
functions, tables, types, enums, and classes.

 Label file Use a label file element type to store files of localized text
resources in the AX 2012 model store.

 Resource Use a resource element type to store file resources such as
image files and animation files. These resources are stored in the AX
2012 model database.

License and configuration element types
The element types of the AX 2012 application meta-model that are used to
develop license, configuration, and application model security are
illustrated in Figure 1-5. These model element types change the
operational characteristics of the AX 2012 development and runtime
environments.

FIGURE 1-5 Element types of the AX 2012 meta-model for developing
licensed and configurable application modules.

The following model element types are part of the AX 2012 license,
configuration, and application model security meta-model:

 Configuration key Use a configuration key element type to assign
application model elements to modules that a system administrator
then uses to enable and disable application modules and module
features. The AX 2012 runtime renders presentation controls that are
bound to menu items with active configuration keys. Configuration
keys can be specified as subkeys of parent keys.

 License code Use a license code element type to lock or unlock the
configuration of application modules developed by Microsoft.
Modules are locked with license codes that must be unlocked with

license keys. License codes can be specified as subcodes of parent
codes.

Chapter 2. The MorphX development
environment and tools

In this chapter
Introduction
Application Object Tree
Projects
The property sheet
X++ code editor
Label editor
Compiler
Best Practices tool
Debugger
Reverse Engineering tool
Table Browser tool
Find tool
Compare tool
Cross-Reference tool
Version control

Introduction
AX 2012 includes a set of tools, the MorphX development tools, that you
can use to build and modify AX 2012 business applications. Each feature
of a business application uses the application model elements described in
Chapter 1, “Architectural overview.” With the MorphX tools, you can
create, view, modify, and delete the application model elements, which
contain metadata, structure (ordering and hierarchies of elements),
properties (key and value pairs), and X++ code. For example, a table
element includes the name of the table, the properties set for the table, the
fields, the indexes, the relations, and the methods, among other things.

This chapter describes the most commonly used tools and offers some
tips and tricks for working with them. You can find additional information
and an overview of other MorphX tools in the MorphX Development
Tools section of the AX 2012 software development kit (SDK) on the

Microsoft Developer Network (MSDN).

 Tip

To enable development mode in AX 2012, press
Ctrl+Shift+W to launch the Development Workspace, which
holds all of the development tools.

Table 2-1 lists the MorphX tools and components.

TABLE 2-1 MorphX tools and other components used for development.

You can access these development tools from the following places:
 In the Development Workspace, on the Tools menu
 On the context menus of elements in the AOT

You can personalize the behavior of many MorphX tools by clicking
Options on the Tools menu. Figure 2-1 shows the Options form.

FIGURE 2-1 The Options form, in which development options are specified.

Application Object Tree
The AOT is the main entry point to MorphX and the repository explorer
for all metadata. You can open the AOT by clicking the AOT icon on the
toolbar or by pressing Ctrl+D. The AOT icon looks like this:

Navigating through the AOT
As the name implies, the AOT is a tree view. The root of the AOT
contains the element categories, such as Classes, Tables, and Forms. Some
elements are grouped into subcategories to provide a better structure. For
example, Tables, Maps, Views, and Extended Data Types are located
under Data Dictionary, and all web-related elements are located under
Web. Figure 2-2 shows the AOT.

FIGURE 2-2 The AOT.

You can navigate through the AOT by using the arrow keys on the
keyboard. Pressing the Right Arrow key expands a node if it has any
children.

Elements are arranged alphabetically. Because there are thousands of
elements, it’s important to understand the naming conventions and adhere
to them to use the AOT effectively.

All element names in the AOT use the following structure:
<Business area name> + <Functional area> + <Functionality,
action performed, or type of content>

With this naming convention, similar elements are placed next to each
other. The business area name is also often referred to as the prefix.
Prefixes are commonly used to indicate the team responsible for an
element. For example, in the name VendPaymReconciliationImport, the
prefix Vend is an abbreviation of the business area name (Vendor),
PaymReconciliation describes the functional area (payment
reconciliation), and Import lists the action performed (import). The name
CustPaymReconciliationImport describes a similar functional area and
action for the Customer business area.

 Tip

When building add-on functionality, in addition to following
this naming convention, you should add another prefix that
uniquely identifies the solution. This additional prefix will
help prevent name conflicts if your solution is combined with
work from other sources. Consider using a prefix that
identifies the company and the solution. For example, if a
company called MyCorp is building a payroll system, it could
use the prefix McPR on all elements added.

Table 2-2 contains a list of the most common prefixes and their
descriptions.

TABLE 2-2 Common prefixes.

 Tip

When creating new elements, ensure that you follow the
recommended naming conventions. Any future development
and maintenance will be much easier.

Projects, described in detail later in this chapter, provide an alternative
view of the information in the AOT.

Creating elements in the AOT
You can create new elements in the AOT by right-clicking the element
category node and selecting New <Element Type>, as shown in Figure 2-3.

FIGURE 2-3 Creating a new element in the AOT.

Elements are given automatically generated names when they are
created. However, you should replace the default names with new names
that conform to the naming convention.

Modifying elements in the AOT
Each node in the AOT has a set of properties and either subnodes or X++
code. You can use the property sheet (shown in Figure 2-9, later in this
chapter) to inspect or modify properties, and you can use the X++ code

editor (shown in Figure 2-11, later in this chapter) to inspect or modify
X++ code.

The order of the subnodes can play a role in the semantics of the
element. For example, the tabs on a form appear in the order in which they
are listed in the AOT. You can change the order of nodes by selecting a
node and pressing the Alt key while pressing the Up Arrow or Down
Arrow key.

A red vertical line next to a root element name marks it as modified and
unsaved, or dirty, as shown in Figure 2-4.

FIGURE 2-4 A dirty element in the AOT, indicated by a vertical line next to
the top-level node, AccountingDistribution.

A dirty element is saved in the following situations:
 When the element is executed.
 When the developer explicitly invokes the Save or Save All action.
 When autosave takes place. You specify the frequency of autosave in
the Options form, which is accessible from the Tools menu.

Refreshing elements in the AOT
If several developers modify elements simultaneously in the same
installation of AX 2012, each developer’s local elements might not be
synchronized with the latest version. To ensure that the local versions of
remotely changed elements are updated, an autorefresh thread runs in the
background. This autorefresh functionality eventually updates all changes,

but you might want to force the refresh of an element explicitly. You do
this by right-clicking the element, and then clicking Restore. This action
refreshes both the on-disk and the in-memory versions of the element.

Typically, the general integrity of what’s shown in the AOT is managed
automatically, but some operations, such as restoring the application
database or reinstalling the application, can lead to inconsistencies that
require manual resolution to ensure that the latest elements are used. To
perform manual resolution, follow these steps:

1. Close the AX 2012 client to clear any in-memory elements.
2. Stop the Microsoft Dynamics Server service on the Application

Object Server (AOS) to clear any in-memory elements.
3. Delete the application element cache files (*.auc) from the Local

Application Data folder (located in %LocalAppData%) to remove
the on-disk elements.

Element actions in the AOT
Each node in the AOT contains a set of available actions. You can access
these actions from the context menu, which you can open by right-clicking
any node.

Here are two facts to remember about actions:
 The actions that are available depend on the type of node you select.
 You can select multiple nodes and perform actions simultaneously
on all the nodes selected.

A frequently used action is Open New Window, which is available for
all nodes. It opens a new AOT window with the current node as the root.
This action was used to create the screen capture of the
AccountingDistribution element shown earlier in Figure 2-4. After you
open a new AOT window, you can drag elements into the nodes, saving
time and effort when you’re developing an application.

You can extend the list of available actions on the context menu. You
can create custom actions for any element in the AOT by using the
features provided by MorphX. In fact, all actions listed on the Add-Ins
submenu are implemented in MorphX by using X++ and the MorphX
tools.

You can enlist a class as a new add-in by following this procedure:
1. Create a new menu item and give it a meaningful name, a label, and

Help text.

2. Set the menu item’s Object Type property to Class.
3. Set the menu item’s Object property to the name of the class to be

invoked by the add-in.
4. Drag the menu item to the SysContextMenu menu.
5. If you want the action to be available only for certain nodes, modify

the verifyItem method on the SysContextMenu class.

Element layers and models in the AOT
When you modify an element from a lower layer, a copy of the element is
placed in the current layer and the current model. All elements in the
current layer appear in bold type (as shown in Figure 2-5), which makes it
easy to recognize changes. For a description of the layer technology, see
the “Layers” section in Chapter 21, “Application models.”

FIGURE 2-5 An element in the AOT that exists in several layers.

You can use the Application object layer and Application object model
settings in the Options form to personalize the information shown after the
element name in the AOT (see Figure 2-1, shown earlier). Figure 2-5
shows a class with the Show All Layers option set. As you can see, each
method is suffixed with information about the layers in which it is defined,
such as SYS, VAR, and USR. If an element exists in several layers, you can
right-click it and then click Layers to access its versions from lower layers.
It is highly recommended that you use the Show All Layers setting during
code upgrade because it provides a visual representation of the layer
dimension directly in the AOT.

Projects

For a fully customizable overview of the elements, you can use projects. In
a project, you can group and structure elements according to your
preference. A project is a powerful alternative to the AOT because you can
collect all the elements needed for a feature in one project.

Creating a project
You open projects from the AOT by clicking the Project icon on the
toolbar. Figure 2-6 shows the Projects window and its Private and Shared
projects nodes.

FIGURE 2-6 The Projects window, showing the list of shared projects.

Except for its structure, a project generally behaves like the AOT. Every
element in a project is also present in the AOT.

When you create a new project, you must decide whether it should be
private or shared among all developers. You can’t set access requirements
on shared projects. You can make a shared project private (and a private
project shared) by dragging it from the shared category into the private
category.

 Note

Central features of AX 2012 are captured in shared projects to
provide an overview of all the elements in a feature. No
private projects are included with the application.

You can specify a startup project in the Options form. If specified, the
chosen project automatically opens when AX 2012 is started.

Automatically generating a project
Projects can be automatically generated in several ways—from using
group masks to customizing project types—to make working with them
easier. The following sections outline the various ways to generate projects
automatically.

Group masks
Groups are folders in a project. When you create a group, you can have its
contents be automatically generated by setting the ProjectGroupType
property (All is an option) and providing a regular expression as the value
of the GroupMask property. The contents of the group are created
automatically and are kept up to date as elements are created, deleted, and
renamed. Using group masks ensures that your project is always current,
even when elements are created directly in the AOT.

Figure 2-7 shows the ProjectGroupType property set to Classes and the
GroupMask property set to ReleaseUpdate on a project group. All classes
with names containing ReleaseUpdate (the prefix for data upgrade scripts)
will be included in the project group.

FIGURE 2-7 Property sheet specifying settings for ProjectGroupType and
GroupMask.

Figure 2-8 shows the resulting project when the settings from Figure 2-7
are used.

FIGURE 2-8 Project created by using a group mask.

Filters
You can also generate a project based on a filter. Because all elements in
the AOT persist in a database format, you can use a query to filter
elements and have the results presented in a project. You create a project
filter by clicking Filter on the project’s toolbar. Depending on the
complexity of the query, a project can be generated instantly or it might
take several minutes.

With filters, you can create projects containing elements that meet the
following criteria:

 Elements created or modified within the last month
 Elements created or modified by a named user
 Elements from a particular layer

Development tools
Several development tools, such as the Wizard Wizard, produce projects
containing elements that the wizard creates. The result of running the
Wizard Wizard is a new project that includes a form, a class, and a menu

item—all the elements that make up the newly created wizard.
You can also use several other wizards, such as the AIF Document

Service Wizard and the Class Wizard, to create projects. To access these
wizards, on the Tools menu, click Wizards.

Layer comparison
You can compare the elements in one layer with the elements in another
layer, which is called the reference layer. If an element exists in both
layers and the definitions of the element are different, or if the element
doesn’t exist in the reference layer, the element is added to the resulting
project. To compare layers, click Tools > Code Upgrade > Compare
Layers.

Upgrade projects
When you upgrade from one version of Microsoft Dynamics AX to
another or install a new service pack, you need to deal with any new
elements that have been introduced and existing elements that have been
modified. These changes might conflict with customizations you’ve
implemented in a higher layer.

The Create Upgrade Project feature makes a three-way comparison to
establish whether an element has any upgrade conflicts. It compares the
original version with both the customized version and the updated version.
If a conflict is detected, the element is added to the project.

The resulting project provides a list of elements to update based on
upgrade conflicts between versions. You can use the Compare tool,
described later in this chapter, to see the conflicts in each element.
Together, these features provide a cost-effective toolbox to use when
upgrading. For more information about code upgrade, see “Microsoft
Dynamics AX 2012 White Papers: Code Upgrade” at
http://www.microsoft.com/download/en/details.aspx?id=20864.

To create an upgrade project, click Tools > Code Upgrade > Detect
Code Upgrade Conflicts.

Project types
When you create a new project, you can specify a project type. So far, this
chapter has discussed standard projects. The Test project, used to group a
set of classes for unit testing, is another specialized project type provided
in AX 2012.

You can create a custom specialized project by creating a new class that

http://www.microsoft.com/download/en/details.aspx?id=20864

extends the ProjectNode class. With a specialized project, you can control
the structure, icons, and actions available to the project.

The property sheet
Properties are an important part of the metadata system. Each property is a
key and value pair. You can use the property sheet to inspect and modify
properties of elements.

When the Development Workspace opens, the property sheet is visible
by default. If you close it, you can open it again anytime by pressing
Alt+Enter or by clicking the Properties button on the toolbar of the
Development Workspace. The property sheet automatically updates itself
to show properties for any element selected in the AOT. You don’t have to
open the property sheet manually for each element; you can leave it open
and browse the elements. Figure 2-9 shows the property sheet for the
TaxSpec class. The two columns are the key and value pairs for each
property.

FIGURE 2-9 Property sheet for an element in the AOT.

 Tip

Pressing Esc in the property sheet sets the focus back to your
origin.

Figure 2-10 shows the Categories tab for the class shown in Figure 2-9.

On this tab, related properties are categorized. For elements with many
properties, this view can make it easier to find the right property.

FIGURE 2-10 The Categories tab on the property sheet for an element in the
AOT.

Read-only properties appear in gray. Just like files in the file system,
elements contain information about who created them and when they were
modified. Elements that come from Microsoft all have the same time and
user stamps.

The default sort order places related properties near each other.
Categories were introduced in an earlier version of Microsoft Dynamics
AX to make finding properties easier, but you can also sort properties
alphabetically by setting a parameter in the Options form.

You can dock the property sheet on either side of the screen by right-
clicking the title bar. Docking ensures that the property sheet is never
hidden behind another tool.

X++ code editor
All X++ code is written with the X++ code editor. You open the editor by
selecting a node in the AOT and pressing Enter. The editor contains two
panes. The left pane shows the methods available, and the right pane
shows the X++ code for the selected method, as shown in Figure 2-11.

FIGURE 2-11 The X++ code editor.

The X++ code editor is a basic text editor that supports color coding and
IntelliSense.

Shortcut keys
Navigation and editing in the X++ code editor use standard shortcuts, as
described in Table 2-3. For AX 2012, some shortcuts differ from those in
earlier versions to align with commonly used integrated development
environments (IDEs) such as Microsoft Visual Studio.

TABLE 2-3 X++ code editor shortcut keys.

Editor scripts
The X++ code editor contains a set of editor scripts that you can invoke by
clicking the Script icon on the X++ code editor toolbar or by right-clicking
an empty line in the code editor, pointing to Scripts, and then clicking the
script you want. Built-in editor scripts provide functionality such as the
following:

 Send to mail recipient.
 Send to file.
 Generate code for standard code patterns such as main, construct,
and parm methods.

 Open the AOT for the element that owns the method.

 Note

By generating code, in a matter of minutes you can create a
new class with the right constructor method and the right
encapsulation of member variables by using parm methods.
Parm methods (parm is short for “parameter”) are used as
simple property getters and setters on classes. Code is
generated in accordance with X++ best practices.

 Tip

To add a main method to a class, add a new method, press
Ctrl+A to select all code in the editor tab for the new method,
type main, and then press the Tab key. This will replace the
text in the editor with the standard template for a static main
method.

The list of editor scripts is extendable. You can create your own scripts
by adding new methods to the EditorScripts class.

Label editor
The term label in AX 2012 refers to a localizable text resource. Text
resources are used throughout the product as messages to the user, form
control labels, column headers, Help text in the status bar, captions on
forms, and text on web forms, to name just a few uses. Labels are
localizable, meaning that they can be translated into most languages.
Because the space requirement for displaying text resources typically
depends on the language, you might fear that the actual user interface must
be manually localized as well. However, with IntelliMorph technology, the
user interface is dynamically rendered and honors any space requirements
imposed by localization.

The technology behind the label system is simple. All text resources are
kept in a Unicode-based label files that are named with three-letter
identifiers. In AX 2012, the label files are managed in the AOT and
distributed by using model files. Figure 2-12 shows how the Label Files
node in the AOT looks with multiple label files and the en-us language
identifier.

FIGURE 2-12 The Label Files node in the AOT.

The underlying source representation is a simple text file that follows
this naming convention:

Ax<Label file identifier><Locale>.ALD
The following are two examples, the first showing a U.S. English label

file and the second a Danish label file:
Axsysen-us.ALD
Axtstda.ALD

Each text resource in the label file has a 32-bit integer label ID, label
text, and an optional label description. The structure of the label file is
simple:

@<Label ID><Label text>
[Label description]

Figure 2-13 shows an example of a label file.

FIGURE 2-13 Label file opened in Notepad showing a few labels from the
en-us label file.

This simple structure allows for localization outside of AX 2012 with
third-party tools. The AOT provides a set of operations for the label files,
including an Export To Label file that can be used to extract a file for
external translation.

You can create new label files by using the Label File Wizard, which
you access directly from the Label Files node in the AOT, or from the
Tools menu by pointing to Wizards > Label File Wizard. The wizard
guides you through the steps of adding a new label file or a new language
to an existing label file. After you run the wizard, the label file is ready to
use. If you have an existing .ald file, you can also create the appropriate
entry in the AOT by using Create From File on the context menu of the
Label Files node in the AOT.

 Note

You can use any combination of three letters when naming a
label file, and you can use any label file from any layer. A
common misunderstanding is that the label file identifier must
match the layer in which it is used. AX 2012 includes a SYS
layer and a label file named SYS; service packs contain a SYP
layer and a label file named SYP. This naming standard was
chosen because it is simple, easy to remember, and easy to
understand. However, AX 2012 doesn’t impose any
limitations on the label file name.

Consider the following tips for working with label files:

 When naming a label file, choose a three-letter ID that has a high
chance of being unique, such as your company’s initials. Don’t
choose the name of the layer, such as VAR or USR. Eventually,
you’ll probably merge two separately developed features into the
same installation, a task that will be more difficult if the label file
names collide.

 When referencing existing labels, feel free to reference labels in the
label files provided by Microsoft, but avoid making changes to labels
in these label files because they are updated with each new version
of Microsoft Dynamics AX.

Creating a label
You use the Label editor to create new labels. You can start the Label
editor by using any of the following procedures:

 On the Tools menu, point to Label > Label Editor.
 On the X++ code editor toolbar, click the Lookup Label > Text
button.

 On text properties in the property sheet, click the Lookup button.
You can use the Label editor (shown in Figure 2-14) to find existing

labels. Reusing a label is sometimes preferable to creating a new one. You
can create a new label by pressing Ctrl+N or by clicking New.

FIGURE 2-14 The Label editor.

In addition to finding and creating new labels, you can use the Label
editor to find out where a label is used. The Label editor also logs any
changes to each label.

Consider the following tips when creating and reusing labels:
 When reusing a label, make sure that the label means what you
intend it to in all languages. Some words are homonyms (words that
have many meanings), and they naturally translate into many
different words in other languages. For example, the English word
can is both a verb and a noun. Use the description column to note the
intended meaning of the label.

 When creating a new label, ensure that you use complete sentences
or other stand-alone words or phrases. Don’t construct complete
sentences by concatenating labels with one or two words because the
order of words in a sentence differs from one language to another.

Referencing labels from X++
In the MorphX design environment, labels are referenced in the format
@<LabelFileIdentifier> <LabelID>. If you don’t want a label reference to
be converted automatically to the label text, you can use the literalStr
function. When a placeholder is needed to display the value of a variable,
you can use the strFmt function and a string containing %n, where n is
greater than or equal to 1. Placeholders can also be used within labels. The
following code shows a few examples:
Click here to view code image

// prints: Time transactions

print "@SYS1";

// prints: @SYS1

print literalStr("@SYS1");

// prints: Microsoft Dynamics is a Microsoft brand

print strFmt("%1 is a %2 brand", "Microsoft Dynamics",

"Microsoft");

pause;

The following are some best practices to consider when referencing
labels from X++:

 Always create user interface text by using a label. When referencing
labels from X++ code, use double quotation marks.

 Never create system text such as file names by using a label. When
referencing system text from X++ code, use single quotation marks.
You can place system text in macros to make it reusable.

Using single and double quotation marks to differentiate between
system text and user interface text allows the Best Practices tool to find
and report any hard-coded user interface text. The Best Practices tool is
described in depth later in this chapter.

Compiler
Whenever you make a change to X++ code, you must recompile, just as
you would in any other programming language. You start the recompile by
pressing F7 in the X++ code editor. Your code also recompiles whenever
you close the editor or save changes to an element.

The compiler also produces a list of the following information:
 Compiler errors These prevent code from compiling and should be
fixed as soon as possible.

 Compiler warnings These typically indicate that something is
wrong in the implementation. See Table 2-4, later in this section, for
a list of example compiler warnings. Compiler warnings can and
should be addressed. Check-in attempts with compiler warnings are
rejected unless specifically allowed in the version control system
settings.

TABLE 2-4 Example compiler warnings.

 Tasks (also known as to-dos) The compiler picks up single-line

comments that start with TODO. These comments can be useful
during development for adding reminders, but you should use them
only in cases in which implementation can’t be completed. For
example, you might use a to-do comment when you’re waiting for a
check-in from another developer. Be careful when using to-do
comments to postpone work, and never release code unless all to-dos
are addressed. For a developer, there is nothing worse than
debugging an issue and finding a to-do comment indicating that the
issue was already known but overlooked.

 Best practice deviations The Best Practices tool carries out more
complex validations. For more information, see the “Best Practices
tool” section later in this chapter.

 Note

Unlike other languages, X++ requires that you compile only
code you’ve modified, because the intermediate language the
compiler produces is persisted along with the X++ code and
metadata. Of course, your changes can require other methods
that consume your code to be changed and recompiled if, for
example, you rename a method or modify its parameters. If
the consumers are not recompiled, a run-time error is thrown
when they are invoked. This means that you can execute your
business application even when compile errors exist, as long
as you don’t use the code that can’t compile. Always ensure
that you compile the entire AOT when you consider your
changes complete, and fix any compilation errors found. If
you’re changing the class declaration somewhere in a class
hierarchy, all classes deriving from the changed class should
be recompiled, too. This can be achieved by using the
Compile Forward option under Add-Ins in the context menu
for the changed class node.

The Compiler Output window provides access to every issue found
during compilation, as shown in Figure 2-15. The window presents one list
of all relevant errors, warnings, best practice deviations, and tasks. Each
type of message can be disabled or enabled by using the respective
buttons. Each line in the list contains information about each issue that the
compiler detects, a description of the issue, and its location.

FIGURE 2-15 The powerful combination of the X++ code editor and the
Compiler Output window.

You can export the contents of the Compiler Output window. This
capability is useful if you want to share the list of issues with team
members. The exported file is an HTML file that can be viewed in Internet
Explorer or reimported into the Compiler Output window in another AX
2012 session.

In the Compiler Output window, click Setup > Compiler to define the
types of issues that the compiler should report. Compiler warnings are
grouped into four levels, as shown by the examples in Table 2-4. Each
level represents a certain level of severity, with 1 being the most critical
and 4 being recommended to comply with best practices.

Best Practices tool
Following Microsoft Dynamics AX best practices when you develop
applications has several important benefits:

 You avoid less-than-obvious pitfalls. Following best practices helps

you avoid many obstacles, even those that appear only in borderline
scenarios that would otherwise be difficult and time consuming to
detect and test. Using best practices allows you to take advantage of
the combined experience of Microsoft Dynamics AX expert
developers.

 Your learning curve is flattened. When you perform similar tasks in
a standard way, you are more likely to be comfortable in an
unknown area of the application. Consequently, adding new
resources to a project is more cost effective, and downstream
consumers of the code can make changes more readily.

 You are making a long-term investment. Code that conforms to
standards is less likely to require rework during an upgrade process,
whether you’re upgrading to AX 2012, installing service packs, or
upgrading to future releases.

 You are more likely to ship on time. Most of the problems
developers face when implementing a solution in Microsoft
Dynamics AX have been solved at least once before. Choosing a
proven solution results in faster implementation and less regression.
You can find solutions to known problems in both the Developer
Help section of the SDK and in the code base.

The AX 2012 SDK contains an important discussion about conforming
to best practices in AX 2012. Constructing code that follows proven
standards and patterns can’t guarantee a project’s success, but it minimizes
the risk of failure because of late, expensive discovery, and it decreases the
long-term maintenance cost. The AX 2012 SDK is available at
http://msdn.microsoft.com/en-us/library/aa496079.aspx.

The Best Practices tool is a powerful supplement to the best practices
discussion in the SDK. This tool is the MorphX version of a static code
analysis tool, similar to FxCop for the Microsoft .NET Framework. The
Best Practices tool is embedded in the compiler, and the results are
reported in the Compiler Output window the same way as other messages
from the compilation process.

The purpose of static code analysis is to detect defects and risky coding
patterns in the code automatically. The longer a defect exists, the more
costly it becomes to fix—a bug found in the design phase is much cheaper
to correct than a bug in shipped code running at several customer sites.
The Best Practices tool allows any developer to run an analysis of his or
her code and application model to ensure that it conforms to a set of
predefined rules. Developers can run analysis during development, and

http://msdn.microsoft.com/en-us/library/aa496079.aspx

they should always do so before implementations are tested. Because an
application in AX 2012 is much more than just code, the Best Practices
tool also performs static analysis on the metadata—the properties,
structures, and relationships that are maintained in the AOT.

The Best Practices tool displays deviations from the best practice rules,
as shown earlier in Figure 2-15. Double-clicking a line on the Best
Practices tab opens the X++ code editor on the violating line of code or, if
the Best Practices violation is related to metadata, it will open the element
in an AOT window.

Rules
The Best Practices tool includes about 400 rules, a small subset of the best
practices mentioned in the SDK. You can define the best practice rules that
you want to run in the Best Practice Parameters dialog box: on the Tools
menu, click Options > Development, and then click Best Practices.

 Note

You must set the compiler error level to 4 if you want best
practice rule violations to be reported. To turn off best
practice violation reporting, in the Compiler Output window,
click Setup > Compiler, and then set the compiler error level
to less than 4.

The best practice rules are divided into categories. By default, all
categories are turned on, as shown in Figure 2-16.

FIGURE 2-16 The Best Practice Parameters dialog box.

The best practice rules are divided into three levels of severity:
 Errors The majority of the rules focus on errors. Any check-in
attempt with a best practice error is rejected. You must take all errors
seriously and fix them as soon as possible.

 Warnings Following a 95/5 rule for warnings is recommended. This
means that you should treat 95 percent of all warnings as errors; the
remaining 5 percent constitute exceptions to the rule. You should
provide valid explanations in the design document for all warnings
you choose to ignore.

 Information In some situations, your implementation might have a
side effect that isn’t obvious to you or the user (for example, if you
assign a value to a variable but you never use the variable again).
These are typically reported as information messages.

Suppressing errors and warnings
The Best Practices tool allows you to suppress errors and warnings. A
suppressed best practice deviation is reported as information. This gives
you a way to identify the deviation as reviewed and accepted. To stop a
piece of code from generating a best practice error or warning, place a line

containing the following text just before the deviation:
//BP Deviation Documented

Only a small subset of the best practice rules can be suppressed. Use the
following guidelines for selecting which rules to suppress:

 Dangerous API exceptions When exceptions exist that are
impossible to detect automatically, examine each error to ensure the
correct implementation. Dangerous application programming
interfaces (APIs) are often responsible for such exceptions. A
dangerous API is an API that can compromise a system’s security
when used incorrectly. If a dangerous API is used, a suppressible
error is reported. You can use some so-called dangerous APIs when
you take certain precautions, such as using code access security
(CAS). You can suppress the error after you apply the appropriate
mitigations.

 False positives About 5 percent of all warnings are false positives
and can be suppressed. Note that only warnings caused by actual
code can be suppressed this way, not warnings caused by metadata.

After you set up the best practices, the compiler automatically runs the
best practices check whenever an element is compiled. The results are
displayed in the Best Practices list in the Compiler Output dialog box.

Some of the metadata best practice violations can also be suppressed,
but the process of suppressing them is different. Instead of adding a
comment to the source code, you add the violation to a global list of
ignored violations. This list is maintained in the macro named
SysBPCheckIgnore. This allows for central review of the number of
suppressions, which should be kept to a minimum. For more information,
see “Best Practice Checks” at http://msdn.microsoft.com/en-
us/library/aa874347.aspx.

Adding custom rules
You can use the Best Practices tool to create your own set of rules. The
classes used to check for rules are named SysBPCheck<Element type>.
You call the init, check, and dispose methods once for each node in the
AOT for the element being compiled.

One of the most interesting classes is SysBPCheckMemberFunction,
which is called for each piece of X++ code whether it is a class method,
form method, macro, or other method. For example, if developers don’t
want to include their names in the source code, you can implement a best

http://msdn.microsoft.com/en-us/library/aa874347.aspx

practice check by creating the following method on the
SysBPCheckMemberFunction class:
Click here to view code image

protected void checkUseOfNames()

{

 #Define.MyErrorCode(50000)

 container devNames = ['Arthur', 'Lars', 'Michael'];

 int i;

 int j,k;

 int pos;

 str line;

 int lineLen;

 for (i=scanner.lines(); i>0; i--)

 {

 line = scanner.sourceLine(i);

 lineLen = strLen(line);

 for (j=conLen(devNames); j>0; j--)

 {

 pos = strScan(line, conPeek(devNames, j), 1,

lineLen);

 if (pos)

 {

 sysBPCheck.addError(#MyErrorCode, i, pos,

 "Don't use your name!");

 }

 }

 }

}

To enlist the rule, make sure to call the preceding method from the
check method. Compiling this sample code results in the best practice
errors shown in Table 2-5.

TABLE 2-5 Best practice errors in checkUseOfNames.

In an actual implementation, names of developers would probably be
read from a file. Ensure that you cache the names to prevent the compiler
from going to the disk to read the names for each method being compiled.

 Note

The best practice check just shown also identified that the
code contained a variable named k that was declared, but
never referenced. This is one of the valuable checks that
ensures that the code can easily be kept up to date, which
helps avoid mistakes. In this case, k was not intended for a
specific purpose and can be removed.

Debugger
Like most development environments, MorphX features a debugger. The
debugger is a stand-alone application, not part of the AX 2012 shell like
the rest of the tools mentioned in this chapter. As a stand-alone
application, the debugger allows you to debug X++ in any of the following
AX 2012 components:

 AX 2012 client
 AOS
 Business Connector (BC.NET)

For other debugging scenarios, such as web services, Microsoft SQL
Server Reporting Services (SSRS) reports, and Enterprise Portal web
client, see Chapter 3, “AX 2012 and .NET.”

Enabling debugging
For the debugger to start, a breakpoint must be hit when X++ code is
executed. You set breakpoints by using the X++ code editor in the
Development Workspace. The debugger starts automatically when any
component hits a breakpoint.

You must enable debugging for each component as follows:
 In the Development Workspace, on the Tools menu, click Options >
Development > Debug, and then select When Breakpoint in the
Debug Mode list.

 From the AOS, open the Microsoft Dynamics AX Server
Configuration Utility under Start > Administrative Tools > Microsoft
Dynamics AX 2012 Server Configuration. Create a new
configuration, if necessary, and then select the check box Enable
Breakpoints to debug X++ code running on this server.

 For Enterprise Portal code that uses the BCPROXY context to run

interpreted X++ code, in the Microsoft Dynamics AX Server
Configuration Utility, create a new configuration, if necessary, and
select the check box Enable Global Breakpoints.

Ensure that you are a member of the local Windows security group
named Microsoft Dynamics AX Debugging Users. This is normally
ensured by using setup, but if you did not set up AX 2012 by using your
current account, you need to do this manually through Edit Local Users
And Groups in Windows Control Panel. This is necessary to prohibit
unauthorized debugging, which could expose sensitive data, provide a
security risk, or impose unplanned service disruptions.

 Caution

It is recommended that you do not enable any of the
debugging capabilities in a live environment. If you do,
execution will stop when it hits a breakpoint, and the client
will stop responding to users. Running the application with
debug support enabled also noticeably affects performance.

To set or remove breakpoints, press F9. You can set a breakpoint on any
line you want. If you set a breakpoint on a line without an X++ statement,
however, the breakpoint will be triggered on the next X++ statement in the
method. A breakpoint on the last brace will never be hit.

To enable or disable a breakpoint, press Ctrl+F9. For a list of all
breakpoints, press Shift+F9.

Breakpoints are persisted in the SysBreakpoints and SysBreakpointLists
database tables. Each developer has his or her own set of breakpoints. This
means that your breakpoints are not cleared when you close AX 2012 and
that other AX 2012 components can access them and break where you
want them to.

Debugger user interface
The main window in the debugger initially shows the point in the code
where a breakpoint was hit. You can control execution one step at a time
while inspecting variables and other aspects of the code. Figure 2-17
shows the debugger opened to a breakpoint with all the windows enabled.

FIGURE 2-17 Debugger with all windows enabled.

Table 2-6 describes the debugger’s various windows and some of its
other features.

TABLE 2-6 Debugger user interface elements.

 Tip

As a developer, you can provide more information in the
value field for your classes than what is provided by default.
The defaults for classes are New and Null. You can change the
defaults by overriding the toString method. If your class
doesn’t explicitly extend the object (the base class of all
classes), you must add a new method named toString,
returning and taking no parameters, to implement this
functionality.

Debugger shortcut keys
Table 2-7 lists the most important shortcut keys available in the debugger.

TABLE 2-7 Debugger shortcut keys.

Reverse Engineering tool
You can generate Visio models from existing metadata. Considering the
amount of metadata available in AX 2012 (more than 50,000 elements and
more than 18 million lines of text when exported), it’s practically
impossible to get a clear view of how the elements relate to each other just
by using the AOT. The Reverse Engineering tool is a great aid when you
need to visualize metadata.

 Note

You must have Visio 2007 or later installed to use the Reverse
Engineering tool.

The Reverse Engineering tool can generate a Unified Modeling
Language (UML) data model, a UML object model, or an entity
relationship data model, including all elements from a private or shared
project. To open the tool, in the Projects window, right-click a project or a
perspective, and point to Add-Ins > Reverse Engineer. You can also open
the tool by selecting Reverse Engineer from the Tools menu. In the dialog
box shown in Figure 2-18, you must specify a file name and model type.

FIGURE 2-18 The Reverse Engineering dialog box.

When you click OK, the tool uses the metadata for all elements in the
project to generate a Visio document that opens automatically. You can
drag elements from the Visio Model Explorer onto the drawing surface,
which is initially blank. Any relationship between two elements is
automatically shown.

UML data model
When generating a UML data model, the Reverse Engineering tool looks
for tables in the project. The UML data model contains a class for each
table and view in the project and the class’s attributes and associations.

The UML data model also contains referenced tables and all extended
data types, base enumerations, and X++ data types. You can include these
items in your diagrams without having to run the Reverse Engineering tool
again.

Fields in AX 2012 are generated as UML attributes. All attributes are
marked as public to reflect the nature of fields in AX 2012. Each attribute
also shows the type. The primary key field is underlined. If a field is a part
of one or more indexes, the field name is prefixed with the names of the
indexes; if the index is unique, the index name is noted in braces.

Relationships in AX 2012 are generated as UML associations. The
Aggregation property of the association is set based on two conditions in
metadata:

 If the relationship is validating (the Validate property is set to Yes),
the Aggregation property is set to Shared. This is also known as a
UML aggregation, represented by a white diamond.

 If a cascading delete action exists between the two tables, a
composite association is added to the model. A cascading delete
action ties the lifespan of two or more tables and is represented by a
black diamond.

Figure 2-19 shows a class diagram with the CustTable (customers),
InventTable (inventory items), SalesTable (sales order header), and
SalesLine (sales order line) tables. To simplify the diagram, some
attributes have been removed.

FIGURE 2-19 UML data model diagram.

The name of an association endpoint is the name of the relationship. The
names and types of all fields in the relationship appear in braces.

UML object model
When generating an object model, the Reverse Engineering tool looks for
Microsoft Dynamics AX classes, tables, and interfaces in the project. The
UML model contains a class for each Microsoft Dynamics AX table and

class in the project and an interface for each Microsoft Dynamics AX
interface in the project. The UML model also contains attributes and
operations, including return types, parameters, and the types of the
parameters. Figure 2-20 shows an object model of the most important
RunBase and Batch classes and interfaces in Microsoft Dynamics AX. To
simplify the view, some attributes and operations have been removed and
operation parameters are suppressed.

FIGURE 2-20 UML object model diagram.

The UML object model also contains referenced classes, tables, and all
extended data types, base enumerations, and X++ data types. You can
include these elements in your diagrams without having to run the Reverse

Engineering tool again.
Fields and member variables in AX 2012 are generated as UML

attributes. All fields are generated as public attributes, whereas member
variables are generated as protected attributes. Each attribute also shows
the type. Methods are generated as UML operations, including return type,
parameters, and the types of the parameters.

The Reverse Engineering tool also picks up any generalizations (classes
extending other classes), realizations (classes implementing interfaces),
and associations (classes using each other). The associations are limited to
references in member variables.

 Note

To get the names of operation parameters, you must reverse
engineer in debug mode. The names are read from metadata
only and are placed into the stack when in debug mode. To
enable debug mode, on the Development tab of the Options
form, select When Breakpoint in the Debug Mode list.

For more information about the elements in a UML diagram, see “UML
Class Diagrams: Reference” at http://msdn.microsoft.com/en-
us/library/dd409437.aspx.

Entity relationship data model
When generating an entity relationship data model, the Reverse
Engineering tool looks for tables and views in the project. The entity
relationship model contains an entity type for each AOT table in the
project and attributes for the fields in each table. Figure 2-21 shows an
entity relationship diagram (ERD) for the tables HcmBenefit (Benefit),
HcmBenefitOption (Benefit option), HcmBenefitType (Benefit type), and
HcmBenefitPlan (Benefit plan).

http://msdn.microsoft.com/en-us/library/dd409437.aspx

FIGURE 2-21 ERD using Crow’s Foot notation.

 Note

For AX 2012 R2, Microsoft has introduced a website that
hosts ERDs for the core tables in AX 2012 R2 application
modules. You can use the site to quickly get detailed
information about a large number of tables. To access the site,
go to
http://www.microsoft.com/dynamics/ax/erd/ax2012r2/Default.htm.

Fields in AX 2012 are generated as entity relationship columns.
Columns can be foreign key (FK), alternate key (AK), inversion entry (IE),
and optional (O). A foreign key column is used to identify a record in
another table, an alternate key uniquely identifies a record in the current
table, an inversion entry identifies zero or more records in the current table
(these are typical of the fields in nonunique indexes), and optional columns

http://www.microsoft.com/dynamics/ax/erd/ax2012r2/Default.htm

don’t require a value.
Relationships in AX 2012 are generated as entity relationships. The

EntityRelationshipRole property of the relationship is used as the foreign
key role name of the relation in the entity relationship data model.

 Note

The Reverse Engineering tool produces an ERX file. To work
with the generated file in Visio, do the following: In Visio,
create a new database model diagram, and then on the
\Database tab, point to Import > Import ERwin ERX File.
Afterward, you can drag relevant tables from the Tables And
Views pane (available from the Database tab) to the diagram
canvas.

Table Browser tool
The Table Browser tool is a small, helpful tool that can be used in
numerous scenarios. You can browse and maintain the records in a table
without having to build a user interface. This tool is useful when you’re
debugging, validating data models, and modifying or cleaning up data, to
name just a few uses.

To access the Table Browser tool, right-click any of the following types
of items in the AOT, and then point to Add-Ins > Table Browser:

 Tables
 Tables listed as data sources in forms, queries, and data sets
 System tables listed in the AOT under System
Documentation\Tables

 Note

The Table Browser tool is implemented in X++. You can find
it in the AOT under the name SysTableBrowser. It is a good
example of how to bind the data source to a table at run time.

Figure 2-22 shows the Table Browser tool when it is started from the
CustTrans table. In addition to the querying, sorting, and filtering
capabilities provided by the grid control, you can type an SQ SELECT

statement directly into the form by using X++ SELECT statement syntax
and see a visual display of the result set. This tool is a great way to test
complex SELECT statements. It fully supports grouping, sorting,
aggregation, and field lists.

FIGURE 2-22 The Table Browser tool showing the contents of the CustTrans
table demo data.

You can also choose to see only the fields from the auto-report field
group. These fields are printed in a report when the user clicks Print in a
form with this table as a data source. Typically, these fields hold the most
interesting information. This option can make it easier to find the values
you’re looking for in tables with many fields.

 Note

The Table Browser tool is just a standard form that uses
IntelliMorph. It can’t display fields for which the visible
property is set to No or fields that the current user doesn’t
have access to.

Find tool
Search is everything, and the size of AX 2012 applications calls for a
powerful and effective search tool.

 Tip

You can use the Find tool to search for an example of how to
use an API. Real examples can complement the examples
found in the documentation.

You can start the Find tool, shown in Figure 2-23, from any node in the
AOT by pressing Ctrl+F or by clicking Find on the context menu. The
Find tool supports multiple selections in the AOT.

FIGURE 2-23 The Find tool.

On the Name & Location tab, you define what you’re searching for and
where to look:

 In the Search list, the options are Methods and All Nodes. If you
choose All Nodes, the Properties tab appears.

 The Named box limits the search to nodes with the name you
specify.

 The Containing Text box specifies the text to look for in the method,
expressed as a regular expression.

 If you select the Show Source Code check box, results include a
snippet of source code containing the match, making it easier to
browse the results.

By default, the Find tool searches the node (and its subnodes) selected
in the AOT. If you change focus in the AOT while the Find tool is open,
the Look In value is updated. This is quite useful if you want to search
several nodes by using the same criterion. You can disable this behavior
by clearing the Use Selection check box.

On the Date tab, you specify additional ranges for your search, such as
Modified Date and Modified By.

On the Advanced tab, you can specify more advanced settings for your
search, such as the layer to search, the size range of elements, the type of
element, and the tier on which the element is set to run.

On the Filter tab, shown in Figure 2-24, you can write a more complex
query by using X++ and type libraries. The code in the Source text box is
the body of a method with the following profile:
Click here to view code image

boolean FilterMethod(str _treeNodeName,

 str _treeNodeSource,

 XRefPath _path,

 ClassRunMode _runMode)

FIGURE 2-24 Filtering in the Find tool.

The example in Figure 2-24 uses the class SysScannerClass to find any
occurrence of the ttsAbort X++ keyword. The scanner is primarily used to
pass tokens into the parser during compilation. Here, however, it detects
the use of a particular keyword. This tool is more accurate (though slower)
than using a regular expression because X++ comments don’t produce
tokens.

The Properties tab appears when All Nodes is selected in the Search list.
You can specify a search range for any property. Leaving the range blank
for a property is a powerful setting when you want to inspect properties: it
matches all nodes, and the property value is added as a column in the
results, as shown in Figure 2-25. The search begins when you click Find
Now. The results appear at the bottom of the dialog box as they are found.

FIGURE 2-25 Search results in the Find tool.

Double-clicking any line in the result set opens the X++ code editor and
sets the focus on the code example that matches. When you right-click the
lines in the result set, a context menu containing the Add-Ins menu opens.

Compare tool
Several versions of the same element typically exist. These versions might
emanate from various layers or revisions in version control, or they could
be modified versions that exist in memory. AX 2012 has a built-in
Compare tool that highlights any differences between two versions of an
element.

The comparison shows changes to elements, which can be modified in
three ways:

 A metadata property can be changed.
 X++ code can be changed.
 The order of subnodes can be changed, such as the order of tabs on a
form.

Starting the Compare tool
To open the Compare tool, right-click an element, and then click Compare.
A dialog box opens where you can select the versions of the element you
want to compare, as shown in Figure 2-26.

FIGURE 2-26 The Comparison dialog box.

The versions to choose from come from many sources. The following is
a list of all possible types of versions:

 Standard layered version types These include SYS, SYP, GLS,
GLP, FPK, FPP, SLN, SLP, ISV, ISP, VAR, VAP, CUS, CUP, USR,
and USP.

 Old layered version types (old SYS, old SYP, and so on) If a
baseline model store is present, elements from the files are available
here. This allows you to compare an older version of an element with
its latest version. For more information about layers and the baseline
model store, see Chapter 21, “Application models.”

 Version control revisions (Version 1, Version 2, and so on) You
can retrieve any revision of an element from the version control
system individually and use it for comparison. The version control
system is explained later in this chapter.

 Best practice washed version (Washed) A few simple best practice
issues can be resolved automatically by a best practice “wash.”
Selecting the washed version shows you how your implementation
differs from best practices. To get the full benefit of this, select the
Case Sensitive check box on the Advanced tab.

 Export/import file (XPO) Before you import elements, you can
compare them with existing elements (which will be overwritten
during import). You can use the Compare tool during the import
process (Command > Import) by selecting the Show Details check
box in the Import dialog box and right-clicking any elements that
appear in bold. Objects in bold already exist in the application.

 Upgraded version (Upgraded) MorphX can automatically create a
proposal for how a class should be upgraded. The requirement for
upgrading a class arises during a version upgrade. The Create
Upgrade Project step in the Upgrade Checklist automatically detects
customized classes that conflict with new versions of the classes. A

class is conflicting if you’ve changed the original version of the
class, and the publisher of the class has also changed the original
version. MorphX constructs the proposal by merging your changes
with the publisher’s changes to the class. MorphX requires access to
all three versions of the class—the original version in the baseline
model store, a version with your changes in the current layer in the
baseline model store, and a version with the publisher’s changes in
the same layer as the original. The installation program ensures that
the right versions are available in the right places during an upgrade.
Conflict resolution is shown in Figure 2-27.

FIGURE 2-27 How the upgraded version proposal is created.

 Note

You can also compare two different elements. To do this,
select two elements in the AOT, right-click, point to Add-Ins,
and then click Compare.

Figure 2-28 shows the Advanced tab, on which you can specify
comparison options.

FIGURE 2-28 Comparison options on the Advanced tab.

The following list describes the comparison options shown in Figure 2-
28:

 Show Differences Only All equal nodes are suppressed from the
view, making it easier to find the changed nodes. This option is
selected by default.

 Suppress Whitespace White space, such as spaces and tabs, is
suppressed into a single space during the comparison. The Compare
tool can ignore the amount of white space, just as the compiler does.
This option is selected by default.

 Case Sensitive Because X++ is not case sensitive, the Compare tool
is also not case sensitive by default. In certain scenarios, case
sensitivity is required and must be enabled, such as when you’re
using the best practice wash feature mentioned earlier in this section.
This option is cleared by default.

 Show Line Numbers The Compare tool can add line numbers to all
X++ code that is displayed. This option is cleared by default but can
be useful during an upgrade of large chunks of code.

Using the Compare tool
After you choose elements and set parameters, start the comparison by
clicking Compare. Results are displayed in a three-pane dialog box, as
shown in Figure 2-29. The top pane contains the elements and options that
you selected, the left pane displays a tree structure resembling the AOT,
and the right pane shows details that correspond to the item selected in the
tree.

FIGURE 2-29 Comparison results.

Color-coded icons in the tree structure indicate how each node has
changed. A red or blue check mark indicates that the node exists only in a
particular version. Red corresponds to the SYS layer, and blue corresponds
to the old SYS layer. A gray check mark indicates that the nodes are
identical but one or more subnodes are different. A not-equal-to sign (≠)
on a red and blue background indicates that the nodes are different in the
two versions.

 Note

Each node in the tree view has a context menu that provides
access to the Add-Ins submenu and the Open New Window
option. The Open New Window option provides an AOT
view of any element, including elements in old layers.

Details about the differences are shown in the right pane. Color coding
is also used in this pane to highlight differences the same way that it is in
the tree structure. If an element is editable, small action icons appear.
These icons allow you to make changes to code, metadata, and nodes,
which can save you time when performing an upgrade. A right or left

arrow removes or adds the difference, and a bent arrow moves the
difference to another position. These arrows always come in pairs, so you
can see where the difference is moved to and from. If a version control
system is in use, an element is editable if it is from the current layer and is
checked out.

Compare APIs
Although AX 2012 provides comparison functionality for development
purposes only, you can reuse the comparison functionality for other tasks.
You can use the available APIs to compare and present differences in the
tree structure or text representation of any type of entity.

The Tutorial_CompareContextProvider class shows how simple it is to
compare business data by using these APIs and present it by using the
Compare tool. The tutorial consists of two parts:

 Tutorial_Comparable This class implements the SysComparable
interface. Basically, it creates a text representation of a customer.

 Tutorial_CompareContextProvider This class implements the
SysCompareContextProvider interface. It provides the context for
comparison. For example, it creates a Tutorial_Comparable object
for each customer, sets the default comparison options, and handles
context menus.

Figure 2-30 shows a comparison of two customers, the result of running
the tutorial.

FIGURE 2-30 The result of comparing two customers by using the Compare
API.

You can also use the line-by-line comparison functionality directly in
X++. The static run method on the SysCompareText class, shown in the
following code, takes two strings as parameters and returns a container that
highlights differences in the two strings. You can also use a set of optional
parameters to control the comparison.
Click here to view code image

public static container run(str _t1,

 str _t2,

 boolean _caseSensitive = false,

 boolean _suppressWhiteSpace = true,

 boolean _lineNumbers = false,

 boolean _singleLine = false,

 boolean _alternateLines = false)

Cross-Reference tool
The concept of cross-references in AX 2012 is simple. If an element uses
another element, the reference is recorded. With cross-references, you can
determine which elements a particular element uses and which elements
other elements are using. AX 2012 provides the Cross-Reference tool for
accessing and managing cross-reference information.

Here are a couple of typical scenarios for using the Cross-Reference
tool:

 You want to find usage examples. If the product documentation
doesn’t help, you can use the Cross-Reference tool to find real
implementation examples.

 You need to perform an impact analysis. If you’re changing an
element, you need to know which other elements are affected by
your change.

You must update the Cross-Reference tool regularly to ensure accuracy.
The update typically takes several hours. The footprint in a database is
about 1.5 gigabytes (GB) for a standard application.

To update the Cross-Reference tool, on the Tools menu, point to >
Cross-Reference > Periodic > Update. Updating the Cross-Reference tool
also compiles the entire AOT because the compiler emits cross-reference
information.

 Tip

Keeping the Cross-Reference tool up to date is important if
you want its information to be reliable. If you work in a
shared development environment, you share cross-reference
information with your team members. Updating the Cross-
Reference tool nightly is a good approach for a shared
environment. If you work in a local development
environment, you can keep the Cross-Reference tool up to
date by enabling cross-referencing when compiling. This
option slows down compilation, however. Another option is
to update cross-references manually for the elements in a
project. To do so, right-click the project and point to Add-Ins
> Cross-Reference > Update.

In addition to the main cross-reference information, two smaller cross-

reference subsystems exist:
 Data model Stores information about relationships between tables. It
is primarily used by the query form and the Reverse Engineering
tool.

 Type hierarchy Stores information about class and data type
inheritance.

For more information about these subsystems and the tools that rely on
them, see the AX 2012 SDK (http://msdn.microsoft.com/en-
us/library/aa496079.aspx).

The information that the Cross-Reference tool collects is quite
comprehensive. You can find a complete list of cross-referenced elements
by opening the AOT, expanding the System Documentation node, and
clicking Enums and then xRefKind. When the Cross-Reference tool is
updating, it scans all metadata and X++ code for references to elements of
the kinds listed in the xRefKind subnode.

 Tip

It’s a good idea to use intrinsic functions when referring to
elements in X++ code. An intrinsic function can evaluate to
either an element name or an ID. The intrinsic functions are
named <Element type>Str or <Element type>Num,
respectively. Using intrinsic functions provides two benefits:
you have compile-time verification that the element you
reference actually exists, and the reference is picked up by the
Cross-Reference tool. Also, there is no run-time overhead.
Here is an example:

Click here to view code image

// Prints ID of MyClass, such as 50001

print classNum(myClass);

// Prints "MyClass"

print classStr(myClass);

// No compile check or cross-reference

print "MyClass";

For more information about intrinsic functions, see Chapter
20, “Reflection.”

http://msdn.microsoft.com/en-us/library/aa496079.aspx

To access usage information, right-click any element in the AOT and
point to Add-Ins > Cross-Reference > Used By. If the option isn’t
available, either the element isn’t used or the cross-reference hasn’t been
updated.

Figure 2-31 shows where the prompt method is used on the
RunBaseBatch class.

FIGURE 2-31 The Cross-Reference tool, showing where
RunBaseBatch.prompt is used.

When you view cross-references for a class method, the Application
hierarchy tree is visible, so that you can see whether the same method is
used on a parent or subclass. For types that don’t support inheritance, the
Application hierarchy tree is hidden.

Version control
The Version Control tool in MorphX makes it possible to use a version
control system, such as Microsoft Visual SourceSafe or Visual Studio
Team Foundation Server (TFS), to keep track of changes to elements in
the AOT. The tool is accessible from several places: from the Version
Control menu in the Development Workspace, from toolbars in the AOT
and the X++ code editor, and from the context menu on elements in the
AOT.

Using a version control system offers several benefits:
 Revision history of all elements All changes are captured, along
with a description of the change, making it possible to consult the
change history and retrieve old versions of an element.

 Code quality enforcement The implementation of version control in
AX 2012 enables a fully configurable quality standard for all check-
ins. With the quality standard, all changes are verified according to
coding practices. If a change doesn’t meet the criteria, it is rejected.

 Isolated development Each developer can have a local installation
and make all modifications locally. When modifications are ready,
they can be checked in and made available to consumers of the build.
A developer can rewrite fundamental areas of the system without
causing instability issues for others. Developers are also unaffected
by any downtime of a centralized development server.

Even though using a version control system is optional, it is strongly
recommended that you consider one for any development project. AX
2012 supports three version control systems: Visual SourceSafe 6.0 and
TFS, which are designed for large development projects, and MorphX
VCS. MorphX Version Control System (VCS) is designed for smaller
development projects that previously couldn’t justify the additional
overhead that using a version control system server adds to the process.
Table 2-8 shows a side-by-side comparison of the version control system
options.

TABLE 2-8 Overview of version control systems.

The elements persisted on the version control server are file
representations of the elements in the AOT. The file format used is the
standard Microsoft Dynamics AX export format (.xpo). Each .xpo file
contains only one root element.

There are no additional infrastructure requirements when you use
MorphX VCS, which makes it a perfect fit for partners running many

parallel projects. In such setups, each developer often works
simultaneously on several projects, toggling between projects and
returning to past projects. In these situations, the benefits of having a
change history are enormous. With just a few clicks, you can enable
MorphX VCS to persist the changes in the business database. Although
MorphX VCS provides many of the same capabilities as a version control
server, it has some limitations. For example, MorphX VCS does not
provide any tools for maintenance, such as making backups, archiving, or
labeling.

In contrast, Visual SourceSafe and TFS are designed for large projects
in which many developers work together on the same project for an
extended period of time (for example, an independent software vendor
building a vertical solution).

Figure 2-32 shows a typical deployment using Visual SourceSafe or
TFS, in which each developer locally hosts the AOS and the database.
Each developer also needs a copy of all .xpo files. When a developer
communicates with the version control server, the .xpo files are
transmitted.

FIGURE 2-32 Typical deployment using version control.

 Note

In earlier versions of Microsoft Dynamics AX, a Team Server
was required to assign unique IDs as elements were created.
AX 2012 uses a new ID allocation scheme, which eliminates
the need for the Team Server. For more information about

element IDs, see Chapter 21.

Element life cycle
Figure 2-33 shows the element life cycle in a version control system.
When an element is in a state marked with a lighter shade, it can be edited;
otherwise, it is read-only.

FIGURE 2-33 Element life cycle.

You can create an element in two ways:
 Create a new element.
 Customize an existing element, resulting in an overlayered version
of the element. Because elements are stored for each layer in the
version control system, customizing an element effectively creates a
new element.

After you create an element, you must add it to the version control
system. First, give it a proper name in accordance with naming
conventions, and then click Add To Version Control on the context menu.
After you create the element, you must check it in.

An element that is checked in can be renamed. Renaming an element
deletes the element with the old name and adds an element with the new
name.

Quality checks
Before the version control system accepts a check-in, it might subject the
elements to quality checks. You define what is accepted in a check-in
when you set up the version control system. The following checks are
supported:

 Compiler errors
 Compiler warnings
 Compiler tasks
 Best practice errors

When a check is enabled, it is carried out when you do a check-in. If the
check fails, the check-in stops. You must address the issue and restart the
check-in.

Source code casing
You can set the Source Code Titlecase Update tool, available on the Add-
Ins submenu, to execute automatically before elements are checked in to
ensure uniform casing in variable and parameter declarations and
references. You can specify this parameter when setting up the version
control system by selecting the Run Title Case Update check box.

Common version control tasks
Table 2-9 describes some of the tasks that are typically performed with a
version control system. Later sections describe additional tasks that you
can perform when using version control with AX 2012.

TABLE 2-9 Version control tasks.

Working with labels
Working with labels is similar to working with elements. To change,
delete, or add a label, you must check out the label file containing the
label. You can check out the label file from the Label editor dialog box.

The main difference between checking out elements and checking out
label files is that simultaneous checkouts are allowed for label files. This
means that others can change labels while you have a label file checked

out.
Figure 2-34 shows the Check In dialog box.

FIGURE 2-34 The Check In dialog box.

If you create a new label when using version control, a temporary label
ID is assigned (for example, @$AA0007 as opposed to @USR1921).
When you check in a label file, your changes are automatically merged
into the latest version of the file and the temporary label IDs are updated.
All references in the code are automatically updated to the newly assigned
label IDs. Temporary IDs eliminate the need for a central Team Server,
which was required for AX 2009, because IDs no longer have to be
assigned when the labels are created. If you modify or delete a label that
another person has also modified or deleted, your conflicting changes are
abandoned. Such lost changes are shown in the Infolog after the check-in
completes.

Synchronizing elements
Synchronization makes it possible for you to get the latest version of all
elements. This step is required before you can check in any elements. You
can initiate synchronization from the Development Workspace. On the
Version Control menu, point to Periodic > Synchronize.

Synchronization is divided into three operations that happen

automatically in the following sequence:
1. The latest files are copied from the version control server to the

local disk.
2. The files are imported into the AOT.
3. The imported files are compiled.

Use synchronization to make sure your system is up to date.
Synchronization won’t affect any new elements that you have created or
any elements that you have checked out.

Figure 2-35 shows the Synchronization dialog box.

FIGURE 2-35 The Synchronization dialog box.

Selecting the Force check box gets the latest version of all files, even if
they haven’t changed, and then imports every file.

When using Visual SourceSafe, you can also synchronize to a label
defined in Visual SourceSafe. This way, you can easily synchronize to a
specific build or version number.

Synchronization is not available with MorphX VCS.

Viewing the synchronization log
The way that you keep track of versions on the client depends on your
version control system. Visual SourceSafe requires that AX 2012 keep
track of itself. When you synchronize the latest version, it is copied to the
local repository folder from the version control system. Each file must be
imported into AX 2012 to be reflected in the AOT. To minimize the risk of
partial synchronization, a log entry is created for each file. When all files
are copied locally, the log is processed, and the files are automatically
imported into AX 2012.

When synchronization fails, the import operation is usually the cause of
the problem. Synchronization failure leaves your system in a partially
synchronized state. To complete the synchronization, restart AX 2012 and
restart the import. You use the synchronization log to restart the import,
and you access it from the Development Workspace menu at Version
Control > Inquiries > Synchronization log.

The Synchronization Log dialog box, shown in Figure 2-36, displays
each batch of files, and you can restart the import operation by clicking
Process. If the Completed check box is not selected, the import has failed
and should be restarted.

FIGURE 2-36 The Synchronization Log dialog box.

The Synchronization log is not available with MorphX VCS.

Showing the history of an element
One of the biggest advantages of version control is the ability to track
changes to elements. Selecting History on an element’s context menu
displays a list of all changes to an element, as shown in Figure 2-37.

FIGURE 2-37 Revision history of an element.

For each revision, this dialog box shows the version number, the action
performed, the time the action was performed, and who performed the
action. You can also see the change number and the change description.

A set of buttons in the History dialog box allows further investigation of
each version. Clicking Contents opens a form that shows other elements
included in the same change. Clicking Compare opens the Compare dialog
box, where you can do a line-by-line comparison of two versions of the
element. The Open New Window button opens an AOT window that
shows the selected version of the element, which is useful for investigating
properties because you can use the standard MorphX toolbox. Clicking
View File opens the .xpo file for the selected version in Notepad.

Comparing revisions
Comparison is the key to harvesting the benefits of a version control
system. You can start a comparison from several places, including from
the context menu of an element, by pointing to Compare. Figure 2-38
shows the Comparison dialog box, where two revisions of the form
CustTable are selected.

FIGURE 2-38 Comparing element revisions from version control.

The Compare dialog box contains a list of all checked-in versions, in
addition to the element versions available in other layers that are installed.

Viewing pending elements
When you’re working on a project, it’s easy to lose track of which
elements you’ve opened for editing. The Pending Objects dialog box,
shown in Figure 2-39, lists the elements that are currently checked out in
the version control system. Notice the column containing the action
performed on the element. Deleted elements are available only in this
dialog box; they are no longer shown in the AOT.

FIGURE 2-39 Pending elements.

You can access the Pending Objects dialog box from the Development
Workspace menu: Version Control > Pending Objects.

Creating a build
Because the version control system contains .xpo files and not a model
file, a build process is required to generate the model file from the .xpo
files. The following procedure provides a high-level overview of the build
process:

1. Use the CombineXPOs command-line utility to combine all .xpo
files into one. This step makes the .xpo file consumable by AX 2012.
AX 2012 requires all referenced elements to be present in the .xpo

file or to already exist in the AOT to maintain the references during
import.

2. Import the new .xpo file by using the command-line parameter -
AOTIMPORTFILE=<FileName.xpo>-MODEL=<Model Name> to
Ax32.exe. This step imports the .xpo file and compiles everything.
After this step is complete, the new model is ready in the model
store.

3. Export the model to a file by using the axutil command-line utility:
axutil export/model:<model name> /file:<model file name>.

4. Follow these steps for each layer and each model that you build.
The build process doesn’t apply to MorphX VCS.

Integrating AX 2012 with other version control systems
The implementation of the version control system in AX 2012 is fully
pluggable. This means that any version control system can be integrated
with AX 2012.

Integrating with another version control system requires a new class
implementing the SysVersionControlFileBasedBackEnd interface. It is the
implementation’s responsibility to provide the communication with the
version control system server being used.

Chapter 3. AX 2012 and .NET

In this chapter
Introduction
Integrating AX 2012 with other systems
Using LINQ with AX 2012 R3

Introduction
Complex systems, such as AX 2012, are often deployed in heterogeneous
environments that contain several disparate systems. Often, these systems
contain legacy data that might be required for running AX 2012, or they
might offer functionality that is vital for running the organization.

AX 2012 can be integrated with other systems in several ways. For
example, your organization might need to harvest information from old
Microsoft Excel files. To do this, you could write a simple add-in in
Microsoft Visual Studio and easily integrate it with AX 2012. Or your
organization might have an earlier system that is physically located in a
distant location and that requires invoice information to be sent to it in a
fail-safe manner. In this case, you could set up a message queue to perform
the transfers. You could use the Microsoft .NET Framework to interact
with the message queue from within AX 2012.

The first part of this chapter describes some of the techniques that you
can use to integrate AX 2012 with other systems by taking advantage of
managed code through X++ code. One way is to consume managed code
directly from X++ code; another way is to author or extend existing
business logic in managed code by using the Visual Studio environment.
To facilitate this interoperability, AX 2012 provides the managed code
with managed classes (called proxies) that represent X++ artifacts. This
allows you to write managed code that uses the functionality these proxies
provide in a typesafe and convenient manner.

Although it has long been possible to author managed code that can call
back into X++, one piece has been missing, without which the story has
been incomplete: there has been no easy way to access data in the
Microsoft Dynamics AX data stack from managed code. AX 2012 R3
solves this problem by introducing a LINQ provider. LINQ, short for
Language-Integrated Query, is a Microsoft technology that allows a
developer to supply a back-end database to a data provider and then query

the data from any managed language. The second part of this chapter
describes how to use LINQ to retrieve and manipulate AX 2012 R3 data
through managed code.

Integrating AX 2012 with other systems
This section describes some of the techniques that you can use to integrate
AX 2012 with other systems. The .NET Framework provides access to the
functionality that allows you to do so, and this functionality is used in AX
2012.

 Note

You can also make AX 2012 functionality available to other
systems by using services. For more information, see Chapter
12, “AX 2012 services and integration.”

Using third-party assemblies
Sometimes, you can implement the functionality that you are looking to
provide by using a managed component (a .NET assembly) that you
purchase from a third-party vendor. Using these dynamic-link libraries
(DLLs) can be—and often is—more cost effective than writing the code
yourself. These components are wrapped in managed assemblies in the
form of .dll files, along with their Program Database (.pdb) files, which
contain symbol information that is used in debugging, and their XML files,
which contain documentation that is used for Microsoft IntelliSense in
Visual Studio. Typically, these assemblies come with an installation
program that often installs the assemblies in the global assembly cache
(GAC) on the computer that consumes the functionality. This computer
can be on the client tier, on the server tier, or on both. Only assemblies
with strong names can be installed in the GAC.

Using strong-named assemblies
It is always a good idea to use a DLL that has a strong name, which means
that the DLL is signed by the author, regardless of whether the assembly is
stored in the GAC. This is true for assemblies that are installed on both the
client tier and the server tier. A strong name defines the assembly’s
identity by its simple text name, version number, and culture information
(if provided)—plus a public key and a digital signature. Assemblies with
the same strong name are expected to be identical.

Strong names satisfy the following requirements:
 Guarantee name uniqueness by relying on unique key pairs. No
one can generate the same assembly name that you can, because an
assembly generated with one private key has a different name than
an assembly generated with another private key.

 Protect the version lineage of an assembly. A strong name can
ensure that no one can produce a subsequent version of your
assembly. Users can be sure that the version of the assembly that
they are loading comes from the same publisher that created the
version the application was built with.

 Provide a strong integrity check. Passing the .NET Framework
security checks guarantees that the contents of the assembly have not
been changed since it was built. Note, however, that by themselves,
strong names do not imply a level of trust such as that provided by a
digital signature and supporting certificate.

When you reference a strong-named assembly, you can expect certain
benefits, such as versioning and naming protection. If the strong-named
assembly references an assembly with a simple name, which does not have
these benefits, you lose the benefits that you derive by using a strong-
named assembly and open the door to possible DLL conflicts. Therefore,
strong-named assemblies can reference only other strong-named
assemblies.

If the assembly that you are consuming does not have a strong name,
and is therefore not installed in the GAC, you must manually copy the
assembly (and the assemblies it depends on, if applicable) to a directory
where the .NET Framework can find it when it needs to load the assembly
for execution. It is a good practice to place the assembly in the same
directory as the executable that will ultimately load it (in other words, the
folder on the client or the server in which the application is located). You
might also want to store the assembly in the Client\Bin directory (even if it
is used on the server exclusively), so that the client can pick it up and use
it for IntelliSense.

Referencing a managed DLL from AX 2012
AX 2012 does not have a built-in mechanism for bulk deployment or
installation of a particular DLL on client or server computers, because
each third-party DLL has its own installation process. You must do this
manually by using the installation script that the vendor provides or by
placing the assemblies in the appropriate folders.

After you install the assembly on the client or server computer, you
must add a reference to the assembly in AX 2012 so that you can program
against it in X++. You do this by adding the assembly to the References
node in the Application Object Tree (AOT): right-click the References
node, and then click Add Reference. A dialog box like the one shown in
Figure 3-1 appears.

FIGURE 3-1 Adding a reference to a third-party assembly.

The top pane of the dialog box shows the assemblies that are installed in
the GAC. If your assembly is installed in the GAC, click Select to add the
reference to the References node. If the assembly is located in either the
Client\Bin or the Server\Bin binary directory, click Browse. A file browser
dialog box will appear where you can select your assembly. After you
choose your assembly, it will appear in the bottom pane and will be added
when you click OK.

Coding against the assembly in X++
After you add the assembly, you are ready to use it from X++. If you

install the code in the Client\Bin directory, IntelliSense features are
available to help you edit the code. You can now use the managed code
features of X++ to instantiate public managed classes, call methods on
them, and so on. For more information, see Chapter 4, “The X++
programming language.”

Note that there are some limitations to what you can achieve in X++
when calling managed code. One such limitation is that you cannot easily
code against generic types (or execute generic methods). Another stems
from the way the X++ interpreter works. Any managed object is
represented as an instance of type ClrObject, and this has some surprising
manifestations. For instance, consider the following code:
Click here to view code image

static void TestClr(Args _args)

{

 if (System.Int32::Parse("0"))

 {

 print "Do not expect to get here";

 }

 pause;

}

Obviously, you wouldn’t expect the code in the if statement to execute
because the result of the managed call is 0, which is interpreted as false.
However, the code actually prints the string literal because the return value
of the call is a ClrObject instance that is not null (in other words, true).
You can solve these problems by storing results in variables before use.
The assignment operator will correctly unpack the value, as shown in the
following example:
Click here to view code image

static void TestClr(Args _args)

{

 int i = System.Int32::Parse("0");

 if (i)

 {

 print "Do not expect to get here";

 }

 pause;

}

Writing managed code
Sometimes your requirements cannot be satisfied by using an existing
component and you have to roll up your sleeves and develop some code—

in either C# or Microsoft Visual Basic .NET. AX 2012 has great
provisions for this. The integration features of AX 2012 and Visual Studio
give you the luxury of dealing with X++ artifacts (classes, tables, and
enumerations) as managed classes that behave the way that a developer of
managed code would expect. The Microsoft Dynamics AX Business
Connector (BC.NET) manages the interaction between the two
environments. Broadly speaking, you can create a project in Visual Studio
as you normally would, and then add that project to the Visual Studio
Projects node in the AOT. This section walks you through the process.

This example shows how to create managed code in C# (Visual Basic
.NET could also be used) that reads the contents of an Excel spreadsheet
and inserts the contents into a table in AX 2012. This example is chosen to
illustrate the concepts described in this chapter rather than for the
functionality it provides.

 Note

The example in this section requires the
Microsoft.ACE.OLEDB.12.0 provider to read data from
Excel. You can download the provider from
http://www.microsoft.com/en-
us/download/confirmation.aspx?id=23734.

The process is simple. You author the code in Visual Studio, and then
add the solution to Application Explorer, which is just the name for the
AOT in Visual Studio. Then, functionality from AX 2012 is made
available for consumption by the C# code, which illustrates the proxy
feature.

Assume that the Excel file contains the names of customers and the date
that they registered as customers with your organization, as shown in
Figure 3-2.

http://www.microsoft.com/en-us/download/confirmation.aspx?id=23734

FIGURE 3-2 Excel spreadsheet that contains a customer list.

Also assume that you’ve defined a table (called, for example,
CustomersFromExcel) in the AOT that will end up containing the
information, subject to further processing. You could go about reading the
information from the Excel files from X++ in several ways. One way is by
using the Excel automation model; another is by manipulating the Office
Open XML document by using the XML classes. However, because it is
so easy to read the contents of Excel files by using ADO.NET, this is what
you decide to do. You start Visual Studio, create a C# class library called
ReadFromExcel, and then add the following code:
Click here to view code image

using System;

using System.Collections.Generic;

using System.Text;

namespace Contoso

{

 using System.Data;

 using System.Data.OleDb;

 public class ExcelReader

 {

 static public void ReadDataFromExcel(string

filename)

 {

 string connectionString;

 OleDbDataAdapter adapter;

 connectionString =

@"Provider=Microsoft.ACE.OLEDB.12.0;"

 + "Data Source=" + filename + ";"

 + "Extended Properties='Excel 12.0 Xml;"

 + "HDR=YES'"; // Since sheet has row with

column titles

 adapter = new OleDbDataAdapter(

 "SELECT * FROM [sheet1$]",

 connectionString);

 DataSet ds = new DataSet();

 // Get the data from the spreadsheet:

 adapter.Fill(ds, "Customers");

 DataTable table = ds.Tables["Customers"];

 foreach (DataRow row in table.Rows)

 {

 string name = row["Name"] as string;

 DateTime d = (DateTime)row["Date"];

 }

 }

 }

}

The ReadDataFromExcel method reads the data from the Excel file
given as a parameter, but it does not currently do anything with that data.
You still need to establish a connection to the AX 2012 system to store the
values in the table. There are several ways of doing this, but in this case,
you will simply use the AX 2012 table from the C# code by using the
proxy feature.

The first step is to make the Visual Studio project (that contains the
code) an AX 2012 citizen. You do this by selecting the Add
ReadFromExcel To AOT menu item on the Visual Studio project. After
you do this, the project is stored in the AOT and can use all of the
functionality that is available for nodes in the AOT. The project can be
stored in separate layers, can be imported and exported, and so on. The
project is stored in its entirety, and you can open Visual Studio to edit the
project by clicking Edit on the context menu, as shown in Figure 3-3.

FIGURE 3-3 Context menu for Visual Studio projects that are stored in the
AOT.

 Tip

You can tell that a project has been added to the AOT because
the Visual Studio project icon is updated with a small
Microsoft Dynamics AX icon in the lower-left corner.

With that step out of the way, you can use the version of the AOT that is
available in Application Explorer in Visual Studio to fetch the table to use
in the C# code (see Figure 3-4). If the Application Explorer window is not
already open, you can open it by clicking Application Explorer on the
View menu.

FIGURE 3-4 Application Explorer with an AX 2012 project open.

You can then create a C# representation of the table by dragging the
table node from Application Explorer into the project.

After you drag the table node into the Visual Studio project, you will
find an entry in the project that represents the table. The items that you
drag into the project in this way are now available to code against in C#,
just as though they had been written in C#. This happens because the drag
operation creates a proxy for the table under the covers; this proxy takes
care of the plumbing required to communicate with the AX 2012 system,
while presenting a high-fidelity managed interface to the developer.

You can now proceed by putting the missing pieces into the C# code to
write the data into the table. Modify the code as shown in the following
example:
Click here to view code image

 DataTable table = ds.Tables["Customers"];

 var customers = new

ReadFromExcel.CustomersFromExcel();

 foreach (DataRow row in table.Rows)

 {

 string name = row["Name"] as string;

 DateTime d = (DateTime)row["Date"];

 customers.Name = name;

 customers.Date = d;

 customers.Write();

 }

 Note

The table from AX 2012 is represented just like any other
type in C#. It supports IntelliSense, and the documentation
comments that were added to methods in X++ are available to
guide you as you edit.

The data will be inserted into the CustomersFromExcel table as it is read
from the ADO.NET table that represents the contents of the spreadsheet.
However, before either the client or the server can use this code, you must
deploy it. You can do this by setting the properties in the Properties
window for the AX 2012 project in Visual Studio. In this case, the code
will run on the client, so you set the Deploy to Client property to Yes.
There is a catch, though: you cannot deploy the assembly to the client
when the client is running, so you must close any AX 2012 clients prior to
deployment.

To deploy the code, right-click the Visual Studio project, and then click
Deploy. If all goes well, a Deploy Succeeded message will appear in the
status line.

 Note

You do not have to add a reference to the assembly, because a
reference is added implicitly to projects that you add to the
AOT. You need to add references only to assemblies that are
not the product of a project that has been added to the AOT.

As soon as you deploy the assembly, you can code against it in X++.
The following example illustrates a simple snippet in an X++ job:

Click here to view code image

static void ReadCustomers(Args _args)

{

 ttsBegin;

 Contoso.ExcelReader::ReadDataFromExcel(@"c:\Test\customers.xlsx");

 ttsCommit;

}

When this job runs, it calls into the managed code and inserts the
records into the AX 2012 database.

Debugging managed code
To ease the process of deploying after building, Visual Studio properties
let you define what happens when you run the AX 2012 project. You
manage this by using the Debug Target and Startup Element properties.
You can enter the name of an element to execute—typically, a class with a
suitable main method or a job. When you start the project in Visual Studio,
it will create a new instance of the client and execute the class or job. The
X++ code then calls back into the C# code where breakpoints are set. For
more information, see “Debugging Managed Code in Microsoft Dynamics
AX” at http://msdn.microsoft.com/en-us/library/gg889265.aspx.

An alternative to using this feature is to attach the Visual Studio
debugger to the running AX 2012 client (by clicking Attach To Process on
the Debug menu in Visual Studio). You can then set breakpoints and use
all of the functionality of the debugger that you normally would. If you are
running the Application Object Server (AOS) on your own computer, you
can attach to that as well, but you must have administrator privileges to do
so.

 Important

Do not debug in a production environment.

Proxies
As you can see, getting managed code to work with AX 2012 is quite
simple because of the proxies that are generated behind the scenes to
represent the AX 2012 tables, enumerations, and classes. In developer
situations, it is standard to develop the artifacts in AX 2012 iteratively and
then code against them in C#. This process is seamless because the proxies
are regenerated by Visual Studio at build time and thus are always
synchronized with the corresponding artifacts in the AOT; in other words,

http://msdn.microsoft.com/en-us/library/gg889265.aspx

the proxies never become out of date. In this way, proxies for AX 2012
artifacts differ from Visual Studio proxies for web services. Proxies for
web services are expected to have a stable application programming
interface (API) so that the server hosting the web service is not contacted
every time the project is built. Proxies are generated not only for the items
that the user has chosen to drop onto the Project node as described
previously. For instance, when a proxy is generated for a class, proxies
will also be generated for all of its base classes, along with all artifacts that
are part of the parameters for any methods, and so on.

To see what the proxies look like, place the cursor on a proxy name in
the code editor, such as CustomersFromExcel in the example, right-click,
and then click Go To Definition (or use the convenient keyboard shortcut
F12). All of the proxies are stored in the Obj/Debug folder for the project.
If you look carefully, you will notice that the proxies use BC.NET to do
the work of interfacing with the AX 2012 system. BC.NET has been
completely rewritten from the previous version to support this scenario; in
earlier versions of the product, BC.NET invariably created a new session
through which the interaction occurred. This is not the case for the new
version of BC.NET (at least when it is used as demonstrated here). That is
why the transaction that was started in the job shown earlier is active when
the records are inserted into the table. In fact, all aspects of the user’s
session are available to the managed code. This is the crucial difference
between authoring business logic in managed code and consuming the
business logic from managed code. When you author business logic, the
managed code becomes an extension to the X++ code, which means that
you can crisscross between AX 2012 and managed code in a consistent
environment. When consuming business logic, you are better off using the
services framework that AX 2012 provides and then consuming the service
from your application. This has big benefits in terms of scalability and
deployment flexibility.

Figure 3-5 shows how BC.NET relates to AX 2012 and .NET
application code.

FIGURE 3-5 Interoperability between AX 2012 and .NET code through
BC.NET.

To demonstrate the new role of BC.NET, the following example opens a
form in the client that called the code:
Click here to view code image

using System;

using System.Collections.Generic;

using System.Text;

namespace OpenFormInClient

{

 public class OpenFormClass

 {

 public void DoOpenForm(string formName)

 {

 Args a = new Args();

 a.name = formName;

 var fr = new FormRun(a);

 fr.run();

 fr.detach();

 }

 }

}

In the following example, a job is used to call managed code to open the
CustTable form:
Click here to view code image

static void OpenFormFromDotNet(Args _args)

{

 OpenFormInClient.OpenFormClass opener;

 opener = new OpenFormInClient.OpenFormClass();

 opener.DoOpenForm("CustTable");

}

 Note

The FormRun class in this example is a kernel class. Because
only an application class is represented in Application
Explorer, you cannot add this proxy by dragging it as
described earlier. Instead, drag any class from Application
Explorer to the Visual Studio project, and then set the file
name property of the class to Class.
<kernelclassname>.axproxy. In this example, the name would
be Class.FormRun.axproxy.

This would not have been possible with earlier versions of BC.NET
because they were basically faceless clients that could not display any user
interface. Now, BC.NET is actually part of the client (or server), and
therefore it can do anything the client or server can. In AX 2012 R2, you
can still use BC.NET as a stand-alone client, but that is not recommended
because that functionality is now better implemented by using services
(see Chapter 12). The Business Connector that is included with AX 2012
is built with .NET Framework 3.5. That means that it is easier to build the
business logic with this version of .NET; if you cannot do that for some
reason, you must add markup to the App.config file to compensate. If you
are using a program that is running .NET Framework 4.0 and you need to
use BC.NET through the proxies as described, you would typically add the
following markup to the App.config file for your application:
Click here to view code image

<configuration>

 <startup useLegacyV2RuntimeActivationPolicy="true">

 <supportedRuntime version="v4.0"

sku=".NETFramework,Version=v4.0"/>

 </startup>

</configuration>

Hot swapping assemblies on the server
The previous section described how to express business logic in managed
code. To simplify the scenario, code running on the client was used as an
example. This section describes managed code running on the server.

You designate managed code to run on the server by setting the Deploy
to Server property for the project to Yes, as shown in Figure 3-6.

FIGURE 3-6 Property sheet showing the Deploy to Server property set to
Yes.

When you set this property as shown in Figure 3-6, the assembly is
deployed to the server directory. If the server has been running for a while,
it typically will have loaded the assemblies into the current application
domain. If Visual Studio were to deploy a new version of an existing
assembly, the deployment would fail because the assembly would already
be loaded into the current application domain. To avoid this situation, the
server has the option to start a new application domain in which it executes
code from the new assembly. When a new client connects to the server, it
will execute the updated code in a new application domain while already-
connected clients continue to use the old version.

To use the hot-swapping feature, you must enable the option in the
Microsoft Dynamics AX Server Configuration Utility by selecting the
Allow Hot Swapping Of Assemblies When The Server Is Running check
box, as shown in Figure 3-7. To open the Microsoft Dynamics AX Server
Configuration Utility, on the Start menu, point to Administrative Tools,
and then click Microsoft Dynamics AX 2012 Server Configuration.

FIGURE 3-7 Allow hot swapping by using the Microsoft Dynamics AX
Server Configuration Utility.

 Note

The example in the previous section illustrated how to run and
debug managed code on the client, which is safe because the
code runs only on a development computer. You can debug
code that is running on the server (by starting Visual Studio as
a privileged user and attaching to the server process, as
described in the “Debugging managed code” section earlier in
this chapter). However, you should never do this on a
production server because any breakpoints that are
encountered will stop the managed code from running,
essentially blocking any users who are logged on to the server
and processes that are running. Also, you should not use hot
swapping in a production scenario because calling into
another application domain exacts a performance overhead.

The feature is intended only for development scenarios, where
the performance of the application is irrelevant.

Using LINQ with AX 2012 R3
As mentioned earlier, LINQ allows anyone to supply a back-end database
to a data provider and then query the data in a natural way from any
managed language. In addition to the AX 2012 R3 LINQ provider, there
are LINQ providers for many data storage systems, from managed object
graphs to Active Directory to traditional back-end databases such as
Microsoft SQL Server.

LINQ has two parts:
 Native support in the C# and Visual Basic .NET compilers, which
makes many (but not all) queries easy to read and write.

 Language features that make the extension and use of LINQ queries
possible. These features provide a layer of syntactic sugar—
shortcuts to achieving results that can be expressed in the language
in other ways. The following sections discuss these features briefly
because they are crucial to understanding how LINQ queries work
and how to use them. Later sections describe how to go beyond the
syntactic sugar when you need to so that you can achieve the results
you want.

The var keyword
By using the var keyword in declarations, you can omit the variable type,
because the type is determined by the value that the variable is initialized
to, as shown in the following example:

var i = 9;

As it turns out, using LINQ requires that you be able to return values of
types that cannot be described in the source language (the so-called
anonymous types), which is why the var keyword was introduced. You’ll
see how this works in the “Anonymous types” section later in this chapter.

Extension methods
Extension methods are a means of adding methods to classes that you
cannot modify, either because the classes are sealed or because you do not
have the source code. You can use extension methods to add methods to
such classes and call them as if the method were defined on that class.

However, the method can access only public members of the class.
In the following code, a static class called MyExtensions is defined.

(The name of the extension class is arbitrary.) This class features a public
static method, RemoveUnderscores, which is an extension method of the
string type. The type is defined through the use of the this keyword on the
first parameter; subsequent parameters become parameters of the extension
method.
Click here to view code image

static class MyExtensions

{

 public static string RemoveUnderscores(this string arg)

 {

 return arg.Replace("_", "");

 }

}

Because this method is a string extension method, you can use it just
like any other string method:
Click here to view code image

void Main()

{

 Console.WriteLine("The_Rain_In_Spain".RemoveUnderscores());

}

Anonymous types
Anonymous types provide a convenient way for you to encapsulate a set of
read-only properties into a single object without having to explicitly define
a type for the object first. The name of the type is generated by the C#
compiler and is not available at the source-code level.

You create anonymous types by using the new operator together with an
object initializer. Anonymous types are typically used in the select clause
of LINQ queries, but they don’t have to be. The following code contains
an example of an anonymous type. Note that the type cannot be described
in the language, so the var keyword is used.
Click here to view code image

public static void Test()

{

 var myValue = new { Name = "Jones", Age = 43 };

 Console.WriteLine("Name = {0}, Age = {1}",

myValue.Name, myValue.Age);

}

Even though the type of myValue cannot be declared, the compiler and
IntelliSense recognize the type, so the field names defined in the type can
be used, as shown in the code.

Lambda expressions
Lambda expressions are nameless functions that take zero or more
arguments. A special syntax was introduced for them, as shown in the
following example:

(Argument,...) => body
This syntax makes lambda expressions easy to use. The following

lambda function accepts an integer argument and returns an integer value:
Func<int,int> x = e => e + 4;

You will need lambda expressions when you use unsugared syntax for
LINQ queries. In later sections, you will see several ways in which these
lambda expressions are used.

Now that you know what you need to know about how C# makes LINQ
queries possible, you are ready to start using LINQ to access AX 2012 R3
data.

Walkthrough: constructing a LINQ query
This section contains a walkthrough that shows you how to build the
components you’ll need to run the examples in this chapter.

Create tables
The examples use two tables: one to contain records representing people
and the other to contain records representing loans. In AX 2012 R3, define
the tables as follows:

 The Person table contains the following fields, in addition to the
system fields:
FirstName: string

LastName: string

Age: real

Income: real

For good measure, put in an index on the RecId system field.
 The Loan table is even simpler, consisting only of two fields:

Amount: real

PersonId: RefRecId

The table represents loans that are taken by people referenced in the
PersonId field.

You might find it useful to add some sample data to the tables and check
to ensure that the results are what you expect. Either you can create some
simple forms to do this, or you can run the following X++ code to insert
data to use when you run the examples:
Click here to view code image

static void PopulateLinqExampleData(Args _args)

{

 Person pTbl;

 Loan lTbl;

 int i;

 void InsertPerson(str fName, str lName, int age, real

income)

 {

 Person p;

 p.FirstName = fName;

 p.LastName = lName;

 p.Age = age;

 p.Income = income;

 p.insert();

 }

 void InsertLoan(String30 personLastName, real

loanAmount)

 {

 Person person;

 Loan l;

 int personID;

 select * from person where person.LastName ==

personLastName;

 l.PersonID = person.RecID;

 l.Amount = loanAmount;

 l.insert();

 }

 // Make sure there is no data in the table before

insert

 delete_from pTbl;

 delete_from lTbl;

 //Add person data.

 for(i=0; i<20; i++)

 {

 InsertPerson('FirstName' + int2str(i), 'LastName' +

int2str(i),

 25 + 2*i, 10000 + i * 1000);

 }

 //Insert a few loans.

 InsertLoan('LastName0', 6400);

 InsertLoan('LastName0', 5400);

 InsertLoan('LastName4', 13450);

 InsertLoan('LastName8', 100);

 InsertLoan('LastName10', 48000);

 InsertLoan('LastName8', 17850);

 InsertLoan('LastName15', 32000);

}

Create a console application
The next step is to create a simple console application to run the queries:

1. In Visual Studio, create a C# console application called
LinqProviderSample, and add references to the DLLs necessary to
run LINQ queries. These DLLs are located in the client’s \bin
directory in your AX 2012 R3 installation:
• Microsoft.Dynamics.AX.Framework.Linq.Data.dll
• Microsoft.Dynamics.AX.Framework.Linq.Data.Interface.dll
•

Microsoft.Dynamics.AX.Framework.Linq.Data.ManagedInteropLayer.dll
• Microsoft.Dynamics.AX.ManagedInterop.dll
• Microsoft.Dynamics.AX.ManagedInteropCore32.dll

2. To use the two tables you just created, you’ll need to add a proxy for
each of them so that you can consume their data and methods in a
typesafe manner. To do this, open Visual Studio Application
Explorer and drag the two tables you created earlier into your
project, as shown in Figure 3-8. This action causes tooling in Visual
Studio to generate proxies for the tables, in addition to other proxies
that are needed.

FIGURE 3-8 LinqProviderSample in Visual Studio.

3. Now you are ready to add some code for your console application.
The first example will just write the contents of the Person table out
to the console.

Click here to view code image

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Microsoft.Dynamics.AX.Framework.Linq.Data;

using Microsoft.Dynamics.AX.ManagedInterop;

namespace Test

{

 class Program

 {

 static void Main(string[] args)

 {

 // Log on to AX 2012 R3. Create a

session and log on.

 Session axSession = new Session();

 axSession.Logon(null, null, null, null);

 // Create a provider needed by LINQ and

create a collection of customers.

 QueryProvider provider = new

AXQueryProvider(null);

 var people = new QueryCollection<Person>

(provider);

 var peopleQuery = from p in people

select p;

 foreach (var person in peopleQuery)

 {

 Console.WriteLine(person.LastName);

 }

 axSession.Logoff();

 }

 }

}

The Main method first creates a session that serves as the connection to
the AX 2012 R3 system. In this case, you are logging on by using the
default credentials for the computer. The query provider instance (called
provider) is a handle that is used to provide a collection of objects that is
then used in the query. The people variable holds such an instance, and it
is used in the peopleQuery query. The query is used in a foreach loop to
traverse the person records and show the name recorded on each one.

Note that the query is not actually executed before the first data is
requested. In other words, the query declaration does not cause any
requests to be made to SQL Server before the foreach statement executes.
This fact allows you to build composable queries—that is, you can build
queries in steps, adding criteria as needed, until the first data is requested.
You will see examples of composable queries in the following
walkthroughs.

Using queries to read data
The walkthrough in the previous section gave you a taste of how to read
data from the AX 2012 R3 data stack through the Microsoft Dynamics AX
LINQ provider. This section goes a little deeper into how to use the LINQ
provider to build queries to solve data access problems in C#.

where clauses
The query in the previous walkthrough is very basic—it does not even
filter the records that were returned on any particular criterion. To filter the
records, you need to provide a where clause that expresses the criterion

that must be satisfied by the records selected.
Suppose that you want to return a list of people who are older than 70.

You can get this set of people by adding a where clause to the query:
Click here to view code image

QueryCollection<Person> people = new

QueryCollection<Person>(provider);

...

var query = from p in people

 where p.Age > 70

 select p;

The expression provided after the where keyword can be any valid C#
expression that evaluates to a Boolean value (true or false). Often, the
where clause will contain references to a record instance (in this case, type
Person). The name of this variable (p in this case) is provided in the from
clause.

order by clauses
Sometimes, you might want to guarantee that records arrive in a
predefined order. In X++, you would apply an order by clause, and that is
exactly what you do with LINQ:

var query = from p in people

 where p.Age > 70

 orderby p.AccountNum

 select p;

You can also specify whether the order is ascending (the default) or
descending by using the proper keyword:
Click here to view code image

var query = from p in people

 where p.Age > 70

 orderby p.AccountNum descending

 select p;

join clauses
Selecting data from only one table is not very useful. You need to be able
to select records from multiple tables at the same time and perform joins
on the result. Not surprisingly, LINQ queries include a join clause that you
can use for this purpose:
Click here to view code image

QueryCollection<Person> people = new

QueryCollection<Person>(provider);

QueryCollection<Loan> loans = new QueryCollection<Loan>

(provider);

var personWithLargeLoan =

 from l in loans

 join p in people on l.PersonID equals p.RecId

 where l.Amount > 20000

 select new { Name = p.LastName + " " + p.FirstName,

Amount = l.Amount };

When this query executes, it returns a value that contains the name and
loan amount of every person who has a loan with an amount greater than
20,000. The person and the loan are tied together by the join ... on ...
clause. The value returned is the first example in this chapter where
anonymous types are used. The type of the following expression is
anonymous and cannot be declared in C#:
Click here to view code image

new { Name = p.LastName + " " + p.FirstName, Amount =

l.Amount };

Aggregates
Often, you might want to use SQL Server to aggregate the selected data for
you. This is the purpose of the aggregation functions AVG (average), SUM
(sum), COUNT, MIN (minimum), and MAX (maximum). Using these
aggregation functions is far more efficient than fetching all of the records,
moving them to the client tier, and doing the calculations there.

The following query calculates the average age of the population
represented in the database:
Click here to view code image

var averageAge = personCollection.Average(pers =>

pers.Age);

Console.WriteLine(averageAge);

This example uses the extension method approach to LINQ and moves
beyond relying on the syntactic sugar that C# provides. Notice that the
field to be averaged (Age) is provided in the form of a lambda expression,
taking a person instance (called pers in this example, but the name is
immaterial) and mapping it onto the age of that person.

The following example expands on that theme. This code contains
another lambda expression to specify the criterion for records to be
included in the count:
Click here to view code image

// Cost of salaries per month

var costOfSalaries = personCollection.Sum(pers =>

pers.Income);

Console.WriteLine(costOfSalaries);

// Get the number of persons with income greater than 20K

var noOfRecords = personCollection.Where(pers =>

pers.Income > 20000).Count();

Console.WriteLine(noOfRecords);

Projections
Projections describe what you are selecting from the records that you are
retrieving. In most of the earlier examples in this chapter, you returned the
records themselves, and you saw that you can use an instance of an
anonymous type, which was described earlier as one of the C# features
that makes LINQ queries possible. In this case, a new anonymous type is
created that contains the fields Name and Amount:
Click here to view code image

var allLoans = from l in loanCollection

 join p in personCollection on l.PersonID

equals p.RecId

 select new {Name = p.LastName + " " +

p.FirstName, Amount = l.Amount};

However, the expressions are not limited to anonymous types. In this
case, the expression simply concatenates strings containing a first and last
name into a full name, returning a sequence of strings:
Click here to view code image

var nameList = from pers in personCollection

 select string.Format("{0} {1}",

pers.FirstName, pers.LastName);

foreach (var fullName in nameList)

{

 Console.WriteLine(fullName);

}

Take and Any extension methods
Imagine that you are interested in retrieving only a predefined number of
records. In X++, you can apply hints to select statements that allow you to
fetch 1, 10, 100, or 1,000 elements. But with the LINQ provider, you can
be much more fine-grained in your requests. The Take extension method
lets you specify the number of records to fetch. The following query
returns only the first five elements in the Person table, ordered by age:

Click here to view code image

var take5 = personCollection.OrderBy(p => p.Age).Take(5);

Take is a generalization of the FirstOnly hints that are available in X++.
However, FirstOnly hints exist only for 1, 10, 100, and 1,000 records,
whereas you can provide any expression in the Take extension method.

It is often useful to check whether any records satisfy a particular
constraint. You can use the Any extension method for these scenarios:
Click here to view code image

var anyone = personCollection.Any();

This statement returns a value of true if there are any records in the
Person table. Often, you might want to check whether some criterion is
satisfied by any of the records in the table. For this purpose, you can apply
a lambda expression specifying the criterion in the Any extension method:
Click here to view code image

var anyone = personCollection.Any(p => p.Income > 100000);

Note that the results in this case are not enumerable values; they simply
evaluate to a Boolean value.

You can also check whether a specified criterion is satisfied for all
records:
Click here to view code image

var adults = personCollection(p => p.Age >= 18);

AX 2012 R3–specific extension methods
The earlier examples in this chapter used both the features provided by the
C# compiler to express the queries and the extension methods that use
lambdas. The former led to queries that bear more than a superficial
resemblance to the queries you would write in many other environments.
However, the AX 2012 R3 data stack has several unique features. These
features can be used to good effect in managed code through LINQ, but
the C# compiler obviously has no knowledge of them; they are accessible
only through extension methods, not in the syntax that C# provides. This
section illustrates some of these extension methods.

CrossCompany
You can use the CrossCompany extension method when you want to select
data for one or more named companies.

This example returns a Boolean value that is true if there are any people
in the CEC company who are in an age group that is likely to apply for a
home loan:
Click here to view code image

var people = new QueryCollection<Person>(provider);

var mayLookForHouseLoan = from pers in people

 where 30 <= pers.Age && pers.Age <= 40

 select pers;

if (onlyInCEC)

{

 mayLookForHouseLoan = mayLookForHouseLoan

.CrossCompany("CEC").Any();

}

var b = mayLookForHouseLoan .Any(); // Force selection in

the database.

You can call the CrossCompany extension method with up to seven
strings designating different companies from which to include data. If you
use this extension method without parameters, data from all companies is
included. If you do not include the CrossCompany extension method in
your query, you will get data from the current company only.

This code illustrates the composability of LINQ queries. Because the
query is not actually executed before the first record is requested (typically
in a foreach loop, but here by the usage of the Any predicate), you can add
to it as required by the code. This is not possible in X++.

validTimeState
Tables can be configured to include valid time and state information. This
is typically done for tables that contain data that is time sensitive, such as
rates of exchange, where the rates are valid only for a particular time.

Basically, this means that the queries you make against these tables are
relative to today’s date unless you use the validTimeState keyword. You
can use the validTimeState extension method to query for values on the
specified date or within the specified range, as shown in the following
example:
Click here to view code image

var endOfYearExchangeQueryToday = rates

 .Where(rate => rate.From.Compare("USD") &&

rate.To.Compare("DKK");

var endOfYearExchangeQueryYearEnd = rates

 .Where(rate => rate.From.Compare("USD") &&

rate.To.Compare("DKK")

 .Where(rate => rate.ValidFrom.Equal(new DateTime(2013,

12, 31))

Note the second example, in which multiple where clauses are provided
to enhance readability. The system will create the resulting expression at
run time.

Updating, deleting, and inserting records
So far, the examples in this chapter have illustrated how to create
collections of data and then consume the data from C# by using the LINQ
provider. This is certainly an important scenario, but it is not the only one.
There are also situations where you need to update existing data, delete
existing data, and insert new data. As it happens, the way to do this is
almost identical to what you would do in X++.

All of the following examples execute on the client tier; they are not set-
based operations. This is one of the restrictions of the LINQ provider:
there is currently no way to collect changes and then deliver them to the
database for batch execution.

Updating records
Suppose you want to increase each person’s income by 1,000. The code to
do so might look something like this:
Click here to view code image

RuntimeContext c = RuntimeContext.Current;

c.TTSBegin();

var updateAblePersonCollection =

personCollection.ForUpdate().Take(4);

foreach (var person in updateAblePersonCollection)

{

 person.Income = person.Income + 1000;

 person.Update();

}

c.TTSCommit();

The code is straightforward: you get the current run-time context from
the static class called RuntimeContext. This instance can manage
transactions, so you start a transaction, get four records to update (by using
the ForUpdate extension method), and traverse them, adding 1,000 to the

income of each person. When you are finished updating the fields in the
table, you call the Update method on the table instance. Finally, you save
the values by committing the transaction.

Inserting records
Inserting records works along the same lines as updating records.
However, no functionality from the LINQ provider is involved. (The
example is included here for the sake of completeness.) The insertion is
accomplished by calling the Insert method on the instance of a table within
the scope of a transaction. The following example defines a new record for
the Person table, inserts the record, and then commits the transaction:
Click here to view code image

RuntimeContext c = RuntimeContext.Current;

c.TTSBegin();

var newPers = new Person();

newPers.FirstName = "NewPersonFirstName";

newPers.LastName = "NewPersonLastName";

newPers.Age = 50;

newPers.Income = 56000;

newPers.Insert();

c.TTSCommit();

Deleting records
Deleting records is as simple as updating records, as you can see from the
following code. The following example deletes all loan records that have a
balance of zero:
Click here to view code image

c.TTSBegin();

var loansToDelete = loans.ForUpdate().Where(p => p.Amount

== 0.0m);

foreach (var loan in loansToDelete)

{

 loan.Delete();

}

c.TTSCommit();

The deletion is performed by calling the Delete method on the table
instance inside a transaction. Note that the records must be selected by
using the ForUpdate extension method, as shown.

Limitations
As described earlier, the C# compiler has some built-in knowledge of
LINQ syntax, but C# has no knowledge of the actual provider that is used
to fetch the data at run time. A query that you author in C# is transformed
into a format that can retrieve data from a specific data provider (in this
case, AX 2012 R3) at run time. This has the following consequences:

 Overhead is exacted before records are fetched, because the LINQ
provider must convert the query from C# to a data structure that is
known to the AOS. For information about how to limit this
overhead, see the next section, “Advanced: Limiting overhead.”

 Some queries can be represented perfectly in C# but fail at run time
because of limitations of the back-end data provider. This is a result
of the architecture of LINQ. For example, the AX 2012 R3 data
access stack does not support HAVING clauses (criteria used to
select groups introduced with GROUP BY clauses). You might be
tempted to write a query in C# such as the following:

Click here to view code image

var ages = from person in personCollection

 group person by person.Age into ageGroup

 where ageGroup.Count() > 4

 select ageGroup;

However, this query would fail at run time because the back end
does not support it.

Advanced: limiting overhead
This section takes a closer look at how the C# compiler compiles a LINQ
query. The following discussion pertains both to queries written in sugared
and unsugared syntax: the compiler removes the syntactic sugar at compile
time.

The C# compiler compiles the lambdas that are used as arguments to the
extension methods into code that generates a tree structure at run time. As
described earlier, this tree must be converted to the data structure that the
AOS can use every time a query executes. This happens to be another tree
structure—the same tree that the X++ compiler would have built for the
same query. The AOS does not know whether the query it is executing
comes from X++ or through the LINQ provider. This transformation from
one tree structure to another means that LINQ queries exact a certain
amount of overhead. For some scenarios, it is valuable to limit this

overhead so that it occurs only once. You can accomplish this by
compiling the queries before they are used. The key to understanding why
this works lies in the difference between lambda functions expressed as
functions that can be executed and their expression trees.

When lambdas were introduced earlier, the type of the lambda was
specified as Func<int, int>:

Func<int, int> l = e => e + 4;

This is obviously a function taking an integer argument and returning an
integer value. The convention taken by the C# compiler and .NET is that a
lambda function returning a value of type T and taking multiple parameters
of type Pi has the following type:

Func<P1, P2, ..., Pn, T>

These values can be used to call the lambda function:
Click here to view code image

Console.WriteLine("The value is {0}", l(9)); //Returns 9 +

4 = 13.

However, there is another way to interpret lambda functions. Instead of
being treated as functions, they can be treated directly as the trees they
form. This is accomplished by introducing the type Expression<>:
Click here to view code image

Expression<Func<int, int>> expression = e => e + 4;

Values of this type cannot be invoked to calculate a value, but you can
certainly inspect them in the debugger, as shown in Figure 3-9.

FIGURE 3-9 Visual Studio debugger containing lambda functions.

This provides a glimpse into how the LINQ provider works: the
expression is a value containing the lambda function broken down into its
constituent parts. This tree is what is converted into a value that can be
interpreted by the AOS.

Such expression values have an important property. They can be
compiled into a delegate by using the .Compile() method:
Click here to view code image

var compiledexpression = expression.Compile();

The compiled expression is now executable, so you can do the
following:
Click here to view code image

Console.WriteLine("The value is {0}",

compiledExpression(9)); // returns 9 + 4 = 13.

Because the compilation has now taken place, no further processing is
required every time the query is called.

An example will make this easier to understand. Reconsider the
example shown earlier in the section about the CrossCompany extension
method, where the records representing people in the age range of 30
through 40 were selected. For the purposes of this example, this selection

has been generalized to a query that takes two parameters that hold the
ages at the top and bottom of the range that is being requested, as shown in
the following code:
Click here to view code image

int fromAge, toAge;

var personBetweenAges = from pers in personCollection

 where fromAge <= pers.Age && pers.Age <= toAge

 select pers;

foreach (var person in personBetweenAges)

{

 Console.WriteLine("{0}", person.Age);

}

The next step is to wrap the query into a function that takes the required
parameters:

 The query collection from which to pick the people
 The from age
 The to age

The ternary function returns an instance of the IQueryable<Person>
interface. The code looks like this:
Click here to view code image

Func<QueryCollection<Person>, int, int, IQueryable<Person>>

generator =

 (collection, f, t) => collection.Where(p => (f <= p.Age

&& p.Age <= t));

This can readily be transformed into the corresponding tree:
Click here to view code image

Expression< Func<QueryCollection<Person>, int, int,

IQueryable<Person>>> tree =

 (collection, f, t) => collection.Where(p => p.Age > f

&& p.Age < t);

This, in turn, can be compiled into a delegate:
Click here to view code image

var compiledQuery = tree.Compile();

The end result is a delegate that can be called with the parameters you
want:
Click here to view code image

foreach (var p in compiledQuery(personCollection, 30, 40))

{

 Console.WriteLine("{0}", p.Age);

}

You can repeat this call any number of times without incurring the cost
of the compilation.

Chapter 4. The X++ programming language

In this chapter
Introduction
Jobs
The type system
Syntax
Classes and interfaces
Code access security
Compiling and running X++ as .NET CIL
Design and implementation patterns

Introduction
X++ is an object-oriented, application-aware, and data-aware
programming language. The language is object oriented because it
supports object abstractions, abstraction hierarchies, polymorphism, and
encapsulation. It is application-aware because it includes keywords such as
client, server, changecompany, and display that are useful for writing
client/server enterprise resource planning (ERP) applications. And it is
data-aware because it includes keywords such as firstFast,
forceSelectOrder, and forUpdate, in addition to using a database query
syntax, all of which are useful for programming database applications.

You use the AX 2012 designers and tools to edit the structure of
application types. You specify the behavior of application types by writing
X++ source code in the X++ editor. The X++ compiler compiles this
source code into bytecode intermediate format. Starting with AX 2012 R2,
you can also use the AxBuild.exe tool to compile X++ source code into
bytecode. AxBuild.exe performs the compile on the Application Object
Server (AOS), and divides the task into several processes that run in
parallel. This greatly reduces the duration of the compile operation. Model
data, X++ source code, intermediate bytecode, and .NET common
intermediate language (CIL) code are stored in the model store. For more
information about AxBuild.exe, see “AxBuild.exe for Parallel Compile on
AOS of X++ to p-code” at http://msdn.microsoft.com/en-
us/library/dn528954.aspx.

The AX 2012 runtime dynamically composes object types by loading

http://msdn.microsoft.com/en-us/library/dn528954.aspx

overridden bytecode from the highest-level definition in the model
layering stack. Objects are instantiated from these dynamic types.
Similarly, the compiler produces .NET CIL from the X++ source code
from the highest layer. For more information about the AX 2012 layering
technology, see Chapter 21, “Application models.”

This chapter describes the AX 2012 runtime type system and the
features of the X++ language that are essential to writing ERP
applications. It will also help you avoid common programming pitfalls that
stem from implementing X++. For an in-depth discussion of the type
system and the X++ language, refer to the AX 2012 software development
kit (SDK), available on MSDN.

Jobs
Jobs are globally defined functions that execute in the Windows client
runtime environment. Developers frequently use jobs to test a piece of
business logic because jobs are easily executed from within the MorphX
development environment by either pressing F5 or clicking Go on the
command menu. However, you shouldn’t use jobs as part of your
application’s core design. The examples provided in this chapter can be
run as jobs.

Jobs are model elements that you create by using the Application Object
Tree (AOT). The following X++ code provides an example of a job model
element that prints the string “Hello World” to an automatically generated
window. The pause statement stops program execution and waits for user
input from a dialog box.
Click here to view code image

static void myJob(Args _args)

{

 print "Hello World";

 pause;

}

The type system
The AX 2012 runtime manages the storage of value type data on the call
stack and reference type objects on the memory heap. The call stack is the
memory structure that holds data about the active methods called during
program execution. The memory heap is the memory area that allocates
storage for objects that are destroyed automatically by the AX 2012
runtime.

Value types
Value types include the built-in primitive types, extended data types,
enumeration types, and built-in collection types:

 The primitive types are boolean, int, int64, real, date, utcDateTime,
timeofday, str, and guid.

 The extended data types are specialized primitive types and
specialized base enumerations.

 The enumeration types are base enumerations and extended data
types.

 The collection types are the built-in array and container types.
By default, variables declared as value types are assigned their zero

value by the AX 2012 runtime. These variables can’t be set to null.
Variable values are copied when variables are used to invoke methods and
when they are used in assignment statements. Therefore, two value type
variables can’t reference the same value.

Reference types
Reference types include the record types, class types, and interface types:

 The record types are table, map, and view. User-defined record types
are dynamically composed from application model layers. AX 2012
runtime record types are exposed in the system application
programming interface (API).

 Note

Although the methods are not visible in the AOT, all record
types implement the methods that are members of the system
xRecord type, which is an AX 2012 runtime class type.

 User-defined class types are dynamically composed from application
model layers and AX 2012 runtime class types exposed in the system
API.

 Interface types are type specifications and can’t be instantiated in the
AX 2012 runtime. Class types can, however, implement interfaces.

Variables declared as reference types contain references to objects that
the AX 2012 runtime instantiates from dynamically composed types
defined in the application model layering system and from types exposed

in the system API. The AX 2012 runtime also performs memory
deallocation (garbage collection) for these objects when they are no longer
referenced. Reference variables declared as record types reference objects
that the AX 2012 runtime instantiates automatically. Class type objects are
programmatically instantiated by using the new operator. Copies of object
references are passed as reference parameters in method calls and are
assigned to reference variables, so two variables can reference the same
object.

 More Info

Not all nodes in the AOT name a type declaration. Some class
declarations are merely syntactic sugar—convenient, human-
readable expressions. For example, the class header definition
for all rich client forms declares a FormRun class type.
FormRun is also, however, a class type in the system API.
Allowing this declaration is syntactic sugar because it is
technically impossible for two types to have the same name in
the AX 2012 class type hierarchy.

Type hierarchies
The X++ language supports the definition of type hierarchies that specify
generalized and specialized relationships between class types and table
types. For example, a check payment method is a type of payment method.
A type hierarchy allows code reuse. Reusable code is defined on base
types defined higher in a type hierarchy because they are inherited, or
reused, by derived types defined lower in a type hierarchy.

 Tip

You can use the Type Hierarchy Context and Type Hierarchy
Browser tools in MorphX to visualize, browse, and search the
hierarchy of any type.

The following sections introduce the base types provided by the AX
2012 runtime and describe how they are extended in type hierarchies.

 Caution

The AX 2012 type system is known as a weak type system
because X++ accepts certain type assignments that are clearly
erroneous and lead to run time errors. Be aware of the caveats
outlined in the following sections, and try to avoid weak type
constructs when writing X++ code.

The anytype type
The AX 2012 type system doesn’t have a single base type from which all
types ultimately derive. However, the anytype type imitates a base type for
all types. Variables of the anytype type function like value types when they
are assigned a value type variable, and like reference types when they are
assigned a reference type variable. You can use the SysAnyType class to
explicitly box all types, including value types, and make them function
like reference types.

The anytype type, shown in the following code sample, is syntactic
sugar that allows methods to accept any type as a parameter or allows a
method to return different types:
Click here to view code image

static str queryRange(anytype _from, anytype _to)

{

 return SysQuery::range(_from,_to);

}

You can declare variables by using anytype. However, the underlying
data type of an anytype variable is set to match the first assignment, and
you can’t change its type afterward, as shown here:
Click here to view code image

anytype a = 1;

print strfmt("%1 = %2", typeof(a), a); //Integer = 1

a = "text";

print strfmt("%1 = %2", typeof(a), a); //Integer = 0

The common type
The common type is the base type of all record types. Like the anytype
type, record types are context-dependent types whose variables can be
used as though they reference single records or as a record cursor that can
iterate over a set of database records.

By using the common type, you can cast one record type to another

(possibly incompatible) record type, as shown in this example:
Click here to view code image

//customer = vendor; //Compile error

common = customer;

vendor = common; //Accepted

Tables in AX 2012 also support inheritance and polymorphism. This
capability offers a type-safe method of sharing commonalities, such as
methods and fields, between tables. It is possible to override table methods
but not table fields. A base table can be marked as abstract or final through
the table’s properties.

Table maps defined in the AOT are a type-safe method of capturing
commonalities between record types across type hierarchies, and you
should use them to prevent incompatible record assignments. A table map
defines fields and methods that safely operate on one or more record types.

The compiler doesn’t validate method calls on the common type. For
example, the compiler accepts the following method invocation, even
though the method doesn’t exist:

common.nonExistingMethod();

For this reason, you should use reflection to confirm that the method on
the common type exists before you invoke it, as shown in this example.
For more information, see Chapter 20, “Reflection.”
Click here to view code image

if (tableHasMethod(new DictTable(common.tableId),

identifierStr(existingMethod)))

{

 common.existingMethod();

}

The object type
The built-in object type is a weak reference type whose variables reference
objects that are instances of class or interface types in the AX 2012 class
hierarchy.

The type system allows you to implicitly cast base type objects to
derived type objects and to cast derived type objects to base type objects,
as shown here:

baseClass = derivedClass;

derivedClass = baseClass;

The object type allows you to use the assignment operator and cast one
class type to another, incompatible class type, as shown in the following
code. The probable result of this action, however, is a run-time exception
when your code encounters an object of an unexpected type.
Click here to view code image

Object myObject;

//myBinaryIO = myTextIO; //Compile error

myObject = myTextIO;

mybinaryIO = myObject; //Accepted

Use the is and as operators instead of the assignment operator to prevent
these incompatible type casts. The is operator determines whether an
instance is of a particular type, and the as operator casts an instance as a
particular type, or null if they are not compatible. The is and as operators
work on class and table types.
Click here to view code image

myTextIO = myObject as TextIO;

if (myBinaryIO is TextIO)

{

}

You can use the object type for late binding to methods, similar to the
dynamic keyword in C#. Keep in mind that a run-time error will occur if
the method invoked doesn’t exist.

myObject.lateBoundMethod();

Extended data types
You use the AOT to create extended data types that model concrete data
values and data hierarchies. For example, the Name extended data type is a
string, and the CustName and VendName extended data types extend the
Name data type.

The X++ language supports extended data types but doesn’t offer type
checking according to the hierarchy of extended data types. X++ treats any
extended data type as its primitive type; therefore, code such as the
following is allowed:
Click here to view code image

CustName customerName;

FileName fileName = customerName;

When used properly, extended data types improve the readability of
X++ code. It’s easier to understand the intended use of a CustName data

type than a string data type, even if both are used to declare string
variables.

Extended data types are more than just type definitions that make X++
code more readable. On each extended data type, you can also specify how
the system displays values of this type to users. Further, you can specify a
reference to a table. The reference enables the form’s rendering engine to
automatically build lookup forms for form controls by using the extended
data type, even when the form controls are not bound to a data source. On
string-based extended data types, you can specify the maximum string size
of the type. The database layer uses the string size to define the underlying
columns for fields that use the extended data type. Defining the string size
in only one place makes it easy to change.

Syntax
The X++ language belongs to the “curly brace” family of programming
languages (those that use curly braces to delimit syntax blocks), such as C,
C++, C#, and Java. If you’re familiar with any of these languages, you
won’t have a problem reading and understanding X++ syntax.

Unlike many programming languages, X++ is not case sensitive.
However, using camel casing (camelCasing) for variable names and Pascal
casing (PascalCasing) for type names is considered a best practice. (More
best practices for writing X++ code are available in the AX 2012 SDK.)
You can use the Source Code Titlecase Update tool (accessed from the
Add-Ins submenu in the AOT) to automatically apply casing in X++ code
to match the best practice recommendation.

Common language runtime (CLR) types, which are case sensitive, are
one important exception to the casing guidelines. For information about
how to use CLR types, see the “CLR interoperability” section later in this
chapter.

Variable declarations
You must place variable declarations at the beginning of methods. Table 4-
1 provides examples of value type and reference type variable
declarations, in addition to example variable initializations. Parameter
declaration examples are provided in the “Classes and interfaces” section
later in this chapter.

TABLE 4-1 X++ variable declaration examples.

 Note

String literals can be expressed by using either single or
double quotation marks. It is considered best practice to use
single quotation marks for system strings, like file names, and
double quotation marks for user interface strings. The
examples in this chapter adhere to this guideline.

Declaring variables with the same name as their type is a best practice.

At first glance, this approach might seem confusing. Consider the
following class, its getter/setter method, and its field:
Click here to view code image

Class Person

{

 Name name;

 public Name Name(Name _name = name)

 {

 name = _name;

 return name;

 }

}

Because X++ is not case sensitive, the word name is used in eight places
in the preceding code. Three refer to the extended data type, four refer to
the field, and one refers to the method (_name is used twice). To improve
readability, you could rename the variable to something more specific,
such as personName. However, using a more specific variable name
implies that a more specific type should be used (and created if it doesn’t
already exist). Changing both the type name and the variable name to
PersonName wouldn’t improve readability. The benefit of this practice is
that if you know the name of a variable, you also know its type.

 Note

Previous versions of Microsoft Dynamics AX required a
dangling semicolon to signify the end of a variable
declaration. This is no longer required because the compiler
solves the ambiguity by reading one token ahead, except
where the first statement is a static CLR call. The compiler
still accepts the now-superfluous semicolons, but you can
remove them if you want to.

Expressions
X++ expressions are sequences of operators, operands, values, and
variables that yield a result. Table 4-2 summarizes the types of expressions
allowed in X++ and includes examples of their use.

TABLE 4-2 X++ expression examples.

Statements
X++ statements specify object state and object behavior. Table 4-3
provides examples of X++ language statements that are commonly found
in many programming languages. In-depth descriptions of each statement

are beyond the scope of this book.

TABLE 4-3 X++ statement examples.

Data-aware statements
The X++ language has built-in support for querying and manipulating
database data. The syntax for database statements is similar to Structured
Query Language (SQL), and this section assumes that you’re familiar with
SQL.

The following code shows how a select statement is used to return only
the first selected record from the MyTable database table and how the data
in the record’s myField field is printed:
Click here to view code image

static void myJob(Args _args)

{

 MyTable myTable;

 select firstOnly * from myTable where myTable.myField1

== "value";

 print myTable.myField2;

 pause;

}

The * from part of the select statement in the example is optional. You

can replace the asterisk (*) with a comma-separated field list, such as
myField2, myField3. You must define all fields, however, on the selection
table model element, and only one selection table is allowed immediately
after the from keyword. The where expression in the select statement can
include any number of logical and relational operators. The firstOnly
keyword is optional and can be replaced by one or more of the optional
keywords. Table 4-4 describes all possible keywords. For more
information about database-related keywords, see Chapter 17, “The
database layer.”

TABLE 4-4 Keyword options for select statements.

The following code example demonstrates how to use a table index
clause to suggest the index that a database server should use when
querying tables. The AX 2012 runtime appends an order by clause and the
index fields to the first select statement’s database query. Records are thus
ordered by the index. The AX 2012 runtime can insert a query hint into the
second select statement’s database query, if the hint is feasible to use.
Click here to view code image

static void myJob(Args _args)

{

 MyTable1 myTable1;

 MyTable2 myTable2;

 while select myTable1

 index myIndex1

 {

 print myTable1.myField2;

 }

 while select myTable2

 index hint myIndex2

 {

 print myTable2.myField2;

 }

 pause;

}

The following code example demonstrates how the results from a select
query can be ordered and grouped. The first select statement specifies that
the resulting records must be sorted in ascending order based on myField1
values and then in descending order based on myField2 values. The second
select statement specifies that the resulting records must be grouped by
myField1 values and then sorted in descending order.
Click here to view code image

static void myJob(Args _args)

{

 MyTable myTable;

 while select myTable

 order by Field1 asc, Field2 desc

 {

 print myTable.myField;

 }

 while select myTable

 group by Field1 desc

 {

 print myTable.Field1;

 }

 pause;

}

The following code demonstrates use of the avg and count aggregate
functions in select statements. The first select statement averages the
values in the myField column and assigns the result to the myField field.
The second select statement counts the number of records the selection
returns and assigns the result to the myField field.
Click here to view code image

static void myJob(Args _args)

{

 MyTable myTable;

 select avg(myField) from myTable;

 print myTable.myField;

 select count(myField) from myTable;

 print myTable.myField;

 pause;

}

 Caution

The compiler doesn’t verify that aggregate function parameter

types are numeric, so the result that the function returns could
be assigned to a field of type string. The result will be
truncated if, for example, the average function calculates a
value of 1.5 and the type of myField is an integer.

Table 4-5 describes the aggregate functions supported in X++ select
statements.

TABLE 4-5 Aggregate functions in X++ select statements.

The following code example demonstrates how tables are joined with
join conditions. The first select statement joins two tables by using an
equality join condition between fields in the tables. The second select
statement joins three tables to illustrate how you can nest join conditions
and use an exists operator as an existence test with a join condition. The
second select statement also demonstrates how you can use a group by sort
in join conditions. In fact, the join condition can comprise multiple nested
join conditions because the syntax of the join condition is the same as the
body of a select statement.
Click here to view code image

static void myJob(Args _args)

{

 MyTable1 myTable1;

 MyTable2 myTable2;

 MyTable3 myTable3;

 select myField from myTable1

 join myTable2

 where myTable1.myField1=myTable2.myField1;

 print myTable1.myField;

 select myField from myTable1

 join myTable2

 group by myTable2.myField1

 where myTable1.myField1=myTable2.myField1

 exists join myTable3

 where myTable1.myField1=myTable3.mField2;

 print myTable1.myField;

 pause;

}

Table 4-6 describes the exists operator and the other join operators that
can be used in place of the exists operator in the preceding code example.

TABLE 4-6 join operators.

The following example demonstrates use of the while select statement
that increments the myTable variable’s record cursor on each loop:
Click here to view code image

static void myJob(Args _args)

{

 MyTable myTable;

 while select myTable

 {

 Print myTable.myField;

 }

}

You must use the ttsBegin, ttsCommit, and ttsAbort transaction
statements to modify records in tables and to insert records into tables. The
ttsBegin statement marks the beginning of a database transaction block;
ttsBegin-ttsCommit transaction blocks can be nested. The ttsBegin
statements increment the transaction level; the ttsCommit statements
decrement the transaction level. The outer-most block decrements the
transaction level to zero and commits all database inserts and updates
performed since the first ttsBegin statement to the database. The ttsAbort
statement rolls back all database inserts, updates, and deletions performed
since the ttsBegin statement. Table 4-7 provides examples of these
transaction statements for single records and operations and for set-based
(multiple-record) operations.

TABLE 4-7 Transaction statement examples.

The last example in Table 4-7 demonstrates the method RowCount. Its
purpose is to get the count of records that are affected by set-based

operations—namely, insert_recordset, update_recordset, and delete_from.
By using RowCount, it is possible to save one round trip to the database

in certain application scenarios—for example, when implementing insert
or update logic.

Exception handling
It is a best practice to use the X++ exception handling framework instead
of programmatically halting a transaction by using the ttsAbort statement.
An exception (other than the update conflict and duplicate key exceptions)
thrown inside a transaction block halts execution of the block, and all of
the inserts and updates performed since the first ttsBegin statement are
rolled back. Throwing an exception has the additional advantage of
providing a way to recover object state and maintain the consistency of
database transactions. Inside the catch block, you can use the retry
statement to run the try block again.

The following example demonstrates throwing an exception inside a
database transaction block:
Click here to view code image

static void myJob(Args _args)

{

 MyTable myTable;

 boolean state = false;

 try

 {

 ttsBegin;

 update_recordset myTable setting

 myField = "value"

 where myTable.id == "001";

 if(state==false)

 {

 throw error("Error text");

 }

 ttsCommit;

 }

 catch(Exception::Error)

 {

 state = true;

 retry;

 }

}

The throw statement throws an exception that causes the database
transaction to halt and roll back. Code execution can’t continue inside the

scope of the transaction, so the runtime ignores try and catch statements
when inside a transaction. This means that an exception thrown inside a
transaction can be caught only outside the transaction, as shown here:
Click here to view code image

static void myJob(Args _args)

{

 try

 {

 ttsBegin;

 try

 {

 ...

 throw error("Error text");

 }

 catch //Will never catch anything

 {

 }

 ttsCommit;

 }

 catch(Exception::Error)

 {

 print "Got it";

 pause;

 }

 catch

 {

 print "Unhandled Exception";

 pause;

 }

}

Although a throw statement takes the exception enumeration as a
parameter, using the error method to throw errors is considered best
practice. The try statement’s catch list can contain more than one catch
block. The first catch block in the example catches error exceptions. The
retry statement jumps to the first statement in the outer try block. The
second catch block catches all exceptions not caught by catch blocks
earlier in the try statement’s catch list. Table 4-8 describes the AX 2012
system Exception data type enumerations that can be used in try-catch
statements.

TABLE 4-8 Exception data type enumerations.

UpdateConflict and DuplicateKeyException are the only data exceptions
that an AX 2012 application can handle inside a transaction. Specifically,
with DuplicateKeyException, the database transaction isn’t rolled back,
and the application is given a chance to recover. DuplicateKeyException
facilitates application scenarios (such as Master Planning) that perform
batch processing and handles duplicate key exceptions without aborting
the transaction in the midst of the resource-intensive processing operation.

The following example illustrates the usage of DuplicateKeyException:
Click here to view code image

static void DuplicateKeyExceptionExample(Args _args)

{

 MyTable myTable;

 ttsBegin;

 myTable.Name = "Microsoft Dynamics AX";

 myTable.insert();

 ttsCommit;

 ttsBegin;

 try

 {

 myTable.Name = "Microsoft Dynamics AX";

 myTable.insert();

 }

 catch(Exception::DuplicateKeyException)

 {

 info(strfmt("Transaction level: %1",

appl.ttsLevel()));

 info(strfmt("%1 already exists.", myTable.Name));

 info(strfmt("Continuing insertion of other

records"));

 }

 ttsCommit;

}

In the preceding example, the catch block handles the duplicate key
exception. Notice that the transaction level is still 1, indicating that the
transaction hasn’t aborted and the application can continue processing
other records.

 Note

The special syntax where a table instance was included in the
catch block is no longer available.

Interoperability
The X++ language includes statements that allow interoperability (interop)
with .NET CLR assemblies and COM components. The AX 2012 runtime
achieves this interoperability by providing AX 2012 object wrappers
around external objects and by dispatching method calls from the AX 2012
object to the wrapped object.

CLR interoperability
You can write X++ statements for CLR interoperability by using one of
two methods: strong typing or weak typing. Strong typing is recommended
because it is type-safe and less error prone than weak typing, and it results
in code that is easier to read. The MorphX X++ editor also provides

Microsoft IntelliSense as you type.
The examples in this section use the .NET System.Xml assembly, which

is added as an AOT references node. (See Chapter 1, “Architectural
overview,” for a description of programming model elements.) The
programs are somewhat verbose because the compiler doesn’t support
method invocations on CLR return types and because CLR types must be
identified by their fully qualified name. For example, the expression
System.Xml.XmlDocument is the fully qualified type name for the NET
Framework XML document type.

 Caution

X++ is case-sensitive when referring to CLR types.

Strongly typed CLR interoperability
The following example demonstrates strongly typed CLR interoperability
with implicit type conversions from AX 2012 strings to CLR strings in the
string assignment statements, and shows how CLR exceptions are caught
in X++:
Click here to view code image

static void myJob(Args _args)

{

 System.Xml.XmlDocument doc = new

System.Xml.XmlDocument();

 System.Xml.XmlElement rootElement;

 System.Xml.XmlElement headElement;

 System.Xml.XmlElement docElement;

 System.String xml;

 System.String docStr = 'Document';

 System.String headStr = 'Head';

 System.Exception ex;

 str errorMessage;

 try

 {

 rootElement = doc.CreateElement(docStr);

 doc.AppendChild(rootElement);

 headElement = doc.CreateElement(headStr);

 docElement = doc.get_DocumentElement();

 docElement.AppendChild(headElement);

 xml = doc.get_OuterXml();

 print ClrInterop::getAnyTypeForObject(xml);

 pause;

 }

 catch(Exception::CLRError)

 {

 ex = ClrInterop::getLastException();

 if(ex)

 {

 errorMessage = ex.get_Message();

 info(errorMessage);

 }

 }

}

The following example illustrates how static CLR methods are invoked
by using the X++ static method accessor ::.
Click here to view code image

static void myJob(Args _args)

{

 System.Guid g = System.Guid::NewGuid();

}

The following example illustrates the support for CLR arrays:
Click here to view code image

static void myJob(Args _args)

{

 System.Int32 [] myArray = new System.Int32[100]();

 myArray.SetValue(1000, 0);

 print myArray.GetValue(0);

}

X++ supports passing parameters by reference to CLR methods.
Changes that the called method makes to the parameter also change the
caller variable’s value. When nonobject type variables are passed by
reference, they are wrapped temporarily in an object. This operation is
often called boxing and is illustrated in the following example:
Click here to view code image

static void myJob(Args _args)

{

 int myVar = 5;

 MyNamespace.MyMath::Increment(byref myVar);

 print myVar; // prints 6

}

The called method could be implemented in C# like this:
Click here to view code image

// Notice: This example is C# code

static public void Increment(ref int value)

{

 value++;

}

 Note

Passing parameters by reference is supported only for CLR
methods, not for X++ methods.

Weakly typed CLR interoperability
The second method of writing X++ statements for CLR uses weak typing.
The following example shows CLR types that perform the same steps as in
the first CLR interoperability example. In this case, however, all
references are validated at run time, and all type conversions are explicit.
Click here to view code image

static void myJob(Args _args)

{

 ClrObject doc = new ClrObject('System.Xml.XmlDocument');

 ClrObject docStr;

 ClrObject rootElement;

 ClrObject headElement;

 ClrObject docElement;

 ClrObject xml;

 docStr = ClrInterop::getObjectForAnyType('Document');

 rootElement = doc.CreateElement(docStr);

 doc.AppendChild(rootElement);

 headElement = doc.CreateElement('Head');

 docElement = doc.get_DocumentElement();

 docElement.AppendChild(headElement);

 xml = doc.get_OuterXml();

 print ClrInterop::getAnyTypeForObject(xml);

 pause;

}

The first statement in the preceding example demonstrates the use of a
static method to convert X++ primitive types to CLR objects. The print
statement shows the reverse, converting CLR value types to X++ primitive
types. Table 4-9 lists the value type conversions that AX 2012 supports.

TABLE 4-9 Type conversions supported in AX 2012.

The preceding code example also demonstrates the X++ method syntax
used to access CLR object properties, such as get_DocumentElement. The
CLR supports several operators that are not supported in X++. Table 4-10
lists the supported CLR operators and the alternative method syntax.

TABLE 4-10 CLR operators and methods.

The following features of CLR can’t be used with X++:
 Public fields (can be accessed by using CLR reflection classes)
 Events and delegates
 Generics
 Inner types
 Namespace declarations

COM interoperability

The following code example demonstrates COM interoperability with the
XML document type in the Microsoft XML Core Services (MSXML) 6.0
COM component. The example assumes that you’ve installed MSXML.
The MSXML document is first instantiated and wrapped in an AX 2012
COM object wrapper. A COM variant wrapper is created for a COM
string. The direction of the variant is put into the COM component. The
root element and head element variables are declared as COM objects. The
example shows how to fill a string variant with an X++ string and then use
the variant as an argument to a COM method, loadXml. The statement that
creates the head element demonstrates how the AX 2012 runtime
automatically converts AX 2012 primitive objects into COM variants.
Click here to view code image

static void Job2(Args _args)

{

 COM doc = new COM('Msxml2.DomDocument.6.0');

 COMVariant rootXml =

 new

COMVariant(COMVariantInOut::In,COMVariantType::VT_BSTR);

 COM rootElement;

 COM headElement;

 rootXml.bStr('<Root></Root>');

 doc.loadXml(rootXml);

 rootElement = doc.documentElement();

 headElement = doc.createElement('Head');

 rootElement.appendChild(headElement);

 print doc.xml();

 pause;

}

Macros
With the macro capabilities in X++, you can define and use constants and
perform conditional compilation. Macros are unstructured because they are
not defined in the X++ syntax. Macros are handled before the source code
is compiled. You can add macros anywhere you write source code: in
methods and in class declarations. Table 4-11 shows the supported macro
directives.

TABLE 4-11 Macro directives.

The following example shows a macro definition and reference:
Click here to view code image

void myMethod()

{

 #define.HelloWorld("Hello World")

 print #HelloWorld;

 pause;

}

As noted in Table 4-11, a macro library is created under the Macros
node in the AOT. The library is included in a class declaration header or
class method, as shown in the following example:
Click here to view code image

class myClass

{

 #MyMacroLibrary1

}

public void myMethod()

{

 #MyMacroLibrary2

 #MacroFromMyMacroLibrary1

 #MacroFromMyMacroLibrary2

}

A macro can also use parameters. The compiler inserts the parameters at
the positions of the placeholders. The following example shows a local
macro using parameters:
Click here to view code image

void myMethod()

{

 #localmacro.add

 %1 + %2

 #endmacro

 print #add(1, 2);

 print #add("Hello", "World");

 pause;

}

When a macro library is included or a macro is defined in the class
declaration of a class, the macro can be used in the class and in all classes
derived from the class. A subclass can redefine the macro.

Comments
X++ allows single-line and multiple-line comments. Single-line comments

start with // and end at the end of the line. Multiple-line comments start
with /* and end with */. You can’t nest multiple-line comments.

You can add reminders to yourself in comments that the compiler picks
up and presents to you as tasks in its output window. To set up these tasks,
start a comment with the word TODO. Be aware that tasks not occurring at
the start of the comment (for example, tasks that are deep inside multiple-
line comments) are ignored by the compiler.

The following code example contains comments reminding the
developer to add a new procedure while removing an existing procedure
by changing it into a comment:
Click here to view code image

public void myMethod()

{

 //Declare variables

 int value;

//TODO Validate if calculation is really required

/*

 //Perform calculation

 value = this.calc();

*/

 ...

}

XML documentation
You can document XML methods and classes directly in X++ by typing
three backslash characters (///) followed by structured documentation in
XML format. The XML documentation must be above the actual code.

The XML documentation must align with the code. The Best Practices
tool contains a set of rules that can validate the XML documentation.
Table 4-12 lists the supported tags.

TABLE 4-12 XML tags supported for XML documentation.

The XML documentation is automatically displayed in IntelliSense in
the X++ editor.

You can extract the written XML documentation for an AOT project by
using the Add-Ins menu option Extract XML Documentation. One XML
file is produced that contains all of the documentation for the elements
inside the project. You can also use this XML file to publish the
documentation.

The following code example shows XML documentation for a static
method on the Global class:
Click here to view code image

/// <summary>

/// Converts an X++ utcDateTime value to a .NET

System.DateTime object.

/// </summary>

/// <param name="_utcDateTime">

/// The X++ utcDateTime to convert.

/// </param>

/// <returns>

/// A .NET System.DateTime object.

/// </returns>

static client server anytype

utcDateTime2SystemDateTime(utcDateTime _utcDateTime)

{

 return CLRInterop::getObjectForAnyType(_utcDateTime);

}

Classes and interfaces
You define types and their structure in the AOT, not in the X++ language.
Other programming languages that support type declarations do so within
code, but AX 2012 supports an object layering feature that accepts X++
source code customizations to type declaration parts that encompass
variable declarations and method declarations. Each part of a type
declaration is managed as a separate compilation unit, and model data is
used to manage, persist, and reconstitute dynamic types whose parts can
include compilation units from many object layers.

You use X++ to define logic, including method profiles (return value,
method name, and parameter type and name). You use the X++ editor to
add new methods to the AOT, so you can construct types without leaving
the X++ editor.

You use X++ class declarations to declare protected instance variable

fields that are members of application logic and framework reference
types. You can’t declare private or public variable fields. You can declare
classes as abstract if they are incomplete type specifications that can’t be
instantiated. You can also declare them final if they are complete
specifications that can’t be further specialized.

The following code provides an example of an abstract class declaration
header:

abstract class MyClass

{

}

You can also structure classes into single-inheritance generalization or
specialization hierarchies in which derived classes inherit and override
members of base classes. The following code shows an example of a
derived class declaration header that specifies that MyDerivedClass
extends the abstract base class MyClass. It also specifies that
MyDerivedClass is final and can’t be further specialized by another class.
Because X++ doesn’t support multiple inheritance, derived classes can
extend only one base class.
Click here to view code image

final class MyDerivedClass extends MyClass

{

}

X++ also supports interface type specifications that specify method
signatures but don’t define their implementation. Classes can implement
more than one interface, but the class and its derived classes should
together provide definitions for the methods declared in all the interfaces.
If it fails to provide the method definitions, the class itself is treated as
abstract and cannot be instantiated. The following code provides an
example of an interface declaration header and a class declaration header
that implements the interface:
Click here to view code image

interface MyInterface

{

 void myMethod()

 {

 }

}

class MyClass implements MyInterface

{

 void myMethod()

 {

 }

}

Fields
A field is a class member that represents a variable and its type. Fields are
declared in class declaration headers; each class and interface has a
definition part with the name classDeclaration in the AOT. Fields are
accessible only to code statements that are part of the class declaration or
derived class declarations. Assignment statements are not allowed in class
declaration headers. The following example demonstrates how variables
are initialized with assignment statements in a new method:
Click here to view code image

class MyClass

{

 str s;

 int i;

 MyClass1 myClass1;

 public void new()

 {

 i = 0;

 myClass1 = new MyClass1();

 }

}

Methods
A method on a class is a member that uses statements to define the
behavior of an object. An interface method is a member that declares an
expected behavior of an object. The following code provides an example
of a method declaration on an interface and an implementation of the
method on a class that implements the interface:
Click here to view code image

interface MyInterface

{

 public str myMethod()

 {

 }

}

class MyClass implements MyInterface

{

 public str myMethod();

 {

 return "Hello World";

 }

}

Methods are defined with public, private, or protected access modifiers.
If an access modifier is omitted, the method is publicly accessible. The
X++ template for new methods provides the private access specifier. Table
4-13 describes additional method modifiers supported by X++.

