

Impressum

Text: © Copyright by Barbara Hohensee

Barbara Hohensee

Utlandagatan 33

41261 Gothenburg

Sweden

greendogdevelop@gmail.com

All rights reserved.

Publication date August 2013

Last Update February, 2014

Blog: http://google-android-studio.bogspot.com

2

About Barbara Hohensee

Barbara Hohensee has worked more than 10 years as a network administrator. Among other
things for DaimlerChrysler research.
She is familiar to the most used operating systems such as Unix, Linux, Windows, Mac OS,
Android and iOS.

The author has further, in addition to courses for network and Linux developed and teaches
courses for Perl and Java programming.
Currently, she devotes herself to her new great love of android programming

3

Table of Contents
Preamble
About Android Studio
Installation and Configuration
SDK Manager
AVD's
Starting a new Android Project
Overview IDE
Project Structur
Gradle Build System
Projekt Configuration
Creating Layouts
Activities
Build & Run
Debugging
Testing
Preparing the App for the Android Market
Importing Projects
Google Cloud Endpoints
Google Play Service/ Maps
Product Flavors - Build Types - Build Variants
Game development with AndEngine
Developing for Google TV
Android Code Templates
Links
Impressum
About the Author

4

Preamble
This book will help you to familiar yourself with the new IDE for Android development called
Android Studio.

Who should read this book? Because Android Studio is based on IntelliJ, the book will be
interesting for everybody who hasn't worked with IntelliJ yet.

There are a lots of screenshots to make it as easy as possible. So even a beginner in Android
development gets a chance to understand how Android Studio works.

This book will help you to accomplish the most common tasks.

What this book covers:

• Installation of Android Studio

• Creating a new Android App Project with Google's ActionBar

• Android SDK Manager

• AVD's

• Overview IDE and Editor

• The new project structure of an Android app project

• Overview Gradle Build System

• Local installation of Gradle

• Local installation of Maven

• Building an .aar library

• Creating a local Maven repository

• Using the .aar library

• Version Control (VCS)

• Working with Activities and Layouts

• Build and run the app

5

• Debugging

• Testing: Creating and running Test projects

• Preparing the app for the Android Market

• Import of an Android Project

•

o Android Studio

o Eclipse

o GitHub

• Google Cloud Endpoints

• Google Play Service SDK, Google Maps v2

• Product Flavors - Build Types - Build Variants

• Game development

•

o libGDX setup to develop, run and deploy Desktop an Android games

o AndEngine setup and example project

6

About Android Studio
Google unveiled at the developer conference, the new development environment for android
app development. The new IDE based on IntelliJ will soon replace Eclipse. At the same time
there will be change for the build system too. Ant as the build system has been replaced in
Android Studio to Gradle.
One of the core pieces of Android Studio is the powerful code editor with built in features like
"Smart Editing", to provide for more readable code or the "Advanced code refactoring".
Another highlight of Android Studio is of course the new build system based on Gradle.
Gradle allows the developer to apply different configurations of the same code, to produce
different versions of the same application code. This is useful, among other things, if you want
to give out a free and a paid version of an app.
Generally Gradle improves the reusability of code and integration on a build server.
Like Eclipse has Android Studio a graphical and a text user interface for designing the app
layout_
Both the design mode and the text mode of the editor have improved. The editor is now
showing a live preview of the layout for different resolutions, Android versions and country-
specific characteristics.
Android studio got some new services and integrated which makes it easier to handle
translation or to connect with Google Cloud Messaging (CGM) that allows to sending
messages to the app and receiving messages from apps on cloud servers.
Google develops Android Studio in collaboration with JetBrains, based on the community
version of IntelliJ. JetBrains InelliJ Java IDE has support for Android app development for 2
years. In the current version of IntelliJ 12 the innovations that have emerged from the
collaboration with Google are not yet integrated. They will be integrated in version 13, release
date December 2013. The new version will continue to have the support for Java, Android,
Adobe Gaming SDK Groovy, Scala.
The Android studio, however, will be limited to Android app development. Google has still
no official release date for the Android studio out.
The current version of Android studios can be downloaded from here:
http://developer.android.com/sdk/installing/studio.html

7

Is Android Studio ready for production? Are you ready for
Android Studio?
Many people like to start with Android Studio and ask themselves if Android Studio is ready
for production.
There is no Yes or No answer for this question because it depends on what kind of App you're
doing. Maybe not every feature YOU need is already implemented but a lot of the functionality
you need to have for Android App Development is already in place.
You can see the current development status at
http://tools.android.com/download/studio/canary/latest

All the apps for the book are of course made with Android Studio and my own production has
already moved to Android Studio.

8

Installation of Android Studio
The Android Studio includes the Android SDK with the latest Android platform.
The prerequisite for Android Studio is Oracle Java SDK 1.6 or 1.7.
In most cases Java SDK 1.6 works better.

After downloading, unpacking and putting it on a place you like, you are not done.
Before you can start with an Android project, Android Studio has to be configured.

Installation of Android Studio

The newest version of Android Studio can be downloaded from here:
http://developer.android.com/sdk/installing/studio.html

Windows:

Launch the downloaded EXE file, android-studio-bundle-<version>.exe.

Follow the setup wizard to install Android Studio.

Known issue: On some Windows systems, the launcher script does not find where Java is
installed. If you encounter this problem, you need to set an environment variable indicating the
correct location.

Select Start menu -> Computer -> System Properties -> Advanced System Properties. Then
open Advanced tab -> Environment Variables and add a new system variable JAVA_HOME
that points to your JDK folder, for example C:\Program Files\Java\jdk1.7.0_21.

Mac OS X:

Open the downloaded DMG file, android-studio-bundle-<version>.dmg.

Drag and drop Android Studio into the Applications folder.

Known issue: Depending on your security settings, when you attempt to open Android Studio,
you might see a warning that says the package is damaged and should be moved to the trash. If
this happens, go to System Preferences > Security & Privacy and under Allow applications
downloaded from, select Anywhere. Then open Android Studio again.

Linux:

Unpack the downloaded Tar file, android-studio-bundle-<version>.tgz, into an appropriate
location for your applications.

9

To launch Android Studio, navigate to the android-studio/bin/ directory in a terminal and
execute studio.sh.

You may want to add android-studio/bin/ to your PATH environmental variable so that you
can start Android Studio from any directory.

Android Studio Configuration

The configuration is on all operation systems the same. Only the PATH will be different.

The downloaded package of Android Studio includes the latest Android SDK. Every other
Android SDK has to be downloaded using the SDK Manager (Chapter 3)

Before you can start with your first Android project, Android Studio has to be configured. If
you need to change the configuration later, you have to go to the menu "Project Structure"
again.

Start Android Studio and click on "Configure" in the Welcome screen.

Inside the "Configure Menus" click on "Project Defaults"

10

From the "Project Defaults" screen choose "Project Structure"

In "Project Structure", choose "SDKs" from the left Panel, go to the Panel in the middle and
click the green <+> and take the" JDK" first, before the Android Platform.

11

The right panel should show you the folder where the Java SDK installed is. If not, you
properly didn't set the JAVA_HOME correct. This procedure connected the Java SDK to
Android Studio.

In the same way you connect the Android SDK with Android Studio. When it comes to choose
the folder, navigate to the folder where Android Studio is installed and go to the underlying
sdk folder.

In the next step move to the left panel called "Project Settings". Under the menu "Project", you
have to decide which Android Version should be used as the default SDK.

Back to the screen „Project Defaults“ and „Settings“

12

Check out that the right Java version is chosen.

13

Creating a new Android App Project
When Android Studio after the installation opens, it will show the Welcome screen.

Start creating a new Android Project by clicking on "New Project" from the top of the list.

This will open the New Project Wizard

14

Application name:

The Application name is name you will see in the title of your application and for example in
Google Play.

The name will be stored in "strings.xml" in the variable "app_name". No spaces in the name.

Module name:

Role, no spaces.

Package name:

The id for the App. This name will be added in all Java files and the AndroidManifest.xml.

Project location:

The Project location can be anywhere, any directory where you have the rights to write.

Minimum required SDK:

As Standard Android Studio gives you API 7, Android 2.1. In many cases you need minimum
API 8 for example when using Ads Provider, like Google's Admob.

Support Mode:

By choosing one of the support modes, Android Studio adds the appropriate support library to
the project.

15

In this case we activated ActionBar to import the support library v7 appcompat.

The next screen let you choose and customize the App icon.

With <Next> you can select the Activity template of your choice. In this example, the "Blank
Activity" is chosen, which produces the "Hello World" App.

In the next screen write the „Activity Name“ and „Layout Name“ for the first Activity and it's
layout file.

16

From Android Studio 3.0 this screen has changed. By default Android Studio will now create
a Fragment Layout instead of the single-screen layout.

You can force Android Studio to create the old style single-layout by changing the name from
the Frame Layout to the same as the Main Layout. And you may want to change the
MainActivity.java into this: (after the project has build up themself)

package com.greendog.androidstudio.example.myapplication;

import android.support.v7.app.ActionBarActivity;
import android.support.v7.app.ActionBar;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;

public class MainActivity extends ActionBarActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Get the view from activity_main.xml

 setContentView(R.layout.activity_main);

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

17

 // Inflate the menu; this adds items to the action bar if it is
present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }
}

Click on <Finish> to let Android Studio build the project structure. The first time it takes a
little bit longer, because Android Studio has to download Gradle (one time).

During the project developing is Internet connection needed. Android Studio needs to
connect several times to http://repo1.maven.com where the Gradle plugin is hosted.

After finishing the building process the project opens.

And this is how it looks like.

18

You will edit not all of the files you see here. The project files we need to take care of, are
marked with red in the next screenshot.

 These are the files under src/ plus the build.gradle from the root of the project folder.

19

20

Adding the ActionBar to the project
The ActionBar was added to the Android SDK with version 3.0 (API 11). For project like
ours, with an API level lower than 11, we can add the ActionBar by using Google's new
support library v7 appcompat.

Because we already activated ActionBar in the New Project screen, Android Studio took care
of the import of the library and added an entry into the build.gradle file.

To make use of the ActionBar we need to edit the AndroidManifest.xml file and the main.xml
in /res/menu/.

The AndroidManifest.xml is located in /src/main/.

Open the AndroidManifest.xml and add the following to your activity:

<activity
android:name="com.greendog.androidstudio.example.mynatvieactionbarapplication.MainActivity"

 android:label="@string/app_name"

 android:theme="@style/Theme.AppCompat.Light" >

Save and close the AndroidManifest.xml file.

Adding Acion Buttons

We're going to add a search button to the ActionBar. To do this, we need the icon for the
search button.

Download from this side: http://developer.android.com/design/downloads/index.html#action-
bar-icon-pack

the Action Bar Icon Pack. Extract the zio file copy the 4 ic_action_search.png from
/holo_light/01_core_search into your matching drawable folders.

Now open the main.xml file from /res/menu/ and change the content to this:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:greendog="http://schemas.android.com/apk/res-auto" >

 <item

21

http://developer.android.com/design/downloads/index.html#action-bar-icon-pack

 android:id="@+id/action_search"

 android:title="@string/action_search"

 android:icon="@drawable/ic_action_search"

 greendog:showAsAction="always" />

 <item

 android:id="@+id/action_settings"

 android:title="@string/action_settings"

 greendog:showAsAction="never" />

</menu>

The support library v7 appcomt can't use the name space android. For this reason I used my
own namespace greendog.You can call your namespace whatever you want.

Android Studio 0.3+ is not showing the search icon in preview but on a device. I'm sure that
this will change in one of the next updates. The following screenshot shows an app with this
configuration running on a device.