TABLE 4-13 Method modifiers supported by X++.

Method parameters can have default values that are used when
parameters are omitted from method invocations. The following code
sample prints “Hello World” when myMethod is invoked with no
parameters:
Click here to view code image

public void myMethod(str s = "Hello World")

{

 print s;

 pause;

}

public void run()

{

 this.myMethod();

}

A constructor is a special instance method that is invoked to initialize an
object when the new operator is executed by the AX 2012 runtime. You
can’t call constructors directly from X++ code. The next sample provides
an example of a class declaration header and an instance constructor

method that takes one parameter as an argument:
Click here to view code image

class MyClass

{

 int i;

 public void new(int _i)

 {

 i = _i;

 }

}

Delegates
The purpose of delegates is to expose extension points where add-ins and
customizations can extend the application in a lightweight manner without
injecting logic into the base functionality. Delegates are methods without
any implementation. Delegates are always protected and cannot have a
return value. You declare a delegate by using the delegate keyword. You
invoke a delegate by using the same syntax as a standard method
invocation:
Click here to view code image

class MyClass

{

 delegate void myDelegate(int _i)

 {

 }

 private void myMethod()

 {

 this.myDelegate(42);

 }

}

When a delegate is invoked, the runtime automatically invokes all event
handlers that subscribe to the delegate. There are two ways of subscribing
to delegates: declaratively and dynamically. The runtime does not define
the sequence in which event handlers are invoked. If your logic relies on
an invocation sequence, you should use mechanisms other than delegates
and event handlers.

To subscribe declaratively, right-click a delegate in the AOT, and then
select New Event Handler Subscription. On the resulting event handler
node in the AOT, you can specify the class and the static method that will

be invoked. The class can be either an X++ class or a .NET class.
To subscribe dynamically, you use the keyword eventhandler. In the

following code, notice that when subscribing dynamically, the event
handler is an instance method. It is also possible to unsubscribe.
Click here to view code image

class MyEventHandlerClass

{

 public void myEventHandler(int _i)

 {

 ...

 }

 public static void myStaticEventHandler(int _i)

 {

 ...

 }

 public static void main(Args args)

 {

 MyClass myClass = new MyClass();

 MyEventHandlerClass myEventHandlerClass = new

MyEventHandlerClass();

 //Subscribe

 myClass.myDelegate +=

eventhandler(myEventHandlerClass.myEventHandler);

 myClass.myDelegate +=

 eventhandler(MyEventHandlerClass::myStaticEventHandler);

 //Unsubscribe

 myClass.myDelegate -=

eventhandler(myEventHandlerClass.myEventHandler);

 myClass.myDelegate -=

 eventhandler(MyEventHandlerClass::myStaticEventHandler);

 }

}

Regardless of how you subscribe, the event handler must be public,
return void, and have the same parameters as the delegate.

 Note

Cross-tier events are not supported.

As an alternative to delegates, you can achieve a similar effect by using

pre-event and post-event handlers.

Pre-event and post-event handlers
You can subscribe declaratively to any class and record type method by
using the same procedure you use for delegates. The event handler is
invoked either before or after the method is invoked. Event handlers for
pre-methods and post-methods must be public, static, and void, and either
take the same parameters as the method or one parameter of the
XppPrePostArgs type.

The simplest type-safe implementation uses syntax where the
parameters of the method and the event handler method match, as shown
in this code:
Click here to view code image

class MyClass

{

 public int myMethod(int _i)

 {

 return _i;

 }

}

class MyEventHandlerClass

{

 public static void myPreEventHandler(int _i)

 {

 if (_i > 100)

 {

 ...

 }

 }

 public static void myPostEventHandler(int _i)

 {

 if (_i > 100)

 {

 ...

 }

 }

}

If you need to manipulate either the parameters or the return value, the
event handler must take one parameter of the XppPrePostArgs type.

To create such an event handler, right-click the class, and then click
New > Pre- Or Post-Event Handler. The XppPrePostArgs class provides
access to the parameters and the return values of the method. You can even

alter parameter values in pre-event handlers and alter the return value in
post-event handlers.
Click here to view code image

class MyClass

{

 public int myMethod(int _i)

 {

 return _i;

 }

}

class MyEventHandlerClass

{

 public static void myPreEventHandler(XppPrePostArgs

_args)

 {

 if (_args.existsArg('_i') &&

 _args.getArg('_i') > 100)

 {

 _args.setArg('_i', 100);

 }

 }

 public static void myPostEventHandler(XppPrePostArgs

_args)

 {

 if (_args.getReturnValue() < 0)

 {

 _args.setReturnValue(0);

 }

 }

}

Attributes
Classes and methods can be decorated with attributes to convey
declarative information to other code, such as the runtime, the compiler,
frameworks, or other tools. To decorate the class, you insert the attribute in
the classDeclaration element. To decorate a method, you insert the
attribute before the method declaration:
Click here to view code image

[MyAttribute("Some parameter")]

class MyClass

{

 [MyAttribute("Some other parameter")]

 public void myMethod()

 {

 ...

 }

}

The first attribute that was built in AX 2012 was the
SysObsoleteAttribute attribute. When you decorate a class or a method
with this attribute, any consuming code is notified during compilation that
the target is obsolete. You can create your own attributes by creating
classes that extend the SysAttribute class:
Click here to view code image

class MyAttribute extends SysAttribute

{

 str parameter;

 public void new(str _parameter)

 {

 parameter = _parameter;

 super();

 }

}

Code access security
Code access security (CAS) is a mechanism designed to protect systems
from dangerous APIs that are invoked by untrusted code. CAS has nothing
to do with user authentication or authorization; it is a mechanism allowing
two pieces of code to communicate in a manner that cannot be
compromised.

 Caution

X++ developers are responsible for writing code that
conforms to Trustworthy Computing guidelines. You can find
those guidelines in the white paper, “Writing Secure X++
Code,” available from the Microsoft Dynamics AX Developer
Center (http://msdn.microsoft.com/en-us/dynamics/ax).

In the AX 2012 implementation of CAS, trusted code is defined as code
from the AOT running on the Application Object Server (AOS). The first
part of the definition ensures that the code is written by a trusted X++
developer. Developer privileges are the highest level of privileges in AX
2012 and should be granted only to trusted personnel. The second part of

http://msdn.microsoft.com/en-us/dynamics/ax

the definition ensures the code that the trusted developer has written hasn’t
been tampered with. If the code executes outside the AOS—on a client, for
example—it can’t be trusted because of the possibility that it was altered
on the client side before execution. Untrusted code also includes code that
is executed through the runBuf and evalBuf methods. These methods are
typically used to execute code generated at run time based on user input.

CAS enables a secure handshake between an API and its consumer.
Only consumers who provide the correct handshake can invoke the API.
Any other invocation raises an exception.

The secure handshake is established through the CodeAccessPermission
class or one of its specializations. The consumer must request permission
to call the API, which is done by calling CodeAccessPermission.assert.
The API verifies that the consumer has the correct permissions by calling
CodeAccessPermission.demand. The demand method searches the call
stack for a matching assertion. If untrusted code exists on the call stack
before the matching assertion, an exception is raised. This process is
illustrated in Figure 4-1.

FIGURE 4-1 CAS stack frame walk.

The following code contains an example of a dangerous API protected
by CAS and a consumer providing the correct permissions to invoke the

API:
Click here to view code image

class WinApiServer

{

 // Delete any given file on the server

 public server static boolean deleteFile(Filename

_fileName)

 {

 FileIOPermission fileIOPerm;

 // Check file I/O permission

 fileIOPerm = new FileIOPermission(_fileName, 'w');

 fileIOPerm.demand();

 // Delete the file

 System.IO.File::Delete(_filename);

 }

}

class Consumer

{

 // Delete the temporary file on the server

 public server static void deleteTmpFile()

 {

 FileIOPermission fileIOPerm;

 FileName filename = @'c:\tmp\file.tmp';

 // Request file I/O permission

 fileIOPerm = new FileIOPermission(filename, 'w');

 fileIOPerm.assert();

 // Use CAS protected API to delete the file

 WinApiServer::deleteFile(filename);

 }

}

WinAPIServer::deleteFile is considered to be a dangerous API because
it exposes the .NET API System.IO.File::Delete(string fileName).
Exposing this API on the server is dangerous because it allows the user to
remotely delete files on the server, possibly bringing the server down. In
the example, WinAPIServer::deleteFile demands that the caller has
asserted that the input file name is valid. The demand prevents use of the
API from the client tier and from any code not stored in the AOT.

 Caution

When using assert, make sure that you don’t create a new API
that is just as dangerous as the one that CAS has secured.
When you call assert, you are asserting that your code doesn’t
expose the same vulnerability that required the protection of
CAS. For example, if the deleteTmpFile method in the
previous example had taken the file name as a parameter, it
could have been used to bypass the CAS protection of
WinApi::deleteFile and delete any file on the server.

Compiling and running X++ as .NET CIL
All X++ code is compiled into AX 2012 runtime bytecode intermediate
format. This format is used by the AX 2012 runtime for both client and
server code.

Further, classes and tables are compiled into .NET CIL. This format is
used by X++ code executed by the batch server and in certain other
scenarios.

The X++ compiler only generates AX 2012 runtime bytecode to
generate CIL code; you must manually click either the Generate Full IL or
Generate Incremental IL button. Both are available on the toolbar.

The main benefit of running X++ as CIL is performance. Generally the
.NET runtime is significantly faster than the X++ runtime. In certain
constructions, described in the following list, the performance gain is
particularly remarkable:

 Constructs with many method calls Behind the scenes in the X++
runtime, any method call happens through reflection, whereas in
CIL, this happens at the CPU level.

 Constructions with many short-lived objects Garbage collection in
the AX 2012 runtime is deterministic, which means that whenever an
instance goes out of scope, the entire object graph is analyzed to
determine whether any objects can be deallocated. In the .NET CLR,
garbage collection is indeterministic, which means that the runtime
determines the optimal time for reclaiming memory.

 Constructions with extensive use of .NET interop When running
X++ code as CIL, all conversion and marshaling between the
runtimes are avoided.

 Note

The capability to compile X++ into CIL requires that X++
syntax be as strict as the syntax in managed code. The most
noteworthy change is that overridden methods must now have
the same signature as the base method. The only permissible
discrepancy is the addition of optional parameters.

One real-life example of when running X++ code as .NET CIL makes a
significant difference is in the compare tool. The compare algorithm is
implemented as X++ code in the SysCompareText class. Even though the
algorithm has few method calls, few short-lived objects, and no .NET
interop, the switch to CIL means that within a time frame of 10 seconds, it
is now possible to compare two 3,500-line texts, whereas the AX runtime
can handle only 600 lines in the same time frame. The complexity of the
algorithm is exponential. In other words, the performance gain gets even
more significant the larger the texts become.

All services and batch jobs will automatically run as CIL. If you want to
force X++ code to run as CIL in nonbatch scenarios, you use the methods
runClassMethodIL and runTableMethodIL on the Global class. The IL
entry point must be a static server method that returns a container and
takes one container parameter:
Click here to view code image

class MyClass

{

 private static server container addInIL(container

_parameters)

 {

 int p1, p2;

 [p1, p2] = _parameters;

 return [p1+p2];

 }

 public server static void main(Args _args)

 {

 int result;

 XppILExecutePermission permission = new

XppILExecutePermission();

 permission.assert();

 [result] = runClassMethodIL(classStr(MyClass),

 staticMethodStr(MyClass,

addInIL), [2, 2]);

 info(strFmt("The result from IL is: %1", result));

 }

}

Design and implementation patterns
So far, this chapter has described the individual elements of X++. You’ve
seen that statements are grouped into methods, and methods are grouped
into classes, tables, and other model element types. These structures enable
you to create X++ code at a higher level of abstraction. The following
example shows how an assignment operation can be encapsulated into a
method to clearly articulate the intention of the code:

control.show();

is at a higher level of abstraction than
flags = flags | 0x0004;

By using patterns, developers can communicate their solutions more
effectively and reuse proven solutions to common problems. Patterns help
readers of source code to quickly understand the purpose of a particular
implementation. Bear in mind that even as a code author, you spend more
time reading source code than writing it.

Implementations of patterns are typically recognizable by the names
used for classes, methods, parameters, and variables. Arguably, naming
these elements so that they effectively convey the intention of the code is
the developer’s most difficult task. Much of the information in existing
literature on design patterns pertains to object-oriented languages, and you
can benefit from exploring that information to find patterns and techniques
you can apply when you’re writing X++ code. Design patterns express
relationships or interactions between several classes or objects. They don’t
prescribe a specific implementation, but they do offer a template solution
for a typical design problem. In contrast, implementation patterns are
implementation-specific and can have a scope that spans only a single
statement.

The sections that follow highlight some of the most frequently used
patterns specific to X++. More descriptions are available in the AX 2012
SDK on MSDN.

Class-level patterns
Class-level patterns apply to classes in X++.

Parameter method
To set and get a class field from outside the class, you should implement a
parameter method. The parameter method should have the same name as

the field and be prefixed with parm. Parameter methods come in two
flavors: get-only and get/set.
Click here to view code image

public class Employee

{

 EmployeeName name;

 public EmployeeName parmName(EmployeeName _name = name)

 {

 name = _name;

 return name;

 }

}

Constructor encapsulation
The purpose of the constructor encapsulation pattern is to enable Liskov’s
class substitution principle. In other words, with constructor encapsulation,
you can replace an existing class with a customized class without using the
layering system. Just as in the layering system, this pattern enables
changing the logic in a class without having to update any references to the
class. Be careful to avoid overlayering because it often causes upgrade
conflicts.

Classes that have a static construct method follow the constructor
encapsulation pattern. The construct method should instantiate the class
and immediately return the instance. The construct method must be static
and shouldn’t take any parameters.

When parameters are required, you should implement the static new
methods. These methods call the construct method to instantiate the class
and then call the parameter methods to set the parameters. In this case, the
construct method should be private:
Click here to view code image

public class Employee

{

 ...

 protected void new()

 {

 }

 protected static Employee construct()

 {

 return new Employee();

 }

 public static Employee newName(EmployeeName name)

 {

 Employee employee = Employee::construct();

 employee.parmName(name);

 return employee;

 }

}

Factory method
To decouple a base class from derived classes, use the SysExtension
framework. This framework enables the construction of an instance of a
class based on its attributes. This pattern enables add-ins and
customizations to add new subclasses without touching the base class or
the factory method:
Click here to view code image

class BaseClass

{

 ...

 public static BaseClass newFromTableName(TableName

_tableName)

 {

 SysTableAttribute attribute = new

SysTableAttribute(_tableName);

 return

SysExtensionAppClassFactory::getClassFromSysAttribute(

 classStr(BaseClass), attribute);

 }

}

[SysTableAttribute(tableStr(MyTable))]

class Subclass extends BaseClass

{

 ...

}

Serialization with the pack and unpack methods
Many classes require the capability to serialize and deserialize themselves.
Serialization is an operation that extracts an object’s state into value-type
data; deserialization creates an instance from that data.

X++ classes that implement the Packable interface support serialization.
The Packable interface contains two methods: pack and unpack. The pack
method returns a container with the object’s state; the unpack method
takes a container as a parameter and sets the object’s state accordingly.

You should include a versioning number as the first entry in the container
to make the code resilient to old packed data stored in the database when
the implementation changes.
Click here to view code image

public class Employee implements SysPackable

{

 EmployeeName name;

 #define.currentVersion(1)

 #localmacro.CurrentList

 name

 #endmacro

 ...

 public container pack()

 {

 return [#currentVersion, #currentList];

 }

 public boolean unpack(container packedClass)

 {

 Version version = RunBase::getVersion(packedClass);

 switch (version)

 {

 case #CurrentVersion:

 [version, #CurrentList] = packedClass;

 break;

 default: //The version number is unsupported

 return false;

 }

 return true;

 }

}

Table-level patterns
The patterns described in this section—the find and exists methods,
polymorphic associations (Table/Group/All), and Generic Record
References—apply to tables.

find and exists methods
Each table must have the two static methods, find and exists. They both
take the primary keys of the table as parameters and return the matching
record or a Boolean value, respectively. Besides the primary keys, the find
method also takes a Boolean parameter that specifies whether the record
should be selected for update.

For the CustTable table, these methods have the following profiles:
Click here to view code image

static CustTable find(CustAccount _custAccount, boolean

_forUpdate = false)

static boolean exist(CustAccount _custAccount)

Polymorphic associations
The Table/Group/All pattern is used to model a polymorphic association to
a specific record in another table, a collection of records in another table,
or all records in another table. For example, a record could be associated
with a specific item, all items in an item group, or all items.

You implement the Table/Group/All pattern by creating two fields and
two relations on the table. By convention, the name of the first field has
the suffix Code; for example, ItemCode. This field is modeled by using the
base enum TableGroupAll. The name of the second field usually has the
suffix Relation; for example, ItemRelation. This field is modeled by using
the extended data type that is the primary key in the foreign tables. The
two relations are of the type Fixed field relation. The first relation specifies
that when the Code field equals 0 (TableGroupAll::Table), the Relation
field equals the primary key in the foreign master data table. The second
relation specifies that when the Code field equals 1
(TableGroupAll::Group), the Relation field equals the primary key in the
foreign grouping table. Figure 4-2 shows an example.

FIGURE 4-2 A polymorphic association.

Generic Record Reference
The Generic Record Reference pattern is a variation of the
Table/Group/All pattern. This pattern is used to model an association to a
foreign table. It comes in three flavors: (a) an association to any record in a
specific table, (b) an association to any record in a fixed set of specific

tables, and (c) an association to any record in any table. All three flavors of
this pattern are implemented by creating a field that uses the RefRecId
extended data type.

To model an association to any record in a specific table (flavor a), a
relation is created from the RefRecId field to the RecId field of the foreign
table, as illustrated in Figure 4-3.

FIGURE 4-3 An association to a specific table.

For flavors b and c, an additional field is required. This field is created
by using the RefTableId extended data type. To model an association to
any record in a fixed set of specific tables (flavor b), a relation is created
for each foreign table from the RefTableId field to the TableId field of the
foreign table, and from the RefRecId field to the RecId field of the foreign
table, as shown in Figure 4-4.

FIGURE 4-4 An association to any record in a fixed set of tables.

To model an association to any record in any table (flavor c), a relation
is created from the RefTableId field to the generic table Common TableId
field, and from the RefRecId field to Common RecId field, as shown in
Figure 4-5.

FIGURE 4-5 An association to any record in any table.

Part II: Developing for AX 2012
CHAPTER 5 Designing the user experience
CHAPTER 6 The AX 2012 client
CHAPTER 7 Enterprise Portal
CHAPTER 8 Workflow in AX 2012
CHAPTER 9 Reporting in AX 2012
CHAPTER 10 BI and analytics
CHAPTER 11 Security, licensing, and configuration
CHAPTER 12 AX 2012 services and integration
CHAPTER 13 Performance
CHAPTER 14 Extending AX 2012
CHAPTER 15 Testing
CHAPTER 16 Customizing and adding help

Chapter 5. Designing the user experience

In this chapter
Introduction
Role-tailored design approach
User experience components
Role Center pages
Area pages
List pages
Details forms
Transaction details forms
Enterprise Portal web client user experience
Designing for your users

Introduction
AX 2012 has been marketed as “powerfully simple.” This was not just a
marketing slogan—this was a key design goal for the release.

As an enterprise resource planning (ERP) solution, Microsoft Dynamics
AX must provide the many powerful, built-in capabilities that are required
to run a thriving company in the twenty-first century. The needs of
organizations are becoming more complex. Companies are trying to
organize themselves in new and unique ways to become more efficient.
Leaders of these organizations are asking their people to achieve more
with less. Governments want more transparency in the business operations
of a company. Combined, all these needs increase the complexity of
running a business and the demands on an ERP system.

The challenge for AX 2012 was to harness these powerful capabilities in
a way that users would find simple to use. There is a natural tension
between these goals, but that tension is far from irreconcilable.

At Microsoft, simplicity is defined as the reduction or elimination of an
attribute of the design that target users are unaware of or consider
unessential. The easiest way to simplify a design is by removing elements
from that design. For example, to simplify the experience of creating a
new customer, you can reduce the number of fields that the user needs to
complete on the new customer form. With fewer fields, the user can
complete the form in fewer keystrokes, which also minimizes the chance

that the user will make a mistake. The problem is that fields can’t simply
be removed from the new customer form because those fields are required
to support the capabilities that customers need.

So to have a simple and powerful user experience, AX 2012 has been
designed for the probable, not the possible. To design for the probable
means that you need to truly understand what the user is most likely to do
and not assume that all actions are equally possible. You can focus your
designs on what is likely, and then reduce, hide, or remove what is
unlikely.

For example, Microsoft Dynamics AX contains approximately 100
fields that contain information about a customer. In the prior release, when
the user created a new customer, the Customer Details form presented all
100 fields. The user had to look through all these possible fields to
determine what to enter. AX 2012 introduced a new dialog box (see Figure
5-1) that appears when a user creates a new customer. This dialog box
displays the 25 fields that users are most likely to use. The user can simply
enter data in these fields and then click Save And Close to create the new
customer. If the user needs to enter more detailed information about the
customer, the user can click Save And Open to go to the full Customer
Details form to enter data in the other 75 fields.

FIGURE 5-1 Simplified Customer dialog box.

This chapter describes the key concepts of the AX 2012 user experience
and explains how you can extend the capabilities of the product while
maintaining a focus on simplicity. This chapter supplements the
information in “User Experience Guidelines for Microsoft Dynamics AX
2012” on MSDN (http://msdn.microsoft.com/en-
us/library/gg886610.aspx). For more detailed information, refer to these
guidelines.

Role-tailored design approach
Designing an ERP system that is simple for all users is challenging
because many types of users use the product. The pool of users
encompasses more than 86 roles, and those roles use AX 2012 for many
different scenarios. These scenarios range from picking and packing items
in a warehouse to processing payments from a customer in the finance
department. It is not surprising that users in these various roles have
different mental models for how the system should work for them.

http://msdn.microsoft.com/en-us/library/gg886610.aspx

Designing the user experience for specific roles provides a much better
experience than providing the same experience for all users.

Historically, ERP systems were designed as a thin wrapper around the
tables in the database. If the database table had 20 fields, the user interface
displayed those 20 fields on a single form, similar to how they were stored
in the database. When a new feature was needed, new fields were added to
the table, and those fields were displayed on the form. Over time, ERP
systems became very complex, because more and more fields were added
without regard to who would be using them. This led to user experiences
that were designed for everyone but optimized for no one. The end goal of
a role-tailored user experience in AX 2012 is to make the user feel as if the
system was designed for him or her.

In AX 2012, the user experience is tailored for the various roles that the
product targets. The security system includes 86 roles that system
administrators can assign to specific groups of users. The user experience
is tailored automatically based on the roles and shows only the content that
is needed by a user who belongs to a given role. Based on the user’s role,
actions on the Action pane, fields, field groups, or entire tabs might be
removed from certain forms. With each field or button that is hidden, the
product becomes easier to use. The menu structure is also tailored so that
each user sees only the areas or the content in these areas that pertain to
the user’s role. Users feel like they are using a smaller application tailored
to their needs, as opposed to a large, monolithic ERP system. For more
information about working with roles, see Chapter 11, “Security, licensing,
and configuration.”

To understand this concept, look at the navigational structure for AX
2012. The product contains 20 area pages targeting the various activities
needed to run a business. Whereas a system administrator sees all of these
areas, a specific role such as a Shipping Clerk, Purchasing Agent, or Order
Processor sees only the four to six areas that relate to the role, as shown in
Figure 5-2.

FIGURE 5-2 Role-tailored navigation.

User experience components
In AX 2012, user experience components are divided into two conceptual
layers:

 The navigation layer consists of top-level pages that serve as a
starting point for the user as he or she navigates through the
application. Area pages, Role Centers, and list pages are navigation-
layer elements.

 The work layer consists of the forms in which users perform their
daily work, such as creating and editing records, and entering and
processing transactions. Details forms and transaction details forms
are work-layer elements.

Figure 5-3 illustrates how the user navigates through the primary

elements that make up the AX 2012 user experience. The following
sections describe these elements in detail.

FIGURE 5-3 Navigation paths through AX 2012.

Navigation layer forms
Navigation layer forms such as the Role Centers, area pages, and list pages
are displayed within the AX 2012 Windows client in a flat navigation
model. This model is similar to that of a website, in that pages are
displayed within the content region of the page, replacing each other as the
user progresses from one form to the next. The client workspace consists
of the following components, which are illustrated in Figure 5-4:

 Address bar Provides an alternate method of navigating through the
application. A user can type a path or click the arrow icon next to
each entry in the path to select the next location. The address bar has
buttons that allow navigation backward and forward between the
recently displayed pages. The address bar also provides a mechanism
for the user to switch companies because the current company is the
first entry in the address path.

 Search bar Lets users search for data, menu items, or Help content.
The user can use the search bar as an alternate method of navigation

if he or she doesn’t know how to find a particular form. The search
bar is an optional component that must be configured as part of
setup. For more information, see “Enterprise Search” at
http://technet.microsoft.com/en-us/library/gg731850.aspx.

 Navigation pane Appears on the left edge of the client workspace
and is used for navigating to the various areas within the application
or the user’s list of favorite forms. Optionally, this pane can be
collapsed or hidden through the View menu.

 Content pane Appears to the right of the navigation pane and
displays top-level pages, such as area pages, Role Centers, and list
pages.

 FactBox pane Appears at the right of the workspace and provides
related information about a specific record in a grid. The FactBox
pane appears only on list pages. Users can personalize the contents
of the FactBox pane by using the View menu.

 Status bar Appears at the bottom of the workspace and displays
additional information in a consistent location, such as user name,
company, or notifications. The user can personalize the contents of
the status bar by using the Options form (click File > Tools >
Options).

FIGURE 5-4 Client workspace components.

Work layer forms
The remaining forms in AX 2012 are where the user performs work such

http://technet.microsoft.com/en-us/library/gg731850.aspx

as configuring the system, creating new transactions, or entering
information into journals. These forms open in a new window that is
separate from the client workspace. The work layer pages are described in
detail in the upcoming sections.

Role Center pages
A Role Center page is the user’s home page in the application. A Role
Center provides a dashboard of information that pertains to a user’s job
function in the business or organization. This information includes
transaction data, alerts, links, and common tasks that are associated with
the user’s role in the company.

AX 2012 provides different Role Center content for the various roles.
Each Role Center provides the information that the users who belong to
that role need to monitor their work. A Role Center also provides shortcuts
to frequently used data and forms. Each user can personalize the content
that appears in his or her Role Center.

Cues
A cue is a visual representation of a query that appears as a stack of paper.
A cue represents the activities that the user needs to perform. The stack
grows and shrinks as the results of the query change.

Cues are an excellent way for users to monitor their work. For example,
an Accounts Payable clerk can monitor a cue of pending invoices, invoices
due today, or invoices past due, as shown in Figure 5-5. Clicking a cue
opens the appropriate list page with the same query applied. When the
clerk wants to act on the invoices, the clerk clicks the cue.

FIGURE 5-5 Activity cues.

Designing Role Centers
Although AX 2012 includes great Role Centers for the various roles, these
Role Centers must be customized to meet the needs of the people who will
be using them. It is highly recommended that partners and system

administrators take the time to customize the Role Centers for the various
users within the organization.

Designing a great Role Center requires a deep understanding of the user.
Here are a few techniques that you can use to help you understand your
customers:

 Survey people in the various roles to understand the top 10 questions
they have related to their jobs. Then, explore ways that you can use a
Role Center to provide answers to as many of those questions as
possible.

 Show users the content of their default Role Center on a piece of
paper. Then, ask them to circle the content that they find useful and
to cross out the content that they don’t find useful. You can also give
them a blank piece of paper to sketch out additional content that they
would like to see. Users typically get excited with these types of
exercises because they feel empowered describing what they want
from their ERP system.

 Observe users performing their daily tasks. Often, users cannot
articulate what they need to become more efficient, but it might be
obvious if you observe them performing their jobs. As you observe
them, watch for emerging patterns in their work.

 Find out which forms users open frequently, and consider adding
links to those forms to the Role Center QuickLink on their Role
Center, or as a favorite in their navigation pane. A QuickLink is a
part on the Role Center that provides quick access to any form within
AX 2012.

 Find out if users frequently go to a list page and filter the content to
see a particular group of records. If they do, you can help those users
become more efficient by adding a cue to the Role Center that is
configured to provide direct access to this list with the appropriate
filter applied. We’ve seen Role Centers customized for users that
include a page full of cues needed by the user.

 Summarize frequently viewed reports as a chart or graph.
Here are a few other tips to consider when you design a new Role

Center or extend an existing Role Center:
 Remove any parts that users don’t need.
 Place the most important content toward the top of the page.
 Ensure that the page loads quickly, within 2 to 5 seconds. This might

require you to optimize the queries and cubes that display the
information within these parts. For more information about
optimizing queries, see Chapter 13, “Performance.”

Area pages
Area pages are the primary method for users to navigate through the
application. By default, AX 2012 provides 20 different area pages. Each
area page focuses on a specific department or activity—for example,
Human Resources or Accounts Receivable, as shown in Figure 5-6.
Depending on their role, users might see only a small set of area pages.

FIGURE 5-6 Area page for Accounts Receivable.

The content of an area page is divided into six groups of links:
 Common Contains links to the most important entities that are used
within this area, such as customers, vendors, products, sales orders,
and invoices. These links usually take the user to the list page for an
entity. Through the list page, users should be able to navigate to all
things that are related to the entity.

 Inquiries Provides access to all the inquiry-type forms for the area.
If possible, do not create new inquiry forms for entities that have list
pages. Instead, consider providing different views within a list page,
because lists are where users expect to find all content related to an
entity.

 Periodic Provides access to tasks that need to be performed
periodically. If you are considering adding new forms to the Periodic
section, think about whether the form is specific to an entity that
would be better suited to being accessed through the entity’s list
page and details page.

 Journals Provides access to journals that are related to this area. A
journal is a concept that makes sense to a financial user, but not to
other users outside the finance department. Use caution when you
introduce new journals to AX 2012 to make sure that this is the
correct approach for your users.

 Reports Provides access to reports that are related to this area. Note
that we are discouraging creating new reports whenever possible.
Many users don’t want to view information in a report but instead
prefer seeing this information on a form such as a list page because it
is more interactive than a report.

 Setup Provides links to the forms needed to configure this area.

Designing area pages
Designing area pages is an exercise in organizing the content in a way that
makes sense for users. This section provides some tips to consider when
you design a new area page or extend an existing area page.

Take the time to understand the users’ mental model as it relates to the
work that they do. Make sure that you place the links to the forms they
need to use in the most logical area. The best way to do this is to perform a
simple card sort exercise to help you understand how users want to
organize their content.

To conduct a card sort, do the following:
1. Create index cards for the entries that you are considering for an

area page.
2. Ask potential users to group these index cards into piles that they

feel go together.
3. Have users give a name to each pile.
4. Place the frequently accessed entities in the Common section. This

section should provide navigation to a list page.
This technique can give you a good indication of how to organize the

content on an area page or a group of area pages. For more information
about card sorting, see “Card sorting: a definitive guide” at
http://boxesandarrows.com/card-sorting-a-definitive-guide/.

http://boxesandarrows.com/card-sorting-a-definitive-guide/

Avoid creating additional reports, inquires, and periodic forms for
features related to a common entity. Instead, provide access to these forms
through the entity’s list page and details forms. This way, for example, the
user doesn’t have to search the area page for things related to a customer,
but instead knows that all things related to a customer can be found on the
Customer list page and details form.

Avoid adding multiple new pages to the Setup section. Instead, look for
ways to consolidate setup information for a feature area into a single form
by using the table of contents pattern. When this information is
consolidated, the user needs to find only one form and can easily see all
related configuration information without having to go back to the area
page.

Avoid creating new area pages that are specific to a custom solution
unless this makes logical sense. For example, if your solution provides the
capability to do credit checks on customers, it is typically better to add
links to these features in the Accounts Receivable area than it is to create a
new area page specifically for credit checks. Accounts Receivable users
expect these features to be part of the Accounts Receivable area and not in
a separate area.

Spend the time necessary to organize the content in a way that is logical
to your users. Users will not only benefit while they learn to use your
features, they will also benefit during extended use Often, even
experienced Microsoft Dynamics AX users struggle to remember where to
find an infrequently used form. Typically, this happens because the form is
accessed from a place that wasn’t logical to the user.

List pages
List pages are the starting point for many tasks in AX 2012. Any scenario
that starts with finding a record or a set of records is best suited for a list
page, as shown in Figure 5-7. List pages are designed to be the place
where users can find information and then act on that information.

FIGURE 5-7 Customers list page.

Scenario: taking a call from a customer
To fully understand the power of a list page, consider a simple scenario of
a customer service representative (CSR) in a manufacturing company who
receives calls from customers. When the CSR receives a call from a
customer, the CSR wants to be efficient and take the least amount of time
while on the phone. This scenario is optimally suited for a list page. The
steps in this scenario correspond to the numbered items in Figure 5-8 and
illustrate how a CSR can use a list page to perform a group of related tasks
without having to leave the list page.

FIGURE 5-8 Steps for taking a call from a customer.

1. When a call comes in, the CSR answers the phone while
simultaneously opening the Customers list page. She assumes that a
customer is calling.

2. The customer announces that his name is Terry and he is calling
from Sunset Wholesales. The CSR greets the customer while typing
Sunset into the Quick Find field.

3. The CSR notes that only one customer record with Sunset in the
name is displayed in the list. To verify that she has found the correct
customer record, she looks at the FactBox on the right side. It shows
three contacts from Sunset Wholesales, and Terry’s name is in the
list.

4. The customer wants a quote on purchasing fifty 48-inch high-
definition flat-screen televisions. The CSR clicks the Sell tab of the
Action pane and clicks the new Sales Quotation button.

5. She proceeds to enter the quotation and quotes a price for the
customer.

If, in this scenario, the customer Sunset Wholesale was not already in
the system, the CSR would have searched for the customer, but no match
would have been found. In this case, she could easily add a new customer
from the Action pane, as shown in Figure 5-9.

FIGURE 5-9 Adding a new customer.

If the customer called to check the status of his most recent payment, the
CSR could quickly check the Recent Activity FactBox (see Figure 5-10) to
see the amount of the payment and the date it was received.

FIGURE 5-10 Customer-related information.

Using list pages as an alternative to reports
A list page is a great alternative to a traditional report. Historically, ERP
systems focused on traditional reports as a way to get information out of
the system. To an extent, AX 2012 has migrated away from traditional
reports, and instead uses list pages as a place to view simple reports. For
example, the customer aging list in Accounts Receivable > Collections is
shown in Figure 5-11. This is a list of customers that displays information
typically seen in an aged trial balance report. Having an interactive list of
customers is much better than a traditional report, because the user can sort
this list easily by customer balance to see, at the top of the list, the
customers who owe the organization the most money. Additional
information about this customer is easy for the users to see in the
FactBoxes. A user who wants to take action with this customer has full
access to commands that are related to a customer. The Collections list
page is also a great example of a role-tailored experience. This page
displays a list of customers with specific information that Collections users
need to see.

FIGURE 5-11 Collections list page displaying an aging trial balance report.

These examples demonstrate how a list page is a great starting point for
many scenarios. In these scenarios, the list page allows the user to find the
customer and take the appropriate action quickly. Notice that when the
CSR received the phone call, the CSR did not know what the customer
was calling about. Starting from the Customer list, the CSR could easily
find the customer, then wait for the customer to state what he or she
wanted. At this point, the CSR could take any action needed to help the
customer in a timely manner. Although these examples focused on the
Customers list, you’ll see similar benefits in other list pages, too.

Designing list pages
As a developer extending AX 2012, you will need to extend an existing list
page or design a new list page for an entity. Here are some tips to consider
when you design a new list page or extend an existing one:

 Organize the tabs of the Action pane by activity. For example, on the
Customer list page, we organized the commands based on typical
activities that you perform against a customer, such as Sell, Invoice,
and Collect. This helps the user find commands more easily,
especially if there are many actions.

 Provide access to all actions that the user needs to perform against
the entity in the Action pane. Users expect all actions to be available

from the list page. Don’t force them to go elsewhere to initiate an
action.

 Allow the user to perform bulk actions by multiselecting items in the
list. This is one of the most powerful capabilities of a list page,
because the user can easily filter the list and then select all records to
take an action against.

 Provide secondary list pages that are filtered to show a specific set of
records that need to be accessed frequently by the user. These
secondary list pages should be added as a cue in the corresponding
Role Center. This helps the users monitor the number of records in
the list and get quick access to the list by clicking on the cue in the
Role Center. Past Due Customers and Customers On Hold are
examples of secondary lists that are included on the Customer list
page.

 Design FactBoxes to display information that the user typically
would have to open additional forms to see. By providing this
information in a FactBox, you greatly simplify the user’s experience
because no additional action is required.

 Consider which columns the user needs to see in the list, and display
those columns by default. Although the product provides users with
a mechanism for adding columns to a list page, it is best if you can
ensure that the fields the user needs to see are displayed
automatically.

 Ensure that the page loads quickly. Users expect the list to appear
within 2 to 5 seconds. This will require that you optimize the queries
used to load the list page. For more information about optimizing
queries, see Chapter 13.

 When adding a new list page, follow the AX 2012 user experience
guidelines on MSDN (http://msdn.microsoft.com/en-
us/library/gg886610.aspx) to ensure that the list, Action pane, and
FactBoxes are designed appropriately and match the rest of the
application.

Details forms
Details forms are the primary method for creating and editing primary
entities such as customers, vendors, workers, and products. A user opens a
details form by double-clicking a record on a list page. By default, the
details form for an existing entity opens in read-only mode. To modify the

http://msdn.microsoft.com/en-us/library/gg886610.aspx

record, the user can click Edit to switch the form to edit mode.
All fields of a details form are grouped into FastTabs that the user can

expand and collapse, as shown in Figure 5-12.

FIGURE 5-12 Customer details form.

FastTabs can display summary fields, which display key fields
contained in the FastTab so that the user does not have to expand the
FastTab. For example, in Figure 5-13, the summary field displays the
customer’s credit rating and payment terms, among other information.

FIGURE 5-13 FastTabs with summary fields.

Details forms have an Action pane that displays commands organized in
the same way as the corresponding list page. The list page and the details
form should have the same set of actions, with only a few exceptions. A
details form also can contain FactBoxes to display related information.
Many details forms contain the same set of FactBoxes as the list, but this is
not a required feature. For more information, see the user experience
guidelines (http://msdn.microsoft.com/en-us/library/gg886610.aspx).

If you are introducing a new primary entity into AX 2012, you will need
to create a new details form, in addition to a list page. Primary entities are

http://msdn.microsoft.com/en-us/library/gg886610.aspx

typically tangible things that directly relate to the work a company
performs, such as customers, vendors, employees, or inventory items.
They tend to have many fields, many actions, and a great deal of related
information.

The primary effort required for designing a new details form is to
organize all of the fields within FastTabs. This exercise will require some
knowledge of your users and the work they do with these entities. To
organize fields into FastTabs, here are some guidelines to consider:

 Create FastTabs that are organized into groups that are logical to
your users. This can be another situation where a card sort can help
inform your decisions. Ask your users to organize the fields of the
entity into groups, and then ask them to name the groups. As you go
through this exercise, test the organization with your users to see if it
is intuitive for them. It might take multiple iterations to organize the
fields correctly. Don’t be discouraged; multiple iterations are normal
to get the correct design.

 Keep the number of fields in a FastTab as low as possible because
taller FastTabs are less usable than shorter ones. When a tall FastTab
is expanded, users lose their context in the form because a taller
FastTab requires more scrolling and doesn’t allow multiple FastTabs
to be expanded at the same time.

 Order the FastTabs to put the most important FastTabs at the top and
the least important ones at the bottom.

Here are a few other tips for designing a details form:
 Organize the tabs of the Action pane by activity. This helps the users
more easily find their commands, especially if there are many
actions.

 Provide access to all the actions that the user needs to perform
against the entity in the Action pane. Users expect all actions to be
available in the Action pane. Don’t force users to go elsewhere to
initiate an action.

 If multiple roles use the form, ensure that members of each role see
only the commands that are required for their jobs. You can organize
commands so that entire Action pane tabs are hidden from specific
roles. You can configure this through the AX 2012 security model.
For more information, see Chapter 11.

 Design FactBoxes to display information that the user would
typically have to open additional forms to see. By providing this

information in a FactBox, you greatly simplify the user’s experience
because no additional action is required.

 Ensure that the page loads quickly. The user will expect the form to
open within 2 to 5 seconds. This will require you to optimize the
queries that are used to load the form. For more information about
optimizing queries, see Chapter 13.

 Give users the capability to edit multiple records from within the
details form, as shown in Figure 5-14. The user can initiate this
through the Grid View button on the status bar.

FIGURE 5-14 Grid view of the Customer details form.

Transaction details forms
Transaction details forms are used for creating and editing transactions in
AX 2012. A transaction is a business event that occurs within a company
and needs to be recorded in the ERP system. Examples of transactions in
AX 2012 are sales orders, purchase orders, invoices, and bank deposits.
The user experience for recording transactions is critical for any ERP
system because many transactions must be recorded on a daily basis.
Transaction details forms must be optimized for efficiency so that users
can enter new transactions easily. These forms must be intuitive so that
users don’t make mistakes that cost time and money to resolve. Users of
these forms typically use them repeatedly throughout the course of the day.
They learn every nuance of the form to become as efficient as possible,

and they become frustrated by any extra step that is required because, over
the course of a day, the extra step slows them down.

The Sales Order and Purchase Order transaction details forms are
possibly the most complex forms within Microsoft Dynamics AX because
of the number of fields and actions that they need to support. With each
release, new fields and actions are typically added to these forms to
support additional capabilities that customers request. Figure 5-15 shows
the Sales Order detail form, which is used to create new sales orders. This
form has been simplified by providing quick access to the important
header fields and the lines of the order. It has been optimized for the orders
that are typically created by a user, while still supporting all possible
options. This simplification will require many users to customize both
forms to meet their needs. The goal with these forms is to design a great
experience that can be customized easily for the specific needs of each
user.

FIGURE 5-15 Sales Order details form.

Transaction details forms are similar to details forms because users open
them from a list page by double-clicking a transaction record. By default,
transaction details forms open in read-only mode the same way that a
details form does. To modify the record, a user clicks Edit to switch the
form to edit mode. Transaction details forms differ from details forms
because they typically have line items to indicate the details of the

transaction. The line items are the main focus of these forms and are where
the users spend most of their time. Transactions can vary greatly in their
complexity; a simple transaction might require only 1 or 2 line items, but a
complex transaction might require more than 100 line items. Transaction
details forms must be designed to accommodate both of these situations.

A transaction details form has two views, which users can toggle
between by using buttons in the Action pane:

 Line view Displays only the header fields that are most likely to be
needed when a user creates a new transaction. Line view is the
default view and is designed to support the majority of the user’s
tasks. You should modify this set of header fields to display the most
important fields for your users.

 Header view Displays all the header fields of the transaction.
Typically, many of these fields use default values and are not
completed directly by a user. These fields are omitted from the Line
view to make it easier to use.

As a developer extending AX 2012, you might need to extend an
existing transaction details form or design a new transaction details form
for an entity. Here are some guidelines to consider when you extend or
design a new transaction details form:

 Organize the tabs of the Action pane by activity. This helps the user
more easily find commands—especially if there are many actions.

 Provide access to all actions that the user needs to perform against
the entity in the Action pane. Users expect all actions to be available
in the Action pane. Don’t force users to go elsewhere to initiate an
action.

 If multiple roles use the form, ensure that members of each role see
only the commands that are required for their jobs. You can organize
commands so that entire Action pane tabs are hidden from specific
roles. You can configure this through the AX 2012 security model.
For more information, see Chapter 11.

 Ensure that the columns in the line items list are the fields that the
user completes most frequently. Entering fields into the grid is much
more efficient than using the line details at the bottom of the form.

 Design FactBoxes that display information to help users while they
are entering new transactions or viewing an existing transaction. By
providing this information in a FactBox, you greatly simplify the
user’s experience because no additional action is required to see this

information.
 Ensure that the page loads quickly. The user will expect the form to
display within 2 to 5 seconds. Performance of this form is extremely
critical because it is used repeatedly throughout the day. Any
performance issue on the forms will frustrate the user.

 When adding a new transaction details form, follow the user
experience guidelines at http://msdn.microsoft.com/en-
us/library/gg886610.aspx. Note that the guidelines refer to
transaction details forms as details forms with line items.

Enterprise Portal web client user experience
The Enterprise Portal web client provides a similar user experience to the
AX 2012 Windows client. Any user who is familiar with the AX 2012
client should also feel comfortable using Enterprise Portal. Like the AX
2012 client, Enterprise Portal contains navigation layer and work layer
forms, but the navigation path is simplified, as shown in Figure 5-16.

http://msdn.microsoft.com/en-us/library/gg886610.aspx

FIGURE 5-16 Enterprise Portal navigation paths.

The following sections describe the Enterprise Portal user experience.
For more information about creating Enterprise Portal pages, see Chapter
7, “Enterprise Portal.”

Navigation layer forms
In Enterprise Portal, navigation layer forms include Role Centers and list
pages. The user has the same Role Center between the AX 2012 client and

Enterprise Portal. List pages in Enterprise Portal are similar to those in the
AX 2012 client and, from a developer perspective, are actually the same
form (see Chapter 7). All Enterprise Portal navigation layer forms appear
within the Enterprise Portal workspace, which consists of the following
components:

 Top navigation bar Contains a set of links at the top of the page. A
user can use this bar to navigate between the various areas, such as
Sales and Procurement, that are visible. Each link in the top
navigation bar points to the default page of the corresponding area.

 Search bar Lets users search for Help content and data and forms.
By default, users can use the search bar to search for AX 2012 Help
and Microsoft SharePoint Help. If you want to enable searching for
data and forms, Enterprise Search must be configured as part of the
setup. For more information, see “Enterprise Search” at
http://technet.microsoft.com/en-us/library/gg731850.aspx.

 Action pane Displays a set of buttons that are categorized into
contextual tabs and button groups similar to the Action pane in the
AX 2012 client and Microsoft Office applications. This enhances
simplicity and discoverability because the actions available vary
based on the permissions of the user.

 Navigation pane Contains a set of links on the left side of the page
that allow a user to navigate to the various areas and pages within an
area. Note that the Navigation pane in Enterprise Portal doesn’t
provide access to all areas; instead, it provides navigation within an
area. This differs from the Navigation pane in the client.

 Content pane Appears to the right of the Navigation pane. The
Content pane displays content pages such as Role Centers, in
addition to list pages.

 FactBox pane Appears at the right of the workspace and provides
related information about a specific record in a grid. The FactBox
pane is displayed only on list pages within the workspace. Unlike
FactBoxes in the AX 2012 client, the FactBox pane in Enterprise
Portal cannot be personalized by the user.

Work layer forms
The primary work layer forms in Enterprise Portal are details forms, which
are used for entering information into AX 2012. A details form lets users
view, edit, and act upon data. These forms are similar to the details forms
in the AX 2012 client but have a smaller set of fields and actions.

http://technet.microsoft.com/en-us/library/gg731850.aspx

Designing for Enterprise Portal
When you are designing for Enterprise Portal, consider where users will
perform similar actions in the AX 2012 client, and plan the user
experience so that it is consistent:

 Organize the content into areas similar to those in the AX 2012
client. If users find customers in the Sales and Marketing area of the
client, they will expect customers to be located in that same area of
Enterprise Portal.

 Organize commands in the Action pane in a similar manner to those
on the client.

For more information about designing new forms for Enterprise Portal,
see the Microsoft Dynamics AX 2012 user experience guidelines at
http://msdn.microsoft.com/en-us/library/gg886610.aspx.

Designing for your users
This chapter has talked about how to design powerful and simple user
experiences for your users. The key to designing powerful and simple
experiences is to truly understand your users so that you can focus your
designs on what the user is likely to do. Don’t assume that you know what
your users know or what they need or want. Also, don’t assume that their
managers know what they need or want. Instead, take the time to observe
them working, and talk to them about what they need. Also, keep in mind
that sometimes users cannot articulate what they need or want. You will
have to develop the skills to observe and listen for their unarticulated
needs.

Based on the insights you gain, sketch out some possible designs and
then take them back to the users for their feedback. Avoid prototyping the
solution; instead, simply create a sketch. This might feel awkward if you
think that you need to have a perfect design before you take it back to
users. Keep in mind that they will appreciate the opportunity to provide
feedback early in the process. When they see that you haven’t invested a
lot of time on your designs, they will be more willing to provide feedback.
If you get feedback indicating that you are off the mark on your designs,
you can easily change direction at this point because you haven’t invested
a lot of time in your sketches.

When you are getting feedback from your users on your designs, don’t
demo the design to them and ask for their opinion. Instead, ask them to
explain what they are seeing with these designs and describe how they

http://msdn.microsoft.com/en-us/library/gg886610.aspx

think they would take actions with them. If they are able to describe how
the designs work and indicate how they can be used, you are on the right
track. If not, take their input and sketch out some new designs. Don’t wait
too long before talking to your users, and don’t be afraid to make mistakes.
The key is to fail early when you haven’t invested much time in your
designs, and to determine the right design before you begin coding your
feature. Create two or three iterations until you get a design that seems to
resonate with users. Remember that designing a simple, easy-to-use
feature is a difficult exercise.

Chapter 6. The AX 2012 client

In this chapter
Introduction
Working with forms
Adding controls
Using parts
Adding navigation items
Customizing forms with code
Integrating with the Microsoft Office client

Introduction
At its core, the AX 2012 Windows client is a form-based Windows
application that lets users interact with the data contained on the server.
You can modify the client to display new data types or to alter how users
interact with existing data types. The user interface consists of forms that
are declared in metadata and often contain associated code.

AX 2012 includes several updates and additions for the client. Some of
the more substantial changes include new patterns for master records
(details forms) and secondary data (list pages and transaction details
forms), a new vertically expanding FastTabs control, the use of Action
panes and Action pane strips to display actions more prominently, and the
introduction of FactBoxes to showcase related information. For more
information, see Chapter 5, “Designing the user experience.”

The majority of this chapter covers key aspects of the AX 2012 client.
However, some of the information in this chapter is at the overview level.
For more detailed information, see the “Client” section of the AX 2012
SDK at http://msdn.microsoft.com/en-us/library/gg880996.

Working with forms
A form is the basic unit of display in the client. A typical form displays
fields that show the current record and buttons that represent the actions
the user can take on that record, and a mechanism to change which record
is being shown.

To create a form, you use the Application Object Tree (AOT) to define
the metadata for the form. If necessary, you can add code to handle any

http://msdn.microsoft.com/en-us/library/gg880996

events that cannot be handled declaratively in metadata.
The following high-level steps describe the basic process for creating a

form:
1. Create the form resource. You can create a form from scratch, but

often, you can use an existing form or a template as a starting point.
When you create the form, be sure to set the Caption property on the
form’s Design node. This is an important but often overlooked step.

2. Add data sources and set up join information. You can define
custom queries and filters, if necessary.

3. Add controls to the form. You can add controls that are bound to
fields to display data and action controls, such as buttons and Action
panes, that let the user perform actions on the current record.

4. Add parts to the form that display data related to the main record.
Parts can reduce the navigation that users must perform to find
information.

5. Add navigation items so that users can access your form. Create a
MenuItem control that points to the form. Add a reference to that
MenuItem to Menu controls, or to other forms through
MenuItemButton controls, to let the user navigate to the form.

6. Override form and control methods if you cannot achieve the
behavior that you want declaratively through metadata.

7. Add business logic to classes as necessary to implement the
functionality that the new form provides.

The following sections in this chapter contain more information about
the components in each step. For the latest information and most up-to-
date examples about how to build and customize forms, see the “Client”
section in the AX 2012 SDK at http://msdn.microsoft.com/en-
us/library/gg880996.

Form patterns
Earlier releases of Microsoft Dynamics AX had informal patterns for form
development. In AX 2012, several form patterns have been formalized and
are provided as templates.

When you create a form, select a form pattern that reflects the type of
data that appears in the form and the interaction pattern that is provided to
the user. The “Form User Experience Guidelines” topic on MSDN
(http://msdn.microsoft.com/EN-US/library/gg886605) discusses each of
the form patterns. These guidelines are useful to ensure a seamless

http://msdn.microsoft.com/en-us/library/gg880996
http://msdn.microsoft.com/EN-US/library/gg886605

experience between the new form and the existing forms in AX 2012.
After you select a form pattern, you can create a form by using a

template: In the AOT, right-click the Forms node, click New Form From
Template, and then select the template you want.

The form that AX 2012 generates contains property values and controls
that implement the structure specified by the form pattern. Table 6-1
describes the form templates that are available and the purpose of each
type of form.

TABLE 6-1 Form templates.

 Note

There are no formalized patterns for journal and inquiry forms
because the structure of those forms is highly dependent on
the data and processes they support.

Form metadata
The form metadata in AX 2012 is extensive, but it is well-structured and
easy to work with after you become familiar with it. The following are the
primary metadata nodes for a form resource:

 Form.DataSources The data structures that are used for the form.
For more information, see the “Form data sources” section later in
this chapter.

 Form.Designs.Design The controls that display the data for the
record. This metadata node name is often shortened to Form.Design
or Form Design. For more information, see the “Adding controls”
section later in this chapter.

 Form.Parts The additional parts that display related data. For more
information, see the “Using parts” section later this chapter.

Figure 6-1 illustrates these nodes in the AOT for the CustGroup form.

FIGURE 6-1 Metadata nodes for the CustGroup form.

Ideally, you should use metadata to customize forms. Metadata
customization is preferred over code customization because metadata
changes (also called deltas) are easier to merge than code changes. To
ensure the greatest level of reuse, any changes you make to the metadata
should be made at the lowest level possible—for example, at the table

level instead of the form level.
When customizing forms, you should be aware of the metadata

associations and the metadata inheritance that are used to fully define the
form and its contents.

Metadata associations
You edit the metadata in AX 2012 by using the AOT. The base definitions
for forms contained within the AOT\Forms node consist of a hierarchy of
metadata that is located in other nodes in the AOT. To fully understand a
form, you should investigate the metadata associations it makes. For
example, a form uses tables that are declared in the AOT\Data
Dictionary\Tables node, menu items that are declared in the AOT\Menu
Items node, queries that are declared in the AOT\Queries node, and classes
that are declared in the AOT\Classes node.

Metadata inheritance
You need to be aware of the inheritance within the metadata used by
forms. For example, tables use base enums, extended data types (EDTs),
and configuration keys. A simple example of inheritance is that the Image
properties on a MenuItemButton are inherited from the associated
MenuItem if they aren’t explicitly specified on that MenuItemButton.

Inheritance also occurs within forms. Controls that are contained within
other controls receive certain metadata property behaviors from their
parents unless different property values are specified, including Labels,
HelpText, Configuration Key, Enabled, and the various Font properties.

Table 6-2 shows examples of pieces of metadata that are inherited from
associated metadata.

TABLE 6-2 Examples of metadata inheritance.

Form data sources
AX 2012 has a rich data access framework that makes it easy to add data

to forms and bind controls to that data. The basis of this is the form data
source, which allows binding the tables and fields to a form.

The form data source points to a specific table, map, or view. The field
list on the form data source is automatically populated with the fields that
are defined on the resource it refers to. From that list, you can bind
controls to those fields or any of the data methods that exist on the table or
form data source.

Form data sources can be divided into the following categories:
 Root data sources Root data sources do not contain a value for the
JoinSource property and therefore are not joined with or linked to
any other data source. Most forms have only one root data source.
The root data source references the table data that is the primary
subject of the form. Root data sources are sometimes called top-level
data sources.

 Master data sources Master data sources are root data sources or
dynalinked data sources. A single query is used to retrieve the data
for a master data source and the data sources that are joined to it.
You can think of a master data source as being at the root of a query
hierarchy.

 Joined data sources Joined data sources are those that are joined to
another data source. These data sources have a LinkType value of
InnerJoin, OuterJoin, ExistJoin, or NotExistJoin. Typically, you use
a join to combine data sources so that the data is retrieved by a single
query. For example, in the CustTable form, DirPartyTable is joined
to CustTable.

 Linked data sources Linked data sources are data sources that are
linked to another data source in the form. These data sources have a
LinkType value of Active, Delayed, or Passive. Use a link for data
sources that have a parent/child relationship so that the data is
retrieved in separate queries. For example, in the SalesTable form,
SalesLine is linked to SalesTable.

Dynalinks
The term dynalink refers to two data sources that are dynamically linked.
A dynalink always has a parent data source and a child data source—for
example, the SalesTable (Sales orders) form, where the SalesTable (Sales
order) data source is the parent and the SalesLine (Sales order line) data
source is the child. If two data sources have a dynalink, when a record
changes in the parent data source, the child data source is notified about

that change. The query for the child data source is reexecuted to retrieve
the appropriate related data.

The following types of dynalinks are available:
 Intra-form Intra-form dynalinks occur between data sources that
have a LinkType value of Active, Passive, or Delayed. The child data
source has a query that is separate from the parent data source, and
the query runs at a time that is determined by the LinkType property.

 Inter-form Inter-form dynalinks occur between related data sources
on forms where one form (the parent) opens another form (the child).
The DataSource property of a MenuItemButton on the parent form is
used to specify which data source is used as the parent form side of
the link. The child form side of the link is the first root data source.

Table inheritance
Table inheritance in AX 2012 functions much like class inheritance in any
object-orientated language. However, it has the added benefit of allowing
polymorphic queries of the data in tables. (For more information about
table inheritance, see Chapter 17, “The database layer.”)

If you model a form data source on a table that is a base type, the
derived types are automatically expanded into a subnode called Derived
Data Sources. This node is not editable and is generated by the forms
engine. The derived data sources have no properties or methods of their
own because all of those characteristics are inherited from the base form
data source. However, you can still override and add methods to the fields
for derived data sources. For example, the DirPartyTable data source,
shown in Figure 6-2, is part of a table inheritance hierarchy.

FIGURE 6-2 The DirPartyTable data source in the AOT.

Figure 6-2 shows all of the automatically generated data sources, one for
each derived type. The Fields node for each derived type lists the fields for
that type. When there is only a single chain of base types, all of the base
fields are collapsed into a single Fields node underneath the form data
source. For example, if you model a form data source based on the
DirPerson type, the Fields node would contain all of the fields in the
chain.

Instance methods on the form data source also follow the table
inheritance hierarchy. For example, if the user triggers the validateWrite
event when the current active record is of type DirPerson, the
FormDataSource.validateWrite method is called, which will call
DirPerson.validateWrite, which will call DirPartyTable.validateWrite,
which will call the kernel-level Common.validateWrite. However, non–
instance-specific methods such as executeQuery work on the general form

data source, so there are no calls to any base methods.
Because polymorphic queries are allowed, polymorphic creation of

records is also supported. When a user clicks New on a form with a form
data source that has no derived types, the concrete type to create is known.
However, when the form data source has derived types, the user must be
prompted to select a type to create.

Traditionally, to create a record in X++ code, you had to call only the
FormDataSource.create method. However, that method does not let you
specify the type. To support the polymorphic creation scenario, use the
following method:
Click here to view code image

FormRun.createRecord(str _formDataSourceName [, boolean

_append = false])

All create actions performed by the kernel are routed through this
method. You should also use this method instead of the create method.
The first parameter specifies the name of the form data source in which to
create the record, and the second parameter contains the same append
value that is passed to the create method. You can override this behavior
by adding conditional code that depends on the type being created. The
call to the super of the method executes the correct logic depending on the
type.

If the type (or any of the types in the join hierarchy) is a polymorphic
type, the user is prompted to select the type of record to create, as shown
in Figure 6-3.

FIGURE 6-3 Dialog box that prompts a user to specify a record type.

The createRecord method lets you override the behavior of the super to
either specify the types of records that the user can create, or display your
own dialog box to the user. To inform the kernel of which types you want
the user to choose from, you use the following method:
Click here to view code image

FormDataSource.createTypes(Map _concreteTypesToCreate [,

boolean _append = false])

The first parameter contains a map of string key/value pairs, where the
key is the name of the form data source and the value is the name of the
table type to create. For example, if your objective is to always create a
type of CompanyInfo, you could use the next code snippet. Note that the
name of the form data source is the name of the data source that is
modeled on the form, not the derived data source, as shown in the
following code:
Click here to view code image

public void createRecord(str _formDataSourceName, boolean

_append = false)

{

 Map typestoCreate = new Map(Types::String,

Types::String);

 if(_formDataSourceName == "DirPartyTable")

 {

 typestoCreate.insert("DirPartyTable",

"CompanyInfo");

 DirPartyTable_ds.createTypes(typestoCreate,

_append);

 }

 else

 {

 super(_formDataSourceName, _append);

 }

}

Unit of Work
Saving records in form data sources can occur in two ways. The traditional
approach is that all of the inner-joined and outer-joined data sources are
saved together in one process, but each record is saved to the server in
individual remote procedure calls (RPCs) and transactions. This can be
troublesome, because sometimes you need all of the records to be saved in
a single transaction. To achieve this, you can set the ChangeGroupMode
property on the Data Sources node to ImplicitInnerOuter. (The default
setting is None, which results in the behavior described earlier.) With the
ImplicitInnerOuter setting, all of the inner-joined and outer-joined records
are grouped into a single RPC to the server and occur in a single
transaction. If anything causes the transaction to be cancelled, the changes
are rolled back. This feature is called Unit of Work. For more information
about Unit of Work, see Chapter 17.

With this new approach, the write and delete methods no longer apply,

because the actions occurred in the call to the super for those methods.
With the change group mode behavior, the writing, written, deleting, and
deleted methods are used. For each type of operation, when the validate
method for each data source is called on the client, the methods ending in
ing, such as writing, are called. The transaction then occurs on the server,
where the table insert, update, or delete methods are called. Finally, the
methods ending in ed or en, such as deleted or written, are called.

Unit of Work has an additional feature called OptionalRecord that saves
database space by inserting outer-joined records only if the values have
been changed from the default. For OptionalRecord, the two possible
options are ImplicitCreate and ExplicitCreate. In the ImplicitCreate
scenario, the forms engine automatically creates the outer-joined record if
the record does not exist in the database. The record is saved only if values
are changed from the default value. In the ExplicitCreate scenario, you can
model a check box on the form that explicitly controls the behavior of
record creation and deletion for the outer-joined record.

Date effectivity
Date effectivity allows tracking of how data changes over time. The date
effectivity functionality lets users with appropriate security privileges see
the entire change history for a record. It also provides support for creating
records that become effective on specific dates. Interest and currency
conversion rates are good examples of date effective records because they
make use of specific effective dates and times. For more information, see
Chapter 17 or download the white paper, “Using date effective data
patterns,” from
http://download.microsoft.com/download/4/E/3/4E36B655-568E-4D4A-
B161-152B28BAAF30/Using_Date_Effective_Patterns_AX2012.pdf.

Surrogate foreign keys
Traditional foreign keys in Microsoft Dynamics AX used the natural key
or a type of intelligent key for the target object. This had many drawbacks,
such as breaking referential integrity if the value of a natural key was
changed. To solve those problems and improve performance through the
use of integer keys, surrogate foreign key support was added to AX 2012.
Surrogate foreign key support uses reference data sources and Reference
Group controls to provide surrogate key support in the client. For more
information, see Chapter 17.

Metadata for form data sources

http://download.microsoft.com/download/4/E/3/4E36B655-568E-4D4A-B161-152B28BAAF30/Using_Date_Effective_Patterns_AX2012.pdf

Table 6-3 describes some of the most important form data source
properties.

TABLE 6-3 Metadata properties for form data sources.

Form queries
One of the most common ways of customizing a form is to modify the
queries that the form uses. There are two primary ways to do this: by using
the AutoQuery property or by using an explicit query. When the form
loads, the following processing occurs for form data sources:

1. Form data source objects are created that reference the data that is
retrieved from the database.

2. The form’s queries are run to retrieve data.
3. Controls that are bound to fields show data that was retrieved.

By default, when the FormDataSource.AutoQuery property is set to Yes,
a query is created for the form based on its data sources. The query is
created in the call to the super of the form’s init method. The query
contains a QueryBuildDataSource object for each form data source in the
direct join hierarchy. Additional queries are created for dynalinked form

data sources. These queries are linked to the current data in their joined
parent so that the queries are correct. This has the benefit of splitting tables
across multiple database queries, which can improve performance and
remove the cross-product results that occur in 1:n joins. Figure 6-4 shows
the data sources for an example AutoQuery.

FIGURE 6-4 The AutoQueryExample form in the AOT.

In this example, properties are set on the data sources as follows:
 The CustTable data source is the root form data source; therefore, its
JoinSource property is not set.

 The CustGroup data source has its JoinSource property set to
CustTable with a LinkType value of OuterJoin.

 The SalesTable data source has a JoinSource of CustTable and a
LinkType value of Delayed.

With AutoQuery behavior, a query will be created with a root
QueryBuildDataSource object of CustTable that has a child data source of
CustGroup. Because the SalesTable data source is linked with a dynalink,
it has its own query with a single root QueryBuildDataSource object. The
SalesTable QueryBuildDataSource object has a dynalink added to it
through the addDynalink method to the CustTable data source. When the
form loads, the initial query runs to retrieve the data from CustTable and
CustGroup. After the results are returned, a query runs to retrieve the
SalesTable data based on the record in CustTable that is currently selected.

The second way of modeling the data access for a form is to use a query
as the basis for the data source structure. You can do this by performing a
drag-and-drop operation to add the query to the Data Sources node, or by

setting the Query property. In this scenario, the query causes the respective
form data sources to be generated for the form. No additional data sources
can be added. This method of modeling data access is generally used only
for list pages, because it requires two metadata items to be created to
model the form. The extra work is beneficial in the case of list pages,
because composite queries are created that contain filters for the secondary
list pages that reuse the same list page form. For example, Customers On
Hold, which is a secondary list page, reuses the Customers list page.

queryBuildDataSource and queryRunQueryBuildDataSource methods
An important change in AX 2012 is the addition of the
FormDataSource.queryBuildDataSource method and the
FormDataSource.queryRunQueryBuildDataSource method. These
methods expose the respective Query and QueryBuildDataSource objects
that the forms engine uses. These methods let X++ developers quickly
access the correct QueryBuildDataSource object for the form data source.
This is especially helpful when a form has multiple form data sources of
the same type, such as the CustTable form.

Query and QueryRun objects
An important part of query interaction with the form is accessing the
proper query to work with. For every data source on a form, there are two
queries: the FormDataSource.query and the
FormDataSource.queryRun.query. When a form initially loads, the Query
is created in the call to the super of the FormDataSource.init method. Any
modifications that you want to remain regardless of the filters that a user
defines or clears should be applied to this query. In the call to the super of
the executeQuery method, the QueryRun object is created, which contains
a copy of the original Query object. When a user applies a filter, the filter
is applied to QueryRun.query, and the research method is called. An
internal flag is set that specifies not to re-create the QueryRun object, and
then the executeQuery method is called. When the user clears the filters,
executeQuery is called, which, by default, re-creates the QueryRun object
from the base Query object.

CopyCallerQuery property
CopyCallerQuery is a property for the MenuItemButton and MenuItem
resources that specifies whether to copy the query from the source form to
the target form. When using CopyCallerQuery, the same rules apply as
when you manually assign a query through code:

 The root data sources of the query must match the form data source.
 The joined data sources for the query should also be compatible.

In AX 2012, the kernel automatically adds any missing
QueryBuildDataSource objects for required form data sources. This makes
the queries as compatible as possible.

Query filters
Forms in AX 2012 apply filtering through the use of QueryFilter objects
instead of QueryBuildRange objects. QueryBuildRanges are applied to the
ON clause in a Transact-SQL statement, which works correctly for inner
joins because the ON clause and the WHERE clause provide equivalent
behavior. However, this does not work as expected for outer joins. The
expected behavior for data sources with outer joins is to apply the WHERE
clause to restrict the entire query, instead of the ON clause, which restricts
only the join. To solve this problem, the QueryFilter class was created. All
of the internal kernel logic in the forms engine that modifies queries uses
QueryFilter objects. It is recommended that all new X++ logic on forms
use QueryFilter objects instead of QueryBuildRange objects for
consistency.

For more information about query filters, see Chapter 17.

Adding controls
AX 2012 includes a large selection of controls that you can use to create
data-driven forms quickly. When you add controls to a form, set as few
properties as possible so that the controls can take full advantage of
defaults and automatic values. Default and Auto property values on
controls allow AX 2012 to use predefined functionality when determining
display characteristics and behavior.

 Note

The product is an excellent source of information about how
to build a form. You can see how forms in the product are
built and which controls are used.

Control overrides
Each control has a set of methods that you can override. Try to keep code
in the overridden method (on the form) to a minimum by calling a class

instance or a static method when possible.

Control data binding
Many controls can be bound explicitly to a data source and data field to
display the data field value. Other controls, such as buttons, can be bound
to a data source to obtain the data context. If a control is not explicitly
bound to a data source, its data source context comes from either its parent
hierarchy or the form default, if the data source is not specified by a parent
of the control.

The implied context of a data source is particularly important when
actions are executed and records are saved:

 When an action executes, it executes in the context of a particular
data source. For example, when it initiates an action to create a new
record, the record that is created depends on the current data context.

 If changes to a record have not been saved when the cursor focus
moves from a control in one data source context to a control in a
different data source context, the record is saved automatically.

Design node properties
The Design node of a form contains the controls that display record data.
The Design node contains properties, the most important of which are
described in Table 6-4.

TABLE 6-4 Metadata properties for the Design node.

Run-time modifications
You can add or remove controls at run time through code in response to
user actions. For example, filter controls can be added and removed as
needed.

When changing the form at run time, you should lock it by using the
element.lock method and the element.unlock method to ensure the changes
occur at the same time instead of flickering into effect gradually. Locking
the form can also improve performance because the form is redrawn only
once.

Action controls
Add action controls such as buttons and Action panes to let users perform
actions on the current record.

Buttons
Users click buttons to perform actions. Several types of button controls are
available:

 MenuItemButton Activates a MenuItem to open a form, run a class,
or display a report. This is the most common type of button because
the behavior is modeled rather than defined explicitly through X++
code. For more information, see the “Adding navigation items”
section later in this chapter.

 CommandButton Executes a system-defined command, such as OK,
Export to Excel, and Close. Use this type of button whenever a
system-defined command exists for the action that you want to add.

 Button Provides a clicked method that you can override to add X++
code. This type of button is used infrequently. Avoid using it, if
possible, because it means that code will be added directly to the
form.

 DropDialogButton Opens a drop dialog form. Drop dialogs let the
user quickly provide information or make choices that are necessary
to execute some action. For example, with a drop dialog, a user can
select a specific hold state when putting a customer on hold.

 MenuButton Displays a menu. This type of button can contain any
button type except another MenuButton.

You should populate the Text property for a Button or a MenuButton.
However, the text for a CommandButton or a MenuItemButton should
come implicitly from the referenced command or MenuItem, respectively.

You can place buttons directly on a form or within a ButtonGroup that
is on a form. More commonly, buttons are placed inside an Action pane or
an Action pane strip.

Action panes and Action pane strips
An Action pane (see Figure 6-5) organizes and displays buttons that
represent the actions the form supports. An action is a task or operation
that occurs when the user clicks a button on the Action pane. With actions,
you can use data that is displayed in the current form to let users perform
commands, open related forms, or execute custom X++ code.

FIGURE 6-5 An Action pane.

Use an Action pane at the top of large forms when you need multiple
tabs to display the actions that are available for the entire form.

Use an Action pane strip at the top of smaller forms when there are a
small number of actions for the form. You can define an Action pane strip
by setting the ActionPane.Style property to Strip.

You can also use an Action pane strip to display actions that have a
specific context. Common locations for an Action pane strip are at the top
of a TabPage, FastTab, or Group control. The context might be fields of a
particular category within a record or a collection of associated child
records. The most common usage of a contextual Action pane strip is
when displaying the Add and Remove actions above a grid that contains
associated child records, as shown in Figure 6-6. When you are using an
Action pane strip in a particular data context, you should set the
DataSource property of the Action pane control.

FIGURE 6-6 An Action pane strip.

For more information about how to design Action panes, see Chapter 5.

Layout controls
Three main layout controls are used to display other controls inside them:

 Group A Group control provides a way to group and categorize
individual controls within the form. The Design node of a form, in

addition to containing all of the controls, has many of the properties
and behaviors of Group controls.

 TabPage A TabPage control organizes the controls and fields on the
form so that only a subset is displayed at one time.

 Grid A Grid control displays input controls in a simple row and
column format that allows the compact display of multiple fields for
multiple records of the same type.

Group
Use the Group control to organize related fields and other controls into
logical groups within a form. You can create and label a Group control
manually (by using the Caption property). You can also create a Group
control by using the DataGroup property to point to a field group that has
been predefined on a table (the data source).

Try to use table field groups whenever possible. Table field groups
allow for easier maintenance of the application because a change to a table
field group affects every form or report that uses that field group.

If you are manually adding controls and a caption to a Group control, be
sure to provide a descriptive and understandable caption that accurately
describes the group.

TabPage
Use TabPage controls to reduce the complexity of a form by hiding fields
until the user needs them. TabPage controls are listed within a parent Tab
control. The Tab control is commonly called a tab group to differentiate it
from the TabPage controls it contains.

The following styles are available for TabPage controls:
 Standard Shows TabPage controls stacked on top of each other so
that only one TabPage is visible at a time. This style, shown in
Figure 6-7, is used throughout the product and should be familiar to
most users.

FIGURE 6-7 Standard tabs.

 VerticalTabs Shows TabPage controls listed as a vertically
organized set of links to the left of the TabPage that is visible so that
only one TabPage is visible at a time. This style, shown in Figure 6-

8, is commonly used on parameters forms. Forms using this style are
often said to have a table of contents style.

FIGURE 6-8 Vertical tabs.

 IndexTabs Shows TabPage controls listed as a horizontally
organized set of tabs underneath the TabPage that’s visible, so that
only one TabPage is visible at a time. This style, shown in Figure 6-
9, is commonly used to display the line details on transaction detail
forms.

FIGURE 6-9 Index tabs.

 FastTabs Shows TabPage controls listed vertically and lets users
show multiple TabPage controls at a time. The user can choose
which pages to see, and expand and collapse TabPage controls as
necessary. With the FastTabs style, shown in Figure 6-10, you can

also display summary information for key fields, even when the
control is collapsed.

FIGURE 6-10 FastTabs.

To ensure that FastTabs are helpful to users, keep them short so that
users can see only the information that’s necessary, provide
descriptive labels, and display only the most important summary
fields when the tab is collapsed. For more tips on creating effective
FastTabs, see Chapter 5.

Grid
Use a Grid control to display a collection of records that are associated
with the primary record on the form. For example, you could use a Grid
control to display contacts or addresses for a customer.

If you do not want the Grid control to take up the entire form, you can
control the size by using the VisibleRows property. For example, when you
are displaying the addresses of a customer, many customers will only have
one or two addresses. Setting VisibleRows to 3 is one way to display the
relevant information and take up minimal space.

Input controls
You can use input controls in either a bound or an unbound manner. Input
controls can be bound to either fields or methods.

Field-bound controls
Input controls represent the fields on a form. To create input controls that

are bound to fields, you can manually add controls to the form and then
bind them to fields in the data source. Another alternative is to drag fields
from the data source to the form, as in the following procedure:

1. Right-click the Form.Data Sources node, and then click Open In
New Window.

2. Place the new window containing the form data sources next to the
original AOT window.

3. Drag the fields you want from the data sources to the appropriate
location in a Group, TabPage, or Grid control on the form. This
action creates the appropriate type of input control (StringEdit for
strings, IntEdit for integers, and so on) and binds it to the data source
field.

Method-bound controls
If you bind an input control to a display method, you can present data that
is processed or created through code. You should place display methods
that relate to a particular table on that table instead of on a form data
source.

When binding a control to a display method, use the Datasource and
Datamethod properties to point at the appropriate display method.

Display methods use the display keyword in the method declaration.
The best examples of display methods are those that already exist in AX
2012. Use the search capability in the AOT to find example display
methods on tables by looking for the display keyword followed by a space
(display).

The standard display method format is as follows:
Click here to view code image

display SomeEDT myDisplayMethod()

{

 //Code here...

 return "returnValue";

}

Unbound controls
You can add input controls such as StringEdit and IntEdit to a form and
manipulate them through X++ code to provide the user experience you
want. An example of this is seen in the AxdWizard form. Unbound
controls can also be used to provide a custom filtering experience. An
example of this is seen in the SalesLineBackOrder form.

ManagedHost control
If the predefined controls provided with AX 2012 do not meet a specific
need, or if using a prebuilt component would save time, you can use an
externally created control. With the ManagedHost control, you can use
.NET controls on AX 2012 forms. The ManagedHost control is the
preferred solution when you need an externally created control because of
the ease of use it provides.

To use a .NET control within an AX 2012 form, the AOT must contain
a reference to the .NET assembly that contains the control. To add new
.NET controls, add the assembly or assemblies that contain the controls to
the Reference node of the AOT by right-clicking that node and then
clicking Add Reference.

To reference that .NET control within an AX 2012 form, add a
ManagedHost control and then use the Managed Control Selector dialog
box to select the control you want. Right-click the new control to subscribe
to events.

Try this simple example to add a .NET button to a form:
1. In the AOT, right-click the Forms node, and then click New.
2. Right-click the Design node, and then point to New Control >

ManagedHost.
3. In the Managed Control Selector dialog box, in the top grid, select

the System.Windows.Forms assembly; in the Controls grid, select
Button; and then click OK.

 Note

The System.Windows.Forms assembly is referenced by
default, so you do not need to add a reference.

4. Set the name of the control to ManagedButton.
5. Right-click the ManagedButton control to open the Events dialog

box, and then add the Click event.
6. Expand the Methods node for the form, open the init method, and

replace the existing code with the following to set the text for the
button:

Click here to view code image

public void init()

{

 super();

 _ManagedButton_Control = ManagedButton.control();

 _ManagedButton_Control.add_Click(new

ManagedEventHandler(this, 'ManagedButton_

 Click'));

 _ManagedButton_Control.set_Text("Managed button");

}

7. Open the code for the Click method, and then replace the existing
code with the following to display text in the InfoLog:

Click here to view code image

void ManagedButton_Click(System.Object sender,

System.EventArgs e)

{

 info("Managed button clicked");

}

Run the form, and then click the button. The result is shown in Figure 6-
11.

FIGURE 6-11 ManagedHost control example.

Other controls
You can create additional types of controls for a form to provide additional
information or interactivity. For example, the static text control can
provide instructional text to guide a user through a process, and the
Window control can display images that help inform the user about a
product or service. For more information, see “Controls in Microsoft
Dynamics AX” at http://msdn.microsoft.com/en-us/library/gg881259.

http://msdn.microsoft.com/en-us/library/gg881259

Using parts
You use a part to retrieve and show data that is related to the selected
record on the host form. Parts can be used in the FactBox pane of any
form, or in the preview pane of a list page.

Types of parts
The following types of parts are available:

 Info parts are displayed like forms at run time. At design time, info
parts use a simplified set of metadata that allows them to be
displayed in both the AX 2012 client and the Enterprise Portal web
client. Info parts have simple styling and are essentially a collection
of data fields from the specified query. Info parts can define a set of
actions to display below the data fields. Preview panes for list pages
should be modeled as info parts so that they are also visible in
Enterprise Portal.

 Cue groups are a collection of cues. Cues are a mechanism for
showing the count of the records from a query. Often, the query used
for the cue is restricted based on the record currently shown on the
host form. A cue contains three things: a query that provides the
count, a MenuItemName property that specifies the action to take
when a user clicks a cue, and a label that informs the user what the
count is for (if none is provided, the MenuItem label is used). For
more information about how to use cues, see Chapter 5.

 Form parts are pointers to existing forms that can be displayed as
FactBoxes. The Form property specifies the form to display, and the
Caption property provides the title caption for the FactBox. When
you are building a form to display as a form part, set the Style
property to FormPart, the ViewEditMode property to View, and the
Width property to ColumnWidth to ensure correct styling.

Referencing a part from a form
The Parts node for each form references the parts that are used to display
data related to the record being displayed by the form. Within the Parts
node, you create part references that ensure the correct context.

To create a standard part reference, follow these steps:
1. Set the MenuItemName property to the MenuItem that specifies the

part. A MenuItem is used to reference each part to ensure that
standard MenuItem-based security can be applied.

2. Set the DataSourceName and DataSourceRelationName properties
to specify the correct data relation (dynalink) to use between the host
form and the part.

3. Set the PartLocation property to indicate whether the part should be
displayed as a FactBox (the default) or as a preview pane.

4. (Optional. For list pages only.) Set the DisplayTarget property to
indicate whether the part will be displayed in the AX 2012 client,
Enterprise Portal, or both.

5. (Optional) Set the Visible property to hide the FactBox by default.
The FactBox is still available for users if they choose to show it.

Adding navigation items
To give users access to the forms you create, you add references to them
on menus.

MenuItem
In AX 2012, a MenuItem is a modeled pointer to another resource such as
a form, class, or report. You define MenuItem metadata in the Menu Items
node of the AOT. The Menu Items node has three subnodes that are used
for categorization purposes. The Display, Action, and Output types usually
reference forms, classes, and reports, respectively. However, a common
exception is to have a display MenuItem reference a class that is used to
initialize and open a form.

Menu
In AX 2012, a Menu is a structured collection of references to MenuItems
and other Menus. The navigation pane, area pages, and address bar are
mechanisms for exposing the menu metadata that you define in the Menus
and Menu Items nodes of the AOT. The module menus are defined in the
Menus\MainMenu node of the AOT. You can follow the menu structure
from that starting point. For example, the Accounts Receivable module is
represented by the Menus\MainMenu\AccountsReceivable MenuReference
and is defined in Menus\AccountsReceivable.

When adding a Menu item to a menu, ensure that the
IsDisplayedInContentArea property is set appropriately. For list pages and
content pages that are displayed in the client, set this property to Yes so
that the address bar is populated correctly.

Menu definitions

In previous releases of Microsoft Dynamics AX, forms were generally
specific to a single module. However, in AX 2012, the application has
been reorganized to be more role-specific. As a result, several new
modules were created, such as Sales and Marketing and Inventory and
Warehouse Management. Many commonly used forms are now found in
multiple modules; for example, the Customers and Sales Orders forms are
now located in both the Accounts Receivable and Sales and Marketing
modules.

When defining a module menu or adding items to an existing module
menu, try to follow the standard groupings that are used in other menus:

 Common Contains the most commonly accessed forms in the
module. The Common group usually contains links to list pages.

 Periodic Contains links to secondary data forms.
 Inquiries Contains links to forms that provide read-only views of
data that are related to the current module.

 Reports Contains links to reports.
 Setup Contains links to setup forms, including the parameters forms.
Sometimes this group also contains secondary data forms.

The primary list pages listed in the Common group should be
accompanied by secondary list pages. A secondary list page is a list page
that adds ranges (filters) to a primary list page. You can implement a
secondary list page as a menu item that points at the primary list page form
but also specifies a query that adds a filter.

Customizing forms with code
You should customize forms with code only when the result cannot be
accomplished by customizing metadata. When you customize forms by
using metadata, upgrades are easier. Metadata change conflicts are easier
to resolve, whereas code change conflicts need deeper investigation that
sometimes involves creating a new merged method that attempts to
replicate the behavior of the two original methods.

When you customize AX 2012, the following ideas might provide good
starting points for investigation:

 Use examples in the base AX 2012 application by using the Find
command on the Forms node in the AOT (Ctrl+F).

 Refer to the system documentation entries (AOT\System
Documentation) for information about system classes, tables,
functions, enumerations, and other system elements that are

implemented in the AX kernel.
 Add a debug breakpoint in the init method for the form when you are
looking for a suitable location for your customization code. Step
through the execution of the method overrides. Note that control
events (such as Clicked) do not trigger debugging breakpoints. You
must explicitly add the breakpoint keyword to the X++ code for the
debugger to stop in these methods.

For simpler code maintenance, follow these guidelines:
 Use the field and table functions of fieldNum, such as
fieldNum(SalesTable, SalesId), and tableNum, such as
tableNum(SalesTable), when working with form data sources.

 Avoid hard-coding strings. Instead, use labels, such as throw
error(“@SYS88659”), and functions such as fieldStr and tableStr,
which return the names of specified fields or a specified table,
respectively.

 Use as few method overrides as possible. Each additional method
override has a chance of causing merge issues during future
upgrades, patch applications, or code integrations.

Method overrides
By overriding form methods, you can influence the form life cycle and
control how the form responds to some user-initiated events. Table 6-5
describes the most important form methods to override. The most
commonly overridden form methods are init and run.

TABLE 6-5 Form methods to override.

By overriding methods on form data sources and form data source
fields, you can influence how the form reads and writes data and responds
to user-initiated data-related events. Table 6-6 describes the most
important form data source methods to override. The most commonly
overridden form data source methods are init, active, executeQuery, write,
and linkActive.

TABLE 6-6 Form data source methods to override.

Table 6-7 describes the methods to override for fields in form data
sources. The most commonly overridden method for form data source
fields is the modified method.

TABLE 6-7 Field methods to override.

Auto variables
When X++ code executes in the scope of a form, form-specific Auto
variables are created to help developers access important objects related to
the form. These variables are read-only and are described in Table 6-8.

TABLE 6-8 Form-specific Auto variables.

Business logic
After the form structure is complete, add calls to business logic by using
MenuItem references or by using explicit code in method overrides or
button clicks. Try to keep explicit code on the form to a minimum, because
any code that is written on the form cannot be used in other forms, reports,
services, or form classes. If you need to add business logic, place it in
separate classes when possible to allow it to be used with multiple forms.

To reference business logic in classes:
1. Put a static main method on the class.
2. Add the code to the main method that starts the business logic.
3. Create an Action MenuItem that references the class.
4. Add a MenuItemButton on the form that points at the Action

MenuItem.
For an example, you can follow these steps, using the following code

inside the main method:
static void main(Args args)

{

 print "Hello World";

 pause;

}

After control is passed to the class, the args method can provide
contextual information that might be useful when the class is called from
multiple forms.

Custom lookups
Lookups for table references are provided automatically by the client
framework and are sufficient for the large majority of scenarios.
Automatic lookups are generated by using metadata from the target table.
To get the fields to use for the lookup form, the framework first checks the
AutoLookup field group on the table. If that field group is empty, the
framework checks the AutoIdentification field group. If the
AutoIdentification field group is empty, the TitleField1 and TitleField2
fields from the table are used for the lookup.

Automatic lookups generated by the framework perform in the ideal
way for usability. If you choose to create your own custom lookup form
for a given table, you should use the same pattern so that the behavior is

consistent.
Creating a simple custom lookup is simple, especially if you want it to

be used for all lookups for the target table type. Model a simple form with
a Grid control to display the records, and then use the form name as the
value for the FormHelp property on the EDT for the foreign key field. This
works for both regular foreign keys and surrogate foreign keys. When the
FormHelp property is set, the custom lookup form will be used instead of
an automatically generated lookup.

In some scenarios, such as query modification or custom record
selection, you might want to provide logic that runs before or after the
lookup form is loaded. In these cases, you can use the
FormAutoLookupFactory class. This class is implemented in the kernel
and exposes much of the same functionality, such as initial positioning and
filtering, to allow custom lookups to behave consistently. For an example
in the application, examine the HCMWorkerLookup form and class.
Looking at the class, you will notice that there are many different
scenarios in which this form can be loaded. The different methods on the
FormAutoLookupFactory class are called in each case. There is also
corresponding code on the form that handles these cases, such as the code
to set the SelectMode for the different types of source control.

Integrating with the Microsoft Office client
With the AX 2012 Office Add-ins, users can pull AX 2012 data into
Microsoft Excel for ad hoc and predefined reporting, push data from Excel
into AX 2012 for data entry, and generate Microsoft Word documents for
sharing data with others.

This section describes how to make data sources available to the Office
Add-ins and then provides an overview of how to create Excel and Word
templates and make them available to users.

Make data sources available to Office Add-ins
Before the Office Add-ins can consume data from AX 2012, you must
make the appropriate services and queries available as data sources.

Make a service available
To make a service available:

1. In the AOT, under the Services node, right-click the service that you
want to make available, and then click Add-ins > Register Service.

2. In the client, click System Administration > Setup > Services and

Application Integration Framework > Inbound Ports, and then do the
following:
a. Create a new inbound port.
b. Select the service operations to add to the port.
c. Activate the port.

3. In the client, click Organization Administration > Setup > Document
Management > Document Data Sources.

4. In the Document Data Sources form, do the following:
a. Create a new document data source.
b. Select the module that is associated with the data source.
c. Set the Type field to Service.
d. Select the inbound port that you just added as the data source.
e. Activate the new document data source.

Make a query available
To make a query available:

1. Define a new query in the AOT, if necessary.
2. In the client, click Organization Administration > Setup > Document

Management > Document Data Sources.
3. In the Document Data Sources form, do the following:

a. Create a new document data source.
b. Select the module that the data source (the query) is associated

with.
c. Set the Type field to Query.
d. Select the query that you want to use as the data source.
e. Activate the new document data source.

Build an Excel template
After you make the appropriate queries and services available as document
data sources to the Office Add-ins, you can create Excel templates that
access data through them. Users can then use these to view and analyze
AX 2012 data in Excel, using Excel features such as conditional
formatting, PivotTables, and calculated fields. If the workbook uses
service data sources, users can modify the data in the workbook and then
publish those data changes back to AX 2012.

A template can be as simple as a listing of the latest sales orders or as

complex as an executive digital dashboard. Figure 6-12 shows an example
of an Excel template.

FIGURE 6-12 Excel template with AX 2012 data.

From within an Excel workbook, do the following to access data from
AX 2012:

1. Open the Options dialog box from the Microsoft Dynamics AX tab
on the ribbon to ensure that the appropriate server and port
connection information is present.

2. Click Add Data, and then select the appropriate query and service
data sources.

3. Double-click or drag fields from the field chooser to add them to the
worksheet.

4. Refresh the worksheet to verify the data that is being retrieved from
AX 2012 and added to the workbook. If the dataset is too large, use
the Filter option on the ribbon to add a filter.

Before providing the workbook to other users, do the following:
1. If necessary, add filters to restrict the dataset that is returned.
2. Open the Connection Options dialog box and remove the existing

connection information so that the user’s connection information is
supplied automatically by the Client SDK (using the information
contained in the Microsoft Dynamics AX Client Configuration
Utility).

3. Save the workbook without connection information.

Build a Word template
You can create Word templates that allow users to generate Word
documents that contain AX 2012 data. Figure 6-13 shows an example of a
Word template.

FIGURE 6-13 Word template with AX 2012 data.

From within a Word document, do the following to access data from
AX 2012:

1. Open the Options dialog box from the Microsoft Dynamics AX tab
on the ribbon to ensure that the appropriate server and port
connection information is present.

2. Click Add Data, and then select the appropriate query and service
data sources.

3. Double-click or drag fields from the field chooser to add them to the
document. If you want to show calculated fields (display methods)
on a data source, right-click that data source in the field chooser and
then click Show Calculated Fields.

4. (Optional) Add individual field bindings throughout the document.
These fields can be interspersed with static text, formatting, images,
and other content.

5. (Optional) Display repeated values, such as the lines of a Sales
Order. To do so, insert a table, and then add field bindings into the
first row of that table.

6. Add a filter to select a particular record. When you are using a
template that is available through the generate-from-template
functionality, this record-specific filter is not present.

7. Save the document.
8. Click the Merge button to generate a document from the template.

Before sharing a document template with other users:
1. Add filters to restrict the dataset returned as needed.
2. Open the connection options dialog box and remove the existing

connection information so that the user’s connection information is
supplied automatically by the Client SDK (using the information
contained in the Client Configuration Utility).

3. Save the document without connection information.
4. Provide your users with a copy of the document.

Add templates for users
Several forms in AX 2012 have a Generate From Template button in the
Attachments group of the Action pane. An example from the Customers
list page is shown in Figure 6-14.

FIGURE 6-14 Generate From Template button on an Action pane.

To add a group of templates as an option in a Generate From Template
list:

1. Create Word document or Excel workbook templates that have a
filter that does not restrict the results to a single record.

2. In the client, click Organization Administration > Setup > Document
Management > Document Types.

3. Create a new document type, setting the Class field to Template
Library.

4. Set the Document Library field to point to the Microsoft SharePoint
folder where the templates are located. Ensure that the URL points to
the folder and not a page (for example,
http://myserver/DocumentTemplates/).

5. Click Synchronize to import the template list and activate the
templates.

6. Verify that the templates appear in the Generate From Template list
on the form. If the templates are not shown, ensure that the primary
data source for the templates matches the primary data source for the
form.

If the Generate From Template button is not available on a form, users
can still generate a document from a template by opening the Document
Handling form (File > Command > Document Handling) and then creating

a new attachment from the Template Library type.
To add the Generate From Template button to additional forms or list

pages:
1. Find the Generate From Template button on the Customers list page

and copy it to the form you want to add it to. The path to the button
is as follows:
AOT\Forms\CustTableListPage.Designs\Design\ActionPane:ActionPane\ActionPaneTab:HomeTab\ButtonGroup:AttachmentsGroup\MenuButton:mbTemplatesButton

2. Edit the MouseDown method on the button to pass the correct
TableId to the createTemplateOnMenuButton method by changing
the CustTable.TableId parameter to point to the correct table (for
example, MyTable.TableId).

Chapter 7. Enterprise Portal

In this chapter
Introduction
Enterprise Portal architecture
Enterprise Portal components
Developing for Enterprise Portal
Security
SharePoint integration

Introduction
With the Enterprise Portal web client, organizations can extend and
expand the use of enterprise resource planning (ERP) software so that they
can reach out to customers, vendors, business partners, and employees.
With Enterprise Portal, users can access business applications and
collaborate from anywhere.

Users access Enterprise Portal remotely through a web browser or from
within a corporate intranet, depending on how Enterprise Portal is
configured and deployed. Enterprise Portal serves as the central place for
users to access any data, structured or unstructured, such as transactional
data, reports, charts, key performance indicators (KPIs), documents, and
alerts. For information about the Enterprise Portal user interface, see
Chapter 5, “Designing the user experience.”

Enterprise Portal also serves as a web platform. It contains a set of
default webpages and user roles that you can use as is or modify to meet
unique business needs. You can also use it to customize or create new
web-based business applications in AX 2012.

Enterprise Portal in AX 2012 adds a number of new features to speed up
the development of business applications. By using the new model-driven
development approach, you can build list pages that work both in
Enterprise Portal and in the AX 2012 Windows client, reducing
development time. New project and control templates in Microsoft Visual
Studio enable rapid application development. New metadata settings let
you instantly enable common patterns that you previously had to write
code to support.

Enterprise Portal architecture

Enterprise Portal brings the best of AX 2012, ASP.NET, and Microsoft
SharePoint technologies together to provide a rich web-based business
application. It combines the functionality of SharePoint with the structured
business data in AX 2012.

You can use MorphX to take advantage of the extensive programming
model to define data access and business logic in AX 2012. You can build
web user controls and define the web user interface elements by using
Visual Studio. The web controls can contain AX 2012 components like
AxGridView, in addition to standard ASP.NET controls like TextBox. The
data access and business logic defined in AX 2012 is exposed to the web
user controls through data binding, data and metadata application
programming interfaces (APIs), and proxy classes.

Figure 7-1 shows the architecture of Enterprise Portal.

FIGURE 7-1 Enterprise Portal architecture.

Enterprise Portal uses the web part page framework from SharePoint.
Web parts are reusable SharePoint components that generate HTML and
provide the foundation for the modular presentation of data. By using this
framework, you can build webpages that allow easy customization and
personalization. The web part page framework also makes it easy to
integrate content, collaborate, and use third-party applications. Webpages
can contain both AX 2012 web parts and SharePoint web parts.

The AX 2012 web parts present information and expose functionality
from AX 2012. The User control web part can host any ASP.NET web
user control, including the Enterprise Portal web user controls. It can
connect to AX 2012 through the Enterprise Portal framework. You can use
SharePoint web parts to fulfill other content and collaboration needs. For
example, you might have a custom web part that goes out to a site, fetches
the latest news about your organization, and displays it. Or you might have
a web part that displays data from another SharePoint site within your
organization.

The first step in developing or customizing an application on Enterprise
Portal is to understand the interactions between the user’s browser on the
client and Enterprise Portal on the server when the user accesses
Enterprise Portal.

The following sequence of interactions occurs when a user accesses an
Enterprise Portal page:

1. The user opens the browser on his or her computer and navigates to
Enterprise Portal.

2. The browser establishes a connection with the Internet Information
Services (IIS) web server.

3. IIS authenticates the user based on the authentication mode being
used.

4. After the user is authenticated, SharePoint verifies that the user has
permission to access the site.

5. If the user is authorized to access the site, the request is passed to the
SharePoint module.

6. SharePoint gets the data about the page from the SharePoint
database or the file system. This data consists of information such as
the page layout, the master page, the web parts that go on the page,
and their properties.

7. SharePoint processes the page by creating and initializing the web
parts and applying any properties and personalization data. To
display the top navigation bar, the Quick Launch, and the Action
pane, a custom navigation provider gets information from AX 2012
(modules, menus, submenus, and menu items).

8. Enterprise Portal initializes the web parts and starts a web session
with the Enterprise Portal framework through the .NET Business
Connector (BC.NET) to the Application Object Server (AOS).

9. The web framework checks for AX 2012 authorization and then
calls the appropriate web handlers in the web framework to process
the Enterprise Portal objects that the web parts point to.

10. The User control web part runs the web user control that it
references. The web user control connects to AX 2012 through
BC.NET and renders the HTML to the web part.

11. The webpage assembles the HTML returned by all of the web parts
and renders the page in the user’s browser.

As you can see in this sequence, the AOS processes the business logic
and data retrieval, ASP.NET processes the user interface elements, and
SharePoint handles the overall page layout and personalization. Figure 7-2
shows a graphical representation of this sequence of events.

FIGURE 7-2 Enterprise Portal page processing.

Enterprise Portal components
This section describes the components that make up an Enterprise Portal

page: web parts, Application Object Tree (AOT) elements, datasets, and
Enterprise Portal framework controls.

Web parts
Web parts support customization and personalization and can be integrated
easily into a webpage. Enterprise Portal includes a standard set of web
parts, shown in Figure 7-3, that expose the business data in AX 2012.

FIGURE 7-3 Adding AX 2012 web parts to a page.

The following web parts are included with Enterprise Portal:
 Action pane Used to display the Action pane, which is similar to the
SharePoint ribbon. The Action pane points to a web menu in the
AOT and displays buttons in tabs and groups to improve the buttons’
discoverability. You can use the AxActionPane control in a web
control as an alternative to using the Action pane web part.

 Business overview Used to display business intelligence (BI)
information such as KPIs and other analytical data in Role Centers.
For more information, see Chapter 10, “BI and analytics.”

 Connect Used to display the links to information from the Microsoft

Dynamics AX community. This web part is typically used on Role
Center pages.

 Cues Used to display numeric information—such as the number of
active opportunities and new leads—visually as a stack of paper. The
Cues web part is generally added to Role Center pages and points to
a Cue Group in the AOT. For more information about Cues, see
Chapter 5.

 Infolog Used to display Microsoft Dynamics AX Infolog messages
on the webpage. When you create a new web part page by using
Enterprise Portal page templates, the Infolog web part is
automatically added to the top of the page in the Infolog web part
zone. Any error, warning, or information message that AX 2012
generates is automatically displayed by the Infolog web part. If you
need to display some information from your web user control in the
Infolog web part, you need to send the message through the C#
proxy class for the X++ Infolog object.

 Left navigation Used to display page-specific navigation instead of
module-specific navigation. You can use this web part as an
alternative to the Quick launch web part, which displays module-
specific navigation. This web part points to a web menu in the AOT.

 List Used to display the contents of a model-driven list page. When
you deploy a model-driven list page to Enterprise Portal, the page
template automatically adds the List web part to the Middle Column
zone of the page. This web part points to the display menu item for
the model-driven list page form.

 Page title Used for displaying the page title. When you create a new
web part page, the Page title web part is automatically added to the
Title Bar zone. By default, the Page title web part displays the text
specified in the PageTitle property of the Page Definition node in the
AOT. If no page definition exists, the page name is displayed. You
can override this behavior and get the title from another web part on
the page by using a web part connection. For example, if you’re
developing a list page and you want to display information from a
record, such as the customer account and name as the page title, you
can connect the User control web part that displays the grid to the
Page title web part. When the user selects a different record in the
customer list, the page title changes to display the currently selected
customer account and name.

 Quick launch Used for displaying module-specific navigation links

on the left side of the page. When you create a new web part page,
the Quick launch web part is automatically added to the Left Column
zone if the template that you choose has this zone. The Quick launch
web part displays the web menu set in the QuickLaunch property of
the corresponding web module in the AOT. All pages in a given web
module (subsite) display the same navigation options in the left pane.

 Quick links Used to display a collection of links to frequently used
menu items and external websites. This web part is generally added
to Role Center pages.

 Report Used to display Microsoft SQL Server Reporting Services
(SSRS) reports for AX 2012.

 Toolbar Used to display a toolbar on the page in a location that you
select. For example, you can use a Toolbar web part to place Add,
Edit, and Remove buttons for a grid control directly above that grid
control. The Toolbar web part points to a web menu in the AOT.
Alternatively, you can use an AxToolbar control in a web user
control instead of the Toolbar web part.

 Unified work list Used to display workflow actions, alert
notifications, and activities. This web part is generally added on Role
Center pages. For more information, see Chapter 8, “Workflow in
AX 2012.”

 User control Used for hosting any ASP.NET control, including the
AX 2012 web controls that you develop. This web part points to a
managed web content item that identifies the web user control. The
User control web part can both pass and consume record context
information to and from other web parts. To make the web part do
that, set the role of the User control web part as Provider, Consumer,
or Both, and then connect the web part to other web parts. User
control web parts automatically use AJAX, which allows them to
update the content that they display without having to refresh the
entire page.

AOT elements
The AOT contains several elements that are specific to Enterprise Portal,
in addition to other programming elements such as forms, classes, and
tables. For more information about the elements that are available for
creating Enterprise Portal pages, see Chapter 1, “Architectural overview.”

Datasets

You use datasets to define the data access logic. A dataset is a collection
of data usually presented in tabular form. Datasets bring the familiar data
and programming model from Microsoft Dynamics AX forms together
with ASP.NET data binding. In addition, datasets offer an extensive X++
programming model for validating and manipulating the data when create,
read, update, or delete operations are performed in Enterprise Portal. You
can use the AxDatasource control to access datasets to display and
manipulate data from any ASP.NET control that supports data binding.

You create datasets by using MorphX. A dataset can contain one or
more data sources that are joined together. A data source can point to a
table or a view in AX 2012, or you can join data sources to display data
from multiple tables as a single data source. To do this, you use inner or
outer joins. To display parent-child data, you use active joins. To display
data from joined data sources or from parent-child datasets, you use
dynamic dataset views (DataSetView class). With a view-based interface,
tables are accessed through dynamic dataset views instead of directly. You
can access inner-joined or outer-joined tables through only one view,
which has the same name as the primary data source. Two views are
available with active-joined data sources: one with the same name as the
parent data source, and another with the same name as the child data
source. The child data source contains records related only to the current
active record in the parent data source.

Each dataset view can contain zero or more records, depending on the
data. Each dataset view also has a corresponding special view, which
contains just the current, single active record. This view has the same
name as the original view with the suffix _Current appended to the view
name. Figure 7-4 shows the dataset views inside a dataset, along with the
data binding.

FIGURE 7-4 Enterprise Portal dataset views.

As mentioned earlier, datasets offer an extensive and familiar X++
programming model. Some of the methods used frequently include init,
run, pack, and unpack:

 init The init method is called when initializing a dataset. This
method is called immediately after the new operator and creates the
run-time image of the dataset. Typical uses of init include initializing
variables and queries, adding ranges to filter the data, and checking
the arguments passed.

 run The run method is called after the dataset is initialized and
opened, and immediately after init. Typical uses of run include
conditionally setting the visibility of fields, changing the access level
on fields, and modifying queries.

 pack The pack method is called after the dataset is run. You
generally implement the pack-unpack pattern to save and store the
state of an object, which you can later reinstantiate. A typical use of
pack is to persist a variable used in the dataset between postback
actions for user controls.

 unpack The unpack method is called if a dataset was previously
packed and is later accessed. If a dataset was previously packed, you
do not call init and run. Instead, you call only unpack.

Data sources within a dataset also include a number of methods that you
can override. These methods are similar to those in the FormDataSource
class in the AX 2012 client. You can use them to initialize default values
and to validate values and actions. For more information about these
events, such as when they are executed and common usage scenarios, see
the topic, “Methods on a Form Data Source,” on MSDN
(http://msdn.microsoft.com/en-us/library/aa893931.aspx).

Enterprise Portal framework controls
The Enterprise Portal framework has a built-in set of controls that you can
use to access, display, and manipulate AX 2012 data.

AxDataSource
The AxDataSource control extends DataSourceControl in ASP.NET to
provide a declarative and data store–independent way to read and write
data from AX 2012. Datasets that you create in the AOT are exposed to
ASP.NET through the AxDataSource control. You can associate ASP.NET
data-bound user interface controls with the AxDataSource control through
the DataSourceID property. By doing so, you can connect and access data
from AX 2012 and bind it to the control without specific domain
knowledge of AX 2012.

The AxDataSource control is a container for one or more uniquely
named views of type AxDataSourceView. The AxDataSourceView class
extends the Microsoft .NET Framework DataSourceView class and
implements the functionality to read and write data. A data-bound control
can identify the set of capabilities that are enabled by properties of
AxDataSourceView and use it to show, hide, enable, or disable the user
interface components. AxDataSourceView maps to the dataset view. The
AxDataSource control automatically creates AxDataSourceView objects
based on the dataset that it references. The number of objects created
depends on the data sources and the joins that are defined for the dataset.

http://msdn.microsoft.com/en-us/library/aa893931.aspx

You can use the DataMember property of a data-bound control to select a
particular view.

The AxDataSource control also supports filtering records within and
across other AxDataSource controls and data source views. When you set
the active record on the data source view within an AxDataSource control,
all child data source views are also filtered based on the active record. You
can filter across AxDataSource controls by using record context. With
record context, one AxDataSource control acts as the provider of the
context, and one or more AxDataSource controls act as consumers. An
AxDataSource control can act as both a provider and a consumer. When
the active record changes on the provider AxDataSource control, the
record context is passed to other consuming AxDataSource controls and
they apply that filter also. You use the Role and ProviderView properties
of the AxDataSource control to specify whether an AxDataSource control
is a provider, a consumer, or both. A web user control can contain any
number of AxDataSource controls; however, only one can be a provider.
Any number can be consumers.

You can use the DataSetViewRow object to access the rows in a
DataSetView. The GetCurrent method returns the current row, as shown in
the following example:
Click here to view code image

DataSetViewRow row =

this.AxDataSource1.GetDataSourceView("View1").DataSetView.GetCurrent();

The GetDataSet method on the AxDataSource control specifies the
dataset to bind. The DataSetRun property provides the run-time instance of
the dataset, and you can use the AxaptaObjectAdapter property to call
methods defined in the dataset.
Click here to view code image

this.AxDataSource1.GetDataSet().DataSetRun.AxaptaObjectAdapter.Call("method1");

AxForm
With the AxForm control, you can allow users to create, view, and update
a single record. This control displays a single record from a data source in
a form layout. It is a data-bound control with built-in data modification
capabilities. When you use AxForm with the declarative AxDataSource
control, you can easily configure it to display and modify data without
having to write any code.

The DataSourceID, DataMember, and DataKeyNames properties define

the data-binding capabilities of the AxForm control. AxForm also provides
properties to autogenerate action buttons and to set the text and mode of
the buttons. You set the UpdateOnPostback property if you want the
record cursor to be updated at postback so that other controls can read the
change. AxForm also provides before and after events for all of the actions
that can be taken on the form. You can write code in these events to
customize the user interface or provide application-specific logic.

AxMultiSection
The AxMultiSection control acts as a container for a collection of
AxSection controls. All AxSection controls within an AxMultiSection
control are rendered in a stacked set of rows, which users can expand or
collapse. You can configure AxMultiSection so that only one section is
expanded at a time. In this mode, expanding a section causes it to become
active, and any previously expanded section is collapsed. To enable this
behavior, set the ActiveMode property to true. You can then use the
ActiveSectionIndex property to get or set the active section.

AxSection
AxSection is a generic container for other controls. You can place any
control in an AxSection control. Each AxSection control includes a header
that contains the title of the section and a button that allows the user to
expand or collapse the section. AxSection provides properties to display or
hide the header and border. Through events exposed by AxSection, you can
write code that runs when the section is expanded or collapsed. The
AxSection control can be placed only within an AxMultiSection control.

AxMultiColumn
The AxMultiColumn control acts as a container for a collection of
AxColumn controls. All AxColumn controls within an AxMultiColumn
control are rendered as a series of columns. The AxMultiColumn control
makes it easy to create a multicolumn layout that optimizes the use of
screen space. An AxMultiColumn control is usually placed within an
AxSection control.

AxColumn
AxColumn is a generic container for other controls. You can place any
control inside AxColumn. However, the AxColumn control can be placed
only within an AxMultiColumn control.

AxGroup

The AxGroup control contains the collection of bound fields that displays
the information contained in a record. You can place an AxGroup control
inside an AxSection or AxColumn control.

Figure 7-5 shows an Enterprise Portal page containing several of the
controls that have been discussed so far in this chapter.

FIGURE 7-5 Enterprise Portal details page with section, column, and group
controls.

The following code snippets illustrate some high-level control
hierarchies for different form layouts. The first one is a commonly used
pattern in Enterprise Portal. It displays two expandable sections, one below
the other. Each section displays fields in two columns next to each other. If
you want to display additional sections or columns, you can add AxSection
and AxColumn controls.
Click here to view code image

<AxMultiSection>

 <AxSection>

 <AxMultiColumn>

 <AxColumn>

 <AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </AxColumn>

 <AxColumn>

 < AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </AxColumn>

 </AxMultiColumn>

 </AxSection>

 <AxSection>

 <AxMultiColumn>

 <AxColumn>

 < AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </AxColumn>

 <AxColumn>

 < AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </AxColumn>

 </AxMultiColumn>

 </AxSection>

</AxMultiSection>

The following layout displays two expandable sections, one below the
other and in a single column:
Click here to view code image

<AxMultiSection>

 <AxSection>

 <AxGroup><Fields>BoundFields or TemplateFields...

</Fields> </AxGroup>

 <AxGroup><Fields>BoundFields or TemplateFields...

</Fields> </AxGroup>

 </AxSection>

 <AxSection>

 <AxGroup><Fields>BoundFields or TemplateFields...

</Fields> </AxGroup>

 <AxGroup><Fields>BoundFields or TemplateFields...

</Fields> </AxGroup>

 </AxSection>

</AxMultiSection>

The following layout is for an ASP.NET wizard with two steps:
Click here to view code image

<asp:Wizard>

 <WizardSteps>

 <asp:WizardStep>

 <AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </asp:WizardStep>

 <asp:WizardStep>

 <AxGroup><Fields>BoundFields or

TemplateFields...</Fields> </AxGroup>

 </asp:WizardStep>

 </WizardSteps>

</asp:Wizard>

AxGridView
The AxGridView control displays the values from a data source in a tabular
format. Each column represents a field and each row represents a record.
The AxGridView control extends the ASP.NET GridView control to
provide selection, grouping, expansion, row filtering, a context menu, and
other enhanced capabilities.

AxGridView also includes built-in data modification capabilities. By
using AxGridView with the declarative AxDataSource control, you can
easily configure and modify data without writing code. AxGridView also
has many properties, methods, and events that you can easily customize
with application-specific user interface logic.

Table 7-1 lists some of the AxGridView properties and events. For a
complete list of properties, methods, and events for AxGridView, see
“AxGridView,” at http://msdn.microsoft.com/en-us/library/cc584514.aspx.

http://msdn.microsoft.com/en-us/library/cc584514.aspx

TABLE 7-1 AxGridView properties and events.

AxHierarchicalGridView
Use the AxHierarchicalGridView control when you want to display
hierarchical data in a grid format. For example, you might have a grid that
displays a list of tasks in a project. With this control, each task can have
subtasks, and you can present all tasks and subtasks in a single grid, as
shown in Figure 7-6.

FIGURE 7-6 Example of an AxHierarchicalGridView control in the user
interface.

You use the HierarchyIdFieldName property to uniquely identify a row
and the HierarchyParentIdFieldName property to identify the parent of a
row. The following example illustrates the markup for an
AxHierarchicalGridView control:
Click here to view code image

<dynamics:AxDataSource ID="AxDataSource1" runat="server"

DataSetName="Tasks" ProviderView="Tasks">

</dynamics:AxDataSource>

<dynamics:AxHierarchicalGridView

ID="AxHierarchicalGridView1" runat="server"

 BodyHeight="" DataKeyNames="RecId" DataMember="Tasks"

 DataSetCachingKey="e779ece0-43b7-4270-9dc9-

33f4c61d42b7"

 DataSourceID="AxDataSource1"

EnableModelValidation="True"

 HierarchyIdFieldName="TaskId"

HierarchyParentIdFieldName="ParentTaskId">

 <Columns>

 <dynamics:AxBoundField DataField="Title"

DataSet="Tasks"

 DataSetView="Tasks" SortExpression="Title">

 </dynamics:AxBoundField>

 <dynamics:AxBoundField DataField="StartDate"

DataSet="Tasks"

 DataSetView="Tasks" SortExpression="StartDate">

 </dynamics:AxBoundField>

 <dynamics:AxBoundField DataField="EndDate"

DataSet="Tasks"

 DataSetView="Tasks" SortExpression="EndDate">

 </dynamics:AxBoundField>

 </Columns>

</dynamics:AxHierarchicalGridView>

AxContextMenu
Use the AxContextMenu control to create and display a context menu. This
control provides methods to add and remove menu items and separators at
run time. It also provides methods to resolve client or Enterprise Portal
URLs, as shown in the following example:
Click here to view code image

AxUrlMenuItem myUrlMenuItem = new

AxUrlMenuItem("MyUrlMenuItem");

AxContextMenu myContextMenu = new AxContextMenu();

myContextMenu.AddMenuItemAt(0, myUrlMenuItem);

AxGridView uses AxContextMenu when the ShowContextMenu property
is set to true. You can access the AxContextMenu object by using the
syntax AxGridview.ContextMenu.

AxFilter
Use the AxFilter control to filter the data that is retrieved from a data
source. This control sets a filter on an instance of a DataSetView object by
using an instance of an AxDataSourceView object. The AxDataSourceView
object is responsible for keeping the data synchronized with the filter that
is set by calling the SetAsChanged and ExecuteQuery methods when data
has changed. AxDataSourceView and DataSetView expose the following
properties that you can use to access the filter programmatically:

 SystemFilter Gets the complete list of ranges on the query, including

open, hidden, and locked, into the conditionCollection property on
the filter object

 UserFilter Gets only the open ranges on the QueryRun property into
the conditionCollection property on the filter object

 ResetFilter Clears the filter set on the QueryRun property and thus
resets the filter (ranges) set programmatically

You can set the range in the dataset in X++ as follows:
Click here to view code image

qbrBlocked = qbds.addRange(fieldnum(CustTable,Blocked));

qbrBlocked.value(queryValue(CustVendorBlocked::No));

qbrBlocked.status(RangeStatus::Hidden);

To read the filter that is set on the data source in a web user control, use
one of the following lines of code:
Click here to view code image

this.AxDataSource1.GetDataSourceView(this.AxGridView1.DataMember).SystemFilter.ToXml();

or
Click here to view code image

this.AxDataSource1.GetDataSet().DataSetViews[this.AxGridView1.DataMember].SystemFilter.ToXml();

The return value will look something like the following:
Click here to view code image

<?xml version="1.0" encoding="utf-16"?><filter

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

name="CustTable"><condition

attribute="Blocked" operator="eq" value="No"

status="hidden" /></filter>

You can also set the filter programmatically:
Click here to view code image

string myFilterXml = @"<filter name='CustTable'><condition

attribute='CustGroup' status='open'

value='10' operator='eq' /></filter>";

this.AxDataSource1.GetDataSourceView(this.AxGridView1.DataMember).SystemFilter.

AddXml(myFilterXml);

The AxGridView control also uses AxFilter when ShowFilter is set to
true. You can access the AxFilter object by using
AxGridview.FilterControl and the filter XML by using AxGridView.Filter.
The filter reads the metadata from the AxDataSource component that is

linked to the grid and displays filtering controls dynamically so that the
user can filter the data source on any of the fields that are not hidden or
locked. The filtering controls are rendered above the grid.

AxLookup
Use the AxLookup control on data entry pages to help the user pick a valid
value for a field that references keys from other tables. In Enterprise
Portal, lookups are metadata-driven by default and are automatically
enabled for fields based on the relationship defined by metadata in the
AOT.

The Customer Group lookup on the Customer details page is an
example of a lookup that is automatically enabled. The extended data type
(EDT) and table relationship metadata in the AOT define a relationship
between the Customer table and the Customer group table. A lookup is
automatically rendered so that the user can choose a customer group in the
Customer group field when creating a customer record. You don’t need to
write any code to enable this behavior—it happens automatically.

In some scenarios, the automatic behavior isn’t sufficient, and you
might be required to customize the lookup. The lookup infrastructure of
Enterprise Portal offers flexibility and customization options in both X++
and C# so that you can tailor the lookup user interface and the data
retrieval logic to meet your needs.

To control the lookup behavior, in the Data Set node in the AOT, you
can override the dataSetLookup method of a field in the data source. For
example, if you want to filter the values that are displayed, you override
dataSetLookup, as shown in the following X++ code:
Click here to view code image

void dataSetLookup(SysDataSetLookup sysDataSetLookup)

{

 List list;

 Query query = new Query();

 QueryBuildDataSource queryBuildDataSource;

 Args args;

 args = new Args();

 list = new List(Types::String);

 list.addEnd(fieldstr(HcmGoalHeading, GoalHeadingId));

 list.addEnd(fieldstr(HcmGoalHeading, Description));

 queryBuildDataSource =

query.addDataSource(tablenum(HcmGoalHeading));

 queryBuildDataSource.addRange(fieldnum(HcmGoalHeading,Active)).value(

 queryValue(NoYes::Yes));

 sysDataSetLookup.parmLookupFields(list);

 sysDataSetLookup.parmSelectField(fieldStr(HcmGoalHeading,GoalHeadingId));

 // Pass the query to SysDataSetLookup so it result is

rendered in the lookup page.

 sysDataSetLookup.parmQuery(query);

}

In the preceding example, the entire list is built dynamically, and
addRange is used to restrict the values. The SysDataSetLookup class in
X++ provides many properties and methods to control the behavior of the
lookup.

You can also customize the lookup in C# in the web user control by
writing code in the Lookup event of bound fields or by using the AxLookup
control for fields that don’t have data binding. To use AxLookup to provide
lookup values for any ASP.NET control that isn’t data bound, set the
TargetControlID property of AxLookup to the ASP.NET control to which
the lookup value is to be returned. Alternatively, you can base AxLookup
on the EDT, the dataset, the custom dataset, or the custom user control by
specifying the LookupType property. You can also control which fields are
displayed in the lookup and which ones are returned. You can do this
either through the markup or through code. You can write code to override
the Lookup event and control the lookup behavior, as shown in the
following code:
Click here to view code image

protected void AxLookup1_Lookup(object sender,

AxLookupEventArgs e)

 {

 AxLookup lookup = (AxLookup)sender;

 // Specify the lookup fields

 lookup.Fields.Add(AxBoundFieldFactory.Create(this.AxSession,

 lookup.LookupDataSetViewMetadata.ViewFields["CustGroup"]));

 lookup.Fields.Add(AxBoundFieldFactory.Create(this.AxSession,

 lookup.LookupDataSetViewMetadata.ViewFields["Name"]));

}

AxActionPane
The AxActionPane control performs a function similar to the Action pane
web part. You can use it to display the Action pane at the top of the page,

similar to the SharePoint ribbon. Use the WebMenuName property of the
AxActionPane control to reference the web menu that contains the menu
items to display on the Action pane as buttons. To improve discoverability,
the buttons are displayed in tabs and groups. You can use the DataSource
and DataMember properties of the AxActionPane control to associate the
Action pane buttons with data.

To use the AxActionPane control in a web user control, you need to add
a reference to the Microsoft.Dynamics.Framework.Portal.SharePoint
assembly. You can do this by adding the following lines in the markup for
the web user control:
Click here to view code image

<%@ Register

Assembly="Microsoft.Dynamics.Framework.Portal.SharePoint,

Version=6.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

Namespace="Microsoft.Dynamics.Framework.

Portal.SharePoint.UI.WebControls" TagPrefix="dynamics" %>

If you prefer, you can use the Action pane web part as an alternative to
the AxActionPane control.

AxToolbar
The AxToolbar control performs a function similar to the Toolbar web
part. You can use it to display a toolbar at a certain location on the page
instead of using the Action pane at the top of the page. For example, you
might choose to display a toolbar at the top of a grid control with New,
Edit, and Delete actions.

Internally, AxToolbar uses the SharePoint toolbar controls.
AxToolbarButton, which is used within AxToolbar, is derived from
SPLinkButton. It is used to render top-level buttons. Similarly,
AxToolBarMenu, which is used within AxToolbar, is derived from
Microsoft.SharePoint.WebControls.Menu. This control renders a drop-
down menu by means of a callback when a user clicks a button. Thus, the
menu item properties can be modified before the menu items are rendered.

If you prefer, you can use the Toolbar web part as an alternative to
AxToolbar. Generally, you use the Toolbar web part to control the display
of toolbar menu items. But if you have a task page that contains both
master and detail information, such as a purchase requisition header and
line items, you should use place AxToolbar in your web user control above
the AxGridview control containing the details to allow the user to add and

manage the line items.
You can bind AxToolbar to an AxDataSource or use it as an unbound

control. When the controls are bound, the menu item context is
automatically based on the item that is currently selected. When the
controls are unbound, you must write code to manage the toolbar context.

You can point the toolbar to a web menu in the AOT by using the
WebMenuName property. With a web menu, you can define a multilevel
menu structure with the SubMenu, MenuItem, and MenuItem reference
nodes. Each top-level menu item is rendered by using the
AxToolbarButton control as a link button. Each top-level submenu is
rendered by using the AxToolbarMenu control as a drop-down menu. If
you have submenus, additional levels are displayed as submenus.

SetMenuItemProperties, ActionMenuItemClicking, and
ActionMenuItemClicked are events that are specific to AxToolbar. You use
SetMenuItemProperties to change the behavior of drop-down menus; for
example, to show or hide menu items based on the currently selected
record, set or remove context, and so on. The following code shows an
example of how to change the menu item context in the
SetMenuItemProperties event:
Click here to view code image

void Webpart_SetMenuItemProperties(object sender,

SetMenuItemPropertiesEventArgs e)

{

 // Do not pass the currently selected customer record

context,

 // since this menu is for creating new (query string

should be empty)

 if (e.MenuItem.MenuItemAOTName == "EPCustTableCreate")

 {

 ((AxUrlMenuItem)e.MenuItem).MenuItemContext = null;

 }

}

If you have defined user interface logic in a web user control and want
to call this function instead of the one defined in the AOT when a toolbar
item is clicked, use ActionMenuItemClicking and ActionMenuItemClicked.
For example, you can prevent a menu item from executing the action
defined in the AOT by using the ActionMenuItemClicking event and
defining your own action in C# by using the ActionMenuItemClicked event
in the web user control, as shown here:
Click here to view code image

void webpart_ActionMenuItemClicking(object sender,

ActionMenuItemClickingEventArgs e)

{

 if (e.MenuItem.MenuItemAOTName.ToLower() ==

"EPCustTableDelete")

 {

 e.RunMenuItem = false;

 }

}

void webpart_ActionMenuItemClicked(object sender,

ActionMenuItemEventArgs e)

{

 if (e.MenuItem.MenuItemAOTName.ToLower() ==

"EPCustTableDelete")

 {

 int selectedIndex = this.AxGridView1.SelectedIndex;

 if (selectedIndex != -1)

 {

 this.AxGridView1.DeleteRow(selectedIndex);

 }

 }

}

AxPopup controls
Use an AxPopup control to open a page in a pop-up browser window, to
close a pop-up page, or to pass data from the pop-up page to the parent
page and trigger a PopupClosed server event on the parent. This
functionality is encapsulated in two controls: AxPopupParentControl,
which you use on the parent page, and AxPopupChildControl, which you
use on the pop-up page itself. Both controls are derived from
AxPopupBaseControl. These controls are AJAX-compatible, so you can
create them conditionally as part of a partial update.

AxPopupParentControl allows a page, typically a web part page, to
open in a pop-up window. You can open a pop-up window from a client-
side script by using the GetOpenPopupEventReference method. The string
that is returned is a JavaScript statement that can be assigned, for example,
to a button’s OnClick attribute or to a toolbar menu item. The following
code shows how to open a pop-up window with client-side scripting by
modifying the OnClick event:
Click here to view code image

protected void

SetPopupWindowToMenuItem(SetMenuItemPropertiesEventArgs e)

{

 AxUrlMenuItem menuItem = new

AxUrlMenuItem("EPCustTableCreate");

 //Calling the JavaScript function to set the properties

of opening web page

 //on clicking the menuitems.

 e.MenuItem.ClientOnClickScript =

 this.AxPopupParentControl1.GetOpenPopupEventReference(menuItem);

}

You can also open a pop-up window from a server method by calling
the OpenPopup method. Because pop-up blockers can block server-
initiated pop-up windows, use OpenPopup only when necessary.

When placed on a pop-up page, AxPopupChildControl allows the page
to close. You can close the pop-up page with a client-side script by using
the GetClosePopupEventReference method, as shown in the following
example:
Click here to view code image

this.BtnOk.Attributes.Add("onclick",

 this.popupChild.GetClosePopupEventReference(true, true)

+ "; return false;");

You can close a pop-up window from the server event by using the
ClosePopup method. Use the server method when additional processing is
necessary upon closing, such as performing an action or calculating values
to be passed to the parent page. The ClosePopup and OpenPopup methods
have two parameters:

 setFieldValues When true, this indicates that data must be passed
back to the parent page.

 updateParent When true, this indicates that the parent page must
post back after the pop-up page is closed. AxPopupChildControl
makes a call (through a client-side script) to the parent page to post
back, with the AxPopupParentControl as the target.
AxPopupParentControl then triggers the PopupClosed server event.
When the event is triggered, the application code of the parent page
can receive the values that are passed from the pop-up page and
perform an action or update its state.

You can pass data from the pop-up page back to the parent page by
using AxPopupField objects. You expose these objects through the Fields
property of AxPopupBaseControl, from which both
AxPopupParentControl and AxPopupChildControl are derived.
AxPopupParentControl and AxPopupChildControl have fields with the

same names. When the pop-up page closes, the value of each field of
AxPopupChildControl is assigned (through a client-side script) to the
corresponding field in AxPopupParentControl.

Optionally, you can associate AxPopupField with another control, such
as TextBox (or any other control), by assigning the TargetId property of
the AxPopupField control to the ID property of the target control. This is
useful, for example, when the pop-up page has a TextBox control. To pass
the user input to the parent page on closing the pop-up page—and to
perform the action entirely on the client to avoid a round trip—you need to
associate a field with the TextBox control. When AxPopupField isn’t
explicitly associated with a target control, it is implicitly associated with a
HiddenField control that is created automatically by
AxPopupParentControl or AxPopupChildControl.

You can then set the value of the field on the server by using the
SetFieldValue method. Typically, you call SetFieldValue on
AxPopupChildControl, and you can call it at any point that the user
interacts with the pop-up page, including the initial rendering or the
closing of the page. You can retrieve the value of the field by using the
GetFieldValue method. Typically, you call this method on
AxPopupParentControl during the processing of the PopupClosed event.
You can clear the values of nonassociated fields by calling the
ClearFieldValues method.

You can also set or retrieve values of AxPopupFields on the client by
manipulating the target control value. You can retrieve the target control,
whether explicitly or implicitly associated, by using the TargetControl
property.

BoundField controls
BoundField controls are used by data-bound controls (such as
AxGridView, AxGroup, ASP.NET GridView, and ASP.NET DetailsView)
to display the value of a field through data binding. The way in which a
bound field control is displayed depends on the data-bound control in
which it is used. For example, the AxGridView control displays a bound
field control as a column, whereas the AxGroup control displays it as a
row.

The Enterprise Portal framework provides a number of enhanced bound
field controls that are derived from ASP.NET bound field controls but are
integrated with the AX 2012 metadata. These controls are described in
Table 7-2.

TABLE 7-2 AX 2012 BoundField controls.

Depending on the field type, the Bound Field Designer in Visual Studio
automatically groups fields under the correct bound field type.

AxContentPanel
The AxContentPanel control extends the ASP.NET UpdatePanel control.
It acts as a container for other controls and allows for partial updates of the
controls that are placed inside it, eliminating the need to refresh the entire
page. It also provides a mechanism to provide and consume the record
context for its child controls.

AxPartContentArea
Use AxPartContentArea to define the FactBox area in a control. This
control acts as a container for AxInfoPart, AxFormPart, and
CueGroupPartControl.

AxInfoPart
Use the AxInfoPart control to display an Info Part. This control must be
placed inside an AxPartContentArea control.

AxFormPart
Use the AxFormPart control to display a Form Part. This control must be
placed inside an AxPartContentArea control.

CueGroupPartControl

Use the CueGroupPartControl control to display a Cue Group. This
control must be placed inside an AxPartContentArea control.

AxDatePicker
Use the AxDatePicker control to display a calendar control that allows a
user to pick a date.

AxReportViewer
Use the AxReportViewer control to display an SSRS report.

Developing for Enterprise Portal
To develop Enterprise Portal applications, you use a combination of
MorphX, Visual Studio, and SharePoint products and technologies:

 MorphX You use MorphX to develop the data and business-tier
components in your application. You also use MorphX to define
navigation elements; store unified metadata and files; import and
deploy controls, pages, and list definitions; and generate proxies. For
more information about MorphX, see Chapter 2, “The MorphX
development environment and tools.”

 Visual Studio You use Visual Studio for developing and debugging
web user controls. The Visual Studio Add-in for Enterprise Portal
provides project and control templates to speed the development
process. Visual Studio provides an easy way to add new controls to
the AOT; tools for importing controls and style sheets from the
AOT; and the capability to work with proxies. The Enterprise Portal
framework provides various APIs for accessing data and metadata.

 SharePoint products and technologies You use SharePoint to
develop web part pages and lists. You also use it to edit master
pages, which contain the common elements for all the pages in a site.
With a browser, you can use the Create or Edit Page tool of
SharePoint to design your web part page. You can also use
SharePoint Designer to create or edit both web part pages and master
pages.

The AOT controls all metadata for Enterprise Portal and stores all of the
controls and pages that you develop in Visual Studio and SharePoint. It
also stores other supporting files, definitions, and features under the Web
node.

This section walks you through the steps necessary to create an
Enterprise Portal list page and details page, and explains how to improve

performance by using AJAX. For information about the Enterprise Portal
user interface, see Chapter 5.

Creating a model-driven list page
AX 2012 introduces a new model-driven way of creating list pages. With
AX 2009, you had to create a form to be displayed in the client and a
webpage to be displayed in Enterprise Portal. With model-driven list
pages, you model the list page once and can have it appear in both the
client and in Enterprise Portal. The form displayed in the client and the
webpage displayed in Enterprise Portal share code and metadata. Any
changes to the form are reflected automatically in both the client and in
Enterprise Portal. This leads to a number of advantages, such as reduced
development effort, a unified code base, and easier maintenance.

Figure 7-7 shows an example of the development environment for
creating a model-driven list page.

FIGURE 7-7 Model-driven list page development.

The following are high-level steps that you can use to create a model-
driven list page.

1. Start the Development Workspace.
2. Create a new form in the AOT, and set the FormTemplate property

to ListPage. This setting automatically adds design elements such as
the filter, grid, and Action pane.

3. Set the query on the form to get the data that you want the form to
display.

4. Set the DataSource property on the grid to the required data view.
5. Add the fields that you want to display in the grid.
6. Create and add an Action pane, and Info Parts if required. Ideally,

you should create one Info Part to be displayed in the Preview Pane
(below the grid) and one or more Info Parts, Form Parts, and Cue
Groups to be displayed in the FactBox area (to the right of the grid).
The Preview Pane should display extended information about the
selected record, and the FactBoxes should display related
information. To link these parts to the list page, you will need to
create the corresponding display menu items.

7. Create a display menu item that points to the form. Right-click the
menu item, and click Deploy To EP.

8. When prompted, select the module that you want to deploy the page
to. This will automatically create a SharePoint web part page for the
list page for Enterprise Portal. It will also create a URL web menu
item and import the corresponding page definition in the AOT.

9. Set the HyperLinkMenuItem property on the first field in the grid to
a display menu item that corresponds to a details page, and then
refresh the AOT. This will render links in the first column that can
be used to open the record by using a linked details page.

Defining a list page interaction class
To achieve more control over how your model-driven list page behaves,
you can specify a custom interaction class by using the InteractionClass
property of the form. The name of your class should end with
ListPageInteraction and can inherit either the SysListPageInteractionBase
class, which is easy to use, or the ListPageInteraction class, which is more
flexible.

The SysListPageInteractionBase class provides methods that you can
override and that serve as a place to put custom code. The following are
some of these methods:

 initializing Called when the list page initializes.

 selectionChanged Called when the user selects a different record on
the list page.

 setButtonEnabled Enables or disables buttons, called from the
selectionChanged method.

 setButtonVisibility Displays or hides buttons. This method is called
once when the form opens.

 setGridFieldVisibility Shows or hides grid fields. This method is
called once when the form opens.

For more information, see the topic, “SysListPageInteractionBase
Class,” at http://msdn.microsoft.com/en-
us/library/syslistpageinteractionbase.aspx.

Creating a details page
A details page in Enterprise Portal displays detailed information about a
specific record.

Use the following high-level steps to create a details page:
1. In Visual Studio, use the EP Web Application Project template (in

the Microsoft Dynamics AX category) to create a new project.
2. Add a new item to the project by using the EP User Control with the

Form template (found in the Microsoft Dynamics AX category). This
automatically adds the control to the AOT.

3. Switch to design view, select the AxDataSource control (see Figure
7-8), and then set the DataSet name.

http://msdn.microsoft.com/en-us/library/syslistpageinteractionbase.aspx

FIGURE 7-8 Creating a details page in Visual Studio.

4. Select the AxForm control, and then ensure that DataSourceID is set
to the AxDataSource.

5. Set the DataMember and DataKeyNames on the form as
appropriate.

6. If required, change the default mode of the form to Edit or Insert (it
is ReadOnly by default).

7. To autogenerate the Save and Close buttons, do the following:
• In ReadOnly mode, set AutoGenerateCancelButton to true.
• In Edit mode, set AutoGenerateEditButton to true.
• In Insert mode, set AutoGenerateInsertButton to true.
• Select an AxGroup control and ensure that the FormID property is

set.
8. Click the Edit Fields link and add the required fields to the AxGroup

control.
9. Compile the EP Web Application by using the Build menu. Ensure

that there are no errors. Compiling the application automatically

deploys the control to the SharePoint directory.
10. In AX 2012, start the Development Workspace, and then navigate to

\Web\Web Content\Managed.
11. Right-click the managed item that maps to the web user control that

you created, and then click Deploy To EP.
12. When prompted, select the module you want to deploy the page to.

This will automatically create a SharePoint web part page for
Enterprise Portal and put your web user control on the page by using
the User control web part. It will also create a URL web menu item
and import the corresponding page definition in the AOT.

13. Select the web menu item created for the page, and then set
WindowMode to Modal. This will cause the details page to open in a
modal dialog box.

14. Create a new display menu item and set the WebMenuItemName
property to the web menu item that is linked to the details page.

15. Use this display menu item to link to the details page from the list
page grid, as described in the “Creating a model-driven list page”
section earlier in this chapter.

Modal dialog box settings
Enterprise Portal uses modal dialog boxes to implement standard
interaction patterns for pages. In AX 2012, Enterprise Portal includes two
new metadata settings, WindowMode and WindowSize, on the web menu
item, which you can use to implement these interaction patterns without
writing any code.

WindowMode has the following four settings:
 Inline Causes the target URL to open in the same window. This
setting replaces the current page with the target page that the menu
item links to.

 Modal Causes the target URL to open in a modal dialog box on top
of the window. The current page is still available in the background.
However, because the dialog box is modal, the user can interact only
with the modal dialog box and not with the page that is in the
background.
If a web menu item with WindowMode set to Modal is opened from
within a modal dialog box, the modal dialog box is reused. The page
currently open in the modal dialog box is replaced with the target
page that the menu item links to.

 NewModal Functions in a similar way to the Modal setting but does
not reuse an existing modal dialog box. Therefore, if a web menu
item with WindowMode set to NewModal is opened from within a
modal dialog box, a second-level modal dialog box opens on top of
the old one (as shown in Figure 7-9).

FIGURE 7-9 Example of an Enterprise Portal page with two levels of modal
dialog boxes.

 NewWindow Causes the target URL to open in a new window.
WindowSize has five settings: Maximum, Large, Medium, Small, and

Smallest. These settings correspond to five predefined sizes for the modal
dialog boxes.

AJAX
You can use .NET AJAX to create ASP.NET webpages that can update
data on the page without refreshing the entire page. AJAX provides client-
side and server-side components that use the XMLHttpRequest object,
along with JavaScript and DHTML, to enable portions of the page to
update asynchronously, again without refreshing the entire page. With

AJAX, you can develop Enterprise Portal webpages just as you would any
regular ASP.NET page, and you can declaratively mark the components
that should be rendered asynchronously.

By using the UpdatePanel server control, you can enable sections of a
webpage to be partially rendered without an entire page postback. The
User control web part contains the UpdatePanel server control internally.
The script library is included in the master page, so that any control can
use AJAX without the need to write any explicit markup or code.

For example, if you add a text box and button and write code for the
button’s click event on the server without AJAX, when a user clicks the
button, the entire page is refreshed. But when you load the same control
through the User control web part, as in the following example, the button
uses AJAX and updates the text box without refreshing the entire page:
Click here to view code image

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server"

onclick="Button1_Click" Text="Button" />

In the code-behind, update the text box with the current time after 5
seconds:
Click here to view code image

protected void Button1_Click(object sender, EventArgs e)

{

 System.Threading.Thread.Sleep(5000);

 TextBox1.Text =

System.DateTime.Now.ToShortTimeString();

}

If you want to override the AJAX behavior and force a full postback,
you can use the PostBackTrigger control in the User control web part, as
shown here:
Click here to view code image

<%@ Register assembly="System.Web.Extensions,

Version=3.5.0.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35" Namespace="System.Web.UI"

TagPrefix="asp" %>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <ContentTemplate>

 <asp:TextBox ID="TextBox1" runat="server">

</asp:TextBox>

 <asp:Button ID="Button1" runat="server"

onclick="Button1_Click" Text="Button" />

 </ContentTemplate>

 <Triggers>

 <asp:PostBackTrigger ControlID="Button1" />

 </Triggers>

</asp:UpdatePanel>

Session disposal and caching
All web parts on a webpage share the same session in AX 2012. After the
page is served, the session is disposed of. To optimize performance, you
can control the timeframe for the disposal of the session. Through settings
in the Web.config file, you can specify the session timeout, in addition to
the maximum number of cached concurrent sessions.

For example, to set the maximum number of cached concurrent sessions
to 300 and the session timeout to 45 seconds, add the
<Microsoft.Dynamics> section, as shown in the following example, after
the </system.web> element. Remember that an increase in any of these
values comes at the cost of additional memory consumption.
Click here to view code image

<Microsoft.Dynamics>

 <Session MaxSessions="300" Timeout="45" />

</Microsoft.Dynamics>

Many of the methods that you use in the Enterprise Portal framework to
add code to a User control require access to the Session object. You also
need to pass the Session object when using proxy classes. You can access
the Session object through the web part that hosts the User control, as
shown here:
Click here to view code image

AxBaseWebPart webpart = AxBaseWebPart.GetWebpart(this);

return webpart == null ? null : webpart.Session;

By default, Enterprise Portal uses the ASP.NET session state. However,
you can configure and use Windows Server AppFabric distributed caching
with Enterprise Portal to further improve performance in server farm
environments. After you install and configure Windows Server AppFabric,
you can specify the name and region for Enterprise Portal to use in the
Web.config file.

For example, to set the cache name as MyCache and the region as
MyRegion, add the <Microsoft.Dynamics> section, as shown here, after
the </system.web> element in the Web.config file for Enterprise Portal:
Click here to view code image

<Microsoft.Dynamics>

 <AppFabricCaching CacheName="MyCache" Region="MyRegion"

/>

</Microsoft.Dynamics>

Context
Context is a data structure that is used to share data related to the current
environment and user actions taking place with different parts of a web
application. Context passes information to a web part about actions taking
place in another control so that the web part can react. Context can also be
used to pass information to a new page. Generally, information about the
current record that the user is working on provides the information for the
context. For example, when the user selects a row in a grid view, other
controls might require information about the newly selected row so that
they can react.

AxContext is an abstract class that encapsulates the concept of the
context. The classes AxTableContext and AxViewContext derive from and
implement AxContext. AxTableContext is for table-based context, and
AxViewContext is for dataset view context. A view can contain more than
one table, so it contains an AxTableContext object for each table in the
view in the TableContextList collection. The RootTableContext property
returns the TableContext of the root table in that dataset view.
AxViewDataKey uniquely identifies the AxViewContext, and it contains the
TableDataKeys collection. AxTableDataKey uniquely identifies
AxTableContext. An event is raised whenever the context changes. If the
context is changed within a User control, the CurrentContextChanged
event is raised. If the context changes in other web parts that are connected
to the User control, the ExternalContextChanged event is raised.

You can write code in these events on the AxBaseWebPart from your
web user control and use the CurrentContextProviderView or
ExternalContextProviderView and ExternalRecord properties to get the
record associated with the context. You can trigger all of these events
programmatically from your application logic by calling
FireCurrentContextChanged or FireExternalContextChanged so that all
other connected controls can react to the change that you made through
your code. The following example triggers the CurrentContextChanged
event:
Click here to view code image

void CurrentContextProviderView_ListChanged(object sender,

 System.ComponentModel.ListChangedEventArgs e)

{

 /* The current row (which is the current context) has

changed update the consumer webparts.

 Fire the current context change event to refresh

(re-execute the query) the consumer web

parts

 */

 AxBaseWebPart webpart = this.WebPart;

 webpart.FireCurrentContextChanged();

}

The next code example gets the record from the connected web part.
First, subscribe to the ExternalContextChanged event in the consumer

web user control, as shown here:
Click here to view code image

protected void Page_Load(object sender, EventArgs e)

{

 //Add Event handler for the ExternalContextChange

event.

 //Whenever selecting the grid of the provider web part

changes, this event gets fired.

 (AxBaseWebPart.GetWebpart(this)).ExternalContextChanged

+=

 new

EventHandler<Microsoft.Dynamics.Framework.Portal.UI.AxExternalContextChangedEventArgs>

 (AxContextConsumer_ExternalContextChanged);

}

Next, get the record passed through the external context, as shown in the
following example:
Click here to view code image

void AxContextConsumer_ExternalContextChanged(object

sender,

 Microsoft.Dynamics.Framework.Portal.UI.AxExternalContextChangedEventArgs

e)

{

 //Get the AxTableContext from the ExternalContext

passed through web part connection and

 //construct the record object and get to the value of

the fields

 IAxaptaRecordAdapter currentRecord =

(AxBaseWebPart.GetWebpart(this)).ExternalRecord;

 if (currentRecord != null)

 {

 lblCustomer.Text =

(string)currentRecord.GetField("Name");

 }

}

Data
The ASP.NET controls access and manipulate data through data binding to
AxDataSource. You can also access the data through the APIs directly.
The Microsoft.Dynamics.AX.Framework.Portal.Data namespace contains
several classes that work together to retrieve data.

For example, use the following code to get the current row from the
DataSetView:
Click here to view code image

private DataSetViewRow CurrentRow

{

 get

 {

 try

 {

 DataSetView dsv =

 this.ContactInfoDS.GetDataSet().DataSetViews[this.ContactInfoGrid.DataMember];

 return (dsv == null) ? null : dsv.GetCurrent();

 }

 // CurrentRow on the dataset throws exception in

empty data scenarios

 catch (System.Exception)

 {

 return null;

 }

 }

}

To set the menu item with context for the current record, use the
following code:
Click here to view code image

DataSetViewRow currentContact =

 this.dsEPVendTableInfo.GetDataSourceView(gridContacts.DataMember).DataSetView.GetCurrent();

using (IAxaptaRecordAdapter contactPersonRecord =

currentContact.GetRecord())

{

 ((AxUrlMenuItem)e.MenuItem).MenuItemContext =

 AxTableContext.Create(AxTableDataKey.Create(

 this.BaseWebpart.Session, contactPersonRecord,

null));

}

Metadata

The Enterprise Portal framework provides a rich set of APIs for accessing
the metadata in the AOT through managed code. The
Microsoft.Dynamics.AX.Framework.Services.Client namespace contains
several classes that work together to retrieve metadata from the AOT.
Enterprise Portal controls use the metadata to retrieve information about
formatting, validation, and security, among other things, and apply it in the
user interface automatically. You can also use these APIs to retrieve the
metadata and use it in your user interface logic.

The MetadataCache class is the main entry point for accessing metadata
and provides static methods for this purpose. For example, to get the
metadata for an enum, you use the EnumMetadata class and the
MetadataCache.GetEnumMetadata method, as shown here:
Click here to view code image

/// <summary>

/// Loads the drop-down list with the enum values.

/// </summary>

private void LoadDropdownList()

{

 EnumMetadata salesUpdateEnum =

MetadataCache.GetEnumMetadata(

 this.AxSession,

EnumMetadata.EnumNum(this.AxSession, "SalesUpdate"));

 foreach (EnumEntryMetadata entry in

salesUpdateEnum.EnumEntries)

 {

 ddlSelectionUpdate.Items.Add(new ListItem(

 entry.GetLabel(this.AxSession),

entry.Value.ToString()));

 }

}

To get the label value for a table field, use the following code:
Click here to view code image

TableMetadata tableSalesQuotationBasketLine =

 MetadataCache.GetTableMetadata(this.AxSession,

"CustTable");

TableFieldMetadata fieldItemMetadata =

tableSalesQuotationBasketLine.FindDataField("AccountNum");

String s = fieldItemMetadata.GetLabel(this.AxSession);

Figure 7-10 shows a portion of the object access hierarchy for metadata.
For simplicity, not all APIs are included in the figure.

FIGURE 7-10 Metadata object hierarchy.

Proxy classes
If you need to access X++ classes, call table methods, or use enums in
your user control, the Enterprise Portal framework provides an easy way of
creating managed wrappers for these X++ objects. A proxy file internally
wraps the BC.NET calls and provides a simple, typed interface for C#
applications.

Several predefined proxies are available for use in Enterprise Portal.
They are defined in the EPApplicationProxies and the
EPApplicationProxies1 projects in the AOT, which are located under
\Visual Studio Projects\C Sharp Projects. To use these proxy projects,
open your web application project in Visual Studio, and then add a
reference to these projects by clicking Project > Add EP Proxy Project.
Then, in the web control, add a using statement to provide access to the
proxy namespace, as shown here:
Click here to view code image

using Microsoft.Dynamics.Portal.Application.Proxy;

If you need to create a new proxy, you can create your own Visual C#
class library project in Visual Studio by doing the following:

1. Set the default namespace of the project to

Microsoft.Dynamics.Portal.Application.Proxy.
2. On the File menu, select the option to add the project to the AOT.
3. In Project Properties, set the Deploy to EP property to Proxies.

You can then add the objects from Application Explorer to the project,
and the Enterprise Portal framework will automatically generate and
deploy proxies for these to the App_Code folder of the IIS website. After
you add a reference to a proxy project, you can access the X++ methods as
though they are written in C#, as shown in Figure 7-11.

FIGURE 7-11 Working with proxies in Visual Studio.

ViewState
The web is stateless, which means that each request for a page is treated as
a new request, and no information is shared. When loaded, each ASP.NET
page goes through a regular page life cycle, from initialization and page
load onward. When a user interacts with the page, requiring the server to
process control events, ASP.NET posts the values in the form to the same
page to process the event on the server. A new instance of the webpage
class is created each time the page is requested from the server. When

postback happens, ASP.NET uses the ViewState feature to preserve the
state of the page and controls so that changes made to the page during the
round trip are not lost. The Enterprise Portal framework uses this feature,
and Enterprise Portal ASP.NET controls automatically save their state to
ViewState. The ASP.NET page reads the ViewState and reinstates the page
and control state during the regular page life cycle. Therefore, you don’t
need to write any code to manage state if you’re using Enterprise Portal
controls. However, if you want to persist in-memory variables, you can
write code to add or remove items from the StateBag class in ASP.NET, as
shown here:
Click here to view code image

public int Counter

{

 get

 {

 Object counterObject = ViewState["Counter"];

 if (counterObject == null)

 {

 return 0;

 }

 return (int)counterObject;

 }

 set

 {

 ViewState["Counter"] = value;

 }

}

If you need to save the state of an X++ dataset, you can use the pack-
unpack design pattern to store the state. For more information, see the
topic, “Pack-Unpack Design Pattern,” at http://msdn.microsoft.com/en-
us/library/aa879675.aspx.

The Enterprise Portal framework uses the ASP.NET ViewState property
to store the state of most controls.

Labels
AX 2012 uses a localizable text resource file, the label file, to store
messages that are displayed to the user. The label file is also used for user
interface text, Help text in the status bar, and captions. You can use labels
to specify the user interface text in web controls and for element properties
in the AOT Web node. You can add labels by setting the Label property in

http://msdn.microsoft.com/en-us/library/aa879675.aspx

the AOT or by using X++ code.
When you use data-bound controls such as AxGridView or AxForm for

the user interface, the bound fields automatically use the label associated
with the field in the AOT and render it in the user’s language at run time.

If you want to show a label in your web control for non–data-bound
scenarios, use the AxLabel expression. AxLabel is a standard ASP.NET
expression that looks up the labels defined in the AOT and renders them in
the user’s language when the page is rendered. To add the AxLabel
expression, you can use the expression editor available in the design view
of the web control by clicking the button that appears on the (Expressions)
property. Alternatively, you can type the expression directly in the
markup:
Click here to view code image

<asp:Button runat="server" ID="ButtonChange" Text="<%$

AxLabel:@SYS70959 %>" OnClick="ButtonChange_Click" />

You can also add labels through code by using the Labels class, as
shown here:
Click here to view code image

string s =

Microsoft.Dynamics.Framework.Portal.UI.Labels.GetLabel("@SYS111587");

For better performance, Enterprise Portal caches the labels for all
supported languages. If you add or change a label in the AOT, you need to
clear the cache on the Enterprise Portal site by using the Refresh AOD
command under Administration on the Enterprise Portal Home page.

Formatting
AX 2012 is a global product that supports multiple languages and is used
in many countries/regions. Displaying data in the correct format for each
localized version is a critical requirement for any global product. Through
metadata, the Enterprise Portal framework recognizes the user’s current
locale and system settings to display data automatically in the correct
format in data-bound controls.

If you’re not using data-bound controls and want your unbound
ASP.NET controls to be formatted like Enterprise Portal controls, you can
use the AxValueFormatter class in the Enterprise Portal framework. This
class implements the ICustomFormatter and IFormatProvider interfaces
and defines a method that supports custom, user-defined formatting of an
object’s value. This method also provides a mechanism for retrieving an

object to control formatting. For the various data types, specific
ValueFormatter classes that are derived from AxValueFormatter are
implemented: AxStringValueFormatter, AxDateValueFormatter,
AxDateTimeValueFormatter, AxTimeValueFormatter,
AxRealValueFormatter, AxNumberValueFormatter,
AxGuidValueFormatter, and AxEnumValueFormatter.

You use AxValueFormatterFactory to create AxValueFormatter objects.
You can create any of the preceding formatters, or you can create a
formatter based on an EDT in AX 2012. The data type for the extended
data is retrieved from the metadata object for the EDT, and the culture
information comes from the context. The various rules for languages and
countries, such as number formats, currency symbols, and sort orders, are
aggregated into a number of standard cultures. The Enterprise Portal
framework identifies the culture based on the user’s language setting in
AX 2012 and makes this information available in the context. Formatter
objects have a Parse method that you can use to convert a string value
back into the underlying data type. For example, the following code
formats the data based on a given EDT:
Click here to view code image

private string ToEDTFormattedString(object data, string

edtDataType)

{

 ExtendedDataTypeMetadata edtType =

MetadataCache.GetExtendedDataTypeMetadata(

 this.AxSession,

ExtendedDataTypeMetadata.TypeNum(this.AxSession,

edtDataType));

 IAxContext context =

AxContextHelper.FindIAxContext(this);

 AxValueFormatter valueFormatter =

AxValueFormatterFactory.CreateFormatter(

 this.AxSession, edtType, context.CultureInfo);

 return valueFormatter.FormatValue(data);

}

Validation
You use ASP.NET validator controls to validate user input on the server
and, optionally, on the client (the browser). The Enterprise Portal
framework includes ASP.NET validators that are specific to Microsoft
Dynamics AX. AxBaseValidator derives from

System.Web.UI.WebControls.BaseValidator, and AxValueFormatValidator
derives from AxBaseValidator. Both are metadata-driven and are used
intrinsically by bound fields. You can also use them in unbound scenarios.

ASP.NET validators are triggered automatically when a postback occurs
that causes validation. For example, an ASP.NET button control causes
validation on the client and the server when clicked. All validators that are
registered on the page are validated. If a validator is found to be invalid,
the page becomes invalid, and the Page.IsValid property returns a value of
false.

The importance of Page.IsValid is best highlighted with an example.
Suppose you add an ASP.NET button that executes some business logic in
the OnClick event before redirecting the user to a different page. As
mentioned earlier, the button causes validation by default, so validators are
executed before the OnClick event is triggered. If you don’t check to
determine whether the page is valid in the OnClick event handler, the user
is redirected even if a validation error occurs that requires the user’s
attention.

Enterprise Portal controls such as AxForm and AxGridView
automatically check validation and won’t perform the requested action if
validation fails. The validator controls automatically write any validation
errors to the Infolog.

When you’re using ASP.NET controls directly instead of Enterprise
Portal controls, as a best practice, make sure that your code examines the
Page.IsValid property before any actions, such as navigating away from
the current page, are completed. If errors occur, you’ll want to keep the
current page with Infolog displaying the errors so that the user will notice
the errors and take corrective action.

Error handling
In Enterprise Portal, BC.NET (including proxies), the metadata, and the
data layer all throw exceptions when error conditions occur. The
Enterprise Portal ASP.NET controls automatically handle these
exceptions, taking appropriate actions and displaying the errors in an
Infolog.

Exceptions in Enterprise Portal are divided into three categories. These
exception categories are defined in the AxExceptionCategory enumeration:

 NonFatal Indicates that the exception handling code should respond
appropriately and allow the request to continue normally.

 AxFatal Indicates that an unrecoverable error has occurred in
Enterprise Portal, and Enterprise Portal content will not be displayed.
Content not related to Enterprise Portal should be displayed as
expected.

 SystemFatal Indicates that a serious error, such as out of memory,
has occurred, and the request must be canceled. Errors of this kind
often cause an HTTP error code of 500.

Your code must handle any exceptions that might occur, if your code
does any of the following:

 Directly calls methods in data layers from Enterprise Portal
 Directly calls metadata methods
 Uses proxy classes to call X++ methods

The following code shows how to use AxControlExceptionHandler in
the try-catch statement to handle exceptions:
Click here to view code image

try

{

 // Code that may encounter exceptions goes here.

}

catch (System.Exception ex)

{

 AxExceptionCategory exceptionCategory;

 // Determine whether the exception can be handled.

 if (AxControlExceptionHandler.TryHandleException(this,

ex, out exceptionCategory) == false)

 {

 // The exception was fatal and cannot be handled.

Rethrow it.

 throw;

 }

 if (exceptionCategory == AxExceptionCategory.NonFatal)

 {

 // Application code to properly respond to the

exception goes here.

 }

}

AxControlExceptionHandler tries to handle AX 2012 exceptions based
on the three exception categories described earlier in this section. It returns
a value of true if the type of exception is NonFatal.

Security

In Enterprise Portal, AX 2012 security is layered on top of, and depends
on, the security of the underlying products and technologies, such as
SharePoint and IIS. For external-facing sites, communication security and
firewall configurations are also important to help secure Enterprise Portal.

Enterprise Portal has two configurations in its site definition. The first,
referred to as Microsoft Dynamics Public, allows Internet customers or
prospective customers to view product catalogs, request customer
accounts, and so on. The second, referred to as Microsoft Dynamics
Enterprise Portal, is a complete portal for self-service scenarios involving
intranet or extranet users who are authenticated employees, vendors, and
customers.

The Microsoft Dynamics Public configuration has anonymous
authentication enabled in both IIS and SharePoint so that anyone on the
web can access it. To connect to AX 2012, this configuration uses a built-
in Microsoft Dynamics AX user account named Guest. The Guest account
is part of the Enterprise Portal Guest user group, which has limited access
to the AX 2012 components that are necessary for the public site to
function.

The Microsoft Dynamics Enterprise Portal configuration uses either
Integrated Windows authentication or Basic authentication over Secure
Sockets Layer (SSL) that is enabled in IIS and SharePoint. This secured
site restricts access to users with Active Directory accounts who are also
configured as Microsoft Dynamics AX users and have access that has been
enabled for the site by the Microsoft Dynamics AX system administrator.
You use the System Administration > Setup > Users > User Relations
dialog box in the client to set up users as an employee, vendor, business
relation, or customer contact. Then you can grant them access to
Enterprise Portal sites through Site groups for each Enterprise Portal site.

Both types of Enterprise Portal sites use the .NET Business Connector
proxy account to establish connections to the AOS. The SharePoint
application pool must be configured with a Windows domain user account,
and this account must be specified as the Microsoft Dynamics AX .NET
Business Connector proxy account for both sites to function. After the
connection is established, Enterprise Portal uses either LogonAsGuest or
LogonAs—depending on the type of Enterprise Portal site the current user
has access to—to activate the Microsoft Dynamics AX security
mechanism. AX 2012 provides various means and methods of limiting
user access, such as placing restrictions on individual tables and fields and
limiting the availability of application features through configuration keys

and web configuration keys, as shown in Figure 7-12. User-level security
can also be applied by using roles, duties, and privileges.

FIGURE 7-12 Assigning a configuration key and web configuration key to a
web menu item.

Enterprise Portal security is role-based. This means that you can easily
group tasks associated with a business function into a role, such as Sales or
Consultant, and assign users to this role to give them the necessary
permissions on the AX 2012 objects to perform those tasks in Enterprise
Portal. To allow users access to more functionality, you can assign them to
more than one role. For more information about roles, see Chapter 11,
“Security, licensing, and configuration.”

Secure web elements
To securely expose web controls through web parts in SharePoint, you can
use privileges. You can either create a new privilege or use an existing
one. You can add managed web content (Web\Web Content\Managed) or
web menu items that reference URLs (Web\Web Menu Items\URLs) or
actions (Web\Web Menu Items\Actions) as entry points for privileges to
control which users can access them.

Remember to secure both the web menu item and the managed web
content. If you secure only the web menu item (see Figure 7-13), the user
can still access the managed web content (for example, a web control) and
can add it to a page that he or she has access to.

FIGURE 7-13 Adding a web menu item that references a URL as an entry
point for a privilege.

At logon, the user’s role determines the access. If a user doesn’t have
access to a web menu item, that item doesn’t appear on the user’s web
menu. If a link in the web menu item appears in other web user controls
that the user has access to, the item linked with the web menu item appears
as text rather than as a link.

If the user doesn’t have access to web content on a webpage, the content
isn’t rendered on the page. Web part properties also limit the items that are
displayed in the drop-down list based on the user permissions for the
underlying objects. Moreover, the types of operations that are allowed on
these objects depend on the access level set for the objects in the roles that
the user belongs to.

Record context and encryption

Record context is the interface for passing information through the query
string to a web part page to retrieve a record from AX 2012. Enterprise
Portal uses record context to locate a record in the AX 2012 database and
display it in a web form for viewing and editing.

The following are some of the query string parameters that are used to
pass the record context to an Enterprise Portal web part page:

 WTID Equals the Table ID
 WREC Equals the Rec ID
 WKEY Equals the Unique Record Key (the field identifier and the
value of the field for the record to be retrieved)

These parameters are passed either in a query string or in post data on
webpages. To help secure Enterprise Portal, AX 2012 uses a hash
parameter. This ensures that a URL that is generated for one user cannot
be used by any other user. For debugging and web development, the
system administrator can turn off the encryption (by using the hash
parameter) on the Enterprise Portal General tab of the Web Sites form,
which is located in System Administration > Setup > Enterprise Portal >
Web Sites. If record-level security and other data-level security are already
active and no security threats exist, turning off the encryption could result
in better performance. However, it is strongly recommended that you keep
the encryption turned on.

SharePoint integration
Enterprise Portal is built on the SharePoint platform, and to enable
collaboration and content management, it takes advantage of some of the
useful features and functionality offered by SharePoint.

Site navigation
The Enterprise Portal site uses the SharePoint navigation elements and
object model for showing AX 2012 navigation items from the AOT. To
display web menus from the AOT as the top and left navigation elements
on the SharePoint site, Enterprise Portal setup adds the navigation
providers DynamicsLeftNavProvider and DynamicsTopNavProvider. For
SharePoint Standard and Enterprise editions,
DynamicsMOSSTopNavProvider is added instead of
DynamicsTopNavProvider. The navigation providers override the default
TopNavigationDataSource and QuickLaunchDataSource.

Web modules define the SharePoint sites and subsites in Enterprise

Portal (for example, Sales and Employee Services). These sites and
subsites are also used to build the top navigation bar. If you want to hide a
link to a module from the top navigation bar, you can set the ShowLink
property to No on the web module.

Web menus represent a collection of URL and action web menu items.
You can use these elements to define the Quick Launch structure for a web
module by setting the QuickLaunch property of a web module (see Figure
7-14) to the corresponding web menu. Alternatively, you can use the
Quick launch web part for this purpose. The links are automatically hidden
or displayed based on the user’s permissions. Web menu items help you
create sites that are dynamic and versatile.

FIGURE 7-14 Web modules determine the sites, subsites, and Quick Launch
links that are displayed on a page.

You can also use web menus with the Left navigation web part to
provide navigation links on a page or web user control.

Internally, the framework uses the WebLink class to generate hyperlinks.
This class has all the properties and methods that the framework needs to
pass information back and forth between the browser and the server. More

importantly, it has a method that returns the URL for the link. WebLink
also has several methods for passing record information.

Site definitions, page templates, and web parts
You can customize SharePoint sites by using site definitions or custom
templates that are built on existing site definitions. Site definitions
encompass multiple files that are located in the file system on each web
server. These files define the structure and schema for the site. You can
create new site definitions by copying the existing site definition files and
modifying them to meet the needs of the new sites. You create custom
templates by using the user interface to customize existing sites and
storing them as templates.

The Enterprise Portal site definition files and custom templates are
stored in the AOT under Web\Web Files\Static Files. Enterprise Portal
setup deploys these files from the AOT to the web server file system and
SharePoint.

Enterprise Portal includes one default site definition, which has two
configurations: one for authenticated users and another for public Internet
users. The site definition is deployed to the <drive>:\\Program
Files\Common Files\Microsoft Shared\Web Server
Extensions\14\TEMPLATE\SiteTemplates\AXSITEDEF folder. The web
part page templates are deployed to the language-specific site definition
folder: <drive>:\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\14\TEMPLATE\<lcid>\AXSITEDEF.

Enterprise Portal deployment is deployed as a set of four SharePoint
features. A SharePoint site represents a modular, server-side, file system–
level customization that contains items that can be installed and activated
in a SharePoint environment. The feature definitions are deployed to
<drive>:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\TEMPLATE\FEATURES. These Enterprise Portal feature
definitions are as follows:

 DynamicsAxEnterprisePortal Enables basic Enterprise Portal
deployment steps, such as deploying the master page and other files
and components, setting navigation providers, and registering AX
2012. This feature is for the SharePoint Foundation environment.

 DynamicsAxEnterprisePortalMOSS Includes environment-specific
steps for deploying to SharePoint Standard and Enterprise edition
environments.

 DynamicsSearch Enables the Enterprise Portal search control on

Enterprise Portal sites that enable searching across AX 2012 and
SharePoint data.

 DynamicsAxWebParts Enables deployment of the various AX 2012
web parts.

Enterprise Portal feature-related files are stored in the AOT under
Web\Web Files\Static Files. The Static Files node also has other
infrastructure-related files, such as the .aspx file that is used for importing
and exporting page and list definitions, document-handling infrastructure
files, the master page, common ASP.NET pages, images, style sheets, and
configuration files.

EPSetupParams is an XML file used to define the default Enterprise
Portal site attributes, such as the title, description, and URL, when the site
is automatically created through Enterprise Portal setup.

The Enterprise Portal master page automatically adds the Page title,
Quick launch, and Infolog web parts. When a page is created in Enterprise
Portal, these web parts are already available on the webpage, creating
consistency across all web part pages in Enterprise Portal and supporting
rapid application development. Figure 7-15 shows some of the key files
that constitute the site definition and their locations on the web server.

FIGURE 7-15 Enterprise Portal site definition files.

Enterprise Portal web parts are kept in the AOT under Web\Web
Files\Static Files. If necessary, partners and customers can add their own
web parts under this node, and Enterprise Portal will deploy these files to
the global assembly cache on the web server and add a safe control entry
in the Web.config file.

Web part pages display one or more web parts. Web parts provide an
easy way to build powerful webpages that display a variety of information,
ranging from an AX 2012 data view of a list in the current site to external
data presented in custom-built web parts. You can create web part pages in
SharePoint by using Internet Explorer. You simply drag web parts onto
web part pages and set their properties with prepopulated lists. You can
edit web part pages in either SharePoint Designer or Internet Explorer.

You can use Internet Explorer to edit a page and change its web parts,
arrange the order of the web parts, and set the web part properties. You can
use SharePoint Designer to insert logos or other graphics, to customize
document libraries or lists, to apply themes and styles, to customize the
master page, and so on. Keep in mind, however, that you can’t import
pages edited with SharePoint Designer into the AOT.

You can import web part pages created in the Enterprise Portal site in
SharePoint into the AOT as page definitions by using the Import Page tool
from web menu items of type URL. The page definitions are stored in the
AOT under Web\Web Files\Page Definitions.

The page definitions imported into the AOT automatically create pages
when a site is created with the Enterprise Portal site definition. The
PublicPage property of the page definition node determines whether the
page should be created on the public site. All the pages are created for the
authenticated site. The page definition Title property, if used, must be set
to a label so that the page displays the localized title when used with
different language settings.

Importing and deploying a web part page
When you create a new web part page in Enterprise Portal, you should
import the page into the AOT. You can then deploy the page to a different
Enterprise Portal site or have the system automatically deploy it when
creating a new Enterprise Portal site. To import the page to the AOT,
create a web menu item that points to the page, right-click the item, and
then click Import Page. The imported page definition is stored under
\Web\Web Files\Page Definitions. After the page is imported, it can use
AX 2012 labels for the page title so that the same page definition can be
used for sites in different languages.

To create or deploy an Enterprise Portal site or individual elements such
as web modules, pages, web controls, images, and so on, you can use the
AxUpdatePortal command-line utility. AxUpdatePortal also supports
remote deployment, so you don’t have to log on physically to an
Enterprise Portal server to deploy to it.

The AxUpdatePortal utility is located either in the C:\Program
Files\Microsoft Dynamics AX\60\Setup folder where Enterprise Portal is
installed, or in the C:\Program Files\Microsoft Dynamics
AX\60\EnterprisePortalTools where the AX 2012 client is installed.

Table 7-3 lists the parameters that AxUpdatePortal supports.

TABLE 7-3 AxUpdatePortal utility parameters.

For more details about these parameters, use AxUpdatePortal /?.
Here are some examples of how to use the AxUpdatePortal utility to

perform actions on a website located at
http://ServerName/site/DynamicsAX:

 Create and deploy a new Enterprise Portal website:
Click here to view code image

AxUpdatePortal -deploy -createsite -websiteurl

"http://ServerName/site/DynamicsAx"

 Update all components of the Enterprise Portal website:
Click here to view code image

AxUpdatePortal -updateall -websiteurl

"http://ServerName/site/DynamicsAx"

 Deploy all proxies to the Enterprise Portal website:
Click here to view code image

AxUpdatePortal -proxies -websiteurl

"http://ServerName/site/DynamicsAx"

 Deploy the Customers web control to the Enterprise Portal website:
Click here to view code image

AxUpdatePortal -updatewebcomponent –treenodepath

"\Web\Web Files\Web Controls\Customers"

-websiteurl "http://ServerName/site/DynamicsAx"

Enterprise Search

Enterprise Search in AX 2012 lets users search for data, metadata, and the
contents of documents that are attached to records. This search capability
is available in both Enterprise Portal and the client. Enterprise Search uses
the Metadata service and the Query service in AX 2012 to gather the data
and metadata from AX 2012. To index and execute search queries,
Enterprise Search uses the SharePoint Business Connectivity Services
(BCS).

To enable this rich search functionality, you must install the Enterprise
Search component in AX 2012 Setup. If you are using SharePoint
Standard or Enterprise edition, you do not need to install any other
prerequisites for Enterprise Search because these have search capabilities
built in. However, if you are using SharePoint Foundation, you need to
install Microsoft Search Server 2010 Express as a prerequisite for
Enterprise Search.

Enterprise Search uses queries to make data searchable in AX 2012.
When Enterprise Search is installed, it indexes the default queries and runs
a full crawl of the data and metadata. If you want to make additional data
searchable, follow these steps:

1. In the AOT, either find the query that fetches the data, or create a
new query.

2. Set the Searchable property on the query to Yes.
3. Compile the query and ensure that there are no best practice errors.
4. In the client, start the Enterprise Search Configuration wizard

(System Administration > Setup > Search > Search Configuration),
shown in Figure 7-16. The wizard will display a list of all queries in
the AOT whose Searchable property is set to Yes.

FIGURE 7-16 Enterprise Search Configuration wizard.

By default, all queries whose Searchable property is set to Yes are
selected to be published to BCS. You can clear any queries that you
do not want to publish.

5. If you want, use the Select Fields option to prevent specific fields
from being indexed.

6. Select the check box to start a full crawl of the data source.
Alternatively, you can use SharePoint Central Administration to start
a full or incremental crawl manually.

7. Click Next, and then click Finish.
The Enterprise Search Configuration wizard uses the credentials of a

search crawler account to index the data and publishes the queries to BCS.
You can also see your published queries in SharePoint Central
Administration under Application Management > Manage Service
Applications > Business Data Connectivity Service.

Changes to metadata information (such as to web menus) are rare, so by
default, Enterprise Search executes a full crawl of the metadata only once
during installation. Alternatively, changes to data (such as to sales orders)

are frequent. By default, Enterprise Search performs a full crawl of the
data once during installation, and an incremental crawl every day at
midnight.

If you publish a new query, you can start a full crawl directly from the
Enterprise Search Configuration wizard, as mentioned earlier. You can
also start a full or an incremental crawl manually in SharePoint Central
Administration by following these steps:

1. Start SharePoint Central Administration.
2. Navigate to Application Management > Manage Service

Applications > Search Service Application.
3. In the left navigation pane, under Crawling, click Content Sources.

You will see two content sources: one for data and one for metadata.
4. Click either content source, and then click either Start Full Crawl or

Start Incremental Crawl, as shown in Figure 7-17. Keep in mind that
crawling can take a long time, depending on how much data or
metadata there is to index.

FIGURE 7-17 Starting a crawl by using SharePoint Central Administration.

After the data and metadata has been crawled and indexed, it is

published to BCS. Users can execute searches by using the search box
located in the upper-right corner of Enterprise Portal. The results are
trimmed at search time based on the user’s role, language, and other
settings, so that users see only the data that is available and applicable to
them.

Themes
Enterprise Portal integrates with SharePoint themes. You can apply an
existing SharePoint theme to the Enterprise Portal site to change its
appearance just as you can with any other SharePoint site. Partners and
customers can also create new SharePoint themes and customize or extend
the Enterprise Portal style sheets to map to the new theme.

Enterprise Portal uses five style sheets. AXEP.css is the base style sheet.
AXEP_RTL.css is used for right-to-left languages and cascades on top of
AXEP.css. These two files are located on the web server under
<drive>:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\TEMPLATE\LAYOUTS\<lcid>\STYLES\Themable. The
AXEP_CRC.css, AXEP_CRC_RTL.css, and AXEP_WebPart_Padding.css
style sheets are used for Role Centers when rendered in the client. These
files are located on the web server under <drive>:\Program Files\Common
Files\Microsoft Shared\Web Server
Extensions\14\TEMPLATE\LAYOUTS\ep\Stylesheets.

The Enterprise Portal master page references these style sheets. The
AXEP.css and AXEP_RTL.css style sheets contain SharePoint theme
directives and are therefore placed in the special directory where
SharePoint can locate them.

When a SharePoint theme is applied to the Enterprise Portal site,
SharePoint parses the directives and makes modifications to reflect the
new theme. These modifications include color and font replacements and
even recoloring of some images. It then stores the modified style sheet and
images in the SharePoint content database. The master page then
references this new style sheet so that the Enterprise Portal appearance
reflects the applied theme.

Chapter 8. Workflow in AX 2012

In this chapter
Introduction
AX 2012 workflow infrastructure
Windows Workflow Foundation
Key workflow concepts
Workflow architecture
Workflow life cycle
Implementing workflows

Introduction
Few people would deny the importance or significance of the processes
that drive the businesses and organizations that we work for and interact
with on a daily basis. Business processes represent the key activities that,
when carried out, are intended to achieve a specific goal of value for the
business or organization; for example:

 A manufacturing operation in which business process activities
include design, development, quality assurance testing, and delivery
of a saleable (and hopefully profitable) range of goods

 Sales process activities for manufactured items, including marketing,
locating prospects, providing quotes, converting quotes to orders and
prospects to customers, shipping the product, invoicing, and
obtaining payment

 Supporting activities that contribute to the business or organization
in tangible ways, such as hiring new employees and managing
employee expenses

Viewing activities in terms of the business processes that encompass
them affords businesses and organizations the opportunity to
systematically define, design, execute, evaluate, and then improve the way
that these activities are performed. This systematic approach is extremely
valuable, even critical, given that today’s businesses and organizations
have to react to an increasingly rapid rate of change and the ever-
expanding influence of globalization.

Enterprise resource planning (ERP) suites, such as AX 2012, exist to
automate business processes and to provide the capability to adapt these

processes to the needs of businesses and organizations over time. Before
AX 2009, no standard workflow infrastructure existed in the product, and
each company had to write specific business logic to implement everyday
activities such as approvals. The AX 2009 release included a built-in
workflow infrastructure to make it easier for businesses and organizations
to automate and manage business processes. This infrastructure has been
enhanced further in AX 2012.

The main difference between business processes and workflows (these
terms are often used interchangeably) is their scope, level of abstraction,
and purpose. Business processes represent the broad set of activities that a
business or organization needs to carry out, along with the
interrelationships among the activities. Business processes are
implementation-independent and can combine manual and automated
activities. Workflows represent the automated parts of a business process
that coordinate various human or system (or both) activities to achieve a
particular outcome, and they are implementation-specific. Therefore,
workflows are used to implement parts of a business process.

AX 2012 workflow infrastructure
Fundamentally, a workflow consists of one or more activities that
represent the items of work to be completed. In addition, the concept of
workflows that connect the activities and govern the sequence of execution
(referred to as the structure of a workflow) is key. The behavior of a
workflow is determined by its type. Figure 8-1 illustrates the major types
of workflows and identifies where the emphasis of the workflow
infrastructure is located in AX 2012.

FIGURE 8-1 Major types of workflows.

A major distinction exists between human workflows and system
workflows. (For more information, see the “Types of workflows” sidebar
later in this section.) Workflows in AX 2012 are primarily designed to
support structured human workflows. Almost 60 structured human
workflows are included with the product, spanning accounts payable,
accounts receivable, budgeting, fixed assets, general ledger, organization
administration, procurement and sourcing, system administration, time and
attendance, and travel and expense. Whereas the built-in workflows tend to
focus on structured human workflows that obtain approvals, you can also
create workflows that contain tasks for humans to complete or a mixture of
structured and unstructured tasks along with approvals and automated
tasks. Customers, partners, and independent software vendors (ISVs) can
create additional workflows to supplement those in the product.

Types of workflows
Workflows are divided into two major types: human and
system. This sidebar examines some of the basic differences
between the two types.

Human workflows
A key attribute of a human workflow is that people are
involved in the workflow as it executes; in other words, a
human workflow is generally interactive, although it might
contain activities that are noninteractive, such as automated
tasks. Most often, the interaction takes the form of responding
to a workflow notification and taking an action of some kind,
such as approving or rejecting the business document being
processed. Human workflows can be subdivided further into
structured and unstructured types. Structured human
workflows are used for processes in which execution must be
repeatable and consistent over time, such as expense approval
and purchase requisition processing. Structure is important
because to improve a business process, you must have a way
to measure the performance of the workflows that are
executed to automate that business process. If a workflow
isn’t structured for repeatability and consistency, you are
going to have a difficult time identifying what to improve.

Unstructured human workflows differ from structured ones
in that the exact activity flow doesn’t have to be defined
initially—but it should be possible to easily establish and
assign to the required people. An example of an unstructured
human workflow is reviewing a document where the
participants and the type of approval required are decided just
before the workflow starts. This type of human workflow is
less useful for analyzing process improvement because each
unstructured workflow might operate differently, depending
on how it is used. However, an unstructured human workflow
does help coordinate human activities.

System workflows
A system workflow is a noninteractive workflow that
automates a process that spans multiple systems, such as
transferring an order from one system to another. Generally,
such workflows are structured because they must be
consistently repeatable.

You often need to combine human and system workflows
to implement a given business process. For example, expense
reports must be approved, and then the expense lines must be
posted after approval.

Because existing Microsoft Dynamics AX modules use approvals
extensively, the workflow infrastructure in AX 2012 is primarily intended
to support structured human workflows. Focusing on this type of workflow
lays the groundwork to help businesses and organizations more easily
automate, analyze, and improve high-volume workflows across their ERP
systems.

Each structured human workflow in AX 2012 acts on a single document
type because data is the key constituent of an ERP system. (Think of the
broad categories of data that exist in an ERP system: master data,
transaction data, and reference data. Processes that operate within those
systems are largely data-driven.)

Here are some of the key tasks that you can perform with structured
human workflows in AX 2012:

 Define the activities that must take place, based on the business
process that is being automated.

 Define the sequence in which tasks, approvals, subworkflows, and
the new workflow elements in AX 2012 (manual decisions,
automated decisions, parallel activities and branches, automated
tasks, and line-item workflows) execute to reflect the order in which
activities must be completed in a business or an organization.

 Set up a condition to determine which workflow to use in a given
situation.

 Decide how to assign an activity to users.
 Specify the text that is displayed in the user interface for the various
activities to help users understand what they need to do.

 Define a set of outcomes for an activity that users can select from.
 Select which notifications to send, which email template to use,
when to send the notifications, and who should receive the
notifications.

 Establish how a workflow should be escalated if there is no timely
response to an activity.

Four types of users interact with the workflow infrastructure in AX
2012: business process owners, developers, system administrators, and end
users (called users in this book).

Business process owners and developers are primarily responsible for
defining, designing, and developing workflows, whereas system

administrators and users interact with workflows that are executing, as
described in the following list:

 Business process owners Understand the objectives of the business
or organization within which they operate to the degree that they can
envision how best to structure the activities within their areas of
responsibility. Business process owners therefore configure
workflows that have already been implemented and work with
functional consultants or developers to enable other modules or
create new workflow types in existing modules.

 Developers Work with business process owners to design and
implement any underlying business logic that is required to support
workflows that are being developed.

 System administrators Set up and maintain the development and
production environments, ensure that the workflow infrastructure is
configured correctly, monitor workflows as they execute, and take
actions to resolve issues with workflows that are executing.

 Users Interact with workflows when necessary—for example, by
submitting a business document record, taking a particular action
(such as approving or rejecting a document), entering comments, or
viewing workflow history.

Windows Workflow Foundation
The workflow infrastructure in AX 2012 is related to Windows Workflow
Foundation (WF), which is part of the Microsoft .NET Framework 4.0.
WF provides many fundamental capabilities that are used by the workflow
infrastructure in AX 2012. As a low-level infrastructure component,
however, WF has no direct awareness of or integration with AX 2012. In
Figure 8-2, the workflow infrastructure (A) is an abstraction layer that sits
above WF (B) and allows workflows that are specific to AX 2012 to be
designed, implemented, and configured in AX 2012 and then executed by
using WF.

FIGURE 8-2 Relationship between the AX 2012 workflow infrastructure and
WF.

In the following list, each numbered item corresponds to a numbered
part of Figure 8-2:

1. The developer designs and implements workflow elements and
business logic in the Application Object Tree (AOT).

2. The business process owner models workflows by using the
graphical workflow editor in the AX 2012 client, which is based on
the WF Designer.

3. The workflow runtime bridges both the AX 2012 workflow
infrastructure and WF; it instantiates and then executes workflows.
(The system administrator manages the runtime environments.)

4. Users interact with workflow user interface (UI) controls both in the
AX 2012 Windows client and in the Enterprise Portal web client.

Key workflow concepts
Workflow helps the users in a business or an organization improve their
efficiency. The ultimate goal for workflow in AX 2012 is to make it as
easy as possible for business process owners to configure workflows fully
themselves, freeing developers to work on other activities. Currently,
developers and business process owners work together to create and
customize workflows.

You need to understand a number of key concepts to help business
process owners implement workflows successfully.

Workflow document and workflow document class
The workflow document, sometimes referred to as the business document,
is the focal point for workflows in AX 2012. Every workflow type and
every workflow element must reference a workflow document because the
document provides the data context for the workflow. A workflow
document is an AOT query supplemented by a class in the AOT (referred
to as the workflow document class). The term workflow document is used
instead of query because it more accurately portrays what the workflow
operates on. The query used by a workflow document can reference
multiple data sources and isn’t constrained to a single table. In fact, a
query can reference data sources hierarchically. However, if there are
multiple data sources within a query, the first data source is considered the
primary or root data source.

 Tip

The workflow document and workflow document class are
located in the AOT in the AX 2012 client.

Workflow in AX 2012 incorporates an expression builder that you can
use to define conditions that control the behavior of an executing
workflow. The expression builder uses the workflow document to
enumerate the fields that can be referenced in conditions. To make derived
data available within conditions, you add parm methods to the workflow
document class, and then add X++ code to the parm methods to produce
the derived data. The workflow document then returns the fields from the
underlying query plus the data generated by the parm methods.

Workflow categories

Workflow categories determine the association that a workflow type has to
a specific module. (Without these categories, you would see all workflows
in the context of every module in AX 2012.) For example, a workflow
category named ExpenseManagement, which is mapped to the Travel and
Expense module, comes with AX 2012. All workflows associated with this
module are visible in the AX 2012 client within the Travel and Expense
module. If you add a new module to AX 2012, you must create a new
module and a new workflow category that references that module.

 Tip

Workflow categories are located in the AOT in the AX 2012
client.

Workflow types
The workflow type (called a template in AX 2009) is the primary building
block that developers use to create workflows. You generate the workflow
type by using the Workflow Wizard, shown in Figure 8-3. The wizard
automates the creation of the metadata required for a workflow type; all
you need to do is specify the name, workflow category, query, and menu
items.

FIGURE 8-3 The Create Workflow Type page in the Workflow Wizard.

The resulting metadata is created under the AOT\Workflow\Workflow
Types node. The business process owner later references this workflow
type when creating an actual workflow.

 Tip

Workflow types are located in the AOT in the AX 2012
client.

For more information about the Workflow Wizard, see “How to: Create
a New Workflow Type” at http://msdn.microsoft.com/en-
us/library/cc594095.aspx.

Event handlers
Event handlers are well-defined integration points that developers use to
trigger application-specific business logic during workflow execution.
Workflow events are exposed at the workflow level and the workflow
element level. For more information about event handlers, including where

http://msdn.microsoft.com/en-us/library/cc594095.aspx

they are used, see “Workflow Events Overview” at
http://msdn.microsoft.com/en-us/library/cc588240.aspx.

 Tip

Event handlers are located in the AOT in the AX 2012 client.

Menu items
Workflow in AX 2012 uses both display and action menu items. Display
menu items are used to navigate to a form in the AX 2012 client that
displays the details of the record being processed by the workflow. Web
menu items are used to navigate to the same type of webpage in Enterprise
Portal. Action menu items are used for each possible action that a user can
take in relation to a workflow. They also provide another integration point
for you to integrate custom code. For more information about the menu
items that are used in the workflow infrastructure, see “How to: Associate
an Action Menu Item with a Workflow Task or Approval Outcome”
(http://msdn.microsoft.com/en-us/library/cc602158.aspx) and “How to:
Associate a Display Menu item with a Workflow Task or Approval”
(http://msdn.microsoft.com/en-us/library/cc604521.aspx).

 Tip

Menu items are located in the AOT in the AX 2012 client.

Workflow elements
The elements of a workflow represent the activities within the workflow.
The business process owner models these elements. An element can be a
task, an approval, a subworkflow, a manual decision, an automated
decision, a parallel activity with multiple branches, a line-item workflow,
or an automated task. Developers implement the task, approval, line-item
workflow, and automated task elements. The rest are referred to as
configuration-only elements that business process owners can use in the
graphical workflow editor. The following list describes each element:

 Tasks Generic workflow elements that represent a single unit of
work. The developer defines the possible outcomes for each task.

 Approvals Specialized tasks that allow sequencing of multiple steps

http://msdn.microsoft.com/en-us/library/cc588240.aspx
http://msdn.microsoft.com/en-us/library/cc602158.aspx
http://msdn.microsoft.com/en-us/library/cc604521.aspx

and use a fixed set of outcomes.
 Subworkflows Workflows that are invoked from other workflows.
 Manual decisions Decisions that enable the workflow to follow one
of two possible paths based on an action taken by a user.

 Automated decisions Decisions that enable the workflow to follow
one of two possible paths based on a condition.

 Parallel activities Activities that contain two or more branches that
represent discrete workflows and are executed simultaneously.

 Line-item workflows Workflows that are modeled within a
workflow that exists for a business document that represents the
master in a master–detail relationship. They enable specific
workflows to be instantiated on line items that are associated with
the master business document—for example, expense lines on an
expense report.

 Automated tasks Noninteractive tasks that invoke X++ business
logic synchronously.

Manual and automated decisions, parallel activity, line-item workflows,
and automated tasks are new in AX 2012. In addition, workflow wizards
have been added to make the creation of approval and task elements easier.

 Tip

Workflow elements are located in the AOT in the AX 2012
client.

Queues
The ability to assign workflow work items to a queue is new in AX 2012.
Queues offer an alternative to assigning workflow work items directly to
users by providing support for teams that collaborate within a business
process. With this approach, a work item is first assigned to a queue; then,
the work item is claimed by a member of the queue so that it can be
worked on. The eventual work item owner can also return the work item to
the original queue, put the work item in another queue, or assign the work
item to another user.
To use work item queues, follow these steps:

1. Create one or more work item queues for a selected workflow
document (for example, purchase requisition header), and assign one

or more AX 2012 users to each queue. These assigned users can
view and take action on work items assigned to the queue. Each
queue also has an administrator, which by default is the user who
created the queue.

2. Create a work item group, which is a container for grouping one or
more work item queues, and then add all of the work item queues for
a given document type to the work item group.

3. Set the status of the work item queues to Active so that workflows
can assign work items to them.

4. Create a workflow by using a workflow type based on the same
business document as the queue. Model a task element within the
workflow and configure it to be assigned to the appropriate work
item queue.

 Note

Only work items generated from task elements can be
assigned to queues, because a task can be completed by only a
single user. In this case, the queue provides a way for users to
assign themselves to work items. Approvals differ from tasks
in this respect, because approvals are explicitly modeled
around an approval pattern that consists of one or more
discrete steps; each step has a specific type of user assignment
and a completion policy that controls when an approval is
complete.

5. Submit a record to workflow. Any work items created for the task
element are directed to the appropriate queue. Users can access work
item forms in the AX 2012 client and review, accept, and take action
on work items in their queue.

For more information about setting up work item queues, see
“Configure work item queues” at http://msdn.microsoft.com/en-
us/library/gg731875.aspx.

Providers
Workflow in AX 2012 uses the provider model as a flexible way of
allowing application-specific code to be invoked for different purposes
when a workflow is executing. There are four provider types within the
workflow infrastructure: due date, participant, hierarchy, and queue. The

http://msdn.microsoft.com/en-us/library/gg731875.aspx

way in which provider metadata is stored has changed in this release. In
AX 2009, providers were developed as classes that implemented a
provider interface and were registered on the workflow element as a
property. Workflow providers in AX 2012 now have their own node in the
AOT (AOT\Workflow\Providers), as shown in Figure 8-4.

FIGURE 8-4 The new Workflow Providers node in the AOT.

In addition, each provider now has properties that are used to define the
following:

 Their organization scope (AssociationType)
 Whether the provider applies to all workflow types or specific types
(Workflow Types subnode)

For more information about workflow providers, including where they
are used, see “Workflow Providers Overview” at
http://msdn.microsoft.com/en-us/library/cc519521.aspx.

Workflows
The business process owner creates workflows by using the graphical
workflow editor (shown in Figure 8-5) in the AX 2012 client. The business
process owner first selects a workflow type and then configures the
approvals, tasks, and other elements that control the flow of activities
through the workflow.

http://msdn.microsoft.com/en-us/library/cc519521.aspx

FIGURE 8-5 The graphical workflow editor.

Workflows are located in the AX 2012 client. A list page containing the
workflows for a given module is located on the area page for the module
under Setup > [module name] workflows.

Workflow instances
A workflow instance is an activated workflow created by combining the
workflow and the underlying AOT workflow elements on which the
workflow is based (the workflow type, tasks, and approvals). Workflow
instances are located in the AX 2012 workflow runtime.

Work items
Work items are the actionable units of work that are created by the

workflow instance at run time. When a user interacts with a workflow, he
or she responds to a work item that has been generated from a task
element, an approval element, or a manual decision. Work items are
displayed in the Unified worklist web part and in the AX 2012 client.

Workflow architecture
Microsoft designed the workflow infrastructure based on a set of
assumptions and goals related to the functionality it wanted to deliver.
Two assumptions are the most significant:

 Business logic (X++ code) invoked by workflow is always executed
on the Application Object Server (AOS).

 Workflow orchestration is managed by WF in .NET Framework 4.0.
The first assumption reflects the fact that most business logic already

resides and is executed on the AOS. The second assumption is based on
the opportunity to use existing Microsoft technology for orchestrating
workflows in AX 2012 instead of designing and implementing this
functionality from scratch. In AX 2012, the WF framework was integrated
into the AOS.

The following primary goals influenced the architecture:
 Create an extensible, pluggable model for workflow integration
(including events and providers), because the workflow
infrastructure had to be flexible enough to address application-
specific requirements as they pertain to workflow execution.

 Build in scalability that accommodates the growth of workflow
usage in AX 2012 over time and provides options for scale up and
scale out.

 Minimize the performance impact on transactional X++ business
logic to invoke workflows. For example, if workflow activation is
triggered by saving a document, no adverse performance side effects
should result from doing this in the same physical transaction
(ttsbegin /ttscommit) as the save operation.

The next section expands on the capabilities of the workflow runtime in
AX 2012.

Workflow runtime
Figure 8-6 shows the components of the workflow runtime and their
interaction.

FIGURE 8-6 Workflow runtime.

The workflow runtime includes the following components:
 Workflow API An application programming interface (API) that
exposes the underlying workflow functionality to the rest of AX
2012.

 Workflow instance storage Tables that store the serialized
workflow instance data. Whenever the workflow goes idle waiting
for a user or a system action, the workflow instance is serialized and
saved to the database and removed from memory on the AOS.

 Workflow tracking Tables that store the tracking information for a
workflow instance. Tracking information is used to display historical
information of completed and pending workflow instances.

 Workflow message queue A table that stores the messages used for
communication between the .NET Framework 4.0 workflow instance
and the AX 2012 workflow runtime in X++. A message exchange is
required for any scenario where transactional X++ application logic
must execute as part of a workflow instance or when user action is
required.

 Application providers and event handlers Application code that is
invoked by the workflow instance.

 Workflow messaging batch job A server-bound batch job that is
dedicated to processing messages from the workflow message queue.
This batch job supports parallel processing of batch tasks to enable
both scaling up and scaling out for workflow processing. The batch

job runs in X++ compiled into .NET common intermediate language
(CIL).

 WF plus AX 2012 extensions The workflow framework provided
by .NET Framework 4.0 together with the AX 2012 custom
workflow activities, custom providers, and custom workflow host.

Workflow runtime interaction
Figure 8-7 shows the logical control flow the workflow runtime uses to
process a workflow activation message.

FIGURE 8-7 Logical workflow runtime control flow used to process a
workflow activation message.

The following sequence illustrates how these components interact at run
time by explaining what happens when a user clicks Submit to activate a
workflow on a record in AX 2012:

1. The Submit action invokes the Workflow API to post a workflow
activation message for the selected workflow. This causes a message
to be posted into the message queue.

2. The message is processed by the messaging batch job that calls the
workflow runtime in .NET Framework 4.0 to activate the workflow.

3. The Microsoft Dynamics AX extensions to .NET Framework 4.0
receive the request and first load the workflow model. The workflow
model is the structural representation of the workflow along with all
of the workflow and workflow element properties. This model was
created by using the AX 2012 graphical workflow editor.

4. From the workflow model, the .NET Framework 4.0 workflow
activity tree is built. These are the runtime workflow activities that
orchestrate the workflow. These activities are a combination of
custom AX 2012 activities and the primitive activities from .NET
Framework 4.0.

5. After the workflow reaches the first point where application logic
might need to run, a message is posted, the workflow instance state
is serialized and saved, and the workflow tracking data is updated.
The workflow started message is posted at this point.

6. After the workflow instance goes idle and is saved to the database,
the instance is removed from memory in the AOS to save physical
computer resources. The workflow instance is brought back into
memory after the workflow started message is processed and the
acknowledge workflow started message is posted and begins to be
processed.

Figure 8-8 shows the logical workflow runtime control flow to process a
workflow started message.

FIGURE 8-8 Processing a workflow started message.

The flow in Figure 8-8 builds on the flow in Figure 8-7. A workflow
started message is currently posted to the message queue and is ready for
processing as follows:

1. The workflow messaging batch job reads the workflow started
message from the message queue. This message was posted by the
workflow instance to allow application logic that was registered for
this event to be invoked.

2. The application event handler that was registered for the workflow
started event is invoked. This event handler runs the necessary X++
business logic to update the state of the underlying document.

3. An acknowledge workflow started message is posted and the
workflow started message is removed from the message queue.
Workflow tracking information is also logged at this point.

4. The workflow messaging batch job reads the acknowledge workflow
started message and calls the workflow runtime in .NET Framework

4.0 to resume the workflow instance.
5. AX 2012 extensions to .NET Framework 4.0 receive the request to

resume and then load the serialized workflow instance state from the
workflow instance storage. This action brings the workflow instance
back into memory on the AOS.

6. The workflow instance is placed back into the .NET Framework 4.0
workflow scheduler to be executed. The workflow then executes
until the next point that X++ application logic needs to be invoked or
until the workflow assigns work to users. Both of these represent
points in the workflow instance where the instance must wait for
either a system action (for example, processing the application event
handler) or a human action (for example, a user approving an
expense report).

Logical approval and task workflows
Another way to visualize how the key workflow concepts and architecture
come together is to look at the interaction patterns of approval and task
elements at run time. Four main types of interactions can occur: workflow
events, acknowledgments (of events), provider callbacks, and
infrastructure callbacks.

 Workflow event The workflow instance posts a message, saves the
workflow instance, inserts tracking information, and removes the
originating message. The workflow instance then waits for the
corresponding message to be processed. The workflow messaging
batch job processes the message by invoking the event handler on
the corresponding workflow type, task, approval, or automated task.
Then the workflow messaging batch job posts the acknowledgment
message.

 Acknowledgment An acknowledgment message is the response to
an event triggered from a workflow instance. Upon receiving the
acknowledgment, the workflow instance is loaded from workflow
instance storage back into memory and is resumed.

 Provider callback A call from the workflow instance to an
application-defined workflow provider (for example, to resolve users
for assignment or to calculate a due date). Workflow providers are
integration points for developers to inject custom code for resolving
users, due dates, user hierarchies, or queues. A provider callback is a
synchronous call from the workflow instance back into an X++
workflow provider.

 Infrastructure callback A call from the workflow instance back
into X++ to perform infrastructure-related activities. One example is
to create work items for each user that is returned from a call to a
participant provider.

Figure 8-9 shows the logical workflow interactions for approvals.

FIGURE 8-9 Logical approval workflow interactions.

In Figure 8-9, the outermost box represents the workflow itself. Nested
inside are the approval (element) and within that, a single step. (An
approval can contain multiple steps.) The smaller rectangular boxes
represent events or outcomes. The symbols in the legend represent the four

interaction types, which are positioned in Figure 8-9 where that type of
interaction occurs. When the workflow starts, an event and an
acknowledgment occur. Acknowledgments confirm that the workflow
runtime received and processed a preceding event. A similar event and
acknowledgment occur for the start of the approval element. When a step
starts, callbacks invoke the workflow providers to resolve the users for
assignment and the due dates for the corresponding work items. The work
items are then created through an infrastructure callback, and the workflow
instance waits for the corresponding acknowledgments from the work
items. Acknowledgments for work items are triggered when users take
action on their assigned work items. After the step (or steps) complete, the
outcome is determined based on the completion policies of the step, and
the corresponding event is raised for that outcome. The workflow instance
then waits for acknowledgment that the workflow runtime has processed
the event that is associated with the outcome. Finally, the completion of
the workflow itself raises an event.

Task interactions are similar to approvals, except that there are no steps,
and outcomes are unique for each task. Figure 8-10 shows the logical
workflow interactions for tasks.

FIGURE 8-10 Logical task workflow interactions.

Workflow life cycle
This section describes the workflow process improvement life cycle,
shown in Figure 8-11, and explains the implementation aspects of the life
cycle in detail.

FIGURE 8-11 The workflow life cycle in AX 2012.

The workflow life cycle has four phases:
 Design Business process owners use their understanding of the
organization to decide which parts of a business process that
traverses AX 2012 need to be automated and then design a workflow
to achieve this automation. They can collaborate with developers in
this phase, or they might just communicate the workflow
requirements to the developers.

 Implement and configure Developers implement workflow artifacts
in AX 2012 based on the design of the business process. Business
process owners then model the workflow by using the graphical
workflow editor. If this work is carried out on a test system, after
successfully testing the workflow, the system administrator deploys
the related artifacts and workflows to the live, or production, system.

 Run Users interact with AX 2012 as part of their day-to-day work,
and in the course of doing so, might submit workflow documents to
the workflow for processing, or interact with workflows that are
already activated.

 Analyze Business process owners evaluate the performance of the
workflows that have been designed, implemented, and executed by
using the workflow analytical cube and performance reports

introduced in AX 2012. They use this information to determine
whether any further changes are warranted.

This cycle is repeated when a workflow that has been designed,
implemented and configured, and deployed has to change in some way.
Aside from performance, a change might result from a change in the
business process or in the organization.

Implementing workflows
You can use the AX 2012 workflow infrastructure to automate aspects of a
business process that are part of a larger automation effort. There is no
single, correct approach to this undertaking. However, at a high level, you
can follow the steps listed here to figure out and understand your existing
business processes, determine how these business processes should
function, and finally, automate them by using workflows.

1. Map out existing business processes. This effort is often referred to
as developing the as-is model and might involve the use of a
business process modeling tool.

2. Analyze the as-is model to determine whether obvious
improvements can be made to existing processes. These
improvements are represented in another business process model,
which is often referred to as the to-be model.

3. Design the way in which you’re going to implement the to-be
business process model—or the changes to the as-is model suggested
by the to-be model. In this step, you might decide which parts of the
to-be business process should be automated with workflow and
which parts should remain manual.

4. For the parts of the business process model in which workflow is
going to be used—and for the parts you want to automate—define
the workflow document and then design one or more workflows.
This step centers on the workflow document that the workflow will
act on.

5. Implement the building blocks for the workflows, such as the
business logic, in the AX 2012 client, Enterprise Portal, or both.

6. Configure and enable the workflows, causing workflow instances to
be created when a record for the workflow document is submitted.

The major advantage of the workflow infrastructure in AX 2012 is that
it provides a significant amount of functionality out of the box, meaning
that you don’t have to write custom workflows. Businesses and

organizations have more time to focus on improving their processes
instead of writing and rewriting business logic.

Creating workflow artifacts, dependent artifacts, and
business logic
As a developer, after you understand the workflow requirements that the
business process owner provides, you must create the corresponding
workflow artifacts, dependent workflow artifacts, and business logic. You
create these in the AOT by using the AX 2012 client. You write the
business logic in X++.

Table 8-1 lists each workflow artifact and the steps you need to perform
when creating it. The artifacts are listed in order of dependency.

TABLE 8-1 Workflow artifacts.

Table 8-2 identifies the dependent workflow artifacts that are referenced

in Table 8-1.

TABLE 8-2 Dependent workflow artifacts.

Managing state
A state model defines a set of states and the transitions that are permitted
between the states for a given record type, along with an initial state and a

final state. State models exist to provide a prescriptive life cycle for the
data they are associated with. The current state value is often stored in a
field on a record. For example, the PurchReqTable table (the header for a
purchase requisition) has a status field that is used to track the approval
state of a purchase requisition. The business logic for purchase requisitions
is coded to respect the meaning of each state and the supported state
transitions so that a purchase requisition record can’t be converted into a
purchase order before the state is approved.

The simplest way to add and manage the state on a record is to use a
single field to store the current state, but you have to determine the
approach that makes the most sense. You would then create a static X++
class that implements the business logic that governs the state transition.
Conceptually, you can think of this class as a StateManager class. All
existing business logic that performs the state transitions should be
refactored to use this single, central class to perform the state transitions,
in effect isolating the state transition logic into a single class. From a
workflow perspective, state transitions always occur at either the
beginning or the conclusion of a workflow element. This is why all
workflow tasks and workflow approvals have EventHandlers that can be
used to invoke a StateManager class. Figure 8-12 shows the dependency
chain between an event handler and the workflow document state.

FIGURE 8-12 State management dependency chain.

When you decide to enable a workflow for a table in AX 2012 and
determine that the table has a state that must be managed, you must
refactor all business logic to respect the state model that you define to
avoid unpredictable results. Create operations should always create a
record with the initial state (for the state model). Update operations must
respect the current state and fail if the state isn’t as expected. For example,
it shouldn’t be possible to change the business justification of a purchase
requisition after it has been submitted for approval. Managing the state of
the record during each update so that the current state is verified and the
next logical state is updated is typically implemented in the update method

on the table by calling the StateManager class. If the update method
returns a value of true, perform the update. If not, throw an exception and
cancel the operation. Figure 8-13 shows a simple state model for a record.

FIGURE 8-13 A simple state model for approvals.

In Figure 8-13, the initial state is NotSubmitted. When a record is
submitted to workflow, the state changes to Submitted. After the workflow
is activated, the state becomes PendingApproval. If a workflow participant
selects the Request Change action, the state changes to ChangeRequested.
After all approvals are submitted, the final state is Approved.

Creating a workflow category
You use workflow categories to associate a workflow type with a module.
This association restricts the list of types that are shown when the business
process owner edits a workflow for a particular module, preventing a list
of all workflow types from being displayed. For example, if a user is in the
Accounts Payable module, the user sees only the workflow types that are
bound to Accounts Payable. The mechanism behind this grouping is a
simple metadata property on the workflow type called Workflow category.
This property allows you to select an element from the module enum
(AOT\Data Dictionary\Base enums\ModuleAxapta).

With this mechanism, it is easy for ISVs and partners who create their
own modules to extend the module enum and thus have workflow types
that can be associated with that module. Note that a workflow category can
be associated with only one module.

Creating the workflow document class
The purpose of a workflow is to automate all or part of a business process.
To do this, it must be possible to define various rules for the document that
is being processed by workflow. In AX 2012, these rules are called
conditions. A business process owner creates conditions when modeling
the workflow. For example, conditions can be used to determine whether a

purchase requisition is approved automatically (without any human
intervention). Figure 8-14 shows a simple condition defined in the
graphical workflow editor.

FIGURE 8-14 A simple condition defined in the graphical workflow editor.

When a business process owner defines a condition by using the
graphical workflow editor, he or she needs to make sure that users have a
way to select the fields from the workflow documents they want to use. On
the surface, this seems simple, but two requirements complicate the task.
First, not all the fields in a table might make sense to the business process
owner, and therefore only a subset of the fields should be exposed.
Second, it must be possible to use calculated fields (also called derived
data). The workflow document class meets these two requirements by
functioning as a thin wrapper around an AOT query that defines the
available fields and by providing a mechanism for defining calculated
fields.

The AOT query enables developers to define a subset of fields from one
or more related tables. By adding nested data sources in a query, you can

model complex data structures. However, the most common usage is to
model a header-line pattern. At design time, when the business process
owner is editing a workflow, the AOT query is used by the condition
editor to determine which fields to display to the business process owner.

The workflow infrastructure uses a prescriptive pattern to support
calculated fields by using parm methods that are defined within the
workflow document class. These methods must be prefixed with parm and
must implement a signature of (CompanyId, TableId, RecId). The
workflow infrastructure then, at run time, calls the parm method and uses
the return value in the condition evaluation. This design enables
developers to implement calculated fields in parm methods on the
workflow document class.

 Note

When the expression builder constructs the list of fields, it
uses the labels for the table fields as the display names for the
fields. The display name for a calculated field is defined by
the extended data type label of the return types. For enums,
this is defined by the enum element label.

Creating a workflow document class involves creating an X++ class that
extends WorkflowDocument. You must override the getQueryName
method to return the name of the workflow document query. Figure 8-15
shows a sample X++ class that extends WorkflowDocument.

FIGURE 8-15 A sample X++ class that extends the workflow document.

Creating a parm method involves adding a method to the workflow
document class and then adding X++ code to calculate or otherwise
determine the value to be returned, as shown in Figure 8-16.

FIGURE 8-16 A parm method within a workflow document class that returns
the approval amount (which is calculated).

Adding a workflow display menu item
Workflow display menu items enable users to navigate directly to the AX
2012 client form (or Enterprise Portal webpage) from which they can
select one of the available workflow actions. A user is prompted to
participate in a workflow when he or she receives a work item from the
workflow at run time. When viewing the work item, the user can click Go
To <Label>. This button is automatically mapped to the workflow display
menu item, and the button text (<Label>) is the label of the root table of
the workflow document query.

Using this design, developers can create task-based forms that are
focused on the current task rather than having to create monolithic forms
that assume the user knows where in the process he or she is acting and
which fields and buttons to use.

Activating the workflow
Workflows in AX 2012 are always explicitly activated; either a user does
something in the AX 2012 client or in Enterprise Portal that causes

workflow processing to start, or the execution of business logic starts a
workflow. (After you understand how users activate a workflow, you can
use this knowledge to activate workflows through business logic.)

For the first activation approach to work, the workflow infrastructure
must have a way to communicate information to the user about what to do.
For example, it might be relevant to instruct the user to submit the
purchase requisition for review and approval at the appropriate time. The
requirements to communicate with users throughout the workflow life
cycle gave Microsoft an opportunity to standardize the way users interact
with workflow in both the AX 2012 client and Enterprise Portal, including
activating a workflow, and this resulted in the development of workflow
common UI controls. The workflow common UI controls include the
yellow workflow message bar (highlighted in Figure 8-17) and the
workflow action button, labeled Submit.

FIGURE 8-17 A purchase requisition ready to be submitted to workflow for
processing.

The workflow common UI controls appear on the Purchase requisition
form because that form has been enabled for workflow. To enable

workflow in a form, you set the WorkflowEnabled property on the form to
Yes in the Properties window, which is shown in Figure 8-18. You must
also set the WorkflowDataSource property to one of the data sources on
the form. The selected data source must be the same as the root data source
that is used in the query referenced by the workflow document. Finally,
you can set the WorkflowType property to constrain the form to use a
specific workflow type.

FIGURE 8-18 Design properties for an AX 2012 form, including those for
workflow.

If workflow is enabled for a form, the workflow common controls
automatically appear in three cases:

 When the currently selected document can be submitted to workflow
(the canSubmitToWorkflow table or form method returns true)

 When the current user is the originator of a workflow that has acted
on the currently selected document

 When the current user has been assigned to a work item for which he
or she must take an action

The workflow common control uses the algorithm shown in Figure 8-19

to determine which workflow to use.

FIGURE 8-19 Workflow activation logic flowchart.

After a workflow has been identified, it’s easy for the workflow
common UI controls to obtain the SubmitToWorkflow action menu item.
This action menu item is then dynamically added to the form, along with
the yellow workflow message bar.

If you look at the SubmitToWorkflow action menu item for the
PurchReqApproval workflow type, you’ll notice that it is bound to the
PurchReqWorkflow class. When you click the Submit button, the action
menu items call the main method on the class it is bound to; thus, the code
that activates the workflow is called from the main method. In this case,
the call to the workflow activation API has been isolated within the submit
method.

In Figure 8-20, notice how the Workflow::activatefromWorkflowType
method is used. You can use two additional APIs to activate workflows:
Workflow::activatefromWorkflowConfiguration and
Workflow::activateFromWorkflowSequenceNumber.

FIGURE 8-20 The Submit method for the purchase requisition workflow.

For information about how to use these APIs, see the AX 2012
developer documentation on MSDN: http://msdn.microsoft.com/en-
us/library/cc586793.aspx.

Understanding how to activate a workflow is important, but it is equally
important to understand how to prevent a workflow from being activated.

http://msdn.microsoft.com/en-us/library/cc586793.aspx

For example, you don’t want a user to submit a record to a workflow
before the record is in a state to be submitted. An override method on the
table or form, canSubmitToWorkflow, addresses this requirement. The
canSubmitToWorkflow method returns a Boolean value. A value of true
indicates that the record can be submitted to workflow. When the
workflow data source on the form is initialized or when the record
changes, this method is called; if it returns true, the Submit button is
enabled. Typically, you should update the state of the document after
invoking the workflow activation API so that you can correctly denote
whether a document has been submitted to workflow. (In Figure 8-20, the
purchase requisition is transitioned to the In Review state.)

 Note

If the canSubmitToWorkflow method hasn’t been overridden
either at the table or form level, the workflow common UI
controls won’t appear, leaving a reserved space at the top of
the form usually occupied by the controls.

Chapter 9. Reporting in AX 2012

In this chapter
Introduction
Inside the AX 2012 reporting framework
Planning your reporting solution
Creating production reports
Creating charts for Enterprise Portal
Troubleshooting the reporting framework

Introduction
Reporting is critical for any organization because it is a primary way that
users gain visibility into the business. Reports help users understand how
to proceed in their day-to-day work, make more informed decisions,
analyze results, and finally take action. AX 2012 provides a variety of
reporting tools that developers can use to create appealing and useful
reports for both the AX 2012 Windows client and the AX 2012 Enterprise
Portal web client. AX 2012 and AX 2012 R2 have introduced some
important enhancements to the AX reporting framework.

Microsoft SQL Server Reporting Services (SSRS) was introduced in
AX 2009. In AX 2012, the SSRS reporting framework has become the
primary reporting engine. The SSRS platform provides customers with
access to an expanded pool of resources, including developers, partners,
and documentation, to support this standard industry solution.

 Note

AX 2012 continues to offer the MorphX platform as a fully
integrated solution and to allow customers enough time to
transition their existing reporting solutions to the SSRS
framework.

AX 2012 also offers enhanced integration with Microsoft Visual Studio
2010. New Visual Studio report templates are available for Microsoft
Dynamics AX, and you can use Visual Studio to create both auto-design
and precision-design reports more easily. The Enterprise Portal (EP) Chart
Control is a new chart data visualization tool introduced in the AX 2012

R2 release. This tool provides a high-performance alternative to SSRS
reports in Role Centers and other pages in Enterprise Portal. The EP Chart
Control is the recommended solution for interactive presentations for large
volumes of data in Enterprise Portal. This new utility is an extension of the
ASP.NET Chart Control and provides access to all of its underlying
functions, including 35 distinct chart types. The EP Chart Control provides
automatic element formatting to make charts look appealing and offers
declarative solutions for accessing AX 2012 data that is captured in both
online analytical processing (OLAP) and online transaction processing
(OLTP) databases, simplifying the developer experience.

This chapter focuses on using Visual Studio to create SSRS reports for
the AX 2012 client and charts for Enterprise Portal.

Inside the AX 2012 reporting framework
This section compares client-side and server-side reporting solutions and
provides insights into how the AX 2012 reporting framework offers
seamless integration that enables easy access to OLTP data and aggregated
data that is managed in SQL Server Analysis Services (SSAS). This
section also identifies the key components of the AX 2012 reporting
framework and describes their functions.

In the realm of reporting, there are two primary architectures to compare
when considering a solution: client-side and server-side. Briefly stated,
client-side reporting uses the power of the client to carry the bulk of the
load when reports are constructed. The MorphX reporting framework is an
example of a client-side reporting solution. For the most part, server
requests are made simply to access the data. Server-side reporting,
alternatively, uses various server resources to aid in the processing and
construction of a report. The AX 2012 reporting framework is a server-
side reporting solution. As you might expect, there are many trade-offs
between the two models. The next sections discuss some of the benefits
and limitations that are associated with each design.

Client-side reporting solutions
As mentioned earlier, the MorphX framework is a proprietary client-side
solution that is fully integrated into the Microsoft Dynamics AX integrated
development environment (IDE). In this model, reports contain references
to data sources that are bound to local AX 2012 tables and views. They
also define the business logic.

Figure 9-1 illustrates the architecture of a client-side reporting solution.

FIGURE 9-1 A client-side reporting solution.

The key benefits of a client-side reporting solution include the
following:

 Business logic is executed along with the design definition, allowing
for programmable sections in reports.

 No deployment is needed: you import the report, and it’s
immediately available to the client.

 X++ developers can use familiar tools to construct report designs.
Notable disadvantages of a client-side reporting solution include the

following:
 Client components must be installed for a user to be able to view a
report.

 Users outside the domain (outside the network boundary shown in
Figure 9-1) must connect to an AX 2012 client through Remote
Desktop Connection (RDC) to access reports.

 Access is limited to the data that is accessible from the client.
 Components such as business logic, parameter management, and
designs cannot be shared across reporting solutions.

Server-side reporting solutions
SSRS, the primary reporting platform for AX 2012, is a server-side
reporting solution. This framework takes advantage of an industry solution

that offers comprehensive reporting functionality for a variety of data
sources. This platform includes a complete set of tools that you can use to
create, manage, and deliver reports. With SSRS, you can create interactive,
tabular, graphical, or free-form reports from relational, multidimensional,
or XML-based data sources.

Figure 9-2 illustrates the architecture of a generic server-side reporting
solution.

FIGURE 9-2 A server-side reporting solution.

The key benefits of a server-side reporting solution are as follows:
 It provides access to external data sources, including SSAS and web
services.

 It supports reporting in thin clients, with no additional client
components required. Users outside the domain (shown as the
network boundary in Figure 9-2) can connect to Enterprise Portal to
access reports, instead of having to connect remotely to the AX 2012
client, as in a client-side reporting solution.

 The workload for report rendering is performed on the server.
 Design caching improves the overall performance of report
generation.

The key limitations of a server-side reporting solution are as follows:

 The lack of a direct connection to local printers affects some scaling
scenarios.

 Report modifications must be deployed before they can be accessed
by the client.

 It requires additional server management for system administrators.

Report execution sequence
Figure 9-3 illustrates the architecture of the AX 2012 reporting framework.

FIGURE 9-3 The AX 2012 reporting framework.

The following list corresponds to the numbered items in Figure 9-3:
1. Menu item An entry point into the report execution sequence. Menu

items contain predefined hyperlinks that are used to instantiate and
execute reports. Configuration keys can be linked to menu items to
manage user access.

2. Report definition (.rdl file) An XML representation of an SSRS
report definition, containing both the data retrieval and design layout
information for a given report.

3. Application Object Server (AOS) The core of the Microsoft
Dynamics AX server platform. The query web service is used to
access OLTP data.

4. Customization extension Design customizations are applied to
produce a personalized view of the report.

5. Report viewer The report is rendered for the user in the client.

Planning your reporting solution
Applying a well-thought-out design will greatly simplify the development
process and ongoing task of maintaining your report. This requires
planning based on your unique set of report requirements.

Reporting and users
You can create two types of reports in AX 2012: production reports, which
present data that is predefined, and ad hoc reports, which present data that
is selected by users. When planning out your reporting solution, ask
yourself the following questions:

 Who are the users of the report, and what are their roles within the
business?

 What information do the users need to complete their tasks?
 How do the users want to respond to the information that is
presented?

You can categorize reporting functions on two axes: data depth and
business activity. As shown in Figure 9-4, the roles that users play in an
organization and their unique reporting requirements fall at one point (or
perhaps several points) on these axes.

FIGURE 9-4 An illustration of how users in various business roles work with
different views of business data that require different kinds of reports.

Here are some details about the reporting needs of the roles shown in
Figure 9-4:

 The CEO, who is interested in monitoring the health of the business,
periodically uses strategic reports that provide summarized views of
data across time periods.

 The analyst examines the business, looking for patterns that might
lead to a change in business plans and priorities. Analysts rely on
reports that allow the data to be interactive so that data can be sliced

by department or region. They also value visuals that simplify the
process of detecting patterns and trends that might feed into the
CEO’s decisions.

 The shop floor worker is primarily concerned with the day-to-day
activities of the business and uses reports that reflect the immediate
needs of his or her area. An inventory list is a simple type of report
that the shop floor worker finds great value in.

Roles in report development
The role of report developer can literally be split into two distinct
functions:

 Constructing the report dataset This task consists of identifying all
data elements that are either visualized in the report dataset or used
to support user interactions. This task is well suited to developers
who are familiar with the MorphX development environment and the
structure of the customer’s business data.

 Defining the report design Authoring report designs requires
familiarity with the report design experience provided by Visual
Studio 2010.

Dividing these tasks among more than one individual is ideal because it
encourages a clear separation between the business logic and the
presentation layer.

Figure 9-5 provides a high-level view of the report development
process.

FIGURE 9-5 The report development process.

Traditionally, reports are developed in a contained environment that is
shared by a team of developers. When the developer feels that the solution
satisfies the reporting requirements, he or she uses the Visual Studio tools
to publish the report in the Dev, or development environment, for
verification from within the client. When the developer is satisfied, the
reporting project is packaged as a model or project and moved into the
Test environment. This is where the new report is put to the test in a
simulated production environment, to ensure that both the functionality
and performance are sound. Finally, the report is published to the Prod, or
production environment, so that it is accessible to the designated set of
users.

To learn more about creating a report for AX 2012 by using Visual
Studio 2010, see the detailed step-by-step instructions in the reports
section of the AX 2012 SDK at http://msdn.microsoft.com/en-
us/library/cc557922.aspx. These topics have comprehensive descriptions
for all the core scenarios that report developers are likely to encounter.

Creating production reports
You use Visual Studio 2010 to create and modify AX 2012 SSRS reports.
In AX 2012, the report development tools have been augmented to offer a
fully integrated experience. These tools provide report designers the
benefit of working with the familiar Visual Studio 2010 IDE and the
ability to use the rich reporting features in SSRS.

The AX 2012 report development tools offer a model-based approach
for creating reports that is based on fully customizable templates that
define the layout and format of the reports.

The AX 2012 reporting development tools consist of a modeling tool,
Model Editor, that you can use to visualize the report elements as you
develop a report. The reports that you create are stored in the Report
Definition Language (RDL) format specified by SSRS. By using this
widely adopted format, you can take advantage of the many features (for
example, charting, interactivity, and access to multiple data sources) that
make SSRS a popular choice for production reports. You can store,
deploy, manage, and process reports on the report server by using the
integrated Visual Studio report development tools.

The AX 2012 reporting tools also include a new Visual Studio project
template called Microsoft Dynamics AX Reporting Project. This new
project type simplifies the process of creating SSRS reports that bind to
data in AX 2012.

http://msdn.microsoft.com/en-us/library/cc557922.aspx

The Dynamics AX Reporting Project template has the following
features:

 It allows a report to retrieve AX 2012 data from the AOS by using
either an AX query or a Report Data Provider object.

 It defines the report parameters and layout of the controls.
 It uses references to AX 2012 labels to produce localized strings
based on the user’s current AX 2012 language.

 It allows SSRS reports to be created and modified in the Application
Object Tree (AOT).

 It can be used to deploy report customizations to the report server.

Model elements for reports
Three basic components make up any SSRS report: the controls, the design
definition, and the data:

 The controls, often referred to as the parameters or inputs, can be
either provided by the user or derived from the context of the
session. For example, the reporting framework automatically selects
the language for a report based on the user’s settings in AX 2012.
Controls are used to select the design, alter the format and layout of
the report, and influence the dataset that is ultimately rendered in the
report.

 The design of the report contains a collection of elements, such as
text boxes, tables, matrices, and charts, that define the look and feel
of the report. You construct the report design by using an augmented
Visual Studio 2010 Report Designer experience.

 The data to be displayed in a report can be derived from a number of
sources, including the AX 2012 OLTP database, SSAS, external
databases, .NET service providers, and XML data files. Datasets are
used to establish data connections to various sources, and they can be
used interchangeably by one or more report designs.

Figure 9-6 illustrates an example of a Report model in Visual Studio
2010, showing the three components of an SSRS report. The following
sections describe each component in more detail.

FIGURE 9-6 A Report model in Visual Studio.

Controls
Controls are used to filter the data that is displayed in a report, connect
related reports, and control report presentation. For example, you can write
an expression to change the font based on a parameter that is passed to the
report. Design parameters can be directly bound to dataset controls or used
in run-time evaluations that affect the report design. You use Model Editor
to define the grouping and order of report parameters when a scenario is
complex; for example, if you want to use multiple nested groups. The
order in which the report parameters are listed in a group is the order in
which they are displayed on the report. Having the grouping and order
reflected in Model Editor makes defining the report easier. For more
information, see “How to: Group and Order Report Parameters by Using
Visual Studio” at http://msdn.microsoft.com/EN-US/library/gg731925.

Designs
A report design represents the layout of a report. A report can have
multiple designs that share datasets and parameters. This is appropriate in
scenarios where you have similar reports based on the same dataset. You
can create the following types of report designs:

 Auto design A report design that is generated automatically based
on the report data. You create an auto design report by using Model

http://msdn.microsoft.com/EN-US/library/gg731925

Editor. The auto design functionality provides an efficient way to
create the most common types of reports, such as a customer list or a
list of inventory items. An auto design layout consists of a header, a
body that contains one or more data regions, and a footer, as shown
in Figure 9-7.

FIGURE 9-7 Auto design report layout.

You control the content that is displayed in each area in an auto
design. For example, you can include a report title and the date in the
header and display the page number in the footer, or you might not
want to display anything in the header and footer.
The data regions that are displayed in an auto design depend on the
datasets that you created when you defined the data for the report.
When you define a dataset, you can specify the type of data region
that will be used to render the data whenever the dataset is used in an
auto design. Data can be displayed in table, list, matrix, or chart
format. One way to create an auto design is to drag a dataset onto the
node for the auto design in the model.

 Precision design A report design that you create by using SQL
Server Report Designer. Precision designs are typically used when a
report requires a precise layout, as is the case for invoices or bank

checks. With SQL Server Report Designer, you can drag fields onto
a report and put them where you want them. A precision design is
free-form. Therefore, the format of a precision design can vary,
depending on the layout that is required.

Datasets
A report dataset identifies the data that is displayed in a report. Dataset
elements contain the information used to bind to a data source. After you
define a dataset, you can reference the dataset when setting the Dataset
property for a data region in the report design. If your report uses the
predefined AX 2012 data source and a query that is defined in the AOT, be
especially careful when updating the query in the AOT. For example, if
you remove a field in the query and the field appears in the report, the
report will display an empty column for the field. Whenever you make
updates to a query, be sure to consider how those updates affect your
reports. Updates to a query might also require updates to your reports.

The SSRS reporting framework supports six types of data connections:
 AX 2012 queries Access OLTP data by using a modeled collection
of field data and table display methods. AX 2012 query objects
defined in the AOT are used to define the data source, including the
fields that are returned, record ranges, and relations to child data
sources.

 Report data providers (RDPs) Access datasets derived from X++
business logic. An RDP data source is appropriate in cases where the
following conditions are met:
• You cannot query directly for the data that you want to render on a

report.
• The data to be processed and displayed is accessible from within

AX 2012.
 Pre-processed RDPs Pre-process data so that processing logic is
invoked before a call is made to SSRS. Use a pre-processed RDP for
reports that time out. For more information, see “Tips to help prevent
long-running reports from timing out” at
http://go.microsoft.com/fwlink/?LinkID=392433.

 SSAS OLAP queries Access preaggregated views of AX 2012
business data. AX 2012 includes more than 10 predefined cubes. Use
an OLAP data source to access preaggregated business data. For
more information about cubes, see Chapter 10, “BI and analytics.”

http://go.microsoft.com/fwlink/?LinkID=392433

 Transact-SQL (T-SQL) queries Access data from external
databases. With T-SQL–based connections, you can access data from
external SQL Server databases and use it within the report.

 Internet services queries Use data methods to access the data feeds
provided by Internet service providers. For example, you can access
industry-related data to compare the health of your business against
the competition.

You have the option of relying on a single data source, or you can
combine data derived from multiple data sources to produce the report
dataset. Identifying the best fit to satisfy your data access requirements
greatly simplifies the design and development experience, and improves
the functionality and performance of the report.

SSRS extensions
The AX 2012 reporting framework takes advantage of several custom
extensions supported by the SSRS platform to provide a fully integrated
reporting experience that automatically adheres to security access rights
and data formatting standards. This section provides some insights into
how the reporting extensions function in the reporting framework.

Figure 9-8 illustrates the standard report execution sequence without
AX 2012 custom extensions. (Figure 9-11, later in this chapter, illustrates
the report execution sequence with AX 2012 custom extensions.)

FIGURE 9-8 Standard report execution sequence.

AX 2012 extensions
The Microsoft Dynamics AX Report Definition Customization Extension
(RDCE) is a reporting framework component introduced in AX 2012. It is
internal to the reporting framework and is not directly accessible outside

the framework. This component enables the reporting framework to
provide run-time design alterations based on AX 2012 metadata and
security policies. Dynamic transformation of RDL is needed for the
following set of actions:

 Hiding columns in reports if a user does not have access to those
columns

 Reacting to metadata changes in AX 2012
 Using AX 2012 labels in reports
 Automatically flipping designs for AX 2012 languages such as
Arabic and Hebrew, which require right-to-left (RTL) layouts

A typical reason for hiding a column is security. In AX 2009, if a user
didn’t have access to a column, the data was not presented in the report,
but the column still appeared in the report (see Figure 9-9). This behavior
is inconsistent with the former MorphX reporting framework and does not
provide the ideal user experience.

FIGURE 9-9 AX 2009 user experience for SSRS reports.

In contrast, AX 2012 goes a step further and completely removes the
column from the report design (see Figure 9-10). This is accomplished by
means of the rendering extensions supplied by the reporting framework.

FIGURE 9-10 AX 2012 user experience for reports.

A number of features in AX 2012 require transformation of the RDL as
part of the run-time processing. Conceptually, they are broken apart into
separate RDL transformations; however, their implementation might be
organized differently than the units shown in Table 9-1.

TABLE 9-1 RDL transformations.

Disabling the rendering extensions
Many reporting scenarios do not rely on run-time design alterations based
on user context information; instead, they require fast performance
because of their scale. This is the case for most document-based reports,
such as those listing customer and vendor invoices, purchase packing slips,
and checks. Although the overhead of dynamic formatting of report
designs is barely noticeable in an interactive session, it might become an
issue in bulk operations where a large number of reports are requested as
part of a batch operation. The reporting framework includes a control in
the Report Deployment Settings form (Tools > Business Intelligence Tools
> Report Deployment Settings) that disables the custom rendering
extensions for specific report designs. This setting is highly recommended

for any large-scale transactional reports that run in batch operations and
don’t require run-time design alterations.

If you select the Use Static Report Design check box in the Report
Deployment Settings form, AX 2012 produces language-specific versions
of the report design with labels and column sets fully resolved. This occurs
the next time that the report is deployed to the report server. These reports
are called static RDL reports. The reporting framework automatically uses
the design that is appropriate given the context of the user running the
report. However, no additional design alterations are performed when the
report is invoked by the user. To make the report dynamic again, clear the
Use Static Report Design check box or delete the entry in the Report
Deployment Settings form.

Data processing extensions
Data processing extensions are used to query a data source and return a
flattened row set. SSRS uses different extensions to interact with different
types of data sources. A data source is simply the source of data for one or
more reports. Data sources might be bound to AX 2012 or external
databases, depending on the unique requirements of your reporting
solution. Furthermore, you can display and interact with information from
multiple data sources in a single report. Table 9-2 lists the types of data
sources supported by the reporting framework.

TABLE 9-2 The types of data sources supported by the reporting framework.

Report execution sequence with AX 2012 custom extensions
The custom AX 2012 reporting extensions let you use a static design
definition to produce dynamic reporting solutions that react to changes to
AX 2012 metadata and user access rights. Figure 9-11 illustrates the report
execution sequence with the AX 2012 custom extensions in place.

FIGURE 9-11 Report execution sequence with AX 2012 custom extensions.

Creating charts for Enterprise Portal
This section discusses charting controls in Enterprise Portal and describes
how they work. Charts provide a summary view of your data. With large
datasets, charts often become obscured or unreadable. Missing or null data
points, data types ill-suited to charts, and advanced applications such as
combining charts with tables can all affect the readability of a chart.
Before designing a chart, carefully prepare and understand your data and
functional requirements so that you can design your charts quickly and
efficiently.

Figure 9-12 shows some key elements that are used in a chart.

FIGURE 9-12 Chart elements.

AX 2012 chart development tools
The AX 2012 chart development tools simplify the development
experience, making visualizing data easier through the EP Chart Control.

This .NET chart control is installed during setup, and the reporting
framework handles all the work to gain access to it. You have access to all
the functions and event handlers provided by the ASP.NET chart control to
produce interactive graphical data visualizations. The reporting framework
extensions also provide the following features:

 Access to OLAP data sources by means of a multidimensional
expressions (MDX) editor

 Access to OLTP data by means of a data source provider picker
 Built-in awareness of data partition integrations
 AX 2012 security access rights and policies
 Data formatting based on the AX 2012 EDT definitions

Integration with AX 2012
The definitions for chart controls are maintained in the AOT, and in a
distributed development environment, you can share them as .xpo files.
They are available in the list of AX 2012 user controls in Enterprise Portal
as soon as you save them in the AOT. EP Chart Controls are maintained in
the AOT along with other types of Microsoft Dynamics AX user controls
and can be deployed directly from the Development Workspace.

Figure 9-13 illustrates how chart controls are managed in the AOT.

FIGURE 9-13 An EP Chart Control in the AOT.

Creating an EP Chart Control
The AX 2012 development tools offer a new item template for Visual
Studio called EP Chart Control (see Figure 9-14) to help get you started.
This template contains all the required namespace definitions and the basic
structure of a web control containing a single instance of the EP Chart
Control.

FIGURE 9-14 Adding an EP Chart Control.

The template adds an EP Chart Control to a project. The EP Chart Control
has an empty chart area and series that are predefined. Pressing F5 starts
the http://localhost script that you can use to debug your application.
However, nothing is displayed when you run your application because the
series does not contain any data yet.

 Note

If you encounter the “Server Error in ‘/’ Application” error,
see the discussion about troubleshooting Microsoft SharePoint
sandbox issues in the “Troubleshooting the reporting
framework” section later in this chapter.

Chart control markup elements
The standard ASP.NET chart control is represented in ASPX markup code
by the <asp:Chart> element. In Visual Studio, the markup for the EP
Chart Control includes two additional controls:
<dynamics:AxChartDatasource> and <dynamics:AxChartBehavior>.
You use these three elements in concert to define the appearance and
functions of the EP Chart Control and manage the connection information
to the underlying data source.

 <asp:Chart> Maps to the ASP.NET chart control that is available as

a download for Microsoft .NET Framework 3.5 and included with
.NET Framework 4.0. This element is used to define the general
structure of the control. For more information, see “Chart Controls”
at http://msdn.microsoft.com/en-us/library/dd456632.

 <dynamics:AxChartDatasource> Contains the data source
connection type, along with the query that is used to access the data.
This element is also where access parameters are defined to construct
the query, if required. You can access the Visual Studio tools for
defining data connections to AX 2012 data through the web control
designer for this element.

 <dynamics:AxChartBehavior> Supplies default formatting for chart
controls. You can use this element to define custom color palettes for
your chart solutions or to disable the reporting framework’s default
formatting engine. You also use this element to define the structure
of static and dynamic datasets by means of element properties.

Figure 9-15 contains a screenshot of the EP Chart Control in Design
mode.

http://msdn.microsoft.com/en-us/library/dd456632

FIGURE 9-15 EP Chart Control in Design mode.

Binding the chart control to the dataset
The first task in creating a chart control is to bind the chart control to the
dataset. The Visual Studio development environment has been extended to
include tools to simplify the process of binding to AX 2012 data. Two
categories of data sources are derived from AX 2012:

 OLTP data sources Data that is managed in the AOS exposed
through the AX Query Service interface. Declarative connections to
Report Data Providers are made available by using a data source
picker control.

 OLAP data sources Aggregate data managed by the AX 2012
analytics framework. The Visual Studio extensions offer an MDX
editor to help you create queries to access data stored in an SSAS
database.

Data series
This section summarizes basic data binding strategies that you can use
when visualizing data with charts. The EP Chart Control supports three
basic data binding scenarios: single series datasets, multiseries datasets,
and dynamic series datasets.

Single series datasets
In a single series dataset, the source data for the chart can be described by
using only two columns, as shown in Figure 9-16. A single series dataset is
most commonly used when figures have a single pivot—for example,
trending over time or distribution across segments. Stock performance
over time is an example of when only two columns are required. Pie
charts, bar charts, column charts, and funnel charts are commonly used to
visualize single series datasets.

FIGURE 9-16 Chart from a single series dataset.

Multiseries datasets
Multiseries datasets require at least three columns, as shown in Figure 9-
17. Individual series elements are bound to a set of columns defined by the
dataset. With this type of dataset, you can compare figures by two pivots
so that users can perform a relative analysis by comparing related data. Bar
charts and column charts, along with many others, are suitable for
analyzing multiseries datasets. However, pie charts and funnel charts are
not appropriate for visualizing multiseries datasets.

FIGURE 9-17 Chart from a multiseries dataset.

Dynamic series datasets

Often, the number of series is defined within the dataset itself. These
datasets are referred to as dynamic series datasets and can be described by
using three or more columns, as shown in Figure 9-18. The biggest
differentiator between a dynamic series dataset and a multiseries dataset is
the inclusion of a column that identifies the unique series. Dynamic series
datasets are appropriate in cases where the number of series is determined
by the user or by attributes that are related to the data source. Dynamic
series datasets can be viewed by using the same types of charts as
multiseries datasets.

FIGURE 9-18 Chart from a dynamic series dataset.

For more information about how to choose the right type of chart for
your data, see “Chart Types (Report Builder and SSRS)” at
http://msdn.microsoft.com/en-us/library/dd220461(v=sql.110).aspx.

Adding interactive functions to a chart
Each series in a chart consists of a set of data points, which, for most chart
types, is made up of two key attributes: x and y values. Collectively, the
control uses these data points to render the data series in a method that is
consistent with the type of chart you select. In addition to x and y values,
data points can contain additional information, including drill-through
URLs, tooltip text, and data point labels. As you would expect, when a
data point contains a definition for a drill-through URL, the data point

http://msdn.microsoft.com/en-us/library/dd220461(v=sql.110).aspx

becomes clickable in the chart image. When the user clicks the data point,
that user is taken to the specified URL. Defining tooltip text for a data
point automatically produces a tooltip containing the text when the user
points to the data point in the chart. You can extend the original dataset by
using a post-processing event handler to include additional data-point
information that drives the interactive experience provided by the chart.

Follow these basic steps to expand the chart dataset to include
interactive functions:

1. Access the data that you want to appear in the chart.
2. Add post-processing code that expands the schema of the underlying

data table.
3. Format the data columns based on their intended use.
4. Bind newly created columns to the chart properties that control the

interactive functions of the control when it is rendered for the user.
Figure 9-19 illustrates the sequence for expanding the dataset to add

columns that are formatted for interactive use.

FIGURE 9-19 Expanding a dataset to create an interactive chart.

Overriding the default chart format
The reporting framework applies some default formatting to the most
common types of controls. Default formatting is applied for three main
reasons:

 To promote consistency among charts that are displayed in
Enterprise Portal

 To simplify the development experience
 To ensure that charts are visually compelling to users

At times, however, you might want to apply formatting that differs from
defaults. You can override the default design formatting by using control
event handlers.

It is recommended that you customize the EP Chart Control in response

to the PreRender event. This is where you define code executed at run
time to manage the format of the EP Chart Control. Customizations can
include dynamic color palettes, custom label positioning, and text
formatting.

Figure 9-20 shows the basic steps involved in adding code to override
the default formatting.

FIGURE 9-20 Overriding default chart formatting.

For more information about events, see “ASP.Net Page Life Cycle
Overview” at http://msdn.microsoft.com/en-us/library/ms178472.aspx.

Troubleshooting the reporting framework
This section contains some of the most common reporting framework
issues and possible solu-tions. You can find related information posted on
the Microsoft Dynamics AX Product Forum at
https://community.dynamics.com/product/ax/f/33.aspx.

The report server cannot be validated
If you cannot validate the report server, do the following:

 Click the Create button in the Reporting Servers form, which is
located at Tools > Business Intelligence Tools > Reporting Servers,

http://msdn.microsoft.com/en-us/library/ms178472.aspx
https://community.dynamics.com/product/ax/f/33.aspx

and make sure that a report folder and data source have been created
on the report server. Click the Validate button.

 Ensure that firewall settings are configured appropriately on the
computer that is running the report server.

 Ensure that both Report Manager and the report server URLs are
correct.

 Ensure that the AX 2012 user has permissions on the computer that
is running the report server.

A report cannot be generated
If you are connecting to the AX 2012 SQL Server database and the system
will not generate a report, do the following:

 Ensure that the report server account configured in the report data
source on the report server has read permissions on the database.

 Ensure that firewall settings are configured appropriately on the
computer on which the database is installed.

If you are connecting to an external or custom data source, make sure
that the user name and password provided for the report server account in
the data source on the report server are correct.

A chart cannot be debugged because of SharePoint sandbox
issues
If you cannot debug a chart because of problems with the SharePoint
sandbox, do the following:

 Add a reference to the Microsoft.SharePoint.dll assembly to the
project.

 Establish the default web control to run in debug mode.
 Edit the file named Default.aspx in the EP Chart project.
 Add the ManagedContentItem property to the
<dynamics:AxUserControlWebPart> element, and set the value to
the name of the web control.

A report times out
If a report times out, do the following:

 If the report uses an RDP to retrieve data, modify the report to use a
pre-processed RDP class as the data source so that processing logic
is invoked before a call is made to SSRS. For more information, see

“Tips to help prevent long-running reports from timing out” at
http://go.microsoft.com/fwlink/?LinkID=392433.

 Consider using batch processing to schedule reports to run during
nonpeak hours. For more information about the batch framework,
see Chapter 18, “Automating tasks and document distribution.”

http://go.microsoft.com/fwlink/?LinkID=392433

Chapter 10. BI and analytics

In this chapter
Introduction
Components of the AX 2012 BI solution
Implementing the AX 2012 BI solution
Customizing the AX 2012 BI solution
Creating cubes
Displaying analytic content in Role Centers

Introduction
Business intelligence (BI) technology helps users of computer-based
applications understand hidden trends and exceptions within data.
Nowadays, it’s difficult to find a developer who is unaware of BI, so this
chapter assumes that you are familiar with BI concepts.

AX 2012 includes a comprehensive prebuilt BI solution, which is
designed to meet many of the BI needs of your users. This means that
instead of having to build a BI solution from the ground up, you might be
able to use the prebuilt solution and tweak it to meet any remaining
requirements. With this proposition in mind, this chapter walks you
through the life cycle of the AX 2012 analytic components—from
implementation through customization and extension. When necessary,
this chapter points you to relevant resources on the Internet.

The AX 2012 BI solution is built on top of the Microsoft BI framework.
If your organization uses the Microsoft BI infrastructure, you can use the
Microsoft BI tools and technologies to extend the power of the AX 2012
BI solution.

Components of the AX 2012 BI solution
Figure 10-1 shows a simplified architecture diagram of the BI solution that
is included with AX 2012. In the figure, the AX 2012 logical architecture
has been simplified to highlight only the components that are relevant to
the BI solution.

FIGURE 10-1 AX 2012 BI architecture.

The solution is divided into three tiers:
 Data tier Contains sources of data, such as the AX 2012 operational
database, often referred to as the online transaction processing
(OLTP) database.

 Integration tier Contains the Application Object Server (AOS),
programming interfaces, and staged data, such as AX 2012 cubes,
that serve as the database for analytical reporting. (This tier is called
the middle tier in Chapter 1, “Architectural overview.” It is called
the integration tier in this chapter because that is how it is commonly
known in BI solutions.)

 Presentation tier Contains tools and user interface elements that
users can use to interact with data.

For details about the three tiers and a more detailed diagram, see
Chapter 1.

Implementing the AX 2012 BI solution
Traditionally, BI solutions are implemented during the second or third
phase of an enterprise resource planning (ERP) implementation project.
During the course of a long implementation, project fatigue can set in (and
the budget can get exhausted), and subsequent phases are postponed or
delayed. BI implementation is complex and involves the integration of
many components. Also, the skill set required to implement a BI solution
is distinctly different from the skill set required to implement an ERP
system. Often, implementation of the BI solution involves engaging a
different partner or consultants. All of these factors contribute to
postponing the BI implementation.

AX 2012 simplifies the implementation of a BI solution, so that all AX
2012 partners and customers (regardless of whether they have access to BI
specialists) can implement the AX 2012 BI solution when they implement
the ERP functionality.

Although the AX 2012 BI solution might not fulfill all of an
organization’s business requirements, users can adopt the solution as they
become comfortable with AX 2012. To make it as easy as possible for
users and IT professionals to tailor the AX 2012 BI solution to meet
business requirements, the solution can be configured and extended by
using the AX 2012 development environment or the Microsoft BI tools.

In AX 2012, the default Microsoft SQL Server Analysis Services
(SSAS) project is a first-class citizen of the Application Object Tree
(AOT), as are other SSAS projects that you create in the AOT. This means
that SSAS projects derive all of the benefits of being residents of the AOT:

 SSAS projects respect the layering concept. This means that an
independent software vendor (ISV) or partner can distribute a
customized version of an SSAS project that adds additional analytic
components to the solution that is included in the SYS layer.

 You can import and export SSAS projects to and from different
environments as part of a model (by using models or .xpo files).

 SSAS projects respect the version control capabilities offered by
AOT-based artifacts.

When you deploy a project by using the SQL Server Analysis Services
Project Wizard, which was introduced in AX 2012, the wizard selects the
project in the highest layer for deployment. If you examine the Visual
Studio Projects node in the AOT, you will see the default SSAS project
that is included with AX 2012, as shown in Figure 10-2. If you have any
customizations at higher levels, they are also displayed.

FIGURE 10-2 SSAS projects in the AOT.

Implementing the prebuilt BI solution consists of the following steps:
1. Implementing the prerequisites
2. Configuring an SSAS server
3. Deploying the cubes
4. Processing the cubes
5. Provisioning users so that they can access the analytic data

The following sections describe each step in further detail.

Implementing the prerequisites
Before you implement the analytic components in the prebuilt BI solution,
the following AX 2012 core components should be in place:

 At least one AOS instance must be implemented.
 The AX 2012 Windows client must be implemented, and the
initialization checklist must be completed.

 The Enterprise Portal web client must be configured.
If you are implementing the analytic components on a development or

test instance, you might not implement a scale-out architecture. However,
if you are implementing these components in a production system, you
might want to implement a redundancy or load-balancing infrastructure.
You need to configure the clustering or Network Load Balancing (NLB)
solution before you implement the analytic components.

Configuring an SSAS server
In this step, you configure your SSAS server for the AX 2012 analytic
components. To do so, run the Configure Analysis Extensions step in the
Microsoft Dynamics AX Setup Wizard on the SSAS server that will host
the AX 2012 cubes.

Running the configuration step should take you a few minutes. This
function does the following:

 Ensures that the SSAS server has all of the necessary prerequisites to
host the cubes.

 Adds the Business Connector (BC) proxy user as an administrator of
the SSAS server. This step is required to enable AXADOMD data
extensions to operate without the use of Kerberos constrained
delegation.

 Allows you to add a read-only user account to the AX 2012 database
for processing cubes. (Specify a domain account whose password
does not expire.)

Deploying cubes
When you deploy cubes, AX 2012 generates and processes an online
analytical processing (OLAP) database by using the metadata definition in
the SSAS project that is included with AX 2012. The result is an OLAP
database that contains AX 2012 cubes that are referenced by analytic
reports and Role Centers.

In an AX 2012 R2 or AX 2012 R3 environment where there is only a
single partition, the deployment step generates a single OLAP database
that sources data from the AX 2012 OLTP database. In a multi-partition
environment, the deployment step generates multiple OLAP databases that
correspond to each partition. Figure 10-3 shows the deployment process
both in a single-partition and multi-partition environment. For more
information about partitions, see Chapter 17, “The database layer.”

FIGURE 10-3 Deploying cubes in single-partition and multiple-partition
environments.

You use the SQL Server Analysis Services Project Wizard in the AX
2012 client to deploy, process, and in some instances, update cubes. To
deploy the cubes, you must have the right to deploy projects to the SSAS
server. If you are also processing the cubes, you must have the right to
read the AX 2012 OLTP database.

To start the SQL Server Analysis Services Project Wizard and deploy
cubes, do the following:

1. In the Development Workspace, on the Tools menu, click Business
Intelligence (BI) Tools > SQL Server Analysis Services Project
Wizard.

2. On the Welcome page, click Next, and then select the Deploy option
on the next page, as shown in Figure 10-4.

FIGURE 10-4 The Deploy option in the SQL Server Analysis Services
Project Wizard.

3. On the next page, you select an SSAS project to deploy—in this
case, the Dynamics AX project. You can select a project in the AOT,
as shown in Figure 10-5, or you can select a project that is saved on a
disk.

FIGURE 10-5 Selecting an SSAS project.

4. Next, you specify the SSAS server to deploy the project to, the
SSAS database you want to use, and whether you want the project to
be processed after deployment (see Figure 10-6). By default, the
wizard uses the SSAS server that you configured earlier, but you can
select any server to deploy the project to.

FIGURE 10-6 Deploying an SSAS project to a server in AX 2012.

 Note

In AX 2012, you can use any name for the OLAP database. In
AX 2009, you couldn’t change the default name of the
database, and this prevented a system administrator from
using the same SSAS server to host multiple OLAP databases.
However, if you do change the default name of the OLAP
database, you need to configure the report server so that it
reports source data from the corresponding OLAP database.
For information about how to configure the OLAP database
referenced by SQL Server Reporting Services (SSRS) reports,
see “Configure Analysis Services by running Setup” at
http://msdn.microsoft.com/en-us/library/gg751377.aspx.

http://msdn.microsoft.com/en-us/library/gg751377.aspx

Deploying cubes in an environment with multiple partitions
As mentioned earlier, in an AX 2012 R2 or AX 2012 R3 environment with
multiple partitions, the SQL Server Analysis Services Project Wizard
generates an OLAP database for each partition. You can use the wizard to
select the partitions for which OLAP databases are created, as shown in
Figure 10-7.

FIGURE 10-7 Selecting a partition.

In this case, the SQL Server Analysis Services Project Wizard deploys
the SSAS project to multiple OLAP databases. In each database,
<partitionkey> is added as a suffix to the name of the OLAP database.

Also, within each OLAP database, the data source view (DSV) is
modified so that a partition filter is applied to all queries. Figure 10-8
shows the architecture of an environment with multiple partitions.

FIGURE 10-8 Architecture of an environment with multiple partitions.

In all cases, the SSAS project in the AOT is partition-unaware, whereas
the OLAP databases that are deployed are partition-specific. The SQL
Server Analysis Services Project Wizard handles the step of making sure
that each OLAP database is wired to read data only from the
corresponding partition in AX 2012 R2 or AX 2012 R3. This is a departure
from the behavior of AX 2012. You need to be aware of the following
implications:

 If you deploy AX 2012 R2 or AX 2012 R3 SSAS projects by using

SSAS tools, such as the Deployment Wizard or SQL Server Data
Tools (SSDT, formerly known as Business Intelligence Development
Studio), the resulting OLAP database is not partition-aware. In other
words, cubes will aggregate data across partitions.

 If you want to extend an SSAS project by using SSDT in AX 2012
R2 or AX 2012 R3, always check out and modify the project in the
AOT. You can import the extended project back into the AOT and
use the SQL Server Analysis Services Project Wizard to deploy the
project.

 If you extended a project associated with a specific partition by
importing an OLAP database directly in SSDT, you can import the
customized project into the AOT in AX 2012 R2 cumulative update
7 or AX 2012 R3. While deploying the customized, partition-specific
project, the SQL Server Analysis Services Project Wizard reapplies
the partition logic so that the data is filtered by appropriate partition
filters.

 If you add custom query definitions in the DSV, the wizard adds
where clauses to each select statement that restrict rows from other
partitions.

Processing cubes
The SQL Server Analysis Services Project Wizard lets you process
deployed cubes directly. However, before processing, the wizard also runs
through several prerequisite checks to ensure that cube processing will not
fail later. If you are using demo data, you can ignore these preprocessing
warnings and have the wizard process the cubes.

While the project is being processed, the wizard displays a progress
page. When processing is complete, click Next, and the wizard will show
the completion screen.

Provisioning users
After you deploy and process the AX 2012 cubes, you must grant users
permissions to access them. Provisioning users involves two steps:

1. Associate an appropriate user profile with each AX 2012 user.
2. Give the users access to the OLAP database.

Associating a user with a profile
The concept of a user profile was introduced in AX 2009. A user profile
determines which Role Center is displayed when a user starts the

Microsoft Dynamics AX client. A user can be associated with only one
profile.

If you do not associate a profile with a user, the default Role Center is
displayed when the user displays the Home area page in the client. To
associate a profile with a user, click System Administration > Common >
Users > User Profiles (see Figure 10-9). You can associate either a single
user or multiple users with a profile by using this form.

FIGURE 10-9 Associating a user with a profile.

You can also associate a user with a profile in the Users form (System
Administration > Common > Users > Users). Changes to a user profile
take effect the next time the user starts the client.

Providing access to the OLAP database
Unless you provide your users with access to the OLAP database, they
cannot open reports and display key performance indicators (KPIs) drawn
from cubes in their respective Role Centers. Security permissions defined
in AX 2012 are not automatically applied to OLAP databases. You must
grant access to OLAP databases manually by using SQL Server
management tools, such as SQL Server Management Studio. For step-by-
step instructions, see “Grant users access to cubes” at
http://msdn.microsoft.com/en-us/library/aa570082.aspx.

Customizing the AX 2012 BI solution

http://msdn.microsoft.com/en-us/library/aa570082.aspx

As you have seen in the previous sections, it’s relatively easy to implement
the AX 2012 BI solution. But you must think of the prebuilt content as a
starting point in devising your own BI solution. There are several ways to
change the functionality of the solution to suit your needs.

These changes can be divided into three broad categories:
 Configuration The solution assumes that you have implemented all
of the functionality in AX 2012, and the content of the solution is
designed to cover most of that functionality. However, you might
have implemented only certain modules. Even within those modules,
you might have chosen to disable certain functionality. In AX 2012,
license codes and configuration keys govern the availability of
modules and functionality, respectively. Configuration keys
correspond to functionality within modules. They can be enabled or
disabled. (For more information, see Chapter 11, “Security,
licensing, and configuration.”)
If you do not activate certain license codes or if you disable certain
configuration keys, the AX 2012 user interface configures itself by
removing content that is associated with those elements. In this case,
you might need to remove the corresponding analytic content.
(However, because the BI solution draws data from across AX 2012,
this content will not contain data in any case.) You can use the SQL
Server Analysis Services Project Wizard to remove the
corresponding content from the prebuilt cubes, so that you do not
have to remove the irrelevant content manually yourself.

 Customization You might want to add calendars and financial
dimensions, in addition to new attributes and measures, to the
prebuilt cubes. The SQL Server Analysis Services Project Wizard
lets you perform the most frequent customizations with a step-by-
step approach, without requiring BI development skills.

 Extension At some point, you might want to develop extensions to
prebuilt cubes by using the SQL Server BI development tools.

Table 10-1 lists categories of customizations, summarizes the types of
changes that you can make, and lists the skill level, time, and tools
required to make those types of changes.

TABLE 10-1 Types of customizations.

The following sections describe the processes for customizing the AX
2012 BI solution.

Configuring analytic content
As previously explained, you can configure the predefined analytic content
to reflect configuration changes in AX 2012 in a matter of minutes by
using the SQL Server Analysis Services Project Wizard. In AX 2009, this
process had to be performed manually, and it required BI development
skills and a day or two of spare time. AX 2012 dramatically simplifies this
process by introducing the following three improvements:

 Static schema Historically, Microsoft Dynamics AX has had a
schema whose shape changed depending on licenses and
configuration keys. That is, when a configuration key was turned off,
the database synchronization process dropped tables and data that
were deemed invalid. This caused prebuilt cubes (that rely on a static
schema in the underlying database) to break at processing time.
Unlike its predecessor, AX 2012 has a static schema. So when
configuration keys are disabled, the database schema no longer
changes. This means that prebuilt cubes can continue to be processed
without generating errors. (They will, for example, contain empty
measures, because the corresponding tables have no data.)

 Improved modeling capabilities in the AOT The AX 2009 OLAP
framework did not allow advanced modeling of constructs in the
AOT. As a result, developers had to implement any functionality that
was lacking directly in an SSAS project. In AX 2012, a larger
portion of analytic content is modeled in the AOT. Therefore,
configuring the content can be done much more easily by the
framework.

 Wizard-driven user interface The six different forms that were
necessary in AX 2009 have been replaced by a single step-by-step
wizard that guides you through various activities.

To configure the prebuilt BI project, you must have developer privileges
in AX 2012. This step modifies the project so that irrelevant measures,
dimensions, and entire cubes are removed after the process is completed.
The modified project will be saved in the AOT in your own layer.

To configure the project, start the SQL Server Analysis Services Project
Wizard, and then select the Configure option. You then need to select the
project to configure. Select the Dynamics AX project to configure the
prebuilt project, and step through the wizard. For step-by-step instructions,
see the “Configure an Existing SQL Server Analysis Services Project” at
http://msdn.microsoft.com/en-us/library/gg724140.aspx.

If you also deploy and process the project, you should notice the
following changes:

 Cube content (such as measures and dimension attributes that source
data from tables that are affected by disabled configuration keys) is
deleted from the project. You might see that entire cubes have been
removed, if the corresponding content has become invalid.

 KPIs and calculated measures have been removed in cubes that
depend on disabled measures and dimension attributes.

 OLAP reports in Role Centers that source data from cubes that have
been removed no longer appear on the Role Center page. If a user
intentionally adds such a report to the Role Center, the report
displays a warning message and will execute.

 KPIs and measures that were removed no longer appear in the
Business Overview web part.

Customizing cubes
When you start the SQL Server Analysis Services Project Wizard, the third
option after Deploy and Configure is Update. This option lets you
customize the project.

Figure 10-10 shows the process for updating a cube. The following
sections walk through each step in detail.

http://msdn.microsoft.com/en-us/library/gg724140.aspx

FIGURE 10-10 Updating a cube with the SQL Server Analysis Services
Project Wizard.

Choosing the project to update
The first step is selecting the project to modify. You can select an SSAS
project in the AOT or a project maintained on disk. The wizard performs
basic validation of the selected project before you can proceed. The update
process is designed to ensure that you end up with a project that you can
deploy and process without any errors. If the selected project does not
build (the most basic measure of validity), the wizard will not let you
proceed to the next step.

Selecting metadata
Next, you select the AX 2012 metadata that you want to include, as shown
in Figure 10-11. The metadata that is defined in the Perspectives node in
the AOT is the source of metadata for the prebuilt BI solution. By

including or excluding metadata definitions, you can include (or exclude)
measures, dimensions, and even cubes.

FIGURE 10-11 Selecting metadata.

For example, if you remove the Accounts Receivable perspective from
the selection, the Accounts Receivable cube will be removed from the
project that you are updating. If you model a new perspective in the AOT
and include it in the project, the corresponding measures and dimensions
will be created and added to the SSAS project.

For a description of metadata definitions and the resulting analytic
artifacts, see “Defining Cubes in Microsoft Dynamics AX” at
http://msdn.microsoft.com/en-us/library/cc615265.aspx. Metadata is also
covered in further detail later in this chapter, in the “Creating cubes”
section.

Selecting financial dimensions
On the next wizard page, you are prompted to select the AX 2012 financial

http://msdn.microsoft.com/en-us/library/cc615265.aspx

dimensions to include in the project, as shown in Figure 10-12.

FIGURE 10-12 Selecting financial dimensions.

Each financial dimension that you select is added as an OLAP
dimension with the same name. If a dimension by that name already exists
within the SSAS project, the system will disambiguate the new dimension
by adding a suffix.

Notice that the SQL Server Analysis Services Project Wizard provides
friendly labels associated with financial dimensions even if you did not
provide AX 2012 labels when adding the financial dimensions. To
determine the appropriate labels, in AX 2012 R2 cumulative update 7 and
later, if the financial dimension is derived by using a backing entity, the
label associated with the backing entity is used as the friendly label.

Selecting calendars
Next, the wizard prompts you to select the calendars to include as date
dimensions, as shown in Figure 10-13. If you have defined additional

calendars, you can include them in the project at this point.

FIGURE 10-13 Selecting a calendar for a date dimension.

In AX 2009, the prebuilt analysis project included two date dimensions:
a Gregorian calendar–based dimension called DATE and a fiscal calendar–
based dimension called FISCALPERIODDATEDIMENSION. If you
wanted to include additional date dimensions, you would have had to
customize the prebuilt project by using SSDT.

AX 2012 includes a form called Date Dimensions that lets you define
custom calendars for analysis purposes. A default calendar, Date, is
included with the product, and you can define additional calendars by
using the Date Dimensions form.

For each calendar that you add in this form, the system creates a date
dimension in the SSAS project. For example, if you add a new calendar
called Sales Calendar, the system will add a date dimension called Sales
Calendar. In addition, the system will create role-playing date dimensions
that correspond to each of the dates that are present in cubes. You can’t

remove the prebuilt date dimension from the project.
You can start Date Dimensions directly from the SQL Server Analysis

Services Project Wizard or from the System Administration area page.
You can define a calendar by selecting the beginning of the year and the

first day of the week. For example, for the Sales calendar, the year starts
on April 1 and ends on March 31, and the week starts on Sunday. You can
enter a date range to specify the calendar records that you want the system
to populate in advance. You can also select the hierarchies that will be
created for each calendar.

When you close the form, if you added or modified calendars, the
system will populate dates according to the new parameters that you
defined. In addition, the system will add the required translations. As you
will notice later, the system adds a rich set of attributes for each calendar
defined here. You can use any of these attributes to slice the data contained
in cubes.

In addition, Date Dimensions adds a NULL date record (1/1/1900) and a
DATEMAX date record (31/12/2154) to each calendar, so that fact records
that contain a NULL date or the DATEMAX date will be linked to these
extra records, preventing an “unknown member” error from occurring
during cube processing.

Selecting languages
The prebuilt SSAS project uses EN-US as the default language. However,
you might have sites in other countries/regions and want the users there to
be able to view measure and dimension names in their own languages.

The project can include additional languages through a feature in SSAS
called Translations. With the Translations feature, you can translate
dimensions, measures, many other kinds of metadata, and data to other
languages by adding companion text in other languages.

For example, if you add German translations to the project, when a
German user views data in a cube by using, for example, Microsoft Excel,
data labels are displayed in German.

The prebuilt SSAS project does not include translated strings. However,
translated labels are already available in the system. The SQL Server
Analysis Services Project Wizard lets you add any languages you need to
the project by using existing translations from within AX 2012, as shown
in Figure 10-14.

FIGURE 10-14 Selecting languages.

It is recommended that you add only the translations that you need.
Each translation adds strings to your project, and the size of the project
increases by a few megabytes each time you add a language. In addition,
processing gets a bit slower and the size of the backup increases.

In the Standard edition of SQL Server 2005 or SQL Server 2008, you
could not add additional translations (for AX 2009). You had to buy the
Enterprise edition of SQL Server in order to add translations to cubes. This
restriction has been removed beginning with SQL Server 2008 R2.

Labels associated with AX 2012 tables and views are carried through to
the corresponding dimensions and measures. It is also possible to add
specific labels to dimensions and measures by defining the labels in
perspectives. For more information, see the “Defining perspectives”
section later in this chapter.

In the AX 2012 and AX 2012 Feature Pack releases, if you manually
add translations to the project by using SSDT, the wizard overwrites the

labels every time you run the Update option, by sourcing labels from AX
2012. Beginning with AX 2012 R2 cumulative update 7, the Update option
preserves labels that you manually added by using SSDT.

If you have AX 2012 or AX 2012 Feature Pack, to add your own
translations, either define a new label and associate it with the object or
change the translation in AX 2012 by using the Microsoft Dynamics AX
Label Editor.

Adding support for currency conversion
The prebuilt SSAS project contains the logic to convert measures that are
based on the AX 2012 extended data type (EDT) AmountMST to other AX
2012 currencies. For example, if the amount was recorded in USD, you
can display the value of the amount in GBP or EUR by using the analysis
currency dimension to slice the amount.

If you want to, you can exclude currency conversions by clearing the
check box on the wizard page shown in Figure 10-15.

FIGURE 10-15 Selecting support for currency conversion.

 Note

Removing support for currency conversion not only removes

this feature but might also cause prebuilt reports to fail,
because they rely on the currency conversion option to be
displayed in Role Centers.

For more information about currency conversion, see the “Adding
currency conversion logic” section in the “Creating cubes” section.

Confirming your changes
When you click Next on the Add Currency Conversion page, the wizard
goes to work, performing the following tasks:

 Generating a new project based on the perspectives and other options
that you have chosen

 Comparing the newly generated project with the project you wanted
to update

 Displaying the differences between the new project (that is, the
changes you want to apply) and the old project, as shown in Figure
10-16

FIGURE 10-16 Confirming changes to an SSAS project.

In the wizard, it is assumed that you want to confirm all changes;
therefore, all changes are selected by default. If you want the wizard to
apply all changes, click Next, and then the wizard will create a project that
includes the changes that you selected.

However, if you are an experienced BI developer and want more
granular control of the Update option, you can examine the updates in
detail and accept or reject the changes.

Be aware, however, that making changes to the wizard at a granular
level might result in inconsistencies within the analysis project. If such
inconsistencies result in a project that does not build, the wizard displays a
message to inform you.

Here are some examples of when you might want to evaluate changes
individually:

 You might have removed some perspectives from the generation
process (for example, you have not implemented Project Accounting
functionality in AX 2012 and are therefore not interested in the
Project Accounting cube). Ordinarily, the system would remove the
resulting analytic artifacts, including a dimension. However, you
might want to use that dimension in analysis, even if the Project
Accounting cube is not used. Therefore, you reject the deletion of
that dimension.

 You have added extra attributes to the customer dimension by using
SSDT. The system would ordinarily delete these extra attributes,
because they are not associated with AX 2012 metadata. However,
you might want to reject the deletion and keep these extra attributes
intact.

 Tip

If you make too many customizations directly within SSDT,
the wizard detects a large number of changes. You must then
review each change and approve or reject it. At some point,
running the wizard to update the project might cause too
much overhead. Therefore, if you are an experienced BI
developer and you have customized the prebuilt AX 2012
project extensively within SSDT, don’t use the Update
function again. Instead, maintain your project in SSDT.

Saving the updated project
Next, the wizard applies the changes you specified in the previous step. If
you simply clicked Next (that is, you did not make any changes to the
options selected by the wizard), the wizard would save the resulting
project.

If you made changes and the wizard encountered inconsistencies (that
is, the project is in an error state and does not build), it displays a warning
asking whether you want to save the project or go back to the confirmation
step and reconsider the changes.

If you choose to save the project in an inconsistent state (if you are an
experienced BI developer, you might choose this approach), you must fix
the project by using SSDT; otherwise, subsequent deployment steps will
be unsuccessful.

Deploying and processing cubes
Next, you can deploy the cubes to an SSAS server and, optionally, process
the cubes. As discussed in the “Deploying cubes” section earlier in this
chapter, in a multiple-partition environment in AX 2012 R2 and later, the
system will deploy the project to multiple SSAS databases.

Extending cubes
As discussed earlier in this chapter, you can customize the prebuilt
analysis project relatively easily by using the SQL Server Analysis
Services Project Wizard. But in some cases, you might want to make
deeper customizations. For example, you might want to:

 Create a rich hierarchy, such as a parent/child hierarchy to model
organizational units.

 Add new KPIs.
 Bring external data into the analysis project and create a custom
dimension.

You can use SSDT to make these types of changes.
Because the prebuilt BI components are included in the AOT as an

SSAS project, you can modify the project. To modify the prebuilt SSAS
project, do the following:

1. In the AOT, expand the Visual Studio\Analysis Services Projects
node.

2. Right-click the project that you want to modify, and then click Edit.

An Infolog message appears, stating that a copy of the SSAS project
has been created and saved, as shown in Figure 10-17.

FIGURE 10-17 Infolog message displaying the location of the SSAS project.

If SSDT is installed, it will start and open the copy of the project.
Changes that you make to the project are not automatically saved to the
AOT. You need to save the project and import it back into the AOT. This
approach is discussed in the following section.

Figure 10-18 shows the prebuilt SSAS project in SSDT.

FIGURE 10-18 Dynamics AX SSAS project.

The following sections describe the components of the project.

Data source view
The data source view (DSV) contains the table and view definitions that
are used by analytic artifacts. Notice that the OLAP framework has
implemented several query definition patterns in the DSV:

 Financial dimensions that the wizard has added appear as custom
query definitions in the DSV.

 The OLAP framework has created query definitions corresponding
to AX 2012 views.

 The OLAP framework has added a reference relationship to resolve
virtual companies, if your AX installation has virtual company
definitions.

 The OLAP framework has created views that make AX 2012
enumerations accessible in all of the languages that have been added
to the project.

Avoid modifying any of the framework-generated objects in the DSV.
Any changes that you make to these objects are overwritten without
warning the next time you update the project. You can add your own
objects to the DSV (for example, new query definitions). The Project
Update option preserves these objects.

In AX 2012 R2 and AX 2012 R3, the SQL Server Analysis Services

Project Wizard appends partition-specific filters when the project is
deployed. If you implement partition-specific logic in any of the query
definitions, when the project is deployed to multiple partitions, the system
might generate processing errors at deployment time.

Data source
A data source has been created that points to the AX 2012 OLTP database.

Dimensions, measures, and measure groups
In Figure 10-18, shown earlier, notice the dimensions that are included
with the AX 2012 BI solution, in addition to the measures and measure
groups. For a list of measures and dimensions, see “Cube and KPI
reference for Microsoft Dynamics AX” at http://msdn.microsoft.com/en-
us/library/hh781074.aspx.

KPIs and calculations
The SSAS project contains prebuilt KPIs and calculations. AX 2012 does
not provide the capability to model KPIs and calculations in the AOT. You
can modify these definitions or add new ones directly in SSDT.

Integrating AX 2012 analytic components with external data
sources
As discussed in previous sections, the AX 2012 BI solution is an
extensible option for providing insights to users. One of the most common
reasons for extending the solution is to bring in external data so that a user
can derive insights not only from AX 2012 data but also from other data
sources within the organization. This scenario is called external data
integration.

Until recently, data warehouses and data marts were the only reasonable
solution for providing insights to users across multiple data sources.
However, as applications become more easily interoperable and as
technologies such as in-memory databases and visualizations become more
cost-effective and simpler to use, building a data warehouse is just one of
the options.

Table 10-2 presents several architecture options for integrating external
data with the AX 2012 BI solution. The columns represent architecture
options, whereas the rows represent the benefits and cost implications of
each option.

http://msdn.microsoft.com/en-us/library/hh781074.aspx

TABLE 10-2 Options for external data integration.

The self-service and data mash-up option is best suited to an
environment where capable users author and publish analyses for others.
Power BI, an add-in to Microsoft Office 365, provides a set of rich
authoring and collaboration capabilities that can use AX 2012 data
securely. For more information, see “Power BI for Office 365,” later in
this chapter.

When most data is in AX 2012 (assuming that AX 2012 is the
predominant source of data in your organization), you have two options.

You can bring external data into AX 2012 either through services (data
services consumed by means of inbound ports) or as batch jobs that are
executed periodically to import data into tables. With this approach,
external data is represented as read-only data within AX 2012. The benefit
to this approach is that external data appears as native data to AX 2012
tools. You can create analytics, reports, and inquiry forms that use the
combined data.

A more complex approach involves integrating external data directly
into the AX 2012 BI solution. With this option, a BI developer adds
another data source to the prebuilt BI solution by using SSDT. Additional
data tables are brought into the DSV by using the new data connection. It
is possible to create dimensions and measures by using the new tables in
the DSV.

The traditional ETL-based data warehouse option is suited to scenarios
that require complex transformations or large volumes of data. Although
this option is more flexible in terms of capabilities, it is also the most
expensive to implement and manage.

You might want to build a data warehouse to implement the following
scenarios:

 Integrate external data sources with AX 2012 data In this
approach, the AX 2012 implementation serves as one of many
corporate applications. Although AX 2012 contains some of the
corporate data, other systems contain a considerable portion of the
data. To make decisions, you must combine data across systems, and
the data warehouse serves that need.

 Incorporate legacy data into AX 2012 analytics Most
organizations migrate recent data when implementing AX 2012.
Legacy data is still maintained in read-only instances of legacy
applications. Although legacy data is no longer used for operational
purposes, it is required for historical trend analysis. A data
warehouse serves as the repository where legacy data is combined
with current data.

Although AX 2012 does not directly support the creation of a data
warehouse schema, the following artifacts generated in AX 2012 can be
used to build a data warehouse:

 The DSV generated as part of the prebuilt analytic solution can be
used within SQL Server Integration Services when an ETL package
is developed to extract data from AX 2012.

 AX 2012 document services can be consumed as data sources based
on Simple Object Access Protocol (SOAP).

 AX 2012 queries can be exposed as OData feeds.

Maintaining customized and extended projects in the AOT
Previous sections discussed how to modify and extend the prebuilt cubes
by using the SQL Server Analysis Services Project Wizard and SSDT. The
AX 2012 BI project is saved in the AOT, and as a first-class citizen of the
AOT, it can be layered and distributed in a way that is similar to AX 2012
source code.

So how do you use the capabilities offered by the AOT and AX 2012
models for managing customized and extended SSAS projects? In AX
2012 R2 cumulative update 7 and later, SSAS projects extended with

SSDT can be imported back into the AOT. This facility is especially
powerful if you need to customize or extend the prebuilt cubes in a
multiple-partition environment.

Beginning with AX 2012 R2, you can deploy the prebuilt SSAS project
as multiple databases, with one database per partition. If you need to add
one set of calendars and financial dimensions for one partition and another
set of calendars and financial dimensions for another, you can do so in AX
2012 R2 cumulative update 7 or later.

The import function strips out partition-specific information when the
project is imported into the AOT, and you can rename the project to
indicate that it is associated with a specific partition. When you deploy the
project by using the SQL Server Analysis Services Project Wizard,
relevant partition filters are applied back to the project to restrict data to
the correct partition.

 Important

If you decide to customize or extend the project by adding
partition-specific content, it’s a good practice to rename the
project before importing it. If you do not rename the project, it
will be imported on top of the Dynamics AX project with the
assumption that you wanted to overlayer the solution. If you
import another partition-specific project without renaming it,
your changes to the first project will be overwritten by the
second.

To import and deploy a modified project:
1. Rename the modified project file. (The project file has a .dwproj

extension.)
2. In the AOT, right-click the Analysis Services Projects node, and

then click Import.
3. In the Choose Analysis Services Project dialog box, navigate to the

modified project file, and then click OK.
4. Launch the SQL Server Analysis Services Project Wizard, and

follow the options to deploy the project to an SSAS server. For more
information, see “Deploying cubes,” earlier in this chapter.
If you are deploying a partition-specific project, notice that based on
partitions you have chosen to deploy the project to, the system adds

the required partition filters to the project.

Creating cubes
This section discusses how to create new cubes and reports by using tools
built into AX 2012.

Figure 10-19 shows the four-step process for creating a cube.

FIGURE 10-19 Creating a cube.

The following sections describe the process of creating a cube in more
detail.

Identifying requirements
Often, when a user asks for additional information, you get a request for a
new report (or two or three). For example, you might get a requirement
request for a report like the one shown in Figure 10-20 from someone in
the Sales department.

FIGURE 10-20 Sample sales by channel report.

This report shows sales revenue trends by sales channel. More formally
stated, this report shows sales revenue by sales channel by calendar month.

The request for this report might be followed by requests for “a few

additional reports.” Some of the typical follow-up questions would be:
 What about quarterly trends? Is there seasonality?
 Are some regions doing better than others?
 Can we see the number of units sold instead of revenue?
 Can we see the average unit price? Are steep discounts being given?

If you were to build a PivotTable to answer these questions (which is
probably a good idea, because this would let the users slice the data, thus
saving you from the effort of building all of those reports), you could
construct a PivotTable like the one shown in Figure 10-21.

FIGURE 10-21 Sales PivotTable.

In this case, you have identified the measures (the numbers you are
interested in) and the dimensions (the pivots for the data).

The following sections show how to build a cube to meet these
requirements.

Defining metadata
The next step is to determine which AX 2012 tables or views contain this
information. For the purpose of this example, assume the following:

 The CUSTTRANSTOTALSALES view contains sales invoice
details.

 The CUSTTABLECUBE view contains master data about
customers.

 The CUSTPAYMMODETABLE table contains payment mode
information.

Defining perspectives
Next, you need to define the metadata that is required to generate the cube
in the AOT. As you might recall from AX 2009, you define the metadata
required to generate cubes in the Data Dictionary\Perspectives node of the
AOT.

Each perspective corresponds to a cube. Tables or views that are
contained in a perspective node generate measures or dimensions.
Depending on table relationships (and inferred view relationships),
measures are associated with dimensions within the generated project.

 Note

In AX 2012, you can use views to model a cube.

For times when you want to designate a perspective node that contains
only dimensions, AX 2012 includes a property at the perspective level
specifically for this purpose: SharedDimensionContainer. If you designate
a perspective as a shared dimension container, tables and views within that
perspective will be used only to create dimensions. Moreover, all of the
dimensions will be associated with all of the measures; that is, they are
truly shared dimensions, provided that they are related in AX 2012.

Follow these steps to create the new perspective for this example:
1. In the AOT, expand the Data Dictionary\Perspectives node.
2. Create a new perspective node, and name it MyCustomers.