22

Android SDK Manager
In the Android SDK Manager you can download more Android platforms than the one you got
with the installation package. From here you can download the Android Tools, sample, images
and some libraries too.

In the following chapters we will come back here.

The Android SDK Manager in Android Studio looks and works like in Eclipse.

Call the SDK Manager via the icon

or via

Tools → Android → SDK Manager

Select the needed SDK Platforms and Tools than go to

<Install .. packages..> and click it.

23

Accept the Licenses and press <Install> to download.

24

AVD's
Creating an Emulator or AVD (Android Virtual Devices).

In Android Studio you get to the AVD Manager via the icon

or via

Tools → Android → AVD Manager.

This opens the window "Android Virtual Device Manager".

This is the place where AVD's can be created, edited, repaired or deleted.

And a chosen AVD from the list can be started from here.

25

Another way to start the Emulator is by click on Run, which gives you the opportunity to
choose an Emulator and run the created app on it.

The list of the emulators has a symbol in front of the name. There are three different symbols.

The green hook shows that Emulator has been loaded correctly and can be used for Android
Studio projects.

The broken symbol says, the Emulator hasn't been loaded correctly and need to be repaired
before it can be used.

The red cross shows that there is something wrong with this Emulator and can't be repaired.
This could be for example an Emulator made by Eclipse or IntelliJ until version 12. You can
keep these kind of Emulators, there are not bothering Android Studio.

26

Creating a new Emulator
The "Android Virtual Device Manager" in Android Studio hasn't changed. Everything here
works like it works in Eclipse und IntelliJ.

The selection of the <New..> button brings you to the screen "Create new Android Virtual
Devices" where you fill in the AVD Name, Device, Android Version, Device platform (intel/
arm) and the features the Emulator should have.

AVD Name: you can choose the name freely, but no spaces in the name.

Device: select on from the drop down menu

CPU/ ABI explains a little bit later.

Target: select the target platform from the list. The list depends on the platforms you installed
earlier.

If the app needs an SD card or a camera, select this features.

Click <OK> and a summary of the new Emulator's features are presented. Changes are made
via the <Edit> button.

27

After clicking <Start..> the "Launch Option" window let you choose the screen resolution. This
option will show up every time, it is not permanent.

<OK> will start Emulator. This will take some time.

28

Make the Emulator faster
By choosing some extra settings the Emulator can run up to 50% faster.

Using „Graphics Acceleration“:

This works on Windows, Linux und Mac:

In the screen "Create new Android Virtual Devices" activate „Use host GPU“ (Graphics
Acceleration). The API has to be 15 or higher for this.

When you start the Emulator from the command line, it would be look like this:

emulator -avd <avd_name>-gpu on

Using Intel Atom System Image and Intel x86 Emulator Accelerator (HAXM)

Windows:

1. In the SDK Manager select „Intel x86 Atom System Image for the Android Version you are
using (between 15 and 17) and install it.

2. In the SDK Manager under Extras select „Intel x86 Emulator Accelerator (HAXM) and
install.

3. Navigate in the File Manager to Extras under the Android Studio directory, than to
\intel\Hardware_Accelerated_Execution_Manager. Double-click on „IntelHAXM.exe to
install it.

4. In the AVD Manager create a new Emulator and select from CPU/ABI „Intel atom x86“. Set
the Ram to 512 or more. Ready to use.

Mac OS X:

The only difference to the Windows Installation is number 3. Here you choose
 /extras/intel/Hardware_Accelerated_Execution_Manager/IntelHAXM.dmg instead.

Linux:

1. sudo apt-get install kvm

2. In the SDK Manager select „Intel x86 Atom System Image“ for your Android
Version (between 15 and 17) and install it.

29

3. In the AVD Manager create a new Emulator and select from CPU/ABI „Intel atom x86“. Set
the Ram to 512 or more. Ready to use.

4. Start the Emulator from the command line with:

emulator -avd <avd_name> -qemu –m 512-enable-kvm

5. Or put in Build/ Run Configuration under „Additional Emulator Command Line Options“ the
following:

-qemu -m 512 -enable-kvm

30

Overview IDE
The workspace
This chapter gives an overview over the most important menu's and symbols to get you started.

After your project is build you are presented with the workspace for your project, but it still
looks quite empty. What you can see already is

1. The menu list and the toolbar on the top of the workspace. Furthermore you will find here
the name of the project, the location of the project files and the version of the Android
Studio.

2. on the sides and on the button you will find buttons to open different views, like the button
<Project> on the left.

3. the space in the middle, which show right now some tips, will filled up with one or more
views when working project files.

Menu list

Under the File Menu you have all the different configuration settings. If no project is open yet,
you can reach the configuration settings from the Welcome Screen via Configure.

File -> Close Project will close the project and bring you back to the Welcome Screen. To
close Android Studio use File -> Exit or on Mac OS X Android Studio -> Quit Android
Studio.

31

From the Build Menu you reach two important functions/ under menus, the Rebuild Project and
the Generate Signed APK Menu. Rebuild Project is often useful after copying and configuring
a new library into the project. Generate Signed APK is needed to build a signed app for the
Android Market.

Run gives you the Run and Build commands and the configuration for the Build and Run in
„Edit Configuration“.

32

Under the Tools menu you will find all the relevant Android menus like AVD Manager or SDK
Manager.

Android part of the symbol list.

Under VCS is the „Version Control Integration“ located. More info about VCS in Chapter 9.

The Help menu is interesting because from here you get all the Keymaps. Many other points in
this list are interesting too, but most of them are Internet Links.

33

Right under the Symbol list you can see the PATH of the file or directory you have marked in
the project view. With bigger projects, this can be helpful.

34

The Editor
Editor configuration

From File → Other Settings → Default Settings

select "Code Style" to customize the Editor.

Tips und Tricks to the Editor

If you are working on a layout file Text modus, Android Studio gives a live preview in the
right panel.

Show Line Numbers

View → Active Editor → Show Line Numbers

Hard coded strings

To discover Java „hard coded strings“ in Java files go to Analyze → Inspect Code

35

The result can be found in Android Lint → Hard coded text

Renaming

Renaming of variables and constants in a Java file can be done by pointing the mouse on this
constant or variable and pressing <Shift><F6>. After renaming, all the dependencies will be
updated automatically..

Creating strings on the Fly

1. Example:

In our example app we like to change the text „HelloWorld“ into „Hello Android World“.

In the opened „activity-main.xml“ file point the mouse on

android:text=“@string/hello_world“

and change the „hello_world“ into „android_world“

„@string/android_word“ is now marked in red color. Which means, Android Studio couldn't
find content for this new variable.

36

This is correct; we don't have any content for android_word yet.

To change this press <Alt> <Enter>

and choose from the menu „Create string value resource 'android_world'“.

In the next screen we get the chance to write the new value "Hello Android World".

After confirming with <OK> two things happen, the variable name "android_world" changes
the color from red to green. And the live preview is showing the new text.

37

If you only want to change the content of a variable, point with the mouse on it and press

<Apple Key> Mac

<CTRL> Windows

<CTRL> Linux

this opens up the source file in the editor, where the changes can made.

Changing text size

For the moment the text size in our example app is not defined. Therefore Android gives us the
standard size for text.

To change the text size, I will use the file dimens.xml and make a definition for the new size.

When Android Studio build a standard project, it creates by default a dimens.xml file. So we
only have to add a value for our text.

First open the activity_main.xml and add

android:textSize=“@dimen/androi_world_size“

By pointing on the new and unresolved variable and pressing <Alt><Enter> the menu shows

„Create dimen value resource 'androi_world_size'“, select it and fill in a value for the
dimension.

38

Like the last time, after confirming with <OK> the live preview is showing the changes we
made.

More tips for the Editor can be found in „Tips of the Day“.

39

If „Tip of the Day“ is no longer activated, you can reach it all the time from the Help menu.

40

Project Structure
When you create a new project in Android Studio (or migrate a project from Eclipse), you'll
notice that the project structure appears differently than you may be used to. As shown in the
screenshot almost all your project files are now inside the src/ directory, including resources
and the manifest file.

The new project structure is due to the switch to a Gradle-based build system. This structure
provides more flexibility to the build process and will allow multiple build variants (a feature
not yet fully implemented). Everything still behaves as you expect, but some of the files have
moved around. For the most part, you should need to modify only the files under the src/
directory. More information about the Gradle project structure is available in the Gradle
Plugin User Guide.

41

Gradle Build System
What is the Gradle Build System?
Gradle is a Java-based build management and automation tool.

Google integrated Gradle in Android Studio with the help of a newly developed Gradle plugin
for Android Studio. The first time an Android project is created, Android Studio will
download Gradle 1.7. Therefore, the creation of the first project takes a bit longer, depending
on your Internet connection.

In Android Studio the "Gradle build system" is the build system of choice. Gradle replaces
"Ant", which is used in Eclipse. "Old Eclipse" projects must be converted from Ant to Gradle
before they can be imported to Android Studio. More on this in Chapter 15.

One of the main features of the "Gradle build system" is that you can create different versions
of the same app: Free and Paid apps for example.

A script called "build.gradle" largely controls Gradle. The script is written in "Groovy DSL",
is easy to read and write.

Build scripts can really be very small, if the project is based on the standard structure. It could
look like this:

buildscript {

repositories {
mavenCentral()
}

dependencies {
classpath 'com.android.tools:gradlexx'
}

apply plugin: 'android'

The only real content of the script is "apply plugin: 'andoid'.

This script will produce an "unsigned apk".

42

The Standard Gradle File for an Android Project
Which Gradle file is responsible for my project?

The responsible Gradle file is placed in the root of the project folder.

For a single Android app project you only need to customize the build.gradle file. In multi-
projects there is additionally the settings.gradle.

The structure of a build.gradle script

By default every new build Android project made by Android Studio get a standard
build.gradle file. This file matches the needs for the sample template has. It is perfect for
running and building the example project like "My Application".

This is how the build.gradle file looks like for the "My Application" app:

43

The parts of this Gradle file

By default Android Studio the Gradle is connected to the Repository mavenCentral:

Gradle searches in a "repository" to find external libraries. A repository is actually just a
collection of files that is organized by group, name and version. Gradle understands various
repository formats, such as Maven and Ivy, and different ways to access the repository, such as
the local file system or HTTP.

repositories {

mavenCentral()

}

Android Studio needs to use a Gradle plugin to work with Gradle.

dependencies {

classpath 'com.android.tools.build:gradle:0.5.+'

44

}

This plugin is telling us that this Android project is an application.

apply plugin: 'android'

If your Android project is a library project, you need to change the plugin into plugin:
'android-library'".

The template we used for this example app has the android-support-v4 library already
integrated.

dependencies {

compile 'com.android.support:support-v4:13.0.+'

}

These informations have been collected during the creation process of the app.

android {

compileSdkVersion 17

buildToolsVersion "17.0.0"

defaultConfig {

minSdkVersion 8

targetSdkVersion 16

}

buildToolsVersion "17.0.0"

defaultConfig {

minSdkVersion 8

targetSdkVersion 16

}

45

}

The Gradle-Skript has 3 major parts:

1. buildscript {... }

configures the code driving the build.

In this case, this declares that it uses the Maven Central repository, and that there is a classpath
dependency on a Maven artifact. This artifact is the library that contains the Android plugin for
Gradle in version 0.5.6

Note: This only affects the code running the build, not the project. The project itself needs to
declare its own repositories and dependencies. This will be covered later.