The new node contains two subnodes: Tables and Views.
3. Set the Usage property of the node to OLAP to designate that this

perspective will be used to generate a cube.
If you are familiar with AX 2009, you might notice that the Ad-Hoc
Reporting option for the Usage property is missing in AX 2012. You
can select only OLAP or None. It is no longer possible to generate
report models by using perspectives in AX 2012.

4. Drag the tables and views listed in the previous section into the
newly created perspective.

For more information, see “Create a perspective for a cube” at
http://msdn.microsoft.com/en-us/library/cc617589.aspx.

http://msdn.microsoft.com/en-us/library/cc617589.aspx

Defining table-level properties
Strictly speaking, table-level properties (see Figure 10-22) are optional.
However, if you use them, cubes will perform better.

FIGURE 10-22 Table-level properties.

You can also specify custom labels to give specific names to generated
measure groups and dimensions. AnalysisDimensionLabel,
AnalysisKeyAttributeLabel, and AnalysisMeasureGroupLabel are new
properties introduced in AX 2012. Instead of providing English text, you
can provide AX 2012 labels so that dimension names are translated into
other languages. The AnalysisIdentifier property defines the field that
provides the name for a dimension key. If you look at the Name field for
this property in Figure 10-22, you will notice that the Methods Of Payment
dimension is keyed by the Name field.

For more information, see “Business Intelligence Properties” at
http://msdn.microsoft.com/en-us/library/cc519277.aspx.

If you are a fan of the semantics introduced with the IsLookUp property
in AX 2009, you will be pleased to know that views in AX 2012 provide
this functionality. However, the IsLookUp property will be deprecated in
future releases, so it is recommended that you do not use this property.

Defining field-level properties
Defining field-level properties is the key step in defining metadata. You
need to identify individual measures and attributes that are necessary in the
cube.

First, expand the CUSTTRANSTOTALSALES view, and set the field
properties as shown in Table 10-3.

http://msdn.microsoft.com/en-us/library/cc519277.aspx

TABLE 10-3 Field-level property settings for the
CUSTTRANSTOTALSALES view.

The AmountMST field will generate a measure that is summed when it is
aggregated. ExchangeRate-DateField is a new attribute that was added in
AX 2012 for currency conversion. In this example, the OLAP framework
should convert the AmountMST measure to all available currencies, so that
users can analyze transactions (possibly conducted in different currencies)
across a common currency. The TransDate field contains the date on
which the measure will be converted into other currencies with AX 2012
exchange rates.

Users need to be able to slice the data by TransType and TransDate, so
these fields are designated as attributes.

Next, open the CUSTTABLECUBE view, and set the field-level
properties as shown in Table 10-4.

TABLE 10-4 Field-level properties for the CUSTTABLECUBE view.

Finally, expand the CUSTPAYMMODETABLE table, and set the field-
level properties as shown in Table 10-5.

TABLE 10-5 Field-level properties for the CUSTPAYMMODETABLE
table.

For more information about field-level properties, see “Business
Intelligence Properties” at http://msdn.microsoft.com/en-
us/library/cc519277.aspx.

Generating and deploying the cube
After you define the necessary metadata, you can generate an SSAS
project by using the SQL Server Analysis Services Project Wizard. You
can deploy and process the project directly from the wizard, or you can
open the project in BI Development Studio and extend it by using SQL
Server functionality.

Defining the project
In the wizard, select the Create option, because you are creating a new
project, and provide a name. Alternatively, if you want to include the new
cube in the prebuilt SSAS project, you can select the Update option.

On the next page, you select the perspectives that are used to generate
cubes and dimensions within the project. For this example, you would
select the MyCustomers perspective. You can include one or more
perspectives within the same project.

You can also include AX 2012 financial dimensions, in addition to
calendars and languages, as discussed earlier in this chapter.

Adding currency conversion logic
Next, the wizard lets you add currency conversion logic to the project.

As you might recall, while you were defining field-level properties for
the perspective, AmountMST was identified as a measure that needs to be
converted to other currencies. The AmountMST field contains an amount
that is recorded in the accounting currency of the company. Because AX
2012 might contain multiple companies that have different accounting
currencies, transactions might be recorded in different accounting
currencies.

For example, the CEU company’s accounting currency is GBP, whereas
the CEUE company’s accounting currency is USD. In the AmountMST
field, sales for CEU are recorded in GBP, whereas those for CEUE are
recorded in USD.

Because a cube aggregates data across companies, a user browsing the
cube could inadvertently add GBP values to USD values unless something

http://msdn.microsoft.com/en-us/library/cc519277.aspx

is done to differentiate the two amounts. The AX 2012 OLAP framework
builds this mechanism for you in the form of currency conversion support.

AX 2012 cubes contain two system dimensions: Currency and Analysis
Currency. If the user uses the Currency dimension to split the measures
that are shown, AX 2012 displays amounts only in the chosen currency. If
the user uses the Analysis Currency dimension to split the measures that
are shown, all amounts are shown, but the resulting values are converted to
the chosen analysis currency by using AX 2012 exchange rates. This
happens through currency conversion.

Here is an example: assume that the transactions shown in Figure 10-23
are included in the CUSTTRANSTOTALSALES view. (Note that two
columns have been added, Accounting Currency and Amount Cur, to
clarify that each company has a different accounting currency.)

FIGURE 10-23 Transactions for companies in different accounting
currencies.

If a user creates a PivotTable and displays the total AmountMST value
split by the Analysis Currency dimension, the result would look like the
PivotTable shown in Figure 10-24.

FIGURE 10-24 Analysis currency.

To get the value of AmountMST in USD, the system calculated the USD
equivalent of each of the amounts, as shown in Figure 10-25.

FIGURE 10-25 Currency conversion for analysis.

To determine the exchange rate between CAD and USD, and between
GBP and USD, the system used the field-level metadata tag
ExchangeRateDateField. For this example, the ExchangeRateDateField
value for AmountMST is TransDate. So the TransDate value associated
with each record was used to find the exchange rate to use for the
conversion.

AX 2012 has the concept of a rate type. In other words, multiple
exchange rates can be associated with a particular company. A company
can use different rates for different purposes or different rates for different
locations. The AX 2012 OLAP framework uses the system exchange rate
type for the currency conversion logic. This rate type is a systemwide
parameter that a system administrator specifies on the System Parameters
form (System Administration > Setup > System Parameters), as shown in
Figure 10-26.

FIGURE 10-26 Setting the system currency and exchange rate type.

If you create a PivotTable with the Currency dimension, AmountMST
values are filtered by the specified currency, as shown in Figure 10-27.
You would expect this behavior if you created a PivotTable with any
dimension.

FIGURE 10-27 PivotTable with the Currency dimension.

If you define the field-level metadata tag ExchangeRateDateField, the
wizard adds the currency conversion calculation to the generated project as

a multidimensional expression (MDX) script. The wizard also adds the
Analysis Currency system dimension (the Currency dimension is added
regardless of whether you select currency conversion). The wizard also
creates an intermediate measure group called Exchange Rates By Day in
each cube.

If you open the generated project in SSDT, you can see the currency
conversion calculation created by the wizard:
Click here to view code image

CALCULATE;

//---

// Dynamics AX framework generated currency conversion

script.

// Customizing this portion of the script may cause

problems with the updating

// of this project and future upgrades to the software.

//---

Scope ({ Measures.[Amount] });

 Scope(Leaves([Exchange rate date]),

 Except([Analysis currency].[Currency].

[Currency].Members,

 [Analysis currency].[Currency].[Local]),

 Leaves([Company]));

 Scope({ Measures.[Amount] });

 This = [Analysis currency].[Currency].[Local] *

((Measures.[Exchange rate],

StrToMember("[Currency].[Currency].&["+[Company].

[Accounting currency].CurrentMember.Name+"]"))

/ 100.0);

 End Scope;

 End Scope;

 Scope(Leaves([Exchange rate date]),

 Except([Analysis currency].[Currency name].

[Currency name].Members,

 [Analysis currency].[Currency name].

[Local]),

 Leaves([Company]));

 Scope({ Measures.[Amount] });

 This = [Analysis currency].[Currency].[Local] *

((Measures.[Exchange rate],

StrToMember("[Currency].[Currency].&["+[Company].

[Accounting currency].CurrentMember.Name+"]"))

/ 100.0);

 End Scope;

 End Scope;

 Scope(Leaves([Exchange rate date]),

 Except([Analysis currency].[ISO currency code].

[ISO currency code].Members,

 [Analysis currency].[ISO currency code].

[Local]),

 Leaves([Company]));

 Scope({ Measures.[Amount] });

 This = [Analysis currency].[Currency].[Local] *

((Measures.[Exchange rate],

StrToMember("[Currency].[Currency].&["+[Company].

[Accounting currency].CurrentMember.Name+"]"))

/ 100.0);

 End Scope;

 End Scope;

 Scope(Leaves([Exchange rate date]),

 Except([Analysis currency].[Symbol].

[Symbol].Members,

 [Analysis currency].[Symbol].[Local]),

 Leaves([Company]));

 Scope({ Measures.[Amount] });

 This = [Analysis currency].[Currency].[Local] *

((Measures.[Exchange rate],

StrToMember("[Currency].[Currency].&["+[Company].

[Accounting currency].CurrentMember.Name+"]"))

/ 100.0);

 End Scope;

 End Scope;

End Scope;

//---

// End of Microsoft Dynamics AX framework generated

currency conversion script.

//---

This logic is similar to the code added by the Define Currency
Conversion option in the SSAS Business Intelligence Wizard. If the
selected exchange rate type does not have records corresponding to the
dates (for example, TransDate) that are present in data, the calculations
will use the most recent rate for the corresponding currency pair.

 Important

The wizard maintains this script as you configure and update
analysis projects. If you modify the script manually, your
changes will be overwritten by the framework each time.

Saving the project
After you specify currency conversion options, the system will generate

the project and prompt you for a destination to which to save the project.
You can save the project in the AOT or on disk. This gives you the

flexibility to maintain SSAS projects in the development environment of
your choice. OLAP framework tools, such as the SQL Server Analysis
Services Project Wizard, will work with projects whether they are on disk
or in the AOT.

If you save the project in the AOT, the project will be saved in your
layer.

Deploying and processing the project
You can deploy the project directly to the SSAS server at this stage. It’s
important to note that the wizard calls the SSAS deployment functionality
behind the scenes. If you do not have the AX 2012 Development
Workspace (including SSDT) installed on your computer, this step might
fail.

As discussed earlier, in AX 2012 R2 and later you can deploy a project
to multiple partitions. If you have multiple partitions defined, you can
deploy the project to the set of partitions you choose.

Adding KPIs and calculations
You can define KPIs by using SSDT after you generate the project. You
implement KPIs and calculated measures by using MDX.

The KPIs and calculated measures in the prebuilt SSAS project are also
created in this way. If you create your own KPIs and calculated measures,
the SQL Server Analysis Services Project Wizard will preserve them when
you perform updates.

For more information, see “Walkthrough: Defining KPIs for a Cube” at
http://msdn.microsoft.com/en-us/library/dd261469.aspx.

If you are an expert MDX developer, you might be tempted to
implement complex calculations and KPIs. However, a best practice is to
move your calculations to AX 2012 views and tables as much as possible.
This way, you not only use the expressive power of AX 2012, but you also
move the calculations that must be pre-aggregated, so that you get better
run-time performance.

You can move calculations to AX 2012 in the following ways:
 Reuse AX 2012 tables and fields Chances are that the AX 2012
schema already contains most of the calculations that you need. If
the information is not directly available in the primary table, review

http://msdn.microsoft.com/en-us/library/dd261469.aspx

secondary tables and fields to see whether corresponding fields are
available. A small investment in reviewing the schema will save you
a lot of MDX code.

 Define AX 2012 views with computed columns AX 2012 view
support in perspectives enables a host of scenarios where multiple
tables can be joined to create rich views. The AX 2012 view
framework also provides support for creating computed columns in
AX 2012 views. For more information, see “Walkthrough: Add a
Computed Column to a View” at http://msdn.microsoft.com/en-
us/library/gg845841.aspx.

Displaying analytic content in Role Centers
After you create a cube, users can navigate through the aggregated
measures and slice them on the dimensions. This section describes ways
that you can expose cube content to users.

However, before discussing the presentation tools, this section examines
the jobs that people actually do in an organization, to help you understand
the nature of the insights that those people need to do those jobs better.

Table 10-6 lists some options for exposing cube data. Later sections
discuss those options in greater detail.

TABLE 10-6 Ways of exposing cube data to users.

 Note

Developers can also create interactive reports by using the
Enterprise Portal Chart Control. For more information, see

http://msdn.microsoft.com/en-us/library/gg845841.aspx

Chapter 9, “Reporting in AX 2012.”

Providing insights tailored to a persona
For the purposes of this discussion, the people in an organization, or
personas, are divided into three broad categories: operational, tactical, and
strategic.

 Operational personas, such as an Accounts Receivable administrator,
focus primarily on staying productive and performing day-to-day
tasks, such as keeping track of receivables.

 Tactical personas, such as heads of departments and supervisors,
have an additional responsibility as people and resource managers;
they need to ensure that their teams function smoothly.

 Strategic personas such as chief executive officers (CEOs) need to
take a broader corporate view; they tend to operate on established
goals and milestones that are evaluated on a wider scale.

Of course, there is an element of operational focus in a tactical persona,
and vice versa, but for simplicity, those aspects are not covered here.

Consider a day in the life of an Accounts Receivable (AR)
administrator. Like many AR administrators, this administrator is
extremely busy at the end of each month (or every Friday, depending on
the natural cycle of the business), calling customers and following up on
payments. In this case, the AR administrator focuses on exceptions (large
payments that are late). If he has more than a few items to work with, he
needs a way to prioritize and filter the cases—or even better—see trends
within the items at hand. After he identifies a case, he needs to take action
and complete the task; for example, he makes a call or sends a note to
ensure that the bill is paid.

In this example, insights would help the AR administrator in three areas:
 First, he needs to detect exceptions.
 Next, he needs to identify clusters, trends, and anomalies.
 Finally, he needs to be able to take action.

Of course, real-world AR administrators don’t necessarily follow these
steps in succession. But these are three situations where insights need to be
applied to help the AR administrator accomplish his daily goals.

Choosing a presentation tool based on a persona
Depending on the focus of the persona, different tools and approaches

might be necessary.
Table 10-7 shows a list of situations in which each persona requires BI

tools to provide insight and suggests presentation tools that would meet the
needs of each situation.

TABLE 10-7 Business objectives and tools by persona.

The tools in Table 10-7 are just suggestions for how you can provide
insights to users. However, nothing prevents you from using, for example,
the Business Overview web part in a Role Center for an operational
persona, or from using cues to display detailed data in a Role Center for a
strategic persona. For more information about cues and info parts, see
Chapter 5, “Designing the user experience.”

SQL Server Power View
SQL Server Power View is an interactive, browser-based data exploration,
visualization, and presentation tool for casual users that is included with
SQL Server 2012. Power View requires SQL Server 2012 BI edition or
greater, in addition to SharePoint Server 2010 or later (Enterprise edition).

Power View is a component of the presentation layer in the logical
architecture discussed earlier. Power View relies on the power of
aggregated data sources, such as cubes, to provide an interactive and visual
experience of large sets of data.

Integrating Power View with AX 2012 and AX 2012 Feature Pack
Beginning with AX 2012 R2, Power View capabilities are built in. But if
you have a previous release of AX 2012, you can integrate Power View
with the product in several ways:

 A system administrator can create a Reporting Services data
connection file (.rsds file) for AX 2012 cubes so that users can
explore them with Power View. The cubes must be hosted on SQL
Server Analysis Services 2012 SP1 cumulative update 4 or later—
previous versions of SQL Server Analysis Services do not have the
required components to support Power View integration. After the
system administrator creates the data connection, users can create
Power View reports. For step-by-step instructions, see the article,
“Create a report by using Power View to connect to a cube,” at
http://technet.microsoft.com/en-us/library/jj933492.aspx.

 Power users can use Excel along with the PowerPivot add-in to
create workbooks that combine AX 2012 data with external data
sources. Excel workbooks created with the PowerPivot add-in
contain an aggregate model that is embedded within the workbook.
(These workbooks are commonly known as data mash-ups.) After
the user saves the workbooks to SharePoint Server, they function in a
way that is similar to tabular aggregate models. This enables a
system administrator to create data connections and publish the
workbooks so that users can explore data by using Power View.

 Note

AX 2012 queries exposed as OData feeds are the best means
of consuming data with this approach, because OData feeds
ensure that AX security is enforced at the AOS level.

 Developers can create tabular models by using SSDT, the Visual
Studio–based developer tools for creating BI models. When creating
tabular models, you can either start from a PowerPivot model created
by a user (that is, add production-ready capabilities to an existing
model) or start from scratch. With either approach, you can create a
tabular model that consumes data from AX 2012 by means of OData
feeds or cubes.
After you develop a tabular model, you deploy it to the SSAS server;
however, the server must be configured in tabular mode, not
multidimensional mode.

 Note

http://technet.microsoft.com/en-us/library/jj933492.aspx

Starting with SQL Server 2012, an SSAS server can be
configured for either multidimensional mode (required for
hosting AX 2012 cubes) or tabular mode (required for hosting
tabular models). An SSAS server that is in multidimensional
mode cannot host a tabular model, and an SSAS server that is
in tabular mode cannot host an AX 2012 cube.

Deploying Power View in AX 2012 R2 and AX 2012 R3
Beginning with AX 2012 R2, users can launch Power View from a list
page and explore patterns and trends that lie beneath the information
shown on the page. For example, when a user clicks the Analyze Data
button on the Past Due Customers list page, one of seven list pages that
contain the Analyze Data button, a new browser window opens with a
blank Power View canvas backed by a cube that is related to the data
shown on the list page. The user can quickly create a compelling report
that uses pre-aggregated data in the cube.

Reports created with Power View can be exported to Microsoft
PowerPoint to include in a presentation, or they can be saved to SharePoint
Server. By using the built-in collaboration capabilities of SharePoint
Server, users can rate, share, and discuss business trends and issues
highlighted in the reports.

You can add Power View reports that have been saved to SharePoint
Server to a Role Center by using the Power View web part introduced with
AX 2012 R2. The CFO Role Center in AX 2012 R2 provides an example
of a rich Role Center with added Power View reports.

To deploy Power View in AX 2012 R2 or AX 2012 R3, you need to
install the Power View integration feature of SharePoint 2013 (or
SharePoint Server 2010) before you deploy Role Centers. Also note that
SQL Server 2012 SP1 cumulative update 4 or later is required. For more
information, see “Installing the BI features of SharePoint 2013” at
http://blogs.msdn.com/b/querysimon/archive/2012/11/26/installing-the-bi-
features-of-sharepoint-2013.aspx.

After installing the Power View integration feature of SharePoint, you
should be able to create a Power View report by using a PowerPivot model
saved to SharePoint. It is a best practice to create a standalone Power View
report model before you deploy Power View in AX 2012 R2 or AX 2012
R3. For more information, see “Tutorial: Create a Sample Report in Power
View” at http://technet.microsoft.com/en-

http://blogs.msdn.com/b/querysimon/archive/2012/11/26/installing-the-bi-features-of-sharepoint-2013.aspx
http://technet.microsoft.com/en-us/library/hh759325(v=sql.110).aspx

us/library/hh759325(v=sql.110).aspx.
After you install and configure the Power View integration feature of

SharePoint Server, when you install Role Centers, the required Power
View artifacts are deployed to a folder in Enterprise Portal. The system
creates a folder called Power View Reports, in addition to sets of reports
and data connections. The reports correspond to the predefined Power
View reports that are included with AX 2012 R2 and AX 2012 R3. The
data connections correspond to the cubes that the reports use.

In addition to the data connections created by the system, you can create
new data connections that point to additional cubes. For more information,
see “Create a report by using Power View to connect to a cube” at
http://msdn.microsoft.com/EN-US/library/jj933492.aspx.

Exposing a Power View report by using the Power View web part
The Power View web part that was introduced with AX 2012 R2
simplifies the process of adding reports to a Role Center the following
ways:

 The report is formatted in a way that makes it easy to embed within a
webpage. For example, the Power View toolbars are removed and
the report is sized to fit within the window.

 The AX 2012 company context is passed to the underlying Power
View report so that the user sees data from the same company that is
in focus within the Role Center. When the user changes the company
in the Role Center, the appropriate filter is passed to the report.

To include a Power View report in a Role Center, do the following:
1. Launch the Role Center in Enterprise Portal. Click the Page tab on

the upper-left side of the page, and then click the Edit Page button.
This action launches the page in edit mode.

2. Notice the placeholders for web parts within the page. Click the
placeholder where you want to save the report. A list of available
web parts appears.

3. From the list of available web parts, select the SQL Server Power
View web part.

4. Provide a report name: you can use the report picker (the table icon
to the right of the file name) to select a report from a list of available
reports.

5. Provide the size of the window in which you want the report to be
displayed; for example, set the width to 500 pixels and let the web

http://msdn.microsoft.com/EN-US/library/jj933492.aspx

part adjust the height based on the report dimensions.
You should see the web part displayed in the Role Center.

Exposing a Power View report by using the Page Viewer web part
If you have not upgraded to AX 2012 R2 or AX 2012 R3 but have set up
the Power View infrastructure, you can still embed an existing Power
View report in a Role Center by using the Page Viewer web part. The
added value provided by the Power View web part—such as passing the
user’s context to Power View and sizing the report to fit the page—is not
available with this approach, but you can apply those attributes manually.

1. Start the Power View report viewer in a browser window, copy the
URL for the report, and then paste it into Notepad. The URL will
look something like this:
http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?
RelativeReportUrl=/Shared%20Documents/Dynamics-
SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0301%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1
Notice that the first part of the URL contains the path to Power View
Designer and the report being viewed in the designer. The remainder
of the URL consists of a collection of parameters that are passed to
Power View Designer when it is started by the caller.

2. (Optional) Customize the appearance of the Power View window in
the Role Center by manipulating the parameters in the URL. Table
10-8 lists the parameters and describes what they do.

TABLE 10-8 Power View URL parameters.

If you change the URL by applying the parameter values in Table
10-8, the modified URL might look as follows:
http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?

http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/Shared%20Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0301%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1
http://vsqlbuvh0301/_layouts/ReportServer/AdHocReportDesigner.aspx?RelativeReportUrl=/Shared%20Documents/Dynamics-SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0300%2FPPSubSite%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1&Fit=True&PreviewBar=False&BackgroundColor=White&AllowEditViewMode=False

RelativeReportUrl=/Shared%20Documents/Dynamics-
SalesbyRegion.rdlx&ViewMode=Presentation&Source=http%3A%2F%2Fvsqlbuvh0300%2FPPSubSite%2FShared%2520Documents%2FForms%2FAllItems%2Easpx&DefaultItemOpen=1&Fit=True&PreviewBar=False&BackgroundColor=White&AllowEditViewMode=False

3. Open the Role Center, and select the option to modify or personalize
the page. In edit mode, click Add Web Part. The Web Part gallery
appears.

4. Select the Page Viewer web part from the gallery of available web
parts. The Page Viewer web part is listed under the Media And
Content category.

5. After you add the web part, specify the URL for the report by
copying the URL that you pasted into Notepad.

6. Provide a height and width for the web part. The Power View report
should appear within the Role Center.

 Note

Depending on the color scheme you chose for the Power
View report, the color scheme of the other charts displayed in
the Role Center might not match. You can match the color
scheme of the Power View report by editing the report in
Power View Designer. This way, users won’t notice a
difference between the Power View report and the other
charts on the page.

Allowing users to edit a Power View report
Although embedding an existing Power View report enables users to
interact with the data, you can also let users modify the reports. With the
Power View web part, a user can launch a report in full-screen mode and
make changes. The shortcut arrow in the upper-right corner of the report
enables this functionality.

After the user opens the report and clicks the Edit button, she can view
the measures and dimensions that are available for editing the report. After
modifying the report, she can either save the report as a new report or save
changes to the existing report.

If you used the Page Viewer web part to embed the Power View report
in a Role Center or if you feel that the capability to edit a report might be
beyond the reach of some of the users, you can allow users to edit a report
by creating a quick link to start Power View in a separate browser
window:

1. Create a new URL quick link by clicking the Add Links option in
the Quick Links web part, as shown in Figure 10-28.

FIGURE 10-28 Adding a link to the Quick Links web part.

2. In the Add Quick Link dialog box, paste the URL of the Power
View report. You will now see the new quick link added, as shown
in Figure 10-29.

FIGURE 10-29 A quick link to a Power View report.

Adding the Analyze Data button to a list page
As mentioned earlier, the Analyze Data button launches the Power View
report editor with cubes related to the data shown on the list page, so that a
user can analyze trends and patterns behind the data. This button is
available in AX 2012 R2 or later only if Power View has been deployed.

Although several list pages already contain this button, you can add the
button to other list pages as required. The process is the same as adding an
action button to a page: you add a button to the Action Pane of a page, and
the button launches the URL of Power View Report Designer. So that you
can build the Power View Report Designer URL at run time, AX 2012 R2
provides two application programming interfaces (APIs). The following
code sample illustrates the APIs in action.
Click here to view code image

 if

(SrsReportHelper::isPowerViewModelDeployed('Accounts

receivable cube'))

 {

 infolog.urlLookup(SrsReportHelper::getPowerViewDataSourceUrlClient('Accounts

receivable

cube'));

 }

 else

 {

 // Cube has not been deployed – display error

message.

 }

This example checks to determine whether the Power View model—in
this case, the Accounts Receivable cube—has been deployed. If the model
has been deployed, the code generates the URL for a new report based on
the Accounts Receivable cube and launches it. For more information,
review the code behind an existing list page or see “Walkthrough: Creating
an Analyze Data Button on a List Page” at
http://technet.microsoft.com/EN-US/library/jj945385.aspx.

Power BI for Office 365
Power BI for Office 365 is a self-service BI solution delivered through
Excel and Office 365 that provides power users with data analysis and
visualization capabilities in the cloud. Subscribers to Office 365 can also
subscribe to the Power BI service by paying a subscription fee. Some
Power BI components are provided as add-ins to Excel, whereas others are
available as services in Microsoft Azure. Table 10-9 summarizes the
capabilities of Power BI tools.

TABLE 10-9 Power BI tools.

For a complete description of Power BI capabilities, see the Power BI
for Office 365 Learning Guide at http://office.microsoft.com/en-
001/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-

http://technet.microsoft.com/EN-US/library/jj945385.aspx
http://office.microsoft.com/en-001/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-and-learning-HA104103581.aspx

overview-and-learning-HA104103581.aspx.

 Note

AX 2012 OData feeds are a source of data for Power Query
and PowerPivot. At the time of this writing, Power Query
cannot consume data from AX 2012 cubes directly, so
PowerPivot is the authoring option if you want to source
aggregate data from AX 2012.

Comparing Power View and Power BI
Now that you are familiar with Power View and Power BI, you might be
wondering why you should choose one over the other. Power View
integration in AX 2012 R2 and later takes advantage of the Power View
feature built into SharePoint Server and SSRS, so to integrate Power View
with AX 2012 R2, you’ll need to implement and maintain a SharePoint
Server infrastructure within your company. Power BI, however, is a cloud-
based offering. You can use Power View along with several other tools if
you subscribe to Power BI.

So the major difference is in how you get to Power View. If you want to
subscribe to a public service, you can access Power View through Power
BI. But if you want to implement your own infrastructure on premises, you
should use the standalone version of Power View. At the time of this
writing, Power BI has several limitations compared to Power View.
However, Power BI provides additional tools that are not available with
Power View.

Authoring with Excel
Excel is a simple yet powerful way to share reports with users in Role
Centers. For example, you can:

 Analyze cube data in Excel and create PivotTables.
 Save PivotTable reports to Excel Services for SharePoint.
 Expose Excel worksheets that are saved to Excel Services for
SharePoint by using either the Excel Services web part or the Excel
Web App.

For step-by-step instructions that show how to create a PivotTable by
using the prebuilt General ledger cube, see “Walkthrough: Analyzing Cube
Data in Excel” at http://msdn.microsoft.com/en-us/library/dd261526.aspx.

http://msdn.microsoft.com/en-us/library/dd261526.aspx

Beginning with Excel Services for SharePoint 2010, you can expose
charts and PivotTables built by using the Excel Services REST API. The
URL that you obtain by using the REST API can be used to display a chart
or a table in Role Centers. For more information about Excel Services, see
“Overview of Excel Services in SharePoint Server 2013” at
http://technet.microsoft.com/en-us/library/ee424405.aspx.

Business Overview web part and KPI List web part
The Business Overview web part was introduced in AX 2009 to display
the KPIs in prebuilt cubes in Role Centers. This web part was initially
modeled on the KPI List web part in SharePoint Enterprise edition, but it
has evolved into a distinct web part in AX 2012. For example, the
Business Overview web part provides user context awareness that is
lacking in the generic KPI List web part. KPIs are filtered based on the
context of the AX 2012 company and partition (for AX 2012 R2 and later)
when they are shown in Role Centers. Also, when a user changes the
language to German, for example, the Business Overview web part can
switch the labels for the KPI to German.

If you are familiar with the Business Overview web part from AX 2009,
you know that it had two modes. In AX 2012 R2 and later, the
functionality of these two modes has been divided into separate web parts:
the Business Overview web part and the KPI List web part. You no longer
have to switch modes. If you want to display KPIs, use the KPI List web
part. If you want to display indicators, use the Business Overview web
part. The two web parts appear in the SharePoint Web Part gallery, as
shown in Figure 10-30.

FIGURE 10-30 AX 2012 web parts in the SharePoint Web Part gallery.

Both the Business Overview web part and the KPI List web part have
some additional features:

 You can define multiple filters when displaying a KPI or an
indicator. Until the release of AX 2012 R2, you could add a relative
time filter only to a KPI displayed in the Business Overview web

http://technet.microsoft.com/en-us/library/ee424405.aspx

part.
 You can add an AX 2012 menu item or a URL as a drill-through
target to a KPI.

 You can limit the number of values that are displayed on the screen
when splitting a KPI with a specified value.

 Both web parts provide better error handling and graceful exit in case
of errors that are caused by cube configuration issues.

 The Business Overview web part is extensible. You can create a
custom skin for the Business Overview web part and extend its
functionality to suit your own business area.

Other than the differences between the Business Overview web part and
the KPI List web part that are explained in this section, their functionality
is the same. You follow the same procedure to add an indicator to the
Business Overview web part as you would to add a KPI to the KPI List
web part, as described in the next section.

Adding a KPI to the KPI List web part
When you add a KPI, you use the Business Overview-Add KPI dialog box
to define the KPI. If you’re familiar with this dialog box in AX 2009 or
AX 2012, you will notice several additions beginning with AX 2012 R2,
as shown in Figure 10-31. (The Add New Indicator dialog box and the
Business Overview web part provide similar options).

FIGURE 10-31 The Business Overview–Add KPI dialog box.

First, you have an expanded set of options for applying filters. You can
add any number of filters—both relative time periods and fixed values.
This way, a user can add a filter to an existing KPI definition and display it
on his or her Role Center. This feature yields two benefits:

 You can define a general-purpose KPI definition that applies to the
entire organization or the business unit.

 Users can narrow down the scope of the KPI definition so that it
closely matches their area of focus, without developer intervention.

You are probably familiar with the Split option that lets a user display
the breakdown of a KPI definition by a selected attribute. For example, the
Revenue KPI can be split by sales units so that a sales manager can
monitor units that are falling behind. Unlike in AX 2012, the user can
display the top 10 or bottom 10 values, so that the list is not too long.

It was possible to provide a drill-through link to each KPI in AX 2012,
but the picking experience was not user friendly. Beginning with AX 2012
R2, the picking experience has been improved so that the user can

associate a menu item or a URL with each KPI.
Notice that the Cube field is already set to a prebuilt cube. The KPI List

web part is hardwired to display KPIs from the default cube database. If
you want to point the KPI List web part to a different database, you can
specify the database by providing a database connection file—that is, an
Office Data Connection (ODC) file. For information about how to define
an ODC file and add ODC files to Enterprise Portal, see “How to: Create
an ODC file for a Business Overview Web Part” at
http://msdn.microsoft.com/en-us/library/hh128831.aspx.

 Note

The default database is specified in the System
Administration > Setup > Business Intelligence > Analysis
Services > Analysis Servers form. When you deploy an SSAS
project by using the SQL Server Analysis Services Project
Wizard, the OLAP database created by this action is added to
the list of databases in the Analysis Servers form. Click an
analysis server, and then click the OLAP Databases tab (see
Figure 10-32).

FIGURE 10-32 Analysis Servers form specifying the default OLAP
database.

The Default check box specifies the default OLAP database
used by the KPI List web part. You can change the default
database by selecting the check box for a different database.

http://msdn.microsoft.com/en-us/library/hh128831.aspx

To add a KPI, do the following:
1. Start the AX 2012 client, and then navigate to a Role Center.
2. Select the option to edit the Role Center page. If you are using AX

2012 as a user, you can personalize the page for yourself only. If you
are a developer customizing the page for everyone, launch Enterprise
Portal and edit the page.

3. Click Add Web Part. You should see the SharePoint Web Part
gallery, as shown earlier in Figure 10-30.

4. Click the KPI List web part, and then click Add. After the web part
is added, click Exit Editing. Now you will see the new web part
added to the Role Center page, as shown in Figure 10-33.

FIGURE 10-33 Adding a KPI.

5. Click the Add KPIs option to add a new KPI to the web part. You
will see a Business Overview-Add KPI dialog box similar to the one
shown earlier in Figure 10-31.

6. Specify the options that you want for the new KPI, and then click
OK.

Adding a custom time period filter
Relative time period filters are shown in the KPI List web part when you
add a KPI or an indicator. However, you can define your own time period
filter by using the Time Periods form (System Administration > Setup >
Business Intelligence > Analysis Services > Time Periods), as shown in
Figure 10-34.

FIGURE 10-34 The Time Periods form.

This form lists three types of time periods:
 Indicators These define the relative time periods that apply to
indicators—the items that you add to the Business Overview web
part.

 KPI lists These define the relative time periods that apply to KPIs—
the items that you add to the KPI List web part.

 Period templates These are reusable macros that can be used by
both indicator and KPI list entries. Period templates save you from
having to recode commonly used patterns repeatedly.

You can define additional indicator and KPI list periods by using MDX
code in this form. The KPI List web part makes these filters available to
users at run time.

The following are example definitions to help you understand time
period filters.

Period template: CurrentDate
If the time period definition is a template, you need to modify only the
MDX expression in the template.

The CurrentDate period template contains the following MDX
expression, which gets the current date from the system:

Click here to view code image

STRTOMEMBER('[|DateDim|].[Year - Quarter - Month - Week -

Date].[Month].&[' +

vba!format(vba![date](), 'yyyy-MM-01') + 'T00:00:00]')

Notice the token |DateDim| in the expression. The Business Overview
web part replaces this token with the actual name of the date dimension;
therefore, you can use this expression with any date dimension.

If you examine the period template definition for CurrentFiscalDate,
you will notice another token:
Click here to view code image

STRTOMEMBER('[|FiscalDateDim|].[Year quarter period month

date].[Date].&[|c|]&[' +

vba!format(vba![date](), 'yyyy-MM-dd') + 'T00:00:00]')

In this case, the system interprets the token |FiscalDateDim| as a fiscal
date dimension. The system identifies a fiscal date dimension by the name
given to the dimension. The system interprets the token |c| as the current
company.

Indicator: Month_LastMonth
The definition for the Month_LastMonth indicator uses the template that
was discussed in the previous section.

The definition for an indicator contains two MDX expressions that
correspond to two time period definitions. The expression that provides the
value for the current period is defined in the Current Period MDX field.
Because there is already a template for calculating the current month, you
can use that definition by referencing the template %CurrentMember%.

The expression that provides the value for the previous period is defined
in the Previous Period MDX field. Again, you can use the template
already defined and define an expression by using that template.

You will also need to provide a description and a display name for the
period definition, as shown in the left pane of the Time Period form. These
descriptions and display names appear in the Business Overview web part
when the user applies the period filter.

Developing reports with Report Builder
Report Builder is a report development tool that was created with the user
in mind. (By contrast, Visual Studio tools for creating reports focus on the
developer.) Report Builder features a ribbon that is similar to the one in

Office programs and that should be familiar to users.
Report Builder 3.0, which was released around the same time as SQL

Server 2008 R2, requires SQL Server 2008 R2 or a later version. A new
version of Report Builder is included with SQL Server 2012. For an
overview of the capabilities of Report Builder, see “Getting Started with
Report Builder” at http://technet.microsoft.com/en-
us/library/dd220460(SQL.110).aspx.

Earlier versions of Microsoft Dynamics AX provided the capability to
generate report models (.smdl files) that could be used to generate reports
with Report Builder 1.0. These .smdl models were based on a set of views,
called secure views, that were generated on top of the AX OLTP database.

AX 2012 no longer generates report models for ad hoc reporting with
Report Builder because Report Builder provides excellent capabilities for
creating reports with prebuilt cubes. Also, AX 2012 cubes provide a good
source of aggregate data. For step-by-step instructions about how to use
Report Builder with OLAP data, see “Create a report by using SQL Server
Report Builder to connect to a cube” at http://msdn.microsoft.com/en-
us/library/gg731902.aspx.

Developing reports with the Visual Studio tools for AX 2012
Reports developed by using Report Builder are ideal for scenarios in
which users require the capability to create reports for their own
consumption or for sharing within a group. However, if you want to create
an analytic report for broader consumption within the entire organization,
you might want to consider using Visual Studio tools.

Reports created with Report Builder have the following drawbacks
when used across the organization:

 They are developed in only one language. These reports cannot use
AX 2012 labels, and they cannot be rendered in other languages.

 They do not react to the AX 2012 security model.
 They lack debugging capabilities.
 They mix datasets from multiple data sources, such as Report Data
Providers (RDPs).

Most of the Role Center reports that extract aggregate data are sourced
with analytic datasets.

Developing an analytic report is no different from developing a standard
AX 2012 report by using Visual Studio tools. You define a report dataset
and then create a report design to consume the data. For more information

http://technet.microsoft.com/en-us/library/dd220460(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/gg731902.aspx

about creating a report, see Chapter 9 in this book and “Walkthrough:
Displaying Cube Data in a Report” at http://msdn.microsoft.com/en-
us/library/dd252605.aspx.

The remainder of this section examines the salient features of an
existing report that consumes analytic data. If you open the AR
Administrator Role Center, you will notice the Top Customers by YTD
Sales report. Start Visual Studio 2010 (the AX 2012 Visual Studio
reporting tools must be installed).

1. In Application Explorer, right-click the
CustTopCustomersbyYTDSales report, and then click Edit.

2. Expand the Data Sets node, and then expand the
TopCustomersYTDSales dataset.

The report model opens, as shown in Figure 10-35.

FIGURE 10-35 A report model.

The Query property displays the MDX query that was used to retrieve
the data. You can click the ellipsis button to open a window where you can
modify the MDX query. You can also execute the MDX query from this
dialog box (see Figure 10-36).

http://msdn.microsoft.com/en-us/library/dd252605.aspx

FIGURE 10-36 Query dialog box.

 Note

When you create an analytic report, unless you are an MDX
expert, you will probably want to develop the MDX query by
using an MDX editor, and then paste it into the Query dialog
box.

Notice that the data source is DynamicsAXOLAP, which indicates that
the data is sourced from the prebuilt BI solution. To find out which
database the data source points to, examine the properties of the Report
Datasources node in the AOT, as shown in Figure 10-37.

FIGURE 10-37 Report Datasources node in the AOT.

DynamicsAXOLAP points to the default cubes. This data source is
deployed to the SSRS server as a report data source when the report is
deployed. If the report was deployed from a development environment, the
report points to the development instance of cubes. If the report was
deployed from a test instance, it points to the corresponding cube instance.

To examine the properties of the data connection that is deployed to
SSRS, locate the DynamicsAXOLAP connection file in SSRS Report
Manager, and then open the file. You will see details about the data
connection, as shown in Figure 10-38. In an AX 2012 R2 or later
environment with multiple partitions, the framework resolves the
connections at run time.

FIGURE 10-38 The DynamicsAXOLAP data connection.

Notice that AX 2012 has its own data extension for accessing the cubes
that are included with AX 2012.

The “Adding a KPI to the KPI List web part” section earlier in this
chapter described how to switch the OLAP database so that the KPI List
web part points to a nondefault OLAP database. In that case, you were
able to change the SSAS server and the database that were designated as
the default. One important point to remember is that changing the default
SSAS database in the Analysis Servers form does not automatically
change the default destination of the DynamicsAXOLAP data source that
is used for reports.

You can change the data connection by using the following Windows
PowerShell command:
Click here to view code image

Set-AXReportDataSource -DataSourceName DynamicsAXOLAP -

ConnectionString

"Provider=MSOLAP.4;Integrated Security=SSPI;Persist

Security Info=True;Data

Source=[SSASServerName];Initial Catalog=[DatabaseName]"

You can also change the connection string in the data connection
deployed to the SSRS server by modifying the properties. However, keep
in mind that each time you deploy a report, it will be overwritten with the
data source connection in the AOT.

If you want to create analytic reports that point to a nondefault cube
database (for example, a cube database that you create by using the OLAP
framework), you must create your own report data source in the AOT. You
can use the same Windows PowerShell command that you use to change
the data connection. In this case, however, you should provide a new data
source name. For more information, see “Set-AXReportDataSource” at
http://technet.microsoft.com/EN-US/library/hh580547.

http://technet.microsoft.com/EN-US/library/hh580547

Chapter 11. Security, licensing, and configuration

In this chapter
Introduction
Security framework overview
Developing security artifacts
Validating security artifacts
Creating extensible data security policies
Security coding
Licensing and configuration

Introduction
AX 2012 introduces a new security framework that is based on a model of
role-based security. This framework is designed to make maintaining
security easier as the security needs of organizations evolve. It also
simplifies the process of implementing base-level security.

System administrators and developers each manage parts of the new
security system. Developers create and define the security artifacts that
provide access to securable objects. System administrators manage
security for users on an ongoing basis.

This chapter describes how the AX 2012 runtime implements security,
licensing, and configuration, and explains how they determine the portions
of the interface that the user sees and the data that the user can access. You
can use the security framework to create security artifacts that control
access to forms, reports, menus, and menu items. AX 2012 also introduces
a new extensible data security framework that lets you restrict access to
sensitive data at a granular level so that users see only the data they need
to perform their jobs. The licensing and configuration frameworks give
you the option to license application modules, thus providing access to
various application areas. You can also enable and disable functionality
independently of licensing by using configuration keys.

Security framework overview
The AX 2012 security framework consists of three layers: authentication,
authorization, and data security. Figure 11-1 provides a high-level
overview of the security architecture of AX 2012. The following sections

describe each layer in detail.

FIGURE 11-1 AX 2012 security framework.

Authentication
Authentication is the process of establishing the user’s identity. AX 2012
users can be authenticated in two ways. The first way is through the use of
Integrated Windows Authentication to authenticate Active Directory users.
This can be accomplished either by making a specific Windows user an
AX 2012 user, or by making an entire Active Directory group a user

within AX 2012. After the Active Directory group is added as a user
within AX 2012, any user who belongs to that Active Directory group can
access AX 2012. The ability to add an Active Directory group as a user
within Microsoft Dynamics AX is new for AX 2012.

The second way of authenticating a user is called flexible
authentication, which is also new in AX 2012. With flexible
authentication, a user can be authenticated to use the AX 2012 Enterprise
Portal web client without requiring Active Directory credentials. Flexible
authentication uses claims-based authentication to verify users in
Enterprise Portal.

After a user connects to AX 2012, the user’s authorization within the
system is determined. Authorization is discussed in the next section.

Authorization
Authorization, also referred to as access control, determines whether a user
is permitted to perform a given action. In the AX 2012 application,
security permissions are used to control access to individual elements of
the application: menus, menu items, action and command buttons, reports,
service operations, web URL menu items, web controls, and fields both in
the AX 2012 Windows client and in Enterprise Portal.

In AX 2012, the new security model follows the principles of role-based
access control. This security model is hierarchical; each element in the
hierarchy represents a different level of detail, starting with permissions:

 Permissions represent access to individual securable objects, such as
menu items and tables.

 Privileges are composed of permissions and represent access to
tasks, such as canceling payments or processing deposits.

 Duties are composed of privileges and represent parts of a business
process, such as maintaining bank transactions.

 Roles are composed of duties (and sometimes privileges) that
determine a user’s access to AX 2012. These roles correspond to
roles within an organization, such as an accountant or a human
resources manager.

Figure 11-2 shows the elements of role-based security and their
relationships.

FIGURE 11-2 Elements of role-based security.

The following sections explain the elements of the security model in
more detail.

Permissions
In the AX 2012 security model, permissions group together the securable
objects and access levels that are required to run a function. These include
any tables, fields, forms, or server-side methods that are accessed through
an entry point. Menu items, web content items, and service operations are
referred to collectively as entry points. Each function in AX 2012, such as
a form or a service, is accessed through an entry point.

Only developers can create or modify permissions. The “Developing
security artifacts” section later in this chapter explains in detail how to
modify permissions.

Privileges
A privilege specifies the level of access that is required to perform a job,
solve a problem, or complete an assignment. Privileges can be assigned
directly to roles. However, for easier maintenance, it is recommended that
only duties be assigned to roles.

A privilege contains permissions to individual application objects, such
as user interface elements and tables. For example, the Cancel payments
privilege contains permissions to the menu items, fields, and tables that are
required to cancel payments.

By default, privileges are provided for all features in AX 2012. A
system administrator can modify the permissions that are associated with a
privilege or create new privileges.

Duties

A duty is a group of privileges—or tasks—that corresponds to part of a
business process. A system administrator assigns duties to security roles. A
duty can be assigned to more than one role.

In the security model for AX 2012, duties contain privileges. For
example, the duty Maintain bank transactions contains the privileges
Generate deposit slips and Cancel payments. Although both duties and
privileges can be assigned to security roles, it is recommended that you use
duties to grant access to AX 2012. By doing so, you can use the
segregation of duties functionality explained in the next paragraph.

Security or policies might require that specific tasks be performed by
different users. For example, an organization might not want the same
person both to acknowledge the receipt of goods and to process payment to
the vendor. This concept is called segregation of duties. Segregation of
duties helps organizations reduce the risk of fraud, and it also helps detect
errors or irregularities. By segregating duties, an organization can better
comply with regulatory requirements, such as those from the Sarbanes-
Oxley Act of 2002 (SOX), International Financial Reporting Standards
(IFRS), and the US Food and Drug Administration (FDA). In AX 2012,
segregation of duties lets a system administrator specify the duties that
should always be segregated and should not overlap for a given user.

AX 2012 includes default duties. However, a system administrator can
modify the privileges that are associated with a duty or create new duties.
For more information, see the “Setting up segregation of duties rules”
section later in this chapter.

Process cycles
A business process is a coordinated set of activities in which one or more
participants consume, produce, and use economic resources to achieve
organizational goals. In the context of the security model, business
processes are called process cycles. To help the system administrator
locate the duties that must be assigned to roles, duties are organized by the
business processes that they belong to. For example, in the accounting
process cycle, you might find the Maintain ledgers and Maintain bank
transactions duties. Process cycles are used for organization only.

Security roles
AX 2012 uses role-based access control. In other words, access is not
granted to individual users; it is granted only to security roles. The security
roles that are assigned to a user determine the duties that the user can
perform and the parts of the user interface that the user can view.

AX 2012 provides the capability to track date-effective data by using
valid time state tables. A system administrator can also specify the level of
access that the users in a security role have to current, past, and future
records on such tables.

By managing access through security roles, system administrators save
time because they do not have to manage access separately for each user.
Security roles are defined once for all organizations.

A user can be assigned to a security role in several ways. One method is
to assign a user to a security role directly. A second method is by assigning
an Active Directory group to a role, which assigns all members of the
Active Directory group to that role. In addition, users can be assigned to
security roles automatically based on business data. For example, a system
administrator can set up a rule that associates a human resources position
with a security role. Any time that a user is assigned to that position, the
user is automatically added to the appropriate security role. This
functionality is called dynamic role assignment. Typically, a system
administrator assigns users to security roles.

Security roles can be organized in a hierarchy so that they can be
combined to create additional security roles. For example, the Sales
manager security role can be defined as a combination of the Manager
security role and the Salesperson security role. Instead of each security
role being defined individually, in a hierarchy, security roles can inherit
the permissions from other security roles and reuse them.

In the security model for AX 2012, duties and privileges are used to
grant access to the program. For example, the Sales Manager role can be
assigned the Maintain revenue policies and Review sales orders duties.

By default, sample security roles are provided. All functionality in AX
2012 is associated with at least one sample security role. A system
administrator can assign users to the sample security roles, modify the
sample security roles to fit the needs of the business, or create new security
roles.

 Note

The sample security roles do not correspond to Role Centers,
which are default home pages that provide an overview of
information that pertains to a user’s work, such as the user’s
work list, activities, frequently used links, and key business
intelligence information.

Data security
As mentioned earlier in this chapter, AX 2012 introduces a new security
framework, called the extensible data security framework (XDS), that you
can use to control access to transactional data by assigning data security
policies to security roles. Data security policies can restrict access to data,
based either on the effective date or on user data, such as the sales territory
or the organization that a user is assigned to.

 Note

Data security is separate from functional security, which is
achieved by using role-based security.

In addition to the XDS, you can use record-level security to limit access
to data that is based on a query. However, because the record-level
security feature is being deprecated in a future release of Microsoft
Dynamics AX, it is recommended that you use the XDS instead.

Additionally, AX 2012 has a table permissions framework to protect
data. The table permissions framework allows enforcement of data security
for specific tables by the Application Object Server (AOS). Explicit
authorization checks are performed when a user tries to access data related
to tables that are protected by the table permissions framework.

Developing security artifacts
Access to a securable object within AX 2012 is controlled through various
security artifacts such as permissions, privileges, duties, roles, and
policies. You can create and manage these artifacts by using the
Application Object Tree (AOT), as shown in Figure 11-3.

FIGURE 11-3 Security artifacts in the AOT.

Setting permissions for a form
You build security from the ground up, beginning at the form level. The
first step is to control access to the data in a form. When you save a form
in the AOT, AX 2012 automatically discovers all of the tables and other
items that the form accesses. This functionality is called auto-inference.
Auto-inference simplifies configuring table permissions. Based on tables
that are used in the form, create, read, update, and delete (CRUD)
permissions are set automatically for that form. The system automatically
adds or updates the Read, Update, Create, and Delete nodes in the AOT
under AOT\Forms\<FormName>\Permissions.

Figure 11-4 illustrates the set of permissions for the
AgreementClassification form.

FIGURE 11-4 Read permissions for the AgreementClassification form.

Auto-inference automatically sets the permissions properties for the data
sources, but you can also set the permissions for a data source manually.

For example, in the read permissions shown previously in Figure 11-4,
the properties for the AgreementClassification table are set by auto-
inference, as shown in Figure 11-5.

FIGURE 11-5 AgreementClassification table properties set by auto-inference.

The SystemManaged property is set to Yes. However, you can change the
EffectiveAccess property to something other than Read. In that case, the
SystemManaged property changes to No. This indicates to the security
framework that you have chosen to override manually the value set by
auto-inference, as shown in Figure 11-6.

FIGURE 11-6 AgreementClassification table properties set manually.

So far, this section has discussed individual permissions under the
Tables node. However, you can also set permissions for additional nodes,
such as Controls, Server Methods, and Associated Forms.

Note that in the same manner that you set up permissions for forms, you
can set permissions to read and write data under the Permissions node of
several AOT elements, including the following:

 Forms\<FormName>
 Parts\Info Parts\<InfoPartName>
 Reports\<ReportName>
 Web\Web Files\Web Controls\<WebControlName>
 Services\<ServiceName>\Operations\<OperationName>

An associated form comes into play when the parent form—which in
this example is the AgreementClassification form—contains a button that
opens another form. In such cases, you should add permissions so that the
associated form is accessible to users of the parent form. You can
accomplish this by referencing the associated form under the Associated
Forms node.

When a user has access to a form, by default, the user has access to all
of the controls on the form. You can override the default settings by
adding permissions nodes for individual controls. You can do this by using
the Controls node.

Setting permissions for server methods
If a server method is tagged with the attribute SysEntryPointAttribute,
users must have explicit access to that method. If such a server method is
invoked through a form, you can control access by adding the method to
the Server Methods node and explicitly setting the permission to Invoke.
Any role that provides access to that form through the appropriate
permission—in this example, read—also grants permission to the server

method.

Setting permissions for controls
When you develop a form, AX 2012 provides the capability to add
controls to the form as securable objects. These can either be data-bound
to the form or unbound. All data-bound controls are configured
automatically with security, whereas unbound controls can be managed
through code. Security in an unbound control, such as a menu function
button, is linked to the referenced object, and visibility is controlled
through permissions on the referenced object.

Creating privileges
After you specify permissions, the next step is to create privileges. As
mentioned earlier, a privilege is a set of permissions that provides access
to securable objects. By using auto-inferred table permissions and securing
menu items with privileges, you control access to the data in a form. The
following example (Figure 11-7) links the entry point to the form with the
associated permissions.

FIGURE 11-7 Linking a form with permissions.

In this example, the privilege AccountDisCustFreeInvoiceMaintain
contains an entry point, AccountingDistCustFreeInvoice. This is a menu
item that, in turn, points to a form. Note that in the properties, AccessLevel
is set to Delete. This implies that when a user accesses the form through
this particular menu item, the AX 2012 security framework will look under
the Permissions\Delete node for that form and grant access to the tables
that are listed under that node. This example illustrates how the system ties
together the privileges, entry points, and permissions and determines the
access that the user should have if the user has access to that privilege
through a security role.

A menu item provides an entry point for opening a form. Security
properties on the menu item control which sets of form permissions are

available to select when privileges are assigned to the menu item.
Each menu item has the following security properties:

 ReadPermissions
 UpdatePermissions
 CreatePermissions
 CorrectPermissions
 DeletePermissions

These properties refer to the nodes under AOT\Forms\
<FormName>\Permissions. For example, the UpdatePermissions property
refers to the node AOT\Forms\<FormName>\Permissions\Update.

Table 11-1 describes the values for these permission properties.

TABLE 11-1 Property values for create, update, read, and delete.

For example, if the ReadPermissions property on a menu item is set to
No, the menu item will not pick up the ReadPermissions property from the
form that the menu item references. You can use this method to add a
permission to a menu item without affecting the permissions to securable
objects that are available through that menu item. This helps restrict the
permissions that a system administrator can issue for the menu item when
assigning it to a privilege.

In some situations, a menu item points to a class or a service operation
directly. In this case, you would need to link to a class, which itself is not
associated with any permissions. In such cases, you need to use a code
permission. A code permission is a group of permissions that are
associated with a menu item or a service operation. If you want to run code
directly through a menu item, you must set a code permission for it. Code
permissions are also represented as a node within the AOT. When a
security role grants access to a menu item, the role also has access to other
AOT items that are listed within the code permission for the menu item.
The access level is controlled by the permissions that are set under the

Code Permissions node.
AX 2012 uses the concept of a permission union. If multiple

permissions are specified for the same object through multiple privileges
and roles, the access on the object is the result of the union of those
permissions. For example, if one privilege provides read access to a table
and another privilege provides delete access to the same table, and both of
them belong to a security role, a user who is assigned to the security role
will get delete access to the table.

Assigning privileges and duties to security roles
After you generate permissions for the various securable objects, you grant
access to those securable objects through security roles. The first step is to
create privileges, as described in the previous section. You can then either
incorporate these privileges into duties or directly assign them to security
roles.

In Figure 11-8, the privilege AccountingDisCustFreeInvoiceMaintain
contains the entry point AccountingDistCustFreeInvoice.

FIGURE 11-8 A privilege containing an entry point.

The entry point is associated with an access level that is specified in the
properties (Figure 11-9). Note that in this case, the access level is set to
Delete. This implies that when the user accesses the entry point, the system
will look in the Permissions\Delete node for the form that the entry point
opens.

FIGURE 11-9 Properties for an entry point.

Although it is not mandatory that a privilege be assigned to a security
role through a duty, doing so lets the system administrator maintain the
privileges through a higher level of abstraction and lets the system
administrator use segregation of duties to meet segregation of duties
requirements.

In Figure 11-10, the CustInvoiceCustomerInvoiceTransMaintain duty
contains the AccountingDisCustFreeInvoiceMaintain privilege.

FIGURE 11-10 A duty that contains privileges.

Continuing with the example, notice how the
CustInvoiceCustomerInvoiceTransMaintain duty is present within the
CustInvoiceAccountsReceivableClerk role in Figure 11-11.

FIGURE 11-11 Duties within a security role.

 Note

For more information about security, see “Role-based
Security in the AOT for Developers” at
http://msdn.microsoft.com/en-us/library/gg847971.

http://msdn.microsoft.com/en-us/library/gg847971

Using valid time state tables
A valid time state table helps you simplify the maintenance of data for
which changes must be tracked at different points in time. For example,
the interest rate on a loan might be 5 percent for the first year and 6
percent for the second year. During the second year, you still want to know
that the rate was 5 percent during the previous year.

You can set the ValidTimeStateFieldType property on a table in the
AOT to make the table a valid time state table. Setting this property causes
the system to automatically add ValidFrom and ValidTo columns, which
track a date range in each row. The system guarantees that the values in
these date or date-time fields remain valid by automatically preventing
overlap among date ranges. Data tracked by this type of table is referred to
as date effective.

Properties on security roles control access to date-effective tables. In the
AOT, you can set the properties PastDataAccess, CurrentDataAccess, and
FutureDataAccess. By default, these properties are set to Delete, which, in
effect, means that the tables are not date effective. However, if one of
these properties is set to a value other than Delete, the property specifies
the level of data access for the tables with date-effective fields that are
secured by the security role. For example, if a table typically has edit
access within the security role, and you set the PastDataAccess property to
View, the user can edit current and future data but can only view past data.

Validating security artifacts
After you implement data security, you’ll want to make sure that the
changes are accurate. The testing process consists of the following steps:

1. Create users.
2. Assign users to roles.
3. Set up segregation of duties rules.

After you complete the steps in this section, start the AX 2012 client as
a test user assigned to the appropriate security role (or roles) and ensure
that the functional security scenarios work as expected.

Creating users
AX 2012 users are either internal employees of your organization or
external customers and vendors who require access to AX 2012 for their
jobs. Any individual who must access AX 2012 must be added to the list
of AX 2012 users in the Users form (System Administration > Common >

Users > Users).
Among other options on the form is a field called Account Type. You

must select whether the user or group is authenticated by Active Directory
or by a claims-based authentication provider. For Active Directory, the
choices are between adding an individual Active Directory user or adding
an Active Directory group as a user.

Assigning users to roles
After you create a user within the system, you can assign the user to a
security role, either manually or automatically.

You can set up rules for automatic role assignment to guarantee that role
membership is based on current business data. If you use automatic role
assignment, permissions are updated automatically when people change
jobs in an organization. Rules for automatic role assignment run at a fixed
interval by using the batch framework. As part of setting up the rule, you
specify a query from the list of queries in the AOT to use as a basis for the
rule. For more information, see Chapter 18, “Automating tasks and
document distribution.”

You can assign roles manually when role membership cannot be based
on data in AX 2012. For example, you can assign roles manually if an
employee goes on vacation and another employee must perform that
employee’s duties temporarily. Users who are assigned to security roles
manually must also be removed manually by the system administrator.
These users are not removed from roles by rules for automatic role
assignment.

Setting up segregation of duties rules
As mentioned earlier in this chapter, security or policies might require that
specific tasks be performed by different users. In AX 2012, when two
duties in the same role conflict, or when a user is assigned to two roles that
contain conflicting duties, the conflict is logged. You must approve or
reject each assignment that causes a conflict. For more information, see
“Identify and resolve conflicts in segregation of duties” at
http://technet.microsoft.com/en-us/library/hh556858.aspx.

Creating extensible data security policies
Within any enterprise, some users are restricted from working with certain
sensitive data because of confidentiality, legal obligations, or company
policy. In AX 2012, authorization for access to sensitive data is managed

http://technet.microsoft.com/en-us/library/hh556858.aspx

through the XDS. By using the XDS, you can secure data in tables so that
users can access only the subset of rows in a table that is allowed by a
given policy.

Common uses of extensible data security include the following
 Allowing sales clerks to see only the accounts they manage
 Prohibiting financial data from appearing on forms or reports for a
specific security role

 Prohibiting account details or account IDs from appearing on forms
or reports for a specific security role

XDS is an evolution of the record-level security (RLS) that was
available in earlier versions of Microsoft Dynamics AX. Data security
policies are enforced on the server tier. This means that XDS policies,
when deployed, are enforced, regardless of whether data is being accessed
through the AX 2012 client forms, Enterprise Portal webpages, Microsoft
SQL Server Reporting Services (SSRS) reports, or .NET services.
Additionally, by using the new framework, you can create data security
policies that are based on data that is contained in a different table.

Data security policy concepts
Before developing a data security policy, you need to become familiar
with several concepts, such as constrained tables, primary tables, policy
queries, and context. This section outlines these concepts. Subsequent
sections use these concepts to illustrate how they work together to provide
a rich policy framework. Following is a description of these concepts:

 A constrained table is a table in a security policy from which data is
filtered or secured, based on the associated policy query. For
example, in a policy that secures all sales orders based on the
customer group, the SalesOrder table would be the constrained table.
Constrained tables are always explicitly related to the primary table
in a policy.

 A primary table is used to secure the content of the related
constrained table. For example, in a policy that secures all sales
orders based on the customer group, the Customer table would be the
primary table. The primary table can also be the constrained table.

 A policy query is used to secure the constrained tables specified in an
extensible data security policy. This query returns data from a
primary table that is then used to secure the contents of the
constrained table.

 A policy context is a piece of information that controls the
circumstances under which a given policy is applicable. If this
context is not set, the policy, even if enabled, is not enforced.
A policy context can be one of two types: a role context or an
application context. A role context enables the policy to be applied
based on the role or roles to which the user is assigned. An
application context enables a policy to be applied based on
information set by the application.

Developing an extensible data security policy
Developing an extensible data security policy involves the following steps:

1. Modeling the query on the primary table
2. Creating the data security policy artifact in the AOT
3. Adding the constrained tables and views
4. Setting the policy context

Figure 11-12 shows how the VendProfileAccount policy is represented
within the AOT. Security policies appear under the Security\Policies node.

FIGURE 11-12 Security policy in the AOT.

Figure 11-13 shows the properties for this policy.

FIGURE 11-13 Properties for a security policy.

Note how the following properties are set on the policy in Figure 11-13:
 The PrimaryTable property is set to VendTable.
 The Query property is set to VendProfileAccountPolicy. A policy
query is defined in the AOT and can use all of the functionality
provided by AOT queries. You model the query with the primary
table as the first data source and add more data sources as required.
In this example, the additional data sources are defined by the
Vendor data model.

 The Operation property is set to Select. A policy query could be
added to the WHERE clause (or ON clause) on all SELECT,
UPDATE, DELETE, and INSERT operations involving the specified
constrained tables. In this case, the policy will be enforced only on
SELECT statements.

 The PolicyGroup property is set to Vendor Self Service. You use this
property to identify groups of related policies. There is no run-time
usage of this property.

 The ConstrainedTable property is set to Yes, which indicates that the
primary table is to be secured by using this policy. This means that
the table from which data is filtered or secured is the same table
specified in the PrimaryTable property. If this property is set to No,
the policy is not enforced on the primary table. You can specify
other constrained tables for the policy, independent of this property.

 The Enabled property is set to Yes, indicating that the policy will be
enforced at run time.

 The ContextType property is set to RoleProperty, indicating that the

policy is to be applied only if the user is a member of one of a set of
roles that have the ContextString property set to the same value. In
this example, the ContextString property value is set to
PolicyForVendorRoles. If any security roles in the AOT have their
ContextString property set to PolicyForVendorRoles, the policy will
be applied if a user belongs to those roles. Besides RoleProperty, the
ContextType property can also be set to ContextString or RoleName.
ContextString indicates that you have to specify a value for the
ContextString property. The security policy uses a specific
application context for the policy. The RoleName property indicates
that the security policy applies only to the user assigned to the value
of RoleName.

Complex and normalized data models can lead to queries with a large
number of joins, which can affect performance. However, in many cases, a
significant portion of the policy query retrieves static data, such as the
legal entities for the user and the departments to which the user belongs.
The XDS provides a way by which this static data can be retrieved less
frequently (ranging from once each time the table is accessed to once for
each client session) and then reused in subsequent policy applications.
This mechanism is called extensible data security constructs.

Extensible data security constructs are tables of type TempDB that are
populated according to the RefreshFrequency system enumeration value of
that table (PerSession or PerInvocation). They exist in the AOT under the
Data Dictionary\Tables node.

Figure 11-14 shows an example of an extensible data security construct.

FIGURE 11-14 An extensible data security construct.

The temporary table that is used for the extensible data security
construct is written by using a table method named XDS. You can use this
method to write X++ logic to populate the temporary table. In Figure 11-
14, MyLegalEntitiesForRole is the extensible data construct that is
populated by using the XDS method. The logic within the method
populates the table with the legal entities that a given user has access to in
the context of a role. The HcmXdsApplicantLegalEntity query is an
example of a policy query that uses the MyLegalEntitiesForRole construct.
The HcmXdsApplicantLegalEntity query involves joins among four data
sources. The fourth data source is the MyLegalEntitiesforRole construct,
which encapsulates several joins. If this XDS method sets the frequency to
PerSession, this TempDB table will be populated the first time this table is
referenced in any query at run time. If an extensible data security construct
was not used, this query would have involved joins across four more tables
on every policy application—a significant performance overhead. In this
scenario, using an extensible data security construct converts a policy
query with seven or more joins into a policy query with four joins—a
significant performance gain.

Debugging extensible data security policies
One of the common issues reported when a customer deploys a new
extensible data security policy is that an unexpected number of rows are

returned from a constrained table.
The XDS provides a method for debugging problems such as this. The

X++ select query has been extended with the generateonly command,
which instructs the underlying data access framework to generate the SQL
query without actually executing it. You can retrieve the generated query
by using simple method calls.

The following job runs a select query on the SalesTable table with a
generateonly command. It then calls the getSQLStatement method on the
SalesTable table and generates the output by using the info method.
Click here to view code image

static void VerifySalesQuery(Args _args)

{

SalesTable salesTable;

XDSServices xdsServices = new XDSServices();

xdsServices.setXDSContext(1, '');

//Only generate SQL statement for custGroup table

select generateonly forceLiterals CustAccount, DeliveryDate

from salesTable;

//Print SQL statement to infolog

info(salesTable.getSQLStatement());

xdsServices.setXDSContext(2, '');

}

The XDS further eases the process of advanced debugging by storing
the query in a human-readable form. This query and others on a
constrained table in a policy can be retrieved by using the following
Transact-SQL (T-SQL) query on the database in the development
environment (AXBDEV in this example):
Click here to view code image

SELECT [PRIMARYTABLEAOTNAME], [QUERYOBJECTAOTNAME],

[CONSTRAINEDTABLE], [MODELEDQUERYDEBUGINFO],

[CONTEXTTYPE],[CONTEXTSTRING],

[ISENABLED], [ISMODELED]

FROM [AXDBDEV].[dbo].[ModelSecPolRuntimeEx]

The query results are shown in Figure 11-15.

FIGURE 11-15 Results from a query on a constrained table.

As you can see in Figure 11-15, the query that will be appended to the
WHERE clause of any query to the AssetBook table is available for
debugging. Other metadata, such as LayerId, is also available if needed.

When developing policies, keep the following principles in mind:
 Follow standard best practices of developing efficient queries. For
example, create indexes on join conditions.

 Reduce the number of joins in the query. Complex and normalized
data models can lead to queries with a large number of joins.
Consider changing the data model or adopting patterns such as
extensible data security constructs to reduce the number of joins at
run time.

Note that when multiple policies apply to a table, the results of the
policies are concatenated with AND operators.

Security coding
This section covers the Trustworthy Computing features of AX 2012,
focusing on how they affect security coding. This section describes the
table permissions framework, code access security (CAS), and the best
practice rules for ensuring that the code avoids a few common pitfalls
related to security.

Table permissions framework
The table permissions framework provides security for tables that are
located in the database and available through the AOT. The
AOSAuthorization property on a table (see Figure 11-16) specifies the
operations that must undergo authorization checks when a given user
accesses the table.

FIGURE 11-16 The property sheet for a table.

The AOSAuthorization property is an enumeration. Table 11-2 lists its
possible values.

TABLE 11-2 AOSAuthorization property values.

In addition to the AOSAuthorization property, you can add rules for
validation by using the following table methods:

 aosValidateDelete
 aosValidateInsert

 aosValidateRead
 aosValidateUpdate

 Note

The preceding methods affect performance. All database
operations are downgraded to row-by-row operations when
these methods are used.

AX 2012 also introduces a new class for authorization checks. Use the
SysEntryPointAttribute class to indicate which authorization checks are
performed for a method that is called on the server. When you use this
attribute to decorate a method, an authorization check occurs when the
class method executes on the server tier.

Additionally, you can add further checking on the basis of the value
used in the constructor of the SysEntryPointAttribute class, as described in
Table 11-3.

TABLE 11-3 SysEntryPointAttribute constructor values.

AX 2012 also provides the capability to perform server-side trimming.
On tables whose AOSAuthorization property is set to
CreateReadUpdateDelete, the AOSAuthorization property on individual
fields can be set to Yes or No. The default value of this property is No. A
value of Yes indicates that authorization checks are performed on read and
write operations on the field.

If the AOSAuthorization property is set to Yes for a field and the user
does not have access to the field, the value of the field is not returned to
the user. This enforces server-side trimming of the data.

Code access security framework
The code access security framework provides methods that can secure
application programming interfaces (APIs) against invocation attempts by
untrusted code (code that doesn’t originate in the AOT). You can make an
API more secure by extending the CodeAccessPermission class. A class

that is derived from the CodeAccessPermission class determines whether
code accessing an API is trusted by checking for the appropriate
permission.

To secure a class that executes on the server tier, follow these steps:
1. Either derive a class from the CodeAccessPermission class, or use

one of the following derived classes that are included with AX 2012
and skip to step 6:
• ExecutePermission
• FileIOPermission
• InteropPermission
• RunAsPermission
• SkipAOSValidationPermission
• SqlDataDictionaryPermission
• SqlStatementExecutePermission
• SysDatabaseLogPermission

2. Create a method that returns the class parameters.
3. Create a constructor for all of the class parameters that store

permission data.
4. To determine whether the permissions required to invoke the API

that you are securing exist, override the
CodeAccessPermission.isSubsetOf method to compare the derived
permission class to CodeAccessPermission. The following code
example shows how to override the
CodeAccessPermission.isSubsetOf method to determine whether
permissions stored in the current object exist in _target:

Click here to view code image

public boolean isSubsetOf(CodeAccessPermission _target)

{

 SysTestCodeAccessPermission sysTarget = _target;

 return this.handle() == _target.handle();

}

5. Override the CodeAccessPermission.copy method to return a copy
of an instance of the class created in step 1. This helps to prevent the
class object from being modified and passed to the API being
secured.

6. Call the CodeAccessPermission.demand method before executing
the API functionality that you are securing. The method checks the

call stack to determine whether the permission that is required to
invoke the API has been granted to the calling code.

When you secure an API by using this procedure, you must call the
assert method in the derived class prior to invoking the API. Otherwise,
the exception::CodeAccessSecurity exception is thrown.

Best practice rules
The Best Practices tool can help you validate your application logic and
ensure that it complies with the Trustworthy Computing initiatives. The
rules that apply to Trustworthy Computing are grouped under General
Checks\Trustworthy Computing in the Best Practice Parameters dialog
box, as shown in Figure 11-17. The Best Practice Parameters dialog box is
accessible from the Development Workspace: on the Tools menu, point to
Options > Development, and then click Best Practices.

FIGURE 11-17 The Best Practice Parameters dialog box with Trustworthy
Computing rules.

For more information about the Best Practices tool, see Chapter 2, “The
MorphX development environment and tools.”

Security debugging
To assist with debugging security constructs, shortcut menus are available

in the AOT on some security nodes to help you find objects and roles that
are related to a particular security construct. Depending upon where you
are looking in the security hierarchy (shown earlier in Figure 11-2), you
have the option to view items up or down the hierarchy. For example, for a
given duty, you can see all of the roles that the duty belongs to and all of
the related privileges and other security objects that are contained within
the duty. You can use this information to debug issues related to access
levels of various securable objects.

Here is an example of how you can use this feature for a duty:
1. In the AOT, expand Security\Duties.
2. Right-click any duty node, point to Add-Ins > Security Tools, and

then click either View Related Security Objects or View Related
Security Roles.

3. Examine the rows in the grid control on the form that is displayed.
Figure 11-18 shows an example of the form that is displayed when
you click View Related Security Objects for a node under
AOT\Security\Roles.

FIGURE 11-18 Security objects for a role.

Note that when you view the related security objects for a role, you also
have the option to view the effective access (as highlighted in Figure 11-
18) that the role provides to the objects that the role is securing. For
example, if the role grants read access to a table through one privilege and
delete access through another, the effective access on the table is delete.
Therefore, the View Effective Access Results option would list that table
with delete permissions.

Table 11-4 lists the menu options that are available for various AOT
artifacts. The leftmost column of the table lists the nodes that appear in the
AOT. The other columns list the menu options.

TABLE 11-4 Menu options for security artifacts.

You can debug standard X++ code in the X++ debugger if you are a
member of the System Administrator role in AX 2012. However, you
cannot debug issues related to security roles when running AX 2012 as a
system administrator, because starting the AX 2012 client as a system
administrator does not limit the functional security to the security role that
you are attempting to debug.

To work through a scenario like this, choose a user who is a member of
the System Administrator role, assign the role that you want to debug (such
as Accountant) to that user, and then follow these steps:

1. Close all instances of AX 2012.
2. Open the Development Workspace.
3. Open another instance of the AX 2012 client.
4. Add the role that you want to test to your AX 2012 user ID:

a. In System Administration, point to Common > Users > Users.
b. Double-click your user ID to open the details page about your

account.
c. Assign the security role that you want to test to your user ID.

5. Close AX 2012.
6. In the Development Workspace, set breakpoints in the X++ code

that you want to debug.

7. Create a job, add the following line, and then execute the job:
Click here to view code image

SecurityUtil::sysAdminMode(false);

8. In the Development Workspace, press Ctrl+W to open the
application workspace.

You have now opened the client with the permissions of the security
role that you want to test and can debug the X++ code.

 Note

This procedure works for the client, but not for Enterprise
Portal or for code executed by using the X++ RunAs API.

To set your environment back to the System Administrator role, update
the job you created in step 7 with the value set to true:
Click here to view code image

SecurityUtil::sysAdminMode(true);

By using these steps, you can debug the application while starting it in a
mode that simulates its functionality for the role that you want to debug.

Licensing and configuration
AX 2012 introduces a new licensing model called Named User license.
This licensing model provides a simplified way for an organization to
license Microsoft Dynamics AX. In AX 2009, business-ready, module-
based, and concurrent user licensing models were available for customers.
These licensing models no longer apply to AX 2012. Instead, the
following models have been introduced:

 Server license Includes one AOS instance. Additional AOS
instances are available by purchasing additional server licenses.

 User Client Access License (CAL) Gives a named user access
rights to certain capabilities from any number of devices. There are
four types of CALs (see the section “Types of CALs” later in this
chapter). You can view the user licenses used in the product through
a report in System Administration > Reports > Licensing > Named
User License Counts.

 Device CAL Covers one instance of a device.

 Note

The intention of this section is to give you a solid overview of
the concepts of license keys, configuration keys, and client
access license types for development purposes. For more
information about pricing and licensing requirements, see the
“Microsoft Dynamics AX 2012 6.1 Licensing Guide” at
http://www.microsoft.com/en-us/download/details.aspx?
id=29859.

Even though the software no longer uses module-based licensing, it is
still locked with license codes (sometimes referred to as license keys or
activation codes). License codes are used to activate the AX 2012 software
and feature sets that are available in the product. License codes are
different from license entitlements (what you are entitled to run and use is
based on the Named User licenses that you have acquired). When you
acquire a license file for activating the software through Microsoft or a
partner, license keys for all feature sets are provided by default. However,
the number of users who are allowed to use the product and the type of
access that those users are entitled to are based on Named User licenses.

Unlocking a license code is the first step in configuring AX 2012,
because the license code references the configuration key that unlocks a
feature set. You can enter the license code by using the License
Information form, shown in Figure 11-19, which you access from System
Administration > Setup > Licensing > License Information.

http://www.microsoft.com/en-us/download/details.aspx?id=29859

FIGURE 11-19 License Information form.

You enter the license codes manually or import them by clicking Load
License File. Microsoft supplies all license codes and license files that are
available for a particular release.

License codes are validated individually based on the license holder
name, the serial number, the expiration date, and the license code being
entered or imported. The validation process either accepts the license code
(and updates the status field with counts, names, or OK) or displays an
error in the Infolog form.

 Note

Standard customer licenses do not contain an expiration date.
Licenses for other uses, such as evaluation, independent
software vendor (ISV) projects, education, and training, do
include an expiration date. When a license reaches its
expiration date, the system changes execution mode and
becomes a restricted demo product.

License codes are divided into five groups—System, Access Licenses,

Feature Sets, Partner Feature Sets, and Languages—each based on the type
of functionality it represents, as shown in Figure 11-19. The license codes
are created in the AOT, and the grouping is determined by a license code
property. The Partner Feature Sets tab lets partners include licensed
partner modules. The licensing framework can also track dependencies
among various license codes. A license code can have up to five
prerequisites. Adding a prerequisite for a license code prevents users from
removing license codes and disabling feature sets that another feature
depends on.

Configuration hierarchy
License codes are at the top of the configuration hierarchy, which is the
entry point for working with the configuration system that surrounds all of
the application modules and system elements that are available within AX
2012. The configuration system is based on approximately 300
configuration keys that enable and disable functionality in the application
for the entire deployment. Each configuration key controls access to a
specific set of functions; when a configuration key is disabled, its
functionality is removed automatically from the user interface (note that
the database schema is not modified, unlike in AX 2009). The AX 2012
runtime renders presentation controls only for items that are associated
with the active configuration key or items that are not associated with any
configuration key.

The relationship among license codes, configuration keys, and feature
sets is hierarchical. An individual license code not only enables a variety
of configuration keys, but it also hides configuration keys and their
functions throughout the entire system if the associated license code is not
valid or not provided. Hiding configuration keys with unavailable license
codes reduces the configuration complexity. For example, if a license code
is not entered or not valid in the License Information form, the
Configuration form hides configuration keys associated with it and
displays only the valid license codes and the configuration keys that
depend on them. Figure 11-20 shows a typical configuration hierarchy for
implementations.

FIGURE 11-20 Configuration hierarchy.

Configuration keys
The application modules and the underlying business logic that license
codes and configuration keys enable are available when AX 2012 is
deployed. By default, all license codes are enabled; however, only minimal
sets of configuration keys are enabled. During setup, system administrators
should enable additional configuration keys as required. Within the
product, everything from forms, reports, and menus to the Data Dictionary
are always present, existing in a temporary state until those feature sets are
enabled.

When you enable a configuration key, the feature set associated with
that configuration key is enabled. This means that appropriate menu items,
submenu items, tables, buttons, and fields are enabled when the
configuration key is enabled. A user has access only to those areas that the
system administrator has granted access to through security roles and that
have been enabled by the configuration key. The parent configuration keys
shown in Figure 11-20 are associated with a license code. Removing the
license code disables those parent and child configuration keys. If the
license code is not disabled, system administrators can enable or disable
child configuration keys, thus enabling or disabling the feature sets that
they represent.

 Note

Parent configuration keys can exist without an attached
license code. These are available for a system administrator to
enable or disable at all times from within the Configuration

form (Figure 11-21). However, parent configuration keys that
are associated with a license code can be disabled only from
the License Information form.

FIGURE 11-21 License Configuration form.

Consider a more detailed example in which a company wants most of
the functionality in the Trade feature set but doesn’t do business with other
countries/regions. The company, therefore, chooses to not enable the
Foreign Trade configuration key, which is a child of the Trade
configuration key.

By using the configuration key flow chart shown in Figure 11-22, a
system administrator can determine whether a configuration key is
enabled, and if not, what it would take to enable it, which depends on the
configuration key’s parent.

FIGURE 11-22 Configuration key flow chart.

Using configuration keys
An important part of the application development process is mapping
extensions to configuration keys that integrate the extensions into the
complete solution. Correctly using configuration keys throughout the
system can make enterprise-wide deployments flexible and economical,
with divisions, regions, or sites all using the same deployment platform
and customizing local deployments by using configuration keys rather than
by developing specific customizations for each installation. You can’t
entirely avoid individualized development, however, because of the nature
of businesses and their development needs.

Configuration keys affect the Data Dictionary, the presentation, and the
navigation infrastructure directly, meaning that you can reference a
configuration key property on all relevant elements. Table 11-5 lists the
elements that can be directly affected by configuration keys.

TABLE 11-5 Configuration key references.

Types of CALs
The new licensing model, Named User license, provides customers with
the ability to use all of the feature sets but provides pricing that is based on
the number of users who are using a particular feature instead of pricing
that is based on whether a particular module is enabled. In this licensing
model, there are four tiers of CALs. Customers are required to comply
with the Microsoft licensing terms based on the access rights granted to
each user. The following four tiers (user types) are available, listed from
the highest to the lowest level of access (with sample activities):

 Enterprise Drives the business and manages processes across the
organization

 Functional Manages a business cycle within a division or business
unit

 Task Performs tasks to support a business process or cycle
 Self-serve Manages his or her own personal data within the system

All predefined security roles that are included with AX 2012 belong to
one of these four user types, thus giving you the flexibility to license users
based on how they are likely to use and derive value from the solution.

The CAL (or user type)–to-security-role mapping is accomplished by
first setting the menu item properties ViewUserLicense and

MaintainUserLicense with appropriate user type enumeration. Then,
through the security hierarchy, the highest level of user type is evaluated,
which essentially becomes the effective user type for the role, as shown in
Figure 11-23.

FIGURE 11-23 Security hierarchy and user types.

 Note

Typically, only Microsoft uses Named User licenses in AX
2012 to determine the licensing requirements for a customer.
This section provides developers with insights into the
potential impact that customization might bring to licensing. It
is recommended that partners and customers do not modify
these values.

As shown in Figure 11-23, AX 2012 maps a set of menu items to
predefined roles by using the security hierarchy. The properties of those
menu items are also set with one of the four user type values. Each user
type value provides the rights to perform actions that only that user type
can perform. The user type that is required for a given user is determined

by the highest type level among menu items to which that individual has
access. For example, to add new workers (access the
HcmWorkerNewWorker menu item), the Functional user license is
required. Thus, the privilege HCMWorkerEdit has an effective user type of
Functional, even though it contains the menu item HcmWorker, which is
of type Task. Similarly, the highest level of user type flows through the
security hierarchy and eventually becomes the effective user type for the
role. In this example, the Functional user type is the highest type within
the Human Resource Assistant role, so the user assigned to the role
requires a Functional user license. That user also has license rights to
perform actions that are designated to lower user types (such as Task or
Self-serve).

Customization and licensing
Given that AX 2012 uses a security hierarchy and menu items to determine
licensing requirements, there are several situations in which customization
might affect these requirements.

Changing menu items associated with a role
Each menu item that is included with AX 2012 is tagged with the
appropriate user type. Changing these properties in a higher development
layer is intentionally disabled. However, you are free to customize
privileges or roles where menu items appear. When a predefined menu
item is moved to a different role, that role might require a higher user type.
For example, if a menu item tagged with the Enterprise user type is moved
into a role that previously only required a Functional user type, the role
would require an Enterprise user type going forward. If the menu item is
moved into a role requiring an equal or higher user type, there is no
impact.

Changing security artifacts associated with a role
Similarly, if privileges, duties, or roles containing menu items with
different user types are moved from one security role to another, the user
type for the role might be affected. If a privilege that previously had menu
items with a user type as high as the Functional user type is moved into a
role with the Task user type, the customized role would require a
Functional user type license.

 Note

When you add new menu items in ISV development layers or
higher layers, the system allows you to change the
ViewUserLicense and MaintainUserLicense properties of the
menu item. Be aware that specifying license types in custom
menu items might affect licensing requirements for
customers. It is recommended that customers and partners not
assign any license values to these properties. Also, changing
menu item properties to a lower user type is intentionally
disabled if the menu item was previously created in the lower
development layers.

Chapter 12. AX 2012 services and integration

In this chapter
Introduction
Types of AX 2012 services
Consuming AX 2012 services
The AX 2012 send framework
Consuming external web services from AX 2012
Performance considerations

Introduction
After your company deploys AX 2012, you can benefit from automating
your business processes. But to realize the full potential of AX 2012 and
get the maximum return on investment (ROI) from your deployment, you
should also consider automating interactions between AX 2012 and the
other software in your company and in the companies of your trading
partners.

In many business scenarios, external software applications require
access to information that is stored in AX 2012. Figure 12-1 shows a few
scenarios in which users access information that is managed in AX 2012 to
accomplish a business task. It also shows sample scenarios in which AX
2012 accesses information that is managed in external applications. The
arrows indicate the direction in which requests flow.

FIGURE 12-1 Common integration scenarios.

You can see in Figure 12-1 that the users on the left side use

applications that interact with the AX 2012 data store. These applications
send request messages to AX 2012 (for example, to read a sales order).
Sometimes, a response is expected from AX 2012—in this example, the
requested sales order document.

In all of these scenarios, another software application exchanges
information with AX 2012 to accomplish a task:

 The company’s CEO uses an interactive application (such as a
Microsoft Office application) to analyze sales data that is stored in
AX 2012. The application communicates with AX 2012 on behalf of
the CEO.

 A salesperson who is visiting a prospect’s site uses a webpage or a
mobile application to create a new customer account and then takes
the first sales order in AX 2012 from a remote location.

 A sales processor enters a sales order and uses customer records that
are stored in a customer relationship management (CRM) application
to populate the customer section of the order in AX 2012.

 Trading partners submit sales orders as electronic documents, which
need to be imported into AX 2012 periodically.

 An accountant sends electronic payments or invoices to trading
partners.

Performing these tasks manually without programmatically integrating
AX 2012 with other applications and business processes doesn’t scale well
and is error prone. With the AX 2012 services framework, you can
encapsulate business logic—for example, functionality to create sales
orders—in AX 2012 services. You can then publish these services through
the Application Integration Framework (AIF). These services can
participate in a service-oriented architecture (SOA).

 Note

SOA is a significant area of software development. A
complete discussion of SOA is outside the scope of this book.
Good information is available about SOA, including the
Organization for the Advancement of Structured Information
Standards (OASIS) specification, “Reference Model for
Service Oriented Architecture 1.0,” and the book, Service-
Oriented Architecture: Concepts, Technology, and Design, by
Thomas Erl (Pearson Education, Inc., 2005).

The AX 2012 service framework provides a toolset for creating,
managing, configuring, and publishing AX 2012 services so that the
business logic encapsulated in the service can be easily exposed through
service interfaces. All service interfaces that are published through the AX
2012 service framework are compliant with industry standards and are
based on core Microsoft technologies, including the software development
kit (SDK) for Windows Server, Microsoft .NET Framework, Windows
Communication Foundation (WCF), and Message Queuing (also known as
MSMQ).

In addition to the programming model and tools for implementing
services, the AX 2012 service framework includes the following:

 A set of system services and document services that are included
with AX 2012 and are ready for use

 A set of features for manipulating inbound and outbound messages,
such as support for transformations, value substitutions, and so on

 An extensible integration framework that supports building new AX
2012 services and publishing them through a set of transport
protocols such as Message Queuing, file, HTTP, or Net.tcp

 Note

The concept of service references has been removed as of AX
2012.

Publishing AX 2012 services is a simple task that an administrator can
do at run time. After a service has been published, external client
applications, or service clients, can consume it.

 Note

This chapter discusses configuration and administration tasks
only where necessary to help you better understand the
development scenarios. For additional details and code
samples, see the AX 2012 “System administrators”
documentation on TechNet (http://technet.microsoft.com/en-
us/library/gg731797.aspx) or the AX 2012 Developer Center
on MSDN (http://msdn.microsoft.com/en-
us/dynamics/ax/gg712261).

http://technet.microsoft.com/en-us/library/gg731797.aspx
http://msdn.microsoft.com/en-us/dynamics/ax/gg712261

Types of AX 2012 services
AX 2012 recognizes three types of services—system services, custom
services, and document services—each with its own programming model.
AX 2012 publishes metadata about available services and their capabilities
in the form of Web Services Description Language (WSDL) files, which
can be used for automatic proxy generation. The following sections
explain each type of service in more detail.

System services
AX 2012 system services are generic, infrastructural services that are not
tied to specific business logic. System services are included with AX 2012
and are automatically deployed, so AX 2012 components and external
components can assume that these services are always available.

The functionality published by system services is often used by
interactive clients that need to inquire about the capabilities or
configuration of a specific deployment at run time. System services and
their interfaces are not intended to be modified or reconfigured; they can
only be hosted on the Application Object Server (AOS) and cannot be
invoked through asynchronous transport mechanisms such as Message
Queuing.

AX 2012 system services include the following:
 Query service Publishes service operations that allow execution of
existing (static) or ad hoc queries from service clients and returns
results in the form of generic .NET datasets.

 Metadata service Can be used to request information from AX 2012
about its metadata, such as tables, queries, and forms, and thus about
its configuration.

 User session info service Can be used to retrieve certain settings for
the environment in which requests for the current user are executed;
for example, a client application can use the user session service to
request information about the current user’s currency, company, and
time zone, among other things.

Custom services
You can use AX 2012 custom services to publish eligible X++ methods as
service operations through integration ports for consumption by external
client applications. To do that, you use the programming model for custom
services to define metadata that determines the shape of the published

service operations and data contracts. Custom services do not have to be
tied to AX 2012 queries or tables. For example, you can use a custom
service to publish functionality to approve an invoice or to stop a payment.

 Note

Generally, AX 2012 document services are better suited for
implementing services that publish standard operations that
operate on queries or tables, such as create, read, update, and
delete. These operations are often referred to as CRUD
operations.

After you define the service operations and data contracts, you can
publish your custom services. Their external interfaces can be configured
through the respective system administration forms.

Custom service artifacts
To expose an X++ method as a custom service, you need to create the
following artifacts:

 Service implementation class A class that implements the business
logic and exposes it through X++ methods.

 Service contract Service-related metadata (no code). The most
important service metadata consists of the service operations that are
published to external service applications, and a reference to the X++
service implementation class that implements these service
operations.

 One or more data contracts X++ classes that represent the complex
parameter types used for service operations. Data contracts are not
needed for primitive data types.

Service implementation classes
A service implementation class contains the code that implements the
business logic to publish. You can use any X++ class as a service
implementation class. Service implementation classes don’t have to
implement any interfaces or extend any super-classes. A class definition
for a service implementation class MyService could look like this:

public class MyService

{

}

There are, however, constraints that govern which methods of a service
implementation class can be published as service operations. Eligible
methods are public methods that use only parameters with data types that
can be serialized and deserialized; this includes most primitive data types
in addition to valid AX 2012 data contracts. Also, eligible methods must
be declared as service operations in the service contract in the Application
Object Tree (AOT).

 Note

Every method that is intended to be published as a service
operation must be annotated with the attribute
SysEntryPointAttribute, which indicates whether authorization
checks are to be performed by the AOS.

The following code shows an example of a method that can be declared
as a service operation in the AOT, assuming the X++ type MyParam is a
valid data contract. (For more information, see the “Data contracts” section
later in this chapter.)
Click here to view code image

[SysEntryPointAttribute(true)]

public MyParam HelloWorld(MyParam in)

{

 MyParam out = new MyParam();

 out.intParm(in.intParm() + 1);

 out.strParm("Hello world.\n");

 return out;

}

Service contracts
Service contracts define which methods of a service implementation class
are publishable as service operations and provide additional metadata that
specifies how these methods should be published.

 Note

Declaring a method as a service operation does not publish
that method as a service operation.

To create a new service contract, you need to create a new child node in

the AOT under the Services node—for example, MyService.
The newly created AOT node has a few properties to initialize before

any methods of the service can be published as service operations:
 Service implementation class This required property links the
service interface to the service implementation class. In this
example, the value is MyService.

 Namespace Optionally, you can specify the XML namespace that
should be used in the WSDL. If the XML namespace isn’t specified,
http://tempuri.org is used by default.

 External name Optionally, you can assign an external name for each
service. In this example, the external name is left blank.

Finally, you need to add service operations to the service contract. To do
this, expand the new AOT node, right-click, and then point to Operations >
Add Operation.

Note that you can publish as service operations only those methods that
have been explicitly added to the service contract in the AOT.

Data contracts
A data contract is a complex X++ data type that can be used for input and
output parameters in service operations. Most importantly, data contracts
must be serializable. You can control how an X++ class is serialized and
deserialized by the AX 2012 service framework through the X++ attributes
DataContractAttribute and DataMemberAttribute:

 DataContractAttribute declares an X++ class as a data contract.
 DataMemberAttribute declares a property as a member of the data
contract.

The following code shows a sample definition for the data contract
MyParam, which was used in the previous example:

[DataContractAttribute]

public class MyParam

{

 int intParm;

 str strParm;

}

The following code shows a sample property that is included in the data
contract:
Click here to view code image

[DataMemberAttribute]

http://tempuri.org

public int intParm(int _intParm = intParm)

{

 intParm = _intParm;

 return intParm;

}

X++ collections as data contracts
If you want to use X++ collection types in data contract definitions, you
need to ensure that all contained elements are of a data type that is
supported for data contracts. Moreover, you need to provide additional
metadata with the definition of the service method that uses the parameter,
specifying the exact data type of the values in the collection at design time.
You do this by using the X++ attribute AifCollectionTypeAttribute, as
shown here for a sample method UseIntList():
Click here to view code image

[SysEntryPointAttribute(true),

 AifCollectionTypeAttribute('inParm', Types::Integer)]

public void UseIntList(List inParm)

{

 ...

}

The two parameters you need to pass into the constructor of the attribute
are the name of the parameter to which the metadata is to be applied
(inParm in the example) and the type of elements in the collection
(Types::Integer in the example).

If you want to store X++ class types in your collection, you must also
specify the class, as shown in the following example:
Click here to view code image

[SysEntryPointAttribute(true),

 AifCollectionTypeAttribute('return', Types::Class,

classStr(MyParam))]

public List ReturnMyParamList(int i)

{

 ...

}

The three parameters that are passed into the AifCollectionTypeAttribute
constructor are the name of the parameter (return), the type of the
elements of the collection type (Types::Class), and the specific class type
(MyParam).

 Note

The parameter name return is reserved for the return value of
a method.

Registering a custom service
After you create all of the artifacts that are necessary for the custom
service, you need to register the new service with the AX 2012 service
framework. To register the service (in this example, MyService) with AIF,
expand the Services node in the AOT, right-click the node you created
earlier, and then point to Add-Ins > Register Service.

As a result of the registration, you can publish all declared service
operations of your service. For more information, see the “Publishing AX
2012 services” section later in this chapter.

Document services
The term document services stems from the reality that businesses need to
exchange business documents, such as sales orders and invoices, with their
trading partners. Document services operate on electronic representations
of such business documents.

The AX 2012 implementation of these business documents is also
referred to as Axd documents. Document services are generated from AX
2012 queries. Wizards automate the process of quickly generating and
maintaining all necessary artifacts for document services, with a
configurable set of well-known service operations, from queries.

By nature, document services provide document-centric application
programming interfaces (APIs)—that is, APIs that operate on Axd
documents. Examples of document-oriented APIs for a sales order service
include create sales order, read sales order, and delete sales order. Each
of these APIs operates on an instance of a sales order document. Create
sales order, for example, takes a sales order document, persists it in the
AX 2012 data store, and returns the sales order identifier for the persisted
instance.

Document services are useful in scenarios that require the exchange of
business documents such as sales orders. In these scenarios, exchanged
data is transacted and thorough data validation is important, data
exchanges are expensive (for example, because enterprise boundaries are
crossed), and response times are not critical. Sometimes, responses are not

even expected (one-way communication).
The programming model for document services supports customizations

to the artifacts that are generated. AX 2012 includes a set of document
services that are ready to use. However, you can customize these services
to better fit your business needs. The programming model for document
services supports the data access layer features that have been introduced
with AX 2012, such as surrogate key expansion, table inheritance, and date
effectivity. In other words, the AX 2012 service framework supports the
development of services that use the tables that take advantage of the new
functionality.

Document service artifacts
Just like custom services, all document services in AX 2012 require a
service contract, a service implementation, and a data contract. For
document services, these artifacts are generated from Axd queries; thus,
their default implementation follows conventions and looks as follows:

 Service contract Service-related metadata (no code) that is stored in
the AOT nodes under the Services node, such as
SalesSalesOrderService. The metadata includes the following:
• Service operations that are available to external service clients.
• A reference to the X++ service implementation class that

implements these service operations.
 Service implementation The code that implements the business
logic that is to be exposed. For generated document services, the
service implementation includes the following key elements:
• Service implementation class An X++ class that derives from

AifDocumentService and implements the service operations that are
published through the service contract. For example,
SalesSalesOrderService is the service implementation class for the
service contract SalesSalesOrderService.

• Axd<Document> class An X++ class that derives from AxdBase.
Axd<Document> classes coordinate cross-table validation and
cross-table defaulting. There is one Axd<Document> class for each
document service. For example, AxdSalesOrder is the
Axd<Document> class for SalesSalesOrderService. The AxdBase
class, among others, implements code for XML serialization.

• Additional artifacts Optionally, the AIF Document Service
Wizard can generate additional artifacts such as Ax<Table> classes.

 Note

In earlier versions of Microsoft Dynamics AX, an Ax<Table>
class was generated for each table referenced from a query
that was used to generate an Axd<Document> class. By
default, in AX 2012, Axd<Document> classes use the
Ax<Table> class AxCommon to access tables. The AxCommon
class provides a default implementation for all Ax<Table>
class functionality. Ax<Table> classes are needed only in
advanced scenarios, such as when a custom value mapping
needs to be implemented for a table field.

 Data object An X++ class that represents a parameter type and
serves as a data contract. The parameter types that the Create New
Document Service Wizard generates derive from AifDocument and
represent business documents. For example, SalesSalesOrder is the
data object that is created for the SalesSalesOrderService.

For a complete list of document service artifacts, see the “Services and
Application Integration Framework (AIF)” section of the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/gg731810.aspx).

The following sections cover a few selected topics for both
Axd<Document> and Ax<Table> classes. For more information, see the
“AIF Document Services” section of the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/bb496530.aspx).

Axd<Document> classes
Axd<Document> classes (such as AxdSalesOrder) extend the X++ class
AxdBase. Among other things, Axd<Document> classes do the following:

 Implement XML serialization for data objects.
 Invoke value mapping.
 Orchestrate cross-table field validation and defaulting.

Axd<Document> classes provide default implementations for XML
serialization for all data objects that are used. These classes derive XML
schema definitions used for XML serialization directly from the structure
of the underlying query. The XML serialization code uses Microsoft
Dynamics AX concepts such as extended data types (EDTs) to further
restrict valid XML schemas and improve XML schema validation.
Moreover, when generating XML schemas, Axd<Document> classes take

http://msdn.microsoft.com/en-us/library/gg731810.aspx
http://msdn.microsoft.com/en-us/library/bb496530.aspx

the data access layer features that have been introduced in AX 2012 into
consideration. For example, the generated XML schema definitions reflect
date-effective table fields, expanded dimension fields, and the inheritance
structure of the tables used in the underlying Axd query, if applicable;
surrogate foreign key fields are replaced with alternate keys, if configured.

Axd<Document> classes always access tables through the Ax<Table>
classes. During serialization, Axd<Document> classes rely on AxCommon
or custom Ax<Table> classes to persist data to tables and to read data from
tables.

Figure 12-2 illustrates the mapping between an AX 2012 query used for
the Axd<Document> class AxdSalesOrder and the generated XML schema
definition.

FIGURE 12-2 Correlation between the AOT query and the XML document
structure.

Axd<Document> classes also provide an API for orchestrating cross-
table field validation and defaulting. Validation and defaulting logic that is
relevant only for a specific Axd<Document> class but not for all
Axd<Document> classes that use the same table can also be implemented
in Axd<Document> classes.

Axd<Document> instances can be uniquely identified through
AifEntityKeys, which consist of a table name (name of the root table for the
Axd query), the field names for a unique index of that table, and the values
of the respective fields for the retrieved record. In addition, AifEntityKeys
holds the record ID of the retrieved records.

Ax<Table> classes
Ax<Table> classes (such as AxSalesTable and AxSalesLine) derive from
the X++ class AxInternalBase. Unlike in earlier versions of Microsoft
Dynamics AX, an Ax<Table> class is not needed for each table that is used
in a document service; instead, the Ax<Table> class AxCommon has been
introduced in AX 2012, which Axd<Document> classes use by default to
access tables.

 Note

Document services that are included with AX 2012 might still
rely on custom Ax<Table> classes for tables used in the
underlying query, especially if those services were created in
earlier versions of Microsoft Dynamics AX, before the
introduction of the AxCommon class.

However, there are scenarios in which custom Ax<Table> classes are
required—for example, when parm methods for fields on the underlying
table are needed to do the following:

 Support calculated fields for a table in the Ax<Table> class.
 Support a custom value mapping, which is different from the default
implementation in AxCommon.

 Note

Ax<Table> classes are often referred to as AxBC classes in
both code and documentation.

Although optional in AX 2012, Ax<Table> classes can be generated as
part of the document service with the AIF Document Service Wizard.

Creating document services
You generate document services based on Axd queries by using the AIF
Document Service Wizard. This section discusses a few selected aspects of
generating and maintaining document services.

Creating Axd queries
Although general guidelines for working with AX 2012 queries apply to
Axd queries, some additional constraints and guidelines apply:

 Name AX 2012 queries that are used for document services with the
prefix Axd followed by the document name. For example, the
document service query for the document SalesOrder should be
AxdSalesOrder. This is a best practice.

 Only one root table for each query is allowed. You can associate the
unique entity key that is used to identify document instances with
this root table. For example, the entity key SalesId is defined on the
AxdSalesOrder root table SalesTable.

 If your query’s data sources are joined by an inner join, you should
use fetch mode 1:1; if they are joined by an outer join, you should
use fetch mode 1:n. If you don’t use these settings, your query and
the service operations that use this query can yield unexpected
results.

 If you want to use an AX 2012 document service to write data back
to the database—that is, if you need to support the service operation
update—set the AOT property Update to Yes for all data sources that
the query uses to generate the service.

 Note

For security reasons, checks in X++ code by default prevent
system tables from being used in queries that are used for
document services.

Generating a document service
To generate a document service from an existing Axd query, you can use
the AIF Document Service Wizard. To start the wizard, on the Tools
menu, point to Application Integration Framework > Create Document
Service. This section provides a high-level description of the AIF
Document Service Wizard and some important notes about how to use it.

In the wizard, you can select the service operations you want to generate
for your service: create, read, update, delete, find, findKeys, getKeys, and
getChangedKeys. If you select Generate AxBC classes when running the
wizard, the wizard generates new Ax<Table> classes with parm methods
for the fields of the tables used in the query.

The AIF Document Service Wizard uses the document name—which
you enter on the first screen—to derive names for the generated artifacts.
You can change the document name (and thus the derived names for the

artifacts) in the wizard before the artifacts are generated. Names of AOT
objects are limited to 40 characters. If you choose a document name that
produces names that are too long for one or more artifacts, you might get
error messages.

After the wizard finishes, it displays a report of all generated artifacts
and any errors encountered. You need to fix all errors before you start
customizing the code that the wizard generates.

 Tip

The wizard creates a new project for each generated service. It
then adds the generated artifacts automatically to the created
project.

You can use the Update Document Service dialog box to update existing
document services—for example, to add a service operation that you had
not selected initially.

 Note

Although you can create and update document services
manually, it is not recommended. Instead, always use the AIF
Document Service Wizard to generate new document services
from AOT queries, and use the Update Document Service
dialog box to quickly update existing document services.

AX 2012 includes more than 100 ready-to-use document services. These
include services such as SalesOrderService and CustomerService. You can
find a list of these services in the AOT Services node, or in the topic
“Standard Document Services” in the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/aa859008.aspx).

For a more comprehensive discussion of the AIF Document Service
Wizard and generating Axd<Document> and Ax<Table> classes, see the
“AIF Document Services” section of the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/bb496530.aspx).

Customizing document services
In many cases, you might need to customize the document services that
you have generated from queries or that are included with AX 2012 to

http://msdn.microsoft.com/en-us/library/aa859008.aspx
http://msdn.microsoft.com/en-us/library/bb496530.aspx

better fit your business needs. This section addresses some of the most
common scenarios for customizing document services, including
customizing the tables or queries, service operations, validation,
defaulting, queries, and security.

Customizing tables
When you customize a table that is used by a document service (for
example, by adding a column), you need to update the service
implementation—that is, the Axd<Document> and Ax<Table> classes and
the data objects—to reflect these changes.

 Tip

Always enable best practice checks with the Best Practices
tool to detect potential discrepancies between the table
structure and the service implementation. If the best practice
checks on any of your customized tables fail, you can use the
Update Document Service dialog box to update the
Axd<Document> class, Ax<Table> classes, and data objects to
reflect the changes.

 Caution

Because document services are based on AX 2012 queries,
changing the structure of a query that is used in a document
service (for example, by adding a column to a table used in
the query) also changes the data contract for that document
service. Changes in external interfaces such as service
interfaces can potentially break integrations that were built by
using the original data contract. Always consider the impact
of changing queries or tables that are used in document
services, and apply common best practices for nonbreaking
service interface changes, such as not removing service
operations or data contract fields, and adding only optional
fields.

 Tip

If you use a static field list for the query from which an Axd
document service is generated, you can prevent the data
contract for the Axd document service from implicitly
changing when a field is added to a table.

Adding custom service operations
You can change the behavior of any service operation by modifying its
X++ implementation. In addition, you can add custom service operations
to any document service by following the same steps used for adding
service operations to custom services.

Customizing validation logic
Validation logic is crucial for enforcing data hygiene. Ideally, invalid data
is never persisted in the AX 2012 data store.

 Tip

To achieve this goal, always verify the validation logic of
each service operation that you generate or customize to make
sure that it meets your requirements.

Well-designed validation logic has the following characteristics:
 Reusability Ideally, the same (generic) validation logic can be used
from the AX 2012 client and from AX 2012 services. Keep in mind
that nongeneric validation code—code that applies only to the AX
2012 client or only to AX 2012 services—is also possible.

 Good performance Validation code runs whenever the respective
AX 2012 entity is modified. As a consequence, one of your key
goals for writing validation logic must be adequate performance.

 Sufficiency Validation logic must guarantee a sufficient level of data
hygiene. You might have to trade sufficiency for performance in a
way that satisfies your application’s requirements.

Validation code consists mainly of the following elements:
 Code that orchestrates cross-table validation by invoking validation
code that is implemented on the respective tables. This code is
implemented in the respective Axd<Document> class methods
prepareForSave, prepareForUpdate, and prepareForDelete. These
prepareForXxx methods are called once for each Ax<Table> class

that the Axd<Document> class uses.
 Code that enforces table-level validation logic is implemented by the
table methods validateField and validateWrite for maximum code
reusability. These methods call specific validation methods, such as
checkCreditLimit on SalesTable.

 Code that performs document-level validation, which is implemented
by the Axd<Document> class method validateDocument. This
method is called immediately before changes are persisted to tables
and after the prepareForXxx methods are called for each Ax<Table>
class.

 Code that performs validation after data has been persisted to the
table, which is implemented by the Axd<Document> class method
updateNow.

The following code, which includes the prepareForSave method for
AxdSalesOrder, is an example of cross-table validation. It calls validation
methods for the Ax<Table> classes AxSalesTable and AxSalesLine (in
addition to other Ax<Table> classes, which have been removed from this
example):
Click here to view code image

public boolean prepareForSave(AxdStack _axdStack, str

_dataSourceName)

{

 // ...

 switch (classidget(_axdStack.top()))

 {

 case classnum(AxSalesTable) :

 axSalesTable = _axdStack.top();

 this.checkSalesTable(axSalesTable);

 this.prepareSalesTable(axSalesTable);

 return true;

 case classnum(AxSalesLine) :

 axSalesLine = _axdStack.top();

 this.checkSalesLine(axSalesLine);

 this.prepareSalesLine(axSalesLine);

 return true;

 // ...

 }

 return false;

}

Customizing defaulting logic
You can customize the defaulting logic for table fields that is executed as
part of creating or updating table rows. Defaulting logic helps increase the
usability of both interactive client applications and AX 2012 service
interfaces. It derives initial values for table fields from other data such as
values of other table fields, and thus it doesn’t require explicit value
assignments for the defaulted table fields. It also helps reduce the amount
of data required to manipulate more complex entities, such as sales orders,
while lowering the probability of erroneous data entry.

Well-designed defaulting logic has the following characteristics:
 Reusability You should implement defaulting logic so that it is
reusable—that is, so the same logic can be used regardless of which
AX 2012 client (for example, a user interface or a service client)
creates or updates the entity. In certain scenarios, the defaulting of
table fields might require different logic, depending on whether the
AX 2012 client is interactive (a user interface) or noninteractive (a
request from a service client).

 Good performance Because the defaulting logic for a table field is
invoked every time the field is set, its execution time directly affects
the processing time for manipulating the entity, such as a sales order.
In particular, try to avoid redundant defaulting steps—that is, setting
a field value that is overwritten again as part of the same defaulting
logic.

 Sufficiency To reduce the number of required fields for
manipulating entities, as many fields as possible should be defaulted
while still meeting the performance goals.

AX 2012 still supports the approach to implementing defaulting logic
that was supported in previous versions of Microsoft Dynamics AX.
However, in AX 2012, mechanisms for tracking field states (such as not
set and defaulted) have been added to tables, which means that you can
implement defaulting logic directly in table classes. This allows for
defaulting logic to be used not only by Axd<document> classes, but also
from forms, and so on. Note that because now you can implement
defaulting logic directly in the table class, an Ax<Table> class is not
necessary for implementing standard defaulting code.

For more details about implementing and customizing defaulting logic
in AX 2012 and information about how to customize document services in
general, see the “AIF Document Services” section of the AX 2012 SDK

(http://msdn.microsoft.com/en-us/library/bb496530.aspx).

Security considerations
Service operations are entry points through which external applications
can submit requests on behalf of users. As mentioned earlier, all X++
methods that are intended to be published as service operations must be
annotated with the X++ attribute SysEntryPointAttribute, indicating
whether the method is to be invoked in the context of the calling user. If
so, authorization checks must be performed for tables accessed within the
method. In addition, all concepts related to role-based security also apply
to services and service operations.

System services are generally accessible and executed in the calling
user’s context. Because as the developer, you are in charge of the
implementation of custom services, you must add the
SysEntryPointAttribute manually to all service operations and create
permissions when necessary.

When you generate document services by using the AIF Document
Service Wizard, all generated service operations are automatically
annotated with SysEntryPointAttribute. Moreover, the wizard attempts to
infer all security permissions for the generated service automatically.

 Tip

When using the AIF Document Service Wizard, always verify
that the generated artifacts meet your requirements, and adjust
them if they don’t.

Publishing AX 2012 services
After you create and customize your service, you need to publish it for
external applications to be able to consume it. Developing a service and
publishing a service are two separate and largely independent processes.

With the AIF, you can publish AX 2012 services through various
transport technologies. In addition, the AIF provides a variety of
configuration options that administrators can use to customize how service
interfaces are published. This chapter limits the discussion of the AIF to
publishing services through basic integration ports. For more information,
see the services administration documentation for AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/hh209600.aspx). You can also

http://msdn.microsoft.com/en-us/library/bb496530.aspx
http://technet.microsoft.com/en-us/library/hh209600.aspx

find guidance on how to develop, set up, and use concepts such as data
policies, transformations, pipeline components, and value mappings in this
documentation.

For development and debugging purposes, you can easily publish
registered custom services and document services through basic
integration ports directly from the AOT. You can also use service groups
to ensure that services are deployed and activated automatically when the
AOS is started by using the AutoDeploy property of the respective service
group. This is useful when you need to be able to consume a service
without administrator intervention—for example, to enable the service
manually after deploying AX 2012.

To publish a service through a basic integration port, you first need to
add it to a service group in the AOT. Then you can deploy the service
group with a default configuration by using NetTcpBinding in WCF, right
from the AOT. For more information, see the topics “Services, service
operations, and service groups” (http://technet.microsoft.com/en-
us/library/gg731906.aspx) and “Using Basic Integration Ports”
(http://technet.microsoft.com/en-us/library/hh496420.aspx) on TechNet.

AX 2012 services that are published through basic integration ports can
only be hosted directly on the AOS. There are limited configuration
options available for services published through basic integration ports.
From the Inbound ports form (System Administration > Setup > Services
And Application Integration Framework > Inbound Ports), you can
activate and deactivate basic integration ports, you can use SvcConfigUtil
to modify WCF configuration parameters, and you can enable logging for
the respective ports.

 Note

If you need to publish a service through a WCF binding other
than NetTcpBinding, if you need to send unsolicited messages
(outbound messages), or if you need more control over
message processing and, for example, use XSLT
transformations, you must create an enhanced integration port.
You can create enhanced integration ports from the Inbound
Ports form or the Outbound Ports form, respectively.

Discussions in this chapter generally assume that services have been
published through basic integration ports unless noted otherwise. For

http://technet.microsoft.com/en-us/library/gg731906.aspx
http://technet.microsoft.com/en-us/library/hh496420.aspx

details about how to publish services through bindings other than
NetTcpBinding (for example, Message Queuing or file system adapters) by
using enhanced integration ports and how to create ports for outbound
messages, and for additional configuration options, see the services and
AIF documentation for AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/gg731810.aspx).

The Microsoft Azure Service Bus adapter, which is new for AX 2012
R2 cumulative update 6, extends existing AIF functionality by deploying
AX 2012 services to the cloud by means of the Azure Service Bus Relay.
You can use this adapter to develop client applications that communicate
with AX 2012 R3 over the Internet. The Service Bus Relay works without
any changes to existing enterprise network security settings. It acts as a
message relay to pass service messages that are received over the Internet
to AX 2012 services and returns the message responses to the client
application. For more information about deploying the Service Bus
adapter, see the AIF documentation on MSDN
(http://go.microsoft.com/fwlink/?LinkId=391768&clcid=0x409).

The Service Bus adapter supports a solution architecture that enables
applications to receive information and send transactions to AX 2012 R3,
even if the applications are not in the same domain or network as the on-
premises instance of AX 2012 R3. For example, you can create a Windows
Phone application that communicates with AX 2012 R3 by using a service
that runs behind a firewall. For more information, see Chapter 22,
“Developing mobile apps for AX 2012.”

Consuming AX 2012 services
After you publish your AX 2012 services, external client applications can
consume them and invoke the exposed business logic. For example, after
the SalesOrderService is exposed, client applications can consume it to
create or read AX 2012 sales orders.

This section highlights a few aspects of consuming AX 2012 services
from client applications. As mentioned earlier, this chapter assumes that
services are published through basic integration ports on the AOS.
Services that are published through basic integration ports are accessible
through Net.tcp. For a more complete description of how to publish AX
2012 services, including the use of asynchronous adapters and related
technologies, see the services and AIF documentation for AX 2012 on
TechNet (http://technet.microsoft.com/en-us/library/gg731810.aspx).

http://technet.microsoft.com/en-us/library/gg731810.aspx
http://go.microsoft.com/fwlink/?LinkId=391768&clcid=0x409
http://technet.microsoft.com/en-us/library/gg731810.aspx

Sample WCF client for CustCustomerService
If you want to consume an AX 2012 service that has been published
through a basic integration port, you need to generate proxy classes from
the WSDL of the service you want to consume. Typically, you do this
either from within your development environment (Microsoft Visual
Studio) or by using a command-line tool such as SvcUtil.

After you generate the proxy classes from the WSDL and add them to a
project in your development environment, you need to write code to do the
following:

 Instantiate and initialize parameters.
 Optionally instantiate and initialize a call context.
 Instantiate a service proxy.
 Consume the service operation.
 Evaluate the response.
 Handle errors and exceptions.

This section contains an example that illustrates what the code for
consuming the service operation find on the document service
CustCustomerService (included with AX 2012) might look like.

For the example, assume that the document service
CustCustomerService has been published through the service group
MyServiceGroup and that a Visual Studio project has been created. Also,
in Visual Studio, the service reference MyServiceGroup was added by
using the WSDL for the basic integration port MyServiceGroup. For
details about where AX 2012 publishes WSDL files, see the topic
“Locating the WSDL for Services” in the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/gg843514.aspx).

The following code snippets show C# code for the steps to consume the
service operation find of the AX 2012 document service
CustCustomerService.

First, you need to instantiate and initialize the parameters needed for the
call. The service operation find accepts two input parameters: an optional
call context and a query criterion that specifies which customer records
should be returned. The following example retrieves all customer records
in the company named CEU with an account number greater than or equal
to 4,000:
Click here to view code image

http://msdn.microsoft.com/en-us/library/gg843514.aspx

// instantiate and initialize parameters

// parameter: call context

MyServiceGroup.CallContext cc = new

MyServiceGroup.CallContext();

cc.Company = "CEU";

// parameter: query criteria

MyServiceGroup.QueryCriteria qc = new

MyServiceGroup.QueryCriteria();

MyServiceGroup.CriteriaElement[] qe = { new

MyServiceGroup.CriteriaElement() };

qe[0].DataSourceName = "CustTable";

qe[0].FieldName = "AccountNum";

qe[0].Operator = MyServiceGroup.Operator.GreaterOrEqual;

qe[0].Value1 = "4000";

qc.CriteriaElement = qe;

 Tip

You can use a CallContext object to execute a request in a
different context than the default context, which is used if a
null or empty CallContext object is used for a request. In the
CallContext object, you can specify the company, language,
and more.

Next, you need to instantiate a service proxy and consume the service
operation find, which executes a query and returns matching entities:
Click here to view code image

// instantiate a service proxy

MyServiceGroup.CustomerServiceClient customerService =

 new MyServiceGroup.CustomerServiceClient();

// consume the service operation find()
MyServiceGroup.AxdCustomer customer =

customerService.find(cc, qc);

Finally, you need to evaluate the response from the server, which can be
either query results or exception and error messages:
Click here to view code image

// error handling (additionally, exceptions need to be

handled properly)

if (null == customer)

{

 // error handling...

}

// evaluate response

MyServiceGroup.AxdEntity_CustTable[] custTables =

customer.CustTable;

if (null == custTables || 0 == custTables.Length)

{

 // handle empty response...

}

foreach (MyServiceGroup.AxdEntity_CustTable custTable in

custTables)

{

 custTable...

}

 Note

Exception handling and other common best practices for
developing web service clients are omitted from the
simplified code examples.

Here are some tips for working with document services:
 Many document services support both service operations find (which
returns all Axd documents in the result set) and findKeys (which
returns only the entity keys for Axd documents in the result set). If
you expect the response message for invoking find to be very large,
you might want to use findKeys to retrieve the entity keys. You can
then, for example, implement paging to retrieve the matching Axd
documents in sizeable chunks.

 When developing new services, it is usually useful to turn on logging
on the server side. To do that, open the Inbound Ports form,
deactivate the integration port that publishes the service group
containing your service, enable logging in the Troubleshooting
section of the Inbound Ports form, and then reactivate your
integration port.

 If a service operation returns large response messages, you might
need to tweak the default settings in your WCF configuration files
for both the service and the client. By default, both service and client
WCF configurations allow messages of sizes up to 65,536 bytes. The
maximum message and buffer sizes are defined through the
parameters maxReceivedMessageSize and maxBufferSize in the

binding section of standard WCF configuration files. Before
changing these parameters, refer to .NET Framework developer
documentation to understand implications and valid values for these
parameters. The .NET Framework Developer Center is located at
http://msdn.microsoft.com/en-us/netframework/aa496123.

Other service operations for custom or document services can be
consumed in similar ways. For more information and code examples, see
the AX 2012 SDK at http://msdn.microsoft.com/en-
us/library/aa496079.aspx.

Consuming system services
Unlike custom services and document services, system services are
automatically published (on the AOS by using the NetTcpBinding) and are
ready for consumption by client applications when the AOS starts.

Like all AX 2012 services, system services publish metadata in the form
of WSDL files, which you can use for proxy generation (see the previous
examples). However, whereas the user session info service is published
explicitly through an integration port (UserSessionService), similar to
custom and document services, an integration port does not exist for the
query service or the metadata service.

The following code provides an example of how to work with the
metadata service and the query service and shows how to do the following:

 Retrieve query metadata (the definition of a query named MyQuery)
from AX 2012 by using the metadata service.

 Convert the query metadata from the data contract used by the
metadata service to the data contract used by the query service. This
conversion is necessary although both data contracts are structurally
identical (see the method ConvertContract in the next code
example).

 Add a range to the metadata object; in this case, include all rows
with a value greater than 1996 for the Year column.

 Execute the converted query definition by using the query service.
In .NET code, these steps could be implemented in a similar way to the

code sample that follows. Assume that you’ve created a Visual Studio
project and added the references MetadataService and QueryService by
using the WSDLs for the metadata service and the query service,
respectively. For details about where AX 2012 publishes WSDL files, see
the topic “Locating the WSDL for Services” in the AX 2012 SDK

http://msdn.microsoft.com/en-us/netframework/aa496123
http://msdn.microsoft.com/en-us/library/aa496079.aspx

(http://msdn.microsoft.com/en-us/library/gg843514.aspx).
Click here to view code image

// instantiate proxies

var metadataClient = new

MetadataServiceReference.AxMetadataServiceClient();

var queryClient = new

QueryServiceReference.QueryServiceClient();

// retrieve query metadata

MetadataService.QueryMetadata[] query =

 metadataClient.GetQueryMetadataByName(new string[] {

"MyQuery" });

// convert query metadata

QueryService.QueryMetadata convertedQuery = ConvertContract

 <MetadataService.QueryMetadata,

QueryService.QueryMetadata>(query);

// add a range to the query metadata object

QueryDataRangeMetadata range = new QueryDataRangeMetadata()

{

 Enabled = true,

 FieldName = "Year",

 Value = ">1996"

};

convertedQuery.DataSources[0].Ranges = new

QueryRangeMetadata[] { range };

// initialize paging (return 3 records or less)

QueryService.Paging paging = new

QueryService.ValueBasedPaging();

((QueryService.ValueBasedPaging)paging).RecordLimit = 3;

// instantiate a service proxy

QueryService.QueryServiceClient queryService =

 new QueryService.QueryServiceClient();

// execute the converted query with the range, receive

results into .NET dataset

System.Data.DataSet ds =

 queryClient.ExecuteQuery(convertedQuery, ref paging);

Note that although the QueryMetadata definition is identical in both the
query service and the metadata service, the proxy generator generates an
identical class in two different namespaces, one for each service. A
ConvertContract method that implements the conversion of two contracts
of the same structure by using generics could look similar to the following
code:

http://msdn.microsoft.com/en-us/library/gg843514.aspx

Click here to view code image

static TTargetContract ConvertContract<TSourceContract,

TTargetContract>

 (TSourceContract sourceContract)

 where TSourceContract : class

 where TTargetContract : class

{

 TTargetContract targetContract =

default(TTargetContract);

 var sourceSerializer = new

DataContractSerializer(typeof(TSourceContract));

 var targetSerializer = new

DataContractSerializer(typeof(TTargetContract));

 using (var stream = new MemoryStream())

 {

 sourceSerializer.WriteObject(stream, sourceContract);

 stream.Position = 0;

 targetContract =

(TTargetContract)targetSerializer.ReadObject(stream);

 }

 return targetContract;

}

As mentioned earlier, the CallContext is used to override the default
context (such as company and language) in which a request is executed. A
CallContext is optional for all service requests; if it is not present in a
request, the request is executed by using default values for the CallContext
properties.

In AX 2012, the WSDL files for the query service and the metadata
service do not contain the XML schema definitions for CallContext.
Consequently, proxies generated from the WSDL files for those services
do not include proxy classes for CallContext; however, CallContext can
still be used for the query service and the metadata service the same way it
is used with other services. To use CallContext in requests sent to the
metadata service or the query service, you need to add a service reference
to an integration port (such as UserSessionService), which generates the
proxy classes necessary for CallContext. You can then instantiate and
initialize a CallContext object and add it to your request, as shown in the
following code:
Click here to view code image

// get OperationContextScope (see WCF documentation)

using (System.ServiceModel.OperationContextScope ocs =

 new

System.ServiceModel.OperationContextScope((queryService.InnerChannel)))

{

 // instantiate and initialize CallContext (using class

from other service)

 CustomerService.CallContext callContext = new

CustomerService.CallContext();

 callContext.Company = "CEU";

 // explicitly add header "CallContext" to set of outgoing

headers

 System.ServiceModel.Channels.MessageHeaders

messageHeadersElement =

 System.ServiceModel.OperationContext.Current.OutgoingMessageHeaders;

 messageHeadersElement.Add(

 System.ServiceModel.Channels.MessageHeader.CreateHeader(

 "CallContext",

 "http://schemas.microsoft.com/dynamics/2010/01/datacontracts",

 callContext));

 // initialize paging (return 3 records or less)

 QueryService.Paging paging = new

QueryService.ValueBasedPaging();

 ((QueryService.ValueBasedPaging)paging).RecordLimit = 3;

 // instantiate a service proxy

 QueryService.QueryServiceClient queryService =

 new QueryService.QueryServiceClient();

 // consume query service using CallContext

 System.Data.DataSet ds =

 queryService.ExecuteStaticQuery("MyQuery", ref

paging);

}

 Note

The query service returns query results in chunks that are
defined through a required paging parameter. The paging
algorithms assume that queries use relations with FetchMode
set to 1:1 (AOT property). The query service produces an
error message for queries that use relations with FetchMode
set to 1:n.

Refer to the product documentation for further details about the
CallContext or capabilities of system services.

Updating business documents

In many scenarios, you need to update data in already-existing Axd
documents, such as to add a sales line to a sales order or to update a
customer address. Through the service operation update, document
services support different semantics for document-centric updates: full
updates and partial updates.

For the following examples, assume that the standard document service
SalesSalesOrderService has been added to a service group named
MyServiceGroup and published through a basic integration port named
MyServiceGroup.

Applying a full update
Full updates are the default behavior for document services. To use this
mode, add code to your client application to do the following:

 Read the document.
 Apply changes to the document.
 Send the updated document back to the server.
 Handle errors, if any.

The following C# code provides a conceptual example of how to apply a
full update to an existing sales order:
Click here to view code image

// instantiate and initialize callContext, entityKeys,

serviceOrderService

MyServiceGroup.EntityKey[] entityKeys = ...

MyServiceGroup.CallContext callContext = ...

MyServiceGroup.SalesOrderServiceClient salesOrderService =

...

...

// read sales order(s) (including document hash(es)) using

entityKeys

MyServiceGroup.AxdSalesOrder salesOrder =

 salesOrderService.read(callContext, entityKeys);

// handle errors, exceptions; process sales order, update

data

...

// persist updates on the server (exception handling not

shown)

salesOrderService.update(callContext, entityKeys,

salesOrder);

Applying a partial update

In many scenarios, full updates are inefficient. Imagine a large sales order
with many sales lines—having more than 1,000 is not uncommon. If you
use a full update, you would have to retrieve the entire sales order with all
sales lines, apply your changes to the one sales line you want to update,
and then send back the entire sales order—including all unchanged sales
lines. This operation can be costly when you consider the validation and
defaulting logic invoked on the server for each sales line.

Instead of performing a full update, you can apply a partial update.
Partial updates use the same service operation as full updates do: update.
However, with partial updates, you can send partial documents that contain
only the changed (added, modified, or deleted) data. For child elements,
documents sent in partial update requests contain processing instructions
specifying how to handle each (child) record included in the partial
document to avoid ambiguity. Consequently, the process for updating
documents by using partial updates contains one additional step:

 Read the document.
 Apply changes to the document. To take advantage of partial
updates, ensure that you send back to the server only those fields that
are either mandatory or that have changed.

 Explicitly request the partial update mode and add processing
instructions.

 Send the updated document with the update request.
 Handle errors, if any.

The following code provides a conceptual example of how to apply a
partial update to a sales order:
Click here to view code image

// instantiate and initialize callContext, entityKeys,

serviceOrderService

MyServiceGroup.EntityKey[] entityKeys = ...

MyServiceGroup.CallContext callContext = ...

MyServiceGroup.SalesOrderServiceClient salesOrderService =

...

...

// read sales order(s) (including document hash(es)) using

entityKeys

MyServiceGroup.AxdSalesOrder salesOrder =

 salesOrderService.read(callContext, entityKeys);

// handle errors, exceptions; process sales order, update

data

...

// example: update the first sales order and mark it for

partial update

AxdEntity_SalesTable[] salesTables = salesOrder.SalesTable;

salesOrder.SalesTable = new AxdEntity_SalesTable[] {

salesTables[0] };

// document-level directive, requesting a partial update

salesOrder.SalesTable[0].action =

AxdEnum_AxdEntityAction.update;

// table-level directive, requesting to delete the first

sales line

AxdEntity_SalesLine[] salesLines =

salesOrder.SalesTable[0].salesLine;

salesOrder.SalesTable[0].SalesLine = new

AxdEntity_SalesLine[] { salesLines[0] };

salesOrder.SalesTable[0].SalesLine[0].action =

AxdEnum_AxdEntityAction.delete;

// remove child data sources w/o updates (DocuRefHeader,

etc.) from salesTable

...

// persist updates on the server (exception handling not

shown)

salesOrderService.update(callContext, entityKeys,

salesOrder);

 Note

In XML request messages, these processing instructions are
reflected through occurrences of the XML attribute action.
This is true for both XML messages sent to asynchronous
adapters and for Simple Object Access Protocol (SOAP)
messages sent to synchronous WCF services. For more
details, see the “AIF Document Services” section of the AX
2012 SDK (http://msdn.microsoft.com/en-
us/library/bb496530.aspx).

Optimistic concurrency control
The services framework relies on optimistic concurrency control (OCC) to
resolve conflicts when multiple concurrent update requests occur. To be
able to detect whether a document has changed since it was last read, and
to avoid inadvertently overwriting such changes, the service framework

http://msdn.microsoft.com/en-us/library/bb496530.aspx

uses document hashes to identify versions of a business document.
Document hashes are computed for a specific document instance from

its contents; they are derived not only from the root-level data source (such
as the sales header) but also from all of the joined data sources (such as a
sales line). In other words, if a field in any table that is included in the
business document changes, the document hash changes, too.

To obtain the document hash for a business document, your code must
first read the document. It can then use the document hash that was
returned inside the document in a subsequent update request.

 Tip

Caching a document for a long time on a service client
without refreshing it increases the probability of update
requests being rejected because of colliding updates from
other client applications.

Invoking custom services asynchronously
Because publishing a service is separate from developing the service, both
custom services and document services can be published through the
supported transport mechanisms. More specifically, a custom or document
service’s operations can be published synchronously (for example, by
using the Net.tcp or HTTP protocol) through basic integration ports, as
shown in the previous examples, or they can be published asynchronously
(for example, by using the file system adapter or Message Queuing)
through enhanced integration ports. Administrators can select various
options to configure how service operations are bundled and published at
run time and to configure logging, among other things. For more
information about publishing services through enhanced integration ports,
see the services and AIF documentation for AX 2012 on TechNet
(http://technet.microsoft.com/en-us/library/gg731810.aspx).

When AX 2012 services are consumed synchronously, generated
service proxies usually take care of producing and consuming the XML
that is exchanged between the client application and AX 2012. However,
AX 2012 services are consumed through asynchronous transports; you
need to make sure that the request messages comply with the XML schema
definitions for the AIF message envelope and the business document as
expected by the AX 2012 service framework. For more information about

http://technet.microsoft.com/en-us/library/gg731810.aspx

how to get the XML schema definitions (XSDs) for message envelopes,
see the “AIF Messages” section in the AX 2012 SDK
(http://msdn.microsoft.com/en-us/library/aa627117.aspx).

The following code example shows a sample XML message that can be
sent asynchronously from a client application to AX 2012 to consume the
service operation MyService.HelloWorld(MyParam in) of a custom service
that was discussed in a previous example (see the “Custom services”
section earlier in this chapter). It illustrates how the service name, the
service operation name, and the structure of the input parameters map to
the corresponding elements of the XML request message. It also shows
how you can specify the context in which the request is executed: through
the Header element, which recognizes the same properties the CallContext
knows in the case of synchronous service interfaces.
Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<Envelope

 xmlns="http://schemas.microsoft.com/dynamics/2011/01/documents/Message">

 <Header>

 <!-- Service operation: "MyService.HelloWorld(MyParam)"

-->

 <Company>CEU</Company>

 <Action>http://tempuri.org/MyService/HelloWorld</Action>

 </Header>

 <Body>

 <MessageParts

 xmlns="http://schemas.microsoft.com/dynamics/2011/01/documents/Message">

 <!-- Complex input parameter: "MyParam in" -->

 <in xmlns="http://tempuri.org"

 xmlns:i="http://www.w3.org/2001/XMLSchema-

instance"

 xmlns:b="http://schemas.datacontract.org/2004/07/Dynamics.Ax.Application">

 <!—Property of complex input parameter: "in.b" -->

 <b:intParm>0</b:intParm>

 </in>

 </MessageParts>

 </Body>

</Envelope>

 Note

To run this example, you need to create an enhanced
integration port that is configured to receive files

http://msdn.microsoft.com/en-us/library/aa627117.aspx

asynchronously. That integration port must publish the service
operation MyService.HelloWorld.

So far, this chapter has discussed how AX 2012 functionality can be
published through services for consumption by external client applications
and how external client applications can consume these services. But what
if you want to send unsolicited data out of AX 2012? The following
section discusses how to use the AX 2012 send framework to send
unsolicited data asynchronously.

The AX 2012 send framework
AIF provides APIs and infrastructure for using AX 2012 services to send
unsolicited one-way messages. The AX 2012 client has features like the
Send Electronically button on several forms that allow users to transmit
business documents (such as invoices) as unsolicited one-way messages
through outbound integration ports. For information about how to
configure outbound integration ports, see the services and AIF
documentation for AX 2012 on TechNet (http://technet.microsoft.com/en-
us/library/gg731810.aspx).

AX 2012 doesn’t rely on external document schema definitions to be
provided by the remote receiving application; it uses its own format
instead—the same Axd<Document> class-based XSDs that are also used
as data contracts for published AX 2012 services.

Implementing unsolicited one-way messages requires the following two
steps:

1. Implement a trigger for transmission (design time).
2. Configure an enhanced outbound integration port for sending

documents (administration time).

Implementing a trigger for transmission
You can implement a trigger for transmission by using either the AIF Send
API or the AxdSend API.

AIF Send API
The Send API features a set of methods that can be used to send
unsolicited one-way messages from AX 2012 by means of integration
ports through which the consumers can pick up the messages. This API
sends a single message; the body of the message contains the XML that is
generated by invoking the read service operation of the AIF document

http://technet.microsoft.com/en-us/library/gg731810.aspx

service referenced by the serviceClassId (it must reference a class that
derives from AifDocumentService) with the parameter entityKey.

To see a working example of how you can use this API, look at the code
behind the method clicked for the button SendXmlOriginal on the form
CustInvoiceJournal. The API methods are defined on the class
AifSendService and include the method submitDefault:
Click here to view code image

public static void submitDefault(

 AifServiceClassId serviceClassId,

 AifEntityKey entityKey,

 AifConstraintList constraintList,

 AifSendMode sendMode,

 AifPropertyBag propertyBag = connull(),

 AifProcessingMode processingMode =

AifProcessingMode::Sequential,

 AifConversationId conversationId = #NoConversationId

)

By using the two optional parameters processingMode and
conversationId in the preceding signature, you can take advantage of the
parallel message processing feature for asynchronous adapters:

 processingMode Specifies whether messages can be moved from the
AIF outbound processing queue to the AIF gateway queue in parallel
(AifProcessingMode::Parallel) or whether first-in-first-out (FIFO)
order must be enforced for all messages
(AifProcessingMode::Sequential).

 conversationId If this is specified, AIF moves the message from the
AIF outbound processing queue to the AIF gateway queue in FIFO
order, relative to all other messages with the same conversationId.
The order relative to other messages with different conversationIds
isn’t guaranteed.

AxdSend API
The AxdSend API provides functionality to send unsolicited one-way
messages. The user selects the outbound integration port through which
the documents are sent at run time. If more than one document needs to be
sent, the user also selects the exact set of entities at run time. This feature
has been implemented for several AX 2012 document services, such as
AxdPricelist and AxdBillsOfMaterials.

The AxdSend framework provides default dialog boxes for selecting
integration ports and entity ranges and allows the generation of XML

documents with multiple records. You can use the framework to provide
specific dialog boxes for documents that require more user input than the
default dialog box provides.

The default dialog box includes an integration port drop-down list and,
optionally, a Select button to open the standard query form. The query is
retrieved from the Axd<Document> class that the caller specifies. Many
integration ports can be configured in AIF, but only a few are allowed to
receive the current document. The lookup shows only the integration ports
that are valid for the document, complying with the constraint set up for
the read service operation for the current document.

The framework requires minimal coding to support a new document. If
a document requires the user to just select an integration port and fill out a
query range, most of the functionality is provided by the framework
without requiring additional code.

An example dialog box for the AxdSend framework is shown in Figure
12-3.

FIGURE 12-3 The Send Document Electronically dialog box for bills of
materials.

If an Axd<Document> requires a more specific dialog box, you inherit
the AxdSend class and provide the necessary user interface interaction to
the dialog box method. In the following code example, an extra field has
been added to the dialog box. You just add one line of code to implement
parmShowDocPurpose from the AxdSend class and to make this field
appear on the dialog box:
Click here to view code image

static public void main(Args args)

{

 AxdSendBillsOfMaterials axdSendBillsOfMaterials;

 AifConstraintList aifConstraintList;

 AifConstraint aifConstraint;

 BOMVersion bomVersionRecord;

 axdSendBillsOfMaterials =

new AxdSendBillsOfMaterials();

 aifConstraintList = new AifConstraintList();

 aifConstraint = new AifConstraint();

 aifConstraint.parmType(AifConstraintType::NoConstraint);

 aifConstraintList.addConstraint(aifConstraint);

 if (args && args.record().TableId ==

tablenum(BOMVersion))

 {

 bomVersionRecord = args.record();

 axdSendBillsOfMaterials.parmBOMVersion(bomVersionRecord);

 }

 // added line to make the field appear on the dialog box

 axdSendBillsOfMaterials.parmShowDocPurpose(true) ;

 axdSendBillsOfMaterials.sendMultipleDocuments(

 classnum(BomBillsofMaterials),

 classnum(BomBillsofMaterialsService),

 AifSendMode::Async,

 aifConstraintList);

}

Sorting isn’t supported in the AxdSend framework, and the query
structure is locked to ensure that the resulting query matches the query
defined by the XML document framework. Because of this need for
matching, the AxdSend class enforces these sorting and structure
limitations. The query dialog box shows only the fields in the top-level
tables because of the mechanics of queries with an outer join predicate.
The result set will likely be different from what a user would expect. For
example, restrictions on inner data sources filter only these data sources,
not the data sources that contain them. The restrictions are imposed on the
user interface to match the restrictions on the query when using the
document service’s find operation.

 Note

For details about configuring enhanced outbound integration
ports and other administrative features related to sending
unsolicited messages asynchronously by using the AX 2012

send framework, see the services and AIF documentation for
AX 2012 on TechNet (http://technet.microsoft.com/en-
us/library/gg731810.aspx).

Consuming external web services from AX 2012
Web services are a popular and well-understood way of integrating
applications that are deployed within an enterprise’s perimeter, or intranet.
Examples of such applications include enterprise resource planning (ERP)
applications, CRM applications, and productivity applications such as
Office.

Integrating applications with third-party web services over the Internet
has also become viable and in many cases is the preferred approach for
quickly adding new functionality to complex applications. Web services
can range from simple address validation or credit card checks to more
complex tax calculations or treasury services.

Similar to sending unsolicited data asynchronously by using the AX
2012 send framework, you can customize AX 2012 to send requests to
external web services—in other words, to consume external web services.
Because consuming external web services implies a tight coupling with the
respective web service (and usually involves a service proxy for the web
service), and because Visual Studio provides a rich set of tools for building
such integrations, you should create a Visual Studio project and build a
.NET dynamic-link library (DLL) that contains the code to consume the
external web service. You can then add this library as a reference to AX
2012 and write X++ code that calls methods exposed by this .NET library.

 Note

The Microsoft Dynamics AX service framework does not
provide any tools specific to writing code to consume external
web services. The concept of service references as it existed
in AX 2009 has been removed from AX 2012, and the related
AOT node no longer exists.

Performance considerations
To meet performance requirements for a specific AX 2012 implementation
scenario, planning for and sizing the hardware infrastructure is critical. For
guidance on how to size your deployment properly, see the Microsoft

http://technet.microsoft.com/en-us/library/gg731810.aspx

Dynamics AX Implementation Planning Guide at
http://www.microsoft.com/en-us/download/details.aspx?id=4007.

By default, integration ports process all request messages in sequence.
This is true for both incoming and outgoing request messages. To increase
the number of request messages that can be processed, you can use the AIF
parallel processing capabilities in combination with additional AOS
instances. For more information about how to configure inbound ports for
parallelism and how to use extensions to the AIF Send API, see the
“Services and AIF operations” section of the AX 2012 system
administrator documentation on TechNet (http://technet.microsoft.com/en-
us/library/gg731830.aspx).

Note that for synchronous WCF services, request processing is
inherently parallel.

http://www.microsoft.com/en-us/download/details.aspx?id=4007
http://technet.microsoft.com/en-us/library/gg731830.aspx

Chapter 13. Performance

In this chapter
Introduction
Client/server performance
Transaction performance
Performance configuration options
Coding patterns for performance
Performance monitoring tools

Introduction
Performance is often an afterthought for development teams and is not
considered until late in the development process or, more critically, after a
customer reports performance problems in a production environment.
After a feature is implemented, making more than minor performance
improvements is often too difficult. But if you know how to use the
performance optimization features in AX 2012, you can create designs that
allow for optimal performance within the boundaries of the AX 2012
development and runtime environments.

This chapter discusses some of the most important facets of optimizing
performance, and it provides an overview of performance configuration
options and performance monitoring tools. For the latest information about
how to optimize performance in AX 2012, check the Dynamics AX
Performance Team Blog at http://blogs.msdn.com/axperf. The
Performance Team updates this blog regularly with new information.
Specific blog entries are referenced throughout this chapter to supplement
the information provided here.

Client/server performance
Client/server communication is a key area that you can optimize for AX
2012. This section details the best practices, patterns, and programming
techniques that yield optimal communication between the client and the
server.

Reducing round trips between the client and the server
The following three techniques can help reduce round trips significantly in
many scenarios:

http://blogs.msdn.com/axperf

 Use the cacheAddMethod method for all relevant display and edit
methods on a form, along with declarative display method caching.

 Refactor RunBase classes to support marshaling of the dialog box
between the client and the server.

 Use proper caching and indexing techniques.

The cacheAddMethod method
Display and edit methods are used on forms to display data that must be
derived or calculated based on other information in the underlying table.
These methods can be written on either the table or the form. By default,
these methods are calculated one by one, and if there is a need to go to the
server when one of these methods runs, as there usually is, each function
goes to the server individually. The fields associated with these methods
are recalculated every time a refresh is triggered on the form, which can
occur when a user edits fields, clicks menu items, or presses F5. Such a
technique is expensive in both round trips and the number of calls placed
to the database from the Application Object Server (AOS).

Caching cannot be performed for display and edit methods that are
declared on the data source for a form because the methods require access
to the form metadata. If possible, you should move these methods to the
table. For display and edit methods that are declared on a table, use the
FormDataSource.cacheAddMethod method to enable caching. This
method allows the form’s engine to calculate all the necessary fields in one
round trip to the server and then cache the results. To use
cacheAddMethod, in the init method of a data source that uses display or
edit methods, call cacheAddMethod on that data source and pass in the
method string for the display or edit method. For example, look at the
SalesLine data source of the SalesTable form. In the init method, you will
find the following code:
Click here to view code image

public void init()

{

 super();

 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine,

invoicedInTotal), false);

 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine,

deliveredInTotal), false);

 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine,

itemName), false);

 salesLine_ds.cacheAddMethod(tableMethodStr(SalesLine,

timeZoneSite), true);

}

If you were to remove this code with comments, each display method
would be computed for every operation on the form data source, increasing
the number of round trips to the AOS and the number of calls to the
database server. For more information, see
“FormDataSource.cacheAddMethod Method” at
http://msdn.microsoft.com/en-
us/library/formdatasource.cacheaddmethod.aspx.

 Note

Do not register display or edit methods that are not used on
the form. Those methods are calculated for each record, even
though the values are never shown.

In AX 2009, Microsoft made a significant investment in the
infrastructure of cacheAddMethod. In previous releases, this method
worked only for display fields and only on form load. Beginning with AX
2009, the cache is used for both display and edit fields, and it is used
throughout the lifetime of the form, including for reread, write, and refresh
operations. It also works for any other method that reloads the data behind
the form. With all of these methods, the fields are refreshed, but the kernel
now refreshes them all at once instead of individually. In AX 2012, these
features have been extended by another newly added feature—declarative
display method caching.

Declarative caching of display methods
You can use the declarative caching feature to add a display method to the
display method cache by setting the CacheDataMethod property on a form
control to Yes. Figure 13-1 shows the CacheDataMethod property.

http://msdn.microsoft.com/en-us/library/formdatasource.cacheaddmethod.aspx

FIGURE 13-1 The CacheDataMethod property.

The values for the new property are Auto, Yes, and No, with the default
value being Auto. Auto equates to Yes when the data method is hosted on a
read-only form data source. This primarily applies to list pages. If the same
data method is bound to multiple controls on a form, if at least one of them
equates to Yes, the method is cached.

The RunBase technique
RunBase classes form the basis for most business logic in Microsoft
Dynamics AX. RunBase provides much of the basic functionality
necessary to execute a business process, such as displaying a dialog box,
running the business logic, and running the business logic in batches.

 Note

AX 2012 introduces the SysOperation framework, which
provides much of the functionality of the RunBase framework
and will eventually replace it. For more information about the
SysOperation framework in general, see Chapter 14,
“Extending AX 2012.” For more information about
optimizing performance when you use the SysOperation
framework, see “The SysOperation framework” later in this

chapter.

When business logic executes through the RunBase framework, the
logic flows as shown in Figure 13-2.

FIGURE 13-2 The RunBase communication pattern.

Most of the round trip problems of the RunBase framework originate
with the dialog box. For security reasons, the RunBase class should be
running on the server because it accesses a large amount of data from the
database and writes it back. But a problem occurs when the RunBase class
is marked to run on the server. When the RunBase class runs on the server,
the dialog box is created and driven from the server, causing excessive
round trips.

To avoid these round trips, mark the RunBase class to run on Called
From, meaning that it will run on either tier. Then mark either the
construct method for the RunBase class or the menu item to run on the
server. Called From enables the RunBase framework to marshal the class
back and forth between the client and the server without having to drive
the dialog box from the server, which significantly reduces the number of
round trips. Keep in mind that you must implement the pack and unpack
methods in a way that allows this serialization to happen.

For an in-depth guide to implementing the RunBase framework to
handle round trips optimally between the client and the server, refer to the

AX 2009 white paper, “RunBase Patterns,” at
http://www.microsoft.com/en-us/download/details.aspx?id=19517.

Caching and indexing
AX 2012 has a data caching framework on the client that can help you
greatly reduce the number of times the client goes to the server. In AX
2012, the cache operates across all of the unique keys in a table. Therefore,
if a piece of code accesses data from the client, the code should use a
unique key if possible. Also, you need to ensure that all unique keys are
marked as such in the Application Object Tree (AOT). You can use the
Best Practices tool to ensure that all of your tables have a primary key. For
more information about the Best Practices tool, see Chapter 2, “The
MorphX development environment and tools.”

Setting the CacheLookup property correctly is a prerequisite for using
the cache on the client. Table 13-1 shows the possible values for
CacheLookup. These settings are discussed in greater detail in the
“Caching” section later in this chapter.

TABLE 13-1 Settings for the CacheLookup property.

An index can be cached only if the where clause contains column names
that are unique. The unique index join cache is a new feature that is
discussed later in this chapter (see “The unique index join cache” section).
This cache supports 1:1 relations only. In other words, caching won’t work
if a 1:n join is present or if the query is a cross-company query. In AX
2012, even if range operations are in the query, caching is supported as
long as there is a unique key lookup in the query.

A cache that is set to EntireTable stores the entire contents of a table on
the server, but the cache is treated as a Found cache on the client. For

http://www.microsoft.com/en-us/download/details.aspx?id=19517

tables that have only one row for each company, such as parameter tables,
add a key column that always has a known value such as 0. This allows the
client to use the cache when accessing these tables. For an example of the
a key column being used in AX 2012, see the CustParameters table.

Writing tier-aware code
When you’re writing code, be aware of the tier that the code will run on
and the tier that the objects you’re accessing are on. The tier on which
objects are instantiated is based on the setting of the objects’ RunOn
property:

 Objects whose RunOn property is set to Server are always
instantiated on the server.

 Objects whose RunOn property is set to Client are always
instantiated on the client.

 Objects whose RunOn property is set to Called From are instantiated
wherever the class is created.

Note that if you mark classes to always run on either the client or the
server by setting the RunOn property to either Client or Server, you can’t
serialize them to another tier by using the pack and unpack methods. If you
attempt to serialize a server class to the client, you get a new object on the
server with the same values. Static methods run on whatever tier they are
specified to run on by means of the Client, Server, or Client Server
keyword in the declaration.

Handling inMemory temporary tables correctly
Temporary tables can be a common source of both client callbacks and
calls to the server. Unlike regular table buffers, temporary tables are
located on the tier on which the first record was inserted. For example, if a
temporary table is declared on the server and the first record is inserted on
the client, even though the rest of the records are inserted on the server, all
access to that table from the server happens on the client.

It’s best to populate a temporary table on the server because the data
that you need is probably coming from the database. Still, you must be
careful when you want to iterate through the data to populate a form. The
easiest way to achieve this efficiently is to populate the temporary table on
the server, serialize the entire table to a container, and then read the
records from the container into a temporary table on the client.

Avoid joining inMemory temporary tables with regular database tables
whenever possible, because the AOS will first fetch all of the data in the

database table of the current company and then combine the results in
memory. This is an expensive, time-consuming process.

Try to avoid the type of code shown in the following example:
Click here to view code image

public static server void InMemTempTableDemo()

{

 RealTable rt;

 InMemTempTable tt;

 int i;

 // Populate temp table

 ttsBegin;

 for (i=0; i<1000; i++)

 {

 tt.Value = int2str(i);

 tt.insert();

 }

 ttsCommit;

 // Inefficient join to database table. If the temporary

table is an inMemory

 // temp table, this join causes 1,000 select statements

on the database table and with

 // that, 1,000 round trips to the database.

 select count(RecId) from tt join rt where tt.value ==

rt.Value;

 info(int642str(tt.Recid));

}

If you decide to use inMemory temporary tables, indexing them
correctly for the queries that you plan to run on them will improve
performance significantly. There is one difference compared with indexing
for queries against regular tables: the fields must be in the same order as in
the query itself. For example, the following query will benefit significantly
from an index on the AccountMain, ColumnId, and PeriodCode fields in
the TmpDimTransExtract table:
Click here to view code image

SELECT SUM(AmountMSTDebCred) FROM TmpDimTransExtract WHERE

((AccountMain>=N'11011201' AND

AccountMain<=N'11011299')) AND ((ColumnId = 1)) AND

((PeriodCode = 1))

Using TempDB temporary tables
You can use TempDB temporary tables to replace inMemory temporary

table structures easily. TempDB temporary tables have the following
advantages over inMemory temporary tables:

 You can join TempDB temporary tables to database tables
efficiently.

 You can easily use set-based operations to populate TempDB
temporary tables, reducing the number of round trips to the database.

To create a TempDB temporary table, set the TableType property to
TempDB, as shown in Figure 13-3.

FIGURE 13-3 Use the TableType property to create a TempDB temporary
table.

 Tip

Even if temporary tables aren’t dropped but are instead
truncated and reused as soon as the current code goes out of
scope, minimize the number of temporary tables that need to
be created. There is a cost associated with creating a
temporary table, so use them only if you need them.

If you use TempDB temporary tables, don’t populate them by using line-
based operations, as shown in the following example:
Click here to view code image

public static server void SQLTempTableDemo1()

{

 SQLTempTable tt;

 int i;

 // Populate temporary table; this will cause 1,000

round trips to the database

 ttsBegin;

 for (i=0; i<1000; i++)

 {

 tt.Value = int2str(i);

 tt.insert();

 }

 ttsCommit;

}

Instead, use set-based operations. The following example shows how to
use a set-based operation to create an efficient join to a database table:
Click here to view code image

public static server void SQLTempTableDemo2()

{

 RealTable rt;

 SQLTempTable tt;

 // Populate the temporary table with only one round

trip to the database.

 ttsBegin;

 insert_recordset tt (Value)

 select Value from rt;

 ttsCommit;

 // Efficient join to database table causes only one

round trip. If the temporary table

 // is an inMemory temp table, this join would cause

1,000 select statements on the

 // database table.

 select count(RecId) from tt join rt where tt.value ==

rt.Value;

 info(int642str(tt.Recid));

}

Eliminating client callbacks
A client callback occurs when the client places a call to a server-bound
method and the server then places a call to a client-bound method. These
calls can happen for two reasons. First, they occur if the client doesn’t
send enough information to the server during its call or if the client sends
the server a client object that encapsulates the information. Second, they
occur when the server is either updating or accessing a form.

To eliminate the first kind of callback, ensure that you send all of the
information that the server needs in a serializable format, such as packed
containers or value types (for example, int, str, real, or boolean). When the
server accesses these types, it doesn’t need to go back to the client the way
that it does if you use an object type.

To eliminate the second type of callback, send any necessary
information about the form to the method, and manipulate the form only

when the call returns, instead of directly from the server. One of the best
ways to defer operations on the client is by using the pack and unpack
methods. With pack and unpack, you can serialize a class to a container
and then deserialize it at the destination.

Grouping calls into chunks
To ensure the minimum number of round trips between the client and the
server, group calls into one static server method and pass in the state
necessary to perform the operation.

The NumberSeq::getNextNumForRefParmId method is an example of a
static server method that is used for this purpose. This method call
contains the following line of code:
Click here to view code image

return

NumberSeq::newGetNum(CompanyInfo::numRefParmId()).num();

If this code ran on the client, it would cause four remote procedure call
(RPC) round trips: one for newGetNum, one for numRefParmId, one for
num, and one to clean up the NumberSeq object that was created. By using
a static server method, you can complete this operation in one RPC round
trip.

Another common example of grouping calls into chunks occurs when
the client performs Transaction Tracking System (TTS) operations.
Frequently, a developer writes code similar to that in the following
example:

ttsBegin;

record.update();

ttsCommit;

You can save two round trips if you group this code into one static
server call. All TTS operations are initiated only on the server. To take
advantage of this, do not invoke the ttsbegin and ttscommit call from the
client to start the database transaction when the ttslevel is 0.

Passing table buffers by value instead of by reference
The global methods buf2con and con2buf are used in X++ to convert table
buffers into containers and vice versa. New functionality has been added to
these methods, and they have been improved to run much faster than in
previous versions of Microsoft Dynamics AX.

Converting table buffers into containers is useful if you need to send the

table buffer across different tiers (for example, between the client and the
server). Sending a container is better than sending a table buffer because
containers are passed by value and table buffers are passed by reference.
Passing objects by reference across tiers causes a high number of RPC
calls and degrades the performance of your application. Referencing
objects that were created on different tiers causes an RPC call every time
the other tier invokes one of the instance methods of the remote object. To
improve performance, you can eliminate a callback by creating local
copies of the table buffers, using buf2con to pack the table and con2buf to
unpack it.

The following example shows a form running on the client and
transferring data to the server for updating. The example illustrates how to
transfer a buffer efficiently with a minimum number of RPC calls.

 Note

In practice, you would not use a temporary table and would
access actual database data.

Click here to view code image

public void

updateResultField(Buf2conExample clientRecord)

{

 container packedRecord;

 // Pack the record before sending to the server

 packedRecord = buf2Con(clientRecord);

 // Send packed record to the server and container with

the result

 packedRecord =

Buf2ConExampleServerClass::modifyResultFromPackedRecord(packedRecord);

 // Unpack the returned container into the client

record.

 con2Buf(packedRecord, clientRecord);

 Buf2conExample_ds.refresh();

}

Modify the data on the server tier, and then send a container back:
Click here to view code image

public static server

container modifyResultFromPackedRecord(container

_packedRecord)

{

 Buf2conExample recordServerCopy =

con2Buf(_packedRecord);

 Buf2ConExampleServerClass::modifyResult(recordServerCopy);

 return buf2Con(recordServerCopy);

}

public static server void

modifyResult(Buf2conExample _clientTmpRecord)

{

 int n = _clientTmpRecord.A;

 _clientTmpRecord.Result = 0;

 while (n > 0)

 {

 _clientTmpRecord.Result =

Buf2ConExampleServerClass::add(_clientTmpRecord);

 n--;

 }

}

Transaction performance
The preceding section focused on limiting traffic between the client and
server tiers. When an AX 2012 application runs, however, these are just
two of the three tiers that are involved. The third tier is the database tier.
You must optimize the exchange of packages between the server tier and
the database tier, just as you do between the client tier and the server tier.
This section explains how you can optimize transactions.

The AX 2012 runtime helps you minimize calls made from the server
tier to the database tier by supporting set-based operators and data caching.
However, you should also do your part by reducing the amount of data you
send from the database tier to the server tier. The less data you send, the
faster that data is retrieved from the database, and the fewer the packages
that are sent back. These reductions result in less memory being
consumed. All of these efforts promote faster execution of application
logic, which results in smaller transaction scope, less locking and
blocking, and improved concurrency and throughput.

 Note

You can improve transaction performance further through the
design of your application logic. For example, ensuring that
various tables and records are always modified in the same

order helps prevent deadlocks and ensuing retries. Spending
time preparing the transactions to be as brief as possible
before starting a transaction scope can reduce the locking
scope and resulting blocking, ultimately improving the
concurrency of the transactions. Database design factors, such
as index design and use, are also important. However, these
topics are beyond the scope of this book.

Set-based data manipulation operators
The X++ language contains operators and classes to enable set-based
manipulation of the database. Set-based constructs have an advantage over
record-based constructs—they make fewer round trips to the database. The
following X++ code example, which selects several records in the
CustTable table and updates each record with a new value in the
CreditMax field, illustrates how a round trip is required when the select
statement executes and each time the update statement executes:
Click here to view code image

static void UpdateCustomers(Args _args)

{

 CustTable custTable;

 ttsBegin;

 while select forupdate custTable

 where custTable.CustGroup == '20' // Round trips to

the database

 {

 custTable.CreditMax = 1000;

 custTable.update(); // Round trip to the database

 }

 ttsCommit;

}

In a scenario in which 100 CustTable records qualify for the update
because the CustGroup field value equals 20, the number of round trips
would be 101 (1 for the select statement and 100 for the update
statements). The number of round trips for the select statement might
actually be slightly higher, depending on the number of CustTable records
that can be retrieved simultaneously from the database and sent to the
AOS.

Theoretically, you could rewrite the code in the preceding example to

result in only one round trip to the database by changing the X++ code, as
indicated in the following example. This example shows how to use the
set-based update_recordset operator, resulting in a single Transact-SQL
(T-SQL) UPDATE statement being passed to the database:
Click here to view code image

static void UpdateCustomers(Args _args)

{

 CustTable custTable;

 ttsBegin;

 update_recordset custTable setting CreditMax = 1000

 where custTable.CustGroup == '20'; // Single round

trip to the database

 ttsCommit;

}

For several reasons, however, using a record buffer for the CustTable
table doesn’t result in only one round trip. The reasons are explained in the
following sections about the set-based constructs that the AX 2012 runtime
supports. These sections also describe features that you can use to ensure a
single round trip to the database, even when you’re using a record buffer
for the table.

 Important

The set-based operations described in the following sections
do not improve performance when used on inMemory
temporary tables. The AX 2012 runtime always downgrades
set-based operations on inMemory temporary tables to record-
based operations. This downgrade happens regardless of how
the table became a temporary table (whether specified in
metadata in the table’s properties, disabled because of the
configuration of the AX 2012 application, or explicitly stated
in the X++ code that references the table). Also, the
downgrade always invokes the doInsert, doUpdate, and
doDelete methods on the record buffer, so no application
logic in the overridden methods is executed.

Set-based operations and table hierarchies
A set-based operation such as insert_recordset, update_recordset, or

delete_from is not downgraded to a record-based operation on a subtype or
supertype table unless a condition that would cause the operation to be
downgraded is met. Both an insert_recordset and update_recordset
operation can update or insert all qualifying records into the specified table
and all subtype and supertype tables, but not into any derived tables. The
delete_from operator is treated differently because it deletes all qualifying
records from the current table and its subtype and supertype tables to
guarantee that the record is deleted completely from the database. For
more information about the conditions that cause a downgrade, see the
following sections.

The insert_recordset operator
The insert_recordset operator enables the insertion of multiple records into
a table in one round trip to the database. The following X++ code
illustrates the use of insert_recordset. The code copies entries for one item
in the InventTable table and the InventSum table into a temporary table for
future use:
Click here to view code image

static void CopyItemInfo(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // insert_recordset uses only one round trip for the

copy operation.

 // A record-based insert would need one round trip per

record in InventSum.

 ttsBegin;

 insert_recordset insertInventTableInventSum

(ItemId,AltItemId,PhysicalValue,PostedValue)

 select ItemId,AltItemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue from inventSum

 where inventSum.ItemId == inventTable.ItemId;

 ttsCommit;

 select count(RecId) from insertInventTableInventSum;

 info(int642str(insertInventTableInventSum.RecId));

 // Additional code to use the copied data.

}

The round trip to the database involves the execution of three statements
in the database:

1. The select part of the insert_recordset statement executes when the
selected rows are inserted into a new temporary table in the database.
The syntax of the select statement when executed in T-SQL is
similar to SELECT <field list> INTO <temporary table> FROM
<source tables> WHERE <predicates>.

2. The records from the temporary table are inserted directly into the
target table by using syntax such as INSERT INTO <target table>
(<field list>) SELECT <field list> FROM <temporary table>.

3. The temporary table is dropped with the execution of DROP TABLE
<temporary table>.

This approach has a tremendous performance advantage over inserting
the records one by one, as shown in the following X++ code, which
addresses the same scenario:
Click here to view code image

static void CopyItemInfoLineBased(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 ttsBegin;

 while select ItemId,Altitemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue from inventSum

 where inventSum.ItemId == inventTable.ItemId

 {

 InsertInventTableInventSum.ItemId =

inventTable.ItemId;

 InsertInventTableInventSum.AltItemId =

inventTable.AltItemId;

 InsertInventTableInventSum.PhysicalValue =

inventSum.PhysicalValue;

 InsertInventTableInventSum.PostedValue =

inventSum.PostedValue;

 InsertInventTableInventSum.insert();

 }

 ttsCommit;

 select count(RecId) from insertInventTableInventSum;

 info(int642str(insertInventTableInventSum.RecId));

 // ... Additional code to use the copied data

}

If the InventSum table contains 10 entries for which ItemId equals 1001,

this scenario would result in one round trip for the select statement and an
additional 10 round trips for the inserts, totaling 11 round trips.

The insert_recordset operation can be downgraded from a set-based
operation to a record-based operation if any of the following conditions is
true:

 The table is cached by using the EntireTable setting.
 The insert method or the aosValidateInsert method is overridden on
the target table.

 Alerts are set to be triggered by inserts into the target table.
 The database log is configured to log inserts into the target table.
 Record-level security (RLS) is enabled on the target table. If RLS is
enabled only on the source table or tables, insert_recordset isn’t
downgraded to a row-by-row operation.

 The ValidTimeStateFieldType property for a table is not set to None.
The AX 2012 runtime automatically handles the downgrade and

internally executes a scenario similar to the while select scenario shown in
the preceding example.

 Important

When the AX 2012 runtime checks for overridden methods, it
determines only whether the methods are implemented. It
doesn’t determine whether the overridden methods contain
only the default X++ code. A method is therefore considered
to be overridden by the runtime even though it contains the
following X++ code:

public void insert()

{

 super();

}

Any set-based insert is then downgraded.

Unless a table is cached by using the EntireTable setting, you can avoid
the downgrade caused by the other conditions mentioned earlier. The
record buffer contains methods that turn off the checks that the runtime
performs when determining whether to downgrade the insert_recordset
operation:

 Calling skipDataMethods(true) prevents the check that determines
whether the insert method is overridden.

 Calling skipAosValidation(true) prevents the check on the
aosValidateInsert method.

 Calling skipDatabaseLog(true) prevents the check that determines
whether the database log is configured to log inserts into the table.

 Calling skipEvents(true) prevents the check that determines whether
any alerts have been set to be triggered by the insert event on the
table.

The following X++ code, which includes the call to
skipDataMethods(true), ensures that the insert_recordset operation is not
downgraded because the insert method is overridden on the InventSize
table:
Click here to view code image

static void CopyItemInfoskipDataMethod(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 ttsBegin;

 // Skip override check on insert.

 insertInventTableInventSum.skipDataMethods(true);

 insert_recordset insertInventTableInventSum

(ItemId,AltItemId,PhysicalValue,PostedValue)

 select ItemId,Altitemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue from inventSum

 where inventSum.ItemId == inventTable.ItemId;

 ttsCommit;

 select count(RecId) from insertInventTableInventSum;

 info(int642str(insertInventTableInventSum.RecId));

 // ... Additional code to use the copied data

}

 Important

Use the skip methods with extreme caution because they can
prevent the logic in the insert method from being executed,

prevent events from being raised, and potentially prevent the
database log from being written to.

If you override the insert method, use the cross-reference system to
determine whether any X++ code calls skipDataMethods(true). If you
don’t, the X++ code might fail to execute the insert method. Moreover,
when you implement calls to skipDataMethods(true), ensure that data
inconsistency will not result if the X++ code in the overridden insert
method doesn’t execute.

You can use skip methods only to influence whether the
insert_recordset operation is downgraded. If you call
skipDataMethods(true) to prevent a downgrade because the insert method
is overridden, use the Microsoft Dynamics AX Trace Parser to make sure
that the operation has not been downgraded. The operation is downgraded
if, for example, the database log is configured to log inserts into the table.
In the previous example, the overridden insert method on the InventSize
table would be executed if the database log were configured to log inserts
into the InventSize table, because the insert_recordset operation would
then revert to a while select scenario in which the overridden insert method
would be called. For more information about the Trace Parser, see the
“Performance monitoring tools” section later in this chapter.

Since the AX 2009 release, the insert_recordset operator has supported
literals. Support for literals was introduced primarily to support upgrade
scenarios in which the target table is populated with records from one or
more source tables (by using joins), and one or more columns in the target
table must be populated with a literal value that doesn’t exist in the source.
The following code example illustrates the use of literals in
insert_recordset:
Click here to view code image

static void CopyItemInfoLiteralSample(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 boolean flag = boolean::true;

 ttsBegin;

 insert_recordset insertInventTableInventSum

(ItemId,AltItemId,PhysicalValue,PostedValue,Flag)

 select ItemId,altitemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue,Flag from inventSum

 where inventSum.ItemId == inventTable.ItemId;

 ttsCommit;

 select firstonly ItemId,Flag from

insertInventTableInventSum;

 info(strFmt('%1,%2',insertInventTableInventSum.ItemId,insertInventTableInventSum.Flag));

 // ... Additional code to utilize the copied data

}

The update_recordset operator
The behavior of the update_recordset operator is similar to that of the
insert_recordset operator. This similarity is illustrated by the following
piece of X++ code, in which all rows that have been inserted for one
ItemId are updated and flagged for further processing:
Click here to view code image

static void UpdateCopiedData(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // Code assumes InsertInventTableInventSum is

populated.

 // Set-based update operation.

 ttsBegin;

 update_recordSet insertInventTableInventSum setting

Flag = true

 where insertInventTableInventSum.ItemId == '1001';

 ttsCommit;

}

The execution of update_recordset results in one statement being passed
to the database—which in Transact-SQL uses syntax similar to UPDATE
<table> <SET> <field and expression list> WHERE <predicates>. As with
insert_recordset, update_recordset provides a tremendous performance
improvement over the record-based version that updates each record
individually. This improvement is shown in the following X++ code,
which serves the same purpose as the preceding example. The code selects
all of the records that qualify for update, sets the new description value,
and updates the record:
Click here to view code image

static void UpdateCopiedDataLineBased(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is

populated

 ttsBegin;

 while select forUpdate InsertInventTableInventSum

 where insertInventTableInventSum.ItemId == '1001'

 {

 insertInventTableInventSum.Flag = true;

 insertInventTableInventSum.update();

 }

 ttsCommit;

}

If 10 records qualify for the update, 1 select statement and 10 update
statements are passed to the database, rather than the single update
statement that would be passed with update_recordset.

The update_recordset operation can be downgraded if specific methods
are overridden or if AX 2012 is configured in specific ways. The
update_recordset operation is downgraded if any of the following
conditions is true:

 The table is cached by using the EntireTable setting.
 The update method, the aosValidateUpdate method, or the
aosValidateRead method is overridden on the target table.

 Alerts are set up to be triggered by update queries on the target table.
 The database log is configured to log update queries on the target
table.

 RLS is enabled on the target table.
 The ValidTimeStateFieldType property for a table is not set to None.

The AX 2012 runtime automatically handles the downgrade and
internally executes a scenario similar to the while select scenario shown in
the earlier example.

As with the insert_recordset operator, you can avoid a downgrade
unless the table is cached by using the EntireTable setting. The record
buffer contains methods that turn off the checks that the runtime performs
when determining whether to downgrade the update_recordset operation:

 Calling skipDataMethods(true) prevents the check that determines

whether the update method is overridden.
 Calling skipAosValidation(true) prevents the checks on the
aosValidateUpdate and aosValidateRead methods.

 Calling skipDatabaseLog(true) prevents the check that determines
whether the database log is configured to log updates to records in
the table.

 Calling skipEvents(true) prevents the check to determine whether
any alerts have been set to be triggered by the update event on the
table.

As explained earlier, use the skip methods with caution. Again, using
the skip methods influences only whether the update_recordset operation
is downgraded to a while select operation. If the operation is downgraded,
database logging, alerting, and execution of overridden methods occur
even though the respective skip methods have been called.

 Tip

If an update_recordset operation is downgraded, the select
statement uses the concurrency model specified at the table
level. You can apply the optimisticlock and pessimisticlock
keywords to the update_recordset statements and enforce a
specific concurrency model to be used in case of a
downgrade.

AX 2012 supports inner and outer joins in update_recordset. The
support for joins in update_recordset enables an application to perform
set-based operations when the source data is fetched from more than one
related data source.

The following example illustrates the use of joins with
update_recordset:
Click here to view code image

static void UpdateCopiedDataJoin(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is

populated

 // Set-based update operation with join.

 ttsBegin;

 update_recordSet insertInventTableInventSum setting

Flag = true,

 DiffAvailOrderedPhysical = inventSum.AvailOrdered -

inventSum.AvailPhysical

 join InventSum where inventSum.ItemId ==

insertInventTableInventSum.ItemId &&

 inventSum.AvailOrdered > inventSum.AvailPhysical;

 ttsCommit;

}

The delete_from operator
The delete_from operator is similar to the insert_recordset and
update_recordset operators in that it passes a single statement to the
database to delete multiple rows, as shown in the following code:
Click here to view code image

static void DeleteCopiedData(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is

populated

 // Set-based delete operation

 ttsBegin;

 delete_from insertInventTableInventSum

 where insertInventTableInventSum.ItemId == '1001';

 ttsCommit;

}

This code passes a statement to Microsoft SQL Server in a syntax
similar to DELETE <table> WHERE <predicates> and performs the same
actions as the following X++ code, which uses record-by-record deletes:
Click here to view code image

static void DeleteCopiedDataLineBased(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSum insertInventTableInventSum;

 // ... Code assumes InsertInventTableInventSum is

populated

 ttsBegin;

 while select forUpdate insertInventTableInventSum

 where insertInventTableInventSum.ItemId == '1001'

 {

 insertInventTableInventSum.delete();

 }

 ttsCommit;

}

Again, the use of delete_from is preferable for performance because a
single statement is passed to the database, instead of the multiple
statements that the record-by-record version parses.

As with the insert_recordset and update_recordset operations, the
delete_from operation can be downgraded—and for similar reasons. A
downgrade occurs if any of the following conditions is true:

 The table is cached by using the EntireTable setting.
 The delete method, the aosValidateDelete method, or the
aosValidateRead method is overridden on the target table.

 Alerts are set up to be triggered by deletions from the target table.
 The database log is configured to log deletions from the target table.
 The ValidTimeStateFieldType property for a table is not set to None.

A downgrade also occurs if delete actions are defined on the table. The
AX 2012 runtime automatically handles the downgrade and internally
executes a scenario similar to the while select operation shown in the
earlier example.

You can avoid a downgrade caused by these conditions unless the table
is cached by using the EntireTable setting. The record buffer contains
methods that turn off the checks that the runtime performs when
determining whether to downgrade the delete_from operation, as follows:

 Calling skipDataMethods(true) prevents the check that determines
whether the delete method is overridden.

 Calling skipAosValidation(true) prevents the checks on the
aosValidateDelete and aosValidateRead methods.

 Calling skipDatabaseLog(true) prevents the check that determines
whether the database log is configured to log the deletion of records
in the table.

 Calling skipEvents(true) prevents the check that determines whether
any alerts have been set to be triggered by the delete event on the
table.

The preceding descriptions about the use of the skip methods, the no-
skipping behavior in the event of downgrade, and the concurrency model
for the update_recordset operator are equally valid for the use of the
delete_from operator.

 Note

The record buffer also contains a skipDeleteMethod method.
Calling the method as skipDeleteMethod(true) has the same
effect as calling skipDataMethods(true). It invokes the same
AX 2012 runtime logic, so you can use skipDeleteMethod in
combination with insert_recordset and update_recordset,
although it might not improve the readability of the X++ code.

The RecordInsertList and RecordSortedList classes
In addition to the set-based operators, you can use the RecordInsertList
and RecordSortedList classes when inserting multiple records into a table.
When the records are ready to be inserted, the AX 2012 runtime packs
multiple records into a single package and sends it to the database. The
database then executes an individual insert operation for each record in the
package. This process is illustrated in the following example, in which a
RecordInsertList object is instantiated, and each record to be inserted into
the database is added to the RecordInsertList object. When all records are
inserted into the object, the insertDatabase method is called to ensure that
all records are inserted into the database.
Click here to view code image

static void CopyItemInfoRIL(Args _args)

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSumRT insertInventTableInventSumRT;

 RecordInsertList ril;

 ttsBegin;

 ril = new

RecordInsertList(tableNum(InsertInventTableInventSumRT));

 while select ItemId,AltItemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue from inventSum

 where inventSum.ItemId == inventTable.ItemId

 {

 insertInventTableInventSumRT.ItemId =

inventTable.ItemId;

 insertInventTableInventSumRT.AltItemId =

inventTable.AltItemId;

 insertInventTableInventSumRT.PhysicalValue =

inventSum.PhysicalValue;

 insertInventTableInventSumRT.PostedValue =

inventSum.PostedValue;

 // Insert records if package is full

 ril.add(insertInventTableInventSumRT);

 }

 // Insert remaining records into database

 ril.insertDatabase();

 ttsCommit;

 select count(RecId) from insertInventTableInventSumRT;

 info(int642str(insertInventTableInventSumRT.RecId));

 // Additional code to use the copied data.

}

Based on the maximum buffer size configured for the server, the AX
2012 runtime determines the number of records in a buffer as a function of
the size of the records and the buffer size. If the buffer is full, the records
in the RecordInsertList object are packed, passed to the database, and
inserted individually on the database tier. This check is made when the add
method is called. When the insertDatabase method is called from
application logic, the remaining records are inserted with the same
mechanism.

Using these classes has an advantage over using while select: fewer
round trips are made from the AOS to the database because multiple
records are sent simultaneously. However, the number of INSERT
statements in the database remains the same.

 Note

Because the timing of insertion into the database depends on
the size of the record buffer and the package, don’t expect a
record to be selectable from the database until the
insertDatabase method has been called.

You can rewrite the preceding example by using the RecordSortedList
class instead of RecordInsertList, as shown in the following X++ code:

Click here to view code image

public static server void CopyItemInfoRSL()

{

 InventTable inventTable;

 InventSum inventSum;

 InsertInventTableInventSumRT

insertInventTableInventSumRT;

 RecordSortedList rsl;

 ttsBegin;

 rsl = new

RecordSortedList(tableNum(InsertInventTableInventSumRT));

 rsl.sortOrder(fieldNum(InsertInventTableInventSumRT,PostedValue));

 while select ItemId,AltItemid from inventTable where

inventTable.ItemId == '1001'

 join PhysicalValue,PostedValue from inventSum

 where inventSum.ItemId == inventTable.ItemId

 {

 insertInventTableInventSumRT.ItemId =

inventTable.itemId;

 insertInventTableInventSumRT.AltItemId =

inventTable.AltItemId;

 insertInventTableInventSumRT.PhysicalValue =

inventSum.PhysicalValue;

 insertInventTableInventSumRT.PostedValue =

inventSum.PostedValue;

 //No records will be inserted.

 rsl.ins(insertInventTableInventSumRT);

 }

 //All records are inserted in database.

 rsl.insertDatabase();

 ttsCommit;

 select count(RecId) from insertInventTableInventSumRT;

 info(int642str(insertInventTableInventSumRT.RecId));

 // Additional code to utilize the copied data

}

When the application logic uses a RecordSortedList object, the records
aren’t passed and inserted in the database until the insertDatabase method
is called.

Both RecordInsertList objects and RecordSortedList objects can be
downgraded in application logic to record-by-record inserts, in which each
record is sent in a separate round trip to the database and the INSERT
statement is subsequently executed. A downgrade occurs if the insert

method or the aosValidateInsert method is overridden or if the table
contains fields of the type container or memo. However, no downgrade
occurs if the database log is configured to log inserts or alerts that are set
to be triggered by the insert event on the table. One exception is if logging
or alerts have been configured and the table contains CreatedDateTime or
ModifiedDateTime columns—in this case, record-by-record inserts are
performed. The database logging and alerts occur on a record-by-record
basis after the records have been sent and inserted into the database.

When instantiating the RecordInsertList object, you can specify that the
insert and aosValidateInsert methods be skipped. You can also specify
that the database logging and eventing be skipped if the operation isn’t
downgraded.

Tips for transferring code into set-based operations
Often, code is not transferred to a set-based operation because the logic is
too complex. However, an if condition, for example, can be placed in the
where clause of a query. If you have a scenario that requires an if/else
decision, you can achieve this with two queries, such as two
update_recordsets. Necessary information from other tables can be
obtained through joins instead of being looked up in a find operation. In
AX 2012, insert_recordset and TempDB temporary tables help to extend
the possibilities of transferring code into set-based operations.

Some things still might seem difficult to transfer to a set-based
operation, such as code for performing calculations on the columns in a
select statement. For this reason, AX 2012 offers a feature for views called
computed columns, and you can use this feature to transfer even fairly
complex logic into set-based operations. Computed columns can also
provide performance advantages when used as an alternative for
displaying methods on read-only data sources. Imagine the following task:
find all customers who bought products for more than $100,000 and all
customers who bought products for more than $1,000,000. Those
customers are treated as VIP customers who get certain rebates.

In earlier versions of Microsoft Dynamics AX, the X++ code to set
these values would have looked like the following example:
Click here to view code image

public static server void demoOld()

{

 SalesLine sl;

 CustTable ct;

 vipparm vp;

 int64 total;

 vp = vipparm::find();

 ttsBegin;

 // One + n round trips per Customer Account in the

salesline table.

 while select CustAccount, sum(SalesQty),

sum(SalesPrice) from sl group by sl.CustAccount

 {

 // Necessary to select for update causing n additional

round trips.

 ct = CustTable::find(sl.CustAccount,true);

 ct.VIPStatus = 0;

 if((sl.SalesQty*sl.SalesPrice)>=vp.UltimateVIP)

 ct.VIPStatus = 2;

 else if((sl.SalesQty*sl.SalesPrice)>=vp.VIP)

 ct.VIPStatus = 1;

 // Another n round trips for the update.

 if(ct.VIPStatus != 0)

 ct.update();

 }

 ttsCommit;

}

You could replace this code easily with two direct T-SQL statements to
make it far more effective. The direct T-SQL statements would look like
the following:
Click here to view code image

UPDATE CUSTTABLE SET VIPSTATUS = 2 FROM (SELECT

CUSTACCOUNT,SUM(SALESQTY)*SUM(SALESPRICE) AS

TOTAL,VIPSSTATUS = CASE

 WHEN SUM(SALESQTY)*SUM(SALESPRICE) > 1000000 THEN 2

 WHEN SUM(SALESQTY)*SUM(SALESPRICE) > 100000 THEN 1

 ELSE 0 END

 FROM SALESLINE GROUP BY CUSTACCOUNT) AS VC WHERE

VC.VIPSTATUS = 2 and CUSTTABLE.ACCOUNTNUM =

VC.CUSTACCOUNT and DATAAREAID = N'CEU'

 Note

This code contains only a partial dataAreaId and no Partition
field, which highlights its weaknesses. The data access logic
is not enforced.

In AX 2012, with the help of computed columns, you can replace this
code with two set-based statements. To create these statements, you first
need to create an AOT query because views themselves cannot contain a
group by statement. Further, you need a parameter table that holds the
information about who counts as a VIP customer for each company (see
Figure 13-4). Then you need to join this information together so that it is
available at run time.

FIGURE 13-4 Creating the parameter table and the initial query.

The code for the computed column is shown here:
Click here to view code image

private static server str compColQtyPrice()

{

 str sReturn,sQty,sPrice,ultimateVIP,VIP;

 Map m = new Map(Types::String,Types::String);

 sQty =

SysComputedColumn::returnField(tableStr(mySalesLineView),

 identifierStr(SalesLine_1),

 fieldStr(SalesLine,SalesQty));

 sPrice =

SysComputedColumn::returnField(tableStr(mySalesLineView),

 identifierStr(SalesLine_1),

 fieldStr(SalesLine,SalesPrice));

 ultimateVIP =

SysComputedColumn::returnField(tableStr(mySalesLineView),

 identifierStr(Vipparm_1),

 fieldStr(vipparm,ultimateVIP));

 VIP =

SysComputedColumn::returnField(tableStr(mySalesLineView),

 identifierStr(Vipparm_1),

 fieldStr(vipparm,VIP));

 m.insert(SysComputedColumn::sum(sQty)+'*'+SysComputedColumn::sum(sPrice)+

 ' >

'+ultimateVIP,int2str(VipStatus::UltimateVIP));

 m.insert(SysComputedColumn::sum(sQty)+'*'+SysComputedColumn::sum(sPrice)+

 ' > '+VIP ,int2str(VipStatus::VIP));

 return SysComputedColumn::switch('',m,'0');

}

The next step is to add the parameter table to a view and create the
necessary computed column, as shown in Figure 13-5.

FIGURE 13-5 Creating the view and the computed column.

The view in SQL Server looks like this:
Click here to view code image

SELECT T1.CUSTACCOUNT AS CUSTACCOUNT,T1.DATAAREAID AS

DATAAREAID,1010 AS RECID,T2.DATAAREAID

AS DATAAREAID#2,T2.VIP AS VIP,T2.ULTIMATEVIP AS

ULTIMATEVIP,(CAST ((CASE WHEN SUM(T1.

SALESQTY)*SUM(T1.SALESPRICE) > T2.ULTIMATEVIP THEN 2 WHEN

SUM(T1.SALESQTY)*SUM(T1.SALESPRICE) >

T2.VIP THEN 1 ELSE 0 END) AS NVARCHAR(10))) AS VIPSTATUS

FROM SALESLINE T1 CROSS JOIN VIPPARM T2

GROUP BY

T1.CUSTACCOUNT,T1.DATAAREAID,T2.DATAAREAID,T2.VIP,T2.ULTIMATEVIP

Now you can change the record-based update code used earlier to
effective, working set-based code:
Click here to view code image

public static server void demoNew()

{

 mySalesLineView mySLV;

 CustTable ct;

 ct.skipDataMethods(true);

 update_recordSet ct setting VipStatus =

VipStatus::UltimateVIP

 join mySLV where ct.AccountNum == mySLV.CustAccount &&

 mySLV.VipStatus ==

int2str(enum2int(vipstatus::UltimateVIP));

 update_recordSet ct setting VipStatus = VipStatus::VIP

 join mySLV where ct.AccountNum == mySLV.CustAccount &&

 mySLV.VipStatus == int2str(enum2int(vipstatus::VIP));

}

Executing the code shows the difference in timing:
Click here to view code image

public static void main(Args _args)

{

 int tickcnt;

 DemoClass::resetCusttable();

 tickcnt = WinAPI::getTickCount();

 DemoClass::demoOld();

 info('Line based' + int2str(WinAPI::getTickCount()-

tickcnt));

 DemoClass::resetCusttable();

 tickcnt = WinAPI::getTickCount();

 DemoClass::demoNew();

 info('Set based' + int2str(WinAPI::getTickCount()-

tickcnt));

}

The execution time of the operation is as follows:
 Record-based 1,514 milliseconds
 Set-based 171 milliseconds

Note that this code ran on demo data. Imagine running similar code on
an actual database with hundreds of thousands of sales orders and
customers.

Another example of when transferring a record-based operation to a set-
based operation might seem tricky is when you need to use aggregation
and group by in queries, because the update_recordset operator does not
support this. You can work around this issue by using TempDB temporary
tables and a combination of insert_recordset and update_recordset.

 Note

The amount of data that you need to modify determines
whether the set-based pattern is beneficial. For example, if
you just want to update 10 rows, a while select statement
might be more efficient. But if you are updating hundreds or
thousands of rows, this pattern can be more efficient. You’ll
need to evaluate and test each pattern individually to
determine which one provides better performance.

The following example first populates a table and then updates the
values in it based on a group by and sum operations in a statement. Note
that deleting and populating the data takes longer than the actual execution
of the later insert_recordset and update_recordset statements.
Click here to view code image

public static server void PopulateTable()

{

 MyUpdRecordsetTestTable MyUpdRecordsetTestTable;

 int myGrouping,myKey,mySum;

 RecordInsertList ril = new

RecordInsertList(tablenum(MyUpdRecordsetTestTable));

 delete_from MyUpdRecordsetTestTable;

 for(myKey=0;myKey<=100000;myKey++)

 {

 MyUpdRecordsetTestTable.Key = myKey;

 if(myKey mod 10 == 0)

 {

 myGrouping += 10;

 mySum += 10;

 }

 MyUpdRecordsetTestTable.fieldForGrouping =

myGrouping;

 MyUpdRecordsetTestTable.theSum =

mySum;

 ril.add(MyUpdRecordsetTestTable);

 }

 ril.insertDatabase();

}

Combine TempDB temporary tables, insert_recordset, and
update_recordset to update the table:
Click here to view code image

public static void InsertAndUpdate()

{

 MyUpdRecordsetTestTable MyUpdRecordsetTestTable;

 MyUpdRecordsetTestTableTmp MyUpdRecordsetTestTableTmp;

 int tc;

 tc = WinAPI::getTickCount();

 insert_recordset

MyUpdRecordsetTestTableTmp(fieldForGrouping,theSum)

 select fieldForGrouping,sum(theSum) from

MyUpdRecordsetTestTable

 Group by MyUpdRecordsetTestTable.fieldForGrouping;

 info("Time needed: " + int2str(WinAPI::getTickCount()-

tc));

 tc = WinAPI::getTickCount();

 update_recordSet MyUpdRecordsetTestTable setting theSum

= MyUpdRecordsetTestTableTmp.theSum

 join MyUpdRecordsetTestTableTmp

 where MyUpdRecordsetTestTable.fieldForGrouping ==

MyUpdRecordsetTestTableTmp.

fieldForGrouping;

 info("Time needed: " + int2str(WinAPI::getTickCount()-

tc));

}

When this code ran on demo data, the execution time of the operation
was as follows:

 insert_recordset statement 1,685 milliseconds
 update_recordset statement 3,697 milliseconds

Restartable jobs and optimistic concurrency
In multiple scenarios in AX 2012, the execution of some application logic
involves manipulating multiple rows from the same table. Some scenarios
require that all rows be manipulated within the scope of a single
transaction. In such a scenario, if something fails and the transaction is
canceled, all modifications are rolled back, and the job can be restarted
manually or automatically. In other scenarios, the changes are committed
on a record-by-record basis. In the case of failure in these scenarios, only
the changes to the current record are rolled back, and all previously

manipulated records are committed. When a job is restarted in this
scenario, it starts where it left off by skipping the records that have already
changed.

An example of the first scenario is shown in the following code, in
which all update queries to records in the CustTable table are wrapped into
the scope of a single transaction:
Click here to view code image

static void UpdateCreditMax(Args _args)

{

 CustTable custTable;

 ttsBegin;

 while select forupdate custTable where

custTable.CreditMax == 0

 {

 if (custTable.balanceMST() < 10000)

 {

 custTable.CreditMax = 50000;

 custTable.update();

 }

 }

 ttsCommit;

}

An example of the second scenario, executing the same logic, is shown
in the following code, in which the transaction scope is handled on a
record-by-record basis. You must reselect each individual CustTable
record inside the transaction for the AX 2012 runtime to allow the record
to be updated:
Click here to view code image

static void UpdateCreditMax(Args _args)

{

 CustTable custTable;

 CustTable updateableCustTable;

 while select custTable where custTable.CreditMax == 0

 {

 if (custTable.balanceMST() < 10000)

 {

 ttsBegin;

 select forupdate updateableCustTable

 where updateableCustTable.AccountNum ==

custTable.AccountNum;

 updateableCustTable.CreditMax = 50000;

 updateableCustTable.update();

 ttsCommit;

 }

 }

}

In a scenario in which 100 CustTable records qualify for the update, the
first example would involve 1 select statement and 100 update statements
being passed to the database, and the second example would involve 1
large select query and 100 additional select queries, plus the 100 update
statements. The code in the first scenario would execute faster than the
code in the second, but in the first scenario the code would also hold the
locks on the updated CustTable records longer because those records
wouldn’t be committed on a record-by-record basis. The second example
demonstrates superior concurrency over the first example because locks
are held for a shorter time.

With the optimistic concurrency model in AX 2012, you can take
advantage of the benefits offered by both of the preceding examples. You
can select records outside a transaction scope and update records inside a
transaction scope—but only if the records are selected optimistically. In
the following example, the optimisticlock keyword is applied to the select
statement while maintaining a per-record transaction scope. Because the
records are selected with the optimisticlock keyword, it isn’t necessary to
reselect each record individually within the transaction scope.
Click here to view code image

static void UpdateCreditMax(Args _args)

{

 CustTable custTable;

 while select optimisticlock custTable where

custTable.CreditMax == 0

 {

 if (custTable.balanceMST() < 10000)

 {

 ttsBegin;

 custTable.CreditMax = 50000;

 custTable.update();

 ttsCommit;

 }

 }

}

This approach provides the same number of statements passed to the
database as in the first example, but with the improved concurrency from
the second example because records are committed individually. The code

in this example still doesn’t perform as fast as the code in the first example
because it has the extra burden of per-record transaction management. You
could optimize the example even further by committing records on a scale
somewhere between all records and the single record, without decreasing
the concurrency considerably. However, the appropriate choice for commit
frequency always depends on the circumstances of the job.

 Tip

You can use the forupdate keyword when selecting records
outside the transaction if the table has been enabled for
optimistic concurrency at the table level. The best practice,
however, is to use the optimisticlock keyword explicitly
because the scenario won’t fail if the table-level setting is
changed. Using the optimisticlock keyword also improves the
readability of the X++ code because the explicit intention of
the developer is stated in the code.

Caching
The AX 2012 runtime supports both single-record and set-based record
caching. You can enable set-based caching in metadata by switching a
property on a table definition or writing explicit X++ code that instantiates
a cache. Regardless of how you set up caching, you don’t need to know
which caching method is used because the runtime handles the cache
transparently. To optimize the use of the cache, however, you must
understand how each caching mechanism works.

AX 2012 introduces some important new features for caching. For
example, record-based caching works not only for a single record but also
for joins. This mechanism is described in the “Record caching” section,
which follows next. Also, even if range operations are used in a query,
caching is supported as long as the query contains a unique key lookup.

The AX 2012 software development kit (SDK) contains a good
description of the individual caching options and how they are set up. See
the “Record Caching” topic at http://msdn.microsoft.com/en-
us/library/bb278240.aspx.

The following sections focus on how the caches are implemented in the
AX 2012 runtime and what to expect when using specific caching
mechanisms.

http://msdn.microsoft.com/en-us/library/bb278240.aspx

Record caching
You can set up three types of record caching on a table by setting the
CacheLookup property on the table definition: Found, FoundAndEmpty,
and NotInTTS. An additional value (besides None) is EntireTable—a set-
based caching option. These settings were introduced briefly in the
“Caching and indexing” section earlier in this chapter and are discussed in
greater detail in this section.

The three types of record caching are fundamentally the same. The
differences are found in what is cached and when cached values are
flushed. For example, the Found and FoundAndEmpty caches are
preserved across transaction boundaries, but a table that uses the NotInTTS
cache doesn’t use the cache when the cache is first accessed inside a
transaction scope. Instead, the cache is used in consecutive select
statements unless a forupdate keyword is applied to the select statement.
(The forupdate keyword forces the runtime to look up the record in the
database because the previously cached record wasn’t selected with the
forupdate keyword applied.)

The following X++ code example illustrates when the cache is used
inside a transaction scope when a table uses the NotInTTS caching
mechanism. The AccountNum field is the primary key. The code
comments indicate when the cache is used. In the example, the first two
select statements after the ttsbegin command don’t use the cache. The first
statement doesn’t use the cache because it’s the first statement inside the
transaction scope; the second doesn’t use the cache because the forupdate
keyword is applied to the statement.
Click here to view code image

static void NotInTTSCache(Args _args)

{

 CustTable custTable;

 select custTable // Look up in

cache. If record

 where custTable.AccountNum == '1101'; // does not

exist, look up

 // in

database.

 ttsBegin; // Start

transaction.

 select custTable // Cache is

invalid. Look up in

 where custTable.AccountNum == '1101'; // database

and place in cache.

 select forupdate custTable // Look up in

database because

 where custTable.AccountNum == '1101'; // forupdate

keyword is applied.

 select custTable // Cache will

be used.

 where custTable.AccountNum == '1101'; // No lookup

in database.

 select forupdate custTable // Cache will

be used because

 where custTable.AccountNum == '1101'; // forupdate

keyword was used

 //

previously.

 ttsCommit; // End

transaction.

 select custTable // Cache will

be used.

 where custTable.AccountNum == '1101';

}

If the table in the preceding example had been set up with Found or
FoundAndEmpty caching, the cache would have been used when the first
select statement was executed inside the transaction, but not when the first
select forupdate statement was executed.

 Note

By default, all AX 2012 system tables are set up to use a
Found cache. This cannot be changed.

For all three caching mechanisms, the cache is used only if the select
statement contains equal-to (==) predicates in the where clause that
exactly match all of the fields in the primary index of the table or any one
of the unique indexes that is defined for the table. Therefore, the
PrimaryIndex property on the table must be set correctly on one of the
unique indexes that is used when accessing the cache from application
logic. For all other unique indexes, without any additional settings in
metadata, the kernel automatically uses the cache if it is already present.

The following X++ code examples show when the AX 2012 runtime
will try to use the cache. The cache is used only in the first select
statement; the remaining three statements don’t match the fields in the
primary index, so instead, the statements perform lookups in the database.
Click here to view code image

static void UtilizeCache(Args _args)

{

 CustTable custTable;

 select custTable //

Will use cache because only

 where custTable.AccountNum == '1101'; //

the primary key is used as

 //

predicate.

 select custTable; //

Cannot use cache because no

 //

"where" clause exists.

 select custTable //

Cannot use cache because

 where custTable.AccountNum > '1101'; //

equal-to (==) is not used.

 select custTable //

Will use cache even if

 where custTable.AccountNum == '1101' //

where clause contains more

 && custTable.CustGroup == '20'; //

predicates than the primary

 //

key. This assumes that the record

 //

has been successfully cached

 //

before. Please see the next sample.

}

 Note

The RecId index, which is always unique on a table, can be
set as the PrimaryIndex in the table’s properties. You can
therefore set up caching by using the RecId field.

The following example illustrates how the improved caching mechanics
in AX 2012 work when the where clause of the query contains more than
just the unique index key columns:
Click here to view code image

static void whenRecordDoesGetCached(Args _args)

{

 CustTable custTable,custTable2;

 // Using Contoso demo data

 // The following select statement will not cache using

the found cache because the lookup

 // will not return a record.

 // It would cache the record if the cache setting was

FoundAndEmpty.

 select custTable

 where custTable.AccountNum == '1101'

 && custTable.CustGroup == '20';

 // Following query will cache the record.

 select custTable

 where custTable.AccountNum == '1101';

 // Following will be cached too as the lookup will

return a record.

 select custTable2

 where custTable2.AccountNum == '1101'

 && custTable2.CustGroup == '10';

 // If you rerun the job, everything will come from

the cache.

}

The following X++ code example shows how unique index caching
works in the AX 2012 runtime. The InventDim table in the base
application has InventDimId as the primary key and a combination of keys
(inventBatchId, wmsLocationId, wmsPalletId, inventSerialId,
inventLocationId, configId, inventSizeId, inventColorId, and inventSiteId)
as the unique index on the table.

 Note

This sample is based on AX 2012. The index has been
changed for AX 2012 R2.

Click here to view code image

static void UtilizeUniqueIndexCache(Args _args)

{

 InventDim InventDim;

 InventDim inventdim2;

 select firstonly * from inventdim2;

 // Will use the cache because only the primary key is

used as predicate

 select inventDim

 where inventDim.InventDimId == inventdim2.InventDimId;

 info(enum2str(inventDim.wasCached()));

 // Will use the cache because the column list in the

where clause matches that of a unique

 // index

 // for the InventDim table and the key values point to

same record as the primary key fetch

 select inventDim

 where inventDim.inventBatchId ==

inventDim2.inventBatchId

 && inventDim.wmsLocationId ==

inventDim2.wmsLocationId

 && inventDim.wmsPalletId ==

inventDim2.wmsPalletId

 && inventDim.inventSerialId ==

inventDim2.inventSerialId

 && inventDim.inventLocationId ==

inventDim2.inventLocationId

 && inventDim.ConfigId == inventDim2.ConfigId

 && inventDim.inventSizeId ==

inventDim2.inventSizeId

 && inventDim.inventColorId ==

inventDim2.inventColorId

 && inventDim.inventSiteId ==

inventDim2.inventSiteId;

 info(enum2str(inventDim.wasCached()));

 // Cannot use cache because the where clause does not

match the unique key list or primary

 // key.

 select firstonly inventDim

 where inventDim.inventLocationId==

inventDim2.inventLocationId

 && inventDim.ConfigId == inventDim2.ConfigId

 && inventDim.inventSiteId ==

inventDim2.inventSiteId;

 info(enum2str(inventDim.wasCached()));

}

The AX 2012 runtime ensures that all fields in a record are selected
before they are cached. Therefore, if the runtime can’t find the record in
the cache, it always modifies the field list to include all fields in the table
before submitting the SELECT statement to the database. The following
X++ code illustrates this behavior:
Click here to view code image

static void expandingFieldList(Args _args)

{

 CustTable custTable;

 select CreditRating // The field list will be expanded

to all fields.

 from custTable

 where custTable.AccountNum == '1101';

}

Expanding the field list ensures that the record fetched from the
database contains values for all fields before the record is inserted into the
cache. Even though the performance when fetching all fields is inferior
compared to the performance when fetching a few fields, this approach is
acceptable because in subsequent use of the cache, the performance gain
outweighs the initial loss of populating it.

 Tip

You can avoid using the cache by calling the disableCache
method on the record buffer with a Boolean parameter of true.
This method forces the runtime to look up the record in the
database, and it also prevents the runtime from expanding the
field list.

The AX 2012 runtime creates and uses caches on both the client tier and
the server tier. The client-side cache is local to the AX 2012 client, and the
server-side cache is shared among all connections to the server, including
connections coming from AX 2012 Windows clients, web clients, the
.NET Business Connector (BC.NET), and any other connection.

The cache that is used depends on the tier that the lookup is made from.
If the lookup is executed on the server tier, the server-side cache is used. If
the lookup is executed on the client tier, the client first looks in the client-

side cache. If no record is found in the client-side cache, it executes a
lookup in the server-side cache. If no record is found, a lookup is made in
the database. When the database returns the record to the server and sends
it on to the client, the record is inserted into both the server-side cache and
the client-side cache.

If caching was set in AX 2009, the client stored up to 100 records per
table, and the AOS stored up to 2,000 records per table. In AX 2012, you
can configure the cache by using the Server Configuration form (System
Administration > Setup > Server Configuration). For more information,
see the “Performance configuration options” section later in this chapter.

Scenarios that perform multiple lookups on the same records and expect
to find results in the cache can suffer performance degradation if the cache
is continuously full—not only because records won’t be found in the cache
because they were removed based on the aging scheme, forcing a lookup
in the database, but also because of the constant scanning of the tree to
remove the oldest records. The following X++ code shows an example in
which all SalesTable records are iterated through twice: each loop looks up
the associated CustTable record. If this X++ code were executed on the
server and the number of lookups for CustTable records was more than
2,000 (assuming that the cache was set to 2,000 records on the server), the
oldest records would be removed from the cache and the cache would no
longer contain all CustTable records when the first loop ended. When the
code iterates through the SalesTable records again, the records might not
be in the cache, and the runtime would go to the database to look up the
CustTable records. The scenario, therefore, would perform much better
with fewer than 2,000 records in the database.
Click here to view code image

static void AgingScheme(Args _args)

{

 SalesTable salesTable;

 CustTable custTable;

 while select salesTable order by CustAccount

 {

 select custTable // Fill up cache.

 where custTable.AccountNum ==

salesTable.CustAccount;

 // More code here.

 }

 while select salesTable order by CustAccount

 {

 select custTable // Record might not be in

cache.

 where custTable.AccountNum ==

salesTable.CustAccount;

 // More code here.

 }

}

 Important

Test performance improvements of record caching only on a
database where the database size and data distribution
resemble the production environment. (The arguments have
been presented in the previous example.)

Before the AX 2012 runtime searches for, inserts, updates, or deletes
records in the cache, it places a mutually exclusive lock that isn’t released
until the operation is complete. This lock means that two processes
running on the same server can’t perform insert, update, or delete
operations in the cache at the same time. Only one process can hold the
lock at any given time, and the remaining processes are blocked. Blocking
occurs only when the runtime accesses the server-side cache. So although
the caching possibilities supported by the runtime are useful, you should
use them only when appropriate. If you can reuse a record buffer that is
already fetched, you should do so. The following X++ code shows the
same record being fetched multiple times. The subsequent fetch operations
use the cache, even though the operations could have used the first record
buffer that was fetched.
Click here to view code image

static void ReuseRecordBuffer(Args _args)

{

 CustTable custTable;

 CurrencyCode myCustCurrency;

 CustGroupId myCustGroupId;

 PaymTermId myCustPaymTermId;

 // Bad coding pattern

 myCustGroupId = custTable::find('1101').CustGroup;

 myCustPaymTermId = custTable::find('1101').PaymTermId;

 myCustCurrency = custTable::find('1101').Currency;

 // The cache will be used for these lookups, but it is

much more

 // efficient to reuse the buffer, because even cache

lookups are not "free."

 // Good coding pattern:

 custTable = CustTable::find('1101');

 myCustGroupId = custTable.CustGroup;

 myCustPaymTermId = custTable.PaymTermId;

 myCustCurrency = custTable.Currency;

}

The unique index join cache
The unique index join cache is new to AX 2012 and allows caching of
subtype and supertype tables, one-to-one relation joins with a unique
lookup, or a combination of both. A key constraint with this type of cache
is that you can look up only one record through a unique index and you
can join only over unique columns.

The following example illustrates all three possible variations:
Click here to view code image

public static void main(Args args)

{

 SalesTable header;

 SalesLine line;

 DirPartyTable party;

 CustTable customer;

 int i;

 // subtype, supertype table caching

 for (i=0 ; i<1000; i++)

 select party where party.RecId == 5637144829;

 // 1:1 join data caching

 for (i=0 ; i<1000; i++)

 select line

 join header

 where line.RecId == 5637144586

 && line.SalesId == header.SalesId;

 // Combination of subtype, supertype, and 1:1 join

caching

 for (i=0 ; i<1000; i++)

 select customer

 join party

 where customer.AccountNum == '4000'

 && customer.Party == party.RecId;

}

The EntireTable cache
In addition to using the three caching methods described so far—Found,
FoundAndEmpty, and NotInTTS—you can set a fourth caching option,
EntireTable, on a table. EntireTable enables a set-based cache. It causes
the AOS to mirror the table in the database by selecting all records in the
table and inserting them into a temporary table when any record from the
table is selected for the first time. The first process to read from the table
can therefore experience a longer response time because the runtime reads
all records from the database. Subsequent select queries then read from the
EntireTable cache instead of from the database.

A temporary table is usually local to the process that uses it, but the
EntireTable cache is shared among all processes that access the same
AOS. Each company (as defined by the DataAreaId field) has an
EntireTable cache, so two processes requesting records from the same
table but from different companies use different caches, and both could
experience a longer response time to instantiate the EntireTable cache.

The EntireTable cache is a server-side cache only. When the runtime
requests records from the client tier on a table that is cached by using the
EntireTable option, the table behaves like a table that uses the Found
option. If a request for a record is made on the client tier, and that request
qualifies for searching the record cache, the client first searches the local
Found cache. If the record isn’t found, the client calls the AOS to search
the EntireTable cache. When the runtime returns the record to the client
tier, it inserts the record into the client-side Found cache. The EntireTable
cache on the server side also uses a Found cache when unique key lookups
execute.

The EntireTable cache isn’t used in the execution of a select statement
that joins a table that uses the EntireTable option to a table that uses a
different cache option. In this situation, the select statement is passed to
the database. However, when select statements are made that access only a
single table that uses the EntireTable cache option, or when joining other
tables that use the EntireTable cache option, the EntireTable cache is used.

The AX 2012 runtime flushes the EntireTable cache when records are
inserted, updated, or deleted in the table. The next process that selects
records from the table suffers degraded performance because it must
reread the entire table into the cache. In addition to flushing its own cache,

the AOS that executes the insert, update, or delete also informs other AOS
instances in the same installation that they must flush their caches of the
same table. This prevents old and invalid data from being cached for too
long. In addition to this flushing mechanism, the AOS flushes all
EntireTable caches every 24 hours.

Because of the flushing that results when modifying records in a table
that uses the EntireTable cache option, avoid setting up EntireTable
caches on frequently updated tables. Rereading all records into the cache
results in a performance loss, which could outweigh the performance gain
achieved by caching records on the server tier and avoiding round trips to
the database tier. You can overwrite the EntireTable cache setting on a
specific table at run time when you configure AX 2012.

Even if the records in a table are fairly static, you might achieve better
performance by not using an EntireTable cache if the table has a large
number of records. Because an EntireTable cache uses temporary tables, it
changes from an in-memory structure to a file-based structure when the
table uses more than 128 kilobytes (KB) of memory. This results in
performance degradation during record searches. The database search
engines have also evolved over time and are faster than the ones
implemented in the AX 2012 runtime. It might be faster to let the database
search for the records than to set up and use an EntireTable cache, even
though a database search involves round trips to the database tier. In AX
2012, you can configure the amount of memory an entire table can
consume before it changes to a file-based structure. To do so, go to System
Administration > Setup > System > Server Configuration.

The RecordViewCache class
A RecordViewCache object is implemented as a linked list that allows
only a sequential search for records. When you use the cache to store a
large number of records, search performance is degraded because of this
linked-list format. Therefore, you should not use it to cache more than 100
records. Weigh the use of the cache against the extra time spent fetching
the records from the database, which uses a more optimal search
algorithm. In particular, consider the time required when you search for
only a subset of records; the AX 2012 runtime must continuously match
each record in the cache against the more granular where clause in the
select statement because no indexing is available for the records in the
cache.

You can use the RecordViewCache class to establish a set-based cache

from X++ code. You initiate the cache by writing the following X++ code:
Click here to view code image

select nofetch custTrans where custTrans.accountNum ==

'1101';

recordViewCache = new RecordViewCache(custTrans);

The records to cache are described in the select statement, which must
include the nofetch keyword to prevent the selection of the records from
the database. The records are selected when the RecordViewCache object
is instantiated with the record buffer passed as a parameter. Until the
RecordViewCache object is destroyed, select statements will execute on
the cache if they match the where clause defined when the cache was
instantiated. The following X++ code shows how to instantiate and use the
cache:
Click here to view code image

public static void main(Args _args)

{

 InventTrans inventTrans;

 RecordViewCache recordViewCache;

 int countNone, countSold, countOrder;

 // Define records to cache.

 select nofetch inventTrans

 where inventTrans.ItemId == '1001';

 // Cache the records.

 recordViewCache = new RecordViewCache(InventTrans);

 // Use the cache.

 while select inventTrans

 index hint ItemIdx

 where inventTrans.ItemId == '1001' &&

inventTrans.StatusIssue == StatusIssue::OnOrder

 {

 countOrder++;

 //Additional code here

 }

 // This block of code needs to be executed only after

the first while select statement and

 // before the second while select statement.

 // Additional code here

 // Uses the cache again.

 while select inventTrans

 index hint ItemIdx

 where inventTrans.ItemId == '1001' &&

inventTrans.StatusIssue == StatusIssue::Sold

 {

 countSold++;

 //Additional code here

 }

 info('OnOrder Vs Sold = '+int2str(countOrder) + ' : ' +

int2str(countSold));

}

The cache can be instantiated only on the server tier. The select
statement can contain only equal-to (==) predicates in the where clause
and is accessible only by the process instantiating the cache object. If the
table buffer used for instantiating the cache object is a temporary table or
if it uses EntireTable caching, the RecordViewCache object isn’t
instantiated.

If the table that is cached in the RecordViewCache object is also cached
on a per-record basis, the runtime can use both caches. If a select statement
is executed on a Found cached table and the select statement qualifies for
lookup in the Found cache, the runtime performs a lookup in this cache
first. If no record is found and the select statement also qualifies for lookup
in the RecordViewCache object, the runtime uses the RecordViewCache
object and updates the Found cache after retrieving the record.

Inserts, updates, and deletions of records that meet the cache criteria are
reflected in the cache at the same time that the data manipulation language
(DML) statements are sent to the database. Records in the cache are
always inserted at the end of the linked list. A hazard associated with this
behavior is that an infinite loop can occur when application logic iterates
through the records in the cache and at the same time inserts new records
that meet the cache criteria.

Changes to records in a RecordViewCache object can’t be rolled back. If
one or more RecordViewCache objects exist, if the ttsabort operation
executes, or if an error is thrown that results in a rollback of the database,
the RecordViewCache objects still contain the same information.
Therefore, any instantiated RecordViewCache object that is subject to
modification by application logic should not have a lifetime longer than
the transaction scope in which it is modified. The RecordViewCache

object must be declared in a method that isn’t executed until after the
transaction has begun. In the event of a rollback, the object and the cache
are both destroyed.

SysGlobalObjectCache and SysGlobalCache
AX 2012 provides two mechanisms that you can use to cache global
variables to improve performance: SysGlobalObjectCache (SGOC) and
SysGlobalCache. SGOC is new for AX 2012 and is an important
performance feature.

SGOC is a global cache that is located on the AOS, and it is not just a
session-based cache. You can use this cache to reduce round trips to the
database or to store intermediate calculation results. The data that is stored
from one user connection is available for all users. For more information
about the SGOC, see the entry, “Using SysGlobalObjectCache (SGOC)
and understanding its performance implications,” on the Dynamics AX
Performance Team Blog
(http://blogs.msdn.com/b/axperf/archive/2011/12/29/using-
sysglobalobjectcache-sgoc-and-understanding-it-s-performance-
implications.aspx).

SysGlobalCache uses a map to save information that is purely session-
based. However, there are certain client/server considerations if you use
this form of caching. If you use SysGlobalCache by means of the
ClassFactory class, global variables can exist either on the client or on the
server. If you use SysGlobalCache directly, it runs on the tier from which
it is called. If you use SysGlobalCache by means of the Info class or the
Application class, it resides on both tiers, causing a performance penalty
because of increased round trips between the client and server. For more
information, see “Using Global Variables” at
http://msdn.microsoft.com/en-us/library/aa891830.aspx.

Field lists
Most X++ select statements in AX 2012 retrieve all fields for a record,
even though only a few of the fields are actually used. The main reason for
this coding style is that the AX 2012 runtime doesn’t report compile-time
or run-time errors if a field on a record buffer is accessed and hasn’t been
retrieved from the database. Because of the normalization of the AX 2012
data model and the introduction of table hierarchies, limiting field lists in
queries is even more important than it was in AX 2009, particularly for
polymorphic tables. With ad hoc mode, you can limit the field list in a
query. If you use ad hoc mode, the query is limited to only the table (or

http://blogs.msdn.com/b/axperf/archive/2011/12/29/using-sysglobalobjectcache-sgoc-and-understanding-it-s-performance-implications.aspx
http://msdn.microsoft.com/en-us/library/aa891830.aspx

tables) that are referenced in the query. Other tables in the hierarchy are
excluded. This produces an important performance benefit by reducing the
number of joins between tables in subtype and supertype hierarchies.

 Note

The base type table is always joined, regardless of which
fields are selected.

The following example illustrates the effects of querying both without
and with ad hoc mode:
Click here to view code image

static void AdHocModeSample(Args _args)

{

 DirPartyTable dirPartyTable;

 CustTable custTable;

 select dirPartyTable join custTable where

dirPartyTable.RecId==custTable.Party;

 /*Would result in the following query to the database:

 SELECT T1.NAME,

 T1.LANGUAGEID,

--<...Fields removed for better readability. Basically, all

fields from all tables would be

fetched...>

T9.MEMO FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON T2

ON (T1.RECID=T2.RECID) LEFT

OUTER JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID)

LEFT OUTER JOIN DIRORGANIZATION T4 ON

(T3.RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION

T5 ON (T3.RECID=T5.RECID) LEFT OUTER

JOIN OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN

OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID)

LEFT OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID) CROSS

JOIN CUSTTABLE T9 WHERE

((T9.DATAAREAID='ceu') AND (T1.RECID=T9.PARTY))

 Limiting the field list will force the AX 2012 AOS to

query only for the actual table.

 The following query:*/

 select RecId from dirPartyTable exists join custTable

where dirPartyTable.RecId==custTable.

Party;

 /*

Results only in the following query to SQL Server

 SELECT T1.RECID, T1.INSTANCERELATIONTYPE FROM

DIRPARTYTABLE T1 WHERE EXISTS (SELECT 'x'

 FROM CUSTTABLE T2 WHERE ((T2.DATAAREAID='ceu') AND

(T1.RECID=T2.PARTY)))

 */

}

There are additional ways to limit the field list and number of joins in
queries through the user interface. These are described in more detail at the
end of this section.

The following X++ code, which selects only the AccountNum field from
the CustTable table but evaluates the value of the CreditRating field and
sets the CreditMax field, won’t fail because the runtime doesn’t detect that
the fields haven’t been selected:
Click here to view code image

static void UpdateCreditMax(Args _args)

{

 CustTable custTable;

 ttsBegin;

 while select forupdate AccountNum from custTable

 {

 if (custTable.CreditRating == '')

 {

 custTable.CreditMax = custTable.CreditMax +

1000;

 custTable.update();

 }

 }

 ttsCommit;

}

This code adds 1,000 to the value of the CreditMax field in CustTable
records for which the CreditRating field is empty. However, adding the
CreditRating and CreditMax fields to the field list of the select statement
might not solve the problem: the application logic could still update other
fields incorrectly because the update method on the table could be
evaluating and setting other fields in the same record.

 Important

You could examine the update method for other fields

accessed in the method and then select these fields also, but
new problems would soon surface. For example, if you
customize the update method to include application logic that
uses additional fields, you might not be aware that the X++
code in the preceding example also needs to be customized.

Limiting the field list when selecting records results in a performance
gain because less data is retrieved from the database and sent to the AOS.
The gain is even greater if you can retrieve the fields by using indexes
without a lookup of the values in the table or by limiting the field list to
reduce the number of joins in hierarchy tables. You can implement this
performance improvement and write select statements safely when you use
the retrieved data within a controlled scope, such as a single method. The
record buffer must be declared locally and not passed to other methods as
a parameter. Any developer customizing the X++ code can easily see that
only a few fields are selected and act accordingly.

To truly benefit from a limited field list, be aware that the AX 2012
runtime sometimes automatically adds extra fields to the field list before
passing a statement to the database. One example was explained earlier in
this chapter in the “Caching” section. In that example, the runtime
expanded the field list to include all fields if the select statement qualifies
for storing the retrieved record in the cache.

In the following X++ code, you can see how the AX 2012 runtime adds
more fields. The code calculates the total balance for all customers in
customer group 20 and converts the balance into the company’s unit of
currency. The amountCur2MST method converts the value in the currency
specified in the CurrencyCode field to the company currency.
Click here to view code image

static void BalanceMST(Args _args)

{

 CustTable custTable;

 CustTrans custTrans;

 AmountMST balanceAmountMST = 0;

 while select custTable

 where custTable.CustGroup == '20'

 join custTrans

 where custTrans.AccountNum ==

custTable.AccountNum

 {

 balanceAmountMST +=

Currency::amountCur2MST(custTrans.AmountCur,

 custTrans.CurrencyCode);

 }

}

When the select statement is passed to the database, it retrieves all fields
in the CustTable and CustTrans tables, even though only the AmountCur
and CurrencyCode fields on the CustTrans table are used. The result is the
retrieval of more than 100 fields from the database.

You can optimize the field list by selecting the AmountCur and
CurrencyCode fields from the CustTrans table and, for example, only the
AccountNum field from the CustTable table, as shown in the following
code:
Click here to view code image

static void BalanceMST(Args _args)

{

 CustTable custTable;

 CustTrans custTrans;

 AmountMST balanceAmountMST = 0;

 while select AccountNum from custTable

 where custTable.CustGroup == '20'

 join AmountCur, CurrencyCode from custTrans

 where custTrans.AccountNum ==

custTable.AccountNum

 {

 balanceAmountMST +=

Currency::amountCur2MST(custTrans.AmountCur,

 custTrans.CurrencyCode);

 }

}

As explained earlier, the application runtime expands the field list from
the three fields shown in the preceding X++ code example to five fields
because it adds the fields that are used when updating the records. These
fields are added even though neither the forupdate keyword nor any of the
specific concurrency model keywords are applied to the statement. The
statement passed to the database starts as shown in the following example,
in which the RECID column is added for both tables:
Click here to view code image

SELECT

A.ACCOUNTNUM,A.RECID,B.AMOUNTCUR,B.CURRENCYCODE,B.RECID

FROM CUSTTABLE A,CUSTTRANS B

To prevent the retrieval of any fields from the CustTable table, you can
rewrite the select statement to use the exists join operator, as shown here:

Click here to view code image

static void BalanceMST(Args _args)

{

 CustTable custTable;

 CustTrans custTrans;

 AmountMST balanceAmountMST = 0;

 while select AmountCur, CurrencyCode from custTrans

 exists join custTable

 where custTable.CustGroup == '20' &&

 custTable.AccountNum ==

custTrans.AccountNum

 {

 balanceAmountMST +=

Currency::amountCur2MST(custTrans.AmountCur,

 custTrans.CurrencyCode);

 }

}

This code retrieves only three fields (AmountCur, CurrencyCode, and
RecId) from the CustTrans table and none from the CustTable table.

In some situations, however, it might not be possible to rewrite the
statement to use exists join. In such cases, including only TableId as a field
in the field list prevents the retrieval of any fields from the table. To do
this, you modify the original example as follows to include the TableId
field:
Click here to view code image

static void BalanceMST(Args _args)

{

 CustTable custTable;

 CustTrans custTrans;

 AmountMST balanceAmountMST = 0;

 while select TableId from custTable

 where custTable.CustGroup == '20'

 join AmountCur, CurrencyCode from custTrans

 where custTrans.AccountNum ==

custTable.AccountNum

 {

 balanceAmountMST +=

Currency::amountCur2MST(custTrans.AmountCur,

 custTrans.CurrencyCode);

 }

}

This code causes the AX 2012 runtime to pass a select statement to the
database with the following field list:

Click here to view code image

SELECT B.AMOUNTCUR,B.CURRENCYCODE,B.RECID

FROM CUSTTABLE A,CUSTTRANS B

If you rewrite the select statement to use exists join or include only
TableId as a field, the select statement sent to the database retrieves just
three fields instead of more than 100. As you can see, you can
substantially improve your application’s performance just by rewriting
queries to retrieve only the necessary fields.

 Tip

You can use the Best Practice Parameters dialog box to have
AX 2012 analyze the use of select statements in X++ code
and recommend whether to implement field lists based on the
number of fields that are accessed in the method. To enable
this check, in the AOT or the Development Workspace, on the
Tools menu, click Options > Development > Best Practices.
In the Best Practice Parameters dialog box, make sure that the
AOS Performance check box is selected and that Warning
Level is set to Errors And Warnings.

To use ad hoc mode on forms, navigate to the Data Sources node for the
form you want in the AOT, and then select the appropriate data source and
set the OnlyFetchActive property to Yes, as shown in Figure 13-6. This
setting limits the number of fields fetched to only those fields that are used
by controls on the form and improves the form’s response time.
Additionally, if the data source is a polymorphic table, only the tables that
are necessary to return these fields are joined—instead of all tables within
the hierarchy.

FIGURE 13-6 Use of OnlyFetchActive on a list page.

To see the effect of ad hoc mode, do the following test: create a list page
containing the DirPartyTable table as the data source and add only three
fields to the list page grid—for example, Name, NameAlias, and
PartyNumber. Setting OnlyFetchActive to No results in the following
query, which contains all fields in all tables and joins to all tables in the
hierarchy:
Click here to view code image

SELECT T1.DEL_GENERATIONALSUFFIX,T1.NAME,

T1.NAMEALIAS,T1.PARTYNUMBER,

/* Field list shortened for better readability. All fields

of all tables would be fetched. */

T8.RECID, FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON

T2 ON (T1.RECID=T2.RECID) LEFT

OUTER JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID)

LEFT OUTER JOIN DIRORGANIZATION T4 ON

(T3.RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION

T5 ON (T3.RECID=T5.RECID) LEFT OUTER

JOIN OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN

OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID)

LEFT OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID)ORDER

BY T1.PARTYNUMBER

Setting OnlyFetchActive to Yes results in a much smaller and more
efficient query:
Click here to view code image

SELECT T1.NAME,T1.NAMEALIAS, T1.PARTYNUMBER, T1.RECID,

T1.RECVERSION, T1.INSTANCERELATIONTYPE

FROM DIRPARTYTABLE T1 ORDER BY T1.PARTYNUMBER

For polymorphic tables in datasets for the Enterprise Portal web client
web controls, ensure that you also set OnlyFetchActive to Yes on the data
source of the dataset to improve performance.

To use ad hoc mode on queries that are modeled in the AOT, do the
following:

1. Navigate to the query you want, and then expand the Data Sources
node and the appropriate data source.

2. Click the Fields node, and then set the Dynamic property to No (see
Figure 13-7).

FIGURE 13-7 Use ad hoc mode on modeled queries.

3. Reduce the fields to only the ones that are necessary.
For an example of a query with a restricted field list, see the

DirRestrictPartyTableInAddressBook query in the base application.

Field justification
AX 2012 supports left justification and right justification of extended data
types. Nearly all extended data types are left justified to reduce the impact
of space consumption because of double-byte and triple-byte storage as a
result of Unicode enablement. Left justifying also helps performance by
increasing the speed of access through indexes.

When sorting is critical, you can use right justification. However, you
should use this technique sparingly.

Performance configuration options
This section provides an overview of the most important configuration
options that can improve the performance of your AX 2012 installation.

SQL Administration form
The SQL Administration form (see Figure 13-8) offers a set of SQL Server
features that were not supported in previous versions of Microsoft
Dynamics AX. For example, you can compress a table or apply a fill factor
individually. The SQL Administration form is located under System
Administration > Periodic > Database > SQL Administration.

FIGURE 13-8 The SQL Administration form.

Server Configuration form
Several important performance options are located on the Server
Configuration form. You can use this form to specify settings for
performance optimization, batch operations, and caching. The Server
Configuration form is located under System Administration > Setup >
System > Server Configuration.

Some of the most important performance optimization options are as
follows:

 Maximum number of tables in join Limits the number of tables
you can have in a join. Too many joins can have a negative impact
on performance, especially if the fields that are joined are not
indexed well.

 Client record cache factor Determines how many records the client
caches. For example, if the server-side cache setting for a table in the
Main table group is set to 2,000, and you set this setting to 20, the
client will cache 100 records (2,000/20).

 Timeout for user modified queries Specifies the timeout, in
seconds, for queries when a user adds conditions by using the
SysQueryForm form. A setting of 0 means that there is no timeout. If
a query times out, a message is shown.

You can specify whether a server is a batch server and how many
threads the server can use to process batch jobs. A good formula to
determine how many batch threads a server can use is to multiply the
number of cores by two. The number of threads that a server can use
depends on the processes that are running on the server. For some
processes, the server can use more than two threads for each core.
However, you need to test this on a case-by-case basis.

You can also define the number of records that are stored in a cache and
other cache settings (see Figure 13-9), such as the size of an EntireTable
cache (in kilobytes), the maximum number of objects that the SGOC can
hold, and the number of records that can be cached for each table group.
Each server can have its own cache settings.

FIGURE 13-9 Caching options on the Server Configuration form.

AOS configuration
The Microsoft Dynamics AX 2012 Server Configuration tool contains
settings that you can use to improve the performance of the AOS. To
access the tool, on the Start menu, click Administrative Tools > Microsoft
Dynamics AX 2012 Server Configuration. The following options are some
of the most important:

 Application Object Server tab Generally, the settings Enable
Breakpoints To Debug X++ Code Running On This Server and
Enable Global Breakpoints should be turned off in production

systems. Enable The Hot-Swapping Of Assemblies For Each
Development Session should also be turned off in production
systems. All three of these options might cause a performance
penalty if enabled.

 Database Tuning tab Depending on the business processes you run,
increasing the value of the Statement Cache setting can improve or
degrade performance. This setting determines how many statements
the AOS caches. (Only the statements and not the result sets are
cached.) You should not change the default value without thorough
testing. Also, you should avoid changing the Maximum Buffer Size
setting because the larger the maximum buffer size, the more
memory that must be allocated for each buffer, which takes slightly
more time.

 Performance tab If you have multiple AOS instances on one server,
use this tab to define an affinity to avoid resource contention
between the AOS instances. Note that the AOS in AX 2012 can scale
more than eight cores effectively.

Client configuration
On the AOS, you can use the Microsoft Dynamics AX Configuration tool
to set options for AX 2012 clients. To access this tool, on the Start menu,
click Administrative Tools > Microsoft Dynamics AX 2012 Configuration.
On the Performance tab, under Cache Settings, if you select the Least
Memory setting, the loading of certain dynamic-link libraries (DLLs) will
be deferred until they are needed, to save memory. This setting slightly
decreases performance but is very useful in Terminal Services scenarios to
increase the number of users that a Terminal Server can host in parallel.

Client performance
You can use the Client Performance Options form to centrally disable a set
of features that might affect performance. You can access the form under
System Administration > Setup > System > Client Performance Options.

For a detailed description of the controls on this form, see the entry,
“Microsoft Dynamics AX 2012: Client Performance Options,” on the
Dynamics AX Performance Team Blog
(http://blogs.msdn.com/b/axperf/archive/2011/11/07/ax2012-client-
performance-options.aspx).

Number sequence caching

http://blogs.msdn.com/b/axperf/archive/2011/11/07/ax2012-client-performance-options.aspx

It is a best practice to review thoroughly all number sequences that are in
use to determine whether they should be continuous. If possible, set them
to be noncontinuous. All number sequences that are not continuous should
have caching enabled.

Click Organization Administration > Common > Number Sequences,
double-click the number sequence you want, and then on the Performance
FastTab, set a preallocation depending on the frequency with which the
number sequence is used.

Extensive logging
Extensive database logging and other logging mechanisms, such as the
sales and marketing transaction log (Sales and Marketing > Setup > Sales
and Marketing Parameters), add overhead to the database load and should
be reduced to the absolute minimum necessary.

Master scheduling and inventory closing
AX 2012 has optimized performance of the master scheduling and
inventory closing processes. Both processes should run with at least one
helper thread. However, it is better to use multiple helper threads. For
master scheduling, eight helper threads have been found to be optimal with
the tested data.

Another option to improve the speed of master scheduling is to have a
dedicated AOS and change the garbage collection pattern to client-based
garbage collection. To do so, navigate to the installation directory of the
appropriate AOS, and then open the Ax32Serv.exe.config file. Locate the
following XML node and set it to false:

 <gcServer enabled="true" />

Coding patterns for performance
This section discusses coding patterns that you can use to help optimize
performance.

Executing X++ code as common intermediate language
You can improve performance by running X++ as common intermediate
language (CIL). In general, if a service is called from outside AX 2012, it
is executed in CIL. Batch jobs, services in the AxClient service group, and
code that is traversed through the RunAs method are also executed in CIL.
Two interfaces are available for this purpose in
Classes\Global\runClassMethodIL and runTableMethodIL. The

performance benefit from running X++ in CIL comes mainly from better
.NET garbage collection. Depending on your process, the performance
improvement can be from 0 through 30 percent. Therefore, you’ll need to
test to see whether performance improves by running your process in CIL.

Using parallel execution effectively
AX 2009 introduced ways to implement parallel processing easily through
the batch framework. These options have been enhanced in AX 2012.
Three common patterns can be applied for scheduling batch jobs that
execute tasks in parallel: batch bundling, individual task modeling, and top
picking. Each pattern has its own advantages and disadvantages, which are
discussed in the following sections.

For more information about the batch framework, see Chapter 18,
“Automating tasks and document distribution.” For code samples and
additional information about batch patterns and performance, see the entry,
“Batch Parallelism in AX – Part I,” on the Dynamics AX Performance
Team Blog (http://blogs.msdn.com/b/axperf/archive/2012/02/24/batch-
parallelism-in-ax-part-i.aspx). Links to additional entries in this series are
provided in the following sections.

Batch bundling
With batch bundling, you create a static number of tasks and split the work
among these tasks by grouping the work items into bundles. The workload
distribution between each task should be as equal as possible. Each worker
thread processes a bundle of work items before picking up the next bundle.
This pattern works well if all of the tasks take roughly the same amount of
time to process in each bundle. In an ideal situation, each worker thread is
actively doing the same amount of work. But in scenarios where the
workload is variable because of data composition or differences in server
hardware, this approach is not the most efficient. In these scenarios, the
last few threads might take longer to complete because they are processing
larger bundles than the others.

You can find a code example illustrating batch bundling in the AOT at
Classes\FormletterServiceBatchTaskManager\createFormletterParmDataTasks()

Individual task modeling
With individual task modeling, parallel processing is achieved by creating
a separate task for each work item so that there is a one-to-one mapping
between the task and the work item. This eliminates the need for
preallocation. Because each work item is independently handled by a

http://blogs.msdn.com/b/axperf/archive/2012/02/24/batch-parallelism-in-ax-part-i.aspx

worker thread, workload distribution is more consistent. This approach
eliminates the problem of a number of large work items being bundled
together and eventually increasing the response time for the batch.

This pattern is not necessarily suitable for processing a large number of
work items because you will end up with a large number of batch tasks.
The overhead on the batch framework to maintain a large number of tasks
is high because the batch framework must check several conditions,
dependencies, and constraints whenever a set of tasks is completed and a
new set of tasks must be picked up for execution from the ready state.

You can find a code example that illustrates this pattern in the “Batch
Parallelism in AX – Part II” entry on the Dynamics AX Performance Team
Blog (http://blogs.msdn.com/b/axperf/archive/2012/02/25/batch-
parallelism-in-ax-part-ii.aspx).

Top picking
One issue with bundling is the uneven distribution of workload. You can
address that by using individual task modeling, but that can produce high
overhead on the batch framework. Top picking is another batching
technique that can address the problem of uneven workload distribution.
However, it causes the same problem as individual task modeling with a
large number of work items.

With top picking, a static number of tasks are created, just as in
bundling, and preallocation is unnecessary, just as in individual task
modeling. Because no preallocation is performed, the pattern does not rely
on the batch framework to separate the work items, but you do need to
maintain a staging table to track the progress of the work items.
Maintaining the staging table has its own overhead, but that overhead is
much lower than the overhead of the batch framework. After the staging
table is populated, the worker threads start processing by fetching the next
available item from the staging table, and they continue until no work
items are left. This means that no worker threads are idle while other
worker threads are overloaded. To implement top picking, you use the
PESSIMISTICLOCK hint along with the READPAST hint. Used together,
these hints enable worker threads to fetch the next available work item
without being blocked.

You can find a code example that illustrates this pattern in the “Batch
Parallelism in AX – Part III” entry on the Dynamics AX Performance
Team Blog (http://blogs.msdn.com/b/axperf/archive/2012/02/28/batch-
parallelism-in-ax-part-iii.aspx).

http://blogs.msdn.com/b/axperf/archive/2012/02/25/batch-parallelism-in-ax-part-ii.aspx
http://blogs.msdn.com/b/axperf/archive/2012/02/28/batch-parallelism-in-ax-part-iii.aspx

The SysOperation framework
In AX 2012, programming concepts are available and first steps have been
taken to replace the RunBase framework. By using its replacement, the
SysOperation framework, you can run services in various execution
modes. The SysOperation framework has performance advantages, too.
There is a clear separation of responsibilities between tiers, and execution
happens solely on the server tier. These enhancements ensure a minimum
number of round trips.

 Note

Chapter 14 contains more information about the SysOperation
framework and has an additional code sample that compares
the SysOperation framework with the RunBase framework. If
you are unfamiliar with the SysOperation framework, it is
recommended that you read Chapter 14 before you read this
section.

The SysOperation framework supports four execution modes:
 Synchronous You can run a service in synchronous mode on the
server. The client waits until the process on the server is complete,
and only then can the user continue working.

 Asynchronous You perform the necessary configurations to the data
contract and then execute code on the server. However, the client
remains responsive and the user can continue working. This mode
also saves round trips between the client and the server.

 Reliable asynchronous Running operations in this mode is
equivalent to running them on the batch server, with the additional
behavior that the jobs are deleted after they are completed
(regardless of whether they are successful). The job history remains.
This pattern facilitates building operations that use the batch server
runtime, but that do not rely on the batch server administration
features.

 Scheduled batch You use this mode for scheduled batch jobs that
run on a regular basis.

The following example illustrates how to calculate a set of prime
numbers. A user enters the starting number (such as 1,000,000) and an
ending number (such as 1,500,000). The service then calculates all prime

numbers in that range. This example will be used to illustrate the
differences in timing when running an execution in each mode. The
sample consists of two classes (a service class and a data contract), a table
to store the results, and a job and an enumerator to demonstrate the
execution and execution modes.

 Note

Instead of using a job, you would typically use menu items to
execute the operation. If you use a menu item, the
SysOperation framework generates the necessary dialog box
to populate the data contract.

The following code contains the entry point of the service:
Click here to view code image

[SysEntryPointAttribute(true)]

public void runOperation(PrimeNumberRange data)

{

 PrimeNumbers primeNumbers;

 // Threads mainly take effect while running in the

batch framework utilizing either

 // reliable asynchronous or scheduled batch

 int i, start, end, blockSize, threads = 8;

 PrimeNumberRange subRange;

 start = data.parmStart();

 end = data.parmEnd();

 blockSize = (end - start) / threads;

 delete_from primeNumbers;

 for (i = 0; i < threads; i++)

 {

 subRange = new PrimeNumberRange();

 subRange.parmStart(start);

 subRange.parmEnd(min(start + blockSize, end));

 subRange.parmLast(i == threads - 1);

 this.findPrimes(subRange);

 start += blockSize + 1;

 }

}

The next sample is a method that executes differently depending on the
operation mode that you chose.

 Note

If the method is executed in reliable asynchronous mode or
scheduled batch mode, this sample also showcases a bundling
pattern that was discussed in the “Batch bundling” section
earlier in this chapter.

Click here to view code image

[SysEntryPointAttribute(false)]

public void findPrimes(PrimeNumberRange range)

{

 BatchHeader batchHeader;

 SysOperationServiceController controller;

 PrimeNumberRange dataContract;

 if (this.isExecutingInBatch())

 {

 ttsBegin;

 controller = new

SysOperationServiceController('PrimeNumberService',

'findPrimesWorker');

 dataContract =

controller.getDataContractObject('range');

 dataContract.parmStart(range.parmStart());

 dataContract.parmEnd(range.parmEnd());

 dataContract.parmLast(range.parmLast());

 batchHeader = this.getCurrentBatchHeader();

 batchHeader.addRuntimeTask(controller,

this.getCurrentBatchTask().RecId);

 batchHeader.save();

 ttsCommit;

 }

 else

 {

 this.findPrimesWorker(range);

 }

}

Last, but not least, is the method that does the actual work:
Click here to view code image

private void findPrimesWorker(PrimeNumberRange range)

{

 PrimeNumbers primeNumbers;

 int i;

 int64 time;

 for (i = range.parmStart(); i <= range.parmEnd(); i++)

 {

 if (this.isPrime(i))

 {

 primeNumbers.clear();

 primeNumbers.PrimeNumber = i;

 primeNumbers.insert();

 }

 }

 if (range.parmLast())

 {

 primeNumbers.clear();

 primeNumbers.PrimeNumber = -1;

 primeNumbers.insert();

 }

}

The following code contains a job that runs the prime number example
in all four execution modes:
Click here to view code image

static void generatePrimeNumbers(Args _args)

{

 SysOperationServiceController controller;

 int i, ticks, ticks2, countOfPrimes;

 PrimeNumberRange dataContract;

 SysOperationExecutionMode executionMode;

 PrimeNumbers output;

 <... Dialog code to demo the execution modes ...>

 executionMode = getExecutionMode();

 controller = new

SysOperationServiceController('PrimeNumberService',

'runOperation',

 executionMode);

 dataContract =

controller.getDataContractObject('data');

 dataContract.parmStart(1000000);

 dataContract.parmEnd(1500000);

 delete_from output;

 ticks = System.Environment::get_TickCount();

 controller.parmShowDialog(false);

 controller.startOperation();

 <... Code to show execution times for demo purposes

...>

}

Executing this code four times in all four execution modes produces the
following results:

 Synchronous 35,658 prime numbers found in 44.74 seconds.
However, the user could not continue working during this time.

 Asynchronous 35,658 prime numbers found in 46.93 seconds, but
the client was responsive and the user could continue working.

 Reliable asynchronous 35,658 prime numbers found in 16.16
seconds by using parallel processing and starting the batch jobs
immediately (as mentioned earlier in this section). This execution
mode runs the job on the batch server, but it is not entirely similar to
a batch job. The jobs appear in the Batch Job form only temporarily.
Another key difference is that even though reliable asynchronous
mode uses the batch framework as a vehicle, reliable asynchronous
mode is not bound to the Available Threads setting that you can set
in the Server Configuration form. As long as the server has
resources, it will continue processing reliable asynchronous jobs in
parallel and also start processing new jobs. If you start too many
jobs, you might overload your server; however, it allows
programming models to use multicore systems efficiently.

 Scheduled batch 35,658 prime numbers found in 31.78 seconds.
(The batch job did not start immediately, which caused the
difference in execution time between scheduled batch mode and
reliable asynchronous mode.)

Also, you need to ensure that there are sufficient CPU resources left to
service the regular user load. It is usually a good idea to separate the batch
workload from the regular user workload.

The SysOperation framework offers an additional way of parallelizing
the workload through business logic. For example, you could build a
wrapper class that performs multiple asynchronous business calls. Suppose
that your wrapper class invoices all orders of a certain business account.
You could build a dialog box that allows the user to select one or more
customer accounts to invoice. The logic itself then performs one service
call for each customer account. Note, however, that these calls might
overload your server resources if not used with care. The following code is
a modified version of the previous example to show what this code might
look like.

 Note

In practice, you would use a dialog box to define your
execution parameters.

Click here to view code image

// In practice, this wrapper should be a class and be

called through a menu item in the

// appropriate execution mode.

static void generatePrimeNumbersAsyncCallPattern(Args

_args)

{

 SysOperationServiceController controller;

 int i, primestart, primeend,blockSize, threads =

8,countOfPrimes,ticks,ticks2;

 PrimeNumberRange subRange;

 PrimeNumberRange dataContract;

 PrimeNumbers output;

 primestart = 1000000;

 primeend = 1500000;

 blockSize = (primeend - primestart) / threads;

 delete_from output;

 ticks = System.Environment::get_TickCount();

 for (i = 0; i < threads; i++)

 {

 controller = new

SysOperationServiceController('PrimeNumberServiceAsyncCallPattern',

 'runOperation',

SysOperationExecutionMode::ReliableAsynchronous);

 dataContract =

controller.getDataContractObject('data');

 dataContract.parmStart(primestart);

 dataContract.parmEnd(min(primestart + blockSize,

primeend));

 dataContract.parmLast(i == threads - 1);

 controller.parmShowDialog(false);

 controller.startOperation();

 primestart += blockSize + 1;

 }

 <... Code to show execution times for demo purposes

...>

}

Patterns for checking to see whether a record exists
Depending on the pattern that you use, checking to see whether a record
exists can result in excessive calls to the database.

The following code shows an incorrect example of how to determine
whether a certain record exists. For each record that is fetched in the outer
loop, another select statement is passed to the database to find a particular
entry in the WMSJournalTrans table. If the WMSJournalTable table has
10,000 rows, the following logic would cause 10,001 queries to the
database:
Click here to view code image

static void existingJournal()

{

 WMSJournalTable wmsJournalTable =

WMSJournalTable::find('014119_117');

 WMSJournalTable wmsJournalTableExisting;

 WMSJournalTrans wmsJournalTransExisting;

 boolean recordExists()

 {

 boolean foundRecord;

 foundRecord = false;

 while select JournalId from wmsJournalTableExisting

 where wmsJournalTableExisting.Posted ==

NoYes::No

 {

 select firstonly wmsJournalTransExisting

 where

wmsJournalTransExisting.JournalId ==

 wmsJournalTableExisting.JournalId &&

 wmsJournalTransExisting.InventTransType ==

 wmsJournalTable.InventTransType &&

 wmsJournalTransExisting.InventTransRefId ==

 wmsJournalTable.InventTransRefId;

 if (wmsJournalTransExisting)

 foundRecord = true;

 }

 return foundRecord;

 }

 if (recordExists())

 info('Record Exists');

 else

 info('Record does not exist');

}

The following example shows a better pattern that produces far less

overhead. This pattern results in only one query and one round trip to the
database:
Click here to view code image

static void existingJournal()

{

 WMSJournalTable wmsJournalTable =

WMSJournalTable::find('014119_117');

 WMSJournalTable wmsJournalTableExisting;

 WMSJournalTrans wmsJournalTransExisting;

 boolean recordExists()

 {

 boolean foundRecord;

 foundRecord = false;

 select firstonly wmsJournalTransExisting

 join wmsJournalTableExisting

 where wmsJournalTransExisting.JournalId ==

 wmsJournalTableExisting.JournalId &&

 wmsJournalTransExisting.InventTransType ==

 wmsJournalTable.InventTransType &&

 wmsJournalTransExisting.InventTransRefId ==

 wmsJournalTable.InventTransRefId &&

 wmsJournalTableExisting.Posted == NoYes::No;

 if (wmsJournalTransExisting)

 foundRecord = true;

 return foundRecord;

 }

 if (recordExists())

 info('Record Exists');

 else

 info('Record does not exist');

 }

Running a query only as often as necessary
Often, the same query is executed repeatedly. Even if caching reduces
some of the overhead, repeatedly executing the same query sometimes can
have a significant impact on performance. But there are ways that you can
easily avoid these performance problems. Usually, they are caused by find
methods that are called repeatedly—either within loops or within an exists
method. The following example shows a loop that makes repeated calls to
the CustParameters::find method:
Click here to view code image

static void doOnlyNecessaryCalls(Args _args)

{

 LedgerJournalTrans ledgerJournalTrans;

 LedgerJournalTable ledgerJournalTable =

LedgerJournalTable::find('000242_010');

 Voucher voucherNum = '';

 while select ledgerJournalTrans

 order by JournalNum, Voucher, AccountType

 where ledgerJournalTrans.JournalNum ==

ledgerJournalTable.JournalNum

 && (voucherNum == '' ||

ledgerJournalTrans.Voucher == voucherNum)

 {

 // Potential unecessary cache lookup and method

call if loop returns multiple rows

 ledgerJournalTrans.PostingProfile =

CustParameters::find().PostingProfile;

 // Additional code doing some work...

 }

}

The recurring calls to CustParameters::find always return the same
results. Even if the result is cached, these calls produce overhead. To
optimize performance, you can move the call outside the loop, preventing
repeated calls.
Click here to view code image

static void doOnlyNecessaryCallsOptimized(Args _args)

{

 LedgerJournalTrans ledgerJournalTrans;

 LedgerJournalTable ledgerJournalTable =

LedgerJournalTable::find('000242_010');

 Voucher voucherNum = '';

 CustPostingProfile postingProfile =

CustParameters::find().PostingProfile;

 while select ledgerJournalTrans

 order by JournalNum, Voucher, AccountType

 where ledgerJournalTrans.JournalNum ==

ledgerJournalTable.JournalNum

 && (voucherNum == '' ||

ledgerJournalTrans.Voucher == voucherNum)

 {

 // No unecessary cache lookup and method call if

loop returns more than 1 row

 ledgerJournalTrans.PostingProfile =

postingProfile;

 // Additional code doing some work...

 }

}

When to prefer two queries over a join
For certain queries, it is difficult or almost impossible to create an
effective index. This mainly occurs if an OR operator (or ||) is used on
multiple columns.

The following example typically triggers an index join in SQL Server,
which is potentially less effective than a direct lookup:
Click here to view code image

static void TwoQueriesSometimesBetterThenOne(Args _args)

{

 InventTransOriginId inventTransOriginId =

5637201031;

 InventTransOriginTransfer inventTransOriginTransfer;

 // Note: Only one condition can be true at any time

 select firstonly inventTransOriginTransfer

 where

inventTransOriginTransfer.IssueInventTransOrigin ==

inventTransOriginId

 ||

inventTransOriginTransfer.ReceiptInventTransOrigin ==

inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));

}

Using two queries might cause an additional round trip, but ideally, the
following code produces only one. In addition, the first and second queries
are efficient direct-clustered and direct-index lookups. In practice, you
would need to test this code to ensure that it outperforms the earlier
example in your scenario.
Click here to view code image

static void TwoQueriesSometimesBetterThenOneOpt(Args _args)

{

 InventTransOriginId inventTransOriginId = 5637201031;

 InventTransOriginTransfer inventTransOriginTransfer;

 select firstonly inventTransOriginTransfer

 where

inventTransOriginTransfer.IssueInventTransOrigin ==

inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));

 if(!inventTransOriginTransfer.RecId)

 {

 select firstonly inventTransOriginTransfer

 where

inventTransOriginTransfer.ReceiptInventTransOrigin ==

inventTransOriginId;

 info(int642str(inventTransOriginTransfer.RecId));

 }

}

Indexing tips and tricks
Included columns is a new feature that helps you create optimized indexes.
With included columns, it is easier, for example, to create covering
indexes for queries with limited field lists or for queries that aggregate
data. For more information about covering indexes and indexes with
included columns, see “Create Indexes with Included Columns” on MSDN
at http://msdn.microsoft.com/en-us/library/ms190806.aspx.

To create an index with included columns, set the IncludedColumn
property on the index to Yes, as shown in Figure 13-10.

FIGURE 13-10 IncludedColumn property on an index.

Another lesser-known feature is that if you add the dataAreaId field to
the key columns of an index, the AOS will not add it as the leading column

http://msdn.microsoft.com/en-us/library/ms190806.aspx

in the index, which allows better optimization of certain queries. For
example, queries that don’t include the dataAreaId and use direct SQL
trigger an index scan if the dataAreaId is the leading column of an index
when the index is used. In general, you should use this feature only if you
notice that the dataAreaId is not in the query and SQL Server is
performing an index scan because of that. However, this is not
recommended unless it is necessary. If you use this technique, you should
always create a new index for that purpose.

When to use firstfast
The firstfast hint adds OPTION(FAST n) to a SQL Server query and causes
SQL Server to prefer an index that is good for sorting because the query
returns the first rows as quickly as possible.
Click here to view code image

select firstfast salestable // results in

SELECT <FIELDLIST> FROM SALESTABLE OPTION(FAST 1)

 Note

If you are sorting fields from more than one table,
OPTION(FAST n) might not produce the performance
improvement you want.

This keyword is used automatically for grids on forms and can be
enabled on the data sources of AOT queries. As beneficial as this keyword
can be—for example, on list pages that are supported by AOT queries—it
can produce a performance penalty on queries in general because it causes
SQL Server to optimize for sorting instead of for fastest execution time. If
you see the firstfast hint in a query that is running slowly, try disabling it
and then check the response time. The Export Letter of Credit/Import
Collection form is an example of where this setting makes a difference. In
the AOT, navigate to Forms\BankLCExportListPage\Data
Sources\BankLCExportListPage\Data Sources\SalesTable (SalesTable).
On this list page, the FirstFast property is set to No; however, performance
will improve if you set it to Yes.

Optimizing list pages
You can experiment with a set of optimizations to improve the
performance of list pages. Often, list page queries are complex and span

multiple data sources. Sorting joined result sets can lead to a performance
penalty. To optimize performance, try reducing sorting. For example,
reducing sorting can benefit performance for the Contacts form. The query
smmContacts_NoFilter
(Forms/smmContactsListPage/DataSources/smmContacts_NoFilter)
specifies two tables in its Order by clause. To optimize performance, you
can sort by ContactPerson.ContactForParty only.

You can also optimize list page performance by working with the
FirstFast and OnlyFetchActive properties. Both options are described in
detail earlier in this chapter.

Aggregating fields to reduce loop iterations
Instead of iterating and aggregating within X++ logic, you can often
aggregate within the code to save loop iterations and round trips to the
database. The number of loop iterations that you can eliminate depends
mainly on the fields on which the aggregation takes place and how many
rows can be aggregated. There are instances when you might want to add
some values within your code based only on certain conditions.

The following example compares set-based operations and aggregation
with row-based operations:
Click here to view code image

// In practice, you should use static server methods to

access data on the server.

public static void main(Args _args)

{

 TransferToSetBased ttsb;

 RecordInsertList ril = new

RecordInsertList(tableName2id("TransferToSetBased"));

 Counter i;

 Counter tc;

 int myAggregate = 0;

 int my2ndAggregate;

 // Reset table.

 delete_from ttsb;

 // Populate line-based.

 tc = WinAPI::getTickCount();

 for(i=0;i<=1000;i++)

 {

 ttsb.clear();

 ttsb.Iterate=i;

 ttsb.Change=1;

 ttsb.Aggregate=5;

 ttsb.insert();

 }

 // Data populated 1000 records, 1000 round trips.

 for(i=1001;i<=2000;i++)

 {

 ttsb.clear();

 ttsb.Iterate=i;

 ttsb.Change=1;

 ttsb.Aggregate=5;

 ril.add(ttsb);

 }

 ril.insertDatabase();

 // Data populated 1000 records, many fewer round trips.

 // Based on buffer size. About 20-150 inserts per round

trip.

 ttsBegin;

 while select forupdate ttsb where ttsb.Iterate > 1000

 {

 if(ttsb.Iterate >= 1100 && ttsb.Iterate <= 1300)

 {

 ttsb.Change = 10;

 ttsb.update();

 myAggregate += ttsb.Aggregate;

 }

 else if(ttsb.Iterate >= 1301 && ttsb.Iterate <=

1500)

 {

 ttsb.Change = 20;

 ttsb.update();

 my2ndAggregate += ttsb.Change;

 }

 else if(ttsb.Iterate >= 1501 && ttsb.Iterate <=

1700)

 {

 ttsb.Change = 30;

 ttsb.update();

 myAggregate += ttsb.Aggregate;

 }

 if(ttsb.Iterate > 1900)

 break;

 }

 ttsCommit;

 // While loop does 1-900 fetches. Does 600 single

update statements.

 // Above logic set-based and using aggregation results

in 6 queries to the database.

 update_recordSet ttsb setting change = 10 where

ttsb.Iterate >= 1100 && ttsb.iterate <=

 1300;

 update_recordSet ttsb setting change = 20 where

ttsb.Iterate >= 1301 && ttsb.Iterate <=

 1500;

 update_recordSet ttsb setting change = 30 where

ttsb.Iterate >= 1501 && ttsb.Iterate <=

 1700;

 select sum(Aggregate) from ttsb where ttsb.Iterate >=

1100 && ttsb.Iterate <= 1300;

 myAggregate = 0;

 myAggregate = ttsb.Aggregate;

 select sum(Change) from ttsb where ttsb.Iterate >= 1301

&& ttsb.Iterate <= 1500;

 my2ndAggregate = ttsb.Change;

 select sum(Aggregate) from ttsb where ttsb.Iterate >=

1501 && ttsb.Iterate <= 1700;

 myAggregate += ttsb.Aggregate;

 }

Performance monitoring tools
Without a way to monitor the execution of your application logic, you
implement features almost blindly with regard to performance.
Fortunately, the AX 2012 Development Workspace contains a set of easy-
to-use tools to help you monitor client/server calls, database activity, and
application logic. These tools provide good feedback on the feature being
monitored. The feedback is integrated directly with the Development
Workspace, making it possible for you to jump directly to the relevant
X++ code.

Microsoft Dynamics AX Trace Parser
The Microsoft Dynamics AX Trace Parser consists of a user interface and
data analyzer that is built on SQL Server 2008 and the Event Tracing for
Windows (ETW) framework. The Trace Parser has been significantly
improved in AX 2012, with new features and enhanced performance and
usability. The performance overhead for running a single trace is

comparatively low. With ETW, you can conduct tracing with system
overhead of approximately 4 percent.

Only users with administrative privileges, users in the Performance Log
Users group, and services running as LocalSystem, LocalService, and
NetworkService can enable trace providers.

To use the Tracing Cockpit in the client, a user must be either in the
Administrators or Performance Log Users group. The same is true for
users who use Windows Performance Monitor. Additionally, the user must
have write access to files in the folder that stores the results of the trace.

The Trace Parser enables rapid analysis of traces to find the longest-
running code, the longest-running SQL query, the highest call count, and
other metrics that are useful in debugging a performance problem. In
addition, it provides a call tree of the code that was executed, allowing you
to gain insight into unfamiliar code quickly. It also provides the ability to
jump from the search feature to the call tree so that you can determine how
the problematic code was called.

The Trace Parser is included with AX 2012 and is also available as a
free download from Partner Source and Customer Source. To install the
Trace Parser, run the AX 2012 Setup program and navigate to Add Or
Modify Components > Developer Tools > Trace Parser.

New Trace Parser features
AX 2012 includes several new features for the Trace Parser that can help
you understand a performance problem quickly.

 Monitor method calls If you right-click a line in X++/RPC view,
and then click Jump To Non-Aggregated View, you can view
information such as whether all calls to the method took the same
amount of time or whether one call was an outlier. The same
function is available in the SQL view.

 Monitor client sessions If there was an RPC call between the client
and the server in either Non-Aggregated view or Call Tree view, you
can right-click the line containing the call, and then click Drill
Through To Client Session. This feature also works for RPC calls
between the server and the client.

 Jump between views If you want to jump from Call Tree view to
X++ /RPC Non-Aggregated view, you can right-click a node, and
then select the option you want.

 Monitor events In either X++/RPC Non-Aggregated view or Call

Tree view, you can select two or more events by holding down the
Ctrl key, and then right-click and select Show Time Durations
Between Events. This is extremely useful for monitoring and
troubleshooting asynchronous events.

 Look up table details Under View, you can click Table Details to
look up table details within AX 2012. A BC.NET connection is
required for this functionality, just like the code lookup functionality.

 Compare traces Under View, you can click Trace Comparison,
which opens a form where you can compare two traces.

Before tracing
Before taking a trace, run the process that you want to trace at least once to
avoid seeing metadata loading in the trace file. This is called tracing in a
warm state and is recommended because it helps you to focus on the real
performance issue and not on metadata loading and caching. Then you can
prepare everything so that the amount of time between starting the trace
and executing the process you want to trace is as short as possible.

In AX 2009, you had to set tracing options in multiple places. In AX
2012, there are only three places to set options. In addition, there is only
one trace file for both the client and the server.

You can start a trace in three ways:
 From the Tracing Cockpit in the AX 2012 client
 From Windows Performance Monitor
 Through code instrumentation

The following sections describe each method in detail.

Starting a trace through the client
As mentioned earlier, you must be logged on as an administrator to use the
Tracing Cockpit. Table 13-2 describes the options that are available in the
Tracing Cockpit.

TABLE 13-2 Options in the Tracing Cockpit.

To start a trace from the Tracing Cockpit, do the following:
1. In the AX 2012 client, open the Development Workspace by

pressing Ctrl+Shift+W.
2. On the Tools menu, click Tracing Cockpit (see Figure 13-11).

FIGURE 13-11 The Tracing Cockpit.

3. Set the options for your trace. For example, if you only want to
collect a client trace, clear the Collect Server Trace check box.

4. Bring your process to a warm state (as described earlier), and then
click Start Trace.

5. Choose a location in which to save your trace file.
6. Execute your process, and then click Stop Trace.
7. Click Open Trace to open the trace file in the Trace Parser.

Starting a trace through Windows Performance Monitor
To start a trace in Windows Performance Monitor, do the following:

1. On the Start menu, click Run, and then type perfmon.
2. Expand Data Collector Sets.
3. Right-click User Defined, and then click New > Data Collector Set.
4. Select Create Manually, and then click Next.
5. Select Event Trace Data, and then click Next.
6. Next to Providers, click Add; and then In the Event Trace Providers

form, select Microsoft-DynamicsAX-Tracing; and then click OK.

 Note

If you use Windows Performance Monitor, by default, all

events are traced, including events that might collect
confidential information. To prevent this, click Edit, and then
select only the events necessary. The events that might collect
confidential information are noted in their descriptions.

7. Click Next, and then note the root directory that your traces are
stored in.

8. Click Next to change the user running the trace to an Administrative
user, and then click Finish.

9. In the pane on the right side of Windows Performance Monitor,
right-click the newly created data collector set, and then click
Properties.

10. In the Properties window, click the Trace Buffers tab and modify
the default buffer settings. The default buffer settings do not work
well for collecting AX 2012 event traces because large numbers of
events can be generated in a short time and fill the buffers quickly.
Change the following settings as specified and leave the rest set to
the default:
• Buffer Size: 512 KB
• Minimum Buffers: 60
• Maximum Buffers: 60

11. To start tracing, click the data collector set in the leftmost pane, and
then click Start.

Starting a trace through code instrumentation
You can use the xClassTrace class from the Tracing Cockpit to start and
stop a trace. To trace the Sales Form letter logic, see the following sample
in \Classes\SalesFormLetter:
Click here to view code image

// Add

xClassTrace xCt = new xClassTrace();

// to the variable declaration.

// ...code...

 if (salesFormLetter.prompt())

 {

 xClassTrace::start("c:\\temp\\test1.etl");

 xClassTrace::logMessage("test1");

 xCt.beginMarker("marker"); // Add markers at

certain points of a trace to

 // increase trace

readability. You can add

 // multiple markers

per trace.

 salesFormLetter.run();

 xCt.endMarker("marker");

 xClassTrace::stop();

 outputContract =

salesFormLetter.getOutputContract();

 numberOfRecords =

outputContract.parmNumberOfOrdersPosted();

 }

// ...code...

In the call to xClassTrace::start, you can use multiple parameters to
specify the events to trace or whether you want to use circular logging,
among other things. To find out which keyword equals which parameter,
put a breakpoint in the class SysTraceCockpitcontroller\startTracing, and
start a trace from the Tracing Cockpit with various events selected.

Importing a trace
To import a trace, open the Trace Parser, and then click Import Trace.
(You can also use the Open Trace form to import a trace file.) It is possible
to import multiple trace files simultaneously.

Analyzing a trace
After you load the trace files into the Trace Parser, you can analyze your
trace files through built-in views.

When you open a trace from the Overview tab, you see a summary that
gives you a high-level understanding of where the most time is spent
within the trace.

On the Overview tab, select a session. If you took the trace, select your
session. If you received the trace file from someone else, select the session
of the person who took the trace. When you select a session, you’ll see an
overview similar to Figure 13-12, but for that session only. To return to the
summary for all sessions, select the Show Summary Across All Sessions
check box.

FIGURE 13-12 Trace overview.

After selecting a session in the drop-down list box, you can search and
review the trace through the X++ methods and RPC calls or the SQL
queries, or you can review the call tree of the session. It’s best to start
looking for quick improvements by sorting by total exclusive duration.
Then, break the process down by sorting by total inclusive duration for
detailed tuning. You can jump to the Call Tree view from the X++
methods and RPC calls and from the SQL view.

Use the X++/RPC view to understand patterns in your trace, as shown in
Figure 13-13.

FIGURE 13-13 X++/RPC view.

SQL view (see Figure 13-14) gives you a quick overview of which
queries were executed and how long the execution and data retrieval took.

FIGURE 13-14 SQL view.

 Note

Execution time and row retrieval time are measured
separately.

Call Tree view (see Figure 13-15) is particularly helpful for identifying

expensive loops and other costly patterns.

FIGURE 13-15 Call Tree view.

Troubleshooting tracing
This section provides information about how to troubleshoot a few of the
common issues with tracing.

Tracing won’t start
If tracing doesn’t start, make sure that the user who is running the trace is a
member of the Administrators or Performance Log Users group.

Tracing causes performance problems
If you run a trace from a client that is located on an AOS, you will get one
trace file. If the client is not on the AOS, you will get two files: one on the
client computer and one on the AOS. If you run more than one client
tracing session simultaneously, the system will slow down because tracing
is processing-intensive and space-intensive in this situation. It is
recommended that you not turn on tracing on an AOS instance that is

supporting a workload of multiple clients.

Tracing doesn’t produce meaningful data
If X++ code is running as CIL, a trace might not produce meaningful
results. Table 13-3 lists scenarios that might cause tracing problems and
describes possible mitigations.

TABLE 13-3 Troubleshooting tracing for X++ code running as CIL.

Monitoring database activity
You can also trace database activity when you’re developing and testing
AX 2012 application logic.

You can enable tracing on the SQL tab of the Options dialog box (in the
AOT, on the Tools menu, click Options). You can trace all Transact-SQL
statements or just the long-running queries, warnings, and deadlocks.
Transact-SQL statements can be traced to the Infolog, a message window,
a database table, or a file. If statements are traced to the Infolog, you can
use the context menu to open the statement in the SQL Trace dialog box,
in which you can view the entire statement and the path to the method that
executed the statement.

 Note

You should not use this feature except for long-term
monitoring of long-running queries. Even then, you should
use this feature carefully because it adds overhead to the
system.

From the SQL Trace dialog box, you can copy the statement and, if
you’re using SQL Server 2008, open a new query window in SQL Server
Management Studio (SSMS) and paste in the query. If the AX 2012
runtime uses placeholders to execute the statement, the placeholders are

shown as question marks in the statement. You must replace these with
variables or constants before the queries can be executed in SQL Server
Query Analyzer. If the runtime uses literals, the statement can be pasted
directly into SQL Server Query Analyzer and executed.

When you trace SQL statements in AX 2012, the runtime displays only
the DML statement. It doesn’t display other commands that are sent to the
database, such as transaction commits or isolation-level changes. With
SQL Server 2008 and later versions, you can use SQL Server Profiler to
trace these statements by using the event classes RPC:Completed and
SP:StmtCompleted in the Stored Procedures collection, and the
SQL:BatchCompleted event in the TSQL collection, as shown in Figure
13-16.

FIGURE 13-16 SQL Server Profiler trace events.

Using the SQL Server connection context to find the SPID or
user behind a client session
You can use the Server Process ID (SPID) or user name for a client session
to troubleshoot a wide variety of issues, such as contention or queries that
run slowly. In previous versions of Microsoft Dynamics AX, the Online
Users form contained a column for the SPID of client sessions. In AX
2012, information about user sessions can be included in the SQL Server
connection context. Adding this information has a small performance

overhead.
For more information, see the entry, “Finding User Sessions from SPID

in Dynamics AX 2012,” on the Thoughts on Microsoft Dynamics AX blog
(http://blogs.msdn.com/b/amitkulkarni/archive/2011/08/10/finding-user-
sessions-from-spid-in-dynamics-ax-2012.aspx).

After applying the information from the blog entry, you can also use the
following query to return session information, including the user names of
AX 2012 users and, to some extent, the queries that they are currently
running:
Click here to view code image

select top 20 cast(s.context_info as varchar(128)) as

ci,text,query_plan,* from

sys.dm_exec_cursors(0) as ec cross apply

sys.dm_exec_sql_text(sql_handle) sql_text,

sys.dm_exec_query_stats as qs cross apply

sys.dm_exec_query_plan(plan_handle) as

plan_text,sys.dm_exec_sessions s

where ec.sql_handle = qs.sql_handle and ec.session_id =

s.session_id order by ec.worker_time

desc

The client access log
You can use the client access log to track the activities of multiple users as
they do their daily work. The client access log writes data to the
SysClientAccessLog table. For more information about this feature, see
the entry, “Client Access Log,” on the Dynamics AX Performance Team
Blog (http://blogs.msdn.com/b/axperf/archive/2011/10/14/client-access-
log-dynamics-ax-2012.aspx).

Visual Studio Profiler
As mentioned earlier, for certain processes, the only option for tracing
might be Visual Studio Profiler. The following are high-level steps for
using Visual Studio Profiler with AX 2012.

 Note

Visual Studio Profiler is available with Visual Studio 2010
Premium and Visual Studio 2010 Ultimate editions.

1. In Visual Studio, on the Debug menu, click Options And Settings.

http://blogs.msdn.com/b/amitkulkarni/archive/2011/08/10/finding-user-sessions-from-spid-in-dynamics-ax-2012.aspx
http://blogs.msdn.com/b/axperf/archive/2011/10/14/client-access-log-dynamics-ax-2012.aspx

2. In the left pane of the Options dialog box, click Debugging, click
Symbols, and then ensure that the symbol file is loaded for the
XppIL folder of the AOS that you want to profile. (The profiling
tools use symbol [.pdb] files to resolve symbolic names such as
function names in program binaries.)

3. On the Analyze menu, click Launch Performance Wizard to create a
new performance session.

4. Accept the default setting of CPU Sampling, and point to the AOS
that you want to profile, but don’t start profiling right away.

5. Open Performance Explorer, right-click the top node of your session
(see Figure 13-17), and then click Properties.

FIGURE 13-17 Performance Explorer.

6. In the Properties window, navigate to Sampling and decrease the
sampling interval either to 100,000 or 1,000,000 to get better results.

7. Prepare the process that you want to profile, and then click
Attach/Detach to attach to the process (for example, the AOS).

8. When you are finished profiling, click Attach/Detach to detach from
the AOS.

 Important

Don’t click Stop Profiling because this will cause the AOS to
stop responding.

After you finish profiling, Visual Studio generates a report that helps
you understand the performance problem in detail, as shown in Figure 13-
18.

FIGURE 13-18 Profiling report.

The report offers multiple views such as Summary, Call Tree, and
Functions, and it offers options to show functions that called the function
you are currently reviewing. If you installed the Visual Studio tools for
Microsoft Dynamics AX, you can also quickly navigate to the X++
methods identified in the report without leaving Visual Studio.

 Tip

The smaller the sampling interval is, the better the quality of
the profiling, but more data is collected.

Chapter 14. Extending AX 2012

In this chapter
Introduction
The SysOperation framework
Comparing the SysOperation and RunBase frameworks
The RunBase framework
The extension framework
Eventing

Introduction
Microsoft Dynamics AX provides several frameworks that you can use to
extend an application. In AX 2012, the SysOperation framework replaces
the RunBase framework to provide support for business transaction jobs,
such as exchange rate adjustment or inventory closing. AX 2012 also
provides two extensibility patterns: the extension framework, which works
well for developing add-ins, and the eventing framework, which is based
on eventing concepts in the Microsoft .NET Framework.

The first part of this chapter introduces the SysOperation framework and
discusses an example that compares the SysOperation and RunBase
frameworks. The next section provides more information about RunBase
classes to help you understand existing functionality developed with the
RunBase framework.

The final sections describe the extension and eventing frameworks. The
extension framework reduces or eliminates the coupling between
application components and their extensions. The eventing framework is
new in AX 2012. The methods in an X++ class can raise an event
immediately before they start (the pre event), and again after they end (the
post event). These two events offer opportunities for you to insert custom
code into the program flow with event handlers.

The SysOperation framework
You use the SysOperation framework when you want to write application
logic that supports running operations interactively or by means of the AX
2012 batch server. This framework provides capabilities that are similar to
those of the RunBase framework.

The batch framework, which is described in detail in Chapter 18,
“Automating tasks and document distribution,” has specific requirements
for defining operations:

 The operation must support parameter serialization so that its
parameters can be saved to the batch table.

 The operation must have a way to display a user interface that lets
users modify batch job parameters. For more information about
batch jobs in AX 2012, see Chapter 18 and the topic, “Process batch
jobs and tasks,” at http://technet.microsoft.com/en-
us/library/gg731793.aspx.

 The operation must implement the interfaces needed for integration
with the batch server runtime.

Although the RunBase framework defines coding patterns that
implement these requirements, the SysOperation framework goes further
by providing base implementations for many of the interfaces and classes
in the patterns.

Unlike the RunBase framework, the SysOperation framework
implements the Model-View-Controller (MVC) design pattern, separating
presentation from business logic. For more information, see “Model-View-
Controller” at http://msdn.microsoft.com/en-us/library/ff649643.aspx.

SysOperation framework classes
The SysOperationServiceController class provides several useful methods,
such as the following:

 getServiceInfo Gets the service operation
 getDataContractInfo Gets the data contracts that are used as
parameters and return values for the service operation, and gets the
user interface (UI) builder information for each of the data contracts

 startOperation Makes the service call in various modes, including
synchronous, asynchronous, and batch

The SysOperationUIBuilder and SysOperationAutomaticUIBuilder
classes help to create the default user interface from a definition of the data
contract or from a custom form definition. You can write custom UI
builders that derive from this base class to provide defaulting and
validation or to raise specific events. You can override the following
methods:

 postBuild Overriding this method lets you get references to the
dialog box controls if the UI builder is dynamic (in other words, if

http://technet.microsoft.com/en-us/library/gg731793.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx

the UI builder is not form-based).
 postRun Overriding this method lets you register validation methods.

SysOperation framework attributes
SysOperation attributes specify metadata for the data contracts to provide
loose coupling with UI builders. The following attributes are available:

 DataContractAttribute Identifies a class as a data contract
 DataMemberAttribute Identifies a property as a data member
 SysOperationContractProcessingAttribute Designates a default UI
builder for the data contract

 SysOperationLabelAttribute, SysOperationHelpTextAttribute, and
SysOperationDisplayOrderAttribute Specify the label, help text, and
display order attributes, respectively, for the data member

Comparing the SysOperation and RunBase frameworks
The SysOperation and the RunBase frameworks are designed to build
applications that have operations that can run on the batch server or
interactively. For an operation to run on the batch server, it must support
the following:

 Parameter serialization by means of the SysPackable interface
 The standard run method that is defined in the BatchRunable
interface

 The batch server integration methods found in the Batchable
interface

 A user interface that enables and displays user input
Figure 14-1 illustrates how all operations that must run by means of the

batch server must derive from either the SysOperationController or the
RunBaseBatch base class.

FIGURE 14-1 Derivation of operations that run on the batch server.

The code examples in the following sections illustrate the basic
capabilities provided by the two frameworks. These examples run an
operation both interactively (by means of a dialog box) and in batch mode.

To view and use the samples on your own, import

PrivateProject_SysOperationIntroduction.xpo, and then press
Ctrl+Shift+P to view the sample code in the Projects window. You can
view the following two sample classes in the
Sample_1_SysOperation_Runbase_Comparison node:

 SysOpSampleBasicRunbaseBatch
 SysOpSampleBasicController

These classes compare the functionality of the RunBase framework to
the functionality of the SysOperation framework.

Before you run the samples, you must compile the project and generate
common intermediate language (CIL) for the samples.

1. In the Development Workspace, right-click the project name, and
then click Compile.

2. Click Build, and then click Generate Incremental CIL (or press
Ctrl+Shift+F7).

RunBase example: SysOpSampleBasicRunbaseBatch
The simplest operation that is based on the RunBaseBatch base class must
implement several overridden methods. Table 14-1 describes the
overridden methods that are implemented in the
SysOpSampleBasicRunbaseBatch class. Example code following the table
illustrates how to use these methods.

TABLE 14-1 Method overrides for the RunBaseBatch class.

In the override for the classDeclaration method that derives from
RunBaseBatch, you must declare variables for input parameters, dialog
box controls, and a macro, LOCALMACRO, that defines a list of variables
that must be serialized:
Click here to view code image

class SysOpSampleBasicRunbaseBatch extends RunBaseBatch

{

 str text;

 int number;

 DialogRunbase dialog;

 DialogField numberField;

 DialogField textField;

 #define.CurrentVersion(1)

 #LOCALMACRO.CurrentList

 text,

 number

 #ENDMACRO

}

Next, override the dialog method. This method populates the dialog box
created by the base class with two controls that accept user input: a text
field and a numeric field. The initial values from the class member
variables are used to initialize the controls. Note that the type of each
control is determined by the name of the extended data type (EDT)
identifier:
Click here to view code image

protected Object dialog()

{

 dialog = super();

 textField =

dialog.addFieldValue(IdentifierStr(Description255),

 text,

 'Text Property',

 'Type some text here');

 numberField =

dialog.addFieldValue(IdentifierStr(Counter),

 number,

 'Number Property',

 'Type some number here');

 return dialog;

}

The overridden getFromDialog method transfers the contents of the
dialog box controls to operation input parameters:
Click here to view code image

public boolean getFromDialog()

{

 text = textField.value();

 number = numberField.value();

 return super();

}

The overridden putToDialog method transfers the contents of operation
input parameters to dialog box controls:
Click here to view code image

protected void putToDialog()

{

 super();

 textField.value(text);

 numberField.value(number);

}

The overridden pack and unpack methods serialize and deserialize the
operation input parameters:
Click here to view code image

public container pack()

{

 return [#CurrentVersion, #CurrentList];

}

public boolean unpack(container packedClass)

{

 Integer version = conPeek(packedClass,1);

 switch (version)

 {

 case #CurrentVersion:

 [version,#CurrentList] = packedClass;

 break;

 default:

 return false;

 }

 return true;

}

The overridden run method runs the operation. The following example
prints the input parameters to the Infolog. It also prints the tier that the
operation is running on and the runtime that is used for execution.
Click here to view code image

public void run()

{

 if (xSession::isCLRSession())

 {

 info('Running in a CLR session.');

 }

 else

 {

 info('Running in an interpreter session.');

 if (isRunningOnServer())

 {

 info('Running on the AOS.');

 }

 else

 {

 info('Running on the Client.');

 }

 }

 info(strFmt('SysOpSampleBasicRunbaseBatch: %1, %2',

this.parmNumber(), this.parmText()));

}

The description method provides a static description for the operation.
Override the description method as shown in the following example to use
this description as the default value for the caption shown in batch mode
and in the user interface:
Click here to view code image

public static ClassDescription description()

{

 return 'Basic RunBaseBatch Sample';

}

Override the main method that prompts the user for input and then runs
the operation or adds it to the batch queue, as shown in the following
example:
Click here to view code image

public static void main(Args _args)

{

 SysOpSampleBasicRunbaseBatch operation;

 operation = new SysOpSampleBasicRunbaseBatch();

 if (operation.prompt())

 {

 operation.run();

 }

}

The overridden parmNumber and parmText methods are optional. It is a
Microsoft Dynamics AX best practice to expose operation parameters with
the property pattern for better testability and for access to class member
variables outside the class. Override these methods as shown in the

following example:
Click here to view code image

public int parmNumber(int _number = number)

{

 number = _number;

 return number;

}

public str parmText(str _text = text)

{

 text = _text;

 return text;

}

The main method for the RunBaseBatch sample prompts the user for
input for the operation when the operation.prompt method is called. If the
prompt returns true, main calls the operation.run method directly. If the
prompt returns false, it indicates that the user either canceled the operation
or scheduled it to run as a batch.