2. The 'android' plugin,

The plugin provides everything to build and test Android applications.

3. android { ... }

android { ... } configures all the parameters for the android build. This is the entry point for the
Android DSL.

By default, only the compilation target is needed. This is done with the compileSdkVersion
property.

This is the same as the target property in the project.properties file of the old build system.
This new property can either be assigned an int (the api level) or a string with the same value
as the previous target property.

Has the build.gradle file to be edited before building or running a project?

No, if your project does not use more libraries than the android-support-v4 library and you
don't need different version of your app .. properly not.

Examples, when you need customized the build.gradle file:

- when using ActionBar Sherlock

- when using Admob or other Ads

- with Test Projects

46

- with Multi-app Projects ...

The Gradle file(s) can be edited using the Android Studio editor. Double-click the
build.gradle file from the Project View window on the left to open it in the editor.

47

Using Gradle from the IDE or from the command line
To build and run the project from the IDE, click Build or Run from the Menu.

To use Gradle from the command line, open a terminal window and navigate into the project
folder.

Example:

The AndroidStudioProjects folder is the folder where all our Android Studio projects are
getting stored.

After creating the example "My Application", we got a new folder under
AndroidStudioProjects called MyApplicationProject. Navigate into this folder. Here you will
find the Gradle Wrapper command line tool. For Windows use the gradlew.bat. For Linux und
Mac OS X use gradlew.

The command

./gradlew assemble

gradlew.bat assemble

will build 2 files, a debug file and a release file.

Das Android plugin has 6 "anchor tasks":

assemble

The task to assemble the output(s) of the project

check

The task to run all the checks.

connectedCheck

Runs a check that requires a connected device or emulator. they will run on all connected
devices in parallel.

deviceCheck

Runs checks using APIs to connect to remote devices. This is used on CI servers.

48

build

This task does both assemble and check

clean

This task cleans the output of the project

From the command line you can get the high level task running the following command:

./gradlew tasks

gradlew.bat tasks

For a full list and seeing dependencies between the tasks run:

./gradlew tasks --all

gradlew tasks --all

49

Fixing Gradle after update to Android Studio 0.3+
I had problems by myself and it turned out, I had to update the gradle plugin and Gradle.

This is what I've done with a project that was created with Android Studio 0.2.13

I updated the gradle plugin in build.gradle to 0.6+

 dependencies {

 classpath 'com.android.tools.build:gradle:0.6.+'

 }

But when using the gradle plugin 0.6+, Android Studio needs Gradle 1.8. So, you have to
update Gradle from 1.7 to 1.8.

This was done by going to

Tools -> Android -> Synch Project with Gradle Files

It forces Android Studio to give out Error message you see on http://tools.android.com/recent

In the error message you have to click the part "Fix Gradle wrapper and re-import project". I
restarted, not sure if this make a difference.

So far everything seems to work. I can create new projects and it build fast, without errors, but
the gradle has still 0.5+.

Looks like, I had to change it manually for every new projects. This is what I thought, because
I didn't get any error or information from this installation to fix it. (Mac).

Than I went to my Windows installation, which had still Android Studio version 0.2.13 and

 tried the same procedure, I used with the updated version, changed the build,gradle and used
Synch Project with Gradle Files. This gave me a total different information:

Gradle version 1.8 is required. Current version is 1.7. If using the gradle wrapper, try editing
the distributionUrl in

50

C:\Documents and Settings\Owner\Start Menu\Programs\Android
Studio\gradle\wrapper\gradle-wrapper.properties to gradle-1.8-all.zip

Turned out, I have a gradle-wrapper.properties file in every project (in gradle/) but I don't
have any gradle-wrapper.properties file at the location Android Studio gave me.

When you open the gradle-wrapper.properties file from your project, it will properly look like
this:

#Sun Oct 20 03:35:31 CEST 2013

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=http\://services.gradle.org/distributions/gradle-1.7-
bin.zip

To change the gradle-1.7-bin.zip into gradle-1.8-rc-1-bin is possible but not the solution I was
looking for.

Check out if Andoid Studio already downloaded the gradle plugin 1.8

 Directory of C:\Documents and Settings\Owner\.gradle\wrapper\dists

2013-10-13 06:24 <DIR> .

2013-10-13 06:24 <DIR> ..

2013-10-04 18:17 <DIR> gradle-1.6-bin

2013-10-13 06:24 <DIR> gradle-1.7-all

2013-10-04 12:23 <DIR> gradle-1.7-bin

2013-10-04 18:26 <DIR> gradle-1.8-rc-1-bin

 0 File(s) 0 bytes

51

 6 Dir(s) 81 945 972 736 bytes free

Now I create a new gradle-wrapper.properties file in

C:\Documents and Settings\Owner\Start Menu\Programs\Android Studio\gradle\wrapper\

#Tue Oct 20 06:35:40 CEST 2013

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=http\://services.gradle.org/distributions/gradle-1.8-all.zip

This did the Trick. Now, after updating to 0.3, every new project gets a build.gradle with

dependencies {

 classpath 'com.android.tools.build:gradle:0.6.+'

 }

and a gradle-wrapper.properties file in gradle/ with

distributionUrl=http\://services.gradle.org/distributions/gradle-1.8-bin.zip

If you prefer a clean Android Studio 0.3.1 installation go to:

http://tools.android.com/download/studio/canary/latest

52

Libraries and dependencies
Libraries come in different versions: as

1. single Java file / jar file example: support-v4: 13.0
2. Java library project directory: Example ActionBar Sherlock

Incorporate a "remote jar" library

In the sample project, the android-support-v4 library is automatically included and is coming
from the Maven repository. Therefore 2 entries are needed to integrate the library.

The first entry is

repositories {

mavenCentral()

The second entry is

dependencies {

compile 'com.android.support:support-v4:13.0.+'

the name of the library.

Other extern libraries are integrated in the same way.

Integration of a local library

The local library must be located in a directory of this project. First, create a directory on the
height of the src / directory in which the library is to be copied later. Than copy or drag the
library into this folder.

53

Click with the right mouse on the library and select „Add as Library“ from the context menu.

In the build.gradle file has to be add the entry

compile files('libs/android-support-v4.jar')

54

Example GoogleAdMobAdsSdk
1. Download GoogleAdMobAdsSdk-6.4.1.jar

https://developers.google.com/mobile-ads-sdk/download

and put the unpacked file in the libs/ directory of your project

2.Click with the right mouse on the library and select „Add as Library“(Global)

3. Open the build.gradle and add

dependencies {
compile files('libs/android-support-v4.jar','libs/GoogleAdMobAdsSdk-
6.4.1.jar')
}

4. Menu Build -> Rebuild Project

5. The Admob library is ready to use and can now be imported into Java files, in layout files
can Ads be added. Finally, the AndroidManifest need uses-permission for Internet, the
AdActivity and the Admob ID you got for your app.

55

https://developers.google.com/mobile-ads-sdk/download

Example: ActionBar Sherlock
1. Download the newest ActionBar Sherlock with Gradle

2. git clone git://github.com/JakeWharton/ActionBarSherlock.git

3. Put the library folder into your project structure like this.

4. Open the settings.gradle and add the part for the ActionBar Sherlock.

include ':MyApplication', ':ActionBarSherlock:actionbarsherlock'

The recommendation from ActionBar Sherlock is, to use the .aar library. This is explained in
chapter "Building an .aar library file".

56

Local installation of Gradle 1.7
There can be several reasons why it's not enough to use Android Studio's Gradle.

For example, if you like to build a local Maven repository or to build .aar library files.

This is what you need to do:

Download the gradle-1.7-all.zip package for all OS from here:

http://www.gradle.org/downloads

For running Gradle, add GRADLE_HOME/bin to your PATH environment variable. Usually,
this is sufficient to run Gradle.

For Linux and Mac OS X users

Unzip the downloaded file and maybe rename the folder into gradle, like me, or use in the
following commands your folder name instead of gradle.

sudo cp -R gradle /usr/local

export GRADLE_HOME=/usr/local/gradle

export GRADLE_HOME=$GRADLE_HOME/bin/

export PATH=/usr/local/gradle/bin:$PATH

Test with the command gradle -v if everything is working.

As a result, you should see something like this:

--

Gradle 1.7

--

Build time: 2013-08-06 11:19:56 UTC

Build number: none

Revision: 9a7199efaf72c620b33f9767874f0ebced135d83

Groovy: 1.8.6

57

Ant: Apache Ant(TM) version 1.8.4 compiled on May 22 2012

Ivy: 2.2.0

JVM: 1.7.0_21 (Oracle Corporation 23.21-b01)

OS: Linux 3.2.0-44-generic i386

Keep in mind that you use the gradle command here and not gradlew when working with
Android Studio projects.

58

Local installation of Maven 2
A local installation of Maven is necessary when you need to build a local Maven repository.
For example to put the ActionBarSherlock .aar file in there.

And because Android Studio is using Maven 2, I stay with Maven 2 for the local installation.

First download the package apache-maven-2.2.1-bin.tar.gz from:

http://maven.apache.org/download.cgi

Set the MAVEN_HOME environment variable to the path where you extracted maven, and add
the maven's bin folder to the PATH environment variable.

For Windows users

1. Unzip the distribution archive, i.e. apache-maven-3.1.0-bin.zip to the directory you wish
to install Maven 3.1.0. These instructions assume you chose C:\Program Files\Apache
Software Foundation. The subdirectory apache-maven-3.1.0 will be created from the
archive.

2. Add the M2_HOME environment variable by opening up the system properties (WinKey
+ Pause), selecting the "Advanced" tab, and the "Environment Variables" button, and then
adding the M2_HOME variable in the user variables with the value C:\Program
Files\Apache Software Foundation\apache-maven-3.1.0. Be sure to omit any quotation
marks around the path even if it contains spaces. Note For Maven 2.0.9: make sure that
the M2_HOME doesn't have a '\' as last character.

3. In the same dialog, add the M2 environment variable in the user variables with the value
%M2_HOME%\bin.

4. Optional: In the same dialog, add the MAVEN_OPTS environment variable in the user
variables to specify JVM properties, e.g. the value -Xms256m -Xmx512m. This
environment variable can be used to supply extra options to Maven.

5. In the same dialog, update/create the Path environment variable in the user variables and
prepend the value %M2% to add Maven available in the command line.

6. In the same dialog, make sure that JAVA_HOME exists in your user variables or in the
system variables and it is set to the location of your JDK, e.g. C:\Program
Files\Java\jdk1.5.0_02 and that %JAVA_HOME%\bin is in your Path environment
variable.

7. Open a new command prompt (Winkey + R then type cmd) and run mvn --version to
verify that it is correctly installed.

For Linux and Mac OS X users

59

1. Extract the distribution archive, i.e. apache-maven-3.1.0-bin.tar.gz to the directory you
wish to install Maven 3.1.0. These instructions assume you chose /usr/local/apache-
maven. The subdirectory apache-maven-3.1.0 will be created from the archive.

2. In a command terminal, add the M2_HOME environment variable, e.g. export
M2_HOME=/usr/local/apache-maven/apache-maven-3.1.0.

3. Add the M2 environment variable, e.g. export M2=$M2_HOME/bin.
4. Optional: Add the MAVEN_OPTS environment variable to specify JVM properties, e.g.

export MAVEN_OPTS="-Xms256m -Xmx512m". This environment variable can be used
to supply extra options to Maven.

5. Add M2 environment variable to your path, e.g. export PATH=$M2:$PATH.
6. Make sure that JAVA_HOME is set to the location of your JDK, e.g. export

JAVA_HOME=/usr/java/jdk1.5.0_02 and that $JAVA_HOME/bin is in your PATH
environment variable.