To run the sample interactively, run the main method by clicking Go in
the Code Editor window, as shown in Figure 14-2.

FIGURE 14-2 Code Editor window for SysOpSampleBasicRunbaseBatch.

On the General tab of the sample user interface, enter information in the
Text Property and Number Property fields, as shown in Figure 14-3.

FIGURE 14-3 The General tab of the SysOpSampleBasicRunbaseBatch user
interface.

On the Batch tab, ensure that the Batch Processing check box is cleared,
as shown in Figure 14-4.

FIGURE 14-4 The Batch tab of the SysOpSampleBasicRunbaseBatch user
interface.

Click OK to run the operation and print the output to the Infolog.
View the Infolog messages, as shown in Figure 14-5. They show that

the operation ran on the server because the sample

SysOpSampleBasicRunbaseBatch class has the RunOn property set to
Server. The operation ran by means of the X++ interpreter, which is the
default for X++ code.

FIGURE 14-5 The Infolog window for SysOpSampleBasicRunbaseBatch
output.

To run the sample in batch mode, rerun the operation by clicking Go in
the Code Editor window, and enter data for the Text Property and the
Number Property on the General tab of the sample user interface.

Next, select the Batch Processing check box on the Batch tab to run the
operation on the batch server. When the Batch Processing check box is
selected, the Infolog message in Figure 14-6 appears, indicating that the
operation has been added to the batch queue.

FIGURE 14-6 The Infolog window showing a job added to the batch queue.

The operation might take up to a minute to get scheduled. After waiting
for about a minute, open the BatchJob form from the Forms node in the
Application Object Tree (AOT), as shown in Figure 14-7.

FIGURE 14-7 The Forms node in the AOT.

The Job Description form opens, as shown in Figure 14-8.

FIGURE 14-8 The Job Description form showing the status of batch jobs.

Press the F5 key to update the form. Press the F5 key repeatedly until
the job entry shows that the job has ended. Sorting by the Scheduled Start
Date/Time column might help you find the operation if there are many job
entries in the grid.

To view the log, select the operation, and then click Log on the toolbar.
The Infolog in Figure 14-9 shows messages indicating that the operation

ran in a common language runtime (CLR) session, which is the batch
server execution environment.

FIGURE 14-9 Messages for the SysOpSampleBasicRunBaseBatch sample.

SysOperation example: SysOpSampleBasicController
As mentioned earlier, the SysOperation framework provides the same
capabilities as the RunBase framework but also includes base
implementations for common overrides. The SysOperation framework
handles basic user interface creation, parameter serialization, and routing
to the CLR execution environment.

The SysOperation sample contains two classes: a controller class named
SysOpSampleBasicController and a data contract class named
SysOpSampleBasicDataContract. Table 14-2 describes the overridden
methods that are necessary to match the functionality demonstrated in the
RunBase sample in the previous section. Notice that you do not have to
override the dialog, getFromDialog, putToDialog, pack, unpack, and run
methods in the SysOpSampleBasicController class, because the

SysOperation framework provides the base functionality for these
methods. Example code later in this section illustrates how to use these
methods.

TABLE 14-2 Method overrides for SysOpSampleBasicController and
SysOpSampleBasicDataContract classes.

 Important

Normally, the SysOpSampleBasicController class would
derive from SysOperationServiceController, which provides
all of the base functionality for building operations; however,
the AX 2012 version of the class contains a few known issues,
and these will be addressed in a future service pack. To work
around the issues, a new common class,
SysOpSampleBaseController, is available. For more
information, see the white paper, “Introduction to the
SysOperation Framework,” at
http://go.microsoft.com/fwlink/?LinkId=246316.

Table 14-3 describes the issues and illustrates the solutions provided by
the SysOpSampleBase-Controller class.

http://go.microsoft.com/fwlink/?LinkId=246316

TABLE 14-3 Issues and workarounds for SysOperationServiceController.

The class declaration for SysOpSampleBasicController derives from the
framework base class, SysOpSampleBaseController, which is provided
with the sample code:
Click here to view code image

class SysOpSampleBasicController extends

SysOpSampleBaseController

{

}

The new method for SysOpSampleBasicController identifies the class

and method for the operation. In the following example, the new method
points to a method on the controller class. However, it can point to any
class method. The framework reflects on this class and method to provide
the user interface and parameter serialization.
Click here to view code image

void new()

{

 super();

 this.parmClassName(

 classStr(SysOpSampleBasicController));

 this.parmMethodName(

 methodStr(SysOpSampleBasicController,

 showTextInInfolog));

 this.parmDialogCaption(

 'Basic SysOperation Sample');

}

In the following example, the showTextInInfolog method prints the input
parameters, the tier where the operation is running, and the runtime to the
Infolog window:
Click here to view code image

public void showTextInInfolog(SysOpSampleBasicDataContract

data)

{

 if (xSession::isCLRSession())

 {

 info('Running in a CLR session.');

 }

 else

 {

 info('Running in an interpreter session.');

 if (isRunningOnServer())

 {

 info('Running on the AOS.');

 }

 else

 {

 info('Running on the Client.');

 }

 }

 info(strFmt('SysOpSampleBasicController: %1, %2',

data.parmNumber(), data.parmText()));

}

The caption method provides a description for the operation. This
description is used as the default value for the caption shown in batch
mode and the operation user interface.
Click here to view code image

public ClassDescription caption()

{

 return 'Basic SysOperation Sample';

}

The main method prompts the user for input and then runs the operation
or adds it to the batch queue:
Click here to view code image

public static void main(Args args)

{

 SysOpSampleBasicController operation;

 operation = new SysOpSampleBasicController();

 operation.startOperation();

}

The three methods that you override in the
SysOpSampleBasicDataContract class are shown in the following
example. The framework uses the data contract attribute to reflect on the
operation in the class declaration. The parmNumber and parmText
methods use the data member attribute to identify these property methods
as part of the data contract. The label, help text, and display order
attributes provide hints for creating the user interface.
Click here to view code image

[DataContractAttribute]

class SysOpSampleBasicDataContract

{

 str text;

 int number;

}

[DataMemberAttribute,

SysOperationLabelAttribute('Number Property'),

SysOperationHelpTextAttribute('Type some number >= 0'),

SysOperationDisplayOrderAttribute('2')]

public int parmNumber(int _number = number)

{

 number = _number;

 return number;

}

[DataMemberAttribute,

SysOperationLabelAttribute('Text Property'),

SysOperationHelpTextAttribute('Type some text'),

SysOperationDisplayOrderAttribute('1')]

public Description255 parmText(str _text = text)

{

 text = _text;

 return text;

}

As in the RunBase sample, click Go on the Code Editor toolbar in the
main method of the SysOpSampleBasicController class to run the
SysOperation sample operation, as shown in Figure 14-10.

FIGURE 14-10 Running the SysOperation sample.

The main class calls operation.startOperation, which handles running
the operation synchronously or adding it to the batch queue. The
startOperation method invokes the user interface for the operation and
then calls run.

To run the operation interactively, enter information on the General tab
of the operation user interface, as shown in Figure 14-11. The user
interface created by the SysOperation framework is similar to the one
created in the RunBase sample.

FIGURE 14-11 The General tab for the SysOperation framework example.

On the Batch tab, ensure that the Batch Processing check box is cleared,
as shown in Figure 14-12.

FIGURE 14-12 The Batch tab for the SysOperation framework example.

Click OK to run the operation and print the output to the Infolog
window, as shown in Figure 14-13.

FIGURE 14-13 Infolog output for the SysOperation example.

The Infolog messages show that, unlike in the RunBase sample, the
operation ran in a CLR session on the server.

If you repeat the previous steps but select the Batch Processing check
box on the Batch tab, the operation runs on the batch server, just as in the
RunBase sample.

The operation might take up to a minute to get scheduled. After waiting
for about a minute, open the Batch Job form from the AOT.

Repeatedly update the form by pressing the F5 key until the job entry
shows that the job has ended. Sorting by the Scheduled Start Date/Time
column might help you find the operation if there are many job entries in
the grid. After you find the correct job, select it, and then click Log on the
toolbar to open an Infolog window.

The RunBase framework
You can use the RunBase framework throughout AX 2012 whenever you
must execute a business transaction job. Extending the RunBase
framework lets you implement business operations that don’t have default
support in AX 2012. The RunBase framework supplies many features,
including dialog boxes, query windows, validation-before-execution
windows, the progress bar, client/server optimization, pack-unpack with
versioning, and optional scheduled batch execution at a specified date and
time.

 Note

Because the RunBase framework has largely been replaced by
the SysOperation framework, the following sections are
intended to help you understand existing functionality that
uses the RunBase framework.

Inheritance in the RunBase framework
Classes that use the RunBase framework must inherit from either the
RunBase class or the RunBaseBatch class. If the class extends
RunBaseBatch, it can be enabled for scheduled execution in batch mode.

In a good inheritance model, each class has a public construction
mechanism unless the class is abstract. If the class doesn’t have to be
initialized, use a static construct method. Because X++ doesn’t support
method name overloading, you should use a static new method if the class
must be initialized further upon instantiation. For more information about
constructors, see the “Constructor encapsulation” section in Chapter 4,
“The X++ programming language.”

Static new methods have the following characteristics:
 They are public.
 Their names are prefixed with new.
 They are named logically or with the arguments that they take.
Examples include newInventTrans and newInventMovement.

 They usually take nondefault parameters only.
 They always return a valid object of the class type, instantiated and
initialized, or throw an error.

 Note

A class can have several new methods with different
parameter profiles. The NumberSeq class is an example of a
class with multiple new methods.

The default constructor (the new method) should be protected to force
users of the class to instantiate and initialize it with the static construct or
new method. If new has some extra initialization logic that is always
executed, you should place it in a separate init method.

 Tip

To make writing customizations easier, a best practice is to
add construction functionality for new subclasses (in higher
layers) without mixing code with the construct method in the
original layer.

Property method pattern
To allow other business operations to run your new business operation,
you might want to run it without presenting any dialog boxes to the user. If
you decide not to use dialog boxes, you need an alternative to set the
values of the necessary member variables of your business operation class.

In AX 2012 classes, member variables are always protected. In other
words, they can’t be accessed outside the class; they can be accessed only
from within objects of the class or its subclasses. To access member
variables from outside the class, you must write accessor methods. The
accessor methods can get, set, or both get and set member variable values.
All accessor methods start with parm. In AX 2012, accessor methods are
frequently referred to as parm methods.

A Microsoft Dynamics AX best practice is not to use separate get and
set accessor methods. The accessor methods are combined into a single
accessor method, handling both get and set, in a pattern called the property
method pattern. Accessor methods should have the same name as the
member variable that they access, prefixed with parm.

The following is an example of how a method implementing the
property method pattern could look:
Click here to view code image

public NoYesId parmCreateServiceOrders(NoYesId

_createServiceOrders =

createServiceOrders)

{

 createServiceOrders = _createServiceOrders;

 return createServiceOrders;

}

If you want the method to work only as a get method, change it to
something such as this:
Click here to view code image

public NoYesId parmCreateServiceOrders()

{

 return createServiceOrders;

}

And if you want the method to work only as a set method, change it to
this:
Click here to view code image

public void parmCreateServiceOrders(NoYesId

_createServiceOrders =

createServiceOrders)

{

 createServiceOrders = _createServiceOrders;

}

When member variables contain huge amounts of data (such as large
containers or memo fields), the technique in the following example is
recommended. This technique determines whether the parameter is
changed. The disadvantage of using this technique in all cases is the
overhead of an additional method call.
Click here to view code image

public container parmCode(container _code = conNull())

{

 if (!prmIsDefault(_code))

 {

 code = _code;

 }

 return code;

}

Pack-unpack pattern
When you want to save the state of an object with the option to
reinstantiate the same object later, you must use the pack-unpack pattern.
The RunBase framework requires that you implement this pattern to
switch the class between client and server (for client/server optimization)
and to present the user with a dialog box that states the choices made the
last time the class executed. If your class extends the RunBaseBatch class,
you also need to use the pack-unpack pattern for scheduled execution in
batch mode.

The pattern consists of a pack method and an unpack method. These
methods are used by the SysLastValue framework, which stores and
retrieves user settings or usage data values that persist between processes.

 Note

A reinstantiated object is not the same object as the saved
object. It is a copy of the object with the same values as the
packed and unpacked member variables.

The pack method must be able to read the state of the object and return
it in a container. Reading the state of the object involves reading the values
of the variables needed to pack and unpack the object. Variables used at
execution time that are declared as member variables don’t have to be
included in the pack method. The first entry in the container must be a
version number that identifies the version of the saved structure. The
following code is an example of the pack method:
Click here to view code image

container pack()

{

 return [#CurrentVersion, #CurrentList];

}

Macros must be defined in the class declaration. CurrentList is a macro
defined in the ClassDeclaration holding a list of the member variables to
pack. If the variables in the CurrentList macro are changed, the version
number should also be changed to allow safe and versioned unpacking.
The unpack method can support unpacking previous versions of the class,
as shown in the following example:
Click here to view code image

class InventCostClosing extends RunBaseBatch

{

 #define.maxCommitCount(25)

 // Parameters

 TransDate transDate;

 InventAdjustmentSpec specification;

 NoYes prodJournal;

 NoYes updateLedger;

 NoYes cancelRecalculation;

 NoYes runRecalculation;

 FreeTxt freeTxt;

 Integer maxIterations;

 CostAmount minTransferValue;

 InventAdjustmentType adjustmentType;

 boolean collapseGroups;

 ...

 #DEFINE.CurrentVersion(4)

 #LOCALMACRO.CurrentList

 TransDate,

 Specification,

 ProdJournal,

 UpdateLedger,

 FreeTxt,

 MaxIterations,

 MinTransferValue,

 adjustmentType,

 cancelRecalculation,

 runRecalculation,

 collapseGroups

 #ENDMACRO

}

public boolean unpack(container packedClass)

{

 #LOCALMACRO.Version1List

 TransDate,

 Specification,

 ProdJournal,

 UpdateLedger,

 FreeTxt,

 MaxIterations,

 MinTransferValue,

 adjustmentType,

 del_minSettlePct,

 del_minSettleValue

 #ENDMACRO

 #LOCALMACRO.Version2List

 TransDate,

 Specification,

 ProdJournal,

 UpdateLedger,

 FreeTxt,

 MaxIterations,

 MinTransferValue,

 adjustmentType,

 del_minSettlePct,

 del_minSettleValue,

 cancelRecalculation,

 runRecalculation,

 collapseGroups

 #ENDMACRO

 Percent del_minSettlePct;

 CostAmount del_minSettleValue;

 boolean _ret;

 Integer _version = conpeek(packedClass,1);

 switch (_version)

 {

 case #CurrentVersion:

 [_version, #CurrentList] = packedClass;

 _ret = true;

 break;

 case 3:

 // List has not changed, just the prodJournal

must now always be updated

 [_version, #CurrentList] = packedClass;

 prodJournal = NoYes::Yes;

 updateLedger = NoYes::Yes;

 _ret = true;

 break;

 case 2:

 [_version, #Version2List] = packedClass;

 prodJournal = NoYes::Yes;

 updateLedger = NoYes::Yes;

 _ret = true;

 break;

 case 1:

 [_version, #Version1List] = packedClass;

 cancelRecalculation = NoYes::Yes;

 runRecalculation = NoYes::No;

 _ret = true;

 break;

 default:

 _ret = false;

 }

 return _ret;

}

If any member variable isn’t packable, the class can’t be packed and
reinstantiated to the same state. If any of the members are other classes,
records, cursors, or temporary tables, they must also be made packable.
Other classes that don’t extend RunBase can implement the pack and
unpack methods by implementing the SysPackable interface.

When the object is reinstantiated, it must be possible to call the unpack
method, which reads the saved state and reapplies the values of the
member variables. The unpack method can reapply the correct set of
member variables according to the saved version number, as shown in the

following example:
Click here to view code image

public boolean unpack(container _packedClass)

{

 Version version = conpeek(_packedClass, 1);

 switch (version)

 {

 case #CurrentVersion:

 [version, #CurrentList] = _packedClass;

 break;

 default:

 return false;

 }

 return true;

}

The unpack method returns a Boolean value that indicates whether the
initialization succeeded.

As mentioned earlier in this section, the pack and unpack methods have
three responsibilities:

 Switching a RunBase-derived class between client and server
 Presenting the user with final choices made when the class was last
executed

 Scheduling the execution of the class in batch mode
In some scenarios, it is useful to execute specific logic depending on the

context in which the pack or unpack method is called. You can use the
isSwappingPrompt method on RunBase to detect whether the pack or
unpack method is called in the context of switching between client and
server. The isSwappingPrompt method returns true when called in this
context. You can use the isInBatch method on RunBaseBatch to detect
whether the unpack method is called in the context of executing the class
in batch mode.

Client/server considerations
Typically, you want to execute business operation jobs on the server tier
because these jobs almost always involve several database transactions.
However, you want the user dialog box to be executed on the client tier to
minimize client/server calls from the server tier. Fortunately, both the
SysOperation and the RunBase framework can help you run the dialog box
on the client and the business operation on the server.

To run the business operation job on the server and push the dialog box
to the client, you should be aware of two settings. On the menu item that
calls the job, set the RunOn property to Server; on the class, set the RunOn
property to Called From. For more information about these properties, see
the “Writing tier-aware code” section in Chapter 13, “Performance.”

When the job is initiated, it starts on the server, and the RunBase
framework packs the internal member variables and creates a new instance
on the client, which then unpacks the internal member variables and runs
the dialog box. When the user clicks OK in the dialog box, RunBase packs
the internal member variables of the client instance and unpacks them
again in the server instance.

The extension framework
The extension framework is an extensibility pattern that reduces or
eliminates the coupling between application components and their
extensions. Many of the application foundation frameworks in Microsoft
Dynamics AX are written by using the extension framework.

The extension framework uses the class attribute framework and the
class factory framework to decouple base and derived classes in two steps.

Create an extension
First, create a class attribute method by extending the SysAttribute class.

An example can be found in the Product Information Management
module in the PCAdaptorExtensionAttribute class:
Click here to view code image

class PCAdaptorExtensionAttribute extends SysAttribute

{

 PCName modelName;

 public void new(PCName _modelName)

 {

 super();

 if (_modelName == '')

 {

 throw error(Error::missingParameter(this));

 }

 modelName = _modelName;

 }

 public PCName parmModelName(PCName _modelName =

modelName)

 {

 modelName = _modelName;

 return modelName;

 }

}

Add metadata
Next, use the PCAdaptorExtensionAttribute class attribute to add metadata
to a derived class.

The following example code extends the PCAdaptor class to create a
MyPCAdaptor object instead of a PCAdaptor object when you process a
product configuration that is created from a product configuration model
named Computers:
Click here to view code image

[PCAdaptorExtensionAttribute('Computers')]

class MyPCAdaptor extends PCAdaptor

{

 protected void new()

 {

 super();

 }

}

You can test this extension by performing the following steps:
1. Press Ctrl+Shift+W to open the AX 2012 Development Workspace.
2. Add the MyPCAdaptor class to the AOT, and then compile the class.
3. Add a breakpoint in the

PCAdaptorFactory.getAdaptorFromModelName method.
4. In the AX 2012 Windows client, click Product Information

Management > Common > Product Configuration Models.
5. On the Action pane, in the New group, click Product Configuration

Model. The New Product Configuration Model dialog box opens.
6. In the Name field, enter Computers.
7. Enter a name in the Root Component Section Name field, and then

click OK. The Constraint-based Product Configuration Model details
form opens.

8. In the Attributes section of the form, add an attribute for the root
component. For example, size and color are common attributes.

9. On the Action pane, in the Run group, click Test.
10. Select a value for the attribute.

The AX 2012 debugger launches at the breakpoint that you added in
step 3.

As you step through the code, you can see how the
SysExtensionAppClassFactory is used to create an instance of the
MyPCAdaptor class:
Click here to view code image

 adaptor =

SysExtensionAppClassFactory::getClassFromSysAttribute(

 classStr(PCAdaptor), extensionAttribute);

The getClassFromSysAttribute method works by searching through the
classes that are derived from the PCAdaptor class. It returns an instance
when it finds a class that has a PCAdaptorExtensionAttribute that returns a
product model name that matches the name of the product configuration
model passed in. In this case, an instance is created for the product
configuration model named Computers.

Your custom code benefits by using this extension model because the
base and derived classes are decoupled, and it takes less code to extend the
capabilities of AX 2012.

Extension example
The following end-to-end example shows how to write extensible classes
and presents some sample extensions.

First, create a class derived from SysAttribute called
CalendarExtensionAttribute, which can be used to mark a class as
extensible:
Click here to view code image

public class CalendarExtensionAttribute extends

SysAttribute

{

 str calendarType;

}

public void new(str _calendarType)

{

 super();

 if (_calendarType == '')

 {

 throw error(error::missingParameter(this));

 }

 calendarType = _calendarType;

}

public str parmCalendarType(str _calendarType =

calendarType)

{

 calendarType = _calendarType;

 return calendarType;

}

Next, use the newly created attribute class to add metadata to the
extensible Calendar class and its derived classes:
Click here to view code image

[CalendarExtensionAttribute("Default")]

public class Calendar

{

}

public void new()

{

}

public void sayIt()

{

 info("All days are work days except for weekends!");

}

The following code illustrates two sample extensions, a
FinancialCalendar and a HolidayCalendar. Both classes override the sayIt
method:
Click here to view code image

[CalendarExtensionAttribute("Financial")]

public class FinancialCalendar extends Calendar

{

}

public void sayIt()

{

 super();

 info("Financial Statements are available on the last

working day of June!");

}

[CalendarExtensionAttribute("Holiday")]

public class HolidayCalendar extends Calendar

{

}

public void sayIt()

{

 super();

 info("Eight public holidays including New Year's

Day!");

}

Finally, a custom factory class is created to generate the appropriate
instance of the Calendar class. This custom factory class uses the
SysExtensionAppClassFactory.getClassFromSysAttribute method, which
searches through the derived classes of the Calendar class to match the
parameters of their attribute metadata with the parameters in the call. The
following code shows the CalendarFactory class that creates a calendar
instance:
Click here to view code image

public class CalendarFactory

{

}

public static Calendar instance(str _calendarType)

{

 CalendarExtensionAttribute extensionAttribute =

 new CalendarExtensionAttribute(_calendarType);

 Calendar calendar =

 SysExtensionAppClassFactory::getClassFromSysAttribute(classStr(calendar),

extensionAttribute);

 if (calendar == null)

 {

 calendar = new Calendar();

 }

 return calendar;

}

The following code contains a job that shows possible calendar creation
scenarios:
Click here to view code image

static void CreateCalendarsJob(Args _args)

{

 Calendar calendar =

CalendarFactory::instance("Holiday");

 calendar.sayIt();

 calendar = CalendarFactory::instance("Financial");

 calendar.sayIt();

 calendar = CalendarFactory::instance("Default");

 calendar.sayIt();

}

Eventing

Eventing is another extensibility pattern that reduces or eliminates the
coupling between application components and their extensions. Whereas
the extension framework is coarse-grained and suitable for add-ins,
eventing can be fine-grained. You can use it to augment or modify existing
application behaviors effectively.

The following terms are related to events in X++:
 Producer The logic that contains the code that causes a change. It is
an entity that emits events.

 Consumer The application code that represents an interest in being
notified when a specific event occurs. It is an entity that receives
events.

 Event A representation of a change having happened in the
producer.

 Event payload The information that the event carries with it. When
a person is hired, for example, the payload might include the
employee’s name and date of birth.

 Delegate The definition of the information that is passed from the
producer to the consumer when an event takes place.

By using events, you can potentially lower the cost of creating and
upgrading customizations. If you create code that is often customized by
others, you can create events in places where customizations typically
occur. Then, developers who customize the original functionality in
another layer can subscribe to an event. When customized functionality is
tied to an event, the underlying application code can be rewritten with little
impact on the customization, as long as the same events are raised in the
same sequence from one version to the next.

You can use events to support the following programming paradigms:
 Observation Events can detect exceptional behavior and generate
alerts when such behavior occurs. For example, this type of event
might be used in a regulation-compliance system. If more than a
designated amount of money is transferred from one account to
another, an event can be raised, and event handlers can respond to
the event appropriately. For example, the event handlers could reject
the transaction and send an alert to the account manager.

 Information dissemination Events can deliver the right information
to the right consumers at the right time. Information can be
disseminated by publishing an event to anyone who wants to react to
it. For example, the creation of a new worker in the system might be

of interest to Human Resources employees who conduct new
employee orientations.

 Decoupling Events produced by one part of the application can be
consumed by a different part of the application. The producer does
not have to be aware of the consumers, nor do the consumers need to
know details about the producer. One producer’s event can be acted
upon by any number of consumers. Conversely, consumers can act
upon any number of events from many different producers. For
example, the creation of a new worker in the system might be
consumed by the Project Management and Accounting module, if
you want to include the worker in default project teams.

Microsoft Dynamics AX events are based on .NET eventing concepts.
For more information, see “X++, C# Comparison: Event” at
http://msdn.microsoft.com/en-us/library/gg881685(v=ax.60).aspx.

Delegates
In X++, you can add delegates as members of a class. The syntax for
defining a delegate is the same as the syntax used for defining a method,
with the following exceptions:

 The delegate keyword is used.
 No access modifiers can be used on a delegate declaration because
all delegates are protected members.

 The return type must be void.
 The body must be empty; that is, it can contain neither declarations
nor statements.

 A delegate can be declared only as a member of a class. A delegate
cannot be a member of a table.

For example, a delegate for an event that is raised when a person is
hired could be expressed like this:
Click here to view code image

delegate void hired(str personnelNumber, UtcDateTime

startingDate)

{

 // Delegates do not have any code in the body

}

The parameters defined in the parameter profile can be any type allowed
in X++. In particular, it is useful to pass an object instance and to have the
handlers modify the state of the object. In this way, the publisher can

http://msdn.microsoft.com/en-us/library/gg881685(v=ax.60).aspx

solicit values from the subscribers.

Pre and post events
Pre and post events are predefined events that occur when methods are
called. Pre event handlers are called before the designated method
executes, and post event handlers are called after the method call has
ended. You can think of these event handlers as augmenting an existing
method with additional methods that are called before and after the
designated method. The event handlers for these pre and post events are
visible in the AOT as subnodes of the methods to which they apply.

The following pseudocode illustrates a method without event handlers:
void someMethod(int i)

{

 --body of the method--

}

The following example shows the method after event handlers are
added:

void someMethod(int i)

{

 preHandler1(i);

 preHandler2(i);

 --body of the method—

 postHandler1(i);

 postHandler2(i);

}

Not having any event handlers for a particular method leaves the
method intact. Therefore, no overhead is incurred for methods that do not
have any pre or post handlers assigned to them.

If an exception is thrown in a pre event handler, neither the remaining
event handlers nor the method itself is invoked. If a method that has any
pre event or post event handlers throws an exception, the remaining post
event handlers are not invoked. If an exception is thrown in a post event
handler, the remaining event handlers are not called.

Each pre event handler can access the original values of the parameters
and modify them as required. A post event handler can modify the return
value of the method.

Event handlers
Event handlers are the methods that are called when the delegate is called,

either directly through code (for coded events) or from the environment
(for modeled events that are maintained in the AOT). The relationship
between the delegate and the handlers can be maintained in the code or in
the AOT.

To add an event handler declaratively in the AOT, you identify a static
method to handle the event on the delegate, and then simply drag the
method to the delegate node that represents the event to be handled. You
can remove an event handler by using the Delete menu item that is
available for any node in the AOT. You can use only static methods in this
context.

To add a static event handler in code, you use a special X++ syntax, as
shown in the following example:
Click here to view code image

void someMethod(int i)

{

 this.MyDelegate +=

eventhandler(Subscriber::MyStaticHandler);

}

The delegate name appears on the left side of the += operator. On the
right side, you can see the keyword eventhandler, along with the qualified
name of the handler to add. The compiler checks that the parameter
profiles of the delegate and the handler match. The qualified name in the
example uses two colon characters (::) to separate the type name and the
delegate, which designates that the event handler is static.

To call a method on a particular object instance, use the syntax shown in
the following example:
Click here to view code image

void someMethod(int i)

{

 EventSubscriber subscriber = new EventSubscriber();

 this.MyDelegate +=

eventhandler(subscriber.MyInstanceHandler);

}

You can remove the event handler from a delegate by using the -=
operator instead of the += operator. An example of removing a static
event handler is as follows:
Click here to view code image

void someMethod(int i)

{

 this.MyDelegate -= eventhandler(Subscriber::MyHandler);

}

Here are some things to keep in mind about events:
 The X++ compiler does not allow you to raise events from outside
the class in which the delegate is defined.

 The runtime environment makes no guarantees about the order in
which the event handlers are called.

 An event handler can be implemented either in managed code or in
X++. You define managed code event handlers in a Microsoft Visual
Studio project that you add to the AOT.

Eventing example
The following example illustrates the use of both coded and modeled
events. The example also shows the ways in which arguments can be
passed to event handlers.

The following code implements an array with an event indicating that an
element has changed:
Click here to view code image

public class arrayWithChangedEvent extends Array

{

}

delegate void changedDelegate(int _index, anytype _value)

{

}

public anytype value(int _index, anytype _value = null)

{

 anytype paramValue = _value;

 anytype val = super(_index, _value);

 boolean newValue = (paramValue == val);

 if (newValue)

 this.changedDelegate(_index, _value);

 return val;

}

The following dynamic event handler is added at run time:
Click here to view code image

public class arrayChangedEventListener

{

 arrayWithChangedEvent arrayWithEvent;

}

public void new(ArrayWithChangedEvent _arrayWithEvent)

{

 arrayWithEvent = _arrayWithEvent;

 // Register the event handler with the delegate

 arrayWithEvent.ChangedDelegate +=

eventhandler(this.ListenToArrayChanges);

}

public void listenToArrayChanges(int _index, anytype

_value)

{

 info(strFmt("Array changed at: %1 - with value: %2",

_index, _value));

}

public void detach()

{

 // Detach event handler from delegate

 arrayWithEvent.changedDelegate -=

eventhandler(this.listenToArrayChanges);

}

The following example contains two static event handlers:
Click here to view code image

public static void ArrayPreHandler(XppPrePostArgs args)

{

 int indexer = args.getArg("_index");

 str strVal = "";

 if (args.existsArg("_value") &&

typeOf(args.getArg("_value")) == Types::String)

 {

 strVal = "Pre-" + args.getArg("_value"); // Mark

the value as Pre- processed

 args.setArg("_value", strVal);

 // The changes to parameter values may be based on

 // state of the record or environment variables.

 }

}

public static void ArrayPostHandler(XppPrePostArgs args)

{

 anytype returnValue = args.getReturnValue();

 str strReturnValue = "";

 if (typeOf(returnValue) == Types::String)

 {

 strReturnValue = returnValue + "-Post"; // post-

mark the return value

 args.setReturnValue(strReturnValue);

 }

}

To exercise the eventing example, add the pre and post event handlers
to the value method of the ArrayWithChangedEvent class in the AOT, and
then run the following job:
Click here to view code image

static void EventingJob(Args _args)

{

 // Create a new array

 ArrayWithChangedEvent arrayWithEvent = new

ArrayWithChangedEvent(Types::String);

 // Create listener for the array

 ArrayChangedEventListener listener = new

ArrayChangedEventListener(arrayWithEvent);

 // Test by adding items to the array

 info(arrayWithEvent.value(1, "Blue"));

 info(arrayWithEvent.value(2, "Cerulean"));

 info(arrayWithEvent.value(3, "Green"));

 // Detach listener from array

 listener.Detach();

 // The following additions should not invoke the

listener,

 // except when any pre and post events exist

 info(arrayWithEvent.value(4, "Orange"));

 info(arrayWithEvent.value(5, "Pink"));

 info(arrayWithEvent.value(6, "Yellow"));

}

Chapter 15. Testing

In this chapter
Introduction
Unit testing features in AX 2012
Microsoft Visual Studio 2010 test tools
Putting everything together

Introduction
Ensuring a high-quality user experience with an enterprise resource
planning (ERP) product like AX 2012 can be challenging. Out of the box
from Microsoft, the product is broad, deep, and complex. A typical
customer deployment adds one or more independent software vendor
(ISV) products to better tailor the product for specific purposes. Finally, a
customer or partner customizes AX 2012 to further align it with company
processes and policies.

End users don’t see or, for that matter, care about the complexities of
the product or who delivered what functionality. End users want a product
that enables them to perform their daily tasks efficiently, effectively, and
with a good user experience. The entire ecosystem—Microsoft, ISV
developers, Microsoft Dynamics AX partners, and customer IT developers
—is part of a critical quality-assurance link that end users depend on when
using AX 2012 to accomplish their goals.

This chapter focuses on features and tools that facilitate improved
testing of AX 2012 ISV solutions and customizations. AX 2012 includes
several capabilities that collectively take a major step forward in helping
developers test AX 2012 solutions effectively.

Unit testing features in AX 2012
The SysTest framework for unit testing has been part of the MorphX
development environment for several releases. The framework can be very
useful for traditional unit testing of X++ classes and methods. The
framework can also be used for integration testing of business logic that
spans multiple classes.

Past editions of this book and the current MSDN documentation on the
SysTest framework do a very good job of explaining the framework
basics. By making use of the attribute capabilities in the X++ language, the

SysTest framework in AX 2012 has capabilities that you can use to
develop and execute your tests more flexibly. This section focuses on these
features.

Using predefined test attributes
X++ attributes are a new feature in AX 2012 and are described in Chapter
4, “The X++ programming language.” This section describes how you can
use the predefined test attributes in the SysTest framework to improve
development and execution flexibility.

Five SysTest attributes are provided as part of the framework. These
attributes are described in Table 15-1.

TABLE 15-1 Predefined SysTest attributes.

Naming conventions were used heavily in previous versions of the
SysTest framework to indicate the intent of a class or a method. A class
naming convention of <TargetClass>Test was used to specify the code
class targeted for code coverage collection. (You could also override the
testsElementName method on your test class as an alternative to this
convention.) All methods intended to be test methods in a SysTestCase-
derived class had to start with the string test.

By using SysTestTargetAttribute and SysTestMethodAttribute, you can
be more explicit in your unit test code. The following code examples show
you how to use these attributes.
Click here to view code image

[SysTestTargetAttribute(classStr(Triangles),

UtilElementType::Class)]

public class TrianglesTest extends SysTestCase

{

}

[SysTestMethodAttribute]

public void testEQUILATERAL()

{

 Triangles triangle = new Triangles();

 this.assertEquals(TriangleType::EQUILATERAL,

triangle.IsTriangle(10, 10, 10));

}

The predefined attributes provide the capability to create filters so that
you can execute specific tests, as shown in Figure 15-1. You can use
SysTestCheckInTestAttribute, SysTestNonCheckInTestAttribute, and
SysTestInactiveTestAttribute for this purpose. In the Parameters form,
which you access from the unit test toolbar, you can select the filter you
want to use when running tests. For information about how to create a
filter, see the following section.

FIGURE 15-1 Filter list in the Parameters form.

Executing regression tests when code is checked in to version control is
a great way to keep your code base at a high level of quality. But you don’t
always want to run all tests because the amount of time required for
execution might become an issue. This is where the attributes
SysTestCheckInTestAttribute and SysTestNonCheckInTestAttribute are
useful. For more information about version control, see Chapter 2, “The
MorphX development environment and tools.”

Use the following steps to specify which tests are executed on check-in:
1. Attribute test methods with SysTestCheckInTestAttribute or

SysTestNonCheckInTestAttribute. Note that the default option is for a

test to not be a check-in test, so you have to specify the
SysTestCheckInTestAttribute to opt in. The best approach is to be
explicit with all tests, as shown in this example.

Click here to view code image

[SysTestMethodAttribute,

SysTestCheckInTestAttribute]

public void testEQUILATERAL()

{

 Triangles triangle = new Triangles();

 this.assertEquals(TriangleType::EQUILATERAL,

triangle.IsTriangle(10, 10, 10));

}

2. Create a new test project, and put all unit test classes with check-in
tests into the project.

3. In the Settings dialog box for the test project that you created (right-
click the name of the project, and then click Settings), specify
Check-in Tests as the filter.

4. In System Settings for Version Control (on the Version Control
menu, click System Settings), select your test project in the Test
project list.

On your next check-in, the appropriate tests will execute, and the results
will be displayed in an Infolog message.

Creating test attributes and filters
The predefined test attributes described in the previous section are a good
starting point for being more explicit in your test code and for organizing
your tests. A well-organized strategy for using test projects can also be
helpful. But there’s a good chance that you will want to take test
organization a step further for your development projects. Fortunately, you
can extend the test attribute capabilities by creating your own attributes
and filters.

As noted earlier in this chapter, the SysTest framework can be useful for
both class-level unit testing and for integration tests on business logic that
spans classes. However, it might be useful to be able to run just the
integration tests in certain scenarios because they are more functionally
oriented. For example, you might want to run only the integration tests
when moving code from your test environment into preproduction.

This section demonstrates how you can create a new attribute and a
corresponding filter to use on integration tests.

First, create the new attribute. This is quite straightforward because you
only need to create a class that inherits from SysTestFilterAttribute.
Click here to view code image

class SysTestIntegrationTestAttribute extends

SysTestFilterAttribute

{

}

You can now use this attribute on a new test method as follows:
Click here to view code image

[SysTestMethodAttribute,

SysTestIntegrationTestAttribute]

public void testIntegratedBusinessLogic()

{

 this.assertFalse(true);

}

Although this attribute is informative to anyone reading the test code, it
isn’t useful for execution until you also enable it in the Filter drop-down
list for test selection. To do this, you need to implement a test strategy for
the IntegrationTestAttribute. The term “strategy” is used because the test
strategy is implemented by following the Strategy design pattern.

First, extend the SysTestFilterStrategyType enumeration with an
additional element, as shown in Figure 15-2. Remember to set an
appropriate label on the Properties sheet.

FIGURE 15-2 Extension to the SysTestFilterStrategyType enumeration.

Next, implement the strategy in a class with the same name as the
enumeration element name. This class inherits from SysTestFilterStrategy
and has a class declaration, as shown in the following example:
Click here to view code image

class SysTestFilterIntegrationTestsStrategy extends

SysTestFilterStrategy

{

}

The most straightforward way to implement this strategy is to follow the
pattern in one of the other SysTestFilter<attribute>TestsStrategy classes.
You need to implement only two methods in this case.

The construct method returns a new instance of the class. You will use
this method shortly.
Click here to view code image

public static SysTestFilterIntegrationTestsStrategy

construct()

{

 return new SysTestFilterIntegrationTestsStrategy();

}

The work in this class is being done in the isValid method. This method
determines whether a test method should be included in the list of selected
tests. For SysTestFilterIntegrationTestsStrategy, here is the
implementation.
Click here to view code image

public boolean isValid(classId _classId, identifierName

_method)

{

 SysDictMethod method;

 DictClass dictClass;

 method = this.getMethod(_classId, _method);

 if (method)

 {

 //

 // If the test method has the integration

attribute, include it.

 //

 if

(method.getAttribute(attributestr(SysTestIntegrationTestAttribute)))

 {

 return true;

 }

 }

 //

 // If the test class has the integration attribute,

include it.

 //

 dictClass = new DictClass(_classId);

 if

(dictClass.getAttribute(attributestr(SysTestIntegrationTestAttribute)))

 {

 return true;

 }

 return false;

}

 Note

Additional code is required to achieve the correct behavior of
a SysTestInactiveTest-Attribute that could also be used on the
test method. This code was omitted to keep the example
simple.

There is one last thing to do to enable the new integration test attribute.
The newType method in the SysTestFilterStrategy class creates the
appropriate type based on the selection in the Filter list and must have an
additional case added to it, as shown in the following example:
Click here to view code image

public static SysTestFilterStrategy

newType(SysTestFilterStrategyType _type)

{

 SysTestFilterStrategy strategy;

 switch (_type)

 {

 <snip – non essential code removed>

 // Create an integration test strategy

 case

SysTestFilterStrategyType::SysTestFilterIntegrationTestsStrategy:

 strategy =

SysTestFilterIntegrationTestsStrategy::construct();

 break;

 default:

 throw

error(error::wrongUseOfFunction(funcname()));

 }

 strategy.parmFilterType(_type);

 return strategy;

}

The Integration Tests option is now available in the Filter list (see
Figure 15-3) and, when selected, will run only those test methods
attributed with SysTestIntegrationTestAttribute.

FIGURE 15-3 A filter list with a custom filter.

Microsoft Visual Studio 2010 test tools
Although the SysTest unit testing capabilities are critical for developers
who are testing AX 2012, much of the testing is not done by developers.
The functional testing, validating that the product meets the customer
requirements, is typically done by someone with a title like functional
consultant, business analyst, or possibly someone whose primary job
involves using AX 2012 to accomplish daily tasks.

These functional testers have a number of things in common:
 They are experts in the product and the application of the product to
solve business needs.

 They are not trained as software developers or software testers. Any
nontrivial programming required for their test efforts is challenging.

 They are not trained as software testers, but they are typically quite
good at testing. They have an inquisitive nature that gives them a
knack for finding issues in the product.

 They would love to have automated test support for repetitive tasks,
but they also believe that using an exploratory manual testing
approach is the best way to validate the system and find critical
issues.

Microsoft Visual Studio 2010 Ultimate and Visual Studio Test

Professional contain Microsoft Test Manager, an application that was
designed with these types of testers in mind. This package of testing tools
is well suited for AX 2012 projects. Microsoft Team Foundation Server
(TFS), which is required for Microsoft Test Manager, brings several other
quality-focused benefits to the table. It provides an application lifecycle
management (ALM) solution for the development phase of the project by
integrating requirements management, project management, source code
control, bug tracking, build processes, and test tools together. For more
information about ALM, see the white paper, “What Is Application
Lifecycle Management?” at
http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf

This section focuses on best practices for applying Microsoft Test
Manager to AX 2012 projects. For more information about how to use
Microsoft Test Manager, see “Testing your application using Microsoft
Test Managervvv on MSDN (http://msdn.microsoft.com/en-
us/library/jj635157.aspx).

Using all aspects of the ALM solution
The quality assurance plan for your project should not be focused on
testing alone. On the contrary, many factors can have a bigger impact on
the quality of the project than the amount of testing done. One key quality
factor is configuration management. With the Visual Studio ALM
solution, you can track all of the significant artifacts in your software
development process. You can drive higher quality in your projects by
adopting the ALM solution throughout your project.

Figure 15-4 shows an end-to-end feature development cycle involving
Simon, a functional consultant, and Isaac, an IT developer. As you can see,
the process involves tracking requirements, test cases, source code, builds,
and bugs. Many of these items are tracked in TFS. It also describes
traceability between these artifacts. You could also incorporate work items
into the process for improved project management.

http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
http://msdn.microsoft.com/en-us/library/jj635157.aspx

FIGURE 15-4 Feature development cycle.

Using an acceptance test driven development approach
In a rapidly changing environment like most AX 2012 projects, an agile
development approach is often the best development methodology. One
agile development practice that is particularly helpful in ensuring high
quality is acceptance test driven development (ATDD). ATDD involves
defining the critical test cases, the acceptance test cases, ahead of the
development effort as a requirement. (The term requirement is used
generically here. The requirement can be a user story, a feature, or another
artifact that describes functionality that is valuable to a customer.)

Acceptance test cases frequently exercise the primary flows for a
requirement. Additional test cases are required to fully test the
requirement. Acceptance test cases should be a collaborative effort
between the developer, the tester, and the author of the requirement. A
significant benefit of this collaboration is clarity because the individuals
involved frequently have different, unstated versions of how they expect
the requirement to be implemented.

Though the requirement should be free of implementation details, the
acceptance test cases must have some implementation details to make
them useful—but not too many. Figure 15-5 shows a sample acceptance
test case for a feature described in the previous section—executing unit

tests when code is checked in. The test case specifies details such as the
forms that are expected to be used, but it doesn’t specify the exact field
names.

FIGURE 15-5 Acceptance test case.

After you create the test, link it to the requirement on the Tested User
Stories tab. (In this example, a user story is the requirement.) The Add
Link form will look like Figure 15-6 after linking.

FIGURE 15-6 Requirement linked to test case.

By linking the test case to the requirement, you can use a nice feature in
Microsoft Test Manager, the capability to build test plans based on
requirement-based test suites. By specifying the requirement using the Add
Requirements button in the Microsoft Test Manager Plan area, you pull in
all test cases that are linked to the requirement.

Using shared steps
With shared steps, you can reuse the same steps in multiple test cases.
Think of shared steps as subroutines for your manual test cases. Using this
capability appropriately is a big step toward long-term maintainability of
your test cases.

A prime opportunity for using shared steps arises when you need to get
the application into a known state at the start of each test case. For AX
2012 tests, starting the application through the command line and using
command-line options to initialize the application for testing is an
excellent strategy.

Here’s an example of how to start AX 2012 and run a job to initialize
data. First, create an XML file, fminitializedata.xml, that you will
reference in the command line, and save it in a well-known location.

 Note

Though this example uses the root folder of drive C, a better
approach would be to define an environment variable for the
location.

Click here to view code image

<?xml version="1.0" ?>

<AxaptaAutoRun

 exitWhenDone="false"

 logFile="c:\AXAutorun.log">

 <Run type="job" name="InitializeFMDataModel" />

</AxaptaAutoRun>

Now the application can be started from the Run dialog box with the
following command string: ax32.exe -
StartUpCmd=AutoRun_c:\fminitializedata.xml.

You can incorporate this command line into a Launch AX And Set Start
Location shared step along with some basic navigation so that the test case
always starts from a known location, as shown in Figure 15-7.

FIGURE 15-7 Shared step.

Recording shared steps for fast forwarding
Microsoft Test Manager includes basic record-and-playback capability.
Because of the focus on the manual tester, record and playback is not
intended for end-to-end, push-button automation when a test is fully
automated. Instead, a manual tester can use this functionality to fast-
forward through the routine portion of a test case to get to the interesting
part, where validation is required and exploratory testing drives the
effective discovery of bugs.

Shared steps are a great starting point for building efficiency into your
manual testing through fast-forward capabilities. Microsoft Test Manager
can record a shared step independently (Organize > Shared Steps Manager
> Create Action Recording). The actions recorded for the shared step can
be used in all test cases that use those actions. You can also optimize the
playback by using the most efficient and reliable actions.

With its long command line and the need to consistently be in a known
state, the Launch AX And Set Start Location shared step shown in Figure
15-7 is a great candidate to record.

To make this as efficient and reliable as possible, you can do the
following:

 To get to the Run dialog box for typing in the command line, use
Windows logo key+R instead of the mouse to open it. In general,
shortcut keys are a better option for record and playback.

 To navigate to a particular area page, type the path into the address
bar. This approach has multiple advantages because it goes directly
to the page and is independent of the location where the application
was last left.

The left side of Figure 15-8 shows a test case in Microsoft Test Manager
that includes a shared step. The right side of Figure 15-8 shows the shared
step itself. Notice the arrow in the highlighted first step. This gives you the
option to fast-forward through the shared step.

FIGURE 15-8 Microsoft Test Manager showing a shared step and a test case
that uses it.

Developing test cases in an evolutionary manner
Creating detailed, step-by-step test cases early in the development process
can become counterproductive as the application evolves to its final form.
A better alternative is to develop your test cases in phases:

 Phase 1 Identify the titles of the test cases needed for the
requirements planned in your current development phase. Create the
test cases and associated metadata (area, priority, and so on).

 Phase 2 Flesh out the test case by using an intent-driven approach.
Perhaps a test case requires the creation of a customer with a past
due account. Performing these actions requires many steps. Starting
with the Create Customer With Past Due Account step is sufficient
in this phase.

 Phase 3 Add details to the test cases as required. If your testers are
domain experts, you might not need additional details. Although
omitting details introduces variability, the action recording provides
the developer with the details of the steps taken.
This phase also provides an opportunity to create additional shared
steps that can be reused across test cases. If multiple test cases
require Create Customer With Past Due Account, create a shared
step and perhaps record it. Alternatively, you can include an
appropriate customer record in your data.

Using ordered test suites for long scenarios
Scenario tests are valuable for business applications because long
workflows are typical of business processes. Mapping these long scenarios
to a test case can be challenging because you don’t want a test case that
has dozens of steps.

Microsoft Test Manager solves this problem by providing the capability
to define the order of test cases within a test suite. Figure 15-9 shows an
example of a human resources end-to-end scenario that is divided into
many short test cases and then ordered within a test suite.

FIGURE 15-9 Test suite with multiple test cases.

Putting everything together
So far, this chapter has discussed some key aspects of developer testing
and functional testing. This section ties these topics together with some
bigger-picture application lifecycle management areas.

Executing tests as part of the build process
The Visual Studio 2010 ALM solution also includes Team Foundation
Build, a workflow-enabled system that you use to compile code, run
associated tests, perform code analysis, release continuous builds, and
publish build reports. You can apply Team Foundation Build to AX 2012
projects. Though the build process is beyond the scope of this chapter,
running tests from Team Foundation Build is not.

Tests that are executed as part of a build process must be fully

automated. Given this requirement, the starting point should be tests
written by using the SysTest framework. Fortunately, some tools are in
place to enable execution of AX 2012 SysTest test cases from the Visual
Studio environment.

The first step is for the SysTest framework to provide results in a format
that Visual Studio expects—specifically, the TRX output format. There are
two pieces of good news here. First, the SysTest framework provides an
extensible model for test listeners for results. Second, the Microsoft
Dynamics AX partner ecosystem has provided a sample TRX
implementation on CodePlex that uses the Test Listeners capability. The
SysTestListenerTRX package for AX 2012 can be downloaded from
http://dynamicsaxbuild.codeplex.com/releases.

The second step is to initiate tests from Visual Studio. The Generic Test
Case capability was developed to wrap an existing program. This is perfect
for this situation because AX 2012 can run a test project from the
command line and specify the Test Listener and the location of the output
file.

Suppose you want to execute all tests marked with
SysTestIntegrationTestAttribute that were created earlier in this chapter.
After downloading and installing the SysTestListenerTRX package from
the link shown earlier, do the following:

1. Create a new test project in AX 2012. Add all test classes that have
SysTestIntegrationTest-Attribute on the class or on a method. As
described for check-in tests earlier in this chapter, right-click the
project, and then click Settings. In the Settings window, select
Integration Tests.

2. Create a new test project in Visual Studio.
3. On the Test menu, click New Test, and then, in the Add New Test

dialog box, double-click Generic Test.
4. Set up the generic test as shown in Figure 15-10, by completing the

following steps:
a. In Specify An Existing Program, type the full path to Ax32.exe.
b. In Command-Line Arguments, type the string shown in Figure

15-10 ("-
StartupCmd=RunTestProject_IntegrationTests@TRX@%TestOutputDirectory%Ax-
TestResult.trx"). This string specifies that the AX 2012 test
project named IntegrationTests should be run, that the TRX
listener is used, and that the output will be placed in

http://dynamicsaxbuild.codeplex.com/releases

%TestOutputDirectory%\AxTestResult.trx.
c. Under Results Settings, select the Summary Results File check

box, and then specify the location for the result by using the same
path and name as on the command line.

FIGURE 15-10 Test settings.

When you run all tests in the solution from Visual Studio (click the Test
menu > Run > All Tests In Solution), you will see the AX 2012 client
open and then close. The results for this example are shown in Figure 15-
11. Two tests were marked with SysTestIntegrationTestAttribute, and both
passed.

FIGURE 15-11 Test results.

Using the right tests for the job
A typical AX 2012 development project has four unique environments:
development, test, preproduction, and production. This section provides a
brief description of each environment and discusses how to apply the test
tools in this chapter to each of them.

The development environment is where developers are actively
contributing code. A high-quality development process focuses on
ensuring high quality as close to the source of possible defects as possible.
This is an excellent opportunity to use the SysTest framework for
developing unit tests for new classes or methods and integration tests for

basic multiclass interaction. Over time, these automated tests can form a
regression suite that can be executed during the check-in and build
processes as described in this chapter. The ATDD process described
earlier in this chapter for validating requirements should also be applied in
the development environment, so the testers on the project need to be
involved during the development phase, optimally using the Visual Studio
2010 test tooling.

Broader testing is targeted for the test environment. Varying levels of
integration testing are typical of this environment, with a strong focus on
ensuring that business processes are functioning end to end. Creating test
suites that use ordered test cases in Microsoft Test Manager is a good
approach here. This is a good opportunity to evolve the detail of the test
cases, using a well-designed approach for shared steps to minimize
duplication across the suites. As the product changes and new builds are
created, the SysTest regression suite should continue to be executed.

User acceptance testing (UAT) is the primary activity in the
preproduction environment. The Microsoft Test Manager test suites
developed for the test environment can form the basis for the UAT
performed by users in the business. The data that you use for this testing
should be a snapshot of the production data.

If all goes well in the previous environments, the code is deployed to
production. To minimize downtime, only a cursory check, or smoke test, is
performed after the new code is deployed. This typically is a manual test
case defined by the business but exercised by the IT specialists performing
the deployment. Again, you can use Microsoft Test Manager to define the
test case and provide an execution environment with shared steps for
auditing and debugging purposes.

To ensure that you have a high-quality, comprehensive test plan in
place, you might want to review additional documentation that contains
processes and guidelines for quality-focused development. For more
information, see the Microsoft Dynamics AX 2012 white paper, “Testing
Best Practices,” at http://www.microsoft.com/download/en/details.aspx?
id=27565, and “Microsoft Dynamics Sure Step Methodology,” at
http://www.microsoft.com/download/en/details.aspx?
displaylang=en&id=5320.

http://www.microsoft.com/download/en/details.aspx?id=27565
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5320

Chapter 16. Customizing and adding Help

In this chapter
Introduction
Help system overview
Help content overview
Creating content
Publishing content
Troubleshooting the Help system

Introduction
AX 2012 introduces a Help system that was designed to make it easier for
customers and partners to create and publish custom Help.

In previous versions, the Help system consisted of .chm files that were
installed individually on each client computer. To customize Help, you had
to decompile the .chm file, create custom .html files, recompile the .chm
file, and then reinstall the .chm file on each client computer.
Customizations were overwritten by Help updates from Microsoft.

The Help system in AX 2012 solves these problems. Help content is
installed once on a server and displayed in a viewer on each client. Help
topics consist of HTML files, so you don’t have to decompile and
recompile .chm files. Although not required, separate folders that you
create on the Help server can prevent customizations from being
overwritten by Help updates from Microsoft.

You can customize the Help system in the following ways:
 Create new topics in any HTML editor, either from scratch or by
using the templates that are included. You can give your topics a
consistent look and feel by applying the same style sheet that is used
for the Help system in AX 2012.

 Include references to user interface labels, fields, and menu items to
ensure that your Help topics match the customizations that you’ve
made to the user interface. Also, readers can use menu items to open
forms in AX 2012 directly from your Help topics.

 Make your Help context-sensitive, so that your topic appears when a
user presses F1 on a specific object in the user interface.

 Replace an existing topic with a customized version of the topic, or

display the customized topic alongside the existing one. You can
display topics from multiple publishers or suppress topics from
specific publishers.

 Create a table of contents for your topics and append it to the default
table of contents. You can also apply search keywords to your topics
to make them more discoverable.

 Note

The Help system supplies Help only for the AX 2012
Windows client, not for the Enterprise Portal web client.

Help system overview
The Help system consists of these components:

 Help server A centralized web service that responds to requests for
Help documentation. You put your custom Help files on the Help
server.

 Help viewer An application that is installed with the AX 2012 client.
The Help viewer displays topics when a user requests help from the
application.

These components interact with the AX 2012 client and the Application
Object Server (AOS) to display Help topics. Figure 16-1 shows the
sequence of events between a request for a Help topic and the display of
the topic.

FIGURE 16-1 How the Help system works.

The following sections describe the components of the Help system in
detail and explain how a request for a Help topic is processed.

AX 2012 client
When a user presses F1 or clicks the Help button in a form, the client
performs the following actions:

1. The client identifies the Help topic to retrieve. The client obtains the
ID of the form that is open when the user presses F1.

2. The client retrieves the URL of the Help server. The first time that a
user requests help, the client contacts the AOS to retrieve the URL of
the Help server. The client then caches the URL so that it can be
used for additional Help requests.

3. The client calls the Help viewer. If the Help viewer is not already
running, it starts. The call to the Help viewer includes the URL of
the Help server and the ID of the form.

Help viewer
A user can click a link in the Help viewer to request a topic, or the user can
search for topics. The Help viewer contacts the Help server and then
retrieves and displays the specified topic.

If the Help server finds multiple topics for the specified ID, it displays a
list of links to the topics on a summary page. If the user searches, the Help
viewer lists links to the topics that are found. Figure 16-2 shows the Help
viewer, which was designed to have the familiar look and feel of a web
browser. The table of contents is displayed in the left pane and the Help
topic is displayed in the right pane.

FIGURE 16-2 The AX 2012 Help viewer.

Help server
The Help server has the following components that respond to requests
from a Help viewer.

Help web service
The Help web service is an Internet Information Services (IIS) web server
application that responds to Help viewer requests for Help topics. The
Help web service receives the request, finds the topic that matches the
request, retrieves the text for the topic’s labels from the AOS, and then
sends the topic to the Help viewer.

Document files
Document files consist of XML and HTML files that are installed on the
web server.

The XML files contain information for the table of contents that appears
in the Help viewer.

Each HTML file contains a Help topic that appears in the Help viewer.
Each HTML file also includes properties that uniquely identify the topic

and provide additional information, such as the language and keywords,
which aid in searches. These properties must be set properly for the topic
to appear and be ranked appropriately in search results. When responding
to a request, the Help web service searches for documents whose
properties match the criteria sent by the Help viewer.

Document files are installed in a folder structure on the Help server. The
default location is C:\inetpub\wwwroot\DynamicsAX6HelpServer\content,
but this location can be changed during installation.

Each organization or individual that creates and publishes content for
the Help system is called a publisher. Upon installation, the Help system
contains a folder for a single publisher: Microsoft. When you add topics to
the Help system, you create a new folder structure beneath the content
folder to hold your document files—for example:

C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\Microsoft
C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\YourFolder

Each document file belongs to a document set, which is a named
collection of related Help topics. You use document sets to associate a
collection of Help documents with either the client or the Development
Workspace. The Help system includes the following document sets:

 ApplicationHelpOnTheWeb Provides Help on the web for users of
the AX 2012 client. You cannot add new documents to this
document set.

 DeveloperDocumentation Provides Help on the web for users of the
Development Workspace. You cannot add new documents to this
document set.

 Glossary Provides glossary entries for users of AX 2012. You can
add new documents to this document set.

 SystemAdministratorHelpOnTheWeb Provides Help on the web
for system administrators of AX 2012. You cannot add new
documents to this document set.

 UserDocumentation Provides Help for users of the AX 2012 client.
When you create custom topics, you add them to this document set.

Windows Search Service
Installing the Help web service enables Windows Search Service, which
indexes the document files that are added to the Help server. The index
includes the document properties of each HTML file.

When the Help web service receives a request, it queries the Windows

Search Service to find the document files that match the criteria specified
by the request. The Help web service uses the following order of
precedence to match and rank the search results that are displayed in the
Help viewer:

1. Keywords Matches the search request to keywords for the topic
2. Title Matches the search request to part of the title of the topic
3. Topic ID Matches the search request to the ID that uniquely

identifies the topic
4. Content Matches the search request to one or more values found in

the content of the topic

AOS
To support the Help system, the AOS performs the following actions:

 Stores the URL of the Help server. Each Help viewer retrieves this
URL before sending a request for content, so that changes to the
URL are available to all clients of the AOS.

 Returns the text associated with a label. The Help web service
retrieves label text and adds that text to the HTML of the topic. This
ensures that the text in the content matches the text in the user
interface.

Help content overview
This section describes the concepts and components that are involved in
customizing the Help system.

Topics
A topic is the content for a specific subject area. AX 2012 Help is
organized by topic. Topic files are HTML files, and each topic has a
unique ID. When you plan your customization, evaluate how your changes
fit into the existing topic structure. You can either add topics or update
topics.

Add a topic when you want to document a new process, form, or other
component. You should add entries for new topics to the table of contents.
For a context-sensitive topic, the topic ID must match the ID of the form
or other component that you are documenting.

Update a topic when you want to document a change to an existing
process, form, or other component. An updated topic supplements or
replaces an existing topic. When you update a topic, your content must

include the same topic ID as the existing content. For more information,
see “Update content from other publishers,” later in this chapter.

 Caution

Do not edit or delete any files that were created by Microsoft
or any other publisher. If you change an existing file, your
changes might be lost during an update or reinstallation of the
documentation from that publisher.

Publisher
A publisher is an individual or organization that has documentation on the
Help server. Each content element includes a document property that
specifies the ID of a publisher. The publisher ID is one of the document
properties that you can use to replace documentation for an existing topic.
The content from each publisher is organized in its own folder on the Help
server.

Table of contents
The table of contents file is an XML file that contains a hierarchical list of
topics that is displayed in the left pane of the Help viewer (see Figure 16-
2, shown earlier). Each entry in the table of contents is a link to a topic.

You can add entries to the table of contents when you want your topic to
be more easily discovered and viewed from the Help viewer. If you have
several related topics, you can use the table of contents to display the
topics in a hierarchical group.

Summary page
A summary page is a list that the Help viewer displays when the requested
content includes more than one topic. Figure 16-3 shows an example of a
summary page. To view a specific topic, the user clicks the link for that
topic.

FIGURE 16-3 The AX 2012 Help summary page.

Creating content
Before you write a new topic or update an existing topic, use these
guidelines to plan your work:

 Decide what topics your documentation requires and what
documents you have to include.

 The Help server requires all topics to use the Extensible HTML
(XHTML) standard.

 If you are updating an existing topic, determine the ID of the topic. If
you are adding a new topic, decide whether to add an entry to the
table of contents. Later sections in this chapter describe how to
update an existing table of contents and add topics to a table of
contents.

 Gather the information for the document properties that are required
to identify the content. For more information, see the following

section, “Walkthrough: Create a topic in HTML.”
To quickly create documentation that matches the look of AX 2012

Help, you can use the templates that are included with the Help system.
Each template contains a framework of elements, styles, and guidelines
that can make creating content faster and simpler. To see the list of the
templates, open the Help viewer, type Templates for Help
Documentation in the search box, and then press Enter. The following
types of templates are available:

 HTML templates that resemble the Help documentation from
Microsoft. These templates represent common topic types, such as
orientation topics, procedure topics, key task topics, and form topics.
The HTML templates are an excellent option if you are creating new
topics. (If you are reusing HTML topics that already exist, you can
publish them on the Help server as long as you add the correct
metadata. For more information, see the following section,
“Walkthrough: Create a topic in HTML.”)

 A Microsoft Word template that can be used to create documentation
with Word 2007 or a later version. Typically, a super user within an
organization, such as an office manager, will use the Word template
to publish organization-specific guidelines and processes related to
work that users perform in AX 2012. The Word template includes
the capability to create the supplemental HTML file that is required
for each Word file. For more information, see the “Creating non-
HTML content” section later in this chapter.

Walkthrough: create a topic in HTML
This section describes how to create an HTML file from scratch. You can
use any HTML or text editor to create HTML files. For example, if you are
using Microsoft Visual Studio, you would create a text file. In order for the
file to appear in the Help viewer and look consistent with the Help that
Microsoft provides, you’ll need to add specific metadata.

The following sections walk you through the process of creating a topic
that contains the correct references and metadata.

Declarations
After you first create the HTML file, use the information in this section to
add the initial elements and metadata for the topic. When you complete
this section, you will have a basic HTML document.

1. Add a <doctype> element, and specify the document type definition.

The following table shows the document type declarations to use:

The following HTML shows the declarations in the <doctype>
element:

Click here to view code image

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd"[]>

2. Add an <html> element, add the dir attribute, and then set the
attribute value to “ltr” (left-to-right).
Although the dir attribute is not required, the Help viewer uses its
value to optimize the appearance of the document:

Click here to view code image

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd"[]>

<html dir="ltr">

</html>

3. Add the namespaces in the following table to the <html> element.

 Important

These namespaces are required. If you do not include every
namespace, your document might not appear in the Help
viewer.

The following HTML shows the namespace declarations:
Click here to view code image

<html DIR="LTR"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:dynHelp="http://schemas.microsoft.com/dynamicsHelp/2008/11"

xmlns:dynHelpAx="http://schemas.microsoft.com/dynamicsHelpAx/2008/11"

xmlns:MSHelp="http://msdn.microsoft.com/mshelp"

xmlns:mshelp="http://msdn.microsoft.com/mshelp"

xmlns:ddue="http://ddue.schemas.microsoft.com/authoring/2003/5"

xmlns:msxsl="urn:schemas-microsoft-com:xslt">

4. Add the HTML head and body elements to the document. The
following example shows the HTML:

Click here to view code image

< <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd"[]><html DIR="LTR"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:dynHelp="http://schemas.microsoft.com/dynamicsHelp/2008/11"

xmlns:dynHelpAx="http://schemas.microsoft.com/dynamicsHelpAx/2008/11"

xmlns:MSHelp="http://msdn.microsoft.com/mshelp"

xmlns:mshelp="http://msdn.microsoft.com/mshelp"

xmlns:ddue="http://ddue.schemas.microsoft.com/authoring/2003/5"

xmlns:msxsl="urn:schemas-microsoft-com:xslt">

 <head>

 </head>

 <body>

 </body>

</html>

Document head
The document head contains metadata, plus the document title that appears
in the title bar of the Help viewer. The style sheets that you reference in
the document head are the same style sheets referenced by the Help
provided by Microsoft. By using these style sheets, you can give your

documentation a look and feel that is consistent with the Microsoft Help.
1. Add two <meta> elements, and then set their attributes as follows:

• In the first <meta> element, set the http-equiv attribute to
“Content-Type”, and then set the content attribute to “text/html;
charset=UTF-8”.

• In the second <meta> element, set the name attribute to “save”,
and then set the content attribute to “history”.

The following example adds the <meta> elements. Notice how the
first <meta> element specifies the document type. Also notice how
the second <meta> element specifies that the document is saved to
the session memory of the browser:

Click here to view code image

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<meta name="save" content="history"/>

2. Add a <title> element. This text appears in the title bar of the Help
viewer as shown in Figure 16-4.

Click here to view code image

<title>Using Help for Microsoft Dynamics AX</title>

FIGURE 16-4 Microsoft Dynamics AX Help topic title.

3. Add three <link> elements, and then use them to specify the style
sheets to apply to your document:
• Add a rel attribute to each <link> element, and then set the value of

each to “stylesheet”.
• Add a type attribute to each <link> element, and then set the value

of each to “text/css”.
• Add an href attribute to each <link> element, and then use the

following table to specify the value of each:

In the following example, notice how the href attributes specify the
relative paths of the folders that contain the .css files, assuming that
the content is published to the appropriate publisher and language
folders. Also, the third <link> element specifies a URL for the
HxLink.css file:

Click here to view code image

<link rel="stylesheet" type="text/css"

href="../../Microsoft/EN-US /local/AX.css"/>

<link rel="stylesheet" type="text/css"

href="../../Microsoft/EN-US /local/

presentation.css"/>

<link rel="stylesheet" type="text/css" href="ms-

help://Hx/HxRuntime/HxLink.css"/>

4. Add nine <meta> elements, and then provide the required document
properties. Add a name and content attribute to each element. For the
name and content attribute of each element, specify values in the
following table:

In the following example, notice how the name and content attributes
specify each document property and its value:

Click here to view code image

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8" />

<meta name="save" content="history" />

<title>Contoso customer help information</title>

<link rel="stylesheet" type="text/css"

href="../../Microsoft/EN-US /local/

presentation.css"/>

<link rel="stylesheet" type="text/css"

href="../../Microsoft/EN-US /local/AX.css"/>

<link rel="stylesheet" type="text/css" href="ms-

help://Hx/HxRuntime/HxLink.css"/>

<meta name="Title" content="Contoso customer help

information"/>

<meta name="Microsoft.Help.Id"

content="Contoso.Forms.CustTable"/>

<meta name="ms.locale" content="EN-US"/>

<meta name="publisher" content="Contoso"/>

<meta name="documentSets" content="UserDocumentation"/>

<meta name="Microsoft.Help.Keywords" content="Contoso;

customer"/>

<meta name="suppressedPublishers" content=""/>

<meta name="Microsoft.Help.F1"

content="Forms.CustTable"/>

<meta name="description" content="Describes Contoso

customization to the Customers

form"/>

Document body
Between the open and close tags of the <body> element that you added
earlier, add elements for controls, the document title, the main section, and
links to related topics.

1. Add <input> elements for two hidden controls that the Help viewer
uses to display topics. These controls are required.
Add a type and id attribute to both <input> elements, and add a class
attribute to the element whose id attribute is set to userDataCache.
Use the following values for the attributes:

In the following example, notice how the type attributes specify that
each control is hidden, and the id attributes specify each control
name. Also notice how the class attribute of the “userDataCache”
control is set to “userDataStyle”:

Click here to view code image

<input type="hidden" id="userDataCache"

class="userDataStyle" />

<input type="hidden" id="hiddenScrollOffset" />

2. Add the document header. Add a <div> element, and then set the id
attribute to “header”, as shown in step 4.

3. Add two elements to the header section:
• For the first one, set the id attribute to “runningHeaderText”.
• For the second, set the id attribute to “nsrTitle”. To specify the

title that appears in the Help viewer, type a title for the topic
(“Contoso customer Help information” in the following example).

4. Add an <hr> element. To keep the title visible during scrolling, set
the class attribute to “title-divider”. Notice that the
 element
adds an empty line above the title:

Click here to view code image

<div id="header">

 Contoso customer Help

information

 <hr class="title-divider" />

</div>

5. Add the main section. Add a <div> element, and then set the id
attribute to “mainSection”.

6. Add a <div> element to the main section, and then set the id
attribute to “mainBody”.

7. Add another <div> element, and then set the id attribute to “footer”:
<div id="mainSection">

 <div id="mainBody">

 </div>

 <div id="footer">

 </div>

</div>

Content
In this section, add all the elements between the start and end tags of the
main body. The following sections add an introduction, a description of a
customization, and a list of links to related topics.

1. Add an introduction. Add a <div> element, set the class attribute to
“introduction”, and then type an introduction for your topic within
one or two <p> (paragraph) elements.

 Important

The introduction is a required element. When a user searches
for a topic, the introduction is used as an abstract on the
summary page that displays search results (see Figure 16-3,
shown earlier).

Click here to view code image

<div class="introduction">

 <p>

 This topic includes information about changes to

the Customer form that have been

added by Contoso.

 </p>

 <p>

 You can use the Customer form to view additional

information about each of your

customers.

 </p>

</div>

2. Create a section heading by adding an <h1> element, and then set
the class attribute to “heading”. Between the start and end tags, type
a heading for the section. If you do not want to use a heading for the
section, you can leave the <h1> element empty, as in the example.

3. Add a <div> element, and then set the class attribute to “section”.
4. Add your Help content. You can add standard HTML tags to format

your content. For example, you can use paragraphs, sections,
headings, bulleted lists, ordered lists, tables, and formatting such as
bold and italic. The following example shows the opening paragraph
for a section:

Click here to view code image

<h1 class="heading"></h1>

<div class="section">

 <p>

 The Contoso customer add-ons enable you to view

important information about your

relationship with your customer. To view the additional

information, click one of the

following buttons:

 </p>

</div>

Links to related topics
Most topics provided by Microsoft contain a “See also” section, which
contains links to other topics that might help the user. Adding a “See also”
section can help your custom documentation blend with the existing
documentation from Microsoft. For information about how to find the ID
of an existing topic to link to, see the “Update content from other
publishers” section later in this chapter.

1. Create a section heading by adding an <h1> element, and then set
the class attribute to “heading”. Type See also between the start and
end tags.

2. Add a <div> element, and then set the class attribute to “section”.
3. Add a <div> element between the start and end tags of the <div>

element, and then set the class attribute to “seeAlsoStyle”.
4. Add a element between the start and end tags of the “See

also” section.

5. Add a <dynHelp:topicLink> element between the start and end tags
of the element. Type the topic title that you want to link to as
the text of the link. Add the following attribute values:

The following example creates a “See also” section with a link to a topic
named “Create a customer account”:
Click here to view code image

<h1 class="heading">See also</h1>

<div class="section">

 <div class="seeAlsoStyle">

 <dynHelp:topicLink topicId="cc18943e-c00c-49e6-

8bd2-03be6481b6dd" documentSet=

"UserDocumentation">Create a customer

account</dynHelp:topicLink>

 </div>

</div>

Footer
To give your topics a look that’s consistent with existing Help topics, add
a line to the footer section at the end of the document.

1. Add a <div> element between the start and end tags of the <div>
element that has the id attribute set to “footer”, and then set the class
attribute to “footerline”.

2. Add an <hr> element, add the style attribute, and then set the
following values:

Click here to view code image

<div id="footer">

 <div class="footerLine">

 <hr style="height:3px; color:Silver" />

 </div>

 <p />

</div>

Adding labels, fields, and menu items to a topic

You can enhance your Help by adding references to user interface labels.
When you add a reference to a label, the label text is retrieved from the
AOS and added to your Help topic at run time. This means that the user
interface text that you refer to in your Help documentation will always
match the text in the application.

Table 16-1 describes the types of labels that you can reference in your
documentation:

TABLE 16-1 Labels that can be referenced in documentation.

The following restrictions can affect how labels appear in your
documentation:

 To retrieve the text of the label, the Help server queries AOS.
Whoever requests the Help topic must have access permissions.
Otherwise, the default text appears in the topic.

 When the label appears in the Help viewer, the text appears in the
same language that is used by the AX 2012 client that the request
originated from.

 The Help server does not support references to labels in non-HTML
documents.

Add a label from the user interface
When you create a Help topic that describes a form, you can include a
specific label that appears in the form by adding the ID of the label to the
HTML of your topic.

1. In the Development Workspace, point to Tools > Development
Tools > Label > Label Editor.

2. In the Find What field, type the text of the label whose ID you want
to find, expand the In The Language list, click the language you
want, and then click Find Now.
The Label Editor lists all the labels that include the specified text for
the specified language.

3. In your Help topic, in the location where you want the label to
appear, add a <dynHelpAx:label> element, and then specify values
for the following attributes:

Click here to view code image

<dynHelpAx:label axtype="Label" id="@SYS21829">

</dynHelpAx:label>

4. In the <dynHelpAx:label> element, specify default text. If the label
cannot be retrieved, the text that you supply appears in the Help
topic. In the following example, “Bank Account” is the default text:

Click here to view code image

<dynHelpAx:label axtype="Label" id="@SYS21829">Bank

Account</ dynHelpAx:label>

 Note

If you do not supply a default text value and the label cannot
be retrieved, the Help topic will not include a value for the
label.

Add a table field label
You can add table field labels when you want your Help topic to include
the text of a table field.

1. In the Application Object Tree (AOT), under Data
Dictionary\Tables, click the table that contains the field, and then
note the value of the Name property of the table.

2. Expand Fields, find the field that contains the label that you want to
use, and then note the value of the Name property of the field.

3. In your Help topic, in the location where you want the label to
appear, add a <dynHelpAx:label> element, and then specify values
for the following attributes.

Click here to view code image

<dynHelpAx:label axtype="Field" axtable="DirPartyTable"

axfield="Name">

</dynHelpAx:label>

4. Specify a default text value for the <dynHelpAx:label> element. If
the label cannot be retrieved, the text that you specify appears in the
Help topic. In the following example, “Name” is the default text:

Click here to view code image

<dynHelpAx:label axtype="Field" axtable="DirPartyTable"

axfield="Name">Name

</dynHelpAx:label>

Add a menu item label
You can add a menu item label to your Help topic when you want to
include the text of a menu item.

1. In the AOT, expand Menu Items, and then expand a menu item
category.

2. Find the menu item, and then note the value of the Name property.
3. In your Help topic, in the location where you want the label to

appear, add a <dynHelpAx:label> element, and then specify values
for the following attributes:

Click here to view code image

<dynHelpAx:label axtype="MenuItem" axmenutype="Display"

axmenuitem="SalesTable">

</dynHelpAx:label>

4. Specify a default text value for the <dynHelpAx:label> element. If
the label cannot be retrieved, the text that you supply appears in the
Help topic. In the following example, “Sales order” is the default
text:

Click here to view code image

<dynHelpAx:label axtype="MenuItem" axmenutype="Display"

axmenuitem ="SalesTable">

Sales order</dynHelpAx:label>

Make a topic context-sensitive
Context-sensitive Help provides documentation for specific objects in AX

2012. When a user presses F1, the Help viewer displays documentation
about the form, list page, or other object that the user has open in the AX
2012 client or the Development Workspace.

AX 2012 Help supports the use of context-sensitive Help for the
following client and Development Workspace object types:

 Base enums
 Configuration keys
 Forms
 Maps
 Parts
 Tables
 Classes
 Data types
 List pages
 Menu items
 Reports
 Views

When a user presses F1, the following actions occur:
 The client sends the ID of each object that is currently open to the
Help viewer. (The object ID is a string that identifies each object,
such as CustTable.)

 The Help viewer sends the object IDs to the Help server.
 For each object ID, the Help server searches for content with a
corresponding topic ID.

 When an object ID matches a topic ID, the Help server returns the
content for that topic.

 The Help viewer receives and displays the content.
To make a topic context-sensitive, you set the Microsoft.Help.F1

property of your content to the ID of the object. If multiple topics have the
same value for the Microsoft.Help.F1 property, the Help viewer displays a
list of multiple topic links that the user can choose among.

To find object IDs:
 In the AOT, right-click the object, and then point to Add-Ins > Help
Properties. The Help Properties window opens and displays the ID.

 In a form, open the form, right-click in a blank area of the form, click

Personalize, and then click the Information tab. The Form name field
displays the name of the form. To specify the ID, combine the
element type, Forms, with the name of the form. For example, for
the form called CustTable, you would specify Forms.CustTable as
the object ID, as in the following example:

Click here to view code image

<meta name="Microsoft.Help.F1" content="Forms.CustTable"/>

Update content from other publishers
At times, you might want to update or modify a topic that already exists on
the Help server. For example, if your solution adds fields to an existing
form, you might want to replace the default topic for that form with one of
your own. To update an existing Help topic, you create a new topic to
replace the existing one. The Help viewer then hides the existing topic by
suppressing the publisher that you specify. The hidden topic remains on
the Help server and can be accessed through search.

 Caution

Do not edit or remove any files that were published to the
Help server by another publisher. An update or reinstallation
of the files from that publisher might overwrite the changes
that you make.

To replace a topic, you obtain metadata from the topic that you want to
replace and then add it to the new topic that you’ve created.

1. In the Help viewer, open the topic that you want to replace, right-
click the topic, and then click View Source.

2. Get metadata about the Help topic:
• Search for meta name=”Microsoft.Help.F1”, and then record the

topic ID.
• Search for meta name=”publisher”, and then record the publisher

ID.
3. In the new topic that you created, do the following:

• Search for the element <meta name=”Microsoft.Help.F1”
content=””/>, and then set the value of content to the topic ID that
you noted in step 2.

• Search for the element <meta name=”suppressedPublishers”
content=””/>, and then set the value of content to the publisher ID
that you noted in step 2.

 Tip

If you want to hide content from more than one publisher, use
a semicolon to separate each publisher ID.

The following example sets the ID to the Microsoft topic to replace
and adds “Microsoft” to the <suppressedPublishers> element:

Click here to view code image

<meta name="Microsoft.Help.F1" content="c3fc5774-6ed0-

4760-86f5-7899e825ab25"/>

<meta name="suppressedPublishers" content="Microsoft"/>

4. Save the file, and then publish your content to the Help server.

Create a table of contents file
The table of contents file is an XML file that contains a hierarchical
representation of Help topics. Add entries to the table of contents when
you add new Help topics that you want to appear in the table of contents.
(By convention, Microsoft Help topics that contain conceptual information
and procedures appear in the table of contents, but topics that describe
forms, which appear when the user presses F1, do not.) The table of
contents file must be named TableOfContents.xml. After you create the
XML file, you publish it. For more information about publishing your
table of contents file, see the “Publishing content” section later in this
chapter.

1. Use a text or XML editor to create a new file.
2. Add the <xml> and <tableOfContents> elements to the file. The

<tableOfContents> element requires XML namespace information.
Click here to view code image

<?xml version="1.0" encoding="utf-8"?>

<tableOfContents

xmlns="http://schemas.microsoft.com/dynamicsHelp/2008/11"

xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance">

</tableOfContents>

3. Add metadata properties that specify a document set, language, and
publisher.
The Help service uses these properties to identify the entries that
appear in the Help viewer’s table of contents. The following table
describes the properties:

Click here to view code image

<?xml version="1.0" encoding="utf-8"?>

<tableOfContents

xmlns="http://schemas.microsoft.com/dynamicsHelp/2008/11"

xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance">

 <publisher>Contoso</publisher>

 <documentSet>UserDocumentation</documentSet>

 <ms.locale>EN-US</ms.locale>

</tableOfContents>

4. Add the <entries> element after the metadata, as shown in the
following example:

Click here to view code image

<publisher>Contoso</publisher>

<documentSet>UserDocumentation</documentSet>

<ms.locale>EN-US</ms.locale>

<entries>

</entries>

5. Add an <entry> element for each topic that you want to add to the
table of contents.
The <entry> elements must be child elements of the <entries>
element. The following table describes the properties of an <entry>
element:

Click here to view code image

<entries>

 <entry>

 <text>Sample help topic</text>

 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>

 </entry>

</entries>

6. If you want entries to appear under the current entry in the Help
viewer in a hierarchical structure, add a <children> element, and
then add entries to it:

Click here to view code image

<entry>

 <text>Sample help topic</text>

 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>

 <children>

 <entry>

 <text>Child help topic</text>

 <Microsoft.Help.F1>DEFAULT_TOPIC</Microsoft.Help.F1>

 </entry>

 </children>

</entry>

Figure 16-5 shows a table of contents hierarchy in the Help viewer.

FIGURE 16-5 A table of contents hierarchy.

Creating non-HTML content
Although the Help viewer cannot display a non-HTML file, it can open

another application that can display the file; for example, it can use Word
to open a .docx file.

To link to a non-HTML file from the Help viewer, you must have these
components:

 You must include an HTML file that contains the metadata
properties that the Help system requires. This file must have the
same name as the non-HTML file.

 You must include a script that targets the non-HTML file. This file
must be published to the same folder on the Help server as the file
with the metadata properties.

 Computers with the Help viewer installed must have an application
that can display the non-HTML file. The application must be the
default application for that type of file.

The following sections describe how to create non-HTML content and
the required metadata file.

Create the content
Open the application that you want to create the content with, and then
create a new file. For example, open Word, and create a new document.

 Tip

If you use Word, use one of the templates included with the
Help system to quickly create content that resembles existing
Help content. For information about accessing the Word
templates, see the beginning of the “Creating content” section
earlier in this chapter.

Add content to the file—typically, a title, section headings, and
paragraphs. Save the file, and note the file name. You will use this file
name when you create the HTML file with the metadata.

Create the HTML metadata file
Create a new file, and add the HTML for a basic webpage, as in the
following example:

<html>

 <head>

 </head>

</html>

Add a <meta> element to the file for each of the metadata properties
shown in Table 16-2.

TABLE 16-2 Metadata properties.

The following example shows the metadata for the companion HTML
file:
Click here to view code image

<head>

 <meta name="Title" content="Sample content" />

 <meta name="Microsoft.Help.Id" content="8D937F19-3A00-

4F37-A316-0A48D052D627" />

 <meta name="ms.locale" content="En-Us" />

 <meta name="publisher" content="Microsoft" />

 <meta name="documentSets" content="UserDocumentation" />

 <meta name="Microsoft.Help.Keywords" content="" />

 <meta name="suppressedPublishers" content="" />

 <meta name="Microsoft.Help.F1" content="SampleContent"

/>

 <meta name="description" content="An example of non-HTML

content that was published to the

Help system." />

</head>

Add a <script> element, and specify the non-HTML file that you want
to open. Specify the script type as javascript, and use the window.location
object to specify the file. The following HTML example shows a <script>
element that opens the file SampleContent.docx:
Click here to view code image

<script type="text/javascript">

 <!--

 window.location="SampleContent.docx"

 //-->

</script>

When you save the file, the file name extension must be .htm.

 Important

The file name must match the file name of the non-HTML
file. For example, use SampleContent.htm to match the
SampleContent.docx example.

Publishing content
To publish new or updated content and table of contents entries, you copy
HTML or XML files to the Help server.

After creating or updating content, use these guidelines to ensure that
you are ready to publish and to ensure that your content is visible on the
Help server:

 Maintain a separate set of folders for each publisher (see Figure 16-
6). This will ensure that content from a particular publisher doesn’t
get overwritten accidentally.

 Make sure that you have the correct permissions on the Help server
to add files and folders.

 Add your publisher ID to the Web.config file of the Help server to
determine where your documentation appears in the table of contents
and in search results.

 If you have non-HTML content, you must include an HTML file
with the required properties. The HTML file must be in the same
folder as the non-HTML document. For more information, see the
“Creating non-HTML content” section earlier in this chapter.

Although this is not required, you can add subfolders to the content
folder that specify your publisher ID and the language of your content, as
shown in Figure 16-6. This can prevent files from other publishers from
being overwritten—for example:

C:/inetpub/wwwroot/DynamicsAX6HelpServer/content/Contoso/EN-
US

FIGURE 16-6 Help server folders for the publishers Contoso and Microsoft.

Details about the subfolders that you can add appear are described in
Table 16-3.

TABLE 16-3 Content subfolders.

To delete existing content, remove the file that contains the content from
the Help server.

 Tip

If you remove a topic, also update the topic in the table of
contents and any cross-references.

Publication is completed when Windows Search Service adds metadata
from your HTML or XML file to the search index. Make sure that
Windows Search Service is running on the Help server.

The Help server uses the search service and its index to locate each
topic that matches a Help request. You will not see newly published
content in the Help viewer until that content is indexed.

 Note

Windows Search Service is a low-priority service that runs
after higher-priority services. The time between publishing
and viewing your content can vary. If you publish just a few
files to a Help server that was previously indexed, the new
files should be immediately indexed.

After Windows Search Service has indexed your files, use the Help
viewer to view your new content. If you cannot see your content, check to
ensure that the content has been indexed.

Add a publisher to the Web.config file
To refine search results, summary pages, and table of contents entries, the
Help server keeps a list of publishers in the Web.config file. You update
this list to complete the following tasks:

 Add or remove a publisher from the Search Options menu of the
Help viewer (shown in Figure 16-7) to restrict your search to content
created by the specified publisher.

FIGURE 16-7 Publishers on the Search Options menu.

 List content from one publisher before or after content from another
publisher. If your Help request includes content from more than one
publisher, the summary page uses the publisher list to determine the
sort order of the content.

 Specify where a group of entries in the table of contents appears. The
Help server groups entries by publisher. When the Help server sends
the table of contents to the Help viewer, the server uses the publisher
list in the Web.config file to determine the order of the entries.

Before making changes to the Web.config file, save a copy of the file.
If you do not add your publisher ID to the Web.config file, the Help

server determines the location of your content.
To add a publisher to the Web.config file:

1. Open the Web.config file in a text editor. To change the file, you
might have to copy the file to a separate working folder. The
Web.config file is located at
C:\inetpub\wwwroot\DynamicsAX6HelpServer.

2. Add a publisher to the list. The list of publishers is in the
dynamicsHelpConfig section.
The following table specifies the required attributes of the
<publisher> element:

Notice the order of the publishers in the following example. If a
summary page includes content from both publishers, content from
the first publisher is listed before content from the second.

Click here to view code image

<publishers>

 <add publisherId="Contoso" name="Contoso" />

 <add publisherId="Microsoft" name="Microsoft" />

</publishers>

3. Save your changes to the Web.config file. If the file is in a working
folder, copy your updated Web.config file to the
DynamicsAX6HelpServer folder on your Help server.

Publish content to the Help server
Before you add your content to the Help server, you can add subfolders to
organize your files. Although not required, this can prevent files with
similar names from other publishers from being overwritten. If you publish
many files, you can add subfolders by subject to help organize your
content.

 Caution

When you publish, be careful not to accidentally overwrite

existing files that have the same file name. If you overwrite a
file, you lose the Help documentation that was contained in
the original file.

To add folders to the file system of the Help server:
1. In File Explorer, open the content folder on the Help server—

typically, here:
C:\inetpub\wwwroot\DynamicsAX6HelpServer\content

2. Add a publisher folder, using your publisher ID or name as the
folder name.

3. Add language folders for the languages of your content. Name
folders by using the same language code that is used in the language
metadata of your content files—for example, “EN-US” for US
English.

To publish content:
1. In File Explorer, copy the files that you want to publish to the

appropriate folders, such as:
C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\
<publisher ID>\<language>

The following table summarizes the different files that accompany
each type of content file:

If you add many files, Windows Search Service takes several
minutes to index all the files.

2. Open each content topic in the Help viewer and verify that your
content was published.

To publish table of contents entries:
1. In File Explorer, copy your TableOfContents.xml file to the folder

on the Help server that matches the publisher and language metadata
in the XML file, such as:

C:\inetpub\wwwroot\DynamicsAX6HelpServer\content\
<publisherID>\<language>\TOCResources

2. Open the Help viewer and verify that your content was published.

Set Help document set properties
A document set is a collection of content associated with an AX 2012
workspace—either the AX 2012 client or the Development Workspace. A
workspace can be associated with only one document set. Typically, you
use UserDocumentation as the document set for any content that you
publish. If you add a new document set and associate it with a workspace,
you will no longer see content from the document set that you replaced.

Document sets are located in an AOT node named Help Document Sets.
Document sets have properties that help you manage the relationship
between a workspace and a document set, as described in Table 16-4.

TABLE 16-4 Document set properties.

Troubleshooting the Help system
This section describes solutions to the two most common problems that
might occur when customizing the Help system.

The Help viewer cannot display content
If the Help viewer cannot display content, check the following possible
solutions.

Help server
If you use more than one Help server for development, testing, and
production, make sure that the Help viewer connects to the server where
you published your changes. To view the URL of the Help service in AX
2012, click Administration > Setup > Help System Parameters.

Make sure that the web service and application pool for the Help service
are running. Click Start > All Programs > Administrative Tools > Internet
Information Services (IIS) Manager.

Windows Search Service
Content does not appear in the Help viewer until it has been indexed by
Windows Search Service. Right-click the taskbar, click Start Task
Manager, click the Services tab, and then, in the Name column, find
Wsearch, and verify that Running appears in the Status column. If
Windows Search Service is running, you might have to give indexing more
time to find your content. Indexing slows or stops when the server is busy.

If Windows Search Service is not running, right-click Wsearch, and then
click Start Service. Allow Windows Search Service to find and index the
files that you published.

Check whether the Help server or Windows Search Service logged any
error messages in the application log of the server. In Event Viewer, click
Application Log.

Content
Check whether the Help server can open and process the HTML file of
your content. If the Help server cannot locate the file, or the file does not
include the required metadata, the Help server does not send the content to
the Help viewer.

 Make sure that the HTML file is in the correct folder on the Help
server.

 Make sure that the content file includes all required metadata with
the correct syntax.

 Make sure that there are no errors in the XHTML of your content
files.

The Help viewer cannot display the table of contents
Check whether the Help server can open and process the XML file for the
table of contents entries. If the Help server cannot locate the file, or the file

does not include the required metadata, the Help server will not add your
entries to the table of contents.

 Make sure that the XML file is in the correct folder.
 Make sure that the file includes all required metadata in the correct
syntax.

 Make sure that the ID in the Microsoft.Help.F1 property of the table
of contents entry identifies only a single topic.

Part III: Under the hood
CHAPTER 17 The database layer
CHAPTER 18 Automating tasks and document distribution
CHAPTER 19 Application domain frameworks
CHAPTER 20 Reflection
CHAPTER 21 Application models

Chapter 17. The database layer

In this chapter
Introduction
Temporary tables
Surrogate keys
Alternate keys
Table relations
Table inheritance
Unit of Work
Date-effective framework
Full-text support
The QueryFilter API
Data partitions

Introduction
The AX 2012 application runtime provides robust database features that
make creating an enterprise resource planning (ERP) application much
easier. Many powerful database features have been added to AX 2012.
This chapter focuses on several of these new capabilities. The information
provided here introduces the features, provides information about how to
use them in an application, and, when appropriate, explains in detail how
each feature works.

Many database features, such as optimistic concurrency control (OCC),
transaction support, and the query system, have been available in
Microsoft Dynamics AX for several releases. For detailed information
about these and other database features in AX 2012, see the “Database for
Microsoft Dynamics AX” section in the AX 2012 software development
kit (SDK) at http://msdn.microsoft.com/en-us/library/aa588039.aspx.

You can also refer to previous editions of this book, which contain
useful information about database functionality that also applies to AX
2012.

Temporary tables
By default, any table that is defined in the Application Object Tree (AOT)

http://msdn.microsoft.com/en-us/library/aa588039.aspx

is mapped in a one-to-one relationship to a permanent table in the
underlying relational database. AX 2012 also supports the functionality of
temporary tables. In previous releases, Microsoft Dynamics AX provided
the capability to create InMemory temporary tables that are mapped to an
indexed sequential access method (ISAM) file-based table that is available
only during the run-time scope of the Application Object Server (AOS) or
a client. AX 2012 provides a new type of temporary table that is stored in
the TempDB database in Microsoft SQL Server.

InMemory temporary tables
The ISAM file that represents an InMemory temporary table contains the
data and all of the indexes that are defined for the table in the AOT.
Because working on smaller datasets is generally faster than working on
larger datasets, the AX 2012 runtime monitors the size of each InMemory
temporary table. If the size is less than 128 kilobytes (KB), the temporary
table remains in memory. If the size exceeds 128 KB, the temporary table
is written to a physical ISAM file. Switching from memory to a physical
file affects performance significantly. A file with the naming syntax
$tmp<8 digits>.$$$ is created when data is switched from memory to a
physical file. You can monitor the threshold limit by noting when this file
is created.

Although InMemory temporary tables don’t map to a relational
database, all of the data manipulation language (DML) statements in X++
are valid for tables that operate as InMemory temporary tables. However,
the AX 2012 runtime executes some of the statements in a downgraded
fashion because the ISAM file functionality doesn’t offer the same
functionality as a relational database. For example, set-based operators
always execute as record-by-record operations.

Using InMemory temporary tables
When you declare a record buffer for an InMemory temporary table, the
table doesn’t contain any records. You must insert records to work with
the table. The InMemory temporary table and all of the records are lost
when no declared record buffers point to the temporary dataset.

Memory and file space aren’t allocated to the InMemory temporary table
until the first record is inserted. The temporary table is located on the tier
where the first record was inserted. For example, if the first insert occurs
on the server tier, the memory is allocated on this tier, and eventually the
temporary file will be created on the server tier.

 Important

Use temporary tables carefully to ensure that they don’t cause
excessive round trips between the client and the server,
resulting in degraded performance. For more information, see
Chapter 13, “Performance.”

A declared temporary record buffer contains a pointer to the dataset. If
you use two temporary record buffers, they point to different datasets by
default, even though the table is of the same type. To illustrate this, the
X++ code in the following example uses the TmpLedgerTable temporary
table defined in AX 2012. The table contains four fields: AccountName,
AccountNum, CompanyId, and LedgerDimension. The AccountNum and
CompanyId fields are both part of a unique index, AccountNumIdx, as
shown in Figure 17-1.

FIGURE 17-1 TmpLedgerTable temporary table.

The following X++ code shows how the same record can be inserted in
two record buffers of the same type. Because the record buffers point to
two different datasets, a “duplicate value in index” failure doesn’t result,
as it would if both record buffers pointed to the same temporary dataset, or
if the record buffers were mapped to a database table.
Click here to view code image

static void TmpLedgerTable(Args _args)

{

 TmpLedgerTable tmpLedgerTable1;

 TmpLedgerTable tmpLedgerTable2;

 tmpLedgerTable1.CompanyId = 'dat';

 tmpledgerTable1.AccountNum = '1000';

 tmpLedgerTable1.AccountName = 'Name';

 tmpLedgerTable1.insert(); // Insert into

tmpLedgerTable1's dataset.

 tmpLedgerTable2.CompanyId = 'dat';

 tmpledgerTable2.AccountNum = '1000';

 tmpLedgerTable2.AccountName = 'Name';

 tmpLedgerTable2.insert(); // Insert into

tmpLedgerTable2's dataset.

}

To have the record buffers use the same temporary dataset, you must
call the setTmpData method on the record buffer, as illustrated in the
following X++ code. In this example, the setTmpData method is called on
the second record buffer and is passed in the first record buffer as a
parameter.
Click here to view code image

static void TmpLedgerTable(Args _args)

{

 TmpLedgerTable tmpLedgerTable1;

 TmpLedgerTable tmpLedgerTable2;

 tmpLedgerTable2.setTmpData(tmpLedgerTable1);

 tmpLedgerTable1.CompanyId = 'dat';

 tmpledgerTable1.AccountNum = '1000';

 tmpLedgerTable1.AccountName = 'Name';

 tmpLedgerTable1.insert(); // Insert into shared

dataset.

 tmpLedgerTable2.CompanyId = 'dat';

 tmpledgerTable2.AccountNum = '1000';

 tmpLedgerTable2.AccountName = 'Name';

 tmpLedgerTable2.insert(); // Insert will fail with

duplicate value.

}

The preceding X++ code fails on the second insert operation with a
“duplicate value in index” error because both record buffers point to the
same dataset. You would notice similar behavior if, instead of calling
setTmpData, you simply assigned the second record buffer to the first

record buffer, as illustrated here:
Click here to view code image

 tmpLedgerTable2 = tmpLedgerTable1;

However, the variables would point to the same object, which means
that they would use the same dataset.

When you want to use the data method to copy data from one temporary
record buffer to another, where both buffers point to the same dataset,
write the code for the copy operation as follows:
Click here to view code image

tmpLedgerTable2.data(tmpLedgerTable1);

 Warning

The connection between the two record buffers and the
dataset is lost if the code is written as tmpLedgerTable2 =
tmpLedgerTable1.data. In this case, the temporary record
buffer points to a new record buffer that has a connection to a
different dataset.

As mentioned earlier, if no record buffer points to the dataset, the
records in the temporary table are lost, the allocated memory is freed, and
the physical file is deleted. The following X++ code example illustrates
this situation, in which the same record is inserted twice using the same
record buffer. But because the record buffer is set to null between the two
insert operations, the first dataset is lost, so the second insert operation
doesn’t result in a duplicate value in the index because the new record is
inserted into a new dataset.
Click here to view code image

static void TmpLedgerTable(Args _args)

{

 TmpLedgerTable tmpLedgerTable;

 tmpLedgerTable.CompanyId = 'dat';

 tmpledgerTable.AccountNum = '1000';

 tmpLedgerTable.AccountName = 'Name';

 tmpLedgerTable.insert(); // Insert into first dataset.

 tmpLedgerTable = null; // Allocated memory is freed

 // and file is deleted.

 tmpLedgerTable.CompanyId = 'dat';

 tmpledgerTable.AccountNum = '1000';

 tmpLedgerTable.AccountName = 'Name';

 tmpLedgerTable.insert(); // Insert into new dataset.

}

Notice that none of these InMemory temporary table examples use the
ttsbegin, ttscommit, and ttsabort statements. These statements affect only
ordinary tables that are stored in a relational database. For example, the
following X++ code adds data to an InMemory temporary table. Because
the table is an InMemory temporary table, the value of the accountNum
field is printed to the Infolog even though the ttsabort statement executes.
Click here to view code image

static void TmpLedgerTableAbort(Args _args)

{

 TmpLedgerTable tmpLedgerTable;

 ttsbegin;

 tmpLedgerTable.CompanyId = 'dat';

 tmpledgerTable.AccountNum = '1000';

 tmpLedgerTable.AccountName = 'Name';

 tmpLedgerTable.insert(); // Insert into table.

 ttsabort;

 while select tmpLedgerTable

 {

 info(tmpLedgerTable.AccountNum);

 }

}

To cancel the insert operations on the table in the preceding scenario
successfully, you must call the ttsbegin and ttsabort methods on the
temporary record buffer instead, as shown in the following example:
Click here to view code image

static void TmpLedgerTableAbort(Args _args)

{

 TmpLedgerTable tmpLedgerTable;

 tmpLedgerTable.ttsbegin();

 tmpLedgerTable.CompanyId = 'dat';

 tmpledgerTable.AccountNum = '1000';

 tmpLedgerTable.AccountName = 'Name';

 tmpLedgerTable.insert(); // Insert into table.

 tmpLedgerTable.ttsabort();

 while select tmpLedgerTable

 {

 info(tmpLedgerTable.AccountNum);

 }

}

When you work with multiple temporary record buffers, you must call
the ttsbegin, ttscommit, and ttsabort methods on each record buffer
because there is no correlation between the individual temporary datasets.

Considerations for working with InMemory temporary tables
When working with InMemory temporary tables, keep the following points
in mind:

 When exceptions are thrown and caught outside the transaction
scope, if the AX 2012 runtime has already called the ttsabort
statement, temporary data isn’t rolled back. When you work with
temporary datasets, make sure that you’re aware of how the datasets
are used both inside and outside the transaction scope.

 The database-triggering methods on temporary tables behave almost
the same way as they do with ordinary tables, but with a few
exceptions. When insert, update, and delete are called on the
temporary record buffer, they don’t call any of the database-logging
or event-raising methods on the application class if database logging
or alerts have been set up for the table.

 Note

In general, you can’t set up logging or events on InMemory
temporary tables that you define. However, because ordinary
tables can be changed to temporary tables, logging or events
might already be set up.

 Delete actions are also not executed on InMemory temporary tables.
Although you can set up delete actions, the AX 2012 runtime doesn’t
try to execute them.

 AX 2012 lets you trace Transact-SQL statements, either from within
the AX 2012 Windows client, or from the Microsoft Dynamics AX
Configuration Utility or the Microsoft Dynamics AX Server
Configuration Utility. However, Transact-SQL statements can be
traced only if they are sent to the relational database. You can’t trace
data manipulation in InMemory temporary tables with these tools.
You can use the Microsoft Dynamics AX Trace Parser to accomplish

this, though. For more information, see the “Microsoft Dynamics AX
Trace Parser” section in Chapter 13.

 You can query a record buffer to find out whether it is acting on a
temporary dataset by calling the isTmp record buffer method, which
returns a value of true or false depending on whether the table is
temporary.

TempDB temporary tables
The application code in AX 2012 often uses temporary tables for
intermediate storage. This requires joins with regular tables and, in some
cases, set-based operations. But InMemory temporary tables provide
restricted support for joins. These joins are performed by the data layer in
the AOS, which does not give ideal performance. Also, as mentioned
earlier, set-based operations are always downgraded to row-by-row
operations for InMemory tables. TempDB temporary tables have been
added to AX 2012 to provide a high-performance solution for these
scenarios. Because these temporary tables are stored in the SQL Server
database, database operations such as joins can be used.

TempDB temporary tables use the same X++ programming constructs as
InMemory temporary tables. The key difference is that they are stored in
the SQL Server TempDB database. The following code example shows the
usage of a TempDB temporary table:
Click here to view code image

void select2Instances()

{

 TmpDBTable1 dbTmp1;

 TmpDBTable1 dbTmp2;

 dbTmp1.Field1 = 1;

 dbTmp1.Field2 = 'First';

 dbTmp1.insert();

 dbTmp2.Field1 = 2;

 dbTmp2.Field2 = 'Second';

 dbTmp2.insert();

 info("First Instance.");

 while select * from dbTmp1

 {

 info(strfmt("%1 - %2", dbTmp1.Field1,

dbTmp1.Field2));

 }

 info("Second Instance.");

 while select * from dbTmp1

 {

 info(strfmt("%1 - %2", dbTmp2.Field1,

dbTmp2.Field2));

 }

}

This example uses a table called TmpDBTable1 that contains two fields.
The TableType property for the TmpDBTable1 table is set to TempDB.
Similar to an InMemory temporary table, the TempDB temporary table is
created only when the data is inserted into the table buffer. To see the data
in the temporary table, insert a breakpoint before the first select statement
in the X++ code, and then open SQL Server Management Studio (SSMS)
to examine the tables that are created in the TempDB system database.
Each table buffer instance for the temporary table has a corresponding
table in the database in the following format: t<table_id>_GUID. In the
example, the table ID of the TmpDBTable1 table is 101420. This means
that two tables were created in the TempDB database, with one of them
having the table name
t101420_E448847EACA4482997F4CD8BCAAAE0CE. After the method
runs and the table buffers are destroyed, these two tables are truncated.
The AX 2012 runtime uses a pool to keep track of these tables in the
TempDB database. The runtime will reuse one of these table instances
when a TmpDBTable1 table buffer is created again in X++.

Creating temporary tables
You can create temporary tables in the following ways:

 At design time by setting metadata properties
 At configuration time by enabling licensed modules or
configurations

 At application run time by writing explicit X++ code
The following sections describe each method.

Design time
To define a table as temporary, you must set the appropriate value in the
TableType property for the table resource. By default, the TableType
property is set to Regular. To create a temporary table, choose one of the
other two options: InMemory or TempDB, as shown in Figure 17-2. The
temporary tables are created in memory and are backed by a file or created
in the TempDB database when needed.

FIGURE 17-2 Marking a table as temporary at design time.

 Tip

Tables that you define as temporary at design time should
have Tmp inserted as part of the table name instead of at the
beginning or end of the name—for example,
InventCostTmpTransBreakdown. This improves readability of
the X++ code when temporary tables are explicitly used. In
previous versions of Microsoft Dynamics AX, the best
practice was to prefix temporary tables with Tmp, which is
why a number of temporary tables still use this convention.

Configuration time
When you define a table by using the AOT, you can attach a configuration
key to the table by setting the ConfigurationKey property on the table. The
property belongs to the Data category of the table properties.

When the AX 2012 runtime synchronizes the tables with the database, it
synchronizes tables for all modules and configurations, regardless of
whether the modules and configurations are enabled (except
SysDeletedObjects configuration keys). Whether a table belongs to a
licensed module or an enabled configuration depends on the settings in the
ConfigurationKey property. If the configuration key is disabled, the table
is disabled and behaves like a TempDB temporary table. Therefore, no run-
time error occurs when the AX 2012 runtime interprets X++ code that
accesses tables that aren’t enabled. For more information about the
SysDeletedObjects configuration key, see “Best Practices: Tables” at
http://msdn.microsoft.com/en-us/library/aa876262.aspx.

 Note

Enabling doesn’t affect a table that is already defined as a

http://msdn.microsoft.com/en-us/library/aa876262.aspx

temporary table. The table remains temporary even though its
configuration key is disabled, and you can expect the same
behavior regardless of the configuration key setting.

Run time
You can use X++ code to turn an ordinary table into an InMemory
temporary table by calling the setTmp method on the record buffer. From
that point forward, the record buffer is treated as though the TableType
property on the table is set to InMemory.

 Note

You can’t define a record buffer of a temporary table type and
turn it into an ordinary table, partly because there is no
underlying table in the relational database.

The following X++ code illustrates the use of the setTmp method, in
which two record buffers of the same type are defined; one is temporary,
and all records from the database are inserted into the temporary version of
the table. Therefore, the temporary record buffer points to a dataset that
contains a complete copy of all of the records from the database belonging
to the current company.
Click here to view code image

static void TmpCustTable(Args _args)

{

 CustTable custTable;

 CustTable custTableTmp;

 custTableTmp.setTmp();

 ttsbegin;

 while select custTable

 {

 custTableTmp.data(custTable);

 custTableTmp.doInsert();

 }

 ttscommit;

}

Notice that the preceding X++ code uses the doInsert method to insert
records into the temporary table. This prevents execution of the overridden
insert method. The insert method inserts records in other tables that aren’t
switched automatically to temporary mode just because the custTable

record buffer is temporary.

 Caution

Use great care when changing an ordinary record buffer to a
temporary record buffer, because application logic in
overridden methods that manipulates data in ordinary tables
could execute inadvertently. This can happen if the temporary
record buffer is used in a form and the form application
runtime calls the database-triggering methods.

Surrogate keys
The introduction of surrogate keys is a significant change to table keys in
AX 2012. A surrogate key is a system-generated, single-column primary
key that does not carry domain-specific semantics. It is specific to the AX
2012 installation that generates the key. A surrogate key value cannot be
generated in one installation and used in another installation. The natural
choice for a surrogate key in AX 2012 is the RecId column. However, in
AX 2009 and earlier, the RecId index is still paired with the DataAreaId
column for company-specific tables. In AX 2012, the RecId index does not
contain the DataAreaId column and becomes a single-column unique key.

Surrogate key support is enabled when you create a new table in the
AOT. To use the surrogate key pattern for a table, set the PrimaryIndex
property to SurrogateKey, as shown in Figure 17-3.

FIGURE 17-3 Surrogate key in the FMCustomer table.

 Note

The SurrogateKey value is not available for tables that were
created in an earlier version of Microsoft Dynamics AX. If
you want to implement a surrogate key for an existing table,
you must re-create the table in the AOT.

Defining a surrogate key on a table in AX 2012 has several benefits.
The first benefit is performance. When a surrogate key and the foreign key
that references it are used to join two tables, performance is improved
when compared to joins created with other data types. The benefit is more
prominent when compared to AX 2009 and earlier versions because the
kernel automatically adds the DataAreaId column to any key defined for
any company-specific table. You identify these company-specific tables
through the SaveDataPerCompany property. Without a surrogate key, the
join must be based on at least on two columns, with one of them being the
DataAreaId column.

The second benefit of using a surrogate key is that a surrogate key value
never changes, which eliminates the need to change the values of foreign
keys. For example, the Currency table (shown in Figure 17-4) uses the
CurrencyCodeIdx index as the primary index, which contains the
CurrencyCode column. The Ledger table has two foreign keys in the
Currency table that are based on the CurrencyCode column. If there is ever
a need to change the CurrencyCode value for a record in the Currency
table, the corresponding records in the Ledger table also must be updated.
But if a surrogate key were used for the Currency table and the Ledger
table holds the surrogate foreign key, you could update the CurrencyCode
value in the Currency table without affecting the key relationship between
the row in the Currency table and the rows in the Ledger table.

FIGURE 17-4 Currency table without a surrogate key.

The third benefit of using a surrogate key is that it is always a single-
column key. Some features of SQL Server, such as full-text search, require
a single-column key. Using a surrogate key lets you take advantage of
these features.

Surrogate keys do have some drawbacks. The most prominent drawback
is that the key value is not human-readable. When you look at the foreign
keys on a related table, it is not easy to determine what the related row is.
To display meaningful information that identifies the foreign key, some
human-readable information from the related entity must be retrieved and
displayed instead. This requires a join to the related table, and the join
adds performance overhead.

Alternate keys
For a table, a candidate key is a minimal set of columns that uniquely
identifies each row in the table. An alternate key is a candidate key for a
table that is not a primary key. In AX 2012, you can mark a unique index
to be an alternate key.

Because AX 2012 already has the concept of a unique index, you might
wonder what the value is of having the concept of an alternate key.
Developers create unique indexes for various reasons. Typically, one
unique index serves as the primary key. Sometimes, additional unique

indexes are created for performance reasons, such as to support a specific
query pattern. When you look at the unique indexes for a table, it is not
always obvious which index is used for the primary key and which indexes
have been added for other reasons. For example, if you were to extract
your data model and present it to a business analyst, you would not want
the analyst to see the keys that were created solely for performance
reasons. You need a way to separate your semantic model from your
physical data model for this purpose. Being able to designate the additional
unique indexes as alternate keys helps you to achieve this.

Figure 17-5 shows a unique index that was added to the
FMVehicleModel table of the Fleet Management sample application. This
is not the primary index for the table, so the AlternateKey property for the
index is set to Yes.

FIGURE 17-5 Alternate key on the FMVehicleModel table.

Table relations
Relationships between tables (called relations in Microsoft Dynamics AX)
are key to the data model and run-time behavior. They are used in the
following run-time scenarios:

 Join conditions in the query or form data source and form dynalink
 Delete actions on tables
 Lookup conditions for bound (backed by a data source) or unbound
controls on forms

Several changes and enhancements have been made for table relations in
AX 2012.

In the AOT, you can see the relations to parent tables for any table.

However, the child tables are not part of the display. To help with this, the
AxErd website collects all foreign key relationships together in an
organized way. AxErd also provides about 30 entity relationship diagrams
(ERDs) for the application modules. You can visit AxErd at
http://aka.ms/axerd.

EDT relations and table relations
In AX 2012, table relations can be explicitly defined on tables, or they can
be derived from relation properties that are defined on extended data types
(EDTs) associated with table fields. The AX 2012 kernel looks up the
relation properties for EDTs, and then for table relations. The order might
be switched, depending on the scenario.

There are several issues with defining the relation properties on EDTs
and mixing them with the relations defined on tables. First, EDT relations
capture relations on only a single field. They cannot be used to capture
multiple-field relations, which leads to incomplete relationships that are
used in join or delete actions. Second, most of the properties for the
relation depend on the context in which the relation is used. This context
cannot be captured for EDT relations because they are stored in a central
location in the AOT. For example, the role and related role name and
cardinality and related cardinalities could be different for relations on
different tables. Third, it is difficult to figure out how many relations are
actually available for a table because the table relations give you only a
partial view. You also need to look at relations that are defined on EDTs
for the fields in the table and their base EDTs.

To address these issues, AX 2012 has migrated most of the EDT
relations to table relations. To begin deprecation of the Relations node
under individual EDTs, the addition of new relations is not allowed. If an
EDT has no nodes defined under the Relations node, the node is not
displayed in AX 2012. An EDT has a new Table References node for cases
where a control is bound directly to an EDT and not through a table field.
To reduce the work of manually adding a table relation that can be used in
place of the EDT relation, you are prompted to create the table relation
automatically when an EDT with a valid foreign key reference is used on a
table field.

Because the AX 2012 runtime performs lookups for EDT relations and
table relations in a specific order, you need to ensure that the same relation
is picked up before and after the migration in all scenarios. This is
especially important when you are migrating EDT relations in multiple

http://aka.ms/axerd

table relations between two tables. The AX 2012 runtime achieves
backward compatibility by examining some properties that were set on
table fields and table relations. These properties enable the runtime to
determine whether a table relation was created from an EDT relation that
existed before. These properties are explained in Table 17-1.

TABLE 17-1 Properties of table fields.

You do not have to migrate an EDT relation manually to a table relation
and then set the properties described in Table 17-1. The EDT Relation
Migration tool can help with this process. You can access this tool from
Tools > Code Upgrade > EDT Relation Migration Tool, as shown in
Figure 17-6. For information about how to use this tool, see the “EDT
Relation Migration Tool” topic at http://msdn.microsoft.com/en-
us/library/gg989788.aspx.

FIGURE 17-6 EDT Relation Migration tool.

http://msdn.microsoft.com/en-us/library/gg989788.aspx

After you migrate the EDT relations to table relations, verify that delete
actions, query joins, and lookups work the same way they did before the
migration. Focus on cases in which the migration of an EDT relation
resulted in multiple table relations between two tables. The EDT Relation
Migration tool lists the artifacts that are affected.

The following are some examples of the artifacts that might be affected.
For example, the SalesTable table and the CustTable table have two
relations between them defined on SalesTable. One of them was migrated
from an EDT relation because it did not exist as a table relation before.
The two relations are based on the fields CustAccount and InvoiceAccount.
For delete actions, the relation based on CustAccount should be picked up
before and after the migration. The SalesHeading query has a join between
the SalesTable table and the CustTable table with the Relations property
set to Yes on the data source for the SalesTable table. This query should
pick up the relation based on CustAccount instead of the relation based on
InvoiceAccount before and after the migration.

Foreign key relations
A goal for AX 2012 was to make the data model more consistent. This
includes using surrogate key patterns when appropriate. It also includes
using only primary keys as foreign key references whenever possible. To
facilitate the latter, AX 2012 introduces a special type of foreign key
relation that you can use when creating relations between tables, as shown
in Figure 17-7. A foreign key relation allows only two kinds of references
to the related table. The first is a reference to the primary key. The second
is a reference to a single-column alternate key of the related table. This
reference to the single-column alternate key is provided to reduce the
number of surrogate foreign key joins that were discussed in the
“Surrogate keys” section, earlier in this chapter.

FIGURE 17-7 Creating a new foreign key relation in AX 2012.

If you use a human-readable alternate key as your foreign key, you can
display the foreign key on forms without the need for a join. You might
wonder why only single-column alternate keys are allowed for foreign key
references. This is to balance performance for a different usage pattern,
when you actually want to join between the two tables (not for purposes of
the user interface). Joins that are based on smaller columns (both the size
of the columns and the number of columns) perform faster. When the
pattern is restricted to only single-column alternate keys, the performance
degradation of the join is limited.

A consistent table relation pattern can result in performance benefits,
too. For example, if one table references the CustTable table by using
keyA, and another table references the CustTable table by using keyB, both
tables must be joined to the CustTable table to correlate the rows in these
two tables. However, if both of them use the same key, they can correlate
directly, eliminating the need for joins.

Foreign key relations have some capabilities that other relations do not.
For example, you can use them as join conditions in queries. This saves
you from having to manually enter the field join conditions, which can be
prone to error. Navigation property methods can also be generated for
foreign key relations, as discussed in the next section.

The CreateNavigationPropertyMethods property
When you expand the Relations node for a table defined in the AOT, you
can see the table relationships that are defined. The
CreateNavigationPropertyMethods property, which is available only for
foreign key relations, has special significance. Setting this property to Yes,
as shown in Figure 17-8, causes kernel-generated methods on a table
buffer to be created. You can use these methods to set, retrieve, and
navigate to the related table buffer through the relation specified. The
examples later in this section show the method signatures and usage
patterns.

FIGURE 17-8 The CreateNavigationPropertyMethods property on a foreign
key relation.

The navigation setter method links two related table buffers together. It
is frequently used with the UnitOfWork class to create rows in the database
from those table buffers. This effectively allows you to create an in-
memory object graph with a related table buffer so that you can push the
rows into the database with the proper relationship established among
them. For more information, see the “Unit of Work” section later in this
chapter.

The navigation getter method retrieves the related table buffer if a setter
method has set it. Otherwise, the method retrieves the related table buffer
from the database. This can effectively replace the find method pattern that
is commonly used on tables. In the latter case, the table buffer that is
returned is not linked to the table buffer on which the method was called.
This means that the method will try to retrieve data from the database
again. Note that when the navigation property getter method queries the
database to get the related record, it selects all fields for that record. This
can affect performance, particularly in cases where you had selected a

smaller field list to achieve a performance benefit.
The following code uses the DirPartyTable_FK method to retrieve the

related DirPartyTable table record for a customer with an account number
of 1101 and prints the customer’s name to the Infolog:
Click here to view code image

static void NavigationPropertyMethod(Args _args)

{

 CustTable cust;

 select cust where cust.AccountNum == '1101';

 // The DirPartyTable_FK() methods retrieves the related

DirPartyTable record

 // through the DirPartyTable_FK role defined on the

CustTable

 info(strFmt('Customer name for %1 is

%2',cust.AccountNum, cust.DirPartyTable_FK().Name));

}

Figure 17-9 shows the output of this example in the Infolog.

FIGURE 17-9 Output from the DirPartyTable_FK method example.

However, if the navigation property setter method is used to set the
related DirPartyTable record, that record is always returned and the
runtime does not query the database:
Click here to view code image

static void NavigationPropertyMethodSetter(Args _args)

{

 CustTable cust;

 DirPartyTable dp;

 select cust where cust.AccountNum == '1101';

 dp.Name = 'NotARealCustomer';

 // Set the related DirPartyTable record

 cust.DirPartyTable_FK(dp);

 // The DirPartyTable_FK() methods retrieves the

DirPartyTable record set above and

 // does not retrieve from the database.

 info(strFmt('Customer name for %1 is

%2',cust.AccountNum, cust.DirPartyTable_FK().Name));

}

Figure 17-10 shows the output from this example in the Infolog.

FIGURE 17-10 Output from an example with a navigation property setter
method.

Each navigation method must have a name. Like any other method on
the table, its name cannot conflict with other methods. By default, the
RelatedTableRole property is used for the method name. An error is
thrown during table compilation if a conflict with another method name is
detected. If a conflict occurs, use the
NavigationPropertyMethodNameOverride property to specify the name to
use.

Table inheritance
Table inheritance has long been part of extended entity relationship (ER)
modeling, but there was no built-in support for this in earlier versions of
Microsoft Dynamics AX. Any inheritance or object-oriented
characteristics had to be implemented manually by the developer. AX
2012 supports table inheritance natively from end to end, including
modeling, language, runtime, and user interface.

Modeling table inheritance
To model table inheritance in AX 2012, you must first create a root table

and then create a derived table. These tasks are described in the following
sections. Later sections describe how to work with existing tables, view
the type hierarchy, and specify table behavior.

Creating the root table
First you must create the table that is the root of the table hierarchy. Before
you create any fields for the table, set the SupportInheritance property to
Yes. For the root table, you must add an Int64 column named
InstanceRelationType that holds the information about the actual type of a
specific row. This column should have the ExtendedDataType property set
to RelationType and the Visible property set to No. After you create this
field, you must set the InstanceRelationType property for the base table to
the field that you just added. From this point, you can model the root table
as you normally would.

Creating a derived table
Next, create a derived table, and set the SupportInheritance property to
Yes. Set the Extends property to point to the table on which the derived
table is based. Set these properties before you create any fields for the
table. This will help ensure that all fields in tables in the hierarchy have
unique names and IDs, which is necessary for the runtime to work
correctly. It also makes it possible to choose different storage models, such
as storing all types in a single table, without causing name collisions.
Storage is discussed later in this section.

Working with existing tables
If tables already have fields before you add the tables to an inheritance
hierarchy, you might need to update the field names and IDs in both
metadata and code. If the tables already contain data, the existing data will
need to be upgraded to work with the new table hierarchy. These are
nontrivial tasks. For these reasons, creating a new table inheritance
hierarchy from existing tables is not supported.

Viewing the type hierarchy
You can use the Type Hierarchy Browser to view a table inheritance
hierarchy. To do so, right-click a table in the AOT, and then click Add-Ins
> Type Hierarchy Browser. Figure 17-11 shows the hierarchy for the
FMVehicle table.

FIGURE 17-11 Hierarchy for the FMVehicle table.

Specifying table behavior
Tables in an inheritance hierarchy share some property settings so that
table behavior is consistent throughout the hierarchy. These settings
include the cache lookup mode, the OCC setting, and the save-data-per-
company setting.

Configuration keys should be consistent with the table inheritance
hierarchy. In other words, if a configuration key is disabled for the base
table, the configuration key for the derived table should not be enabled.
This condition is checked when you compile a table in the hierarchy, and
errors are reported if the condition is found. For more information about
configuration keys, see Chapter 11, “Security, licensing, and
configuration.”

You can specify whether a table in an inheritance hierarchy is concrete
or abstract. By default, tables are concrete. This means that you can create
a row that is of that table type. Specifying that a table is abstract means
that you cannot create a row that is of that table type. Any row in the
abstract table must be of a type of one of the derived tables (further up in
the hierarchy) that is not marked as abstract. This concept aligns with the

concept of an abstract class in an object-oriented programming language.
The table inheritance model in AX 2012 is a discrete model. Any row in

the table hierarchy can be of only one concrete type (a table that is not
marked as abstract). You cannot change the type of a row from one
concrete type to another concrete type after the row is created.

Table inheritance storage model
In some implementations of object-relational (OR) mapping technologies,
you can choose how the table inheritance hierarchy is mapped to data
storage. The choices typically are one table for every modeled type, one
table for every concrete type, or one table for every hierarchy. AX 2012
creates one table for every modeled type. Like a regular table, a table in a
table inheritance hierarchy maps to a physical table in the database.
Records in the inheritance hierarchy are linked through the RecId field.
The data for a specific row of a type instance can be stored in multiple
tables in the hierarchy, but they share the same RecId.

Every table in an inheritance hierarchy automatically has a system
column that is named RELATIONTYPE. You will see this column in SQL
Server, but not in the AOT. This column acts as a discriminator. The data
for a concrete type is stored in multiple tables that make up the inheritance
chain for that type. For a row in one of the tables, the discriminator column
identifies the next table in the chain.

Figure 17-12 shows some rows in the FMVehicle table and the
corresponding table IDs for its derived tables. The value of the
InstanceRelationType field for cars equals the table ID of the FMCarClass
table; for SUVs, the InstanceRelationType field value equals the table ID
of the FMSUV table; and for trucks, the InstanceRelationType field value
equals the table ID of the FMTruck table. These represent the concrete
type of each row in the FMVehicle table. The value of the RelationType
field for both cars and SUVs equals the table ID of the FMCarClass table
because FMCarClass is the next directly derived table for those rows. For
trucks, the value of the RelationType field equals the table ID of the
FMTruck table.

FIGURE 17-12 Tables in the FMVehicle hierarchy.

Polymorphic behavior
When you issue a query on a table that is part of a table inheritance
hierarchy, the AX 2012 runtime provides the type fidelity by default. This
means that if a select * statement is performed for a table, all of the rows
of that table type are returned. For example, if you issue the query select *
from DirPartyTable, all instances of DirParty are returned, including
DirPerson, OperatingUnit, and so on. Moreover, because select * is used,
the query returns complete data. This means that the DirPartyTable table
must be joined to all of its derived tables.

When a select * is performed for a table that is part of a table
inheritance hierarchy, that table is joined with an inner join to all of its
base tables (all the way up to the root table), and then joined with an outer
join to all of its derived tables (including derived tables at all levels). The
reason for this is that any row in that table must have a corresponding row
in all of its base tables, but could have matching rows in any of the
concrete type paths. This ensures that, no matter what concrete type a row
is, complete data for that row is always retrieved. Similar to the
polymorphic behavior in object-oriented programming, this mechanism
provides polymorphic data retrieval for a table that is part of a table
inheritance hierarchy. In cases where you need to have all of the data for a

row, this behavior is very convenient. You can use the dynamic method
binding feature of table inheritance to write code that is clean and
extensible.

For example, in the Fleet Management project, the FMVehicle table has
a doAnnualMaintenance method that simply throws an exception. This
happens because FMVehicle is an abstract table, and any concrete table
that is derived from it must override this method. The tables FMCarClass,
FMTruck, and FMSUV all override this method, as shown in Figure 17-
13. Note that each overridden method accesses a field that is not accessible
from the base table.

FIGURE 17-13 Overridden doAnnualMaintenance method on derived tables.

The following code queries the FMVehicle table and calls the
doAnnualMaintenance method:
Click here to view code image

static void PolyMorphicQuery(Args _args)

{

 FMVehicle vehicle;

 while select vehicle

 {

 vehicle.doAnnualMaintenance();

 }

}

If you run the code as a job, you would get results that look similar to

those shown in Figure 17-14.

FIGURE 17-14 Result of calls to the overridden doAnnualMaintenance
method.

As you can see, even though the select statement executes on the
FMVehicle table, the statement returns fields in the derived tables. The
actual select statement for this query looks like the following:
Click here to view code image

SELECT <all fields from all tables in the hierarchy>

FROM FMVEHICLE T1 LEFT OUTER JOIN FMTRUCK

T2 ON (T1.RECID=T2.RECID) LEFT OUTER JOIN FMCARCLASS T3 ON

(T1.RECID=T3.RECID) LEFT OUTER JOIN

FMSUV T4 ON (T3.RECID=T4.RECID)

 Tip

You can get the Transact-SQL select statement directly from
X++ code without having to use SQL Profiler. The following
is an example:

Click here to view code image

static void PolyMorphicQuery(Args _args)

{

 FMVehicle vehicle;

 select generateonly vehicle;

 info(vehicle.getSQLStatement());

}

Performance considerations

When the inheritance hierarchy is very wide, very deep, or both, a
polymorphic query can result in numerous table joins, which can degrade
query performance. For example, the query select * from DirPartyTable
produces eight table joins.

Exercise caution when using the table inheritance feature. Determine
whether you really need all of the data from every derived type instance. If
the answer is no, you should list the fields that you need explicitly in the
field list. (Note that you can also list fields from derived tables when you
model a query in the AOT or use the query object in X++ code. But you
can only list fields from current and base tables when you write the X++
select statement.) The AX 2012 runtime then adds joins to only the tables
that contain the fields in the list. For example, if you change the query on
the DirPartyTable table to select name from DirpartyTable, only the
DirPartyTable table is included in the query. No joins to other tables in the
hierarchy are created because no data is being accessed from them. Careful
query construction can improve query performance significantly.

Listing only the fields that are needed is not only beneficial here, but it
is a good practice in general. This might allow SQL Server to use a
covering index when processing the query and reduce the network load. A
common concern about this practice is passing the table buffer to another
function in another module, because you need to ensure that the other
function does not use fields that were not selected to be returned. When an
attempt is made to read fields that are not in the field list, AX 2009 and
earlier versions do not produce an exception. You get whatever value is on
the table buffer, which in most cases is an empty value. In AX 2012, an
attempt to access an unavailable field raises an exception, but only if the
field is included in a table that is part of a table inheritance hierarchy. A
configuration setting is available to raise either a warning or an exception
for all tables that encounter this issue. To change this setting, do the
following:

1. Click System Administration > Setup > System > Server
Configuration.

2. On the Performance Optimization FastTab, under Performance
Settings, click the drop-down list next to Error On Invalid Field
Access to change the setting.

To maintain backward compatibility and to reduce run-time overhead,
this setting is turned off by default. It is recommended that you activate
this setting for testing purposes only.

Unit of Work
Maintaining referential integrity is important for any ERP application. AX
2012 lets you model table relations with rich metadata and express
referential integrity in your data model precisely. However, the application
is still responsible for making sure that referential integrity is maintained.
AX 2012 table relations are not implemented as database foreign key
constraints in the SQL Server database. Implementing these constraints
would add performance overhead in SQL Server. Also, for performance
and other reasons, application code might violate referential integrity rules
temporarily and fix the violations later.

Maintaining referential integrity requires data operations to be
performed in the correct order. This is most prominent in cases where
records are created and deleted. The parent record must be created first,
before the child record can be inserted with the correct foreign key. But
child records must be deleted before the parent record. Ensuring this
manually in code can be error-prone, especially with the more normalized
data model in AX 2012. Also, data operations are often spread among
different code paths. This leads to extending locking and transaction spans
in the database.

AX 2012 provides a programming concept called Unit of Work to help
with these issues. Unit of Work is essentially a collection of data
operations that is performed on related data. Application code establishes
relationships between data in memory, modifies the data, registers the
operation request with the Unit of Work framework, and then requests that
the Unit of Work perform all of the registered data operations in the
database as a unit. Based on the relationships established among the
entities in the in-memory data, the Unit of Work framework determines the
correct sequence for the requested operations and propagates the foreign
keys, if necessary.

The following code example shows Unit of Work in use:
Click here to view code image

public static void fmRentalAndRentalChargeInsert()

{

 FMTruck truck;

 FMRental rental;

 FMRentalCharge rentalCharge;

 FMCustomer customer;

 UnitofWork uoW;

 // Populate rental and RentalChange in UoW. 3 types of

Rental Charge Records

 // for the same Rental.

 // Getting the customer and the truck that the customer

is renting

 // These records are referred to from the rental record

 select truck where truck.VehicleId == 'co_wh_tr_1';

 select customer where customer.DriverLicense == 'S468-

3184-6541';

 uoW = new UnitofWork();

 rental.RentalId = 'Redmond_546284';

 // This links the rental record with the truck record.

 // During insert, rental record will have the correct

foreign key into the truck record.

 rental.fmVehicle(truck);

 // This links the rental record with the customer

record.

 // During insert, rental record will have the correct

foreign key into the

 // customer record.

 rental.fmCustomer(customer);

 rental.StartDate =

DateTimeUtil::newDateTime(1\1\2008,0);

 rental.EndDate =

DateTimeUtil::newDateTime(10\1\2008,0);

 rental.StartFuelLevel = 'Full';

 // Register the rental record with unit of work for

save.

 // Unit of work makes a copy of the record.

 uoW.insertonSaveChanges(rental);

 uoW.saveChanges();

}

It is important to understand that Unit of Work copies the data changes
into its own buffer when the registration method executes. After that, the
original buffer is disconnected from Unit of Work. Any changes made to
the table buffer after that will not be picked up by Unit of Work. If you
want to save these changes through Unit of Work, you need to call the
corresponding registration method again.

When you register multiple changes on the same record with Unit of
Work, the last changes that are registered overwrite all previous changes.

In the previous code example, the code runs on the server because Unit
of Work is a server-bound construct and cannot be instantiated or used on
the client.

The form runtime in AX 2012 uses the Unit of Work framework in its
internal implementation to handle data operations on form data sources,
where several form data sources are joined together directly. These
scenarios did not work in previous releases of Microsoft Dynamics AX.
When the form runtime uses the Unit of Work framework, it is not
accessible through X++.

Date-effective framework
Many business scenarios require data changes to be tracked over a period
of time. Some of the requirements include the ability to view the value of a
record as it was in the past, view the value at the current time, or enter a
record that will become effective on a future date. A typical example of
this is employee data in an application that is used by a company’s Human
Resources team. Some questions that such an application will help answer
might be:

 What position did a specific employee hold on a specific date?
 What is the current salary for the employee?
 What is the current contact information for the employee?

In addition to answering these questions, there might also be a
requirement to allow users to enter new data and change existing data. For
example, a user could change the contact information for Employee C and
make the new information effective on September 15, 2014. Such data is
often referred to as date-effective data. AX 2012 supports the creation and
management of date-effective data in the database. The date-effective
framework provides a number of features that include support for
modeling entities, programmatic access for querying and updating date-
effective data, runtime support for maintaining data consistency, and user
interface support. Core AX 2012 features such as the Global Address Book
and modules like Human Resources use date-effective tables extensively
in their data models.

Relational modeling of date-effective entities
AX 2012 provides support for modeling date-effective entities at the table

level. The ValidTimeStateFieldType property of a table indicates whether
the table is date-effective. This information is stored in the metadata for
the table and is used at run time.

Figure 17-15 shows the DirPersonName table, which is used to track the
history of a person’s name. The table is date-effective because the
ValidTimeStateFieldType property is set to UtcDateTime. When you set
this property on a table, the date-effective framework automatically adds
the columns ValidFrom and ValidTo, which are required for every date-
effective table. The data type of these columns is based on the value
chosen for the ValidTimeStateFieldType property. Two data types are
available:

 Date Tracking takes place at the day level. Records are effective
starting from the ValidFrom date through the ValidTo date.

 UtcDateTime Tracking takes place at the second level. In this case,
multiple records can be valid within the same day.

FIGURE 17-15 DirPersonName table with ValidTimeStateFieldType property
set to UtcDateTime.

In addition to the fields each date-effective table is required to have, the
table must have at least one alternate key that is implemented as a unique
index. This alternate key is referred to as the validtimestate key in the date-
effective framework, and it is used to enforce the time period semantics
that are enabled by a date-effective table. The validtimestate key must
contain the ValidFrom column and at least one other column other than the
ValidTo column. The validtimestate key has an additional property that
indicates whether gaps (missing records for a period of time) are allowed
in the data. In Figure 17-16, the DirPersonName table is used to track
changes to the Person column. The validtime-state key contains the
Person column and the ValidFrom column. When the ValidTimeStateKey

property is set to Yes for an index, the index also needs to be a unique
index and is required to be an alternate key.

FIGURE 17-16 The validtimestate key index for the DirPersonName table.

In Table 17-2, the records reflect the changing names over a period of
time for two people. The table must have a unique index with the
following columns: Person and ValidFrom. The ValidTo column can be
part of the index, but it is optional. This index has the ValidTimeStateKey
property set to Yes. Because the objective is to track the history of a
person, the column that represents the person is also part of the
validtimestate key. The validtimestate key enables the date-effective
framework to indicate the field for which the history is being tracked.

TABLE 17-2 Tracking name changes over time in a date-effective table.

This scenario has a requirement not to allow gaps in each person’s name
data. To implement this requirement, the ValidTimeStateMode property is
set to NoGap. For other scenarios, gaps in the data might be acceptable.
This is also implemented by using the ValidTimeStateMode property. The
date-effective framework also does not allow a person to have more than
one name at the same time. This is called prevention of overlaps in the
data. If the ValidTo column for a record contains the maximum value
allowed (12/31/215423:59:59), it indicates that the record does not expire.

Support for data retrieval

Business application logic that is written in X++ might need to retrieve
data that is stored in date-effective tables. To support this, the framework
has three modes of data retrieval:

 Current Returns the record that is currently active by default, when
you use a select statement or an application programming interface
(API) to retrieve data from the table.

 AsOfDate Retrieves the record that is valid for the passed-in date or
the UtcDateTime parameter. This can be in the past, current, or in the
future. The ValidFrom column of the retrieved record is less than or
equal to the value passed in. The ValidTo column is greater than or
equal to the value passed in.

 Range Returns the records that are valid for the passed-in range.
The X++ language supports a syntax that is similar to the Transact-SQL

syntax that is used when querying relational databases. The date-effective
framework enhances this syntax by adding the validtimestate keyword to
indicate the type of query. The modes described earlier translate to the
following queries.

 Note

The ValidFrom and ValidTo columns in these examples use
the Date data type. If they used the UtcDateTime data type,
the dates passed in would have to be in UtcDateTime format.