7. Run mvn --version to verify that it is correctly installed.

The result of the test should be look like this:

Apache Maven 2.2.1 (rdebian-8)

Java version: 1.6.0_45

Java home: /usr/lib/jvm/java-6-oracle/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "linux" version: "3.2.0-44-generic" arch: "i386" Family: "unix"

60

Building an .aar library file
I assume that you have JDK, Maven and Gradle 1.7 installed.

For this example I put the ActionBarSherlock project library on my GitHub. Download the
ActionBarSherlock project library and if it is zipped, unpack it. This is the version 4.4.0.

Now in Android Studio, select from the Welcome Screen -> Import project

and navigate to the downloaded ActionBarSherlock folder, go to the underlying folder
actionbarsherlock and click on the build.gradle file to import the library project.

From the command line navigate into the actionbarsherlock folder and use your local Gradle
installation to build.

gradle assemble

this gives you a new folder inside of actionbarsherlock with the name build, and the .aar files
are under libs/.

61

Making a local Maven repository from the actionbarsherlock-
4.4.0.aar
From the command line:

mvn install:install-file -Dfile=/path_to_your_lib/actionbarsherlock-
4.4.0.aar -DgroupId=com.actionbarsherlock -DartifactId=actionbarsherlock -
Dversion=4.4.0 -Dpackaging=aar

The result should look like this:

[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'install'.
[INFO] ---

[INFO] Building Maven Default Project
[INFO] task-segment: [install:install-file] (aggregator-style)
[INFO] ---

[INFO] [install:install-file {execution: default-cli}]
[INFO] Installing /home/janebabra/actionbarsherlock.aar to /home/janebabra/.m2/repository/com/example/actionbarsherlock/{version}/actionbarsherlock-
{version}.aar
[INFO] ---

[INFO] BUILD SUCCESSFUL
[INFO] ---

[INFO] Total time: 1 second
[INFO] Finished at: Wed Sep 04 13:52:01 CEST 2013
[INFO] Final Memory: 6M/15M
[INFO] ---

62

Using the .aar library in your Android application project
Open the Project View and add to your root directory a file named local.properties with the
following content:

sdk.dir=/path_to_android_sdk/android-studio/sdk

Make the changes in the build.gradle file and you are done.

Import ActionBarSherlock like this.

63

5. Open the build.gradle file from the ActionBarSherlock folder and add
the missing pieces:

buildscript {
 repositories {
 maven { url 'http://repo1.maven.org/maven2' }
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:0.5.+'
 }
}
apply plugin: 'android-library'

repositories {
 mavenCentral();
}

dependencies {
 compile files('libs/android-support-v4.jar')
}

android {
 compileSdkVersion 17
 buildToolsVersion "17.0.0"

 defaultConfig {
 minSdkVersion 7
 targetSdkVersion 16
 }

 sourceSets {
 main {
 manifest.srcFile 'AndroidManifest.xml'
 java.srcDirs = ['src']
 res.srcDirs = ['res']
 }
 }
}

Open the build.gradle for the project and add the following:

dependencies {

compile project(':ActionBarSherlock:actionbarsherlock')

}

The build.gradle file from the project must not have the dependencies for the android-support-
v4 library

In the final release a project library like this should be integrate as ".aar" file, similar to the

64

inclusion of "jar" files. Once this works, the chapter will be updated.

65

Version Control (VCS)
Android Studio supports the following VCS: Git, GitHub, Mercurial and Subversion.

To use one of the systems, the appropriate program that is used by the VCS has to be installed
on the computer. For Git and GitHub would this be "git" for Mercurial "hg" and subversion
"svn".

66

Configuring VCS for your project
From the Welcome Screen -> Project Defaults -> Settings -> Version Control

67

GitHub
Write down your login information from your GitHub account or click on Sign up.

68

To activate VCS for your project go to the Menu VCS and select "Enable Project for Version
Control Integration".

69

70

After connecting the project to GitHub, the Menu VCS has got more functionality like "Share
project on GitHub".

71

72

73

App Layout Design: Text / Design Editor
Android Center offers an advanced layout editor, which allows you to drag-and-drop widgets
in your layout and preview your layout while editing the XML.

While editing in the Text View, you can preview the layout on devices by opening the preview
window on the right side of the window. In the preview window, you can preview by changing
various options at the top of the range, including the preview device, layout, theme, platform
version, and more. To view the layout on multiple devices simultaneously, select "Preview all
screen sizes" from the drop-down menu icon.

You can switch to the graphical editor by clicking on the design button at the bottom of the
window. While editing in the Design view, you can show or hide the available widgets using
drag-and-drop widgets by clicking on the left side of the window. Click Designer on the right
side of the window to see the layout hierarchy and a list of properties for each view in the
layout.

Example Android App Project: MySwipeImageViewer

After changing the text for this app, a image is being added into the middle of the view using
the design modus of the editor.

74

You can only select image resources that have been previously copied to the appropriate
folder.

75

You can switch anytime between text and design mode. If you are in text mode, a live preview
of the layout is automatically displayed.

76

Resources such as text for the buttons or dimensions can be created on the fly, as already
described in chapter 6.

77

To create a value folder for another language, right click on the res/ folder and select "Android
resource directory".

78

If you want to see how the layout looks on different screen sizes, you can also do this directly
from the editor by clicking in the Preview window, click the icon in the upper left corner and
select for example "Preview All Screen Sizes".

79

80

Making the App interactive (Activities)
It continues with the project app: MySwipeImageViewer.

This app has 2 Activities, the Start screen with the button „Start Slide Show“ on it, which
brings us to the next Activity "the Slide Show".

To create a new Activity right click on the package name -> New -> Java Class.

81

Select the standard Activity "Blank Activity".

82

Choose a name for the Activity and the layout file.

83

Add some new imports to the new Activity.

Now we add some images to SlideActivity code for the Image Slide Show.

84

In the MainActivity the button is added, that connect the MainActivity to the SlideActivity.

85

In the AndroidManifest.xml has already both Activies. Nothing to do here.

86

Der Source-Code for this Project can be downloaded from GitHub:

https://github.com/janebabra/MySwipeImageViewerProject

87

Build and Run the App
Run the app is just a matter of clicking on the green triangle icon on the menu. Android Studio
is first compile your code and then makes it available for execution.

The progress can be observed in the status bar at the bottom of the screen.

If there are error messages caused by problems in the code opens a log window at the bottom
of the screen.

If the code is ready to run on a device, opens the window "choose device". Here you see in the
top list, emulators and connected android devices that are already running.

If you don't want to use any of the current devices, go to the lower half of the window, click
"Launch Emulator" and choose a matching from the "drop-down menu. '"

The app will run finally on the selected emulator or Android device.

88

89

Running the app from the command line
The fact that the Android studio has the Gradle build system integrated, gives more
opportunities to work from the command line.

To create an unsigned app as a Debug and a Release APK proceed as follows:

Go in the terminal window, cd to the directory MySwipeImageViewerProject.

For Windows:

gradlew.bat assemble

For Linux und Mac:

./gralew assemble

After that, the two files are build and stored under:

/MySwipeImageViewerProject/ MySwipeImageViewer/build/apk

MySwipeImageViewer-debug-unaligned.apk and

MySwipeImageViewer-release-unsigned.apk

90

Debugging
When creating and executing an application with Android Studio, you can see the adb and
device log messages (logcat) in the DDMS view pane by clicking on Android at the bottom of
the window.

If you want to debug your app with the Android debug monitor, you can do this by click the
symbol

from the toolbar.

In the debug monitor, you can see the complete set of tools for DDMS and find out more about
the behavior of your app. It also includes the Hierarchy Viewer tools to optimize your layout.

These tools are the same as in the ADT for Eclipse.

There's one exception. The Traceview from the ADT has been replaced in Android Studio
0.2.10 with his own viewer.

In the Android DDMS select the Start Method Tracing symbol to launch this viewer.

91

Testing
The following is a test project and the tests are carried out both by command line level as well
as by the IDE.
As a basis to create a project like the "MyApplicationProject" from the chapter "Creating a
new Android app project" has been used.
The name of the test project is MyApplicationTestProject.

As seen in the screenshots, a "Hello World" template is selected with Action Bar, changed the
text and added a background image. So, the following picture shows the start position.

Of the just created project open the activity_mail.xml in the Editor to check whether the
TextView includes an "id", as will be later referred to it in the test. If no "id" exists, as shown
in this screenshot, create one.

92

The file can then be closed again.
The file structure for the test has to be created manually. To do this, go in the Project View
panel.
In the project folder, right-click on src / and select from the context menu
New -> Select Directory.
Name the folder instrumentTest and confirm with <OK>.
Right-click now on the instrumentTest folder to create a new folder:
New -> Select Directory and name the subdirectory java.
Now click with the right mouse button on the java folder and with
New -> Select Package create a package for the Test Activity.
The name of this package should be the same like the main package of the project with an
attached .test.
In this example, the package is:
com.greendog.example.androidstudio.myapplicationtest.test
Add to the just created package a test activity. Right-click on the package name and select
New -> Java class
Name the new Activity MainActivityTest.
The project structure should now look like this:

93

The here used test activity has the task to check, whether the TextView appears with the text
contained on the screen.

The project is now ready for the scheduled test.

94

Initially, the project must run on a device or emulator via an USB-connected phone / tablet.
Then you can either from the IDE or from the command line start and run the tests.

For the test from the command line navigate to the project directory, like you would to build
the project.
The test command is:
For Linux and Mac OS X:
./gradlew assembleTest
For Windows:
gradlew.bat assembleTest

95

A successful test run would be look like this:

To access test from the IDE, just click on the right side of the window on <Gradle> to see the
available Gradle tasks.
Select a command from the list and double-click to start the desired test.

96

The test results are stored under the build/reports/ in HTML format and can be viewed in the
web browser.

A click on the package name takes us to the page that shows specifically what was tested.

97

The project is on my GitHub, see Links.

98

Preparing the app for the Android Market
Screenshots
The easiest way to do this is from the „Android DDMS“ .

Run the app on an Emulator or on a device. Than click on the camera symbol in the „Android
DDMS“.

Choose from the Drop-Down menu one of the phones or tablets to get the size/ screen
resolution you need.

99

100

Signing the app (Wizard)
From the Build menu select “Generate Signed APK“.

This opens the window „Generate SignedAPKWizard“.

An existing key can be loaded or a new one created. Fill in all fields, there is one last stop. In
the case that Proguard is to be used, the "Run ProGuard" has to be activated, than navigate to
the configuration file and click <Finish>.

101

The app is ready to be deployed on the Android Markets.

102

ProGuard
For an app using ProGuard, the build.gradle file needs the following entry:

buildTypes

release {

runProguard true

proguardFile

getDefaultProguardFile('proguard-android.txt')

}

103

Signing a release APK with Gradle
There's nothing wrong with using the Signing Wizard, but in some cases it can be usefull to
automate the signing process by using Gradle. There are 3 options to do this:

First option: everything is been stored in the projects build.gradle

android {
 ...
 signingConfigs {
 release {
 storeFile file("release.keystore")
 storePassword "******"
 keyAlias "******"
 keyPassword "******"
 }
 }
 buildTypes {
 release {
 signingConfig signingConfigs.release
 }
 }
}

The next example will prompt for each parameter:

signingConfigs {

 release {

 storeFile file(System.console().readLine("\n\$ Enter keystore
path: "))

 storePassword System.console().readLine("\n\$ Enter keystore
password: ")

 keyAlias System.console().readLine("\n\$ Enter key alias: ")

 keyPassword System.console().readLine("\n\$ Enter key password: ")

 }

}

Another solution is, to put the intormation into ~/.gradle/gradle.properties like this:

RELEASE_STORE_FILE={path to your keystore}

RELEASE_STORE_PASSWORD=*****

104

RELEASE_KEY_ALIAS=*****

RELEASE_KEY_PASSWORD=*****

Next in the build.gradle file, the configuration would be look like this:

...

signingConfigs {

 release {

 storeFile file(RELEASE_STORE_FILE)

 storePassword RELEASE_STORE_PASSWORD

 keyAlias RELEASE_KEY_ALIAS

 keyPassword RELEASE_KEY_PASSWORD

 }

}

buildTypes {

 release {

 signingConfig signingConfigs.release

 }

}

....

In all cases the command "gradle assembleRelease" will produce a signed release apk.

105

Import Android Projects
To import Android Studio projects, select from the Welcome Screen "Import Project".

106

Import Eclipse projects
1. Eclipse must have ADT-Plugin 22.0 or higher.

Open the project in Eclipse you like to use later in Android Studio.

Than go to File -> Export ..

mark the "Generate Gradle build files" and continue with <Next>.

107

Select the project(s) from the list and press <Next> and <Finish>

108

The "Export successful" window explains how to import this project later.

109

<Finish> and close Eclipse.

Open Android Studio, go from the Welcome Screen to Import Project and navigate to
build.gradle file of the project. <OK>

110

Confirm the next screen "Import Project from Gradle" with <OK>. Don't change anything.

111

From now on the project can be developed in Android Studio.

Right now there're a lot of different eclipse/ adt versions out there and several version
Android Studio.

Here's an overview that maybe help when the procedure from this chapter is not working right
away.

For Android Studio up to version 0.2

If you are using an Android Studio version before 0.2, you're done.

You must close Eclipse before opening Android Studio. From the Main Menu -> Import

112

Project

Confirm the suggested standard and finish importing.

For Android Studio from 0.2+ up to 0.2.13

If you're using Android Studio version 0.2 or higher, there's some manual editing to do:

When you have finished the export in Eclipse, open the new added file build.gradle.

Navigate to the following lines.

dependencies {

 classpath 'com.android.tools.build:gradle:0.4'

and change the 0.4 into 0.5+ like this

dependencies {

 classpath 'com.android.tools.build:gradle:0.5+'

This is necessary because Android Studio from version 0.2 works now with the Gradle plugin
0.5 and the Eclipse plugin hasn't been updated.

You must close Eclipse before opening Android Studio. From the Main Menu -> Import
Project

Confirm the suggested standard and finish importing.

For Anroid Studio version 0.3+

Importing projects from Eclipse into Android Studio 0.3+ is right now a kind of pain in the ...

What I found out is, that the Android Studio versions 0.3.1 on Windows and Mac OS X are
behaving very different.

Could not import in the Mac installation but in the Windows installation. Here's what I did:

Because this was an old Eclipse project without Gradle, I exported it from Eclipse to add the

113

gradle structure.

I updated the Gradle configuration to make it fit for Android Studio 0.3+

changed in build.gradle the gradle plugin version to 0.6+

copied from a project I made with 0.3 from scratch, the content of the wrapper folder into the
projects wrapper folder

You must close Eclipse before opening Android Studio. From the Main Menu -> Import
Project

Imported into Android Studio like this

Mac problem solved

After renaming .gradle in my home directory into .gradleold, I only had to change in
build.gradle the gradle plugin version into 0.6+ . Android Studio was now able to download
everything needed.

This is an ongoing story, Android Studio is still in development.

114

Import Android Studio projects like the "Samples" from the
sdk in Android Studio
Welcome Screen -> "Import Project"

navigate to one of the samples directory like:

android-studio/sdk/samples/android-18/

connectivty, content, input, media, security, testing or ui.

Look for projects with Gradle files.

Under the folder "legacy" are old Eclipse Projects.

If you don't see any sample folder, install the samples via SDK Manager.

115

116

Import a VCS Project
This could be your own project, from your team or a public project on for example GitHub
code.google.com.

The project needs to have the Gradle build system.

Example for Git:

The project "StopWatch" will be imported. The project Google used to present Android
Studio.

Welcome Screen -> "Checkout from Version Control"

117

Google Cloud Endpoints
Add to an Android Studio Project Google Cloud Endpoints.

Download Maven

http://maven.apache.org/download.html

Installation von Maven

Unpack the downloaded file.

Add the PATH to your environment like this:

Linux und Mac OS X:

export PATH = / usr/local/apache-maven-3.xy/bin: $ PATH

Windows:

set path = "c: \ program files \ apache-maven-3.xy \ bin";% PATH%

Make sure, you have JAVA_HOME set to the location of your JDK.

Test Maven

"mvn - version" checks the installation

In the Google Cloud Console: https://cloud.google.com/console

1. "Create a new project" and make a note of the "Project ID".
2. From Apis select and activate the "Google Cloud Messaging for Android API".
3. In the left corner click on "Register App".
4. Give the App a name.
5. Next select "Android" and "Accessing APIs via a webserver".
6. Click on <Register> to finish this part.

In the next screen

1. Expand the "Server Key" box.
2. Copy the API KEY in a text file to use it later in Android Studio.

118

3. Leave the Google Cloud Console.

Back to Android Studio

1. Create a new Android app project or open one.
2. In the project view panel go to the root of the Android App project
3. Menu Tools -> "Google Cloud Endpoints -> Create App Engine Backend"
4. In the "Generate App Engine Backend" window write all the information from the

"Google Cloud Console".
5. Click on <create> to create the Backend.

Adding the GCM registration to the App

The RegisterActivity can be placed anywhere, for example with the onCreate ()-method.

Deploy the sample backend server

When you're ready to deploy an update to your (the sample) production backend in the cloud,
you can do that easily from the IDE. Click on the “Maven Projects” button on the right edge of
the IDE, under Plugins > App Engine, right-click and run the appengine:update goal.

As soon as the update is deployed, you can also access your endpoints through the APIs
Explorer at http://<project-id>.appspot.com/_ah/api/explorer.

For testing and debugging, you can also run your backend server locally without having to
deploy your changes to the production backend. To run the backend locally, just set the value
of LOCAL_ANDROID_RUN to true in CloudEndpointUtils.java in the App Engine module.

Build and run the Android app

Now build and run your Android app. If you called RegisterActivity from within your main
activity, the device will register itself with the GCM service and the App Engine app you just
deployed. If you are running the app on an emulator, note that GCM functionality requires the
Google APIs Add-on image, which you can download from the SDK Manager.

You can access your sample web console on any browser at http://<project-id>.appspot.com.
There, you will see that the app you just started has registered with the backend. Fill out the
form and send a message to see GCM in action!

Extending the basic setup

It's easy to expand your cloud services right in Android Studio. You can add new server-side
code and through Android Studio instantly generate your own custom endpoints to access those

119

services from your Android app.

A good example for the Google Cloud Endpoint is the

The App Example for Android Studio from the I/O Google

Explains the Example

http://bradabrams.com/2013/06/google-io-2013-demo-android-studio-cloud-endpoints-
synchronized-stopwatch-demo/

120

https://github.com/bradabrams/stopwatchio13
http://bradabrams.com/2013/06/google-io-2013-demo-android-studio-cloud-endpoints-synchronized-stopwatch-demo/

Google Play Service SDK
The Google Play Service SDK is a new Library. It includes for example Services like Google
Maps Android API v2, Google+, Google In-app Billing v3 and Google Cloud Messaging.

To use one of the Services included in Google Play Service SDK, you have to download the
library via SDK Manager and configure it in build.gradle. The package called "Google Play
services" and is located under Extras.

The following sample shows the Integration of Google Maps API v2.

121

Integration of Google Maps API v2

Creating a SHA-1 fingerprint
Creating a SHA-1 fingerprint (release or debug Certificate) is necessary to get the Google
Map v2 API Key.

Command for a Debug Certificate
Windows:
keytool -list -v -keystore
"C:\Users\your_user_name\.android\debug.keystore" -alias androiddebugkey -
storepass android -keypass android

Mac OS X und Linux:
keytool -list -v -keystore ~/.android/debug.keystore -alias
androiddebugkey -storepass android -keypass android

Command for a Release Certificate
keytool -list -keystore your-keystore-name

The placeholder your-keystore-name has to be replaced with the full path and name of your
own release keysstore.
After confirming with ENTER, you will be prompted to enter your password, then you should
see the aliases associated with the keystore.
Copy the SHA-1 fingerprint. It will be uses later to get the Google Map v2 API Key from the
Google API Console.

Creating a project in the Google API Console
Google API Console:
https://code.google.com/apis/console
From the Drop-Down Menu select <create> and give your project a name.

122

Select Services from the list on the left of the APIs console. You should see a list of Google
services, scroll down to Google Maps Android API V2 and click to turn it on.

Go back to the menu to select <API access>. From here you will get the Google Map v2 API
key.
Scroll down to and click on <Create new Android key>.

In the pop-up window that appears, enter the SHA-1 fingerprint you copied from your
certificate add after a semicolon your package name and click Create.

This will update your API Access side and you will find under "Key for Android apps (with
certificates)" the API key. Copy the API key, so you can use it later in
your AndroidManifest.xml.

123

Creating a new Android Map Project
In the NEW PROJECT Window select from Support Mode Fragments. This make your live
easier because Google Maps v2 are displayed in Fragments only. By clicking "Support
Mode Fragments", Android Studio will add the dependencies in build.gradle for you. After
this, continue with the creating and finish the process like you normally do.

Open SDK Manager and install Google Play Service

124

Edit the Gradle File
Open the build.gradle file and add the dependencies for Google Play Service:

dependencies {
 compile 'com.android.support:support-v4:18.0.0'
 compile 'com.android.support:appcompat-v7:18.0.0'
 compile 'com.google.android.gms:play-services:3.1.36'
}

Editing the AndroidManifest File
Open the AndroidManifest.xml and add the following:

<meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="your_key_here" />

android:value="your-key-here"
put here your own API Key, and only here.

<permission
 android:name="your.package.name.permission.MAPS_RECEIVE"
 android:protectionLevel="signature" />
<uses-permission
android:name="your.package.name.permission.MAPS_RECEIVE"/>

replace your.package.name with your own

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
/>
<uses-permission
android:name="com.google.android.providers.gsf.permission.READ_GSERVICES"
/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"

125

/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-feature
 android:glEsVersion="0x00020000"
 android:required="true"/>

Add a Map to the App
Replace the content from activity_main.xml with something like this:

About
map:cameraTilt="45"

This is needed to make the compass visible. The compass is only visible when "tilt" or
"bearing" is non-zero.

The button has been designed with start_pos.xml located in drawable/.
If you open this file, you will see one of the new features from editor.

Clicking on the color icon on the left, opens the "Choose color" window, which makes it very
easy to choose or change colors.

Java File
If you only show the map and don't do anything more, you can leave the MainActivity.java like
it is.
For this example some code has been added to support for example "saving the current
position", "add a marker", "show the compass and current position symbol" and "connect the

126

button".

The compass symbol has been activated through
mMap.getUiSettings().setCompassEnabled(true);

The current position symbol has been activated through
mMap.setMyLocationEnabled(true);

The complete Code for this project is on GitHub:
https://github.com/janebabra/GetMeBackToMyFirstLocationProject

In the build/ folder you will find apk's.

127

Product Flavors - Build Types - Build Variants
One of the goals of the new build system is to give the ability to create different app versions
of the same app code.