This query retrieves the current emergency contact information for
Employee A. There is no need to specify any values for the ValidFrom and
ValidTo columns in the where clause because the AX 2012 runtime
automatically adds them:
Click here to view code image

select * from EmployeeEmergencyContact where

EmployeeEmergencyContact.Employee == 'A';

This query retrieves the record that was in effect on April 21, 1986:
Click here to view code image

select validtimestate (21\04\1986) * from

EmployeeEmergencyContact where

EmployeeEmergencyContact.Employee == 'A';

This query retrieves all of the records for Employee A for the time

period that is passed into the statement:
Click here to view code image

select validtimestate(01\01\1985, 31\12\2154)

* from EmployeeEmergencyContact where

EmployeeEmergencyContact.Employee == 'A';

X++ also exposes a Query API to retrieve data from tables. This API
has been extended with the following methods to allow different forms of
querying:

 validTimeStateAsOfDate(date);
 validTimeStateAsOfDateTime(utcdatetime);
 validTimeStateDateRange(date);
 validTimeStateDateTimeRange(utcdatetime);

The date-effective framework uses these methods and transforms them
by adding additional predicates on the ValidFrom and ValidTo columns to
fetch the data that meets the requirement of the query.

Run-time support for data consistency
The data that is stored in a date-effective table must conform to the
following consistency requirements:

 The data must not contain overlaps.
 Gaps are either allowed or disallowed, depending on the value of the
ValidTimeStateMode property of the validtimestate key.

Because the data that is stored in the table can be added to or changed,
the date-effective framework ensures that these consistency requirements
are enforced. The date-effective framework implements these requirements
by adjusting other records, using the following rules:

 If ValidFrom is being updated, retrieve the previous record, and then
update the ValidTo of the previous record to a value of ValidFrom -1
to ensure that there is no overlap or gap. If the ValidFrom of the
edited record is less than the ValidFrom of the previous record,
display an error. The error is displayed because further action is
required to delete the previous record to avoid overlaps. The date-
effective framework does not automatically delete records during
adjustments.

 If ValidTo is being updated, retrieve the next record, and then update
the ValidFrom of the next record to a value of ValidTo + 1 to ensure
that there is no overlap or gap. If the ValidTo of the edited record is

greater than the ValidTo of the next record, display an error.
 The date-effective framework does not allow simultaneous editing of
ValidTo and ValidFrom columns.

 The date-effective framework does not allow editing of any other
columns that are part of the validtimestate key.

 When a new record is inserted, the ValidTo of the existing record is
updated to a value of ValidFrom -1 of the newly inserted record.
New records cannot be inserted in the past or future if records
already exist for that time period.

 When a record is deleted, the ValidTo of the previous record is
adjusted to a value of ValidFrom -1 of the next record, but only if the
system requires that there should be no gaps. If gaps are allowed, no
adjustment is performed.

Modes for updating records
The date-effective framework allows regular updates of records in a date-
effective table. It also provides additional modes that are typical for the
types of changes that are made to date-effective tables. The date-effective
framework provides the following three modes:

 Correction This mode is analogous to regular updates to data in a
table. If the ValidFrom or ValidTo columns are updated, the system
updates additional records if necessary to guarantee that the data
does not contain gaps or overlaps.

 CreateNewTimePeriod The date-effective framework creates a new
record with updated values, and updates the ValidTo of the edited
record to a value of ValidFrom -1 of the newly inserted record. By
default, the ValidFrom column of the newly inserted record has the
current date for the Date data type columns or the current time for
UtcDateTime data type columns. This mode does not allow editing
of records in the past. This mode hides the date-effective
characteristics of the data from the user. The user edits the records as
usual, but internally a new record is created to continue tracking the
history of changes made to the record.

 EffectiveBased This mode is a hybrid of the other two modes.
Records in the past are prevented from being edited. Current active
records are edited by using the same semantics as in the
CreateNewTimePeriod mode. Records in the future are updated by
using the same semantics as in the Correction mode.

The update mode must be specified by calling the
validTimeStateUpdateMode(ValidTimeStateUpdate_validTimeStateUpdateMode)
method on the table buffer that is being updated. This method takes a value
from the ValidTimeStateUpdate enumeration as a parameter. This
enumeration has the list of the various update modes.

 Important

The AX 2012 runtime displays an error if the update mode is
not specified when a date-effective table is updated through
X++.

User experience
When the user updates a record in a date-effective table, other records
might be updated as a consequence. The date-effective framework first
provides a dialog box that informs the user about the additional updates
and asks the user to confirm whether the action should proceed. The user’s
actions are simulated without actually updating the data. After the user
chooses to update the data, the user interface is refreshed by retrieving all
of the updated records.

Full-text support
AX 2012 has the capability to execute full-text search queries against the
database. Full-text search functionality is provided by SQL Server and
allows linguistic searches against text data stored in the database. For more
information, see “Full-Text Search (SQL Server)” at
http://msdn.microsoft.com/en-us/library/ms142571.aspx.

With AX 2012 you can create a full-text index on a table. Methods that
are available in the Query class let you write queries that use this index.
Figure 17-17 shows a full-text index that has been created for the
VendTable table in the AOT.

http://msdn.microsoft.com/en-us/library/ms142571.aspx

FIGURE 17-17 Full-text index for the VendTable table.

Only one full-text index can be created for a table. Only fields that have
the string data type can be used as fields for the full-text index. When the
table is synchronized, a corresponding full-text index is created in the
database. AX 2012 also requires that the table be part of either the Main
table group or the Group table group. You cannot create a full-text index
for temporary tables.

The following example shows how full-text queries can be executed by
using the Query API:
Click here to view code image

Query q;

QueryBuildDataSource qbds;

QueryBuildRange qbr;

QueryRun qr;

VendTable vendTable;

q = new Query();

qbds = q.addDataSource(tablenum(VendTable));

qbr = qbds.addRange(fieldnum(VendTable, AccountNum));

qbr.rangeType(QueryRangeType::FullText);

qbr.value(queryvalue('SQL'));

qr = new QueryRun(q);

while (qr.next())

{

 vendTable = qr.get(tablenum(VendTable));

 print vendTable.AccountNum;

}

The QueryRangeType::FullText enumeration used by the rangeType
method causes the data layer to generate a full-text search query in the
database. AX 2012 uses the FREETEXT keyword provided by SQL Server
when it generates a full-text query that is executed on the database. For the
previous code example, the following Transact-SQL query is generated:
Click here to view code image

SELECT T1.ACCOUNTNUM,T1.INVOICEACCOUNT,...

FROM VENDTABLE T1 WHERE (((PARTITION=?) AND (DATAAREAID=?))

AND (FREETEXT(ACCOUNTNUM,?))) ORDER

BY T1.ACCOUNTNUM

For more information about the FREETEXT keyword, see “Querying
SQL Server Using Full-Text Search” on MSDN at
http://msdn.microsoft.com/en-us/library/ms142559.aspx.

http://msdn.microsoft.com/en-us/library/ms142559.aspx

You can also use the extended query range syntax to generate a full-text
query. This is shown in the following example. The freetext keyword
specifies that the data layer should generate a full-text query.
Click here to view code image

qbrCustDesc = qsbdCustGrp.addRange(fieldnum(VendTable,

AccountNum));

qbrCustDesc.value('((AccountNum freetext "bike") ||

(AccountNum freetext "run"))');

The QueryFilter API
A favorite Transact-SQL interview question is to ask a candidate to
explain the difference between the on clause and the where clause in a
select statement that involves joins. You can find the long version of the
answer on MSDN, which talks about the different logical phases of query
evaluation. The short answer is that there is no difference between the two
for an inner join. For an outer join, rows that do not satisfy the on clause
are included in the result set, but rows that do not satisfy the where clause
are not.

So you might wonder when to use on and when to use where. An
example will help illustrate. The following polymorphic query finds all
DirPartyTable instances with the name John. There are two kinds of
predicates here. The first one matches the individual rows with their
corresponding base or derived type:
Click here to view code image

<baseTable>.recID == <derivedTable>.recid.

The second predicate matches the name:
DirPartyTable.name == 'John'

To start with the first predicate, when you take a specific row from the
root table, it might have a matching row in any one of the derived tables.
Because the goal is to retrieve complete data for all types, you do not want
to discard a row just because it does not match one of the derived tables.
For this reason, you want to use the on clause. For the second predicate,
you want only the rows that qualify the predicate. Thus, you want to use
the where clause. The Transact-SQL for the query looks like this:
Click here to view code image

SELECT * FROM DIRPARTYTABLE T1 LEFT OUTER JOIN DIRPERSON

T2 ON (T1.RECID=T2.RECID) LEFT OUTER

JOIN DIRORGANIZATIONBASE T3 ON (T1.RECID=T3.RECID) LEFT

OUTER JOIN DIRORGANIZATION T4 ON (T3.

RECID=T4.RECID) LEFT OUTER JOIN OMINTERNALORGANIZATION T5

ON (T3.RECID=T5.RECID) LEFT OUTER JOIN

OMTEAM T6 ON (T5.RECID=T6.RECID) LEFT OUTER JOIN

OMOPERATINGUNIT T7 ON (T5.RECID=T7.RECID) LEFT

OUTER JOIN COMPANYINFO T8 ON (T5.RECID=T8.RECID) WHERE

(T1.NAME='john')

You might notice that the on clause is specified immediately after the
table join, and the where clause is specified at the end of the query after all
of the table joins and on clauses. This matches the order in which the
query is evaluated. The where clause predicates are evaluated after all of
the joins have been processed. The following X++ select statement
produces a similar query:
Click here to view code image

static void Job3(Args _args)

{

 SalesTable so;

 SalesLine sl;

 select so where so.CustAccount == '1101'

 outer join sl where sl.SalesId == so.SalesId;

}

The Transact-SQL for the query looks like this:
Click here to view code image

SELECT * FROM SALESTABLE T1 LEFT OUTER JOIN SALESLINE T2

ON ((T2.DATAAREAID=N'ceu') AND (T1.

SALESID=T2.SALESID)) WHERE ((T1.DATAAREAID=N'ceu') AND

(T1.CUSTACCOUNT=N'1101'))

There is something of a mix here. The keyword is where, but it is
specified after each table join. So where does the predicate go in the
Transact-SQL? If you use SQL trace, you’ll see that for an outer join, the
predicates appear in the on clause. For an inner join, it shows in the where
clause. To understand this, keep in mind that the X++ where is actually the
on clause in Transact-SQL. Because there is no difference between on and
where for inner joins, the AX 2012 runtime simply moves those to the
where clause. The X++ Query programming model has the same behavior.
Query ranges that you specify by using the QueryBuildRange clause go in
the on clause.

So how do you specify where clause predicates? For the X++ select
statement, you might be able to attach these where clause predicates on
one of the tables that are inner-joined. Alternatively, you could add these

to the where clause of the first table if all the other tables are outer-joined.
The solution is more difficult with the Query programming model because
you cannot specify QueryBuildRange on another data source without using
the extended query range feature. To solve this problem, AX 2012 added
support for the QueryFilter API.

Because the where clause is evaluated at the query level after all of the
joins have been evaluated, the QueryFilter API is available at the query
level. You can refer to any query data source that is not part of an
exists/notexists subquery. The following example shows the use of
QueryFilter:
Click here to view code image

public void setFilterControls()

{

 Query query = fmvehicle_qr.query(); // Use QueryRun's

Query so that the filter can be

cleared

 QueryFilter filter;

 QueryBuildRange range;

 boolean useQueryFilter = true; // Change to false to

see QueryRange on outer join

 if (useQueryFilter)

 {

 filter = this.findOrCreateQueryFilter(

 query,

 query.dataSourceTable(tableNum(FMVehicleMake)),

 fieldStr(FMVehicleMake, Make));

 makeFilter.text(filter.value());

 }

 else

 {

 // Optional code to illustrate behavior difference

 // between QueryFilter and QueryRange

 range = SysQuery::findOrCreateRange(

 query.dataSourceTable(tableNum(FMVehicleMake)),

 fieldNum(FMVehicleMake, Make));

 makeFilter.text(range.value());

 }

}

public QueryFilter findOrCreateQueryFilter(

 Query _query,

 QueryBuildDataSource _queryDataSource,

 str _fieldName)

{

 QueryFilter filter;

 int i;

 for(i = 1; i <= _query.queryFilterCount(); i++)

 {

 filter = _query.queryFilter(i);

 if (filter.dataSource().name() ==

_queryDataSource.name() &&

 filter.field() == _fieldName)

 {

 return filter;

 }

 }

 return _query.addQueryFilter(_queryDataSource,

_fieldName);

}

QueryFilter has similar grouping rules about how individual predicates
are constructed with AND or OR operators. First, QueryFilter objects are
grouped by query data source, and the results are combined by using the
AND operator. Next, within a group for a specific query data source, the
same rules for QueryRange are applied: predicates on the same fields use
the OR operator first and then the AND operator.

If you run the following X++ code and look at the Transact-SQL trace,
you will see CROSS JOIN in the Transact-SQL statement. You might think
that it misses the join condition and is doing a Cartesian product of the two
tables. The join condition is actually in the where clause. A cross join like
this is equivalent to an inner join with the join condition. The cross join is
needed because the two tables must be listed before the outer join tables,
because they appear as outer join conditions. Transact-SQL does not allow
you to reference tables before they are used in the query.
Click here to view code image

static void CrossJoin(Args _args)

{

 CustTable cust;

 SalesTable so;

 SalesLine sl;

 select generateonly cust where cust.AccountNum ==

'*10*'

 join so where cust.AccountNum == so.CustAccount

 outer join sl where so.SalesId == sl.SalesId;

 info(cust.getSQLStatement());

}

The Transact-SQL for the query looks like this:

Click here to view code image

SELECT * FROM CUSTTABLE T1 CROSS JOIN SALESTABLE T2 LEFT

OUTER JOIN SALESLINE T3 ON (((T3.

PARTITION=?) AND (T3.DATAAREAID=?)) AND

(T2.SALESID=T3.SALESID)) WHERE (((T1.PARTITION=?) AND

(T1.DATAAREAID=?)) AND (T1.ACCOUNTNUM=?)) AND

(((T2.PARTITION=?) AND (T2.DATAAREAID=?)) AND (T1.

ACCOUNTNUM=T2.CUSTACCOUNT))

Data partitions
In previous releases of Microsoft Dynamics AX, the DataAreaId column
in a table was used to provide the data security boundary. It was also used
to define legal entities through the concept of a company. As part of the
organizational model and data normalization changes, a large number of
entities like Products and Parties that were previously stored per-company
have been updated to be shared (through global tables) in AX 2012. This
was done primarily to enable sharing of data across legal entities and to
avoid data inconsistencies.

But in some deployments, data is not expected to be shared across legal
entities. In such deployments, the DataAreaId column is primarily used as
a security boundary to segregate data into various companies. Such
customers want to share the deployment, implementation, and maintenance
cost of AX 2012, but they have no other shared data or shared business
processes. There are also holding companies that grow by acquiring
independent businesses (subsidiaries), but the data and processes are not
shared among these subsidiaries.

AX 2012 R2 and AX 2012 R3 provide a solution to these requirements.
These releases use the concept of data partitioning by adding a Partition
column to the tables in the database. This allows the data to be truly
segregated into separate partitions. When a user logs on, he or she always
operates in the context of a specific partition. The system ensures that data
from only the specified partition is visible, and that all business processes
run in the context of that specific partition.

Partition management
The Partitions table contains the list of partitions that are defined for the
system. During setup, AX 2012 R2 and AX 2012 R3 create a default
partition called initial. A system administrator can create additional
partitions by using the Partitions form in the System Administration
module.

Development experience
A property named SaveDataPerPartition has been added for all tables in
the AOT. By default, the value is set to Yes, and the property cannot be
edited. This property can be edited only if the SaveDataPerCompany
property is set to No and the table is marked as a SystemTable, or if the
table belongs to the Framework table group. These checks are put in place
to enable all application tables to be partitioned. Only specific tables that
are used by the kernel can have data that is not partitioned.

All of the tables whose SaveDataPerPartition property is set to Yes
have a Partition system column in the metadata. In the database, the table
has a PARTITION column with a data type int64. It is a surrogate foreign
key to the RECID column of the PARTITION table. This column always
contains a value from one of the rows in the PARTITION table. The
column has a default constraint with the RECID value of the initial
partition. The kernel adds the PARTITION column to all the indexes in a
partition-enabled table except for the RECID index.

Run-time experience
The AX 2012 kernel framework handles the population and retrieval of the
Partition column based on the partition that is specified for the current
session. The various database operations provided by AX 2012 have the
following functionality:

 select statements All select statements are filtered automatically
based on the current partition of the session. The Transact-SQL
statement that is generated always has the Partition column in the
WHERE clause.

 insert statements The inserted buffer always has the Partition
column set to the partition of the current session. AX 2012 displays
an error if the application code sets the column to a value that is
different from the current partition of the session.

 update statements All updates are performed in the current partition.
Updating the Partition column is not allowed.

Because of this functionality, you usually do not have to write code to
handle the Partition column. However, an exception is any code that uses
direct Transact-SQL. The Partition column will not be handled
automatically, and the direct SQL code has to ensure that the WHERE
clause contains the partition of the current session.

To provide strict data isolation, the framework does not provide the

ability to change partitions programmatically at run time. For the partition
to be changed, a new session has to be created that is set to use the other
partition. Certain framework components like setup and batch use the
runAs method, which creates a new session to execute code in a different
partition. This is not a common pattern and should not be used in non-
framework application logic.

Similarly, the framework does not allow execution of database
operations that span multiple partitions. This is a contrast from the cross-
company functionality that allows execution of database statements across
multiple legal entities.

Chapter 18. Automating tasks and document
distribution

In this chapter
Introduction
Batch processing in AX 2012
Creating and executing a batch job
Print management in AX 2012

Introduction
AX 2012 provides the batch framework for automating tasks, and print
management for automating document distribution.

With the batch framework, users can create batch jobs to schedule tasks
to run under specified conditions. The batch framework is an
asynchronous, server-based task execution environment with which users
can execute asynchronous tasks in parallel and across multiple instances of
the Application Object Server (AOS). In AX 2012, the batch framework
has been further enhanced from AX 2009. Among other enhancements, the
batch framework now runs code in .NET common intermediate language
(CIL), gives system administrators and developers increased control over
batch jobs, and provides better performance and greater reliability when
those jobs run.

AX 2012 includes several tools that support batch jobs. The Batch Job
form gives system administrators increased flexibility in the design, setup,
and execution of complex batch jobs. In addition, the Batch Job form
provides the ability to add multiple batch tasks to a single batch job and to
define the dependencies among those tasks. An enhanced Batch
application programming interface (API) gives X++ developers more
control over complex batch jobs, along with the ability to process batch
jobs directly from business logic.

 Note

The SysOperation framework was also introduced in AX
2012. With this framework, developers can write application
logic in a way that supports running a task interactively or
through the batch framework. The SysOperation framework is

a refinement of the RunBase framework and provides
additional flexibility for creating new batch jobs. For more
information about the SysOperation framework, see Chapter
14, “Extending AX 2012.”

Print management offers users the ability to predefine rules for
distributing copies of reports and business documents, such as invoices,
picking lists, and packing slips. By using the administration forms in the
AX 2012 Windows client, users can define conditional settings that
describe the policies for directing copies of documents to predefined
destinations. You can use print management to automate the execution of
any combination of the following actions:

 Saving copies of documents to a file
 Selecting alternate designs for copies of documents for specific
customers or vendors

 Emailing copies of documents to employees, customers, and vendors
involved in a transaction

 Printing copies of documents on network printers
 Defining text to be included on copies of the document

Print management settings are evaluated when documents are generated
either through direct processing or automated batch execution. By
combining the functions offered by the batch framework and print
management, users can completely automate the enforcement of business
policies for managing commercial documents. Figure 18-1 illustrates how
the batch framework integrates with print management.

FIGURE 18-1 Document distribution in AX 2012.

This chapter begins by describing how to use the batch framework for
automating tasks, and then it describes common applications of print
management, providing an overview of the administration forms used to
define document distribution policies.

Batch processing in AX 2012
Batch processing is a noninteractive task-processing technique where users
create batch jobs to organize appropriate types of tasks to be processed as
a unit. Batch processing has some important advantages: it lets users
schedule batch tasks and define the conditions under which they execute,
add the tasks to a queue, and set them to run automatically on a batch
server. After execution is complete, the batch server logs any errors and
sends alerts. A batch job might involve printing reports, closing inventory,
or performing periodic maintenance. By scheduling a batch job to process
these types of resource-intensive tasks in off-peak hours, users can avoid
slowing down the system during working hours.

Table 18-1 describes how standard batch processing concepts are
represented in Microsoft Dynamics AX. These concepts are discussed in
greater detail throughout this chapter.

TABLE 18-1 Batch processing concepts in Microsoft Dynamics AX 2012.

Common uses of the batch framework
Organizations can use the batch framework to perform asynchronous
operations in a variety of scenarios. Typically, organizations create batch
jobs to address the following kinds of needs:

 Enable scheduling flexibility The batch framework can perform

periodic tasks, such as data cleanup or invoice processing, on a
regular schedule. For example, to run invoice processing at the end
of every month, you can set up a recurring batch job that runs at
midnight on the last working day of each month. The batch
framework automatically picks up the job and processes pending
invoices according to the specified schedule.

 Control the order in which tasks execute With the batch
framework, you can develop a workflow or perform a complex data
upgrade in a sequence that you specify. You can also set up
dependencies between the tasks and create a dependency tree that
ensures that certain tasks run in sequence and others run in parallel.

 Enable conditional processing Decision trees can help you
implement a reliable way of processing data. Developers or system
administrators can set up dependencies between tasks in such a way
that different tasks are executed, depending on whether a particular
task succeeds or fails. (Figure 18-5, later in the chapter, shows an
example of a dependency tree.) System administrators can also set
up alerts so that they are notified if a job fails.

 Improve performance by using parallelization The batch
framework lets you take advantage of multithreading, which ensures
that your processor’s capabilities are used fully. This is particularly
important for long-running processes, such as inventory closing. You
can improve performance further by breaking a process into tasks
and executing them against different AOS instances, thus increasing
the throughput and reducing overall execution time.

 Implement advanced logging and profiling The batch framework
lets you see what errors or exceptions were thrown the last time the
batch ran, and it also shows you how long a process takes to execute.
Advanced logging and the new profiling capabilities are also useful
for performance benchmarking and security auditing.

Performance
The capability to run larger and more complex batch jobs has required
performance enhancements to the batch framework. In AX 2012, the batch
framework is designed to be a server-side component. This lets you design
multithreaded server processes in a controlled manner. By configuring the
number of parallel execution threads and servers, defining the set and
order of tasks for processing, and setting the execution schedule, you can
achieve greater scalability across your hardware.

As mentioned earlier, the batch framework is now designed to run X++
that has been compiled as .NET CIL code for batch jobs. This significantly
improves performance compared to AX 2009, which ran interpreted X++
code. Garbage collection is much better than it was in interpreted code,
and because of session pooling, scheduling new batch jobs is less resource
intensive. You can also profile the performance of jobs by using Microsoft
Visual Studio Performance Profiler.

Microsoft developers use the batch framework as a foundation for many
performance-critical processes, such as maximizing hardware scalability
during a data upgrade and maximizing throughput during journal posting.
For more information about how Microsoft uses the batch framework for
performance-critical processes, see the “Journal Batch Posting” white
paper available at http://www.microsoft.com/en-us/download/details.aspx?
id=13379.

Creating and executing a batch job
AX 2012 includes numerous batch jobs that perform operations such as
generating reports, creating sales invoices, and processing journals.
However, in several situations, organizations need to create their own
batch jobs. The batch framework provides full flexibility in the types of
jobs that you can create. This section walks you through the following
steps, which are required for creating, executing, and managing a batch
job:

1. Create a batch-executable class.
2. Create a batch job and define the execution schedule.
3. Configure a batch server and create a batch group.
4. Manage the batch job.

Creating a batch-executable class
The first step in developing a batch job is to define a class that can be
executed as a batch task. Many classes included with AX 2012 are already
enabled for batch processing. You can also design a batch-executable
class, as shown in the following example:
Click here to view code image

public class ExampleBatchTask extends RunBaseBatch

To run as a batch task, a class must implement the Batchable interface.
The best way to implement the interface contract is to extend the
RunBaseBatch abstract class, which provides much of the necessary

http://www.microsoft.com/en-us/download/details.aspx?id=13379

infrastructure for creating a batch-executable class. An alternative is to use
the SysOperation framework, which provides additional advantages
compared to extending the RunBaseBatch class. For more information
about the SysOperation framework, see Chapter 14.

The RunBaseBatch class is an extension of the RunBase framework, so
your batch class must adhere to the patterns and guidelines of the RunBase
extended classes (see Chapter 14 for more information).

Table 18-2 describes the methods that must be implemented when you
extend the RunBaseBatch class. The following sections describe these
methods in more detail.

TABLE 18-2 Required methods for extensions to the RunBaseBatch class.

run method
You implement the core logic of your batch class in the run method. The
run method is called by the batch framework for executing the task defined
within it. You can run most of the X++ code in this method; however,
there are some limitations on the operations that you can implement. For
example, you can’t call any client logic or dialog boxes. However, you can
still use the Infolog class. All Infolog and exception messages are captured
when the batch class executes, and they are stored in the batch table. You
can view these later in the Batch Job form or the Batch Job History form,
both of which are located under System Administration > Inquiries >
Batch Jobs.

 Note

If an error message is written to the Infolog, it does not mean
that the task has failed; instead, an exception must be thrown
to indicate the failure.

pack and unpack methods
A class that extends RunBaseBatch must also implement the pack and
unpack methods to enable the class to be serialized. When a batch task is

created, its member variables are serialized by using the pack method and
stored in the batch table. Later, when the batch server picks up the task for
execution, it deserializes class member variables by using the unpack
method. So it’s important to provide a correct list of the variables that are
necessary for class execution. If any member variable isn’t packable, then
the class can’t be serialized and deserialized to the same state.

The following example shows the implementation of the pack and
unpack methods:
Click here to view code image

public container pack()

{

 return [#CurrentVersion,#CurrentList];

}

public boolean unpack(container _packedClass)

{

 Version version =

RunBase::getVersion(_packedClass);

 switch (version)

 {

 case #CurrentVersion:

 [version,#CurrentList] = _packedClass;

 break;

 default:

 return false;

 }

 return true;

}

The #CurrentList and #CurrentVersion macros that are referenced in the
preceding code must be defined in the class declaration. Using a macro
simplifies the management of variables in the class. If you add or remove
variables later, you can manage the list by modifying the macro. The
#CurrentList macro holds a list of the class member variables to pack, as
shown here:

 #define.CurrentVersion(1)

 #localmacro.CurrentList

 methodVariable1,

 methodVariable2

 #endmacro

canGoBatchJournal method
When a system administrator creates a new batch task by using the Batch
Task form, the canGoBatchJournal method determines whether the batch

task class appears in the list of available classes.

Creating a batch job
The second step in developing a batch job is to create the batch job and
add batch tasks. You can create a batch job in three ways:

 By using the dialog box of a batch-enabled class
 By using the Batch Job Designer form
 By using the Batch API

The method you use depends on the degree of flexibility that you need
and the complexity of the batch job. To create a simple batch job,
consisting of a single task with no dependencies, you typically use the
dialog box of a batch-executable class; to create a more complex batch job,
consisting of several tasks that might have dependencies, use the Batch Job
form; to create a highly complex or very large batch job, or one that needs
to be integrated with other business logic, use the Batch API. The
following sections provide an example of using each method.

Creating a batch job from the dialog box of a batch-executable class
The simplest way to run a batch-executable class as a batch job is to
invoke the class by using a menu item. A menu item that points to a batch-
executable class automatically opens a dialog box that lets the user create a
batch job. On the Batch tab of the dialog box, select the Batch Processing
check box, as shown for the Change based alerts class in Figure 18-2.
When you select Batch Processing and click OK, a new batch job with the
task that represents the batch-executable class is created. The batch job
then runs asynchronously at the date and time you specify. You can also
set up recurrences or alerts for the job by clicking the appropriate button
on the right side of the dialog box. You can also specify the batch group
for the task by using the drop-down list.

FIGURE 18-2 An example of the Batch tab for a class.

Creating a batch job by using the Batch Job form
You can open the Batch Job form from several places. For example, you
can open it by clicking Batch Jobs from System Administration > Inquiries
> Batch Jobs or by selecting My Batch Jobs (for users) from Home >
Inquiries > My Batch Jobs. Both menu items open the same form, but the
information that is presented in the form differs, depending on the menu
item that you use to open it. Depending on how you open the form and
your level of access, you can view either the batch jobs that you have
created or all batch jobs that are scheduled in the system.

Press Ctrl+N to create a new batch job, and then in the grid or on the
General tab, enter the details for the job: a description and the date and
time at which you want the job to start. You can also set up recurrence for
the batch job by clicking Recurrence on the menu bar and then entering a
range and pattern for the recurrence.

 Note

If you don’t enter a date and time, the current date and time
are entered automatically.

Figure 18-3 shows the Batch Job form.

FIGURE 18-3 The Batch Job form.

After you create a batch job, you can add tasks to it and create
dependencies between them by using the Batch Tasks form (shown in
Figure 18-4). The Batch Tasks form opens when you click View Tasks on
the menu bar in the Batch Job form. From the Batch Tasks form, you can
also change the status of batch tasks or delete tasks that are no longer
needed.

FIGURE 18-4 The Batch Tasks form.

To create a task, do the following:
1. Press Ctrl+N to create the task.
2. In Task Description, enter a description of the task.
3. In Company Accounts, select the company in which the task runs.
4. In Class Name, select the process that you want the task to run.

Classes appear in a lookup list containing all available batch-enabled
classes. The lookup list appears only if the canGoBatchJournal
property is enabled.

5. In Batch Group, select a batch group for the task if necessary.
6. Save the task by pressing Ctrl+S.
7. Specify class parameters if necessary. As mentioned in previous

sections, each batch task represents a batch-executable class.
Sometimes you need to set up parameters for that class. For example,
you might need to specify posting parameters for invoice posting. To
do that, click Parameters on the menu bar in the Batch Tasks form. A

dialog box specific to the selected class is displayed.

 Note

If you are creating a custom batch class, you must design the
parameters form manually. If you implement a batch based on
the SysOperation framework, this process is highly simplified.
After you specify the necessary parameters and click OK, the
class parameters are packed and saved in the batch table and
then are restored when the class executes. For more
information about the SysOperation framework, see Chapter
14.

8. Set up dependencies or advanced sequencing between tasks, if
necessary.

After you create the batch job and add tasks to it, you can use the Batch
Tasks form to define dependencies between the tasks. If no dependencies
or conditions are defined within a job, the batch server automatically
executes the tasks in parallel. (To configure the maximum number of
parallel tasks, use the Maximum Batch Threads parameter in the Server
Configuration form.)

If you need to use advanced sequencing to accommodate your business
process flow, you can use either the Batch Tasks form or the Batch API.
You can use these tools to construct complex dependency trees that let you
schedule batch job tasks in parallel, add multiple dependencies between
batch tasks, choose different execution paths based on the results of the
previous batch task, and so on.

For example, suppose that the job, JOB1, has seven tasks: TASK1,
TASK2, TASK3, TASK4, TASK5, TASK6, and TASK7, and you want to
set up the following sequence and dependencies for it:

 TASK1 runs first.
 TASK2 runs on completion (Ended or Error) of TASK1 (regardless
of the success or failure of TASK1).

 TASK3 runs on success (Ended) of TASK2.
 TASK4 runs on success (Ended) of TASK2.
 TASK5 runs on failure (Error) of TASK2.
 TASK6 runs on failure (Error) of TASK3.

 TASK7 runs on success (Ended) of both TASK3 and TASK4.
Figure 18-5 shows the dependency tree for JOB1.

FIGURE 18-5 The batch task dependency tree for JOB1.

To define these task dependencies and tell the system how to handle
them, select a child task—for example, TASK2—from the preceding list,
and then do the following:

1. In the Batch Tasks form, click in the Has Conditions grid, and then
press Ctrl+N to create a new condition.

2. Select the task ID of the parent task, such as TASK1.
3. Select the status that the parent task must reach before the dependent

task can run. For example, TASK2 starts when the status of TASK1
becomes Ended or Error.

4. Press Ctrl+S to save the condition.
5. If you enter more than one condition, and if all conditions must be

met before the dependent task can run, select a condition type of All.
Alternatively, if the dependent task can run after any of the
conditions are met, select a condition type of Any.

You can use the Batch Tasks form to define how the system handles
task failures. To ignore the failure of a specific task, select Ignore Task
Failure for that task on the General tab. If you select this option, the failure
of the task doesn’t cause the job to fail. You can also use Maximum
Retries to specify the number of times a task should be retried before it
fails.

Using the Batch API
For advanced scenarios requiring complex or large batch jobs, such as
inventory closing or data upgrades, the batch framework provides an X++
API that you can use to create or modify batch jobs, tasks, and their
dependencies as needed, and to create batch tasks dynamically at run time.
This flexible API helps you automate task creation and integrate batch
processing into other business processes. It can also be useful when your
batch job or task requires additional logic. To create a batch job by using
the Batch API, the following steps are necessary:

1. Use the BatchHeader class to create the batch job.
2. Modify the parameters for the batch job.
3. Add tasks.
4. Define the dependencies between tasks.
5. Save the batch job.

Creating a batch job by using the BatchHeader class
Create an instance of the BatchHeader class that represents your batch job.
The following example creates a BatchHeader instance named
sampleBatchHeader:
Click here to view code image

 sampleBatchHeader = BatchHeader::construct();

You can also construct a BatchHeader object for an existing batch job
by providing an optional batchJobId parameter for the construct method,
as shown here:
Click here to view code image

//job1 is an existing job

sampleBatchHeader =

BatchHeader::construct(job1.parmCurrentBatch().BatchJobId);

Modifying batch job parameters
The BatchHeader class lets you access and modify most parameters by

using parm methods. For example, you can set up recurrences and alerts
for your batch job, as shown in the following example:
Click here to view code image

// Set the batch recurrence

sysRecurrenceData = SysRecurrence::defaultRecurrence();

sysRecurrenceData =

SysRecurrence::setRecurrenceStartDateTime(sysRecurrenceData,

DateTimeUtil::utcNow());

sysRecurrenceData =

SysRecurrence::setRecurrenceNoEnd(sysRecurrenceData);

sysRecurrenceData =

SysRecurrence::setRecurrenceUnit(sysRecurrenceData,

SysRecurrenceUnit::Hour,

1);

sampleBatchHeader.parmRecurrenceData(sysRecurrenceData);

// Set the batch alert configurations

sampleBatchHeader.parmAlerts(NoYes::No, NoYes::Yes,

NoYes::No, NoYes::No, NoYes::No);

Adding a task to the batch job
You add tasks to the batch job by calling the addTask method. The first
parameter for this method is an instance of a batch-executable class that is
scheduled to execute as a batch task:
Click here to view code image

void addTask(Batchable batchTask,

 [BatchConstraintType constraintType])

Another way to create a task is to use the addRuntimeTask method,
which creates a dynamic batch task. This task exists only for the current
run; it is copied into the history tables and deleted at the end of the run. It
copies settings such as the batch group and child dependencies from the
inheritFromTaskId task:
Click here to view code image

void addRuntimeTask(Batchable batchTask,

RecId inheritFromTaskId,

[BatchConstraintType constraintType])

Defining dependencies between tasks
The BatchHeader class provides the addDependency method, which you
can use to define a dependency between the batchTaskToRun and
dependsOnBatchTask tasks.

You can use the optional parameter batchStatus to specify the type of

the dependency. By default, a dependency of type
BatchDependencyStatus::Finished is created, which means that a task
starts execution only if the task that it depends on finishes successfully.
Other options are BatchDependencyStatus::Error (the task starts execution
if the preceding task finishes with an error) and
BatchDependencyStatus::FinishedOrError (the task starts execution if the
preceding task finishes with any status result). The following example
shows the signature of the addDependency method:
Click here to view code image

public BatchDependency addDependency(

 Batchable batchTaskToRun,

 Batchable dependsOnBatchTask,

 [BatchDependencyStatus batchStatus])

Saving the batch job
The final step in creating a batch job by using the Batch API is to save the
job by calling the batchHeader.save method. The save method inserts
records into the BatchJob, Batch, and BatchConstraints tables, from which
the batch server can automatically pick them up for execution.

Example of a batch job
The following example shows how to create a batch job and add two batch
tasks by using the Batch API. The example assumes that a batch-enabled
class named ExampleBatchTask already exists:
Click here to view code image

static void ExampleSchedulingJob (Args _args)

{

 BatchHeader sampleBatchHeader;

 RunBaseBatch sampleBatchTask;

 // create batch header

 sampleBatchHeader = BatchHeader::construct();

 // create and add batch tasks

 sampleBatchTask1 = new ExampleBatchTask();

 sampleBatchHeader.addTask(sampleBatchTask1);

 sampleBatchTask2 = new ExampleBatchTask();

 sampleBatchHeader.addTask(sampleBatchTask2);

 // add dependencies between batch tasks

 sampleBatchHeader.addDependency(sampleBatchTask1,

sampleBatchTask2);

 // save batch job in the database

 sampleBatchHeader.save();

}

For more examples of programmatic batch job creation, see
“Walkthrough: Extending RunBaseBatch Class to Create and Run a
Batch,” at http://msdn.microsoft.com/en-us/library/cc636647.aspx.

Configuring the batch server and creating a batch group
Before a batch job can be executed on an AOS instance, you must
configure the AOS instance as a batch server and set up the batch groups
that tell the system which AOS instance should execute the job.

The following sections describe how to configure an AOS instance as a
batch server and set up batch groups.

Configuring the batch server
You can configure an AOS instance to be a batch server, which includes
specifying when the batch server is available for processing and how many
tasks it can run, by using the Server Configuration form. The Server
Configuration form is located at System Administration > Setup > System
> Server Configuration. Note that the first AOS instance is automatically
designated as a batch server, but you can configure additional AOS
instances manually as batch servers.

 Tip

Use multiple batch servers to enable parallel processing and
increase processing throughput.

1. In the Server Configuration form, select a server in the left pane.
2. Select the Is Batch Server check box to enable batch processing on

the server, as shown in Figure 18-6.

http://msdn.microsoft.com/en-us/library/cc636647.aspx

FIGURE 18-6 The Batch Server Schedule FastTab in the Server
Configuration form.

3. On the Batch Server Schedule FastTab, click Add to enter a new
schedule. Enter the maximum number of batch tasks that can be run
on the AOS instance at one time. The server continues to pick up
tasks from the queue until it reaches its maximum.

4. Enter a starting time in Start Time and an ending time in End Time
to specify the time window in which the server processes batch jobs.
Press Ctrl+N to enter an additional time window.

 Tip

It’s a good idea to exclude a server from batch processing
when it is busy processing regular transactions. You can set
server schedules so that each AOS instance is available for
user traffic during the day and batch traffic overnight. Keep in
mind that if the server is running a task when its batch
processing availability ends, the task continues running to
completion. However, the server doesn’t pick up any more
tasks from the queue.

Creating a batch group

A batch group is a logical categorization of batch tasks that lets a user
(typically a system administrator) determine which AOS instance runs the
batch task. This section describes how to create a batch group so that it can
be assigned to a specific server for execution. The first step is to create
batch groups by using the Batch Group form at System Administration >
Setup > Batch Group.

To create a batch group, press Ctrl+N in the Batch Group form, and then
enter a name and description for the batch group. The Batch Group form is
shown in Figure 18-7.

FIGURE 18-7 The Batch Group form.

 Note

By default, the system contains an empty batch group that
can’t be removed. This is a default batch group for tasks that
are not explicitly assigned to a group.

After you create batch groups, assign each group to a server as follows:
1. In the Server Configuration form (shown in Figure 18-8), click the

Batch Server Groups FastTab. The Selected Groups list shows the
batch groups specified to run on the selected server.

FIGURE 18-8 The Batch Server Groups FastTab in the Server Configuration
form.

2. In the Remaining Groups list, select a group, and then click the left
arrow button to add this group to run on the selected server.

Managing batch jobs
After you create and schedule a batch job, you might want to check its
status, review its history, or cancel it. The following sections describe
some of the most common management tasks associated with batch jobs.

Viewing and changing the batch job status
The Batch Job list form provides a snapshot view of the current state of
batch jobs. The list displays the progress and the status of running and
completed jobs. It also displays any jobs that are scheduled to start soon.

You can change the status of a batch job by selecting the batch job in
the list and then following these steps:

1. Click Functions, and then click Change Status.
2. In the Select New Status dialog box, select a new status for the job.

For example, if the status is Waiting, you can temporarily remove
the batch job from the waiting list by changing the status to
Withhold.

 Tip

If a job exits with a status of Error/Ended and you want to
rerun the job, change its status to Waiting. The job will
automatically be picked up by the server for execution.

You can cancel a batch job by changing its status to Canceling. Tasks in
the Waiting or Ready state are changed to Not Run; currently executing
tasks are interrupted and their status is changed to Canceled.

Controlling the maximum retries
If an AOS fails because of an infrastructure failure or a power outage
while a batch task is executing, the batch framework has the built-in
capability to retry tasks after the AOS is restarted. Any tasks that were left
in an executing state, and that have not reached the maximum retry limit,
are changed to the Ready state and will run shortly after the failure.

 Tip

If you create custom tasks and want to enable retries, design
the task so that it is idempotent—that is, it can be executed
multiple times without unexpected consequences.

You can modify the Maximum Retries attribute for each batch task on
the General tab. By default, the value is set to 1; when the Actual Retries
field on the Update tab exceeds the maximum number of retries, the batch
task fails. When this happens, the recurrence that is set for the batch job is
not honored, and the status of the batch job is set to either Success or
Error.

Reviewing the batch job history
You can view a history of all batch jobs that have finished running in the
Batch Job History form at System Administration > Inquiries > Batch Job
History. This form displays detailed information about the status of the
jobs, including any messages encountered while the batch job was running.

You can also view the logs for each batch job as follows:
 To view log information for an entire batch, select a batch job, and
then click Log.

 To view log information for individual tasks, select a batch job, and
then click View Tasks. In the Batch History list form, select a task,
and then click Log.

 Tip

In the batch job settings, you can specify when log
information is written to the history tables: Always (the
default), On Error, or Never. Use On Error or Never to save
disk space for batch jobs that run constantly. This option is
located on the General tab of the Batch Job form.

Debugging a batch task
Because batch tasks run in noninteractive mode and X++ executes in the
common language runtime (CLR), to debug a batch task, you have to
perform additional steps to configure the AOS and the Visual Studio
debugger, in addition to setting up breakpoints.

The first thing you need to do is configure the AOS for batch
debugging. This is necessary for two reasons. First, the AOS modifies the
X++ assembly to disable just-in-time (JIT) optimizations in the CLR. This
is necessary so that variables and object contents can be viewed and
analyzed in the debugger. Second, the AOS produces source files
containing the X++ code under the server Bin\XppIL\Source folder. You
can open these files in Visual Studio to set breakpoints and perform
common tasks, such as stepping into and stepping over.

Configuring AOS for batch debugging
Use the Microsoft Dynamics AX Server Configuration Utility (see Figure
18-9) to configure the AOS for batch debugging. The utility is available on
the computer on which you installed the AOS. To do this, perform the
following steps:

1. Open the Microsoft Dynamics AX Server Configuration Utility.
Click Start > All Programs > Administrative Tools > Microsoft
Dynamics AX 2012 Server Configuration.

2. Select the Enable Breakpoints To Debug X++ Code Running On
This Server check box.

3. Click OK to close the utility, and then restart the AOS.

FIGURE 18-9 The Microsoft Dynamics AX Server Configuration Utility.

Configuring Visual Studio for debugging X++ in a batch
To configure Visual Studio for batch debugging, attach to the AOS process
Ax32Serv.exe by following these steps:

1. In Visual Studio, on the Debug menu, click Attach To Process.
2. When the Attach To Process dialog box opens (see Figure 18-10),

click Select to select Managed (v4.0) code, and then select the
following check boxes:
• Show Processes From All Users
• Show Processes In All Sessions

3. Click Ax32Serv.exe, and then click Attach.

FIGURE 18-10 The Attach To Process dialog box in Visual Studio.

The next step is to disable the Just My Code option, so that the debugger
breaks on X++ source code. To do this, perform the following steps:

1. On the Tools menu, click Options, and then navigate to the
Debugging\General node (shown in Figure 18-11).

FIGURE 18-11 The Options dialog box in Visual Studio.

2. Clear the Enable Just My Code (Managed Only) check box, and
then click OK.

After you complete these steps, you can open the X++ source code from
the Bin\XppIL\Source folder on the server and set breakpoints.

Print management in AX 2012
Organizations use print management to automate printing, archiving, and
distribution instructions for business documents and reports. These include
common business documents such as product picking lists, packing slips,
and sales invoices. With print management, administrators can create rules
for producing one or more originals and many copies based on predefined
policies. For example, your organization might need to print additional
copies of a sales order invoice to send to a specific manager or group of
managers when an invoice is generated for a particular account. Or
perhaps your company has specialized designs for sales packing slips that
are used in your warehouse in Beijing, China. Print management is the
solution for managing document publication rules that govern your
business processes.

 Note

Business documents and reports are both created by the
reporting framework. Therefore, in AX 2012, business
documents are considered a type of report. All print
management functionality is available equally for both
business documents and reports.

AX 2012 provides built-in tools for authoring, monitoring, and
customizing the predefined print management instructions. These
instructions are organized in a hierarchical structure by module, account,
and transaction. You can define settings for any of the supported document
types at each level of the hierarchy. This offers businesses the flexibility
they need to ensure that documents are printed at the right location and
directed to the appropriate recipients based on the context of the operation.

Common uses of print management
Following are some suggestions for how to apply print management in
your organization:

 Create a central management system for document processing
Use the built-in administration forms to manage rules associated
with the documents produced within a module. For example, in
Accounts Receivable, there are print management instructions for the
sales agreement process, which involves the production of
documents. These rules automate the process of distributing
documents directly to a target printer or electronically through email.

 Define business rules for document archiving You can use
module-level print management settings to ensure that your business
complies with regulatory policies governing document archiving.
You can also store copies of business documents in Microsoft
SharePoint and Microsoft Office 365 file shares.

 Manage rules for internal and external distribution Set up print
management by using tokens to dynamically determine which
contact information to use when sending document copies to
recipients. You can target employees and vendors based on their
associated titles and select which contact information to use.

 Streamline printer management Managing print resources in a
global business can be expensive if resources at disparate locations
are continually being added or removed. Use print management to
update target printers for document copies without interrupting your
active clients. You can update printer selections by using the built-in
administration forms. Changes are immediately reflected in the
service. Print management lets you manage your document
distribution policies without redeploying the application, restarting
services, or disrupting your business.

The print management hierarchy
Print management provides the ability to specify document distribution
settings at various levels of the application. Print management instructions
are organized in a three-tier hierarchical structure by module, account, and
transaction. You can customize the default print management settings at
the module level to configure the network printers that documents will be
sent to. However, if your business needs require it, you can override the
module settings for specific accounts or individual transactions. The
following list offers insights into how the settings differ between the
various levels:

 Module Setting up print management at the module level requires
the least amount of setup and minimizes maintenance when you have

to change the settings, such as when you install new printers or
change your existing printers. Module-level settings are ideal for
core business processes like document archiving and targeting
specialized printers for documents such as checks.

 Account Account-level settings give you the ability to define
document distribution policies based on the individual involved in
the transaction. For example, if you require specialized text in the
footer of a document when you are working with a government
agency, you can set up policies based on the vendor group. Or
perhaps you want to offer promotions to customers based on their
location. With account-level settings, you can create distribution
policies that span groups and individuals.

 Transaction Defining print management settings at the transaction
level allows for document distribution policies based on the
transaction activity or the data being printed. For example, an
organization might want to upsell services for invoices greater than
$10,000 or include a notice for customers whose balance exceeds a
certain threshold. These policies are triggered by evaluating the
activity of an entity involved in a business transaction.

Print management allows you to combine settings at each level to enable
complex business policies. You can associate each print management
setting with a query, report design, destination settings, number of copies,
and optional footer text to produce the appropriate output for a source
document.

Print management settings
AX 2012 includes print management settings for more than 20 core
business activities that process commercial documents, such as posting a
customer invoice, registering vendor sales quotations, and entering
purchase orders. Organizations often need to customize these settings to
align with their unique business processes. Print management settings offer
a flexible solution for predefining the number of copies, the destination,
and the multilanguage text to include on the report or business document.

 Note

The examples in the following sections use the sample
company CEU, which is included with the AX 2012 Contoso
sample dataset.

Creating print management settings
The example in this section creates a custom version of the customer
invoice for retail customers. First the example defines the customer group
—Retail Customers—that the customized invoice will be sent to. Then the
example adds a custom footer for the invoice. To work through the
example, follow these steps:

1. In the AX 2012 client, navigate to the Accounts Receivable module,
and under Setup, click Forms > Form Setup, and then click the Print
Management button (as shown in Figure 18-12).

FIGURE 18-12 The Print Management button shown in a Form Setup form.

2. In the Print Management Setup form that opens, expand the
Documents node under the Accounts Receivable module, expand
Customer Invoice, and then click the Original <Default> setting, as
shown in Figure 18-13.

FIGURE 18-13 A default print setting in the Print Management Setup form.

3. Copy the Original <Default> setting by right-clicking the item and
clicking Copy.

4. Give the new print management instruction a new name, such as
Major customers.

5. Right-click the new instruction and click New to create a Setting
container (see Figure 18-14).

FIGURE 18-14 A new print setting container in the Print Management Setup
form.

6. Click the Select button to access the query associated with the print
management setting. The Query – Setting form opens.

7. Click the Criteria drop-down list, select 30 as the Customer Group
as shown in Figure 18-15, and then click OK. This will add a filter to
the Group field in the Customer Invoice Journal table that triggers
the instructions that are to be followed when the customer belongs to
the Retail Customers group.

FIGURE 18-15 A new conditional setting based on a query.

8. In the Conditional Setting section of the Print Management Setup
form, in the Footer Text field, enter We value our retail customers.
You can also select the destination, report format, and number of
copies, as shown in Figure 18-16.

FIGURE 18-16 Destination, report format, number of copies, and footer text
can be selected under Conditional Setting.

Using print management tokens
You can maintain powerful control over distribution policies by using
token-based instructions. This capability was introduced in AX 2012 R2
cumulative update 7 and provides a level of control that previously
required code customizations. With tokens, you can define distribution
rules that are tied to a specific user role and purpose.

Each employee (user) in AX 2012 is assigned to a security role, such as
Customer Service Manager or Marketing Coordinator. To distribute a
document to all employees who are assigned to a particular role, you use a
token in the format @<role>@. When the document is distributed, the
token is replaced with the email address of each user who is assigned to
the role. For example, if the Chief Financial Officer role is assigned to the
CFO of the company, the token @Chief Financial Officer@ always
expands to that individual’s email address regardless of who currently
occupies the position. An AX 2012 user could use a token to define the
destination of the Profit and Loss Statement report as the CFO, so that the
report is always emailed to the CFO whenever it runs. For more
information about security roles, see Chapter 11, “Security, licensing, and
configuration.”

You can also use tokens to distribute documents externally by
specifying a token that represents a customer address that is used for a
specific purpose; for example, the token @Invoice@ might represent the
address to which you submit a customer’s invoices. For information about
creating custom tokens—for example, tokens that represent locations such
as printers—see “Customizing tokens for emailing and printing reports” at
http://msdn.microsoft.com/EN-US/library/dn479194.aspx.

This example further customizes the Customer Invoice document in the
previous section by using tokens to route the invoices externally to
customers’ business locations and internally to the CFO.

1. In the Print Management Setup form, click the arrow next to the
Destination field to open the Print Destination Settings form.

2. In the left pane of the Print Destination Settings form, select E-Mail,
as shown in Figure 18-17. On the right side of the To field, click
Edit.

http://msdn.microsoft.com/EN-US/library/dn479194.aspx

FIGURE 18-17 The Print Destination Settings form.

3. In the Assign Email Addresses form that opens, click the arrow next
to Customer Purpose, and then select the check box next to Business,
as shown in Figure 18-18. This form helps the user populate the To
and Cc fields in the correct format. When you make a selection on
this form, the appropriate field in the Print Destination Settings form
is populated with a token in the correct format.

FIGURE 18-18 The Assign Email Addresses form showing the drop-down list
for specifying tokens.

4. Click the arrow next to Worker Title, and click CFO, as shown in
Figure 18-19. Then click OK. The invoices will now be routed to the
business addresses of the customers, and an additional copy will be
sent to the CFO.

FIGURE 18-19 The form for specifying customer purpose and worker title;
the To field is populated as a result.

Chapter 19. Application domain frameworks

In this chapter
Introduction
The organization model framework
The product model framework
The operations resource framework
The dimension framework
The accounting framework
The source document framework

Introduction
AX 2012 includes several domain-specific application frameworks that
improve code reuse between application modules, reduce the need to
assign artificial relationship roles in application modules, and reduce the
number of tightly coupled interdependencies between application modules.
For example:

 The operations resource role that is assigned to people and work
centers by the operations resource framework eliminates the need to
assign employees and independent contractors artificially to the work
center role so that they can participate in production planning and
scheduling activities.

 The performance dimensions extended from the dimension
framework, the double-entry subledger journal provided by the
accounting framework, and the source document abstraction
provided by the source document framework enable operations
processes such as purchasing, receiving, and invoicing to be
decoupled from accounting processes such as budget control and
financial reporting.

This chapter provides a short description of the conceptual foundation of
some of the key application domain frameworks, in addition to links to
white papers that provide more detailed implementation guidelines and
code samples. This chapter does not contain an exhaustive list of
application domain frameworks for AX 2012. Instead, it is intended to
provide an overview of important functionality and suggestions about how
you can use it. For information about additional application domain

frameworks, see “White papers for developers” at
http://technet.microsoft.com/EN-US/library/hh272882. This page is
updated frequently with links to new white papers.

 Note

The names of entities in the conceptual domain models in this
chapter are denoted in title case on first mention and italicized
for emphasis.

The organization model framework
AX 2012 introduced a new organization model framework. This
framework is designed to model key scenarios that are required by
government organizations and corporations that have global operations,
and those that have separate legal and operating organization structures.
The organization model framework extends the company feature that was
used in AX 2009 and earlier versions.

With the types of organizations that are included in AX 2012, you can
model organizations in AX 2012 to mirror the way you operate them
without having to customize the application. Most organizations go
through an iterative operating cycle of monitor, measure, analyze, and
improve. The analysis phase results in new business rules and policies and
new strategic and operational initiatives to improve the organization’s
performance. With the organization framework, you can create
hierarchical structures that support this cycle of performance
improvement.

How the organization model framework works
The organization model has two major components: Organization Types
and Organization Hierarchies. The following sections describe these
components.

Organization types
The organization model in AX 2012 introduced two new types of
organizations: Legal Entity and Operating Unit.

 Legal entity An organization with a registered or legislated legal
structure that has the authority to enter into legal contracts and that is
required to prepare statements that report on its performance. A legal
entity and a company in AX 2012 are semantically the same.

http://technet.microsoft.com/EN-US/library/hh272882

However, some functional areas in the application are still based on a
data model that uses the concept of a company. These areas might
have the same limitations as in AX 2009 and might have an implicit
data security boundary.

 Operating unit An organization that divides the control of economic
resources and operational processes among people who have a duty
to maximize the use of resources, to improve processes, and to
account for their performance.

AX 2012 includes several types of operating units:
 Business Unit A semi-autonomous operating unit that is created to
meet strategic business objectives.

 Cost Center A type of operating unit that describes an organization
that is used to track costs or expenses. A cost center is a cost
accumulator, and it is used to manage costs.

 Department A type of operating unit that might have profit and loss
responsibility and might consist of a group of cost centers.
Departments are also often created based on functional responsibility
or skill, such as sales and marketing.

 Value Stream A type of operating unit that is commonly used in
lean manufacturing. In lean manufacturing, a value stream owns one
or more production flows that describe the activities and flows
needed to supply a product, an item, or a service to the consumers of
the product.

 Retail Channel A type of operating unit that is commonly used in
retail to represent a retail channel.

A Team is also a type of Internal Organization, but it is an informal
group of people that is typically created for a specific purpose over a short
duration. Teams might be created for specific projects or services. The
other types of organizational units described here are more permanent,
although they could require frequent minor updates or major changes
because of restructuring.

These types of operating units support application functionality in AX
2012. However, every industry and business has unique requirements for
its operating units and might call them by different names. Additionally,
organizations can create custom types of operating units to meet their
needs. For more information, see the “Creating a custom operating unit
type” section later in this chapter.

When you arrange legal entities and operating units into hierarchies and

use them for aggregated reporting, to secure access to data, and to
implement business policies, they help you maintain internal control of
your organization.

Organization hierarchies
An organization is a group of people who work together to perform
operational and administration processes. Organization hierarchies
represent the relationships between the Organizations that make up an
enterprise or a government entity. In previous releases of Microsoft
Dynamics AX, companies could not be organized into a hierarchy to
represent the structure of an organization. In reality, organizations
typically have a hierarchical structure for the reasons mentioned in the
previous section.

The organization model framework in AX 2012 supports the creation of
multiple hierarchies that take effect on multiple dates. This is useful in
restructuring scenarios, where you want the updated hierarchy to become
effective at a certain date in the future. The framework also supports
hierarchies that are used for multiple purposes.

A Purpose defines how the organizational hierarchy is used in
application scenarios. The purpose that you select determines the types of
organizations that can be included in the hierarchy. Table 19-1 shows the
types of organizations that you can use for each hierarchy purpose that is
included in AX 2012.

TABLE 19-1 Purposes and organization types.

The organization model has a significant impact on the implementation
of AX 2012 and on the business processes being implemented. Executives
and senior managers from different functional areas such as finance and
accounting, human resources, operations, and sales and marketing should
participate in defining the organization structures.

Figure 19-1 shows the conceptual domain model of the organization
model framework.

FIGURE 19-1 The organization model framework.

When to use the organization model framework
You use the organization model framework to model how the business
operates. You can use the organization model framework in two ways: by
using the built-in integration with other application frameworks and
existing AX 2012 modules, or by modeling custom scenarios to meet the
needs of your organization.

Integration with other frameworks’ application modules
The organization model framework is inherently integrated with certain
frameworks and modules in AX 2012:

 Address book All internal organizations—legal entity, operating
unit, and team—are types of the Party entity. This means that these
organizations can use the capabilities of the address book to store
address and contact information. For more information, see the
“Implementing the Global Address Book Framework” white paper at

http://technet.microsoft.com/en-us/library/hh272867.aspx.
 Financial dimensions You can use legal entities and operating units
to define financial dimensions and then use those financial
dimensions in account structures. By using organizations as financial
dimensions, an enterprise or government entity can analyze an
organization’s financial performance. If two types of organizations
are used as separate financial dimensions in the account structure,
the relationships between organizations described through
hierarchies can also be used as constraints. For more information, see
the “The dimension framework” section later in this chapter.

 Policy framework You can use the policy framework to define an
internal control policy for an organization. The policy framework
can be used to define policies for expense reports, purchase
requisitions, audit control of documents, and vendor invoice
payments. The policy framework provides support for override and
default behavior for organizations based on their hierarchies, and
supports internal management control of organizations to facilitate
cost control, fraud detection, better operating efficiency, and better
performance in general. For more information, see the “Using the
Policy Framework” white paper at http://technet.microsoft.com/en-
us/library/hh272869.aspx.

 Extensible data security The extensible data security framework
provides capabilities to secure data based on any condition. Security
access to organizations can be defined based on hierarchies. For
more information, see Chapter 11, “Security, licensing, and
configuration.”

The organization model framework is also used in the following
application modules:

 Procurement and sourcing The lines of a purchase requisition are
created for a buying legal entity, and they are received by an
operating unit, such as a cost center or a department. The
organization model framework supports various scenarios by
allowing the viewing or creation of purchase requisitions for any
buying legal entities and receiving operating units in which you have
access to create purchase requisitions.

 Human resources In human resources, workers hold employment
contracts in a legal entity and have a position in a department. All
transaction scenarios in human resources use these concepts to view
and modify data.

http://technet.microsoft.com/en-us/library/hh272867.aspx
http://technet.microsoft.com/en-us/library/hh272869.aspx

 Travel and expense Expense reports and expense line items are
associated with a legal entity to which the expense line item should
be charged from a statutory perspective, and they also are associated
with an operating unit for internal reporting.

Modeling your own functional scenarios
You can use the organization model framework to model your own
scenarios. For example, a common scenario for data security is to filter
application data based on a user’s roles and membership in internal
organizations. For instance, organizations might seek to limit an
individual account manager’s access to specific sales orders based on
geography, allowing her to view only the sales orders that originate in her
region.

You can set up a new scenario or customize an existing scenario by
taking the following high-level steps:

1. Define or change the data model.
2. Create a new table with the SaveDataPerCompany property set to

No. If you are working with existing tables that are marked per-
company, change the value of the SaveDataPerCompany property
from Yes to No.

3. Reference organizations as foreign keys (FKs) on the table. It might
be necessary to reference an operating unit and a legal entity if the
legal entity cannot be established through legal entity or operating
unit organization hierarchies.

4. If the table includes redundant data in the Legal Entity field, set up
hierarchical constraints between legal entities and operating units to
maintain data consistency.

5. Build a new form (for example, a list page) for the scenarios, or
change the existing user experience to view or maintain data. You
can use custom filters to make it possible for users to view and
maintain data across organizations.

6. Apply default organizations on the table in financial dimensions by
including them in account structures.

7. Create extensible data security policies that are based on the
organizations that the user belongs to or has access to.

8. Use the policy framework to set up policies to apply when users
access data in the scenario.

Extending the organization model framework
You can extend the organization model framework by creating a custom
type of operating unit or a custom purpose, or by extending the hierarchy
designer, a tool that is included with AX 2012.

Creating a custom operating unit type
A core extensibility scenario is to extend the organization model to
accommodate specific vertical industry requirements. For example,
branches, schools, and school districts are essentially organization
concepts, and you can model them as new types of operating units.

Suppose that you want to create an operating unit called Branch. To do
so, you would follow these steps:

1. Create a new base enum value for the new operating unit type.
2. Create a view.
3. Create a menu item for the new operating unit.

The following sections describe these steps in more detail.

Create a new base enum value
Define a new base enum value for the OMOperatingUnitType enum that
corresponds to the new type of operating unit:

1. In the Application Object Tree (AOT), navigate to Data
Dictionary\Base Enums\OMOperatingUnitType.

2. Right-click the OMOperatingUnitType enum, click New Element,
and then add an element named Branch.

3. In the Properties window for the new element, set both the Name
and Label properties to Branch. Change the default EnumValue
property to an integer value that will prevent clashes between your
new enum and future enums added by the Microsoft Dynamics AX
team.

Create a view
Define a view, DimAttributeBranchView, that is similar to views created
for other types of operating units. For example, the
DimAttributeOMBusinessUnit view was created for business units. The
DimAttributeOMBusinessUnit view contains the fields that allow the
OMOperatingUnit table to be used as a financial dimension for all
business units specified.

1. In the AOT, navigate to the Data Dictionary\Views node, and then

locate DimAttributeOMBusinessUnit.
2. Duplicate DimAttributeOMBusinessUnit: Right-click the

DimAttributeOMBusinessUnit node, and then click Duplicate. The
AOT will create a node called CopyOfDimAttributeOMBusinessUnit.

3. In the Properties window for the newly created view, set the
properties as shown in the following table:

4. Under the new DimAttributeBranchView view, locate the
OMOperatingUnitTypeOMBusinessUnit range. The range is under
the Metadata\Data
Sources\BackingEntity(OMOperatingUnit)\Ranges node.

5. In the Properties window for the
OMOperatingUnitTypeOMBusinessUnit range, set the properties as
shown in the following table:

Create a menu item
Finally, create a menu item for the new operating unit type as follows:

1. Under Menu Item\Display, create a menu item named
BranchMenuItem.

2. In the Properties window for BranchMenuItem, set the following
properties:

The new operating unit type will now appear in the list of operating unit

types that are available when a system administrator creates a new
operating unit.

Creating a custom purpose
You can extend the AX 2012 organization model to create a custom
purpose. A purpose defines how the organization hierarchy is used in
application scenarios.

Suppose you want to create a new purpose called Sales. To do so, you
would follow these steps:

1. Create a new base enum value for the new purpose.
2. Create a method to add the new purpose, and then call that method

to add the purpose to the HierarchyPurposeTable table.
The following sections describe these steps in more detail.

Create a new base enum value
First, create a new base enum value for the new purpose. To do so, you
follow these steps:

1. In the AOT, navigate to Data Dictionary\Base
Enums\HierarchyPurpose.

2. Right-click the HierarchyPurpose enum, click New Element, and
then add an element named Sales.

3. In the Properties window for the new element, set the Name and
Label properties to Sales. Change the default EnumValue to an
integer value that will prevent clashes between your new enum and
future enums that are added by Microsoft or independent software
vendors (ISVs).

Create and call a method to add the new purpose
Next, create the method to add the new purpose, and then call the method
to add it to the table.

1. In the Classes node in the AOT, locate
OMHierarchyPurposeTableClass.

2. Duplicate the addSecurityPurpose method: Right-click the
addSecurityPurpose node, and then click Duplicate. The AOT will
create a method called CopyOfaddSecurityPurpose.

3. Replace the code for the CopyOfaddSecurityPurpose method with
the following code. This code renames the method:

Click here to view code image

private static void addSalesPurpose()

{

 OMHierPurposeOrgTypeMap omHPOTP;

 select RecId from omHPOTP

 where omHPOTP.HierarchyPurpose ==

HierarchyPurpose::Sales;

 if (omHPOTP.RecId <= 0)

 {

 omHPOTP.clear();

 omHPOTP.HierarchyPurpose =

HierarchyPurpose::Sales;

 omHPOTP.OperatingUnitType =

OMOperatingUnitType::OMAnyOU;

 omHPOTP.IsLegalEntityAllowed = NoYes::No;

 omHPOTP.write();

 omHPOTP.clear();

 omHPOTP.HierarchyPurpose =

HierarchyPurpose::Sales;

 omHPOTP.OperatingUnitType = 0;

 omHPOTP.IsLegalEntityAllowed = NoYes::Yes;

 omHPOTP.write();

 }

}

The preceding code is similar to the code in most of the methods of
the OMHierarchyPurposeTableClass class. The code was changed
only in the places where the HierarchyPurpose enum values are
referenced. In the code, you can see three occurrences of
HierarchyPurpose::Sales.

4. In the OMHierarchyPurposeTableClass class, update the
populateHierarchyPurposeTable method to call the new method that
you created, by adding the following line of code:

Click here to view code image

OMHierarchyPurposeTableClass::addSalesPurpose();

The following code shows the modification to the
populateHierarchyPurposeTable method:
Click here to view code image

public static void populateHierarchyPurposeTable()

{

 OMHierPurposeOrgTypeMap omHPOTP;

 if (omHPOTP.RecId <= 0)

 {

 ttsbegin;

 OMHierarchyPurposeTableClass::AddOrganizationChartPurpose();

 OMHierarchyPurposeTableClass::AddInvoiceControlPurpose();

 OMHierarchyPurposeTableClass::AddExpenseControlPurpose();

 OMHierarchyPurposeTableClass::AddPurchaseControlPurpose();

 OMHierarchyPurposeTableClass::AddSigningLimitsPurpose();

 OMHierarchyPurposeTableClass::AddAuditInternalControlPurpose();

 OMHierarchyPurposeTableClass::AddCentralizedPaymentPurpose();

 OMHierarchyPurposeTableClass::addSecurityPurpose();

 //Add the following line.

 OMHierarchyPurposeTableClass::addSalesPurpose();

 ttscommit;

 }

}

After you complete these steps, the new purpose will appear under
Organization Administration > Setup > Organization > Organization
Hierarchy Purposes.

Extending the hierarchy designer
System administrators can view or modify organizational hierarchies by
using the hierarchy designer. This form is available through Organization
Administration > Setup > Organization > Organization Hierarchies.

Developers have a few options for extending the hierarchy designer.
The hierarchy designer control can be customized for four parameters of
the organization nodes within the hierarchy: border color, node image, top
gradient color, and bottom gradient color. For more information, download
the “Implementing and Extending the Organization Model” white paper
from http://technet.microsoft.com/en-us/library/hh292602.aspx.

The product model framework
AX 2012 offers a flexible product data management framework,
supporting both centralized and legal-entity–specific management of
information about a product, which is defined as an item or a service that
results from an economic activity.

How the product model framework works
In the product model, product information is centralized around the
concept of a Product, which represents information that is shared across
the organizational structure, and the concept of a Released Product, which
controls information that is specific to a legal entity. Figure 19-2 shows the
conceptual domain model of the product model framework.

http://technet.microsoft.com/en-us/library/hh292602.aspx

FIGURE 19-2 The product model framework.

Product types and subtypes
A Product can be an Item—which represents a physical entity for which
inventory levels can be tracked, like finished goods or raw components—
or a Service—modeling a nonphysical entity for which inventory levels are
not tracked, like consulting services. A product can be divided further into
additional subtypes: a Distinct Product that is uniquely identifiable and
can be used in economic activities, or a Product Master. A product master
is a standard or functional product representation that serves as a basis for
configuring distinct Product Variants. In this case, a product variant is a
uniquely identifiable product that can be used in economic activities.
However, because all product variants are bound to a product master, they
share a significant part of the information defined for the product master.

Consider a manufacturing company named Contoso that sells different
models of bicycles, which come in different colors and sizes, and
accessories such as bicycle lights. In this scenario, every bicycle model
can be modeled as a product master, with each color and size combination
defining a product variant. Lights do not come in various configurations,
so they can be modeled as distinct products.

Product dimensions
A product variant is defined by using product dimensions, which are
active for a specified product master. Product dimensions are
characteristics that uniquely identify a product. AX 2012 includes four
product dimensions: Configuration, Size, Color, and Style. (You can
rename them.) A Product Dimension Group, which is required for a
product master, encompasses the information about the product
dimensions that are active and can be used for controlling which product
dimensions should be considered in the price calculation in trade
agreements. Because product dimensions define unique products, a
product dimension group must be assigned to the product master and is
shared across the organizational structure.

For example, Contoso sells two bicycle models. Each model is available
in three sizes (small, medium, and large) and three colors (black, red, and
white). Contoso can model this assortment by creating a product
dimension group named Bicycles, with Size and Color as the active
dimensions, and assigning that product dimension group to the two
product masters that represent the two bicycle models. Because Contoso
also sells helmets, which come in one color but in different sizes, Contoso
can create a second product dimension Group called Helmets that has only
one active dimension: Size.

Storage and tracking dimensions
Besides product dimensions, there are two more types of dimensions:
Storage and Tracking. The Storage Dimension Group defines the level of
detail used to identify the physical location of goods, with the possible
dimensions being Site, Warehouse, Location, and Pallet. The Tracking
Dimension Group defines how specific instances of the same Released
Product are tracked, with Batch and Serial Number being available. These
dimension groups also define policies regarding how specific dimension
values affect business activities. Because these policies might differ in
different legal entities, different storage and tracking dimensions can be
assigned to the same product in different legal entities.

For example, Contoso might be required by law to track batch numbers
of bicycle brakes in certain countries so that an entire batch can be recalled
easily in case a widespread defect is discovered that causes a safety
hazard. This requirement does not apply in other countries, so Contoso
might choose not to track brake batches in these countries.

Released products

All of the information described so far applies to the concept of a product,
representing the information that is shared across the entire organizational
structure. But this information is not sufficient for a legal entity to be able
to use a product. To enable a legal entity to use a product, the product,
together with the relevant product variants, has to be released to the legal
entity. On a released product, you can define various policies that control
how these products can be used within that legal entity. These policies
include storage and tracking dimension groups (unless they were defined
on the shared product information), Inventory Model Group and Item
Group, and various inventory and costing policies that apply to the
product. After these policies are defined, the product can be used for
transactions within the legal entity.

Product availability within legal entities can be controlled both on the
product and the product variant level. For example, a specific bicycle
model can be released only to Contoso US because the company wants to
sell it only in that market. Another model can be released to Contoso US in
only black and red because the company has decided that it’s not worth
investing in white bikes in the United States.

Additional product information
Besides the required information, additional details can be provided for a
product, either to provide a reference or to control the interaction with
other system components. For example, you might define Product
Translations for a product to control the product name or descriptions that
are displayed in various contexts. Similarly, you can attach Images to
provide a graphical representation of the product. An example of the
information used to control other components is the Default Order Type,
which a legal entity can set to decide the type of order that is generated to
cover the demand for a particular product. For example, Contoso Italy,
which owns a clothing production facility, could set the Default Order
Type for cycling clothes to Production, whereas bicycles, which are
bought from external vendors, would have the default order type set to
Purchase.

Product Attributes and Categories
AX 2012 introduces the concept of product attributes. User-defined
product attributes can be associated with a product category to describe
characteristics that are common to all products within that category.
Product attributes can be of various data types. Each attribute might have
a default value within that category. When a product is added to a

category, the product inherits all product attributes within that category
along with their default values. However, the value of a product attribute
can be changed for each product.

For example, a company in the food industry has a product attribute
called Fat that is associated with the procurement category for milk
products. The default value is 1%. The category contains the product
Light-milk, which inherits the default value of 1% from the category. The
category also contains the product Fat-milk, which also inherits the Fat
value. However, the value for Fat-milk has been overwritten with a value
of 3%. A purchasing clerk could search all products that match specific
criteria—for example, to find all milk products with a Fat value between
1% and 3%.

 Note

Product attributes primarily provide an additional product
description that can be used for search functions. You cannot
use product attributes to track inventory. The system uses
only Product, Tracking, and Storage dimensions to track
physical and financial inventory.

Variant configuration technology
The product master definition has a mandatory variant configuration
technology, which you use to define the configuration strategy of the
product master. The configuration strategy identifies the method used to
create a new product variant to meet a customer’s needs. As a result of
product configuration, a new product variant is created in the shared
product repository and automatically released to the legal entity when
product configuration takes place.

For example, in a configure-to-order environment, a manufacturing
company provides several predefined product models with different
constraints. If the existing models do not meet the expectations of a
specific customer, the system creates a new unique product variant to
represent the variation that the customer wants.

Constraint-based configuration technology
With the new Product Configuration module in AX 2012, you can
describe a shared product model in terms of product structure, product
components, attributes, and constraints. After you create a product model,

you can associate it with the product master definition, which follows a
constraint-based configuration strategy. This advanced configuration
technology allows modeling of complex product structures.

For example, a company produces a home theater system that contains
10 components with predefined constraints based on various component
characteristics (attributes). During sales order entry, the system exposes a
rich product configuration experience that guides the user through the
configuration process to successfully create the correct product variant.

Dimension-based configuration technology
In AX 2012, you can set up the configuration group and configuration
rules as part of the general inventory management setup. This information
can be used in a bill of material (BOM) definition. You can use the
configuration rules to predefine the product configurations to use as part of
a specific BOM configuration.

For example, a manufacturing company produces gaming devices in
several configurations. To produce these products, the company uses a
BOM, which contains a raw component that comes in different
configurations. With configuration groups and configuration rules, the
system can enforce that only a specific raw component configuration can
be included in a specific configuration of a gaming device.

This functionality allows a lightweight approach to configuring products
on the order line that have relatively simple BOM structures.

Predefined variant configuration technology
Predefining product variants is the simplest configuration strategy in AX
2012. The different product variants can be created automatically or
manually based on the product dimension values, which are associated
with the product master.

For example, a product master might have active dimensions of Size
and Color. Every time a user adds a new color or size value, the system
automatically creates all possible product variants. This functionality is
especially valuable in the retail industry, where companies offer a wide
range of products based on different styles, colors, and sizes.

When to use the product model framework
You can extend the product model framework to align the stored product
information and product behavior with organizational master data
management practices. These practices might include processes such as

data governance, centralized master data control, or a product-specific
policy. Such a policy can affect the product life cycle or specific behavior
within business processes, such as procurement, production, and reserve
logistics.

For example, a multinational retail organization might require a process
for defining an organization-wide policy such as product sales price. After
the new sales price is set, that price should be used in all retail stores.

Extending the product model framework
In AX 2012, you can customize the product model by extending tables and
classes with the prefix EcoRes. For example, you could begin to
implement the sales price policy in the previous example by adding a new
field to the EcoResProduct table to represent the sales price in the currency
assigned as the primary currency in the legal entity’s ledger configuration.
This field is inherited automatically by all product subtypes such as
distinct product, product master, and product variant, which means that
you can define a specific sales price for product variations. After the
policy has been implemented, you need to expose the information in the
user interface of the Product Information Management module to allow
users to manage sales prices.

The next step is to adjust the product release process to propagate the
sales price to released products. You can do this by modifying the
EcoResProductReleaseManager class, which is responsible for the
creation of released products. Specifically, you need to set a proper value
in the InventTableModule table, which stores the default sales, purchase,
and production prices for the released product within a legal entity.

If the shared product sales price changes, the new sales price value
should be propagated to all legal entities in which the product has been
released. One of the ways to achieve this is to add such logic to the update
method of the EcoResProduct table.

The potential conceptual model is illustrated in Figure 19-3.

FIGURE 19-3 The customization model.

For more information about the product model framework, download
the “Implementing the Item-Product Data Management Framework” white
paper from http://technet.microsoft.com/EN-US/library/hh272877.

The operations resource framework
Designing a manufacturing process within an enterprise resource planning
(ERP) system has traditionally been done by describing what activity
should be performed and who should do it. This requires the process
engineer to know not only how a product is built, but also which resources
are available for building the product. In AX 2012, a new model has been
put in place that allows decoupling of the process from the resources, so
that the process can be described without having to reference specific
resources.

How the operations resource framework works
The primary entity of the operations resource model is the Resource,
which is defined as anything that is used for the creation, production, or
delivery of an item or service other than the materials that are consumed in
the process. There are multiple types of resources: Tool, Machine, Human
Resource, Location, and Vendor.

A resource can be a member of a Resource Group, and the Resource
Group Membership can change over time. You can think of a resource
group as a vehicle for organizing resources. A resource group is located at
a particular site. A resource can be a member of only a single resource
group at a time. A resource does not have to belong to a resource group,
but the resource is considered for scheduling only during the period or
periods that it is connected to a resource group.

http://technet.microsoft.com/EN-US/library/hh272877

Figure 19-4 shows the conceptual domain model for resources and
resource groups.

FIGURE 19-4 Resources and resource groups.

Capabilities
A Capability is the ability of a resource to perform a specified activity,
such as welding, pressing, or floor sweeping. A resource can be assigned
one or more capabilities and can have multiple capabilities on the same
date. For each assignment, you can set a priority and level at which the
capability can be performed—for example, stamping with four tons of
pressure.

Figure 19-5 shows the conceptual domain model for resources and
capabilities.

FIGURE 19-5 Resources and capabilities.

A capability can be assigned to any resource regardless of its type. If a
resource is of the type Human Resource, which is associated with a
worker, skills, courses, certificates, and title information from the Human
Resources module, you can use that information in addition to the

capability to define the competencies of the resource.

Activities and requirements
An Activity is a common abstraction of the unit of work to be performed
by one or more resources. The activity entity in itself is not visible to the
user but is used internally for a common representation of the following
business entities: Hour Forecast (Project), Production Route, Operation
Relation, Product Model Operation Relation, and Product Builder
Operation Relation.

Figure 19-6 shows the conceptual domain model for an activity.

FIGURE 19-6 Activity model.

Each activity can have a set of Activity Requirements that specifies how
many resources are needed for the activity and what abilities the resources
must have to participate in the activity. Multiple activity requirements can
be contained in an Activity Requirement Set. For a resource to be
applicable to an activity, the resource must meet all of the requirements in
the activity requirement set. For each activity requirement, you can specify
whether the requirement should be considered when operations scheduling
or job scheduling is performed. Figure 19-7 shows the conceptual domain
model for activities, activity requirements sets, and activity requirements.

FIGURE 19-7 Activities, activity requirement sets, and activity requirements.

Identifying applicable resources

Finding the resources that are applicable for an activity requires that at
least the following information is known:

 The as-of date by which to perform the search. Because resource and
membership information can vary over time, an as-of date must be
provided.

 The site context. In most cases, the site will be a limiting factor
because the resources must be a member of a resource group on the
site where the production takes place.

 The scheduling method. An activity requirement can be applicable
for either operations scheduling, job scheduling, or both.

Conceptually, identifying an applicable resource is easy; it is simply a
matter of traversing through all resources while checking to determine
whether the skills, capabilities, resource type, and so on, of each resource
match the ones stated in the requirements and ensuring that the Resource is
not associated with a resource group that is marked as a lean work cell.

In code, you can find applicable resources for an activity by using one
of the two main application programming interfaces (APIs) offered for the
activity requirement set:

 applicableResourcesList Returns the IDs of all applicable resources
in a simple list

 applicableResourcesQuery Creates a query object with the
WrkCtrTable table as the primary data source

When the activity has been planned by the scheduling engine, the
chosen resource (or resources) can be found through querying the capacity
reservations.

When to use the operations resource framework
You can use the operations resource framework for any activity that
requires one or more resources. The framework provides good integration
with the scheduling engine, which can perform the resource selection and
allocate time according to the requirements and priorities.

Extending the operations resource framework
You can extend the operations resource framework in at least two ways: by
adding a new class of activity and by adding a new class of activity
requirement. The following sections provide details about the integration
points and describe some of the considerations that must be taken.

Adding a new class of activity
To add a new class of activity, you first need a primary table (called X in
the following example) that contains the activity definition, including the
task to be performed, the duration, links to other activities, and so on. To
connect this table to the generic activity, create a new WrkCtrXActivity
table with a 0-1 relation to the WrkCtrActivity table and a 1-1 relation to
the X table. Having this data structure in place makes it possible to create a
form where users can fill in the activity requirements for your X table and
navigate further to see the resulting applicable resources. The ProdRoute
form is a good example of how such a form can be constructed and the
logic that is needed to control the WrkCtrActivityRequirement and related
data sources.

If the activity must be scheduled, this can be done by using the same
resource scheduling engine that is used for master planning, production
orders, and projects. The main class is WrkCtrScheduler. Each type of
activity has its own derivative class, such as WrkCtrScheduler_Proj, which
has information about how that type of activity is handled. At a minimum,
the following methods must be implemented:

 loadData Feeds the engine with information about which activities
should be scheduled, the duration for applicable resources,
dependencies, links between activities, and so on.

 saveData Iterates through the results from the core engine, saving the
from and to time on the activity and creating capacity reservations in
the WrkCtrCapRes table. It is recommended that you add a new
value to the WrkCtrCapRefType enum and use this value when
saving the capacity reservations. Doing so makes it easier to trace
who owns the reservation.

Adding a new class of activity requirement
If information exists that is related either directly to an operations resource
or to the vendor that is associated with the resource, and that information
determines the resource’s ability to perform an activity, you can
incorporate this information into the resource selection process.

If the information related to the resource is stored in a table named Y,
first create a new value in the WrkCtrActivityRequirementType
enumeration to represent the Y entity. Next, add a new table named
WrkCtrActivityYRequirement that contains a foreign key to the
WrkCtrActivity table and the Y table. Because much of the logic
surrounding resource requirements relies on reflection, the new table must

implement a certain set of methods. Use the
WrkCtrActivityPersonTitleRequirement table as an example of the table
methods needed.

After the requirement table is in place, the application must be modified
in several places to take the new table into consideration. The best way to
ensure that the new requirement is implemented throughout the application
is to use cross-references for one of the existing tables, such as
WrkCtrActivityPersonTitleRequirement, and then add the new table in a
similar way.

For performance reasons, the matching of the resource requirements for
an activity against the actual abilities of a resource is done by the core
scheduling engine, which converts capabilities, skills, certificates, and so
on to a common property that can be compared against the requirements
by simple string matching. This transformation is performed by the
computeResourceCapabilities and computeResourceGroupCapabilities
methods of the WrkCtrSchedulingInteropDataProvider class, which also
must take into account information from the Y table. Consider carefully
whether you want the new requirement to be available both for job and
operation scheduling. If the requirement must be available for operation
scheduling, the used capacity for the group with regard to the Y property
must be saved and maintained, along with the capacity reservations, to
avoid overbooking. This capability comes at a high performance cost
during scheduling.

MorphX model element prefixes for the operations resource
framework
All elements that concern the operations resource model are prefixed with
WrkCtr*. Most are named similarly to the conceptual names—except for
the resource entity, which for legacy reasons is stored in the WrkCtrTable
table.

For more information about the operations resource model framework,
see the following Core Concepts documents on Microsoft Dynamics
InformationSource (http://informationsource.dynamics.com):

 Allocating resources based on resource requirements
 Operations scheduling based on capabilities

To access these documents, sign in to InformationSource, click Library,
and then type the document title in the Search box.

The dimension framework

http://informationsource.dynamics.com

The dimension framework provides a method for tracking additional
pieces of information such as department, cost center, or purpose for
documents throughout the application. That information can be used in
accounting to categorize information.

How the dimension framework works
A Dimension Attribute is a type of information that is tracked by the
dimension framework. The domain of values for a dimension attribute is
defined by the instances of the business entity that exist for the backing
business entity type. For instance, the OMOperatingUnit table can provide
the list of values for an organization unit dimension. Dimension attributes
can be placed in a Dimension Hierarchy to indicate ordering. For example,
one specialization of a dimension hierarchy is an Account Structure.
Dimension attributes can be grouped into a Dimension Attribute Set, which
is used in some Setup Data to specify the dimension attributes that apply
in particular situations—for example, the check box next to each
dimension on the LedgerAllocation form.

Figure 19-8 shows the conceptual domain model for the dimension
framework.

FIGURE 19-8 The dimension framework.

There are four primary storage patterns for exposing and tracking
dimension information:

 Ledger Dimensions Ordered sets of Dimension Attribute Values that
are constrained by an account structure and additional accounting

rules—for example, Sales-11005-NorthAmerica-Xbox-70004. This
pattern is normally used on financial data such as journal lines.

 Default Dimensions Unordered, unconstrained sets of dimension
attribute values. For example, a record in the CustTable table might
be set to SalesRegion=NorthAmerica. This value would then be
defaulted into the Ledger Dimension when the customer record was
used on a sales order. When Default Dimensions are shown on a
form, all dimensions that are in use by the chart of accounts for the
current legal entity are shown.

 Dimension Attribute Sets Unordered sets of dimension attributes
that have an enumeration value associated with each dimension
attribute. For example, in the allocation process, the user can mark
which dimension attributes should default from the original
transaction and which should take on a specific value. This pattern is
used infrequently.

 Dimension Sets Ordered sets of dimension values similar to Ledger
Dimensions, but without the requirement that they contain a main
account. Dimension sets are used primarily for reporting and balance
tracking. For example, to view the trial balance list page by main
account and department, the user would create a dimension set
containing those two dimensions.

These four primary patterns are further specialized into dozens of
specific uses. Two of the more common specializations are as follows:

 The Default Account pattern is a specialization of the Ledger
Dimension storage pattern. An instance of the Default Account
pattern is stored like a standard ledger account but only contains a
value for the main account dimension attribute. An example of when
this pattern might be used is when profiles are posted, to specify
which main account is used when a Ledger Dimension is created by
financial processes.

 The Dynamic Account pattern is also a specialization of the Ledger
Dimension storage pattern. This pattern is used on journals where an
Account Type field is available. When Account Type is set to Ledger,
it behaves like a standard Ledger Dimension account. When the
account type is set to something else, it acts as a lookup. For
example, if it is set to Customer, it acts as a customer lookup. When
a nonledger type is used, a predefined hidden dimension attribute is
used to signify customer, vendor, item, or whatever type is used.

In addition, a variety of budgeting patterns mirror the accounting
patterns.

Constraining combinations of values
You can constrain the combinations of values that are valid in Ledger
Dimensions in two ways.

If constraints are set up in the tree in the Configure Account Structure
form (General Ledger > Setup > Financial Dimensions > Configure
Account Structures), these constraints are stored in the
DimensionConstraintNode and DimensionConstraintNodeCriteria tables.
Because the structure of the data in these tables is highly complex, it is
much easier to use the DimensionValidation::validateByTree method to
perform validation rather than to read the constraint node tables directly.
The validateByTree method validates that a Ledger Dimension matches the
constraints specified in these tables.

The other method of constraining values is to click the Relationships
button on the Action Pane of the Configure Account Structures form, and
then use the Select Relationships form to specify the relationships that you
want to apply to the account structure. The Select Relationships form
shows all of the organization model hierarchies that contain organization
model types used as the backing entities for Dimension Attributes in the
current hierarchy. For example, if an account structure contains
departments and cost centers, and an organization model exists that relates
departments to cost centers, that information appears in this form. The
information will appear twice, once in the standard order, and once with
party A and party B reversed. This allows a system administrator to
specify whether departments must be parents or children of a specified
cost center to be valid. These organization model constraints are similarly
applied when you use the DimensionValidation methods.

Creating values
You can create Ledger Dimensions programmatically in two ways. To
explicitly create them, use the DimensionStorage class. You can use this
class to add multiple hierarchies and values. When you call the save
method, it attempts to find an existing combination. If no combination is
found, a new one is created. Ledger Dimensions are immutable, and only
one exists for any particular combination. So if the same account is used
twice, this method guarantees that only one instance is created in the
database.

When working with existing default accounts and ledger dimensions,
you can use the DimensionDefaultingService class to combine the values
into new combinations. For example, the
DimensionDefaultingService::serviceCreateLedgerDimension method
takes a default account and one or more Default Dimensions and combines
them to form a full Ledger Dimension.

Extending the dimension framework
The most common customization of the dimension framework is to add a
new backing entity type. AX 2012 includes approximately 30 backing
entities. The only requirement for adding a backing entity type is that the
entity must have a natural key that consists of a unique, single-part string
with a length of 30 characters or less.

To add a new backing entity type, create a view that meets the following
criteria, to wrap the entity:

 The view name must be DimAttribute<entityname>—for example,
DimAttributeCustTable.

 The view must contain a root data source named BackingEntity,
which is backed by the table containing the surrogate key and the
natural key.

 The view can optionally contain additional related data sources to
handle inheritance or relational associations to provide additional
fields, such as a name from the DirPartyTable table.

 The view must contain the following fields named exactly as
follows:
• Key Must be the surrogate key field of the backing entity—for

example, an Int64 RecId field
• Value Must be the natural key field of the backing entity—for

example, a str30 AccountNum field
• Name Must point to the additional description for the entity—for

example, a str60 description field
If the view meets these criteria, the entity will automatically become

available as a backing entity type.
Because the list of backing entity types are cached both on the client and

on the server, a new type does not appear in the list of existing entities
until a call to clear the caches is performed, or until both the client and
server are restarted. To clear the caches and have the new entity type
appear immediately, use the options on the Tools > Caches menu in the

Development Workspace.

Querying data
Dimension Attributes are data and can be added or removed by the user.
This means that specific dimensions should not be referenced directly in
code because there is no guarantee that a particular dimension exists.
Instead, treat dimension references as configurable data. The one
exception to this rule is the main account dimension attribute. All
installations are guaranteed to have exactly one dimension attribute that is
backed by main account. To retrieve this dimension attribute, use the
DimensionAttribute::getMainAccountDimensionAttribute method.

The technique used to query dimension information depends on the
pattern being used. In the case of a Ledger Dimension, you can use either
the full combination or the constituent parts. To get the full concatenated
combination, create a join to the DimensionAttributeValueCombination
table, as shown in the following example:
Click here to view code image

GeneralJournalAccountEntry gjae;

DimensionAttributeValueCombination davc;

select gjae join DisplayValue from davc where

 davc.RecId == gjae.LedgerDimension;

To get a constituent part of the Ledger Dimension, you can use the
DimensionAttributeLevelValueView abstraction to abstract some of the
complexity of the dimension model:
Click here to view code image

GeneralJournalAccountEntry gjae;

DimensionAttributeLevelValueView dalvv;

DimensionAttribute department;

department = DimensionAttribute::findByName('Department');

select gjae join DisplayValue from dalvv where

 dalvv.ValueCombinationRecId == gjae.LedgerDimension &&

 dalvv.DimensionAttribute == department.RecId;

The main account dimension attribute is a special case. This dimension
attribute has been denormalized to the
DimensionAttributeValueCombination table to optimize the performance
of queries for this value, because it is the most often used:
Click here to view code image

GeneralJournalAccountEntry gjae;

DimensionAttributeValueCombination davc;

MainAccount mainAccount;

select gjae

 join MainAccount from davc where

 davc.RecId == gjae.LedgerDimension

 join Name from mainAccount where

 mainAccount.RecId == davc.MainAccount;

You query Default Dimensions in a similar way to Ledger Dimensions;
however, Default Dimensions do not have a concatenated representation
because they are unordered sets. The
DimensionAttributeValueSetItemView abstraction joins the
DimensionAttributeValueSetItem and DimensionAttributeValue tables to
simplify queries:
Click here to view code image

CustTable custTable;

DimensionAttributeValueSetItemView davsiv;

DimensionAttribute department;

department = DimensionAttribute::findByName('Department');

select custTable

 join DisplayValue from davsiv where

 davsiv.DimensionAttributeValueSet ==

custTable.DefaultDimension &&

 davsiv.DimensionAttribute == department.RecId;

Physical table references
Table 19-2 maps the concept names in the conceptual domain model to the
names of physical table elements that realize these concepts in the
application where the names are not the same.

TABLE 19-2 Mapping between concepts and physical tables.

For more information about the dimension framework, download the
following white papers:

 “Securing Data by Dimension Value by Using Extensible Data
Security (XDS)” at
http://www.microsoft.com/download/en/details.aspx?id=26921

 “Implementing the Account and Financial Dimensions Framework”
at http://technet.microsoft.com/en-us/library/hh272858.aspx

The accounting framework
The accounting framework uses policies and rules to derive accounting
requirements for amounts and business events that are documented on
source document lines. These policies and rules are abstracted as five
categories:

 Accounting Policy Used to determine whether accounting applies for
a business event–monetary amount combination

 Main Account Derivation Rule Used to determine main account
values

 Main Account Dimension List Provider Used to provide a list of
main accounts and side (debit or credit) combinations

 Dimension Derivation Rule Used to determine dimension values
 Accounting Journalization Rule Used to determine which main
account dimension list provider should be used and to determine the
journalization parameters that should be used, such as the posting
type

The accounting framework is also responsible for transferring Subledger
Journal entries to the General Journal. Rules for subledger journal
transfers are specified by legal entity and source document type, and they
determine when the subledger journal is transferred to the general journal
and whether summarization occurs on transfer.

How the accounting framework works
The Accounting Distribution process creates at least one Accounting Event.
An accounting event groups a set of distributions based on their
accounting date. When a Source Document header is submitted to a
Processor for processing and the processor transitions the document from
an In Process state to a Completed state, the Journalization Processor
(journalizer) is called. The journalizer processes all accounting events
associated with the document that are in a started process state, and
transitions them to a journalized process state. An Accounting Policy
determines whether accounting is required for amounts and business

http://www.microsoft.com/download/en/details.aspx?id=26921
http://technet.microsoft.com/en-us/library/hh272858.aspx

events that are documented on a Source Document Line. If the accounting
policy specifies that accounting is required, the journalizer uses
journalization rules, main account derivation rules, dimension derivation
rules, and the main account dimension list provider to determine the main
account–dimension combinations to use when creating balanced subledger
journal entries.

Figure 19-9 shows the conceptual domain model for the accounting
framework.

FIGURE 19-9 The accounting framework.

Subledger Journal Transfer Rules, shown in Figure 19-10, specify when
the transfer should occur (that is, whether it should be synchronous,
asynchronous, or a scheduled batch transfer) and whether amounts for the
same main account–dimension combination should be summarized when
they are transferred to the general journal.

FIGURE 19-10 Rule application in the accounting process.

When to use the accounting framework
You can extend the accounting framework to create concrete
implementations of accounting policy, journalization, main account
derivation, main account dimension list providers, and dimension
derivation rules to support new source document implementations. In AX
2012, the accounting framework was extended to create concrete
accounting policies, journalization, main account derivation, and
dimension derivation rules used to generate subledger journal entries on
the purchase requisition, purchase order, product receipt, vendor invoice,
travel requisition, expense report, and free-text invoice source documents.

Extensions to the accounting framework
The AX 2012 purchase requisition (PurReqSourceDocument prefix) is an
example of an extension of the source document framework components.
The AccPolicyCommitFundsExpensedProd accounting policy and
AccJourRuleCommitFundsForExpProdExtPrice dimension derivation rule
are extensions to the accounting framework that specify the accounting
requirements for the purchase requisition document. These are examples of
extensions to the accounting framework.

Accounting framework process states

The process states for the accounting process are illustrated in Figure 19-
11.

FIGURE 19-11 State model for the accounting process.

Each process state performs an action and updates the status of the
accounting event that is being processed. Table 19-3 describes the process
states.

TABLE 19-3 Process states for the accounting framework.

MorphX model element prefixes for the accounting
framework
Table 19-4 maps the concept names in the conceptual domain model to the
prefixes added to the names of MorphX model elements that realize these

concepts in the application.

TABLE 19-4 Mapping between accounting framework concepts and prefixes
of MorphX model elements.

The source document framework
A Source Document is an original record that documents the occurrence of
one or more Business Events in an accounting system. Concrete Source
Documents, such as purchase orders, product receipts, and vendor
invoices, are entered into an accounting system that records, classifies,
tracks, and reports on the quantity and value of economic resources that
are exchanged or committed for exchange when activities identified by
Business Events such as purchase, product receipt, and payment request
are performed.

How the source document framework works
The source document framework generates a projection of a concrete
source document for a process that transitions the source document status
to reflect the state of the process. Figure 19-12 shows the domain model
for the source document framework.

FIGURE 19-12 The source document domain model.

AX 2012 submits a Source Document header or line record to a
Processor for processing when a user confirms that the documentation
requirements of business events and internal process controls have been
met. A processor is a state machine that transitions the processing of the
source document and its lines from one Process State to another. The
processor creates a process state object that corresponds to the status of
the Source Document or the status of the source document Line Item and
then directs the process state to transition the process to the next state.

A process state first constructs a Concrete Source Document or a
Concrete Line Item from the provided source document header or line
record by using an extension factory facility. The extension factory facility
uses the source document type and the table number of the concrete source
document or the concrete line item provided by the header or line record to
find a matching concrete source document class. A matching source
document class is one that is annotated with a class attribute recognized as
an Extension Attribute by the Extension Factory and that also specifies a
matching source document type and table number as arguments.

A process state accesses a data projection of the concrete source
document and concrete source document line item, performs an action,
transitions the process to a new state, and updates the status of the
process’s concrete source document or concrete line item accordingly. The
data projections of the Concrete Source Document and concrete line item

are defined by one or more interfaces. For example, implementing the
IParty interface provides a party account number, and implementing the
IProduct interface provides an item number and a production category to
an accessing process state.

When to use the source document framework
You can extend the source document framework to implement concrete
source documents that document business events whose financial
consequences are recorded in the subledger journal. In AX 2012, the
source document framework has been extended to implement the purchase
requisition, purchase order, product receipt, vendor invoice, travel
requisition, expense report, and free-text invoice source documents.

Extensions to the source document framework
The AX 2012 free-text invoice (CustInvoiceSourceDocument prefix) is the
simplest extension of the source document framework components.
Readers new to the source document framework should review this
extension of the source document framework first. The concrete source
document and concrete line item implement only those source document
projection interfaces that are required by the accounting distribution
processor and the subledger journalizing processor.

The process states for the subledger journalizing process and the
accounting distribution process are illustrated in Figure 19-13. Each
processing state performs an action and updates the status of the source
document or source document line item that participated in the process.
Table 19-5 describes the states of the subledger journalizing process and
the accounting distribution process.

FIGURE 19-13 State model for the accounting distribution process and the
subledger journalizing process.

TABLE 19-5 States of the subledger journalizing and accounting distribution
processes.

MorphX model element prefixes for the source document
framework
Table 19-6 maps the concept names in the conceptual domain model for
the source document framework to the prefixes added to the names of
MorphX model elements that realize these concepts in the application.

TABLE 19-6 Mapping between source document framework concepts and
prefixes for MorphX model elements.

Chapter 20. Reflection

In this chapter
Introduction
Reflection system functions
Reflection APIs

Introduction
Reflection is the process of obtaining information about assemblies and the
types defined within them, and creating, invoking, and accessing type
instances at run time. By using the reflection application programming
interfaces (APIs) of the AX 2012 application model, you can read and
traverse element definitions as though they were in a table, an object
model, or a tree structure.

You can perform interesting analyses with the information that you get
through reflection. The Reverse Engineering tool provides an excellent
example of the power of reflection. By using the element definitions in
MorphX, the tool generates Unified Modeling Language (UML) models
and entity relationship diagrams (ERDs) that you can browse in Microsoft
Visio.

You can also use reflection to invoke methods on objects. This
capability is of little value to business application developers. But for
framework developers, the power to invoke methods on objects can be
valuable. Suppose you want to programmatically write any record to an
XML file that includes all of the fields and display methods. With
reflection, you can determine the fields and their values and invoke the
display methods to capture their return values.

X++ features a set of system functions that you can use for reflection, in
addition to three reflection APIs. The reflection system functions are as
follows:

 Intrinsic functions A set of functions that you can use to safely refer
to an element’s name or ID

 typeOf system function A function that returns the primitive type for
a variable

 classIdGet system function A function that returns the ID of the
class for an instance of an object

The reflection APIs are as follows:
 Table data A set of tables that contains all element definitions. The
tables provide direct access to the contents of the model store files.
You can query for the existence of elements and certain properties,
such as model, created by, and created datetime. However, you can’t
retrieve information about the contents or structure of each element.

 Dictionary A set of classes that provides a type-safe mechanism for
reading metadata from an object model. Dictionary classes provide
basic and more abstract information about elements in a type-safe
manner. With few exceptions, this API is read-only.

 Treenodes A class hierarchy that provides the Application Object
Tree (AOT) with an API that can be used to create, read, update, and
delete any piece of metadata or source code. This API can provide
all information about anything in the AOT. You navigate the
treenodes in the AOT through the API and query for metadata in a
non–type-safe manner.

This chapter delves into the details of these system functions and APIs.

Reflection system functions
The X++ language features a set of system functions that can be used to
reflect on elements. They are described in the following sections.

Intrinsic functions
Use intrinsic functions whenever you need to reference an element from
within X++ code. Intrinsic functions provide a way to make a type-safe
reference. The compiler recognizes the reference and verifies that the
element being referenced exists. If the element doesn’t exist, the code
doesn’t compile. Because elements have their own life cycles, a reference
doesn’t remain valid forever; an element can be renamed or deleted. Using
intrinsic functions ensures that you are notified of any broken references at
compile time. A compiler error early in the development cycle is always
better than a run-time error later.

All references you make by using intrinsic functions are captured by the
Cross-Reference tool. You can determine where any element is referenced,
regardless of whether the reference is in metadata or code. The Cross-
Reference tool is described in Chapter 2, “The MorphX development
environment and tools.”

Consider these two implementations:

Click here to view code image

print "MyClass"; //Prints MyClass

print classStr(MyClass); //Prints MyClass

Both lines of code have the same result: the string MyClass is printed.
As a reference, the first implementation is weak. It will eventually break if
the class is renamed or deleted, meaning that you’ll need to spend time
debugging. The second implementation is strong and unlikely to break. If
you were to rename or delete MyClass, you could use the Cross-Reference
tool to analyze the impact of your changes and correct any broken
references.

By using the intrinsic functions <Concept>Str, you can reference all
elements in the AOT by their names. You can also use the intrinsic
function <Concept>Num to reference elements that have an ID. Intrinsic
functions are not limited to root elements; they also exist for class
methods, table fields, indexes, and methods. More than 50 intrinsic
functions are available. Here are a few examples:
Click here to view code image

print fieldNum(MyTable, MyField); //Prints 60001

print fieldStr(MyTable, MyField); //Prints MyField

print methodStr(MyClass, MyMethod); //Prints MyMethod

print formStr(MyForm); //Prints MyForm

The ID of an element is assigned when the element is created in the
model store. In the preceding example, the ID 60001 is assigned to the first
element field created in a table. (Element IDs are explained in Chapter 21,
“Application models.”)

Two other intrinsic functions are worth noting: identifierStr and
literalStr. The identifierStr function allows you to refer to elements if a
more feature-rich intrinsic function isn’t available. The identifierStr
function provides no compile-time checking and no cross-reference
information. However, using the identifierStr function is still better than
using a literal because the intention of referring to an element is captured.
If a literal is used, the intention is lost—the reference might be to user
interface text, a file name, or something completely different. The Best
Practices tool detects the use of identifierStr and issues a best practice
warning.

The AX 2012 runtime automatically converts any reference to a label ID
to its corresponding label text. In most cases, this behavior is what you
want; however, you can prevent the conversion by using literalStr. The

literalStr function allows you to refer to a label ID without converting the
label ID to the label text, as shown in this example:
Click here to view code image

print "@SYS1"; //Prints Time transactions

print literalStr("@SYS1"); //Prints @SYS1

In the first line of the example, the label ID (@SYS1) is automatically
converted to the label text (Time transactions). In the second line, the
reference to the label ID isn’t converted.

typeOf system function
The typeOf system function takes a variable instance as a parameter and
returns the base type of the parameter. Here is an example:
Click here to view code image

int i = 123;

str s = "Hello world";

MyClass c;

guid g = newGuid();

print typeOf(i); //Prints Integer

print typeOf(s); //Prints String

print typeOf(c); //Prints Class

print typeOf(g); //Prints Guid

pause;

The return value is an instance of the Types system enumeration. It
contains an enumeration for each base type in X++.

classIdGet system function
The classIdGet system function takes an object as a parameter and returns
the class ID for the class element of which the object is an instance. If the
parameter passed is null, the function returns the class ID for the declared
type, as shown in this example:
Click here to view code image

MyBaseClass c;

print classIdGet(c); //Prints the ID of MyBaseClass

c = new MyDerivedClass();

print classIdGet(c); //Prints the ID of MyDerivedClass

pause;

This function is particularly useful for determining the type of an object
instance. Suppose you need to determine whether a class instance is of a

particular class. The following example shows how you can use classIdGet
to determine the class ID of the _anyClass variable instance. If the
_anyClass variable really is an instance of MyClass, it’s safe to assign it to
the myClass variable.
Click here to view code image

void myMethod(object _anyClass)

{

 MyClass myClass;

 if (classIdGet(_anyClass) == classNum(MyClass))

 {

 myClass = _anyClass;

 ...

 }

}

Notice the use of the classNum intrinsic function, which evaluates the
parameter at compile time, and the use of classIdGet, which evaluates the
parameter at run time.

Because inheritance isn’t taken into account, this sort of implementation
is likely to break the object model. In most cases, any instance of a derived
MyClass class should be treated as an actual MyClass instance. The
simplest way to handle inheritance is to use the is and as operators. For
more information, see Chapter 4, “The X++ programming language.”

 Note

This book promotes customization through inheritance by
using the Liskov substitution principle.

Reflection APIs
The X++ system library includes three APIs that can be used to reflect on
elements. They are described in the following sections.

Table data API
Suppose that you want to find all classes whose names begin with Invent.
The following example shows one way to conduct your search:
Click here to view code image

static void findInventoryClasses(Args _args)

{

 SysModelElement modelElement;

 while select name from modelElement

 where modelElement.ElementType ==

UtilElementType::Class

 && modelElement.Name like 'Invent*'

 {

 info(modelElement.Name);

 }

}

The SysModelElement table provides access to all elements. The
ElementType field holds the concept to search for. The data model for the
model store contains nine tables, which are shown in Figure 20-1.

FIGURE 20-1 The data model for the model store.

 Note

The UtilElements table is still available for backward
compatibility. It is implemented as an aggregated view on top
of the SysModel tables. For performance reasons, you should
limit usage of this compatibility feature and eventually rewrite
your code to use the new API.

Because of the nature of the table data API, the SysModel tables can
also be used as data sources in a form or a report. A form showing the
table data is available from Tools > Model Management > Model
Elements. In the form, you can use standard query capabilities to filter and

search the data.
The SysModelElement table contains all of the elements in the model

store; it is related to the SysModelElementData table, which contains the
various definitions of each element. For each SysModelElement record,
there is at least 1 SysModelElementData record—and perhaps as many as
16 if the element is customized across all 16 layers. In other words, the
element defines the customization granularity. You cannot customize a
unit that is smaller than an element. For example, even if you change just
one property on an element, a new record is inserted into the
SysModelElementData table that includes all properties of the element.

 Note

System elements, as listed under the System Documentation
node in the AOT, are not present in these tables.

Elements are structured in hierarchies. The root of a hierarchy is the root
element—for example, a form. The form contains data source, control, and
method elements. The hierarchy can encompass multiple levels; for
example, a form control can have methods. The root element and parent
element are exposed in the RootModelElement and ParentModelElement
fields of the SysModelElement table. The job in the following code finds
all elements under the CustTable form element and lists the name and type
of each element, the name of the parent element, and the AOT path of the
associated TreeNode class.
Click here to view code image

static void findElementsOnCustTable(Args _args)

{

 SysModelElement modelElement;

 SysModelElement rootModelElement;

 SysModelElement parentModelElement;

 SysModelElementType modelElementType;

 while select name from modelElement

 join Name from modelElementType

 where modelElementType.RecId ==

modelElement.ElementType

 join name from parentModelElement

 where parentModelElement.RecId ==

modelElement.ParentModelElement

 exists join rootModelElement

 where rootModelElement.RecId ==

modelElement.RootModelElement

 && rootModelElement.Name ==

formStr(CustTable)

 && rootModelElement.ElementType ==

UtilElementType::Form

 {

 info(strFmt("%1, %2, %3, %4",

 parentModelElement.Name, modelElementType.Name,

modelElement.Name,

 SysTreeNode::modelElement2Path(modelElement)));

 }

}

Notice the use of the ElementType field in the two preceding examples.
If the element type is a UtilElement, you will find a matching entry in the
UtilElementType enum; alternatively, you can always join to the
SysModelElementType table, which contains information about all
element types. All root elements and a few former subelements are
Utilelements. You can access them through the legacy UtilElements table.
Data models with higher fidelity were introduced in AX 2012 to support
more granular customizations, which among other things facilitate easier
upgrade and simpler side-by-side installation of models. For more
information, see Chapter 21.

Table 20-1 lists the reflection tables and views. See Figure 20-1 to learn
how these tables relate to each other.

TABLE 20-1 Reflection tables and views.

 Note

Alternative versions of the tables in Table 20-1 exist. If you
postfix the table name with the word Old, you can access the
baseline model store instead of the primary model store. For
example, the SysModelElementOld table contains the model
elements in the baseline model store. The baseline model
store is primarily used in upgrade scenarios.

You can use the
Microsoft.Dynamics.AX.Framework.Tools.ModelManagement namespace
provided by the AxUtilLib.dll assembly to create, import, export, and
delete models. This assembly can be used from X++—the SysModelStore
class wraps some of the functionality for easier consumption in X++.

 Note

When you use the table data API in an environment with
version control enabled, the values of some of the fields are
reset during the build process. For file-based version control
systems, the build process imports .xpo files into empty layers
in AX 2012. The values of the CreatedBy, CreatedDateTime,
ModifiedBy, and ModifiedDateTime fields are set during this
import process and therefore don’t survive from build to
build.

Dictionary API
The dictionary API is a type-safe reflection API that can reflect on many
elements. The following code example is a revision of the preceding
example that finds inventory classes by using the dictionary API. This API
gives you access to more detailed type information. This example lists
only abstract classes that start with the string Invent:
Click here to view code image

static void findAbstractInventoryClasses(Args _args)

{

 Dictionary dictionary = new Dictionary();

 int i;

 DictClass dictClass;

 for(i=1; i<=dictionary.classCnt(); i++)

 {

 dictClass = new

DictClass(dictionary.classCnt2Id(i));

 if (dictClass.isAbstract() &&

 strStartsWith(dictClass.name(), 'Invent'))

 {

 info(dictClass.name());

 }

 }

}

The Dictionary class provides information about which elements exist
and even includes system elements. For example, with this information,
you can instantiate a DictClass object that provides information about the
class, such as whether the class is abstract, final, or an interface; which
class it extends; whether it implements any interfaces; what attributes it is
decorated with; and what methods it includes. Notice that the DictClass
class can also reflect on interfaces. Also notice that the class counter is
converted into a class ID. This conversion is required because the IDs
aren’t listed consecutively.

When you run this job, you’ll notice that it’s much slower than the
implementation that uses the table data API—at least the first time you run
it. The job performs better after the information is cached.

Figure 20-2 shows the objects that support reflection in the dictionary
API.

FIGURE 20-2 The object model for the dictionary reflection API.

The following example lists the static methods on the CustTable table
and reports their parameters:
Click here to view code image

static void findStaticMethodsOnCustTable(Args _args)

{

 DictTable dictTable = new

DictTable(tableNum(CustTable));

 DictMethod dictMethod;

 int i;

 int j;

 str parameters;

 for (i=1; i<=dictTable.staticMethodCnt(); i++)

 {

 dictMethod = new DictMethod(

 UtilElementType::TableStaticMethod,

 dictTable.id(),

 dictTable.staticMethod(i));

 parameters = '';

 for (j=1; j<=dictMethod.parameterCnt(); j++)

 {

 parameters += strFmt("%1 %2",

 extendedTypeId2name(dictMethod.parameterId(j)),

 dictMethod.parameterName(j));

 if (j<dictMethod.parameterCnt())

 {

 parameters += ', ';

 }

 }

 info(strFmt("%1(%2)", dictMethod.name(),

parameters));

 }

}

As mentioned earlier, reflection can also be used to invoke methods on
objects. The following example invokes the static find method on the
CustTable table:
Click here to view code image

static void invokeFindOnCustTable(Args _args)

{

 DictTable dictTable = new

DictTable(tableNum(CustTable));

 CustTable customer;

 customer = dictTable.callStatic(

 tableStaticMethodStr(CustTable, Ffind), '1201');

 print customer.currencyName(); //Prints US Dollar

 pause;

}

Notice the use of the tableStaticMethodStr intrinsic function to
reference the find method.

You can also use this API to instantiate class and table objects. Suppose
you want to select all records in a table with a specified table name. The
following example shows you how:
Click here to view code image

static void findRecords(TableId _tableId)

{

 DictTable dictTable = new DictTable(_tableId);

 Common common = dictTable.makeRecord();

 FieldId primaryKeyField = dictTable.primaryKeyField();

 while select common

 {

 info(strFmt("%1", common.(primaryKeyField)));

 }

}

First, notice the call to the makeRecord method, which instantiates a

table cursor object that points to the correct table. You can use the select
statement to select records from the table. If you want to, you can also
insert records by using the table cursor. Notice the syntax used to get a
field value out of the cursor object; this syntax allows any field to be
accessed by its field ID. This example prints the content of the primary key
field. Alternatively, you can use the getFieldValue method to get a value
based on the name of the field. You can use the makeObject method on the
DictClass class to create an object instance of a class.

All of the classes in the dictionary API discussed so far are defined as
system APIs. On top of each of these is an application-defined class that
provides even more reflection capabilities. These classes are named
SysDict<Concept>, and each class extends its counterpart in the system
API. For example, SysDictClass extends DictClass.

Consider the following example. Table fields have a property that
specifies whether the field is mandatory. The DictField class returns the
value of a mandatory property as a bit that is set in the return value of its
flag method. Testing to determine whether a bit is set is somewhat
cumbersome, and if the implementation of the flag changes, the consuming
application breaks. The SysDictField class encapsulates the bit-testing
logic in a mandatory method. The following example shows how to use
the method:
Click here to view code image

static void mandatoryFieldsOnCustTable(Args _args)

{

 SysDictTable sysDictTable =

SysDictTable::newName(tableStr(CustTable));

 SysDictField sysDictField;

 Enumerator enum =

sysDictTable.fields().getEnumerator();

 while (enum.moveNext())

 {

 sysDictField = enum.current();

 if (sysDictField.mandatory())

 {

 info(sysDictField.name());

 }

 }

}

You might also want to browse the SysDict classes for static methods.
Many of these methods provide additional reflection information and

better interfaces. For example, the SysDictionary class provides a classes
method that returns a collection of SysDictClass instances. You could use
this method to simplify the earlier findAbstractInventoryClasses example.

Treenodes API
The two reflection APIs discussed so far have limitations. The table data
API can reflect only on the existence of elements and on a small subset of
element metadata. The dictionary API can reflect in a type-safe manner,
but only on the element types that are exposed through this API.

The treenodes API can reflect on everything, but as always, power
comes at a cost. The treenodes API is harder to use than the other
reflection APIs, it can cause memory and performance problems, and it
isn’t type-safe.

In the following code, the example from the “Table data API” section
has been revised to use the treenodes API to find inventory classes:
Click here to view code image

static void findInventoryClasses(Args _args)

{

 TreeNode classesNode = TreeNode::findNode(@'\Classes');

 TreeNodeIterator iterator = classesNode.AOTiterator();

 TreeNode classNode = iterator.next();

 ClassName className;

 while (classNode)

 {

 className = classNode.treeNodeName();

 if (strStartsWith(className, 'Invent'))

 {

 info(className);

 }

 classNode = iterator.next();

 }

}

First, notice that you find a node in the AOT based on the path as a
literal. The AOT macro contains definitions for the primary AOT paths.
For readability, the examples in this chapter don’t use the macro. Also
notice the use of a TreeNodeIterator class to iterate through the classes.

The following small job prints the source code for the find method on
the CustTable table by calling the AOTgetSource method on the treenode
object for the find method:
Click here to view code image

static void printSourceCode(Args _args)

{

 TreeNode treeNode =

 TreeNode::findNode(@'\Data

Dictionary\Tables\CustTable\Methods\find');

 info(treeNode.AOTgetSource());

}

The treenodes API provides access to the source code of nodes in the
AOT. You can use the ScannerClass class to turn the string that contains
the source code into a sequence of tokens that can be compiled.

In the following code, the preceding example has been revised to find
mandatory fields on the CustTable table:
Click here to view code image

static void mandatoryFieldsOnCustTable(Args _args)

{

 TreeNode fieldsNode = TreeNode::findNode(

 @'\Data Dictionary\Tables\CustTable\Fields');

 TreeNode field = fieldsNode.AOTfirstChild();

 while (field)

 {

 if (field.AOTgetProperty('Mandatory') == 'Yes')

 {

 info(field.treeNodeName());

 }

 field = field.AOTnextSibling();

 }

}

Notice the alternate way of traversing subnodes. Both this and the
iterator approach work equally well. The only way to determine whether a
field is mandatory with this API is to know that your node models a field.
Field nodes have a property named Mandatory, which is set to Yes (not to
True) for mandatory fields.

Use the Properties macro when referring to property names. This macro
contains text definitions for all property names. By using this macro, you
avoid using literal names, like the reference to the Mandatory property in
the preceding example.

Unlike the dictionary API, which can’t reflect all elements, the
treenodes API reflects everything. The SysDictMenu class exploits this
capability, providing a type-safe way to reflect on menus and menu items

by wrapping information provided by the treenodes API in a type-safe
API. The following job prints the structure of the MainMenu menu, which
typically is shown in the navigation pane:
Click here to view code image

static void printMainMenu(Args _args)

{

 void reportLevel(SysDictMenu _sysDictMenu)

 {

 SysMenuEnumerator enumerator;

 if (_sysDictMenu.isMenuReference() ||

 _sysDictMenu.isMenu())

 {

 setPrefix(_sysDictMenu.label());

 enumerator = _sysDictMenu.getEnumerator();

 while (enumerator.moveNext())

 {

 reportLevel(enumerator.current());

 }

 }

 else

 {

 info(_sysDictMenu.label());

 }

 }

 reportLevel(SysDictMenu::newMainMenu());

}

Notice that the setPrefix function is used to capture the hierarchy and
that the reportLevel function is called recursively.

You can also use the treenode API to reflect on forms and reports, and
on their structure, properties, and methods. The Compare tool in MorphX
uses this API to compare any node with any other node. The SysTreeNode
class contains a TreeNode class and implements a cascade of interfaces,
which makes TreeNode classes consumable for the Compare tool and the
Version Control tool. The SysTreeNode class also contains a powerful set
of static methods.

The TreeNode class is actually the base class of a larger hierarchy. You
can cast instances to specialized TreeNode classes that provide more
specific functionality. The hierarchy isn’t fully consistent for all nodes.
You can browse the hierarchy in the AOT by clicking System
Documentation, clicking Classes, right-clicking TreeNode, pointing to
Add-Ins, and then clicking Type Hierarchy Browser.

Although this section has only covered the reflection functionality of the
treenodes API, you can use the API just as you do the AOT designer. You
can create new elements and modify properties and source code. The
Wizard Wizard uses the treenodes API to generate the project, form, and
class implementing the wizard functionality. You can also compile and get
layered nodes and nodes from the baseline model store. The capabilities
that go beyond reflection are very powerful, but proceed with great care.
Obtaining information in a non–type-safe manner requires caution, but
writing in a non–type-safe manner can lead to catastrophic situations.

TreeNodeType
Different types of treenodes have different capabilities. The TreeNodeType
class can be used to reflect on the treenode. The TreeNodeType class
provides reliable alternatives to making assumptions about a treenode’s
capabilities based on its properties. In previous versions of Microsoft
Dynamics AX, fragile assumptions could be found throughout the code
base; for example, it was assumed that a treenode supported version
control if the treenode had a utilElementType and no parent ID.

The TreeNodeType class provides a method that returns the type
identification, plus seven methods that return Boolean values providing
information about the treenode’s capabilities. The usage of these methods
is described later in this section. Figure 20-3 shows the information that
the TreeNodeType class provides for each treenode in a project containing
a table and a form. The left side of the illustration shows a screenshot of
the project itself. The right side contains a table that, for each treenode,
lists the treenode type ID and capabilities.

FIGURE 20-3 Information provided by the TreeNodeType class for the
treenodes in a table and a form.

The following list describes the treenode type ID and capabilities in
more detail:

 ID The ID of the treenode type is defined in the system and is
available in the TreeNodeSysNodeType macro. Nodes with the same
ID have the same behavior.

 isConsumingMemory Tree nodes in MorphX contain data that the
AX 2012 runtime doesn’t manage, and the memory for a node isn’t

automatically deallocated. For each node where
isConsumingMemory is true, you should call the treenodeRelease
method to free the memory when you no longer reference any
subnodes. Alternatively, you can use the TreeNodeTraverser class,
because the class will handle this task for you. For an example of
this, see the traverseTreeNodes method of the SysBpCheck class.

 isGetNodeInLayerSupported With treenodes that support the
getNodeInLayer method, you can navigate to versions of the node in
other layers. In other words, you can access the nodes in the lower
layers by using this method.

 isLayerAware Treenodes that are layer-aware display a layer
indicator in the AOT—for example, SYS or USR. You can retrieve
the layer of a node by using the AOTLayer method, and you can
retrieve all layers that are available by using the AOTLayers method.
Note that the AOTLayers method does not roll up layers for
subnodes; this method returns what is shown in the AOT. The roll-up
layer information is available through the ApplObjectLayerMask
method, which is used in the AOT to determine whether a node is
shown in bold. If a node is bold in the AOT, either the node itself or
one of its subnodes is present in the current layer.

 isModelElement Treenodes that are model elements are represented
by a record in the SysModelElement table.

 isRootElement A root element is placed in the root of the treenode
hierarchy, and the RootModelElement field for all submodel
elements references the root element’s recid.

 isUtilElement If the treenode is a UtilElement, a corresponding
record can be found in the UtilElements view. Further, the primary
key information can be retrieved through the treenode’s utilElement
method.

 isVCSControllableElement You can use the
isVCSControllableElement method, shown in the following code
example, to determine the granularity of the file-based artifacts that
are stored in a version control system. In most cases, the granularity
under version control is per root element; in other words, you are
working on entire forms, classes, and tables under version control.
However, for Microsoft Visual Studio elements, the granularity is
different, and you are able to work on individual Visual Studio files
—for example, .cs files.

Click here to view code image

if (treenode.treeNodeType().isVCSControllableElement())

{

 versionControl.checkOut(treenode);

}

The following example shows how to access the type information for a
treenode:
Click here to view code image

static void GetTreeNodeTypeInfo(Args _args)

{

 TreeNode treeNode = TreeNode::findNode(

 @'\Data Dictionary\Tables\CustTable\Methods\find');

 TreeNodeType treeNodeType = treeNode.treeNodeType();

 info(strFmt("Id: %1", treeNodeType.id()));

 info(strFmt("IsConsumingMemory: %1",

treeNodeType.isConsumingMemory()));

 info(strFmt("IsGetNodeInLayerSupported: %1",

 treeNodeType.isGetNodeInLayerSupported()));

 info(strFmt("IsLayerAware: %1",

treeNodeType.isLayerAware()));

 info(strFmt("IsModelElement: %1",

treeNodeType.isModelElement()));

 info(strFmt("IsRootElement: %1",

treeNodeType.isRootElement()));

 info(strFmt("IsUtilElement: %1",

treeNodeType.isUtilElement()));

 info(strFmt("IsVCSControllableElement: %1",

 treeNodeType.isVCSControllableElement()));

}

 Note

You can use the TreeNodeType class to reflect on the meta-
model. This class functions on a higher level of abstraction—
instead of reflecting on the elements in the AOT, it reflects on
element types. The SysModelMetaData class provides another
way of reflecting on the meta-model.

Chapter 21. Application models

In this chapter
Introduction
Layers
Models
Element IDs
Creating a model
Preparing a model for publication
Upgrading a model
Moving a model from test to production
Model store API

Introduction
AX 2012 introduced a new era for managing metadata artifacts.

In previous versions of the product, metadata artifacts were stored in
Application Object Data (AOD) files. These files served two purposes.
First, they acted as the deployment vehicle for metadata—for example,
you could copy an AOD file from the source system to the target system.
Second, they provided run-time storage for model elements. The AOD file
provided the physical storage for a native indexed sequential access
method (ISAM) database that contained the metadata, and the runtime read
model elements from this storage.

This method of managing metadata artifacts was not optimal. From a
deployment perspective, AOD files didn’t allow side-by-side installation
of metadata in the same layer, didn’t contain any structured information
about their contents, and couldn’t be digitally signed. From a runtime
perspective, the AOD format supported only one table and provided no
capability for adding or changing columns. To support the evolution of
runtime scenarios, the product had to move toward a relationally correct
schema.

In AX 2012, metadata is stored in the Microsoft SQL Server database
along with business data. The tables containing the metadata are called the
model store. This change removes all obstacles to providing a relationally
correct schema. Elements in the model store, such as classes, tables, forms,
methods, and controls, are grouped into models. Each model can be

exported to a file-based format with the .axmodel extension. These files
are managed assemblies and therefore support digital signing, which
makes them tamper-proof. Model files are the primary deployment vehicle
for model elements in AX 2012.

In previous versions of Microsoft Dynamics AX, independent software
vendors (ISVs) sometimes delivered textual source code files (in XPO
format) to customers. Releasing source code files is an undesirable
practice, but it was used to overcome restrictions on element IDs for
combining multiple solutions in the same layer. With AX 2012, you no
longer need to release source code files to customers. Model files do not
contain element IDs, you can install multiple models in the same layer, and
each model file contains a manifest that describes the model.

 Note

XPO files are still fully supported in AX 2012. Developers
primarily use them to exchange source code and for storage in
a version control system.

In previous versions of Microsoft Dynamics AX, a complete set of AOD
files could be deployed in one operation, typically when a solution was
moved from a staging system to a production system. The primary concern
in this scenario is to reduce downtime. Copying all AOD files in one
operation reduced downtime because there was no need to regenerate the
Application Object Index (AOI) file or to recompile the application code.
To satisfy the same need in AX 2012, you can export an entire model store
in a binary file with the .axmodelstore extension. This file can be imported
into the target system, and the system’s downtime is restricted to the time
it takes to restart the Application Object Server (AOS).

Layers
The AX 2012 runtime executes a program defined in the MorphX
development environment. The program itself consists of elements.

Unlike most systems, AX 2012 can contain multiple definitions of each
element—for example, multiple implementations of the same method.
These element definitions are stacked in layers. The AX 2012 runtime uses
the element definitions from the highest layer in which they are found. For
example, a method defined in the SYS layer (the lowest layer) is not used
if another definition of the same method exists in any other layer.

This layered development approach provides several benefits, the most
important being the ability to customize the program shipped by
Microsoft, Microsoft partners, and ISVs without editing the original source
code.

 Note

The layer metaphor is also used for graphical drawing tools.
With layering, you can draw on top of an existing image
without touching the original image underneath. Layers in AX
2012 work the same way, but with code and properties instead
of pixels, shapes, and shades.

When you start AX 2012, you specify which layer you want to start in.
By default, you start in the USR layer. Any element you create or edit is
stored in that layer. If you edit an element that exists in a lower layer, a
copy of the element with your edits is moved to your layer. This process is
known as over-layering.

Other benefits of layers include the ability to revert to the original
definition of an element by deleting the over-layering version. You can
also compare versions of an element—for example, to see which lines of
code you have inserted. This is particularly useful during upgrades.

 Caution

Develop your solution one layer at a time, from the bottom
up. Working in multiple layers at the same time on the same
AOS is highly discouraged—even for different users. For
more information, see the AX 2012 white paper, “Developing
Solutions in a Shared AOS Development Environment”
(http://www.microsoft.com/download/en/details.aspx?
id=26919).

The process of editing an element from a layer higher than the current
layer is known as under-layering. By design, these edits are routed to the
higher layer.

AX 2012 has 16 metadata layers, each with its own purpose. Table 21-1
describes these layers.

http://www.microsoft.com/download/en/details.aspx?id=26919

TABLE 21-1 Metadata layers.

Within a layer, metadata elements are grouped into models. Models are
covered in the following section.

Models
A model is a logical container of metadata elements, such as forms, tables,
reports, and methods. For more information about element types, see
Chapter 1, “Architectural overview.”

The model store can contain as many models as you want. Figure 21-1
shows the relationship between layers, models, and elements.

FIGURE 21-1 Layers, models, and elements.

 Note

The term model was selected for several reasons. First, any
solution built in AX 2012 is a model of a real-life business.
Second, a model is irreducible—even a part of a model is a
model, so the term covers stand-alone solutions, extensions,
customizations, patches, and other components. And finally,
the term is simple and catchy—it will quickly become a part
of your AX 2012 vocabulary.

You can have as many models in each layer as you want. This means
you can segment your layer into as many models as you like. Here are
some development scenarios where this can be useful:

 When you deliver more than one solution You can have a model
for each solution you are working on. This enables you to work on
them simultaneously.

 When your solution is getting too large You can segment your
solution into several models and have each team or team member
work on a different one. A model can be either self-contained or
have dependencies on other models. Thus you can clearly define
responsibilities between the models, clearly define the application
programming interfaces (APIs) between the models, and build the
models individually.

 When you write unit tests You can have a model for your
production code and a model for your unit tests, so you can import
all your unit tests, run them, and remove them from the system
easily.

You can get a model in two ways: you can either create one on your
own, or you can receive one from someone else. Because you can have as
many models as you want in each layer, you can deploy models from
several sources in the same layer.

Suppose you are a customer and want to install two ISV solutions that
are available in the ISV layer. In previous versions, you would have had a
tough choice to make. Either you picked your favorite solution and learned
to live without the other one, or you invested in having the two solutions
merged into one layer. This merge was technically challenging and costly

if updates to either solution were released. In AX 2012, you just download
the two models and then use AXUtil, a command-line utility that is
available when you install AX 2012, to import them. When a new version
of either model is released, you simply use AXUtil to update the model.

The layer model element containment hierarchy has one restraint: an
element can be defined only once per layer. In other words, you cannot
install two models containing a definition of the same element in the same
layer on the same system. Here are some examples:

 Two models that contain a class named MyClass cannot be installed
side by side in the same layer.

 Two elements of the same type under the same parent element (or
without a parent) cannot coexist in the same layer if they have the
same name or the same ID. For example, a table cannot have two
fields with the same name or two fields with the same ID, and you
cannot have two display menu items with the same name in the same
layer.

This limitation makes it possible for the AX 2012 runtime to select the
right version of an element to execute based on the layer in which it is
contained.

You can encounter this limitation in two ways:
 You create an element and accidentally give it a name that is being
used for another element in another model. A good way to avoid this
is to prefix your new elements with a short string that uniquely
identifies you, your company, or your solution. This practice is
widely used.

 You customize an existing element that also has been customized by
someone else in another model. There are various ways to limit the
number of customized elements, such as by using events, but in
some situations this is unavoidable.

 Note

Because element IDs are assigned at deployment time, the
system automatically avoids duplicate IDs. Element IDs are
covered next.

Element IDs

All element types have names, and a few element types also have an
integer-based ID. The ID is a 32-bit integer and is assigned at installation
time. This means that the same element might have a different ID on two
different systems.

 Note

In previous versions of Microsoft Dynamics AX, IDs were
16-bit integers that were assigned at creation time from a pool
of IDs for each layer. This could result in running out of IDs
and ID collisions when installing solutions developed
independently.

Two new properties have been introduced to support scenarios in which
elements are upgraded or renamed:

 The LegacyID property has been added to the few element types that
have an element ID. This property enables elements to keep their IDs
from the AOD files when imported as a model file to a model store.

 The Origin property is a GUID that uniquely identifies the element
and eliminates the risk of a collision. The Origin property has been
added to all root element types and element types with IDs. When
this property is in use, AXUtil (and other components) can recognize
renamed elements during import.

AXUtil assigns element IDs when a model is imported, based on the
following rules:

1. If an element already exists with the same Origin, replace the
element and reuse its ID; otherwise proceed to step 2.

2. If an element already exists with the same Type, Name, and
ParentID, replace the element and reuse its ID; otherwise proceed to
step 3.

3. If the imported element has a LegacyID, and the LegacyID is
available on the target system, add the element, setting the ID to
equal the LegacyID; otherwise proceed to step 4.

4. Assign a new installation-specific ID that does not collide with any
LegacyIDs (greater than 60,000 for fields, and greater than 1,000,000
for all other element types).

This algorithm ensures that IDs are maintained in simple and advanced
import scenarios. Consider a scenario where you have delivered several

variations of the same solution to multiple customers as AOD or XPO files
in AX 2009. This means that you probably maintain a copy of the source
code for each of your customers in order to service them. As the number of
customers grows, so does the incentive to consolidate the variations into
one common solution. Step 2 in the algorithm ensures that IDs are
maintained on the customer’s installation when the customer upgrades
from a specialized solution to a common solution.

During regular development, the system maintains IDs, and you do not
need to be concerned with them. However, you still need to pay attention
to IDs in two situations: when upgrading a model and when moving from
test to production. These two situations are covered in later sections in this
chapter.

 Note

The data export/import functionality available under System
Administration automatically adjusts element ID references in
the imported business data to match the element IDs on the
target system. This adjustment skips all unstructured data. If
you need to reference an element in a persisted container, for
example, it is a best practice to reference the element by
name.

Creating a model
Before you implement your solution, you need to create a new model. You
can create a model in several ways. You can do so in MorphX through
Tools > Model Management > Create Model, you can use Windows
PowerShell from the AX 2012 Management Shell, or you can use AXUtil.
The examples in this chapter use the last, as shown in the following
example:
Click here to view code image

AXUtil create /model:"My Model" /Layer:USR

Notice that you have to specify which layer the model belongs to. A
model cannot span layers.

 Note

Each layer has a system-defined model. If you don’t create

your own model, the system-defined model is used. The
system-defined model has certain deployment restrictions
because its manifest is read-only. It is highly recommended
that you create your own models.

After creating the model, you need to select it. In the status bar in
MorphX, you can see the current model. You can change the model by
clicking it. All elements that you create in the AOT are contained in the
current model.

You can easily see which model an element belongs to by inspecting the
element’s properties. You can also enable a model indicator in the AOT on
each element in Tools > Options > Development. You can move an
element between models in the same layer by right-clicking the element
and then clicking Move To Model.

Now that you have your model, you are ready to implement your
solution.

 Note

You can delete any model by using the AXUtil delete
command. This applies to models you have created and those
you have installed. By using the /layer:<layer> option, you
can even delete all models in a layer.

Preparing a model for publication
When your implementation is complete, it is time to prepare the model for
publication. But before you do, you might want to create a MorphX project
that contains the elements in your model. You can create the project by
using Tools > Model Management > Create Project. This allows you to
ensure that the model contains what you expect before you publish it. You
can also use AXUtil to list the elements in a model, as shown in the
following example:
Click here to view code image

AXUtil view /model:"My Model" /verbose

Preparing your model for publication consists of the following steps:
1. Set the model manifest.
2. Export the model to disk.

3. Add a digital signature.

Setting the model manifest
The model is the container for your solution. You can describe your model
in the model manifest. Table 21-2 contains a description of the properties
of the model manifest. When you export your model, the exported file
contains the manifest. The manifest helps consumers of your model
understand its contents before installing it.

TABLE 21-2 Model manifest properties.

The simplest way to edit a manifest is to use XML notation, as shown
here:
Click here to view code image

AXUtil manifest /model:"My Model" /xml >MyManifest.xml

notepad MyManifest.xml

AXUtil edit /model: "My Model" @MyManifest.xml

 Note

It is not possible to express dependencies between models in
the model manifest. However, if you use the slipstream

installation mechanism of the AX 2012 Setup program, you
can control the installation sequence.

Exporting the model
When the manifest of the model has been populated, it is time to export the
model to disk so that you can share it outside your organization, as shown
here:
Click here to view code image

AXUtil export /model:"My Model" /file:MyModel.axmodel

The .axmodel extension is used for model files. The model file contains
all of the elements in the model, plus the model manifest. Model files are
agnostic concerning element IDs. When the elements in the model file are
imported into a target system, they are assigned new installation-specific
IDs. XPO files handle element IDs similarly.

 Tip

Under the covers, a model file is a managed assembly. This
means you can use assembly reflection tools, like ildasm, to
inspect the contents.

You can verify the model file contents by using AXUtil, as shown here:
Click here to view code image

AXUtil view /file:MyModel.axmodel /verbose

 Note

AXUtil is a powerful tool and, for a command-line tool, also
quite user friendly. Notice that some commands, like view and
manifest, can be used either on a model in the model store or
on a model file on disk. The most frequently used parameter
is the /model parameter. In the examples in this chapter, the
name of the models are provided when this parameter is used,
but you can also specify the model ID (which typically is
much shorter, and thus more convenient to write) or the
model’s manifest XML file. This latter option is particularly
useful when you are writing command scripts, such as build

scripts for version control. All commands also support a
/verbose parameter, which displays additional details about
the command execution. For a complete list of commands and
options, try AXUtil /?.