The integration of Gradle as the new build system makes it possible to generate different
APK's from the same project code base.

What are the main use cases?

1. To have different version of the same App, like a free and a paid version for example.
This would properly be the most wanted use case.

2. To pack an app differently for an upload as multi-apk to the Google Play Store.
3. The combination of 1 and 2.

 When building Flavors, the Flavors must have the same API.

Building the directory structure and making a productFlavors DSLcontainer entry inthe
project's build.gradle file create Flavors.

For the example, we are going to create an app with two Flavors, one called production and
another one called testing.

128

The two Flavors will be different in

App icon -> drawable-xxxx
App name -> strings.xml
Background color -> activity_main.xml
Content -> Constants.java

Create a new Android Project and when it comes to the screen Activity name and Layout name,
name both Layout names activity_main.xml because we're not using a Fragment Layout for this
example.

Proceed like normal with the rest of the New Project Wizard.

The next task will be to build the directory structure. This has to be done manually in the
Project Structure Window.

In the src/ folder, you’ve to create two directories whose names must match the flavors. Than
you can define all the flavor-specific values. Only specific values are necessary.

This is the complete directory structure for the project:

129

This is the complete directory structure for the project:

├── main

│ ├── AndroidManifest.xml

│ ├── ic_launcher-web.png

│ ├── java

│ │ └── com

│ │ └── greendog

│ │ └── buildtypesflavors

│ │ └── MainActivity.java

│ └── res

│ ├── drawable-hdpi

│ │ └── ic_launcher.png

│ ├── drawable-mdpi

│ │ └── ic_launcher.png

│ ├── drawable-xhdpi

│ │ └── ic_launcher.png

│ ├── drawable-xxhdpi

│ │ └── ic_launcher.png

│ ├── layout

│ │ └── activity_main.xml

│ ├── menu

│ │ └── main.xml

│ ├── values

130

│ │ ├── dimens.xml

│ │ ├── strings.xml

│ │ └── styles.xml

│ ├── values-v11

│ │ └── styles.xml

│ └── values-v14

│ └── styles.xml

├── production

│ └── java

│ └── com

│ └── greendog

│ └── buildtypesflavors

│ └── Constants.java

└── testing

 ├── java

 │ └── com

 │ └── greendog

 │ └── buildtypesflavors

 │ └── Constants.java

 └── res

 ├── drawable-hdpi

 │ └── ic_launcher.png

 ├── drawable-mdpi

131

 │ └── ic_launcher.png

 ├── drawable-xhdpi

 │ └── ic_launcher.png

 ├── drawable-xxhdpi

 │ └── ic_launcher.png

 └── values

 └── string.xml

The build.gradle file gets the productFlavors entry inside the android section:

 productFlavors {

 production {

 packageName "com.greendog.buildtypesflavors"

 }

 testing {

 packageName "com.greendog.buildtypesflavors.staging"

 }

 }

}

Important:
The names production and testing have to match the names for the Flavors folder.
They can't be different MainActivities, one in the main/ folder and another in one of the Flavor
folders.
To make the different content in the testing Flavor, we need a second Java file to define this
difference. In this example, the extra Java file is called Constants.java.

The Constans.java for the production Flavor:

132

package com.greendog.buildtypesflavors;

public class Constants {
 public final static String BASE_URL = "https://github.com/janebabra?tab=repositories";
}

The Constans.java for the testing Flavor:

package com.greendog.buildtypesflavors;

public class Constants {

 public final static String BASE_URL =
"https://github.com/janebabra/MySwipeImageViewerProject/blob/master/README.md";

}

For resource files, it's a bit different. You can have the same filenames like strings.xml in all
of the Flavor folders and in the main folder.

The concept of Gradle is that you can define Build Types and Build Flavors for your project.
The Build Types are Debug and Release. The Product Flavors in this example are production
and testing. When combining Build Types and Product Flavors, you get Build Variants.

With this example you can build 4 different variants:

1. ProductionDebug
2. ProductionRelease
3. TestingDebug
4. TestingRelease

133

Running and building the different Build Variants
From the IDE

Click the <Build Variants> tab on the Left of the IDE to open the Build Variants Window.

The Drop-Down menu under Build Variant let you switch between the available Build
Variants. Next click the <Run> Button. This will either install on a device or the Emulator.

The method works for the Debug Variants.

When choosing a Release Variant, the build.gradle file needs the entry for your Release key
like the Gradle User Guide describes.

Example:

android {

 signingConfigs {

 production {

 storeFile file("other.keystore")

 storePassword "android"

 keyAlias "androiddebugkey"

134

 keyPassword "android"

 }

 }

135

Building the different Build Variants from the command line
When Product Flavors are used, more assemble-type tasks are created. These are:

assemble<Variant Name>
assemble<Build Type Name>
assemble<Product Flavor Name>

gradlew assemble

is building all for Build Variants

gradlew assembleDebug

will build ProductionDebug and TestingDebug

gradlew assembleRelease

will build ProductionRelease and TestingRelease

If you only need one of the Flavors, add the Flavors name, like

gradlew assembleProductionDebug

gradlew assembleProduction

will produce ProductionDebug and ProductionRelease

The Source Code for this project is located on GitHub:

https://github.com/janebabra/BuildTypesFlavorsProject

136

Game Development with Android Studio
This Chapter includes the Open Source Games Engines libGDX and AndEngine and the
integration of JavaScript games based on LIME.

137

AndEngine

Preparing AndEngine

1. Download and import the library project into Eclipse first
https://github.com/nicolasgramlich/AndEngine

2. In Eclipse export the AndEngine project (without the AndroidManifest.xml)
File -> Export -> Java -> JAR file and save as AndEngine.jar

3. In Android Studio
1. Start a new project called "TowerOfHanoi".
2. Give your Activity the name "TowerOfHanoiActivity.java"
3. give bothe xml files the same name to avoid the Fragmet
4. Create a libs/ folder in the root of the project and copy the AndEngine.jar into it
5. Go to project structure
6. Libraries
7. Plus button > java > and search de jar.
8. Asign the jar to your projec

4. Open the build.gradle file and add

in "dependencies" add "compile files('libs/Andengine.jar')"

like this:

dependencies {

compile files('libs/android-support-v4.jar')

compile files('libs/AndEngine.jar')

DONE! AndEngine is ready.

Examples for AndEngine can be found here:

https://github.com/nicolasgramlich/AndEngineExamples

Before you start coding from scratch or importing one of the samples, there are a few things
you should know about AndEngine:

OpenGL ES 2.0: The currently developed version of AndEngine is the GLES 2.0
version. This version requires OpenGL ES 2.0 support in order to function. So you need
to make sure that your device (or emulator) supports OpenGL ES 2.0. If you are using the

138

https://github.com/nicolasgramlich/AndEngine
https://github.com/nicolasgramlich/AndEngineExamples

emulator to test, then you need graphics acceleration support and this is there only in the
SDK Tools higher than 19. In Android Studio has already a higher version.
Android 4.0.3: You also need Android SDK Platform API 15, Revision 3 or higher in
order to test OpenGL ES 2.0 based code on the emulator. So make sure that you’ve
upgraded to at least Android 4.0.3, which is API 15.
Emulator: If you are using the emulator to test AndEngine code, you need a virtual device
which has GPU emulation enabled and is running at least Android 4.0.3. So check your
virtual device configuration and edit it if your device is not set up appropriately.

Test Project for AndEngine: Tower of Hanoi
The objective of the Tower of Hanoi is to move all the rings over to the third rod, while only
moving one ring at a time and without placing a larger ring on top of a smaller one.

Navigate to your main/java folder and open the “TowerOfHanoiActivity.java” file.

Instead of extending the Activity class, you want to make it extend a class
called SimpleBaseGameActivity. And in order to refer to the SimpleBaseGameActivity class
from the AndEngine Library, we need to add a few import statements for it. So we add that
first to the top of the file under the existing import line:
import org.andengine.ui.activity.SimpleBaseGameActivity;
import org.andengine.engine.options.EngineOptions;
import org.andengine.entity.scene.Scene;

public class TowerOfHanoiActivity extends SimpleBaseGameActivity {

The SimpleBaseActivity class provides additional callbacks and contains the code to make
AndEngine work with the Activity life cycle. Each callback that it provides is used for a
specific purpose. As soon as you extend this class, you’ll have to override three functions.

139

Here is a brief description of each of those functions:

onCreateEngineOptions: This function is where you create an instance of the engine.
Every activity that the game uses will have its own instance of the engine that will run
within the activity lifecycle.
onCreateResources: This is the function where you’ll load all the resources that the
activity requires into the the VRAM.
onCreateScene: This function is called after the above two callbacks are executed. This
is where you create the scene for your game and use all the textures that you previously
loaded into memory.

We will first add some empty placeholders for the above callbacks so that we have some
skeleton code. Replace the existing contents of our TowerOfHanoiActivity class with the
following:
@Override
public EngineOptions onCreateEngineOptions() {
 // TODO Auto-generated method stub
 return null;
}

@Override
protected void onCreateResources() {
 // TODO Auto-generated method stub
}

@Override
protected Scene onCreateScene() {
 // TODO Auto-generated method stub
 return null;
}

Next, create a few static variables. These will be private to our class. So add the following
code right below the class definition line:
private static int CAMERA_WIDTH = 800;
private static int CAMERA_HEIGHT = 480;

These two static variables define the width and height of the camera that the engine will use.
This means that the final dimensions of the game scene will be equal to the camera size and
width.
Next, you’re going to initialize an instance of the engine. But that code is going to require
several import statements in order to function properly. So first add the following imports to
the top of the file below the existing import statements:
import org.andengine.engine.camera.Camera;
import org.andengine.engine.options.ScreenOrientation;
import org.andengine.engine.options.resolutionpolicy.RatioResolutionPolicy;

140

Now, add the following code for the onCreateEngineOptions function, replacing the
placeholder conent which is in there at the moment:
final Camera camera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
return new EngineOptions(true, ScreenOrientation.LANDSCAPE_FIXED,
 new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), camera);

In the above code, you create a new instance of the Camera class. Then we use that camera
object to create the EngineOptions object that defines the options with which the engine will
be initialized. The parameters that are passed while creating an instance of EngineOptions are:

FullScreen: A boolean variable signifying whether or not the engine instance will use a
fullscreen.
ScreenOrientation: Specifies the orientation used while the game is running.
ResolutionPolicy: Defines how the engine will scale the game assets on phones with
different screen sizes.
Camera: Defines the width and height of the final game scene.

Android runs on a lot of devices with different screen sizes. AndEngine comes with a unique
solution to this problem: it will automatically scale the game assets to fit the screen size of the
device.
If you set your CAMERA_WIDTH/CAMERA_HEIGHT to 480×320 and someone runs it on a
phone with a 800×480 screen size, your game will be scaled up to 720×480 (1.5x) with a 80px
margin (top, bottom, left, or right). Notice that AndEngine keeps the same aspect ratio and
scales the game scene to the closest possible value to the actual screen size.
Loading Game Assets to VRAM

Now that you’ve initialized an instance of the engine, you can load all the assets required by
the Tower of Hanoi game into memory. First download the game assets from here:
https://github.com/janebabra/TowerofHanoiProject
Next create the folder named src/main/assets/gfx/. After that, copy all the downloaded assets
to that folder.
To load these assets, we’re going to add the onCreateResources method. Add to your imports
the following new import statements:
import org.andengine.opengl.texture.ITexture;
import org.andengine.opengl.texture.bitmap.BitmapTexture;
import org.andengine.util.adt.io.in.IInputStreamOpener;
import org.andengine.util.debug.Debug;

import java.io.IOException;
import java.io.InputStream;

Now, replace the placeholder content in onCreateResources with the following:

141

https://github.com/janebabra/TowerofHanoiProject

try {
 // 1 - Set up bitmap textures
 ITexture backgroundTexture = new BitmapTexture(this.getTextureManager()
 @Override
 public InputStream open() throws IOException {
 return getAssets().open("gfx/background.png");
 }
 });
 ITexture towerTexture = new BitmapTexture(this.getTextureManager(), new
 @Override
 public InputStream open() throws IOException {
 return getAssets().open("gfx/tower.png");
 }
 });
 ITexture ring1 = new BitmapTexture(this.getTextureManager(), new IInputStreamOpener
 @Override
 public InputStream open() throws IOException {
 return getAssets().open("gfx/ring1.png");
 }
 });
 ITexture ring2 = new BitmapTexture(this.getTextureManager(), new IInputStreamOpener
 @Override
 public InputStream open() throws IOException {
 return getAssets().open("gfx/ring2.png");
 }
 });
 ITexture ring3 = new BitmapTexture(this.getTextureManager(), new IInputStreamOpener
 @Override
 public InputStream open() throws IOException {
 return getAssets().open("gfx/ring3.png");
 }
 });
 // 2 - Load bitmap textures into VRAM
 backgroundTexture.load();
 towerTexture.load();
 ring1.load();
 ring2.load();
 ring3.load();
} catch (IOException e) {
 Debug.e(e);
}

In the above code, you first create an ITexture object. ITexture is an interface. An object of this
type is initialized to a BitmapTexture object, which is used to load a bitmap into VRAM. The
above code creates ITexture objects for all the assets you downloaded, and loads them into
VRAM by calling the load method on each object.
Now that you have all your assets loaded, you need to extract TextureRegions from your
textures.

Note: Instead of creating textures for each of your assets, you could have loaded all the

142

http://www.google.com/search?hl=en&q=allinurl%3Ainputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aioexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky

assets into one texture and extracted the individual assets as TextureRegions. But this is
not part of this example.

To handle the work with the TextureRegions we have to add a few new import statements:
import org.andengine.opengl.texture.region.ITextureRegion;
import org.andengine.opengl.texture.region.TextureRegionFactory;

Now, to hold the TextureRegions, add private variables to our class at the top of the file,
below the previous private variables:
private ITextureRegion mBackgroundTextureRegion, mTowerTextureRegion, mRing1, mRing2, mRing3

Finally, add these lines of code to onCreateResources, right after the end of section #2 where
you load the bitmap textures into VRAM:
// 3 - Set up texture regions
this.mBackgroundTextureRegion = TextureRegionFactory.extractFromTexture(backgroundTexture
this.mTowerTextureRegion = TextureRegionFactory.extractFromTexture(towerTexture
this.mRing1 = TextureRegionFactory.extractFromTexture(ring1);
this.mRing2 = TextureRegionFactory.extractFromTexture(ring2);
this.mRing3 = TextureRegionFactory.extractFromTexture(ring3);

The above code initializes your TextureRegions using the textures that you already loaded into
VRAM.
Creating the Game Scene

It’s finally time to create the game scene! Now, we need an import for the sprites:
import org.andengine.entity.sprite.Sprite;

Next, replace the placeholder content in onCreateScene with the following:
// 1 - Create new scene
final Scene scene = new Scene();
Sprite backgroundSprite = new Sprite(0, 0, this.mBackgroundTextureRegion, getVertexBufferObjectManager
scene.attachChild(backgroundSprite);
return scene;

The above code first creates a Scene object. Next you create a sprite called backgroundSprite
and attach the sprite to the scene. This method requires you to return the scene object.
When creating a Sprite object, you pass four parameters. Here’s a brief description of each
parameter:

xCoordinate: Defines the X-position of the sprite. The AndEngine coordinate system
considers the top-left point as the origin.
yCoordinate: Defines the Y-position of the sprite.
TextureRegion: Defines what part of the texture the sprite will use to draw itself.
VertexBufferObjectManager: Think of a vertex buffer as an array holding the
coordinates of a texture. These coordinates are passed to the OpenGL ES pipeline and

143

ultimately define what will be drawn. A VertexBufferObjectManager holds all the
vertices of all the textures that need to be drawn on the scene.

Compile and run the application. You should see the loaded backgroundSprite:

The Three Towers

It’s time to add the sprites for the towers and rings – the final step before we start with the
game logic. Add three private variables to the class and declare the variables as follows:
private Sprite mTower1, mTower2, mTower3;

Next add the following lines of code to onCreateScene, right before the final return statement:
// 2 - Add the towers
mTower1 = new Sprite(192, 63, this.mTowerTextureRegion, getVertexBufferObjectManager
mTower2 = new Sprite(400, 63, this.mTowerTextureRegion, getVertexBufferObjectManager
mTower3 = new Sprite(604, 63, this.mTowerTextureRegion, getVertexBufferObjectManager
scene.attachChild(mTower1);
scene.attachChild(mTower2);
scene.attachChild(mTower3);

You’ve defined three sprites, each using the TextureRegion of the tower that you loaded
in onCreateResources.Then you added these sprites to your scene. That’s all there is to it!
Compile and run. You should now see the three towers placed in their proper positions.

144

And One Ring to Bind Them

Let’s talk a little about the game logic before you create your rings. Think of the towers as
three stacks (I mean the data structure) – you can only remove the top-most element, and when
you add an element it will always be on top. You’ll use these stacks when you write the game
logic code.
To create the rings, we need to first make a custom class that will extend Sprite. You do this
because every ring needs to know which stack it belongs to.
Right-click on the folder containing TowerOfHanoiActivity.java and select
New -> Class. Name the Class “Ring.java.” and place the following code within the class
implementation (after the public class line and before the closing curly brace):

 private int mWeight;
 private Stack mStack; //this represents the stack that this ring belongs to
 private Sprite mTower;

 public Ring(int weight, float pX, float pY, ITextureRegion pTextureRegion, VertexBufferObjectManager pVertexBufferObjectManager
 super(pX, pY, pTextureRegion, pVertexBufferObjectManager);
 this.mWeight = weight;
 }

 public int getmWeight() {
 return mWeight;
 }

145

http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky

 public Stack getmStack() {
 return mStack;
 }

 public void setmStack(Stack mStack) {
 this.mStack = mStack;
 }

 public Sprite getmTower() {
 return mTower;
 }

 public void setmTower(Sprite mTower) {
 this.mTower = mTower;
 }

Most of the code here is pretty straightforward. The object has three private variables. One is
used to keep track of the weight of the tower; this is an integer value, i.e., the higher the value,
the bigger the ring. The other two variables are used to store the stack that the ring belongs to
and the tower on which it is currently placed.
You’ll also need to add the following import statements to the top of the file:
import java.util.Stack;
import org.andengine.opengl.texture.region.ITextureRegion;
import org.andengine.opengl.vbo.VertexBufferObjectManager;

Now that we have the Ring class, to create and add the rings, add the following lines of code
to onCreateScene, right before the return statement:
// 3 - Create the rings
Ring ring1 = new Ring(1, 139, 174, this.mRing1, getVertexBufferObjectManager
Ring ring2 = new Ring(2, 118, 212, this.mRing2, getVertexBufferObjectManager
Ring ring3 = new Ring(3, 97, 255, this.mRing3, getVertexBufferObjectManager
scene.attachChild(ring1);
scene.attachChild(ring2);
scene.attachChild(ring3);

Compile and run to test.

You’ll notice that the rings are now on the first tower but you can’t move the rings. That’s
because we haven’t worked out the game logic for placing and moving the rings.
Game Logic

Ready to bring your Tower of Hanoi puzzle to life? As mentioned before, as the foundation of
the game logic, you’re going to create three stacks, each representing a tower. Start by adding
the following import for the Stack class toTowerOfHanoiActivity.java:
import java.util.Stack;

Next, declare the stack variables below the other private variables:
private Stack mStack1, mStack2, mStack3;

146

http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky

You’ll initialize these variables in onCreateResources. Add the following lines of code after
the end of section #3:
// 4 - Create the stacks
this.mStack1 = new Stack();
this.mStack2 = new Stack();
this.mStack3 = new Stack();

When the game starts, all three rings should be in the first stack. Put the following code
in onCreateScene right before the return statement:
// 4 - Add all rings to stack one
this.mStack1.add(ring3);
this.mStack1.add(ring2);
this.mStack1.add(ring1);
// 5 - Initialize starting position for each ring
ring1.setmStack(mStack1);
ring2.setmStack(mStack1);
ring3.setmStack(mStack1);
ring1.setmTower(mTower1);
ring2.setmTower(mTower1);
ring3.setmTower(mTower1);
// 6 - Add touch handlers
scene.registerTouchArea(ring1);
scene.registerTouchArea(ring2);
scene.registerTouchArea(ring3);
scene.setTouchAreaBindingOnActionDownEnabled(true);

In the above code, you do the following:

1. Added the rings to the first stack.
2. Set the stack variable of each ring as the first stack and the tower variable as the first

tower.
3. To handle touch and movement of the rings, you registered each ring as a touchable area.
4. Enabled touch binding.

Now, you need to override the onAreaTouch method of the Sprite class. This is where you’ll
add logic to move the rings. But that code in turn will require a method which checks whether
a ring collided with a tower. You’ll write that code later, but you need to add an empty method
place holder for collision detection as follows (you can add this to the end of the class):
private void checkForCollisionsWithTowers(Ring ring) {
}

You also need to add the following import in order for the ring movement code to be able to
identify the relevant classes:
import org.andengine.input.touch.TouchEvent;

Now, replace the first three lines of section #3 in onCreateScene (where you defined the

147

http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky

rings) with the following:
Ring ring1 = new Ring(1, 139, 174, this.mRing1, getVertexBufferObjectManager
 @Override
 public boolean onAreaTouched(TouchEvent pSceneTouchEvent, float pTouchAreaLocalX,
 if (((Ring) this.getmStack().peek()).getmWeight() != this.getmWeight
 return false;
 this.setPosition(pSceneTouchEvent.getX() - this.getWidth() / 2,
 pSceneTouchEvent.getY() - this.getHeight() / 2);
 if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_UP) {
 checkForCollisionsWithTowers(this);
 }
 return true;
 }
};
Ring ring2 = new Ring(2, 118, 212, this.mRing2, getVertexBufferObjectManager
 @Override
 public boolean onAreaTouched(TouchEvent pSceneTouchEvent, float pTouchAreaLocalX,
 if (((Ring) this.getmStack().peek()).getmWeight() != this.getmWeight
 return false;
 this.setPosition(pSceneTouchEvent.getX() - this.getWidth() / 2,
 pSceneTouchEvent.getY() - this.getHeight() / 2);
 if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_UP) {
 checkForCollisionsWithTowers(this);
 }
 return true;
 }
};
Ring ring3 = new Ring(3, 97, 255, this.mRing3, getVertexBufferObjectManager
 @Override
 public boolean onAreaTouched(TouchEvent pSceneTouchEvent, float pTouchAreaLocalX,
 if (((Ring) this.getmStack().peek()).getmWeight() != this.getmWeight
 return false;
 this.setPosition(pSceneTouchEvent.getX() - this.getWidth() / 2,
 pSceneTouchEvent.getY() - this.getHeight() / 2);
 if (pSceneTouchEvent.getAction() == TouchEvent.ACTION_UP) {
 checkForCollisionsWithTowers(this);
 }
 return true;
 }
};