Signing the model
The model file is now ready to be shared. However, you should consider
one more thing before you make it publicly available. The model file
contains binary code and, as such, this code can potentially harm a system,
especially if the code is tampered with after it leaves your hands. To
ensure that the customers who receive your model file can trust the file—
or at least be able to tell that the model comes from a trustworthy source—
you can add a digital signature to the model file.

When a signed model is imported, the model file is guaranteed not to
have been tampered with since it was exported. If it has been tampered
with, the import process fails. AX 2012 supports two ways of signing a
model: strong name signing and Authenticode signing.

Strong name signing
To use strong name signing for a model, you need to use the Microsoft
.NET Framework Strong Name Tool, SN.exe, to generate a key/pair file.
When you export your model to an .axmodel file, you specify the key to
sign the model with, as shown here:
Click here to view code image

SN -k mykey.snk

AXUtil export /model:"My Model" /file:MyModel.axmodel

/key:mykey.snk

Authenticode signing
If you are a publisher of models, such as an ISV that provides models for
download, consider using Authenticode to sign your model. If you do,
your customers can be sure that the file hasn’t been tampered with and that
you created the model.

When an Authenticode-signed model is imported, the model’s publisher
is authenticated. This means that the model file can be traced to you.

To Authenticode-sign a model file, first export it by using AXUtil. Then
use the SignTool to perform the actual signing, as shown here:
Click here to view code image

signtool sign /f mycertprivate.pfx /p password

MyModel.axmodel

Importing model files
If you have received or downloaded a model file, you can import it by
using AXUtil, as shown in the following code:
Click here to view code image

AXUtil import /file:SomeModel.axmodel

The model file is always imported into the layer it was exported from. It
is a best practice to stop the AOS before importing model files.

 Note

You don’t have to specify file extensions when using AXUtil.
The tool automatically adds the right extension if it is omitted.
In this book, extensions are included for clarity.

Figure 21-2 shows a model that has been successfully imported into a
layer in which a model already exists.

FIGURE 21-2 Side-by-side installation of two models.

The import operation will be cancelled if one or more elements from the
model file are already defined in the layer into which the model is being
imported. If you rerun the import operation with the /verbose option, as
shown in the following code, you will get a list of conflicting elements.
Click here to view code image

AXUtil import /file:SomeModel.axmodel /verbose

You have two options for proceeding with the import: overwrite and
push.

Importing model files with the overwrite option
You can decide to overwrite existing conflicting elements with the new
definitions of the model element from the model file. You do so by
specifying the /conflict:overwrite option on the import command, as

shown here:
Click here to view code image

AXUtil import /file:SomeModel.axmodel /conflict:overwrite

Figure 21-3 shows the result of a successful import that uses the
/conflict:overwrite option. The imported model and the existing model that
contained conflicting elements are linked after this operation. The models
are linked because the existing model now is partial. The linkage prevents
the imported model from being uninstalled unless the existing model is
also uninstalled. This option is primarily used when delivering cumulative
hotfixes or service packs.

FIGURE 21-3 Side-by-side installation of two models using the
/conflict:overwrite option.

Importing model files with the push option
The most typical solution to solve conflicts is the /conflict:push option, as
shown in the following code. This option creates a new virtual model in a
higher layer containing the conflicting elements.
Click here to view code image

AXUtil import /file:SomeModel.axmodel /conflict:push

Figure 21-4 shows the result of a successful import operation that uses
the /conflict:push option. The elements in the virtual model are identical to
those imported. In other words, existing models are not affected. After
importing the model, log in to the layer containing the virtual model to
resolve the conflict. You can use the compare functionality in the AOT to
compare the conflicting versions of each element and resolve the conflict.

FIGURE 21-4 The result of an import operation that uses the /conflict:push
option.

If you resolve all conflicts in the same layer, there is no risk of running
out of layers when you are using the /conflict:push option. However, you
might need to move the resolved elements into the same layer manually.
For example, if you import a third model that conflicts with elements in
the virtual model in Figure 21-4, the resulting virtual model will be created
in Layer 3. After you resolve the conflicts in Layer 3, move the elements
in Layer 3 to Layer 2. The easiest way to accomplish this is by exporting
the elements from Layer 3 to an XPO file, deleting them, and importing
them into Layer 2.

By default, the virtual model is created in the layer just above the layer
the model is imported into. If you don’t have developer access to that
layer, you can force AXUtil to create the virtual model in a different layer
(for example the USR layer) by using the /targetlayer option, as shown in
the following example:
Click here to view code image

AXUtil import /file:SomeModel.axmodel /conflict:push

/targetlayer:USR

Upgrading a model
When you receive a newer version of a model and you want to replace the
older version in the model store, it is important that you import the new
model on top of the existing model, as shown in the following code.
AXUtil automatically detects that the model already exists in the model
store and performs the actions that are required to ensure the consistency
of the model store:
Click here to view code image

AXUtil import /file:NewerModel.axmodel

By default, the AXUtil import command enters upgrade mode when a
model with the same name and publisher already exists. Sometimes a
model might be renamed or replaced by multiple new models (as the result
of segmentation work, for example), or multiple models might be merged
into one consolidated model. AXUtil supports upgrading existing models
with new models. You can force AXUtil to use this mode by listing the
files and models to upgrade, separated by a comma, as shown here:
Click here to view code image

AXUtil import /file:f1,f2,f3 /replace:m1,m2,m3,m4,m5

 Caution

You might be tempted to uninstall an existing model before
importing a newer version of the model, but if you do so,
AXUtil does not enter upgrade mode, and it assigns new
element IDs to all elements being imported. This results in
data corruption because business data contains the original
element IDs. All references to elements in the uninstalled
model will break. For more information, see the “Element
IDs” section earlier in this chapter.

Moving a model from test to production
It is a good practice to have a test or staging environment where changes to
the system are prepared and tested before being deployed to a live
production environment.

The model store provides features that you can use to export all model
store metadata to a binary file and import it into a target system. Doing this
creates a binary, identical copy of metadata between the two systems,
including element IDs. Model store files have the .axmodelstore extension.
Besides the metadata, the model store files also contain the compiled p-
code and common intermediate language (CIL) code. This means that you
do not have to compile the target system.

 Note

The size of model store files depends on the contents of the
model store. A model store file for the standard installation of
AX 2012 is about 2 gigabytes (GB). Model store files
compress well, typically more than 80 percent, and thus can
be used as a simple backup.

Figure 21-5 shows the cleanest way of creating and preparing a test
environment and deploying it to production. Variations and post-setup
tasks to this process exist. For a thorough description, see the AX 2012
white paper, “Deploying Customizations Across Microsoft Dynamics AX
2012 Environments”
(http://www.microsoft.com/download/en/details.aspx?id=26571).

http://www.microsoft.com/download/en/details.aspx?id=26571

FIGURE 21-5 Creating and preparing a test environment and deploying a
model store to production.

 Note

XPO files are not used in the process of deploying a system
from test to production. They are mentioned in Figure 21-5 to
show the scenarios that the three file formats should be used
in. XPO files should be used for sharing source code between
developers.

Creating a test environment
The goal of creating a test environment is to ensure that the metadata in the
model store is identical to the metadata in the model store in the
production environment. The simplest way to achieve the goal is to create
a new installation of AX 2012 and then move the metadata from
production to test. To move the metadata, you first need to export the
model store from the production environment, as shown here:
Click here to view code image

AXUtil exportstore /file:ProductionStore.axmodelstore

On the test system, you stop the AOS and then import the model store
file, as shown here:
Click here to view code image

Net stop AOS60$01

AXUtil importstore /file:ProductionStore.axmodelstore

Net start AOS60$01

Preparing the test environment
The goal of preparing the test environment is to update the system with
new metadata, typically by installing new models or upgrading existing

models. You import or upgrade models as explained earlier in this chapter.
After you import the models, start the AX 2012 client and complete the

installation checklist. The most important steps are the compilation to p-
code and CIL, because the products of these steps are part of the model
store.

Extensive validation of the system is also recommended. Ensure that
you validate both that the new functionality behaves as expected and that
existing functionality hasn’t regressed.

Deploying the model to production
The goal of deploying to production is to ensure that the metadata on the
production system is updated with the metadata from the test environment.
To move the metadata, you first need to export the model store from the
test environment, as shown here:
Click here to view code image

AXUtil exportstore /file:TestStore.axmodelstore

Import the model store file on the production system. To minimize
downtime, AXUtil supports a two-phase import process. The first phase
imports the metadata to a new schema in the database. This takes a few
minutes and can occur while the production system is still live. The second
phase replaces the model store metadata with the imported metadata from
the schema. This takes a few seconds and must occur while the AOS is
stopped.

Create a new schema:
Click here to view code image

AXUtil schema /schemaname:TransferSchema

Import the model store file into the new schema:
Click here to view code image

AXUtil importstore /file:TestStore.axmodelstore

/schema:TransferSchema

When all users are logged off, stop the AOS:
Net stop AOS60$01

Apply the changes to the model store to move the new schema to the
active schema:
Click here to view code image

AXUtil importstore /apply:TransferSchema

/backupschema:dbo_backup

Restart the AOS:
Net start AOS60$01

 Note

Notice the use of the /backupschema option in the example.
With this option, you can quickly revert to the original
metadata if unexpected issues arise. When you no longer need
the backup schema, you can delete it by using the AXUtil
schema /drop:<schemaname> command.

At this stage, the metadata in the production environment is identical to
the metadata in the test environment. A few more tasks must be performed
before the system is ready for users. These include synchronizing the
database, creating Role Centers, deploying web content, setting up
workflows, deploying cubes, importing integration ports, and deploying
reports. For more information about these tasks, see the white paper,
“Deploying Customizations Across Microsoft Dynamics AX 2012
Environments” (http://www.microsoft.com/download/en/details.aspx?
id=26571).

Element ID considerations
Business data references metadata element IDs. The process outlined in
the previous sections ensures that the element IDs in the production system
remain unchanged, and thus ensures the integrity of the business data.

This is achieved by only exchanging metadata between test and
production through model store files, which maintains the element IDs.
For example, if the element IDs in the test environment and production
environment are unsynchronized because XPO files or model files have
been imported into both systems, you must rebuild the test environment.

The importstore command has a built-in safety mechanism. The
command ensures that element IDs in the target system are identical to the
element IDs in the file. If any conflicts are detected, the import operation
stops. You can use the /verbose option to get a list of the conflicts, and the
/idconflict:overwrite option to continue with the import operation anyway.
Use the latter option only on a system where you don’t care about the data

http://www.microsoft.com/download/en/details.aspx?id=26571

—never in a production environment.
For more information, see the “Element IDs” section earlier in this

chapter.

Model store API
The AXUtil utility used in all examples in this chapter provides a
command-line interface to the model store commands offered by the
model store API. A Windows PowerShell interface is also available from
the AX 2012 Management Shell.

Both these interface implementations use the AXUtilLib.dll managed
assembly file. You can also use this assembly if you want to automate any
model store operations. The assembly is referenced in X++, so you can
easily access the model store API from X++. Some of the most common
commands are available from the SysModelStore class.

The model store API also contains a method to generate license keys for
a license code in the AOT based on the license holder’s name and serial
number. The following example shows how to invoke this method from a
managed website in an automated license purchasing scenario:
Click here to view code image

using Microsoft.Dynamics.MorphX;

using

Microsoft.Dynamics.AX.Framework.Tools.ModelManagement;

protected void Submit_Click(object sender, EventArgs e)

{

 string certPath = @"c:\Licenses\MyCertPrivate.pfx";

 string licensePath = @"c:\Licenses\" + Customer.Text +

"-license.txt";

 string licenseCodeNameInAot = "MyLicenseCode";

 string certificatePassword = "password"; //TODO: Move

to secure storage

 AXUtilContext context = new AXUtilContext();

 AXUtilConfiguration config = new AXUtilConfiguration();

 LicenseInfo licenseInfo = new LicenseInfo(licensePath,

certPath,

 licenseCodeNameInAot, Customer.Text,

Serial.Text,

 null, certificatePassword);

 config.LicenseInfo = licenseInfo;

 AXUtil AXUtil = new AXUtil(context, config);

 if (AXUtil.GenerateLicense())

 {

 Response.AddHeader("Content-Disposition",

 "attachment;filename=license.txt");

 Response.TransmitFile(licensePath);

 Response.Flush();

 Response.End();

 }

 }

Part IV: Beyond AX 2012
CHAPTER 22 Developing mobile apps for AX 2012
CHAPTER 23 Managing the application life cycle

Chapter 22. Developing mobile apps for AX 2012

In this chapter
Introduction
The mobile app landscape and AX 2012
Mobile architecture
Developing a mobile app
Architectural variations
Resources

Introduction
Device form factors and their associated interfaces are changing rapidly.
At the same time, AX 2012 customers have an increasing need to interact
with AX 2012 across a broad set of devices. In addition, new technologies
are facilitating new scenarios, in which apps that provide personalized
information in context are becoming more important for improving
employees’ productivity. Microsoft is investing in these new scenarios that
let customers work with devices in new ways, and Microsoft Dynamics is
taking full advantage of this work.

Microsoft Dynamics is creating new mobile device experiences for AX
2012 customers through apps. These apps are designed to help a broad
range of employees improve their efficiency while on the go and stay
connected to their business processes. Scenarios include native
experiences for both smartphones and tablets. In addition to developing its
own apps, Microsoft Dynamics is committed to helping developers build
their own immersive device experiences for AX 2012.

These apps can interact directly with AX 2012 by using the existing AX
2012 services framework. This approach also uses existing AX 2012 user
accounts so that no additional provisioning is required. For more
information about AX 2012 services, see Chapter 12, “AX 2012 services
and integration.”

This chapter begins by providing an overview of the current mobile app
landscape and how it relates to AX 2012. It then describes the AX 2012
mobile architecture and the technical and user interface considerations for
developing mobile apps. For more detailed instructions about developing
mobile apps for AX 2012, see the sources listed in the “Resources” section

at the end of the chapter.

The mobile app landscape and AX 2012
With AX 2012 R3 and its associated investments in mobile solutions, the
Microsoft Dynamics AX team expects that the Microsoft Dynamics AX
ecosystem will see an increasing investment in mobile apps. There is an
early-mover advantage for developers who identify and take advantage of
these opportunities, and AX 2012 customers who equip their people with
powerful mobile apps will have an advantage in their respective markets.
The mobile architecture discussed throughout this chapter has been proven
by mobile apps that are already available in the marketplace and by
customers who are deploying those apps.

Creating mobile apps requires a different set of skills than developing
for AX 2012, and customers and partners might find it advantageous to
pair an AX 2012 developer with a mobile app developer. This way,
necessary AX 2012 services can be created by experienced AX 2012
developers. Except for needing to understand the content of the services,
typical mobile app developers can develop AX 2012 mobile apps without
having to understand the intricate details of AX 2012. Thus, partners and
customers can take advantage of the vast pool of mobile app developers.

Mobile architecture
The AX 2012 mobile architecture is designed to help developers overcome
the following challenges that are inherent in developing mobile apps:

 How to facilitate communication between apps and on-premises
installations

 How to authenticate users
 How to develop for multiple platforms

Because AX 2012 most often runs on-premises or is privately hosted,
the average phone or tablet device does not have access to AX 2012
services, which are usually available only through a corporate network. To
overcome this challenge, the mobile architecture uses the Microsoft Azure
Service Bus Relay. The Service Bus Relay solves the challenges of
communicating between on-premises applications and the outside world
by allowing on-premises web services to project public endpoints. Systems
can then access these web services, which continue to run on-premises,
from anywhere.

The Service Bus Relay is based on a namespace that is set up for each

company that deploys mobile apps for AX 2012. For example, an
administrator from the Contoso company can create an Azure subscription
and set up a unique namespace, such as contosomobapps. The namespace
is a friendly identifier that end users enter into the mobile app to connect to
their company’s AX 2012 instance.

The second challenge is authenticating users. AX 2012 has existing user
accounts that are based on Active Directory accounts. Ideally, device users
simply use their corporate identities (user IDs and passwords) to access
AX 2012 from their devices. The mobile architecture accomplishes this by
using Active Directory Federation Services (AD FS). AD FS is a Windows
Server component that is used by users whose devices are not on the
corporate network to authenticate themselves by using their existing
corporate credentials.

Another challenge that mobile app developers face is providing apps for
various device platforms, such as Windows 8.1, Windows Phone 8, iOS,
and Android. By taking advantage of the mobile architecture, developers
can create applications for the platform they choose, depending on
customer requirements.

 Note

In some scenarios, you might want to use variations on the
architecture described in this section. For more information,
see the “Architectural variations” section later in this chapter.

Mobile architecture components
The AX 2012 mobile architecture includes the following key

components:
 AX 2012 services Apps communicate with AX 2012 through the AX
2012 services framework.

 Active Directory Users who access AX 2012 through mobile apps
are authenticated against their existing corporate identities.

 AD FS AD FS facilitates authentication of Active Directory–based
users who are accessing AX 2012 through mobile apps.

 Service Bus Relay The Service Bus Relay ferries messages from the
mobile app to an on-premises listener through which the app can
reach an on-premises instance of AX 2012.

 On-premises listener The listener listens for messages from mobile
apps that are relayed through the Service Bus Relay. The listener
then makes calls to AX 2012 and responds to the mobile app through
the Service Bus Relay.

 Microsoft Azure Active Directory Access Control Access Control
verifies that the user has been authenticated through AD FS and then
allows messages to be sent through the Service Bus Relay.

 Mobile apps These apps can be for a phone or tablet on any of the
prevailing mobile platforms—Windows, iOS, or Android. The
architecture provides the means for these apps to communicate with
AX 2012. The apps can then interact with AX 2012 as appropriate,
based on the business scenario. Apps can also be designed to
communicate with other systems, depending on the needs of the
business scenario.

Figure 22-1 shows the components of the mobile architecture.

FIGURE 22-1 Mobile architecture components.

To become familiar with the mobile architecture, we recommend that
you install and configure one or more of the AX 2012 mobile apps and the
Microsoft Dynamics AX connector (on-premises listener) for mobile apps.
Doing so will help you learn the configuration steps necessary for Azure,
AD FS, AX 2012, and the listener. That familiarity will help you greatly in

debugging and troubleshooting your apps. For more information about
these components and their configuration, see the following white papers:

 Microsoft Dynamics AX 2012 White Paper: Developing Mobile
Apps at http://www.microsoft.com/en-us/download/details.aspx?
id=38413.

 Configure Microsoft Dynamics AX Connector for Mobile
Applications at
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
To access this paper, you must have CustomerSource or
PartnerSource credentials.

You can download the AX 2012 expense app, which is used as an
example throughout this chapter, at http://apps.microsoft.com/windows/en-
us/app/dynamics-ax-2012-expenses/07aab6f9-c6ce-4b81-b04c-
4b43c3f6de67.

Message flow and authentication
The following process outlines the flow of messages and describes how
users are authenticated:

1. The user submits credentials to obtain a token from AD FS.
2. If the user’s credentials are verified, a token is returned that is based

on Security Assertion Markup Language (SAML). The token
contains a claim that indicates the user name and company domain,
such as user@contoso.com. The claim is used to verify the user’s
company affiliation and identity within the company.

3. The mobile app then presents the claim in the SAML token to
Access Control. Access Control controls access to the Service Bus
Relay; any app that calls the Service Bus Relay must have a token
from Access Control.

4. Access Control validates the SAML token based on the previously
established trust relationship between Access Control and AD FS for
the Service Bus Relay namespace and company domain. Based on
the claim in the SAML token, Access Control verifies that the user is
from the company associated with the Service Bus Relay namespace.
Access Control then provides a second token to the mobile app in
Simple Web Token (SWT) format. The SWT token is then included
in the request to the Service Bus Relay to send a message to AX
2012. The SAML token is also included and is used by the on-
premises listener to authenticate the user.

http://www.microsoft.com/en-us/download/details.aspx?id=38413
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
http://apps.microsoft.com/windows/en-us/app/dynamics-ax-2012-expenses/07aab6f9-c6ce-4b81-b04c-4b43c3f6de67

5. The mobile app then sends the message (with associated tokens)
through the Service Bus Relay to the on-premises listener. The
Service Bus Relay ferries the message to the listener.
The listener must also be authenticated to listen to the Service Bus
Relay. This authentication is based on a Service Bus Relay
namespace credential that is stored on the listener. The listener
presents this credential as it starts to listen for messages coming from
the namespace.

6. After a message is received from the Service Bus Relay, the listener
validates the SAML token. The validation is based on a previously
established trust relationship between the listener and AD FS. After
verifying the token, the listener uses the claim to determine which
AX 2012 user is using the mobile app making the call to AX 2012.
The listener calls AX 2012 on behalf of the user identified in the
claim.

7. The listener receives a response from AX 2012 and then returns the
response message through the Service Bus Relay.

8. The Service Bus Relay sends the response message to the mobile
app.

Figure 22-2 illustrates the message flow and authentication process. The
numbering in the figure roughly corresponds to the numbers in the list.

FIGURE 22-2 Message flow and authentication process.

Using AX 2012 services for mobile clients
To develop mobile apps, you must have an interface with AX 2012. The
ideal approach is to use AX 2012 services for communication between
mobile apps and AX 2012. For more information about AX 2012 services,
see Chapter 12.

The AX 2012 services framework provides multiple types of services—
system services, custom services, and document services—each with its
own programming model. Custom services are the most likely to provide
the exchange of messages that are appropriate for a mobile app.

To design an AX 2012 service that can be consumed by your mobile
app, you will need to do the following:

1. Create AX 2012 services and data contracts, and deploy a basic
inbound port to expose the service operations for consumption.

2. Implement the service methods in X++ classes to perform data
operations in AX 2012.

The mobile client must communicate with the AX 2012 service, which
is hosted on an Application Object Server (AOS) instance that is deployed
behind a corporate firewall. Instead of configuring changes in the firewall,
such as exposing an Internet Information Services (IIS) server externally to
expose the on-premises service, the app makes use of a secured Service
Bus Relay.

AX 2012 services are typically accessed by using Simple Object Access
Protocol (SOAP). This approach might work well for some mobile
applications. However, the trend in developing web and mobile
applications is to interact by using RESTful services. (Representational
state transfer [REST] is an architecture that allows developers to write
asynchronous code that connects with cloud-based services more easily.)
For information about RESTful services, see the article, “An Introduction
To RESTful Services With WCF,” at http://msdn.microsoft.com/en-
us/magazine/dd315413.aspx.

Currently AX 2012 does not expose custom services by using a
RESTful approach. One option is for the on-premises listener to translate
RESTful calls from a mobile app to SOAP calls to AX 2012 (and vice
versa). The Microsoft Dynamics AX product group used this approach to
develop the Microsoft Dynamics AX Windows Store apps (expenses,
timesheets, and approvals). For more information about the Microsoft

http://msdn.microsoft.com/en-us/magazine/dd315413.aspx

Dynamics AX Windows Store apps, see “What’s new: Companion apps
for Microsoft Dynamics AX 2012 R2” at http://technet.microsoft.com/en-
us/library/dn527182.aspx.

Developing an on-premises listener
As described earlier, you’ll need an on-premises service that acts as an
intermediary between the Service Bus Relay and AX 2012 services. One
approach is to use Windows Communication Foundation (WCF) to build a
simple listener.

Beyond the listener’s primary purpose of passing messages between the
Service Bus Relay and AX 2012, the listener can provide additional
features that facilitate the development of mobile applications. For
example, the listener can provide configuration information to the app,
such as whether certain features of the app are enabled or disabled. The
listener can expose RESTful calls to the client. The Microsoft Dynamics
AX product group used WCF features to translate between the SOAP and
JavaScript Object Notation (JSON) protocols for messaging to the
Windows Store apps. This is a standard feature of WCF. The listener can
also capture meaningful information in the event log and provide telemetry
information.

Another approach is to use the Azure Service Bus adapter built into AX
2012 starting with AX 2012 R2 cumulative update 6. With this approach,
you configure IIS as the listener. Depending on the requirements of your
mobile app, you can choose the best approach. For a comparison of these
approaches, see “Microsoft Dynamics AX White Paper: Developing
Mobile Apps” at http://www.microsoft.com/en-us/download/details.aspx?
id=38413.

Developing a mobile app
When you are developing a mobile app, it is helpful to start by prototyping
and developing based on simple scenarios. For example, one initial
prototype app that the Microsoft Dynamics AX team developed simply
updated data to AX 2012; it didn’t read data from AX 2012 or require
authentication. Additional features were added as the app moved from
prototype to production. Keeping apps as focused and as simple as
possible is a good guideline for mobile apps in general.

Platform options and considerations
The mobile architecture described in this chapter is platform-independent

http://technet.microsoft.com/en-us/library/dn527182.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=38413

and device-independent. You can use this architecture to develop
applications across the spectrum of devices, including laptops, tablets, and
phones. You can also use it across the landscape of development
technologies, such as C# and Extensible Application Markup Language
(XAML), HTML5 and JavaScript, Objective-C, and Java.

The underlying technologies used in the architecture, such as AD FS,
the Service Bus Relay, and AX 2012 services, are commonly used in
cross-platform development.

Developer documentation and tools
One of the goals of the mobile architecture is to solve the basic issues of
interacting with AX 2012 so that mobile app developers can focus on their
apps. With the problem of communicating with AX 2012 solved,
developers can use the wealth of documentation and tools available to
them. A large community of mobile app developers builds apps for AX
2012, without needing to understand the underlying AX 2012 framework.
To the mobile app, calls to AX 2012 are simply web services calls, which
is very common for mobile apps.

Microsoft offers an exhaustive set of samples, tutorials, and tools for
developers who are creating apps for the Windows Store and for Windows
Phone. As of this writing, the Windows 8.1 app sample pack includes
more than 330 samples at
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-
App-Samples/view/SamplePack#content. The following are of particular of
interest:

 “Windows Store app for banking: code walkthrough (Windows Store
apps using JavaScript and HTML)” at
http://msdn.microsoft.com/library/windows/apps/hh464943.

 A data binding overview (Windows Store apps using C#, Visual
Basic, C++, and XAML) at http://msdn.microsoft.com/en-
us/library/windows/apps/hh758320.aspx.

These types of samples can be relevant to developing mobile apps for
AX 2012.

Third-party libraries
In addition to published samples, an extensive set of third-party libraries
are available for developing mobile apps. Examples of functions provided
by these libraries include data binding, storage, lookups, currency, controls
(such as calendars), and date/time functions. If your organization allows

http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples/view/SamplePack#content
http://msdn.microsoft.com/library/windows/apps/hh464943
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

the use of third-party libraries, using these libraries can help boost
developer productivity.

Best practices
This section describes some valuable considerations to keep in mind when
designing and developing mobile apps.

 Take advantage of native device capabilities Taking advantage of
the capabilities of a device can greatly enhance mobile apps. For
example the device’s camera can be used to record documents or
receipts. The camera can also be used to capture damage or repair
situations (for construction, manufacturing, or field services) as part
of an AX 2012 transaction. The geographic information from the
device can be used to map a location or address known to AX 2012,
such as a customer, vendor, or site.

 Make use of data caching and local storage Master and lookup
data might need to be cached on the device as an alternative to
requesting data from the service each time it is needed. For example,
expense categories or currency types are relatively static and can be
safely cached locally. The mobile app can refresh those on an
infrequent basis. Some reference data can be cached but must be
refreshed more frequently. For example, projects or customers can
be stored locally but might need to be refreshed at app startup or on a
regular basis.
You can store data locally by using available technologies such as
indexDB or SQLite. These technologies are supported across
platforms and devices. You might need to use the RecVersion field to
determine whether records are synchronized. For more information,
see “Concurrency When Updating Data” at
http://technet.microsoft.com/en-us/library/cc639058.aspx.

 Consider bandwidth and connectivity in your design Mobile
devices typically have less bandwidth than desktop computers on
corporate networks. You’ll need to make appropriate tradeoffs to
ensure that your apps work on lower bandwidths. For example, a
phone app might impose a size limit on a picture that is sent with a
transaction because of bandwidth limitations.
You should also consider intermittent connectivity. Mobile apps
should be designed to expect interruptions in connectivity. This
might mean saving appropriate state information and data locally,
and using that stored data when connectivity is restored.

http://technet.microsoft.com/en-us/library/cc639058.aspx

 Allow for offline use In some scenarios, it is beneficial for users to
have some app functionality when the app is offline (not connected).
Consider whether you can enable some of the app’s functionality
offline. It is important to consider the level of business logic that
should reside in the app for offline scenarios. It probably makes
sense to enable offline features where extensive business logic
(which is available in AX 2012) is not required. If you don’t enable
offline features in such cases, your app will need to apply the
business logic and have the user react as appropriate when it
reconnects.

Key aspects of authentication
Authentication was discussed earlier in this chapter as part of the overall
message flow. However, because authentication is a key and potentially
complicated part of the process, this section focuses on some of its more
complicated aspects.

As mentioned earlier, because the mobile app will likely run on a device
that is not on a corporate network, users must be authenticated. The first
step in the process is to acquire the users’ credentials (user names and
passwords). We recommend that you store those credentials in the app by
using a secure storage mechanism on the device. That way, the mobile app
can silently authenticate users without prompting them for credentials each
time the app runs.

Another complicated aspect of configuring authentication is setting up
Secure Sockets Layer (SSL). AD FS uses SSL to ensure that the passing of
credentials and tokens between the mobile app and AD FS is protected.
The AD FS endpoint has a URL based on the company’s domain. For
example, the AD FS endpoint for the Contoso company might end in
contoso.com. To enable SSL, you must install an appropriate SSL
certificate in AD FS. More precisely, you must set up SSL in IIS, which is
used as the front end for AD FS.

Setting up SSL in IIS is a common practice because many websites
require the use of SSL for inter-actions that require authentication or share
protected information. The SSL certificate must be issued by a recognized
certificate authority (CA). In issuing an SSL certificate, the CA verifies
that the entity requesting the certificate is associated with the domain for
which the certificate is being issued. For example, the administrator for
Contoso must prove to the CA that she is associated with the contoso.com
domain. This is typically done by the CA making contact by using the

contact information (phone number and email address) associated with the
contoso.com domain in the Domain Name System (DNS) records.
Whether you are setting up AD FS for demonstration, testing, or
production purposes, it is necessary to have a CA-issued SSL certificate
for the domain used by AD FS. For more information, see “Obtain an SSL
Certificate” at http://msdn.microsoft.com/en-us/library/gg981937.aspx.

For more information about configuring authentication, see “Developing
secure mobile apps for Microsoft Dynamics AX 2012” at
http://technet.microsoft.com/EN-US/library/dn155874.aspx and
“Microsoft Dynamics AX Connector for Mobile Applications” at
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
(CustomerSource or PartnerSource credentials are required).

User experience
Developing mobile apps for AX 2012 creates an opportunity for
developers to reimagine user experiences. Across the landscape of devices,
mobile apps are generating a wave of exciting new user experiences. We
encourage you to be inspired by these immersive experiences when
envisioning mobile apps for AX 2012. The expense app created by the
Microsoft Dynamics AX product group provides some vivid examples.

The following illustrations show examples of the existing AX 2012
experience compared with the new mobile app experience in the expense
app. The top half of Figure 22-3 shows the expense report experience in
the AX 2012 Employee Services portal. The bottom half of Figure 23-3
shows the corresponding experience in the AX 2012 expense mobile app.
Both user interfaces display views of a list of expense reports. Note that
the mobile app takes advantage of cards to represent expense reports and
uses color to represent status. The app is designed to be touch-friendly and
hides commands until needed. However, the mobile app also works well
with a mouse and keyboard.

http://msdn.microsoft.com/en-us/library/gg981937.aspx
http://technet.microsoft.com/EN-US/library/dn155874.aspx
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf

FIGURE 22-3 Screenshots of expense reports in the AX 2012 Employee
Services portal and in the expense mobile app.

Figure 22-4 shows the edit experience within an expense report in the
AX 2012 Employee Services portal and in the expense app. Again, the
mobile app uses cards to represent expenses, and color and icons to show
categories. The mobile app also uses a calendar to show the expenses
during the week based on the transaction date.

FIGURE 22-4 Screenshots of the edit expense reports experience in the AX
2012 Employee Services portal and in the expense mobile app.

User experience guidelines are quickly evolving as the role of devices
expands. For detailed information and guidelines for developing mobile
apps, see “Getting started with developing for Windows Phone 8” at
http://msdn.microsoft.com/en-
us/library/windowsphone/develop/ff402529(v=vs.105).aspx. This
document is updated frequently, so check back often.

Globalization and localization
Mobile apps should support globalization and localization, as described
here:

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402529(v=vs.105).aspx

 Globalization entails using the correct formats for numbers, dates,
times, addresses, and phone numbers for different locales. For the
AX 2012 apps developed by Microsoft, globalization is based on the
country or regional settings of the device.

 Localization entails displaying the user interface in the language of
the user. For the AX 2012 apps developed by Microsoft, the app
language is based on the user’s language in AX 2012.

We recommend that you design apps so that resources, such strings and
images, are separate from code. This enables them to be independently
localized into different languages.

App monitoring
Having information about the usage of your mobile apps is generally
valuable, so we suggest that you develop your apps to capture and save
monitoring information. This approach is also referred to as telemetry or
instrumentation. Windows Store apps and Windows Phone apps inherently
capture some information, including downloads, basic usage, and errors. In
addition, it is useful to capture more detailed information about how the
apps are used. Application insights help you find out what users are doing
with the app and help you diagnose performance or exceptions with the
app. Application Insights for Microsoft Visual Studio Online is a cloud-
based service designed for monitoring mobile or web apps. For more
information, see http://msdn.microsoft.com/en-
us/vstudio/dn481095(v=vs.98).aspx.

Web traffic debugging
The mobile app architecture relies heavily on calls to web services. These
include calls to authenticate the user of the app and calls to AX 2012
(through the Service Bus Relay). It is very useful to capture and analyze
the content of these calls. The Fiddler web debug proxy is an excellent tool
for viewing and analyzing the web services calls. You can configure
Fiddler to work with mobile devices.

The following blog posts describe how to use Fiddler to develop apps
for Windows 8 phones:

 http://www.geekchamp.com/news/windows-phone-8-and-fiddler
 http://www.spikie.be/blog/post/2013/01/04/Windows-Phone-8-and-
Fiddler.aspx

 http://blogs.msdn.com/b/fiddler/archive/2011/09/14/fiddler-and-
windows-8-metro-style-applications-https-and-private-network-

http://msdn.microsoft.com/en-us/vstudio/dn481095(v=vs.98).aspx
http://www.geekchamp.com/news/windows-phone-8-and-fiddler
http://www.spikie.be/blog/post/2013/01/04/Windows-Phone-8-and-Fiddler.aspx
http://blogs.msdn.com/b/fiddler/archive/2011/09/14/fiddler-and-windows-8-metro-style-applications-https-and-private-network-capabilities.aspx

capabilities.aspx
And the following blog post describes how to use Fiddler with iPhone5:

 http://blog.brianbeach.com/2013/01/using-fiddler-with-
iphoneipad.html

Architectural variations
So far, this chapter has focused primarily on a specific mobile architecture
that solves the key challenges of allowing remote mobile apps to work
with an on-premises deployment of AX 2012. This architecture is also
optimized for apps that are distributed by app stores and installed on local
devices. However, certain variations of this architecture might be
appropriate in specific scenarios.

On-corpnet apps
In some scenarios, mobile apps are used exclusively within a corporate
network environment. An example is a warehouse app that has corporate
network connectivity throughout the facility. In such a case, the user is
already authenticated when accessing the corporate network, so further
authentication isn’t necessary. Also, the app can access AX 2012 through
the corporate network, so the Service Bus Relay might not be necessary.

Web apps
Another approach to mobile apps is the use of web apps targeted for
mobile devices. In this case, the app is available through the web browser
on the device. This approach has some tradeoffs. Some scenarios might be
most appropriate for web apps, and other scenarios might be most
appropriate for mobile apps that are installed on the device. Many popular
websites today also deliver mobile apps that users install, even though the
experience is also available through browsers.

Web apps have the following advantages:
 They work across devices, although they need to be tested and
refined to handle device-specific nuances.

 They are more adaptable to AX 2012 customizations and extensions.
Because they are rendered from the AX 2012 server, the apps can
include the customizations and extensions that have been applied to
the server.

 They do not require users to install or configure the apps.
Web apps have the following disadvantages:

http://blog.brianbeach.com/2013/01/using-fiddler-with-iphoneipad.html

 They don’t provide the high-fidelity, immersive experiences
available in modern mobile apps.

 They rely completely on the server to deliver the app and content.
The server might not perform as well or might be less responsive
than an app that is installed on the device.

 They typically don’t have local caching or offline capabilities.
 They probably can’t take advantage of device features such as a
camera or GPS.

You can use these tradeoffs to decide which approach is most
appropriate for your scenario.

Resources
This section contains a list of recommended sources of information to
assist developers with troubleshooting and debugging.

 CustomerSource and PartnerSource The “Mobile Apps for
Dynamics AX” page on CustomerSource and PartnerSource has a
wealth of information for deploying the existing apps or developing
mobile apps:
• CustomerSource

https://mbs.microsoft.com/customersource/northamerica/AX/news-
events/news/MSDYN_MobileAppsAX

• PartnerSource
https://mbs.microsoft.com/partnersource/northamerica/news-
events/news/MSDYN_MobileAppsAX

Note
You must register to be able to access these sites.

 Companion Apps blog The Microsoft Dynamics AX Companion
Apps blog is a source of regularly updated information. The blog
includes an FAQ page for common questions and issues at
http://blogs.msdn.com/b/axcompapp/.

 Support The normal Microsoft Dynamics AX support channels are
available to support the mobile apps released by Microsoft for AX
2012. This includes support for the on-premises listener and its
associated configuration.

https://mbs.microsoft.com/customersource/northamerica/AX/news-events/news/MSDYN_MobileAppsAX
https://mbs.microsoft.com/partnersource/northamerica/news-events/news/MSDYN_MobileAppsAX
http://blogs.msdn.com/b/axcompapp/

Chapter 23. Managing the application life cycle

In this chapter
Introduction
Lifecycle Services
Deploying customizations
Data import and export
Benchmarking

Introduction
Throughout the releases of AX 2012, Microsoft Dynamics has invested in
tools and techniques to help organizations and partners manage their
application projects. The tools Microsoft Dynamics provides support
application life cycle management (ALM) throughout the following life
cycle phases:

 Design During the design phase, organizations analyze their business
and enterprise resource planning (ERP) needs: they determine
licensing and usage needs, they identify and model their critical
business processes, and they determine which partners can best help
them carry out their implementation. Also during this phase, partners
create proposals for their customers that describe how they can meet
the organization’s needs.

 Develop During the develop phase, an organization undertakes the
implementation project. An implementation can last from months to
years, depending on the size and complexity of the project. Most
organizations work closely with a partner during this time to get their
ERP processes running on AX 2012. This phase resembles a typical
development project in which requirements are written, developers
work to meet the requirements, and users test processes to validate
that everything works. Developers are guided by the business
processes and other information that was defined during the design
phase.

 Operate During the operate phase, organizations actively watch the
health of their AX 2012 systems. Tasks during this phase include
applying updates and fixes, managing rollouts, and diagnosing
problems. System administrators typically manage this phase of a
deployment.

This chapter provides an overview of the Microsoft Dynamics tools and
techniques for ALM and offers links to resources where you can find more
detailed information. Table 23-1 describes the tools and techniques that are
discussed in this chapter.

TABLE 23-1 ALM tools and techniques.

Lifecycle Services
Lifecycle Services (LCS) for AX 2012 is a suite of tools and services that
is hosted in the Microsoft cloud platform on Microsoft Azure. On the LCS
portal, team members can collaborate among themselves and with
Microsoft support personnel when necessary. With LCS, business planners
and developers can capture application requirements and estimate licenses
and implementation sizing in a unified system. Developers can use LCS to
create fit-gap analyses, prepare for upgrade projects, analyze existing
customizations for use of coding best practices, and host a development
and test environment on Azure. Administrators can use LCS to monitor
system uptime and performance, to find and install appropriate updates,
and to collaborate with Microsoft support personnel to resolve problems
by using a virtual machine that matches the version and updates of the
production AX 2012 system. All members of the implementation team can
use LCS to track the progress of the application throughout its life cycle.
LCS is updated each month with new features and other updates.

You can access LCS in the following ways:
 If you already have customer or partner credentials for
CustomerSource or PartnerSource, go to
https://lifecycleservices.dynamics.com and sign in.

 If you were invited to access LCS by another user, go to Project
Requests to accept your invitation.

https://lifecycleservices.dynamics.com

If you are new to LCS, you can start by creating a new project to
familiarize yourself with Lifecycle Services. For more information, see
“Lifecycle Services for Microsoft Dynamics User Guide” at
http://technet.microsoft.com/library/dn268616(v=ax.60).aspx. You can
also join the conversation and find out about the latest updates through the
LCS blog at http://blogs.msdn.com/b/lcs/.

LCS features a dashboard where team members can collaborate on a
project. Project members use LCS to update the project and to view the
status of their AX 2012 implementation. Figure 23-1 shows the LCS
dashboard.

FIGURE 23-1 The LCS dashboard.

The following tables describe the tools and services that LCS provides
for each ALM phase. Table 23-2 describes the LCS tools and services that
are used during the design phase.

http://technet.microsoft.com/library/dn268616(v=ax.60).aspx
http://blogs.msdn.com/b/lcs/

TABLE 23-2 LCS tools and services for the design phase.

Figure 23-2 shows a partial view of a BPM page that contains a
swimlane flowchart of a business process.

FIGURE 23-2 Partial view of a BPM diagram.

Table 23-3 describes the LCS tools and services that are used during the
develop phase.

TABLE 23-3 LCS tools and services for the develop phase.

Figure 23-3 shows the topology of a demo environment hosted on
Azure. The environment communicates with your on-premises network by
means of a Virtual Private Network (VPN).

FIGURE 23-3 A demo environment hosted on Azure.

Table 23-4 describes the LCS tools and services for the operate phase.

TABLE 23-4 LCS tools and services for the operate phase.

Figure 23-4 shows a code change in issue search.

FIGURE 23-4 A code change displayed in issue search.

Deploying customizations
When you deploy your customizations during the ALM develop phase,
you migrate them through a sequence of environments to ensure that by
the time your changes reach the production environment, your

customizations have been fully tested. Figure 23-5 shows this sequence of
environments and describes the migration process.

FIGURE 23-5 Sequence of AX 2012 environments for deploying
customizations.

Microsoft has developed detailed guidance to help you safely migrate
your customizations to your production environment with a minimum of
downtime. For detailed information about how to deploy customizations in
AX 2012, see the white paper, “Deploying Customizations Across
Microsoft Dynamics AX 2012 Environments,” at
http://technet.microsoft.com/library/hh292604(v=ax.60).aspx.

Data import and export
Microsoft offers two data import and export tools, each with a different
purpose:

 Test Data Transfer Tool Use this tool to move data in tables from
your production environment to your test environment.

 Data Import Export Framework (DIXF) Use this tool to move
business entities, such as master data, from your AX 2012
production system to another AX 2012 system or to external data
storage.

The following sections explain each tool.

http://technet.microsoft.com/library/hh292604(v=ax.60).aspx

Test Data Transfer Tool
The Test Data Transfer Tool is used to populate business data for your test
installation. You export data from your production environment into a file,
and then use the Test Data Transfer Tool to import the data into your test
environment. The Test Data Transfer Tool is a command-line tool named
DP.exe.

The Test Data Transfer Tool is particularly useful in the following
cases:

 When you must move data between AX 2012 test installations that
have differing customizations

 When you store data in text format in a version control system for
use in testing

The Test Data Transfer Tool works by calling the Microsoft SQL Server
client tools bulk copy program, BCP.exe. BCP runs very quickly, thus this
tool runs faster than some other data transfer tools. The Test Data Transfer
Tool does not interact with the AOS.

You must have a CustomerSource or PartnerSource account to be able
to download the Test Data Transfer Tool installer. The installer must be
run by an administrator account. For more information about the Test Data
Transfer Tool and how to install it, see the following resources:

 “Install the Test Data Transfer Tool for Microsoft Dynamics AX” at
http://technet.microsoft.com/library/dn296450.aspx

 “Run the Test Data Transfer Tool for Microsoft Dynamics AX” at
http://technet.microsoft.com/en-US/library/dn296448.aspx

Figure 23-6 shows the export process. DP.exe processes user input from
the command line, a metadata file, and data from the AX 2012 model
database and online transaction processing (OLTP) database, and transfers
the information to three files for each table that is being exported: an .out
file, an .outModel file, and an .xml file that contains SQL Server metadata.

http://technet.microsoft.com/library/dn296450.aspx
http://technet.microsoft.com/en-US/library/dn296448.aspx

FIGURE 23-6 The Test Data Transfer Tool export process.

Figure 23-7 shows the import process. The three files that result from
the export process are used as input to DP.exe, along with command-line
parameters. DP.exe then transfers the data to the AX 2012 OLTP database
and model database in the test environment. The results of the import
process are stored in an .xml file called DPLog.xml.

FIGURE 23-7 The Test Data Transfer Tool import process.

Data Import/Export Framework
You can use DIXF to import data into or export data from AX 2012. The
unit in which data is processed is an entity, such as Customers, Products,
or Vendors, or a group of entities, such as master data, open stock, or
balances. A typical entity contains a set of business data that is stored in a
set of normalized tables that have foreign key relationships among them.
The import and export operations transform the data between the
normalized tables and one corresponding flat (denormalized) table called a
staging table, which is created in the AX 2012 OLTP database. The flat
schema of the staging table can be exported to a comma-delimited list,
which is simple enough for any external system to interact with.

When installed, DIXF is located in the Data Import Export Framework
application module. (DIXF is unrelated to System Administration > Data
Export/Import.)

In AX 2012 R3, you can install DIXF by running Setup and selecting
the appropriate check box. For information about installing DIXF with
earlier versions of AX 2012, see “Data import/export framework user
guide (DIXF, DMF)” at
http://technet.microsoft.com/library/jj225591(v=ax.60).aspx.

http://technet.microsoft.com/library/jj225591(v=ax.60).aspx

DIXF architecture consists of the following three components:
 DLLs and configuration files that are installed with the AX 2012
client

 DLLs and configuration files that are installed with the AX 2012
AOS

 A DIXF Windows service that is installed on a computer where SQL
Server Integration Services (SSIS) is running

Figure 23-8 shows how the instance of DIXF on the client
communicates with the instance of DIXF on the AOS. DIXF on the AOS
communicates with the DIXF service.

FIGURE 23-8 DIXF architecture.

DIXF has several advanced features that are particularly useful. With
DIXF, you can do the following:

 Perform intercompany operations within a single AX 2012 system,
such as comparing data between two companies and copying data
between two companies.

 Import and export data to an Open Database Connectivity (ODBC)
data source, instead of to a file.

 Create custom entities.
 Publish entities to SQL Server Master Data Services.

For complete, detailed information about how to use DIXF, see “Data
import/export framework user guide (DIXF, DMF)” at
http://technet.microsoft.com/library/jj225591(v=ax.60).aspx.

Choosing between the Test Data Transfer Tool and DIXF
The Test Data Transfer Tool and DIXF both can export and import data to

http://technet.microsoft.com/library/jj225591(v=ax.60).aspx

and from an AX 2012 installation. The following comparisons can help
you decide which tool to use:

 The Test Data Transfer Tool requires that the AOS be stopped before
an import, whereas DIXF requires the AOS to be running.

 The Test Data Transfer Tool import process truncates the data in
each nonexcluded import table, but the DIXF import can append data
to the existing data.

 The Test Data Transfer Tool is limited to the easy but simplistic unit
of a table for its operations. DIXF uses the more complicated but
more powerful concept of an entity for its unit of operation.

 The Test Data Transfer Tool can transfer data only between two
installations of AX 2012, whereas DIXF can transfer data between
an installation of AX 2012 and an external system.

 Important

The Test Data Transfer Tool is not supported for use in
moving data to a production environment.

For more information about choosing which tool to use, see “Plan data
import, export, and migration” at
http://technet.microsoft.com/library/aa548629(v=ax.60).aspx.

Benchmarking
In general, benchmarking is a quantitative measure of performance that is
used to compare an organization’s products, services, or processes to an
external standard. Competitive benchmarks are based on industry bests,
and process benchmarks are based on best-in-class processes. In
computing, benchmarking is a test that is used to measure hardware or
software performance.

Benchmarking is an important part of ALM in that you can use the
results of a benchmark test to improve your AX 2012 application’s
performance. During a benchmark test, you simulate selected scenarios to
test the scalability, reliability, and performance of your system. For
examples of benchmark tests, see the following white papers:

 “Microsoft Dynamics AX 2012 Day in the Life Benchmark” at
http://technet.microsoft.com/EN-US/library/hh500191.aspx

 “High Volume Inventory Benchmark for Microsoft Dynamics AX

http://technet.microsoft.com/library/aa548629(v=ax.60).aspx
http://technet.microsoft.com/EN-US/library/hh500191.aspx

2012 in a Retail Environment” at http://technet.microsoft.com/EN-
US/library/hh881832.aspx

 “Enterprise Portal Benchmark for Microsoft Dynamics AX 2012” at
http://technet.microsoft.com/EN-US/library/hh881830.aspx

Microsoft also provides a comprehensive benchmark software
development kit (SDK) for AX 2012 to help organizations develop and
implement their own benchmark tests. To download the SDK, go to
http://www.microsoft.com/en-us/download/details.aspx?id=39082. For
information about how you can optimize the performance of your AX
2012 installation, see Chapter 13, “Performance.”

http://technet.microsoft.com/EN-US/library/hh881832.aspx
http://technet.microsoft.com/EN-US/library/hh881830.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=39082

Index

A
abstract tables, in inheritance hierarchy, 622
acceptance test driven development (ATDD), 557, 558, 566
access control

defined, 373
security roles, managing through, 375

access operators, X++ expressions, 113
accessing data with queries, 299
accounting

distribution process, 704
events, documenting, 702
requirements, deriving, 698

accounting framework, 698–702
action controls

Action pane strips, 188
Action panes, 188
buttons, 187

action icons, 60
action menu items, 264
Action pane

described, 188
designing for ease of use, 169
details forms, displaying in, 165
Enterprise Portal, using with, 170
organizing by activity, 163
strips, 188
web part in Enterprise Portal, 211

actions, 26
activating a workflow, 283–287
activity entity, 688–692
address bar, 155
address book framework, integrating, 675

ad hoc mode, using, 482, 483
ad hoc reports, 293
aggregates, 96
AJAX, 233
alert notifications, displaying on webpages, 213
ALM. See application life cycle management (ALM)
alternate key columns, 52
alternate keys, 614
analytic content

configuring, 325, 326
Role Centers, displaying in, 351

anonymous types, 90
anytype

reference type, 108
variable declaration, 111

AOS. See Application Object Server (AOS)
AOT. See Application Object Tree (AOT)
APIs

Batch, 652–654
document services, provided by, 412
model store, 740
one-way messages, using to send, 433
QueryFilter, 635–638
reflection, 711–724
securing, 392

application data element types, 9–18
application development environments, 6
Application Integration services, 8
application life cycle management (ALM)

benchmarking, 773
deploying customizations, 768
life cycle phases, 761
Lifecycle Services (LCS), 762–768
solution, tracking with, 556

application model elements, updating with MorphX, 19
Application Object Server (AOS)

client configuration, 486
configuration, 486, 655, 659
Help system, and, 573
improving performance of, 486
report execution sequence, in, 293
system services, 407, 408

Application Object Tree (AOT)
assemblies, referencing, 77
autorefresh, enforcing, 25
chart controls, managing, 304
dirty elements, 25
document set properties, setting, 597
elements, 20, 22, 24–26
elements, Enterprise Portal, 213
jobs, creating with, 106
Label Files node, 34
layers and models, 26
manual resolution, 25
modeling capabilities, 326
navigating, 21
opening, 21
projects, maintaining in, 340
publishing services, 421
subnodes, changing the order, 24
synchronizing elements, 25

application platform architecture
data element types, 9
development environments, 6
layers, 5
tiers, 7, 8

approvals workflow element, 264, 277
architecture

application meta-model, 9
application platform, 6
client-side reporting solutions, 290, 291
design principles, 3

DIXF, components of, 772
Enterprise Portal, described, 208
layers, 4
mobile, 746–751, 758
security, in AX 2012, 372
server-side reporting solutions, 292

area pages, 158–160
Arithmetic operators, expressions, 113
artifacts

ALM solution, tracking with, 556
custom services, 408
document services, 412, 413
security, validating, 384
workflow, 278

ASP.NET controls
Chart Control, 290
User control web part, hosting with, 213
user input, validating, 243

ASP.NET webpages, creating with AJAX, 233
assemblies

coding against, in X++, 78
hot swapping on servers, 87, 88
references, adding, 77
strong-named, using, 76, 77
third-party, 76

assigning security roles, 376, 384
ATDD (acceptance test driven development), 557, 558, 566
attributes

classes and methods, using with, 139
creating, 552
predefined, test, 550–552
product, 684
SysObsoleteAttribute, 139
SysOperation framework, 517

authentication
described, 373

mobile apps, 749, 754
Authenticode, signing models with, 734
authorization, 373, 391
auto design reports, 297, 298
Auto variables, 200
auto-inference, 378
automated decisions and tasks, in workflows, 265
autorefresh, 25
avg aggregate functions, in select statements, 119
AX 2012

batch processing, 643, 644
chart development tools, 303
client, Help actions, 571
consuming services, 422–432
custom services, 408, 411
data connection queries, 299
designing new transaction details forms, 169
Development Workspace, launching, 20
Enterprise Search, 253
Excel templates, building, 203
extending transaction details forms, 169
extensions, 300
IDs, assigning, 66
integrating with other systems, 74, 76–88
labels, 34
localization, allowing for, 36
managed DLLs, referencing from, 77
metadata layers, 727
mobile architecture, 746–751
mobile clients, services for, 750, 751
MorphX development tools, 19
print management, 661–669
publishing services, 421
reporting development tools, 296
reporting framework architecture, 293
security framework, 372–376

send framework, 432–434
services framework, 407–420, 750
solution, as, 3
SQL Server Power View, 353–358
system services, 408
Trustworthy Computing, 390, 393
unit testing features, 550–553
value type conversions, 128
version control systems, 65
Word templates, building, 204

AX 2012 R3
extension methods, specific to, 98, 99
LINQ, using with, 89

Axd<Document> classes, 414
Axd queries, generating document services with, 416
AxPopup controls, 225
Ax<Table> classes, 415
AXUpdatePortal utility parameters, 252, 253
AXUtil, models and, 731, 734
Azure demo environment topology, 766

B
backing entities, creating, 695, 696
base enumeration

types, 9, 111
values, adding, 677, 679

basic integration ports, 421
batch bundling, 488
batch framework

Batch API, using, 652–654
common uses, 643, 644
described, 641
requirements, 516

batch groups, 643, 656
batch jobs

batch-executable classes, creating, 645–647

creating, 647–654
described, 643
managing, 657, 658
task dependencies, 650–653

batch processing, 643, 644
batch servers

AOS instances, configuring as, 655
described, 643
operations, running on, 517

batch tasks
debugging, 658–660
described, 643

batch-executable classes, creating, 645–647
benchmarking, 773
best practices

mobile apps, 753
rules, 41, 43
washed version, 57

Best Practices tool
application logic, validating with, 393
benefits of, 40
checking customized tables, 417
custom rules, adding, 43
deviations, 38
suppressing errors and warnings, 43

BI. See business intelligence (BI)
Bitwise operators, expressions, 113
boolean variable declaration, 111
BoundField controls, 227
BPM (Business Process Modeler), 764, 765
breakpoints, 46, 47
browsers, interactions with Enterprise Portal, 209
build process

creating, 73
executing tests, 563–566

business documents. See also workflow, document class

document hashes, 430
transmitting, 432–434
updating, 428–430
workflow documents, 262

business intelligence (BI)
analytic content, configuring, 325, 326
components of, 314
customizing solutions, 324
displaying information, 211
external data integration, 338–340
implementing, 315–324
prebuilt solutions, customizing, 324–340

business logic, referencing in classes, 201
Business Overview web part, 211, 361
Business Process Modeler (BPM), 764, 765
business processes, 257, 258. See also process cycles
business unit, 673
button controls, 187, 188

C
CacheLookup values, 441
caching

client vs. server tiers, 471, 474
declarative display method, 439
EntireTable, 474
global variables, 477
indexing, and, 441, 468
number sequencing, 487
records, 467, 468
set-based, enabling, 474
unique index join, 441

calculations, moving to AX 2012, 351
calendars, date dimensions, 330
call stack, 106
calls, grouping into chunks, 445
CALs (client access licenses), 401

capability, 687, 688
CAS (code access security), 140
case, specifying for source code, 67
Case Sensitive comparison option, 59
categories

product, 684
reporting functions, 294
workflows, using in, 280

chart controls
binding to datasets, 306
ED Chart Control, adding, 304
markup elements, 305

charts
creating for Enterprise Portal, 303
default format, overriding, 310
development tools, AX 2012, 303
EP Chart Control, adding to projects, 304
interactive functions, adding, 308, 309
troubleshooting, 312

class types, 107
classes

batch-executables, creating, 645–647
declarations, defining in macros, 535
decorating with attributes, 139
main method, adding, 34
rules, checking for, 43
securing, 392
structuring, 134
upgraded versions, 58

classes and interfaces, 133
class-level patterns, 144–146
client access logs, 512
client callbacks, eliminating, 444
client configuration on AOS, 486
Client Performance Options form, 486
client workspace components, 155, 156

client/server performance, optimizing, 438
client-side reporting solutions, 290, 291
cloud, deploying services to, 422
Cloud Hosted Environments, 765
Cloud Powered Support, 767
cloud-based services, using REST, 751
code. See also managed code

call stack, viewing in debugger, 47
customizing forms, with, 197
element types, 13, 14
executing X++ as CIL, 487
permissions, 381
quality, enforcing, 64
recompiling in X++ code editor, 38
set-based operations, transferring into, 459
set-based statements, replacing with, 461
tier-aware, writing, 442
viewing X++ in debugger, 47

code access security (CAS), 140
code access security framework, 392
code samples, downloading, vi
coding patterns, 487–500. See also patterns
collection types, 106
columns

displaying default, 164
entity relationship, 52

COM interoperability, 129
combined values, constraining, 694
comments to X++ code

adding, 132
TODO, 38

common language runtime (CLR), 126–129
Common menu grouping, 196
Common section, area pages, 159
common type, 108
Compare tool, 57–59

Compare APIs, 61
compiling,

X++ code
LINQ queries, 101

concepts, mapping to physical table elements, 697
concrete tables, in inheritance hierarchy, 622
Conditional operators, expressions, 113
conditions, creating for workflows, 280
configuration key element types, 17
configuration keys

references, 401
table hierarchy consistency, 622
using, 399, 400

configuration technology and product masters, 684, 685
configuration time, defining tables, 611
conflicts, resolving with OCC, 430
Connect web part, 212
constrained table security policy, 385
constraint-based configuration technology, 684
constructor encapsulation, 144
consuming AX 2012 services, 422, 435
container variable declaration, 111
containers

AxColumn, for controls, 217
converting table buffers into, 445

content pane, workspace component, 156
content section, in HTML, 582, 598
context-sensitive topics, in Help, 586, 587
control elements, user interface, 11
controls

actions, 187
adding, 186
buttons, 187
charting, 303
data binding, 186
Enterprise Portal framework, 215–228

input, 192
layout, 189
ManagedHost, 193
overrides, 186
permissions, setting, 379
reports, using in, 297
runtime modifications, 187
user input, validating, 243

CopyCallerQuery property, 185
cost center operating unit, 673
count aggregate functions, in select statements, 119
coupling, reducing or eliminating, 543
Create Upgrade Project, 30
Cross-Reference tool, 62, 63
CRUD operations, 408
cubes

creating, 341–351
customizing, 327–335
data, exposing to users, 351
deploying, 317–323
extending, 335–337
field-level properties, defining, 344
processing, 323
table-level properties, defining, 344

cue element types, 12
cue group element types, 12
cue groups, 195
cues, 157
Cues web part, 212
currency conversions, 333, 346–350
CustName, 110
Customer Details form, 152
customers, creating new, 152
Customization Analysis, 766
customizations, deploying, 768
customizing

business intelligence solutions, 324–340
defaulting logic for table fields, 419
document services, 417
Help system, 569, 570

custom lookups, 201
custom rules, adding, 43
custom services

adding, 418
artifacts, 408
invoking asynchronously, 430
registering, 411

D
dangerous API exceptions, 43
data

business documents, updating in, 428
dimensions, querying, 696
importing and exporting, 769–772

data access logic, using datasets, 213
data binding

controls, 186, 306
field values, displaying, 227
strategies, 306

data caching, mobile apps and, 753
data connections, supported in SSRS, 299
data contracts

parameters, using in service operations, 410
X++ collection types, using in, 411

Data Dictionary, 21
Data Import/Export Framework (DIXF), 771, 772
data mash-ups, 354
data models

entity relationship, 52
UML, generating, 49

data partitions, 638, 639
data security, 376, 377

data series, 306–308
data source view (DSV), 337
data sources

derived, 179, 180
forms, 177
metadata properties, 182
Office Add-ins, making available to, 202
OLAP, 306
OLTP, 306
saving records in, 181
services, making available, 202
table inheritance and, 178–180

data tier architecture, 7
data warehouses, 339
data-aware statements, syntax, 116
database transactions, rolling back, 123
datasets

binding chart controls to, 306
data access logic, defining, 213
dynamic series, 308
initializing with init method, 214
methods, 214, 215
multiseries, 307
single series, 307
temporary record buffers as pointers to, 605–608
views, 214

date effectivity, 181
date variable declaration, 111
date-effective framework, 628–633
debugging. See also errors; troubleshooting

batch tasks, 658–660
breakpoints, 46
Debugger tool, 20
enabling, 45
extensible data security policies, 389
Help system, 598, 599

multiple concurrent updates, 430
security constructs, 394
shortcut keys, 48
user interface elements, 46, 47
web traffic, 757
X++ in batches, with Visual Studio, 660

declarations section, in HTML, 576–578
declarative display method caching, 439
decoupling

base and derived classes, 539, 540
events, 544

Default Dimensions, 693
defaulting logic, 419, 420
delegates

declaring, 136
members of a class, adding, 544
subscribing to, 137

delete_from transaction statement, 122
department operating unit, 673
dependencies, batch job tasks, 650–653
deploying customizations, 768
derived data sources, 179, 180
derived tables, creating, 621
design, workflow phase, 275
Design node properties, 186
design phase

described, 761
hierarchies, creating, 764
LCS tools and services, 764

design principles of AX 2012, 3
design time, defining tables, 610, 611
designing new transaction detail forms, 169
details forms, 164–166
details pages, creating, 231
DetailsFormMaster template, 175
DetailsFormTransaction template, 175

develop phase
customizations, deploying, 768
described, 761
LCS tools and services, 765

development environments
MorphX, 6
Visual Studio, 6

development tools
accessing, 20
layer comparison, 30
mobile apps, 752
wizards, 30

Development Workspace, launching, 20
Dialog template, 175
dictionary API, type-safe reflection, 715
digital signatures, adding to models, 734
Dimension Attribute Sets, 693
dimension framework, 692–697
Dimension Sets, 693
dimension-based configuration technology, 685
dimensions

concepts, physical table reference mapping, 697
product, 681
querying data, 696
storage, 683, 693, 694
tracking, 683

dirty elements, 25
display menu items, 264
distribution policies, controlling with tokens, 667–669
DIXF (Data Import/Export Framework), 771, 772
DLLs. See managed DLLs
document

body section, in HTML, 581
files, in Help, 572
hashes, 430
head section, in HTML, 578–580

services, 412–420, 424, 428
sets, 572, 597

documentation and resource element types, 16
documenting XML methods and classes, 132
DropDialog template, 175
DSV (data source view), 337
duties

security roles, assigning to, 381
segregating, 375, 385

duty element types, 14
dynalinks, 178
dynamic role assignment, 376
dynamic series datasets, 308

E
editing Power View reports, 357
editor scripts, 34
EDTs (extended data types)

schemas, restricting, 414
table relations, and, 615–617

element types, 9–18
elements

actions, accessing in the AOT, 26
AOT, 213
browsing, 20
creating, 66
customizing existing, 66
dirty, 25
hierarchies of, 712, 713
IDs, in models, 730, 740
intrinsic functions, referencing with, 708, 709
layers and models, in, 26, 726, 727
life cycle, 66
modifying in the AOT, 24
naming syntax, 22
overwriting, in models, 735

pending, 72
referencing by name, 709
reflecting, using APIs, 711–724
refreshing, 25
revision history, 71
synchronizing, 25, 69
types, 730
upgrade conflicts, 30
versions, 57
workflow, 264

Enterprise Portal
Action pane, 170
AOT elements, 213
architecture, 208
charts, creating, 303
components of, 211
deploying as SharePoint features, 250
described, 207
design considerations, 171
developing applications, 228
exceptions, 244
feature definitions, 250
framework, described, 8
framework controls, 215–228
master pages, 250
metadata, APIs for accessing, 238
navigation paths, 170
page processing, 210
proxies, predefined, 240
search bar, 170
security, role-based, 245
SharePoint, integrating with, 248, 256
SharePoint navigation elements, using, 248
style sheets, 256
top navigation bar, 170
web client, described, 8

web client user experience, 169
web part pages, creating, 252
web parts, 211
workspace components, 170

Enterprise Portal Chart Control. See EP Chart Control
enterprise resource planning (ERP), 153
Enterprise Search, 253, 254
EntireTable caching, 474
entity relationship data model, 52
enumeration types, 106
EP Chart Control

creating, 304
data binding strategies, 306–308
described, 289

ERP (enterprise resource planning), 153
error handling, 244
errors. See also debugging; troubleshooting

best practice rules, 42
compiler, 38
Help system, 598, 599
suppressing, 43

event handlers, 264, 545, 546
eventing, 543–548
Excel

data mash-ups, 354
Power BI, 359
reports, sharing with users, 360
templates, building, 203

exception data type enumerations, 124
exception handling

best practice, 122
duplicate key, 125

exceptions
dangerous API, 43
throwing, 122

exists method, 147

export/import file (XPO), 58
exporting

data, 769–772
model stores, 726

expressions
lambda, 91
operators, 113

extended data type element types, 10
extended data types, 106, 110
extending transaction detail forms, 169
extensibility patterns

eventing, 543–548
extension framework, 539

extensible
classes, 541
data security policies, 385–389

extensible data security (XDS) framework, 376, 675
extension framework, 539, 540
extension methods, 90, 97. See also AX 2012 R3
extensions

AX 2012, 300
creating, 539
data processing, 302
disabling, 301
RDL transformations, 301
SSRS, 299

external data integration, 338–340
external data sources, data mash-ups in Excel, 354
external web services, consuming from AX 2012, 435

F
FactBox pane, 156
FactBoxes, 164, 165
factory method, 145
false positives, 43
FastTabs

described, 165
organizing fields into, 166

FastTabs TabPage layout control style, 191
feature definitions, 250
Fiddler web debug proxy, 757
field lists, 477–479
field-bound controls, 192
field-level properties, in cubes, 344
fields

aggregating within code, 499
declaring, 134
entity relationship columns, as, 52
hiding, using TabPage, 190
justifying, 483
methods, overriding, 199
organizing into FastTabs, 166
table properties, 616

filters
applying programmatically, 221
custom time periods, adding, 364, 365
projects, using in, 29
tests, creating for, 552

financial dimensions, 329, 675
find method, 147
Find tool, 54
firstfast hint, using, 498
flexible authentication, 373
foreign key columns, 52
foreign keys

CreateNavigationPropertyMethods, 618–620
relations, 617
surrogate, 181

forms
Action panes, 188
ad hoc mode, using on, 482
Auto variables, 200

batch jobs, creating, 648–654
business logic, adding calls to, 201
controls, 186, 189, 192–194
creating, 174
customizing with code, 197
data sources, 177
dynalinks, 178
element types, 11
hiding fields, 190
input controls, 192
layout controls, 189
lookups, custom, 201, 202
metadata, 176, 182
methods, overriding, 198
navigation items, adding, 195, 196
.NET button, adding, 193
parts, 194, 195
patterns, 174
permissions, setting, 377
queries, 183–186
referencing parts, 195
table data information, 712
TabPage, hiding fields using, 190
templates, 175
workflow, enabling in, 284, 285

foundation layer, 5
frameworks

accounting, 698–702
address book, integrating, 675
application modules, integrating, 675, 676
batch, 641–644, 652–654
date-effective, 628–633
dimension, 692–697
Enterprise Portal, 8, 215–228
extensible data security, 675
extension, 539

operations resource, 686–692
organization model, 672–680
policy, 675
product model, 681–686
RunBase, 517, 533
source document, 702–705
SysOperation, 516
SysTest, 550–553, 566

full update mode, applying for document services, 428
full-text search queries, 633, 634
functions

interactive, adding to charts, 308, 309
reflection system, 707–711

G
Generic Record Reference, 148
global variables, 47
globalization, 757. See also localization
grids, displaying input controls in, 191
group by sort, in join conditions, 120
group masks in projects, 28
grouping, input controls, 189
guid variable declaration, 111

H
handling exceptions, 122, 125
handshake, secure, 140
hashes, documents, 430
Help documentation set element types, 16
Help system

described, 570–576
document files, 572
errors, 598, 599
Help server, 572, 573
Help viewer, 571
HTML metadata file, creating, 591, 592

publisher ID, 574
publishing content, 593–597
summary page, 574
table of contents, 574, 588–590
topics, creating, 573–588
troubleshooting, 598, 599
web service, 8, 572, 573

helper threads, 487
hierarchies

Business Process Modeler (BPM), creating with, 764
elements, 712, 713
organization model framework, 673, 674
print management, 662, 663

hierarchy designer, extending, 680
history

batch jobs, reviewing, 658
elements, 71

hosting ASP.NET controls, 213
hot swapping assemblies, 87, 88
HTML

Help topics, creating in, 576–588
metadata file, creating, 591, 592

human workflows, defined, 259–260

I
IDs

elements, in models, 730
treenode type, 722

importing
data, 769–772
model files, 735, 736

included columns, in indexing, 497
indexing

caching, and, 441, 468
included columns, optimizing with, 497

IndexTabs TabPage layout control style, 190

indicator definitions, 365
individual task modeling, 488
info parts, 11, 194
Infolog web part, 212
information messages, best practice rules, 42
infrastructure callback, 273
Infrastructure Estimation, 764
inheritance

metadata, 177
RunBase framework, 533
tables, 178–180, 621–626

InMemory temporary tables, 442, 448, 604–609
input controls, 192
Inquiries menu grouping, 196
Inquiries section, area pages, 159
insert method transaction statements, 122
insert_recordset transaction statements, 122
int variable declaration, 111
int64 variable declaration, 111
Integrated Windows Authentication, 373
integration ports

basic, 421
processing messages, sequence of, 435
publishing services, 408
selecting, 433

integration with Microsoft Office client, 202
interaction patterns, implementing, 232
interactive functions, adding to charts, 308, 309
interface types, 107
inter-form dynalinks, 178
Internet services queries, 299
interoperability

CLR, 126
COM, 129

intra-form dynalinks, 178
intrinsic functions

referencing elements, 708, 709
using, 63

inventory closing, improving speed of, 487
inversion entry column, 52
Issue Search, 767

J
job element types, 13
jobs

model elements, 106
restarting, 465

joined data sources, 178
joins

group by sort, 120
joining tables, 120
operators, 121
set-based operations, and, 455
TempDB temporary tables, using with, 609

Journals section, area pages, 159

K
keys

alternate, columns, 52
configuration, 399, 400
foreign, surrogate, 181

keywords, for select statements, 117, 118
KPI List web part, 361
KPIs

adding, 350, 363
modeling in AOT, 337

L
label editor, 34, 36, 37
label files

element type, 16
Label Files node, 36

uses for, 242
labels, 34

checking out, 69
creating, 36
Help, referencing from, 584–586
reusing, 37
X++, referencing from, 37

lambda expressions, 91
Language-Integrated Query. See LINQ (Language-Integrated Query)
languages, changing in prebuilt solutions, 331, 332
layers

comparing, 30
element definitions, 726, 727
five-layer solution, 4–6
logical partitions, 5, 6
metadata, 727
models, and, 728

layout controls, 189
LCS (Lifecycle Services), 762–768
Ledger Dimensions, 693
Left navigation web part, 212
legal entity organization type, 672
license codes

described, 397, 398
element types, 17

License Sizing Estimator, 764
licensing

customizing, 403
models, 396

life cycle
elements, 66
phases, 761

Lifecycle Services (LCS), 762–768
line-item workflows, 265
linked data sources, 178
LINQ (Language-Integrated Query)

anonymous types, creating, 90
components of, 89
constructing, 91–94
data access problems, solving, 95–98
defined, 76
extension methods, 90
lambda expressions, 91
overhead, limiting with C# compiler, 101
records, managing, 99, 100
var keyword, using to omit variable types, 89

list definition element types, 16
list pages

alternative to reports, 162
Analyze Data button, adding to, 358
described, 160
designing, 163
displaying default columns, 164
FactBoxes, 164
interaction classes, defining, 230
model-driven, creating, 229
optimizing for performance, 498
performing bulk actions, 164

List web part, 212
ListPage template, 175
literals, supporting upgrade scenarios, 452
local variables, 47
localization, 36, 242, 757
Logical operators, expressions, 113
logical partitions, 5
logs, client access, 512
lookups, customizing, 201, 202, 222

M
macro library, 130, 131
macros

class declarations, defining in, 535

element types, 13
supported directives, 130
using parameters, 131

managed code
debugging, 84
proxies, 85
writing, 79–84

managed DLLs, referencing from AX 2012, 77
ManagedHost control, 193
managing state, 279
manifest, models described in, 732
map element types, 10
map record types, 107
master data sources, 177
master pages, 250
master scheduling, improving speed of, 487
maxOf aggregate function, in select statements, 120
measuring performance, 773
member variables, 47
memory heap, 106
menu element types, 11
menu item element types, 11
menu items

labels, in Help topics, 586
operating unit types, creating for, 678
role associations, changing, 403
security properties of, 380
workflows, in, 264, 283

menus, grouping, 196
messages

flow and authentication, 749
sending, unsolicited, 432, 433

metadata
accessing through managed code, 238
associations, in forms, 176
crawling with Enterprise Search, 254

definitions, selecting, 328
derived classes, adding to, 540
element IDs, 740
form data source properties, 182
Help topics, HTML, 578–579
Help topics, non-HTML, 591
inheritance, in forms, 177
layers, 727
model store, in, 737–739
perspectives, defining, 343
queries, retrieving, 425
WSDL, publishing in, 407–420

Method invocations, expressions, 113
method-bound controls, 192
methods

decorating with attributes, 139
extension, 90
initializing a dataset, 214
invoking on objects, 707
main, adding to a class, 34
modifiers, 135
object behavior, declaring, 135
overriding with code, 197, 198
pack-unpack, 535–538
purposes, adding, 679
QueryBuildDataSource, 184
QueryRunQueryBuildDataSource, 184
RunBase overrides, 516
static new, characteristics of, 533
X++, exposing as a custom service, 408

Microsoft Azure Active Directory Access Control, 747
Microsoft Azure Service Bus adapter, 422
Microsoft Azure Service Bus Relay, 746
Microsoft Dynamics AX

Infolog messages, displaying on webpages, 212
Report Definition Customization Extension (RDCE), 300

Reporting Project, 296
Trace Parser, 501. See also tracing

Microsoft Dynamics AX 2012, See AX 2012; AX 2012 R3
Microsoft Dynamics Enterprise Portal configuration, 245. See also
Enterprise Portal
Microsoft Dynamics Public configuration, 245
Microsoft Office client, integrating with, 202–205. See also Office Add-
ins
Microsoft SQL Server Reporting Services (SSRS), displaying reports, 212
Microsoft XML Core Services (MSXML), 129
migrating customizations, 768
minOf aggregate function, in select statements, 120
mobile apps

architecture variation considerations, 758
AX 2012 service design for, 750
best practices, designing and developing, 753
data storage, 753
described, 747
developer resources, 752, 759
developing, 752–757
message flow, 749
offline use, allowing for, 753
on-premise listener, 751
usage, monitoring, 757
user authentication, 749, 754

mobile architecture
components of, 747
developer resources, 752, 759
platform options, 752
variations, 758

mobile clients, using AX 2012 services, 750, 751
model element prefixes, MorphX, 692, 701, 705
model file, generating from .xpo, 73
model stores

API, 740
defined, 725

deploying, 739
element IDs, 740
exporting, 726

model-driven list pages, 212, 229
modeling

capabilities in the AOT, 326
functional scenarios, 676

models
categories, 733
conflicts, resolving with push, 736
creating, 731
described, 728, 729
element IDs, 730, 731
exporting, 733
importing, 735, 736
layers, 726
manifest, describing in, 732
overwriting elements, 735
production, deploying to, 739
publishing, 732–736
signing, 734
staging, 737–740
test environment, 738
upgrading, 737

modifications, rolling back, 465
module-specific navigation links, 212
MorphX

Application Object Tree (AOT), 21
Best Practices tool, 38
classes, upgrading, 58
Compare tool, 57
compiler, 38
Cross-Reference tool, 62
datasets, creating, 213
debugger, 45
development environment, 6

Find tool, 54
implementing actions, 26
label editor, 34
labels, referencing from X++, 37
model element prefixes, 692, 701, 705
models, creating, 731
personalizing tool behavior, 20
property sheet, 31
Reverse Engineering tool, 48
Table Browser tool, 53
tools and components, 20
Type Hierarchy Browser, 20, 108
Type Hierarchy Context, 20, 108
updating application model elements, 19
user interface control element types, 11
version control, 64, 65
X++ code editor, 32

MSXML (Microsoft XML Core Services), 129
multiseries datasets, 307

N
Name extended data type, 110
Named User license, 396
navigation

items on forms, 195, 196
layer forms, 155, 156, 170
links, 212
panes, 155, 156
SharePoint sites, elements, 248

.NET AJAX. See AJAX

.NET buttons, adding to forms, 193

.NET CIL (common intermediate language), running X++ as, 142

.NET CLR interoperability statements, 114
number sequence caching, 487
numeric information, displaying on webpages, 212

O

Object creation operators, expressions, 113
object models, UML, 50
object types

reference type, 109
variable declaration, 111

objects
methods, invoking on, 707
Query, 185
QueryRun, 185

OCC (optimistic concurrency control), 430
Office 365, Power BI, 359
Office Add-ins, 202–205
Office clients, 8
OLAP database, providing access to, 324
old layered version types, 57
on-corpnet mobile apps, 758
on-premise listener, developing for mobile apps, 751
operate phase

described, 761
LCS tools and services, 767

operating unit organization types, 672, 673, 677
operations

batch servers, running on, 517
downgrading, 454, 456
requirements for defining, 516

operations resource framework, 686–692
operators

join, 121
set-based data, manipulating, 447
table hierarchies, 448

optimistic concurrency, 466
optimistic concurrency control (OCC), 430
OptionalRecord, 181
ordered test suites, 562
organization

hierarchies, 673, 674

types, 672, 674
organization model framework, 672–680
over-layering, 727
overriding

controls, 186
default chart formats, 310
form methods, 198

P
pack-unpack pattern, 535–538
page definition element types, 16
Page title web part, 212
pages

Enterprise Portal, processing in, 210
pop-up browser window, opening in, 225
SharePoint templates, 249
standard interaction patterns, implementing, 232

parallel activities, in workflows, 265
parallel processing, 433, 435, 488
parameter method, implementing, 144
parameters

AXUpdatePortal utilities, 252
data contract, using in service operations, 410

Parentheses, in expressions, 113
parent pages, passing data to, 226
Parm methods, 34
partial update mode, applying for document services, 429
partitions, 638, 639
parts, 194, 195. See also web parts
passing information

Context data structure, 235
record context interface, 247

patterns
checking for existing records, 494
class-level, 144–146, 145
extensibility, 539

for performance, 487–500
pack-unpack, 535–538
property method, 534
storage, dimensions, 693, 694
table-level, 147, 148

pending elements, viewing, 72
performance

AOS configuration settings, 486
benchmarking, 773
caching, 438, 477
coding patterns, optimizing for, 487–500
configuration options, 483–487
declarative display method caching, 439
field justification, 483
field lists, limiting, 479
list pages, optimizing, 498
monitoring tools, 501–513
parallel processing, using, 435
table inheritance, 626
transactions, optimizing for, 447
Usage Profiler, 764

Periodic menu grouping, 196
Periodic section, area pages, 159
permissions

auto-inference, using, 378
code, 381
defined, 374
forms, setting for, 377
privileges, creating, 380
property values, 381

personas, defined, 352
personName, 112
perspective element types, 10
physical tables, mapping to concepts, 697
platform architecture

application development environments, 6

tiers, 7, 8
platforms, and mobile architecture, 752
policies

context information, 386
extensible data security, 385

policy framework, 675
policy query, 386
polymorphic

associations, 147
queries, 178, 179, 624, 625

pop-up browser windows
opening pages in, 225
parent page, passing data to, 226

Power BI
Office 365 and, 359
Power View, comparing to, 360

Power View, 353–358, 360
pre and post events, 545
prebuilt BI solutions, customizing, 324–346
precision design reports, 298
predefined variant configuration technology, 685
pre-event and post-event handlers, 138
prefixes

business area name, as, 22
commonly used, list of, 23
MorphX, model elements, 692, 701, 705

pre-processing data in reports, 299
presentation tier architecture, 8
primary entity, creating and extending, 165
primary table security policy, 386
primitive types, 106
print management

applying, 662
automating tasks, described, 642
hierarchy of, 662, 663
settings, 663–669

privilege element types, 14
privileges

creating, 380
defined, 374
security roles, assigning, 381
using, 246

process cycle element types, 14
process cycles, 375
process states

accounting distribution, 704
accounting framework, 700, 701
subledger journalizing, 704

product masters, 681
product variants, 681
product model framework, 681–686
production

models, deploying to, 739
reports, 293, 295

profiles, associating with users, 323
projects

AOT, maintaining in, 340
creating, 27
customizing, 327–335
development tools, 30
filters, 29
generating automatically, 28
group masks, 28
layers, comparing, 30
property sheet, 31
type, specifying, 30
upgrading, 30

properties
AOSAuthorization, 391
CopyCallerQuery, 185
Design node, 186
document sets, setting in Help, 597

property method pattern, 534
property sheets, 31
provider callback, 273
proxies

creating new, 240
described, 85

proxy classes, 239
publisher ID, and Help, 574
publishing

AX 2012 services, 421
Help content, 593–597
models, 732–736

Purchase Order form, 167
purposes

base enum values, creating for, 679
creating custom, 678–680
organization types and, 674

Q
quality checks, 67
queries

Axd, guidelines for creating, 416
data, reading through LINQ, 95
data processing extensions, using, 302
dimension data, 696
document services, generating, 412, 416
Enterprise Search, using, 253
filters, applying, 185
forms, 183
Internet services, 299
LINQ, constructing, 91–94
metadata, retrieving, 425
Office Add-ins, making available, 203
polymorphic, 178
reducing execution of, 495
SSAS OLAP, accessing data, 299

T-SQL, accessing data, 299
using, vs. joins, 496

query element types, 11
Query objects, 185
query string parameters, passing record context, 248
QueryBuildDataSource method, 184
QueryFilter API, 635–638
QueryRun objects, 185
QueryRunQueryBuildDataSource method, 184
Quick launch web part, 212
Quick links web part, 212

R
RapidStart Services, accessing LCS, 764
RDCE (Microsoft Dynamics AX Report Definition Customization
Extension), 300
RDL transformations, 301
RDP (report data provider), 299
real variable declaration, 111
record buffer

pointers to datasets, 605–608
turning off checks, 451, 456

record context interface, 247
Record type variable declaration, 111
record types, 107
record-based operations

downgrading to, 450
transferring to set-based, 463

records
caching, 467, 468
date-effective framework modes, 632
existing, checking for, 494
form templates and, 175
inserting multiple, 457
joins and, 182
LINQ, managing with, 99, 100

locate, using record context, 247
polymorphic creation of, 179
saving, in form data sources, 181
selecting optimistically, 466
specifying types users can create, 180
updating multiple, 453

RecordViewCache, 475, 476
reference element types, 13
reference layer, 30
reference types, 107
references, dimension concepts and physical tables, 697
referential integrity, Unit of Work, 626
reflection

APIs, 711–724
described, 707
methods on objects, invoking, 707
Reverse Engineering tool, 707
system functions, 707–711
tables, 714
views, 714

refreshing elements, 25
Relational operators, expressions, 113
relationships between tables, 615–620
released products, 683
rendering extensions, disabling, 301
Report Builder, 366
report data provider (RDP), 299
Report model, in Visual Studio, 297
Report web part, 212
reporting framework, troubleshooting, 311, 312
reports

AX 2012 development tools, 296
categorizing based on roles, 294
client-side solutions, 290
controls, using, 297
creating, 295

datasets, 294, 298
designs, 294, 297, 298
development roles, 294
display content, controlling, 298
edits by users, 357
element types, 12
execution sequences, 300, 302
extensions, 8
layout design, 297
Microsoft Dynamics AX Reporting Project template, 296
Model Editor, using, 297
Power View, 354, 357
pre-processing data, 299
Report Builder, using, 366
server-side solutions, 292
solutions, planning, 293
SSRS elements, 296
SSRS extensions, 299
static, creating, 302
troubleshooting, 311, 312
Visual Studio tools, using, 366–369

Reports menu grouping, 196
Reports section, area pages, 159
resource element types, 16
resources, identifying for activities, 690
RESTful services, 751
retail channel operating unit, 673
Reverse Engineering tool

described, 48
entity relationship data model, 52
UML models, generating, 49, 50

revision history, 71
RFP Responses, 764
Role Centers

analytic content, displaying, 351–369
OLAP reports, 326

pages, 156, 157
reports, adding, 355, 356
user profiles, 323

role-based security, 14, 246
roles

access control, based on, 373
assigning to users, 384
categories of, 352
element types, 14
menu item associations, changing, 403
privileges, assigning, 381
reporting needs, based on, 294
security, assigning to users, 376
security artifact associations, changing, 403

role-tailored design, 153
rolling back modifications, 465
root data sources, 177
root tables, creating, 621
round trips, reducing, 438–441, 445, 447, 458, 477
RowCount method, 121
rows, deleting multiple, 455
rules, segregating duties, 385. See also best practices, rules
RunBase

inheritance, 533
round trips, handling, 440
SysOperation, comparing to, 517, 518

RunOn, instantiating objects, 442
run time, and temporary tables, 611, 612
runtime modifications, 187

S
Sales Order form, 167
scenarios, modeling, 676
search bar

Enterprise Portal, in, 170
workspace component, 155

searching
Enterprise Search, using, 253, 254
Find tool, using, 54
full-text support, 633, 634
Help viewer, 571
Issue Search, 767
ranges, specifying, 56
Windows Search Service, 573

securing APIs, 392
security

APIs, 392
authorization, role-based access, 373
CAL role mapping, 402
coding, 390–394
controls, permissions for, 379
data policies, assigning, 376
debugging, 394–396
duties, assigning to roles, 381
Enterprise Portal, 245
exposing web controls, 246
forms, setting permissions for, 377
hash parameters, using, 248
hierarchy and user types, 402
policy concepts, 385
privileges, 380, 381
role-based, 246
roles, 375, 376
server methods, setting permissions for, 379
service operations, and, 420

security artifacts
developing, 377–381
menu options, 395
role associations, changing, 403
validating, 384

security framework, 372–376
security policy element types, 14

select forUpdate transaction statements, 122
select query, ordering and grouping, 119
select statements

aggregate functions, 120
joining tables, 120
keyword options, 117, 118
syntax, 117

separation of concerns and processes, 3
serializing with the pack and unpack methods, 146
Server Configuration form, 484
server methods, setting permissions for, 379
server-side reporting solutions, 292
service contracts

custom services, in, 409, 410
document services, in, 412

service element types, 13
service implementation

custom services, 409
document services, 413
service contracts, 409

service operations, and security, 420
services

AX 2012, consuming, 422
making available, 202

sessions, disposal and caching, 234
set-based operations

caching, 474
code, transferring into, 459
downgrading, 451, 452, 454
InMemory temporary tables, and, 448
joins, using, 455
manipulating data, 447
record-based, downgrading to, 450
table hierarchies, and, 448

Setup menu grouping, 196
Setup section, area pages, 159

SGOC (SysGlobalObjectCache), 477
shared steps, 559–561
SharePoint

developing web part pages and lists, 228
sites, 249
SQL Server Power View, and, 355
themes, integrating with Enterprise Portal, 256

Shift operators, expressions, 113
shortcut keys

debugging, 48
X++ code editor, 33

Show Differences Only comparison option, 59
Show Line Numbers comparison option, 59
signing models, 734
SimpleList template, 175
SimpleListDetails template, 175
single series datasets, 307
site navigation, 248
solution architecture, five-layer, 4–6
source code casing, executing, 67
Source Code Titlecase Update tool, 67, 111
source document framework, 702–705
SQL Administration form, 483
SQL Server Analysis Services. See SSAS (SQL Server Analysis Services)
SQL Server Power View. See Power View
SQL Server Reporting Services. See SSRS (SQL Server Reporting
Services)
SSAS (SQL Server Analysis Services), 4, 315, 317, 335, 336

described, 8
OLAP queries, 299

SSRS (SQL Server Reporting Services)
components of, 296
data connections, supported, 299
described, 4
report element types, 12
reporting extensions, 8, 299

reports, displaying, 212
standard layered version types, 57
Standard TabPage layout control style, 190
state model, 279
statements, 114–116
states, managing, 279
static file element types, 16
static RDL reports, 302
static schema, 326
storage, dimensions, 683, 693, 694
str variable declaration, 111
string, as Name extended data type, 110
String concatenation, expressions, 113
string literals, expressing, 112
strong names, 76, 77, 734
style sheets, 256
subledger journalizing process, 704
subnodes, changing the order of, 24
subworkflows, 264
sum aggregate function, in select statements, 120
summary page, in Help, 574
suppressing

errors and warnings, 43
whitespace, during file comparison, 59

surrogate keys, 181, 612–614
synchronizing elements

sequence of operations, 69
viewing the log, 70

SysAnyType, 108
SysGlobalCache, 477
SysGlobalObjectCache (SGOC), 477
SysObsoleteAttribute, 139
SysOperation

attributes, 517
classes, 516
execution modes, 489, 490

RunBase, comparing to, 440, 517, 518
System Diagnostic Service, 767
system documentation element types, 16
system navigation, role-tailored, 153
system services, 407, 408, 425
system workflows, defined, 259
SysTest framework, 550–553, 566

T
Table Browser tool, 53
table collection element types, 11
table hierarchies, and set-based operations, 448
table of contents, in Help, 574, 588–590, 593–599
table permissions framework, 377, 390
table-level patterns, 147, 148
table-level properties, in cubes, 344
TableOfContents template, 175
tables

alternate keys, 614
Ax<Table> classes, accessing with, 415
behavior, specifying in hierarchy, 622
buffers, 445
caching contents, 441, 467, 468
configuration time, 611
customizing, 417
data consistency, and run-time support, 631
data retrieval, 630, 631
data storage, mapping to, 623
date-effective entities, relational modeling of, 628–630
defaulting logic for fields, 419, 420
design time, 610, 611
EDT relations, 615–617
field labels, adding to Help topics, 585
field properties, 616
field states, tracking, 420
foreign keys, 617, 618

index clause, 118
inheritance, 178–180, 621–626
InMemory, 442, 604–608
joins, 609, 613, 618, 625, 626, 635, 636
keys, 612–614
model store, 725
multiple records, inserting, 449, 457
physical, mapping to concepts, 697
record types, 107
records, inserting and modifying, 121
references, custom lookups, 201
reflection, 714
relationships between, 615–620
rows, manipulating, 465
run time, 611, 612
surrogate keys, 612–614
TempDB, 609–612
TempDB vs. inMemory, 443
temporary, 442, 443, 448, 449, 604–612
type-safe method, and, 109
unique index join cache, 473
valid time state, using, 383

TabPage layout controls, 190
tasks

batch, debugging, 658–660
batch jobs, and, 650–653
compiler, 38
workflow element, 264

Team Foundation Build, 563–566
TempDB temporary tables, 443, 444, 609–612
templates

adding for users, 205
Excel, building for, 203
form patterns, 174
Help topics, 576
Word, building for, 204

temporary tables
creating, 610, 611
InMemory, 442, 604–609
multiple records, inserting, 449
set-based operations and inMemory, 448
TempDB, 609–612
TempDB vs. inMemory, 443

test cases, developing in phases, 562
Test Data Transfer Tool, 769, 770, 772, 773
test environments, models, 738, 739
Test project type, 30
test suites, using for long scenarios, 562
testing

ALM solution, 556
ATDD (acceptance test driven development), 557, 558, 566
attributes, creating for tests, 552
build processes, executing in, 563–566
environments, described, 566, 567
evolutionary case development, 562
filters, creating, 552
integration, 552–555
ordered test suites, 562
predefined attributes, 550–552
shared steps, 559–561
Team Foundation Build, 563–566
Visual Studio 2010 tools, 556–562

TFS version control system, 65
themes, integrating with SharePoint, 256
third-party

assemblies, 76–79
clients, 8
libraries, mobile app developer resources, 752

tiers
Business Intelligence solution, 314
caching, client vs. server, 471
client vs. server, 538

instantiating objects using RunOn, 442
time periods, 365
TimeOfDay variable declaration, 111
TODO comments, 38
tokens, print management, 667–669
Toolbar web part, 213
toolbars

AxToolbar control, using, 224
displaying on webpages, 213

topics, in Help
context-sensitivity, 586, 587
described, 573, 574
labels, adding, 584–586
templates, 576

top navigation bar, in Enterprise Portal, 170
top picking, 489
Trace Parser, 501, 502. See also tracing
tracing

analyzing results, 506
code instrumentation, using, 505
database activity, monitoring, 510
importing, 506
starting, 502, 503
Tracking Cockpit options, 503
troubleshooting, 509
Visual Studio Profiler, 512
Windows Performance Monitor, using, 504

Tracking Cockpit options, 503
transaction details forms

described, 167
designing new, 169
extending existing, 169
header view, 168
line view, 168
Purchase Order, 167
toggling between views, 168

transaction statements, 122
transactions, optimizing for performance, 447
Transact-SQL (T-SQL) queries, 299
translations, 331, 332
transmitting business documents, 432–434
treenodes, 718–723
triggers, implementing for message transmission, 432
troubleshooting. See also debugging; errors

Help system, 598, 599
reporting framework, 311, 312
reports, 312
Server Process ID (SPID), using, 511
systems, using System Diagnostic Service, 767
tracing issues, 509
usage issues, 764

trusted code, defining, 140
T-SQL (Transact-SQL) queries, 299
ttsAbort transaction statements, 121
ttsBegin transaction statements, 121
ttsCommit transaction statements, 121
type hierarchies, 107, 621
Type Hierarchy Browser tool, 20, 108
Type Hierarchy Context tool, 20, 108

U
unbound controls, 192
under-layering, 727
Unified work list web part, 213
unique index join cache, 441, 473
Unit of Work, 181, 626–628
unit testing, 550–553
Update Installer for Microsoft Dynamics AX 2012 R3, 767
update_recordset transaction statements, 122
updating

business documents, 428–430
Help topics, 587, 588

Upgrade Analysis, 766
upgraded class versions, 58
upgrading projects, 30, 766
URLs, Power View parameters, 356
Usage Profiler, 764
user authentication

mobile apps, 749, 754
SSL, setting up, 754

user context information, 47
User control web part, 213
user experience

Enterprise Portal, 169
mobile apps, and, 754
navigation layer, 154
role-tailored design, 153
simplifying with FactBoxes, 166
work layer, 154

user input, validators, 243
user interface

control element types, MorphX, 11
debugger elements, 46
default, creating from definitions, 516
labels, referencing from Help, 584–586
wizard-driven, 326

user templates, adding, 205
user types, and security hierarchy, 402
user-defined class types, 107
users

access to OLAP database, providing, 324
assigning roles to, 384
CAL role mapping, 402
creating, 384
cube data, exposing data to, 351
Power View reports, editing, 357
profiles, associating with, 323
provisioning, 323

tracking activities, 512
USR layer, 726
utcDateTime variable declaration, 111

V
valid time state tables, 383
validating

logic, with Best Practices tool, 393
security artifacts, 384

validation code elements, 418, 419
validation logic, 418
value stream operating unit, 673
value types, 106
values

combinations, constraining, 694
expressions, 113
Ledger Dimensions, creating, 695

var keyword, 89
variables

Auto, form-specific, 200
declarations, 111
declared as reference types, 107
expressions, 113
grouping in debugger, 47
reference, declared as record types, 107
viewing in debugger, 47

VendName, 110
version control systems

build process, 73
code quality, enforcing, 64
common tasks, 68
element life cycle, 66
history of elements, showing, 71
integrating AX 2012, 74
isolated development, 64
labels, working with, 69

MorphX VCS, 65
pending elements, viewing, 72
quality checks, 67
revisions, comparing, 72
source code casing, 67
synchronization log, viewing, 70
synchronizing elements, 69
TFS, 65
Visual SourceSafe, 65

Version Control tool, 64
VerticalTabs TabPage layout control style, 190
view element types, 10
view record types, 107
views

dimensions, creating, 677
reflection, 714

ViewState, 241
Visio models, generating, 48
Visual SourceSafe 6.0 version control system, 65
Visual Studio

details pages, creating, 231
EP Chart Control markup, 305
Microsoft Dynamics AX Reporting Project template, 296
Report model, 297
reports, creating with, 366–369
Team Foundation Build, 563–566
test tools, 556–562
X++, debugging in a batch, 660

Visual Studio Profiler, 512

W
weak type systems, avoiding, 108
web apps for mobile devices, 758
web client element types, 15–16
web elements, securing, 246
web menu items, 264

web parts
Action pane, 211
business intelligence information, 211
Business Overview, 361
integrating into webpages, 211
KPI List, 361
linking information, 212
page framework, using from SharePoint, 208
Page Viewer, 356, 357
pages, 251–253
Power View, exposing reports, 355–357
SharePoint sites, 249

web service calls, analyzing, 757
web services

consuming from AX 2012, 435
debugging traffic, 757

Web Services Description Language (WSDL), 407
web traffic, debugging, 757
Web.config files, adding publishers, 594–596
webpages

alert notifications, 213
ASP.NET, creating with AJAX, 233
ASP.NET controls, hosting, 213
Infolog messages, displaying, 212
page-specific navigation, 212
toolbars, displaying, 213
web parts, integrating, 211
workflow actions, displaying, 213

WF (Windows Workflow Foundation), 261
Windows client, 8
Windows Performance Monitor, using to trace, 504
Windows Search Service, 573, 598
Windows Workflow Foundation (WF), 261
WindowMode settings, 232
Word, building templates, 204
work layer forms, 154

workflow
action menu items, 264
actions, displaying on webpages, 213
activating, 283–287
architecture, explained, 268
artifacts, 275–277
automating, 276
categories, 262, 280
conditions, creating, 280
display menu items, 264
document class, 262, 280, 282
editor, 267
elements, 12, 264
event handlers, 264
forms, enabling in, 284, 285
implementing, 276
infrastructure, 258–260, 276
instances, 268
key concepts, 262–268
life cycle phases, 275
line-item, 265
menu items, 264, 283
provider model, 266
queues, assigning to, 265
runtime, 269–273
states, managing, 279
types, 258–259, 263
work items, 268

workflow runtime
acknowledgment messages, 272
activation messages, processing, 270
API, to expose functionality, 269
application code, invoking, 269
components, 269
events, 272
instance storage, 269

interaction patterns, 272, 274
logical approvals, 272
message queue, 269
task elements, 272
tracking information, 269

workspace components. See client workspace components
WSDL (Web Services Description Language)

described, 407
proxy generation, using for, 422

X
X++

APIs, reflecting on elements, 711–724
collections, using in data contracts, 411
datasets, 214
delegates, adding, 544
events, 543
expression operators, 113
interoperability, allowing, 125
jobs, 106
macro capabilities, 130
methods, exposing as a custom service, 408
primitive types, converting from and to CRL objects, 128
reflection, system functions, 707–711
statements, 114
syntax, 110, 111
variable declarations, 111

X++ code
class-level patterns, 144
compiling and running as .NET CIL, 142
design and implementation patterns, 143
executing as CIL, 487

X++ code editor, 20
editor scripts, 34
opening, 32
recompiling, 38

shortcut keys, 33
XDS (extensible data security) framework

creating policies, 385
described, 376

XML
documentation, 132, 133
messages, sending asynchronously, 431
serialization, implementing for data objects, 414

XPO (export/import file), 58

About the authors

Principal authors

ANEES ANSARI is a program manager in the Microsoft Dynamics AX
product group. His areas of focus include Enterprise Portal, web-based
frameworks, and clients for Microsoft Dynamics AX. He is passionate
about web-based technologies and has been working in that area for more
than 13 years, including 9 years at Microsoft.
Anees has a broad range of experience in various roles, both within and
outside Microsoft. His last role was technical product manager in the
Microsoft Web Platform and Standards group, where he was responsible
for product management and marketing strategy for Microsoft ASP.NET
and Visual Web Developer products. Prior to that, he was a software
developer on the Microsoft Outlook Web App team working on Microsoft
Exchange Online and Exchange Server products. Before joining Microsoft,
Anees worked with startups that helped small to midsized companies
increase their online business and customer base by designing, developing,
and managing their web portals.
Anees has a master’s degree in computer science from the University of
South Florida and a certificate in business fundamentals from the Kelley
School of Business at Indiana University.
DAVID CHELL is a senior technical writer on the Service Industries and
Retail Content Publishing team for Microsoft Dynamics AX.

ZHONGHUA CHU is a principal development lead on the Microsoft
Dynamics AX server team. He has worked on data access and other
server-related areas since Microsoft Dynamics AX 4.0. Zhonghua joined
the Microsoft SQL Server Data Warehouse team after graduating from the
University of Wisconsin–Madison and has been working on application
system design and implementation for more than 15 years.

DAVE FROSLIE is a principal test architect on the Microsoft Dynamics AX
development team. He joined Microsoft in 2002 and has held a variety of
development and test leadership roles in business solutions and
development tools. Before joining Microsoft, Dave was a development
manager for teams building engineering test systems at MTS Systems in
Eden Prairie, Minnesota. In his current role, Dave is responsible for
providing guidance on test approaches for the product, with a focus on
automated tools, libraries, and infrastructure. Dave also has a strong
interest in engineering processes, particularly Agile development. Blog
posts that Dave has written on these and other topics can be found at
http://blogs.msdn.com/b/dave_froslie/. Dave works in the Microsoft
development office in Fargo, North Dakota, and lives across the river in
Minnesota with his wife, Dawn, and daughter, Ali.

http://blogs.msdn.com/b/dave_froslie/

CHRIS GARTY is a senior program manager on the Microsoft Dynamics AX
Client Presentation team in Fargo, North Dakota. Chris joined the
Microsoft Dynamics AX team during the Microsoft Dynamics AX 2009
development cycle. During the AX 2012 development cycle, Chris helped
guide the changes to list pages and details forms and worked on a range of
user experience components. Chris’s role on the Microsoft Dynamics AX
team has recently expanded to cover integration with Microsoft Office and
document management.
Chris has 15 years of experience in software development and consulting,
the last 10 of which have been spent at Microsoft.
Chris was born and raised in New Zealand, and he is lucky enough to visit
New Zealand and Australia almost yearly to see his family. He moved to
Fargo to work for the best company in the world and lives there, ten
winters and a couple of floods later, with his wife, Jolene. He spends his
time away from Microsoft playing soccer, doing triathlons, running, and
relaxing with friends and family as much as possible. Chris has a blog at
http://blogs.msdn.com/chrisgarty.

CHARY GOTTUMUKKALA joined Microsoft in 2002 as a software architect
on the Microsoft Dynamics team, where he currently works on ERP/CRM
frameworks and applications. Chary is passionate about developing
software with the often intangible quality attributes, or “-ilities,” such as

http://blogs.msdn.com/chrisgarty

scalability, maintainability, and extensibility. Prior to joining Microsoft,
Chary worked on ERP/CRM frameworks and applications at Oracle and
PeopleSoft, and on Professional Services Automation (PSA) applications
at Niku. Chary has a BSc in electronics from Jawaharlal Nehru
Technological University and an MSc in computer science from the Indian
Institute of Technology.

ARTHUR GREEF is a principal software architect who has a passion for
developing innovative software that simplifies the lives of working people.
Arthur has a BSc and an MSc in mechanical engineering from the
University of Natal in South Africa, and a PhD in industrial engineering
from the University of Stellenbosch in South Africa. He also spent 2 years
in an industrial engineering postdoctoral program at the University of
North Carolina in the United States. Arthur has been at Microsoft for 12
years, 3 of which were spent in Denmark working on Microsoft Dynamics
AX when it was still called Axapta. Before joining Microsoft, Arthur
worked for IBM in New York, developing product configuration
technology for PCs. Arthur also spent 2 years working as chief architect
for the RosettaNet Consortium, where he developed XML business
collaboration protocols for the information technology industry.

JAKOB STEEN HANSEN is a development manager currently responsible for
the development and architecture of developer tools, business intelligence,
application life cycle, upgrade, and customization of Microsoft Dynamics

AX.
He joined Damgaard Data in 1993 while completing his MSc in computer
science and electronic engineering, and contributed to the incubation of the
product that later became Microsoft Dynamics AX. Throughout the
releases, he has been involved in various aspects of the product, as well as
in exploring how technology can bring previously unseen productivity or
capabilities to partners and customers who develop solutions by using
Microsoft Dynamics AX. For a few years, he worked on an incubation
project in the Microsoft Developer Division, which eventually brought him
back to the Microsoft Dynamics team.
Jakob worked in Denmark until 2008, when he moved to Seattle with his
wife, Lone, and two teenage daughters, Louise and Ida Marie, to explore
new facets of working at Microsoft, expanding his personal experience and
realizing new breakthroughs for Microsoft Dynamics and ERP
development. He enjoys family life and the outdoors, and because he’s an
avid engineer, there’s always a technical project cooking somewhere.

KEVIN HONEYMAN played a key role in designing the changes to the
Microsoft Dynamics AX 2012 user experience. Kevin has worked for
Microsoft for 13 years, focusing on simplifying the user experience for
various Microsoft Dynamics ERP products. Prior to working at Microsoft,
Kevin worked at Great Plains Software, where he designed the developer
user experience and user interface controls for the Great Plains Dynamics
product. He started his career as a developer at Boeing Computer Services
in Seattle, implementing a user interface control library in X Windows and
Motif.
As a senior user experience lead at Microsoft, Kevin is passionate about
understanding the user’s needs and designing experiences that delight the
user. He lives in Fargo, North Dakota, with his wife, Tiffanie, his son,
Jordan, and his stepchildren, Drue and Isabelle.

GENE MILENER joined Microsoft in 1995 after years working at Ithaca
College, EDS, and Paccar. Gene began on the Microsoft SQL Server team.
Later, as a member from day one on the then-secret Microsoft .NET
Framework group, Gene led the team that tested the base class library.
After years as a developer on the Microsoft SharePoint product, Gene
joined the Content Publishing team in Microsoft Dynamics AX as a
programming writer. Gene lives near Seattle with his wife and whichever
children are trying to save money.

AMAR NALLA is currently a development lead in the Microsoft Dynamics
AX product group. He has more than 13 years of experience in the
software industry. He started working on the Microsoft Dynamics team
during the Axapta 4.0 release. He is part of the foundation team
responsible for the Microsoft Dynamics AX server components, and
during the past three releases of Microsoft Dynamics AX, he has worked
on various components of the server.
In his spare time, Amar likes to explore the beautiful Puget Sound area.

PARTH PANDYA is a senior program manager in the Microsoft Dynamics
AX product group. For Microsoft Dynamics AX 2012, Parth’s area of
focus was the new security framework that was built for the release,
including the flexible authentication capability and support for Active
Directory groups as Microsoft Dynamics AX users. He also contributed to
the named user licensing model that was instituted for Microsoft Dynamics
AX 2012. Parth has been with Microsoft for more than 11 years, more than
five of which were spent working on various releases of the Windows
Internet Explorer browser. He particularly enjoyed working as a
penetration tester for the number-one target of hackers around the world.
Parth swapped the organized chaos of Mumbai, India, for the disorienting
tranquility of the Pacific Northwest, where he lives with his wife, Varsha,
and five-year-old son, Aarush.

GUSTAVO PLANCARTE is a senior software design engineer who joined
Microsoft in 2004 after graduating from ITESM in Monterrey, Mexico. He
has worked on Microsoft Dynamics AX since version 4.0. On the platform
team, he is responsible for driving the common intermediate language
(CIL) migration of the X++ programming language, the software-plus-
services architecture of the application server, and the batch framework.
Gustavo has filed several software-related patents, in areas including
garbage collection, incremental generation of assemblies, and batch
scheduling and processing. He lives with his wife, Gina, and their sons,

Gustavo Jr. and Luis, in Woodinville, Washington, where he enjoys
spending time working on his yard.

MICHAEL FRUERGAARD PONTOPPIDAN joined Damgaard Data (which
merged with Navision and was eventually acquired by Microsoft) in 1996,
after graduating from the Technical University of Denmark. He started as a
software design engineer on the MorphX team, delivering the developer
experience for the first release of Microsoft Dynamics AX. Today he is a
software architect on the Microsoft Dynamics AX team in Copenhagen.
For Microsoft Dynamics AX 2012, Michael primarily focused on the
metadata model store, solving problems related to element IDs and the
MorphX Development Workspace. In previous releases, he has worked on
version control, unit testing, best practices, and the Microsoft Trustworthy
Computing initiative, while advocating for code quality improvements
through Microsoft Engineering Excellence, tools, processes, and training.
Michael frequently appears as a speaker at technical conferences. He lives
in Denmark with his wife, Katrine, and their two children, Laura and
Malte. His blog is at http://blogs.msdn.com/mfp.

BIGYAN RAJBHANDARI is a program manager on the Microsoft Dynamics
AX team, working on the security, licensing, and batch framework areas.
He has more than nine years of experience in software engineering,
consulting, and management, the last six of which have been spent at
Microsoft. Prior to his current role, he helped develop a large customer

http://blogs.msdn.com/mfp

preference management system for Microsoft. He graduated from Drake
University in Iowa with a BS in computer science and went on to work for
various companies in the Midwest, building custom business applications
and customer relationship management (CRM) solutions. Outside of work,
he enjoys traveling, hiking, and soccer. He currently lives in Redmond,
Washington, with his wife, Jashmin.

KARL TOLGU is a senior program manager for Microsoft Dynamics AX. He
is responsible for the development of the business process, workflow, and
alert notification framework. Previously, Karl worked on the project
accounting modules in Microsoft Dynamics SL and Microsoft Dynamics
GP. Since graduating, he has worked in the software industry in both the
United Kingdom and the United States and held various software
development management positions at Oracle Corporation and Niku
Corporation. Karl resides in Seattle with his wife, Karin, and three sons,
Karl Christian, Sten Alexander, and Thomas Sebastian.

TJ VASSAR has worked in development on various projects at Microsoft for
more than 15 years, including Microsoft Money, MSN Money, Microsoft
Office Accounting, and Microsoft Dynamics AX 2009. Currently he is a
senior program manager on the Microsoft Dynamics AX Business
Intelligence team, managing the Reporting framework. Born and raised in
Seattle, TJ is married to the woman of his dreams and is a proud father of
three. He regularly posts to his MSDN blog

(http://blogs.msdn.com/dynamicsaxbi) on topics that range from basic
development principles to alternate methods of visualizing business insight
by using the Reporting framework.

PETER VILLADSEN is a senior program manager on the Microsoft Dynamics
AX X++ language team, developing and maintaining the X++ language
stack. After earning his MS in electrical engineering, he started his career
by building Ada compilers but quickly became interested in ERP systems,
helping to build one for the Apple Macintosh before joining Damgaard
Data. There he helped design and build the first version of what later
became the Microsoft Dynamics AX system.
Peter currently lives in Seattle with his wife, Hanne. When not behind the
monitor, he enjoys a good game of badminton.

MILINDA VITHARANA is a senior program manager on the Microsoft
Dynamics AX Business Intelligence (BI) team in Redmond, Washington.
His area of focus is the online analytical processing (OLAP) framework in
Microsoft Dynamics AX. Before joining the team in 2008, Milinda spent
over 12 years designing, developing, and implementing business
intelligence solutions in various industries, including life insurance,
financial services, real estate, education, justice, and transportation.
Milinda is passionate about applying BI to solve business problems. He
started his career working for an independent software vendor (ISV)

http://blogs.msdn.com/dynamicsaxbi

developing software solutions in the financial services industry. He then
joined a large life insurance company, where he implemented BI solutions.
Before joining Microsoft, he worked for a large systems integrator as a BI
specialist and consultant. Having seen many applications of BI as an ISV,
customer, and partner, he is happy to finally be at the SYS layer.
Milinda is a software engineer and has an MBA in finance. He lives in the
greater Seattle area with his wife and two kids.

CHRISTIAN WOLF is a solutions architect and program manager and is a
member of the team that is responsible for the performance and scalability
of Microsoft Dynamics AX. Before joining the Microsoft Dynamics AX
core development team, he worked as a support, premier field, and
escalation engineer, collecting field experience about performance and
scalability. He lives in Bellevue, Washington, and in his spare time, he
enjoys cycling, running, and hiking. Christian’s team members maintain a
blog about performance and scalability issues at
http://blogs.msdn.com/b/axperf/.

KYLE YOUNG is a lead program manager on the Microsoft Dynamics AX
service industries team. He is responsible for mobile, travel and expense,
and CRM scenarios. Kyle has been with Microsoft for 17 years and has
experience in online services, web services, standards, and ERP. In his
spare time, he is a volunteer puppy raiser, preparing puppies for their

http://blogs.msdn.com/b/axperf/

future careers as service dogs. Kyle often brings the puppies to work as
part of their training, where his colleagues ruin their training by spoiling
them.

Contributing authors
JEFF ANDERSON is a senior software design engineer who joined Microsoft
in 2002 after graduating from North Dakota State University in Fargo,
North Dakota. He has worked on a variety of Microsoft ERP products,
including Microsoft Dynamics GP, Microsoft Dynamics NAV, and
Microsoft Dynamics AX. He has been working on Microsoft Dynamics
AX since the 2009 release, in the area of global financial management and
application performance. He lives in West Fargo, North Dakota, with his
wife, Jennifer, and their sons, Nate and Joe.
WADE BAIRD is a senior software design engineer on the Microsoft
Dynamics AX Client Presentation team in Fargo, North Dakota. Wade
joined Microsoft in 2001, while completing his final year at North Dakota
State University. Since then, he has worked on a variety of Object
Relational Mapping (ORM) products, and he began working on Microsoft
Dynamics AX for the 2009 release. Since then, he has focused on all of the
aspects of the client forms subsystem.
ARIJIT BASU is a senior solutions architect on the Solutions Architecture
team for Microsoft Business Solutions.
MURTAZA CHOWDHURY is a program manager based in Redmond,
Washington. He joined Microsoft seven years ago, after working at SAP
on Duet Enterprise. Currently he leads servicing of Microsoft Dynamics
AX in-market releases for the following modules: Project Management
and Accounting, Sales and Marketing, and Service Management. He is
also leading efforts to drive application life cycle management for
Microsoft Dynamics AX through features such as cloud-powered support.
Murtaza lives in Redmond with his wife, Molly, and son, Sahil.
ROBERTO DE LIRA joined Microsoft in 2008 as a college hire from ITESM
in Monterrey, Mexico. He spent his first five years working as an engineer
in Test for the upgrade team in Redmond, Washington, where he
contributed to the development and testing of the upgrade framework for
AX 2012. Currently he has an engineering role on the in-market team,
where he has been involved in improving the update experience for AX
2012 R2.
MICHAEL GALL is a senior software development engineer on the Microsoft
Dynamics AX Costing team at Microsoft Development Center

Copenhagen. He joined Microsoft in 2007. Before joining Microsoft,
Michael worked with a Microsoft Dynamics AX partner as a solution
architect and software development manager, implementing Microsoft
Dynamics AX projects in various industries. During the development of
Microsoft Dynamics AX 2012, he worked on the lean costing solution and
the source document and accounting frameworks. Michael has a PhD in
computer science, four master’s degrees from the Technical University of
Vienna, and an MBA from Copenhagen Business School. Professionally,
he is passionate about software architecture and ERP system architecture.
He lives in Copenhagen with his children, Laura and Nico. In his spare
time, he likes traveling and outdoor activities with his kids.
JOHN HEALY is a principal software architect in the Microsoft Dynamics
AX product group that focuses on global financial management. He is
responsible for the overall vision and adoption of the architecture for
global financials and works with a range of Microsoft Dynamics AX
architects and technical leaders to ensure consistent direction and adoption
across the Microsoft Dynamics AX applications. He has more than 34
years of experience in accounting, supply chain, and manufacturing
application development. He has worked in a variety of technical and
leadership roles. He joined Microsoft in 2001 through the Great Plains
Software acquisition. He is a graduate of the University of Minnesota,
Twin Cities. He lives in Lake Elmo, Minnesota, with his wife, Jackie.
John is an editor and regular contributor to the Microsoft Dynamics AX
Global Financial Management team blog at
http://blogs.msdn.com/b/ax_gfm_framework_team_blog/.
SHEFY MANAYIL KAREEM joined Microsoft in 2007 and is currently
working as a program manager for Lifecycle Services based in Redmond,
Washington. He was an integral part of the team that envisioned and built
Lifecycle Services—a Microsoft Azure–based collaborative platform for
Microsoft Dynamics—from the ground up. He has worked extensively on
shipping online tools and services in the past, and his domain of expertise
includes ERP applications and master data management.
VANYA KASHPERUK is a senior software development engineer in Test on
the Supply Chain Management team at Microsoft Development Center
Copenhagen. He has been working on Microsoft Dynamics AX since 2004
and has been at Microsoft in Denmark for the last six years. Vanya writes
a blog about Microsoft Dynamics AX, which you can read at
http://www.kashperuk.blogspot.com.
Vanya has a master’s degree in computer science from the National

http://blogs.msdn.com/b/ax_gfm_framework_team_blog/
http://www.kashperuk.blogspot.com

Technical University of Ukraine, which is also where he met his wife,
Valeriia. Outside of work, Vanya enjoys all kinds of team sports,
sightseeing in countries around the world, photography (as part of his
sightseeing trips), and computer games, especially Kinect Sports! Vanya
and his wife live in peaceful Charlottenlund, just north of Copenhagen.
IEVGENII KOROVIN is a software design engineer on the Supply Chain
Management team at Microsoft Development Center Copenhagen. He has
been working on Microsoft Dynamics AX since 2006, and he is mainly
responsible for the architecture and functionality within the Inventory
Management, Warehouse Management, and Product Information
Management areas. Ievgenii has a master’s degree in computer science
from the National Technical University of Ukraine. He lives in
Copenhagen with his wife, Tamara, and their young daughter, Alisa. In
their free time, he and his family enjoy outdoor activities, especially
skiing, biking, and hiking.
Ievgenii writes a blog about Microsoft Dynamics AX, which you can read
at http://blogs.msdn.com/dynamicsaxscm.
DENISE MAK joined the Microsoft Dynamics AX team in 2013; she
currently enjoys creating software development kit (SDK) documentation
and samples for the team based in Redmond. Denise joined Microsoft in
2001 after graduating from the State University of New York at Buffalo.
Prior to joining the Microsoft Dynamics AX team, she worked on
delivering the Windows SDK and the Windows Driver Kit. She was
responsible for the MSDN developer documentation on reporting in
Microsoft Dynamics AX 2012. In her free time, she enjoys running,
singing karaoke, and learning new languages.
MUDIT MITTAL is a principal software engineer based in Redmond,
Washington. He has 12 years of experience in Microsoft Dynamics AX,
working with customers and partners across the globe, in locations such as
the United States, Europe, India, China, and the Middle East. He has been
part of the Microsoft Dynamics AX team since 2005. He has been the
architect for tools such as the Data Import Export Framework (DIXF) and
Customization Analysis Tool. Currently, Mudit is focusing on designing
foundation integration components for future releases of Microsoft
Dynamics AX. Prior to that, he was a principal solution architect focusing
on top customer and partner engagements. He has been involved with core
Microsoft Dynamics AX development teams since the days of Microsoft
Dynamics AX 4.0, and has participated in designing key pieces of the
product such as the CRM module, Global Address Book, Outlook

http://blogs.msdn.com/dynamicsaxscm

integration, TAPI integration, and localizations for India. Mudit holds a
bachelor of technology degree in computer science and engineering.
PRIYAA NACHIMUTHU is a program manager with the Microsoft Dynamics
AX Customer Experience team. Previously she was a software
development engineer working on developer frameworks and enterprise
products. In her current role, Priyaa is leading the cloud-powered AX 2012
update experience effort and drove the metadata-driven update experience
for AX 2012 R2. She is also responsible for driving AX 2012 core
foundation quality with in-market customer feedback, in addition to other
application life cycle management initiatives for Microsoft Dynamics AX.
MACIEJ PLAZA is a software development engineer in Test on the Microsoft
Dynamics AX Inventory team. He received an MSc from Poznan
University of Technology, and during his time at the university, he
actively sought out interesting algorithmic problems, engaging in research
projects in cooperation with partners from both industry (Volkswagen) and
academia (University of Nottingham). After graduating in 2007, he started
working as a software development engineer for Microsoft SQL Server,
tackling the challenges of storing unstructured data, working on
FILESTREAM, Remote BLOB Storage, and FileTable features. After
almost three years, he decided to move back to Europe and joined the
Microsoft Dynamics AX team. For the Microsoft Dynamics AX 2012
release, his primary focus was ensuring the quality of the Product
Information Management functionality. Driven by his passion for quality,
he also got involved in improving the test tools and the applied processes,
to ensure that even higher quality can be achieved in the future.
Maciej lives in Copenhagen with his wife, Anna. In his spare time, besides
spending time with his family, he enjoys pursuing his interests in
photography and music.
ANDERS TIND SØRENSEN joined Microsoft in 2006 as a software
development engineer for the Manufacturing team. He has focused
primarily on discrete production, master planning, and the resource
scheduling engine, but has also been deeply involved in the integration of
the Process Manufacturing Industry module. He has 12 years of ERP
development and implementation experience, and is proud to be a geek.
Anders lives in Denmark with his girlfriend, Nena.
MANOJ SWAMINATHAN is a principal development manager based in
Redmond, Washington. He joined Microsoft six years ago, after working
at Oracle, and has spent more than 14 years working on ERP application
development for financials. He was responsible for leading global financial

management development for the financial foundation, such as the source
document and accounting frameworks, multiple ledgers, and
globalization/localization of Microsoft Dynamics AX 2012. Currently he
is leading efforts to drive application life cycle management for Microsoft
Dynamics AX, RapidStart Services, and setup/deployment initiatives for
online and on-premises solutions.
ROBIN VAN STEENBURGH joined the Microsoft Dynamics AX team in 2005;
she currently enjoys creating developer samples and documentation with
the software development kit (SDK) team based in Redmond. After
graduating from the University of Toronto, Robin worked as a software
developer for several oil companies and a software startup called Sierra
Geophysics. Robin joined Microsoft in 1997 and has worked on teams
delivering MSN, Site Server, Commerce Server, and Microsoft Learning
products. Her favorite role prior to joining Microsoft Dynamics AX was as
an acquisitions editor for Microsoft Press. She is a Microsoft Certified
Technology Specialist for Microsoft Dynamics AX 2009 and Microsoft
Dynamics AX 2012. Robin was responsible for the developer
documentation for services and the Application Integration Framework
(AIF) on MSDN for Microsoft Dynamics AX 4.0 and Microsoft Dynamics
AX 2012. She also maintains the MSDN Developer Center for Microsoft
Dynamics AX, and occasionally blogs at http://blogs.msdn.com/b/aif/. In
her free time, she takes ballet classes and supports the Seattle Sounders.

http://blogs.msdn.com/b/aif/

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text
format, we have included images of the code that mimic the presentation
found in the print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a “Click here
to view code image” link. Click the link to view the print-fidelity code
image. To return to the previous page viewed, click the Back button on
your device or app.

	Title Page
	Copyright Page
	Contents
	Foreword
	Introduction
	The history of Microsoft Dynamics AX
	Who should read this book
	Who should not read this book
	Organization of this book
	Conventions and features in this book
	System requirements
	Code samples
	Acknowledgments
	Errata, updates, & book support
	Free ebooks from Microsoft Press
	We want to hear from you
	Stay in touch

	Part I: A tour of the development environment
	Chapter 1 Architectural overview
	Introduction
	AX 2012 five-layer solution architecture
	AX 2012 application platform architecture
	Application development environments
	Data tier
	Middle tier
	Presentation tier

	AX 2012 application meta-model architecture
	Application data element types
	MorphX user interface control element types
	Workflow element types
	Code element types
	Services element types
	Role-based security element types
	Web client element types
	Documentation and resource element types
	License and configuration element types

	Chapter 2 The MorphX development environment and tools
	Introduction
	Application Object Tree
	Navigating through the AOT
	Creating elements in the AOT
	Modifying elements in the AOT
	Refreshing elements in the AOT
	Element actions in the AOT
	Element layers and models in the AOT

	Projects
	Creating a project
	Automatically generating a project
	Project types

	The property sheet
	X++ code editor
	Shortcut keys
	Editor scripts

	Label editor
	Creating a label
	Referencing labels from X++

	Compiler
	Best Practices tool
	Rules
	Suppressing errors and warnings
	Adding custom rules

	Debugger
	Enabling debugging
	Debugger user interface
	Debugger shortcut keys

	Reverse Engineering tool
	UML data model
	UML object model
	Entity relationship data model

	Table Browser tool
	Find tool
	Compare tool
	Starting the Compare tool
	Using the Compare tool
	Compare APIs

	Cross-Reference tool
	Version control
	Element life cycle
	Common version control tasks
	Working with labels
	Synchronizing elements
	Viewing the synchronization log
	Showing the history of an element
	Comparing revisions
	Viewing pending elements
	Creating a build
	Integrating AX 2012 with other version control systems

	Chapter 3 AX 2012 and .NET
	Introduction
	Integrating AX 2012 with other systems
	Using third-party assemblies
	Writing managed code
	Hot swapping assemblies on the server

	Using LINQ with AX 2012 R3
	The var keyword
	Extension methods
	Anonymous types
	Lambda expressions
	Walkthrough: Constructing a LINQ query
	Using queries to read data
	AX 2012 R3–specific extension methods
	Updating, deleting, and inserting records
	Limitations
	Advanced: limiting overhead

	Chapter 4 The X++ programming language
	Introduction
	Jobs
	The type system
	Value types
	Reference types
	Type hierarchies

	Syntax
	Variable declarations
	Expressions
	Statements
	Macros
	Comments
	XML documentation

	Classes and interfaces
	Fields
	Methods
	Delegates
	Pre-event and post-event handlers
	Attributes

	Code access security
	Compiling and running X++ as .NET CIL
	Design and implementation patterns
	Class-level patterns
	Table-level patterns

	PART II: DEVELOPING FOR AX 2012
	Chapter 5 Designing the user experience
	Introduction
	Role-tailored design approach
	User experience components
	Navigation layer forms
	Work layer forms

	Role Center pages
	Cues
	Designing Role Centers

	Area pages
	Designing area pages

	List pages
	Scenario: taking a call from a customer
	Using list pages as an alternative to reports
	Designing list pages

	Details forms
	Transaction details forms
	Enterprise Portal web client user experience
	Navigation layer forms
	Work layer forms
	Designing for Enterprise Portal
	Designing for your users

	Chapter 6 The AX 2012 client
	Introduction
	Working with forms
	Form patterns
	Form metadata
	Form data sources
	Form queries

	Adding controls
	Control overrides
	Control data binding
	Design node properties
	Run-time modifications
	Action controls
	Layout controls
	Input controls
	ManagedHost control
	Other controls

	Using parts
	Types of parts
	Referencing a part from a form

	Adding navigation items
	MenuItem
	Menu
	Menu definitions

	Customizing forms with code
	Method overrides
	Auto variables
	Business logic
	Custom lookups

	Integrating with the Microsoft Office client
	Make data sources available to Office Add-ins
	Build an Excel template
	Build a Word template
	Add templates for users

	Chapter 7 Enterprise Portal
	Introduction
	Enterprise Portal architecture
	Enterprise Portal components
	Web parts
	AOT elements
	Datasets
	Enterprise Portal framework controls

	Developing for Enterprise Portal
	Creating a model-driven list page
	Creating a details page
	AJAX
	Session disposal and caching
	Context
	Data
	Metadata
	Proxy classes
	ViewState
	Labels
	Formatting
	Validation
	Error handling

	Security
	Secure web elements
	Record context and encryption

	SharePoint integration
	Site navigation
	Site definitions, page templates, and web parts
	Importing and deploying a web part page
	Enterprise Search
	Themes

	Chapter 8 Workflow in AX 2012
	Introduction
	AX 2012 workflow infrastructure
	Windows Workflow Foundation
	Key workflow concepts
	Workflow document and workflow document class
	Workflow categories
	Workflow types
	Event handlers
	Menu items
	Workflow elements
	Queues
	Providers
	Workflows
	Workflow instances
	Work items

	Workflow architecture
	Workflow runtime
	Workflow runtime interaction
	Logical approval and task workflows

	Workflow life cycle
	Implementing workflows
	Creating workflow artifacts, dependent artifacts, and business logic
	Managing state
	Creating a workflow category
	Creating the workflow document class
	Adding a workflow display menu item
	Activating the workflow

	Chapter 9 Reporting in AX 2012
	Introduction
	Inside the AX 2012 reporting framework
	Client-side reporting solutions
	Server-side reporting solutions
	Report execution sequence

	Planning your reporting solution
	Reporting and users
	Roles in report development

	Creating production reports
	Model elements for reports
	SSRS extensions
	AX 2012 extensions

	Creating charts for Enterprise Portal
	AX 2012 chart development tools
	Integration with AX 2012
	Data series
	Adding interactive functions to a chart
	Overriding the default chart format

	Troubleshooting the reporting framework
	The report server cannot be validated
	A report cannot be generated
	A chart cannot be debugged because of SharePoint sandbox issues
	A report times out

	Chapter 10 BI and analytics
	Introduction
	Components of the AX 2012 BI solution
	Implementing the AX 2012 BI solution
	Implementing the prerequisites
	Configuring an SSAS server
	Deploying cubes
	Deploying cubes in an environment with multiple partitions
	Processing cubes
	Provisioning users

	Customizing the AX 2012 BI solution
	Configuring analytic content
	Customizing cubes
	Extending cubes
	Integrating AX 2012 analytic components with external data sources
	Maintaining customized and extended projects in the AOT

	Creating cubes
	Identifying requirements
	Defining metadata
	Generating and deploying the cube
	Adding KPIs and calculations

	Displaying analytic content in Role Centers
	Providing insights tailored to a persona
	Choosing a presentation tool based on a persona
	SQL Server Power View
	Power BI for Office 365
	Comparing Power View and Power BI
	Authoring with Excel
	Business Overview web part and KPI List web part
	Developing reports with Report Builder
	Developing reports with the Visual Studio tools for AX 2012

	Chapter 11 Security, licensing, and configuration
	Introduction
	Security framework overview
	Authentication
	Authorization
	Data security

	Developing security artifacts
	Setting permissions for a form
	Setting permissions for server methods
	Setting permissions for controls
	Creating privileges
	Assigning privileges and duties to security roles
	Using valid time state tables

	Validating security artifacts
	Creating users
	Assigning users to roles
	Setting up segregation of duties rules

	Creating extensible data security policies
	Data security policy concepts
	Developing an extensible data security policy
	Debugging extensible data security policies

	Security coding
	Table permissions framework
	Code access security framework
	Best practice rules
	Security debugging

	Licensing and configuration
	Configuration hierarchy
	Configuration keys
	Using configuration keys
	Types of CALs
	Customization and licensing

	Chapter 12 AX 2012 services and integration
	Introduction
	Types of AX 2012 services
	System services
	Custom services
	Document services
	Security considerations
	Publishing AX 2012 services

	Consuming AX 2012 services
	Sample WCF client for CustCustomerService
	Consuming system services
	Updating business documents
	Invoking custom services asynchronously

	The AX 2012 send framework
	Implementing a trigger for transmission

	Consuming external web services from AX 2012
	Performance considerations

	Chapter 13 Performance
	Introduction
	Client/server performance
	Reducing round trips between the client and the server
	Writing tier-aware code

	Transaction performance
	Set-based data manipulation operators
	Restartable jobs and optimistic concurrency
	Caching
	Field lists
	Field justification

	Performance configuration options
	SQL Administration form
	Server Configuration form
	AOS configuration
	Client configuration
	Client performance
	Number sequence caching
	Extensive logging
	Master scheduling and inventory closing

	Coding patterns for performance
	Executing X++ code as common intermediate language
	Using parallel execution effectively
	The SysOperation framework
	Patterns for checking to see whether a record exists
	Running a query only as often as necessary
	When to prefer two queries over a join
	Indexing tips and tricks
	When to use firstfast
	Optimizing list pages
	Aggregating fields to reduce loop iterations

	Performance monitoring tools
	Microsoft Dynamics AX Trace Parser
	Monitoring database activity
	Using the SQL Server connection context to find the SPID or user behind a client session
	The client access log
	Visual Studio Profiler

	Chapter 14 Extending AX 2012
	Introduction
	The SysOperation framework
	SysOperation framework classes
	SysOperation framework attributes

	Comparing the SysOperation and RunBase frameworks
	RunBase example: SysOpSampleBasicRunbaseBatch
	SysOperation example: SysOpSampleBasicController

	The RunBase framework
	Inheritance in the RunBase framework
	Property method pattern
	Pack-unpack pattern
	Client/server considerations

	The extension framework
	Create an extension
	Add metadata
	Extension example

	Eventing
	Delegates
	Pre and post events
	Event handlers
	Eventing example

	Chapter 15 Testing
	Introduction
	Unit testing features in AX 2012
	Using predefined test attributes
	Creating test attributes and filters

	Microsoft Visual Studio 2010 test tools
	Using all aspects of the ALM solution
	Using an acceptance test driven development approach
	Using shared steps
	Recording shared steps for fast forwarding
	Developing test cases in an evolutionary manner
	Using ordered test suites for long scenarios

	Putting everything together
	Executing tests as part of the build process
	Using the right tests for the job

	Chapter 16 Customizing and adding Help
	Introduction
	Help system overview
	AX 2012 client
	Help viewer
	Help server
	AOS

	Help content overview
	Topics
	Publisher
	Table of contents
	Summary page

	Creating content
	Walkthrough: create a topic in HTML
	Adding labels, fields, and menu items to a topic
	Make a topic context-sensitive
	Update content from other publishers
	Create a table of contents file
	Creating non-HTML content

	Publishing content
	Add a publisher to the Web.config file
	Publish content to the Help server
	Set Help document set properties

	Troubleshooting the Help system
	The Help viewer cannot display content
	The Help viewer cannot display the table of contents

	PART III: UNDER THE HOOD
	Chapter 17 The database layer
	Introduction
	Temporary tables
	InMemory temporary tables
	TempDB temporary tables
	Creating temporary tables

	Surrogate keys
	Alternate keys
	Table relations
	EDT relations and table relations
	Foreign key relations
	The CreateNavigationPropertyMethods property

	Table inheritance
	Modeling table inheritance
	Table inheritance storage model
	Polymorphic behavior
	Performance considerations

	Unit of Work
	Date-effective framework
	Relational modeling of date-effective entities
	Support for data retrieval
	Run-time support for data consistency

	Full-text support
	The QueryFilter API
	Data partitions
	Partition management
	Development experience
	Run-time experience

	Chapter 18 Automating tasks and document distribution
	Introduction
	Batch processing in AX 2012
	Common uses of the batch framework
	Performance

	Creating and executing a batch job
	Creating a batch-executable class
	Creating a batch job
	Configuring the batch server and creating a batch group
	Managing batch jobs
	Debugging a batch task

	Print management in AX 2012
	Common uses of print management
	The print management hierarchy
	Print management settings

	Chapter 19 Application domain frameworks
	Introduction
	The organization model framework
	How the organization model framework works
	When to use the organization model framework
	Extending the organization model framework

	The product model framework
	How the product model framework works
	When to use the product model framework
	Extending the product model framework

	The operations resource framework
	How the operations resource framework works
	When to use the operations resource framework
	Extending the operations resource framework
	MorphX model element prefixes for the operations resource framework

	The dimension framework
	How the dimension framework works
	Constraining combinations of values
	Creating values
	Extending the dimension framework
	Querying data
	Physical table references

	The accounting framework
	How the accounting framework works
	When to use the accounting framework
	Extensions to the accounting framework
	Accounting framework process states
	MorphX model element prefixes for the accounting framework

	The source document framework
	How the source document framework works
	When to use the source document framework
	Extensions to the source document framework
	MorphX model element prefixes for the source document framework

	Chapter 20 Reflection
	Introduction
	Reflection system functions
	Intrinsic functions
	typeOf system function
	classIdGet system function

	Reflection APIs
	Table data API
	Dictionary API
	Treenodes API
	TreeNodeType

	Chapter 21 Application models
	Introduction
	Layers
	Models
	Element IDs
	Creating a model
	Preparing a model for publication
	Setting the model manifest
	Exporting the model
	Signing the model
	Importing model files

	Upgrading a model
	Moving a model from test to production
	Creating a test environment
	Preparing the test environment
	Deploying the model to production
	Element ID considerations

	Model store API

	PART IV: BEYOND AX 2012
	Chapter 22 Developing mobile apps for AX 2012
	Introduction
	The mobile app landscape and AX 2012
	Mobile architecture
	Mobile architecture components
	Message flow and authentication
	Using AX 2012 services for mobile clients
	Developing an on-premises listener

	Developing a mobile app
	Platform options and considerations
	Developer documentation and tools
	Third-party libraries
	Best practices
	Key aspects of authentication
	User experience
	Globalization and localization
	App monitoring
	Web traffic debugging

	Architectural variations
	On-corpnet apps
	Web apps

	Resources

	Chapter 23 Managing the application life cycle
	Introduction
	Lifecycle Services
	Deploying customizations
	Data import and export
	Test Data Transfer Tool
	Data Import/Export Framework
	Choosing between the Test Data Transfer Tool and DIXF

	Benchmarking

	Index
	About the authors