Notice that onAreaTouched returns a boolean value. When it returns true, the touch is
consumed, otherwise it is passed down to other layers until someone consumes it. So the first
thing you do in this method is check if the weight of the current ring is not equal to the weight
of the first ring in the stack. If it is, that means this ring is the first element of the stack and so
you can proceed to move it, otherwise you let the touch go since you can’t move this ring.
You also check in onAreaTouched if the type of touch is an ACTION_UP event, triggered
when the finger is lifted. If it is, you call checkForCollisionsWithTowers whose primary
purpose is to check if the ring has collided with (or rather, is touching) a tower. As you may

148

recall, you added a placeholder for checkForCollisionsWithTowers already. Let’s fill the
function in now.
Replace the placeholder method for checkForCollisionsWithTowers with the following:
private void checkForCollisionsWithTowers(Ring ring) {
 Stack stack = null;
 Sprite tower = null;
 if (ring.collidesWith(mTower1) && (mStack1.size() == 0 ||
 ring.getmWeight() < ((Ring) mStack1.peek()).getmWeight())) {
 stack = mStack1;
 tower = mTower1;
 } else if (ring.collidesWith(mTower2) && (mStack2.size() == 0 ||
 ring.getmWeight() < ((Ring) mStack2.peek()).getmWeight())) {
 stack = mStack2;
 tower = mTower2;
 } else if (ring.collidesWith(mTower3) && (mStack3.size() == 0 ||
 ring.getmWeight() < ((Ring) mStack3.peek()).getmWeight())) {
 stack = mStack3;
 tower = mTower3;
 } else {
 stack = ring.getmStack();
 tower = ring.getmTower();
 }
 ring.getmStack().remove(ring);
 if (stack != null && tower !=null && stack.size() == 0) {
 ring.setPosition(tower.getX() + tower.getWidth()/2 -
 ring.getWidth()/2, tower.getY() + tower.getHeight() -
 ring.getHeight());
 } else if (stack != null && tower !=null && stack.size() > 0) {
 ring.setPosition(tower.getX() + tower.getWidth()/2 -
 ring.getWidth()/2, ((Ring) stack.peek()).getY() -
 ring.getHeight());
 }
 stack.add(ring);
 ring.setmStack(stack);
 ring.setmTower(tower);
}

The above code don't checks if the given ring is touching a tower, if it can be moved to that
tower, or if the ring has been placed appropriately.
Build and run, and you should have a completely functional Tower of Hanoi game! There are
only three rings, but that means you should be able to beat the game in no time. :P

The Source Code for this project:
https://github.com/janebabra/TowerofHanoiProject

149

http://www.google.com/search?hl=en&q=allinurl%3Astack+java.sun.com&btnI=I%27m%20Feeling%20Lucky
https://github.com/janebabra/TowerofHanoiProject

libGDX

Setting up the project structure
Step 1:
Download the libgdx setup file:
http://libgdx.badlogicgames.com/nightlies/dist/gdx-setup-ui.jar
Step 2:
Create a project folder and copy the downloaded gdx-setup-ui.jar file into it.
Than double click on it to launch it. If it does not work, try running java -jar gdx-setup-ui.jar
from the command line.

Click on Create.

150

From section 1 leave only the Generate the desktop project.
In section 2 click on the marked right on LibGDX to download the libGDX library.
Your section 3 should look similar to the screenshot.
In section 4, click on “Open the generation screen”, than on Launch. This will build the
project structure.

When you see “All done”, the setup is finished and the window can be closed.

The project folder, how I called it, “libgdx-game” and the three folder which have been build
by the setup. Now it is time to open up Android Studio and import the project.
Import your earlier created libGDX-game-folder into Android Studio.
From the Welcome Screen choose Import Project.

151

Take over all the suggestions and click Next until the Window Libraries – Library contents
shows up.
Rename the libs, so it matches the library contents like the 3 following screen shots shows.

Continue with Next until Finish.

Modul settings

In the project structure panel right-click on the first folder and select Open Modul Settings.

152

Click next to libGDX Shared to export the library.

Go to the android module and add the main module as dependency by clicking on the + button
on the bottom of the screen.

153

Select from the list the main module (my-gdx-game) and confirm with OK. The result should
look like this.

Do the same for the desktop module and click OK.
Edit run configuration

The run configuration for Android
Under “Target Device” activate “Show chooser dialog”

154

The Desktop run configuration
Click on the + button from the upper left corner of the screen and choose “Application” and
name the new configuration.

Next go to Main class and choose from the dialog window the main class of the desktop
starter. Click OK.

Now the working directory has to be changed. Click besides the Working directory field to get
the dialog window and navigate to the android folder. Select the assets folder and click OK.

Last thing to do is to select the right classpath. Select here the desktop module and click OK.

155

Running the Desktop version

Running the Android version

You are good to go now.
This setup produces a working environment for developing, testing, running and building the
Desktop and the Android version of a libGDX based game.
So, you can build APK’s with this configuration.
But, you don’t have any Gradle structure. If you need the Gradle features for some reason, you
have to add the gradle files by hand.
There is a project on GitHub with a libGDX-gradle template. And the person who created it
says, this will properly replace the gdx-setup-ui.jar we used in the beginning to setup the
project structure. But unfortunately, in my test, I didn’t get it to work.

156

Here is the Link from the project, so you can test it by yourself and follow the project.
https://github.com/libgdx/libgdx-gradle-template

The screenshot shows the small sample game from badlogic based on libGDX called Drop.
The goal of the game is, to catch all the raindrops with the bucket.

The sample game Drop can be downloaded from GitHub:
https://github.com/janebabra/drop

The documentation for the game can be found here:
https://github.com/libgdx/libgdx/wiki/A-simple-game

157

Integration of JavaScript/ LIME games
The integration will be made by using WebView. WebView had been added to Android with
API 1. So, integrated JavaScript games can be offered to older and newer phones as well.

First you need to add an assets folder to your folder structure.
The folder has to be unter main/, on the same level like java/ and res/.
For the example, I used the sample game Roundball from the LIME Developer Site:
http://www.limejs.com/

By now, the hole roundball folder should be copied into the assets folder.

Next, the layout file needs a webview. This should be look like this:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >

 <WebView
 android:id="@+id/webView1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true" />

</RelativeLayout>

Last but not least, the Java file. Games using the LIME GameEngine are using DOM instead of
Canvas. Therefore, two of the webkit settings have to be added:

package com.greendog.androidstudio.example.roundballwebapp;

import android.os.Bundle;

158

import android.app.Activity;
import android.webkit.WebView;

public class MainActivity extends Activity {

 WebView myWebView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_roundball);

 myWebView = (WebView) findViewById(R.id.webView1);
 myWebView.getSettings().setDomStorageEnabled(true);
 myWebView.getSettings().setJavaScriptEnabled(true);

 myWebView.loadUrl("file:///android_asset/roundball/roundball.html");

 }

}

No permission are needed when the files are local. You're ready to run the game!
The sample project can be found here:
https://github.com/janebabra/Roundball

159

Developing for Google TV
What is Google TV?
Google TV is a platform, a special customized Android Version for TVs. It has extensions
you'll only need on TVs. like changing channels. But the rest of this platform is quite similar to
Android versions for phone and tablets.

The Google TV Android version is not available for download. The Source Code is only send
to OEM producer of Google TV hardware.

Google TV, often called smart TV comes in different shapes. Some TVs have Google TV
already build-in, no extern device is needed. But in most cases, the Google TV is an extern
device, a set-up box (buddy box) or HDMI-Stick, which are connected through HDMI to the
TV.

When Google first presented Google TV in 2010, the intention was to give the end user a tool
for streaming movies over the Internet without leaving the TV.

But if look how powerful this devices have become, you can imaging that this can replace a PC
for a lot of people. A Google TV device with 2 GB Ram, up to 1,8 Ghz quad core CPU and 16
GB Flash Nand Memory for about $ 60 is quite a catch.

The Software comes from the Play Store. Not every app is compatible with Google TV but in
my tests, I could find apps, most people uses on their PC, like apps for:

Movies
Pictures
Music
Internet browsing
Email
Calendar
Facebook
Twitter
Google+
Office
Google Drive
Dropbox
Ebook reading
Games
and more

160

What does it mean for developers? I think, it gives developers a broader selection of apps to
develop.

A closer look at the Google TV hardware.
Most devices have Micro SD Slots that can take up to 32 GB. There have minimum 1 x USB
and up to 4. The USB can be used for connecting wireless keyboard/ mouse, USB memory
sticks and cable to connect to the computer. Only few Google TV devices are able to connect
to a webcam.

161

Setup for the development
General information's from Google can be found at the following Webpage:
Google TV developers webpage
https://developers.google.com/tv/

To develop Android apps for Google TV your development IDE needs to have the Android
SDK Platform Tools rev. 6 or higher and the Android SDK Tools rev. 12 or later are needed.
Android Studio gives both.

There's an Add-on called "Google TV Add-on". This Add-on is not needed anymore for
developing apps. But in some cases it can be useful for the Emulator. The Google TV Add-on
extends the Emulator with extra TV-navigation-Buttons. When you for example develop games
without any TV features, the Google TV Add-on is not necessary at all.

Google TV Add-On
https://developers.google.com/tv/android/docs/gtv_addon

If you need the Google TV Add-on for your Emulator, install it from the SDK Manager.
There're only 2 versions, one for Android API 12 and one for Android API 13. To be able to
create an Emulator with Google TV Add-on, you'll need the rest of the API too.

The Project minSDK should be API 12 or higher.

As targetSDK is recommended API 13 or higher.

162

Google TV examples

1. Google TV Remote
https://code.google.com/p/google-tv-remote/

2. Google TV sample code
https://code.google.com/p/googletv-android-samples/

The examples are very old and a little bit outdated and all of them are Eclipse projects.

The Google TV Remote example is quite interesting because not every Google TV device has
its own remote. People can ether bye a remote or install the Google TV Remote app on their
Android phone. But unfortunately non of my Android phone could download and install the
Remote from Google Play. I'm sure; I'm not the only one who can't download the old Remote.

Here's the Link to the Google Play Store:
https://play.google.com/store/apps/details?id=com.google.android.apps.tvremote

So, here's what I did to convert the old project into a new Android Studio project:
(To load the project direct in Android Studio 0.4 didn't work)

1. Import into Eclipse
2. Export from Eclipse with Gradle
3. Import into Android Studio
4. The export from Eclipse and import into Android Studio didn't work to 100%. The

library protobuf-java-2.2.0-lite.jar hasn't be copied into libs/. I had to copy this file

163

manually into libs/.
5. And a small correction in the build.gradle was necessary:

dependencies {
 compile files('libs/protobuf-java-2.2.0-lite.jar')
 compile files('libs/anymote.jar')
 compile files('libs/bcprov-jdk15-143.jar'
 compile files('libs/polo.jar')

The Source Code for Google's TV remote as Android Studio project can be found on my
GitHub:
https://github.com/janebabra/gtv/tree/master/google-tv-remote

This strategy will properly work for other examples too.

The LeftNavBarLibrary from the examples should be replaced by Fragments.

The BlackJack example is quite interesting. It's an example for the "second screen". The
project BlackJackGTV is the BlackJack Table showing on the TV. The Eclipse project
BlackJackGTV can be imported directly into Android Studio 0.4 or higher.

The project BlackJackTVRemote is the Android Phone App. The game play is on the phone
and the result of any action is showing on the TV screen. The project BlackJackTVRemote
depends on the project AnymoteLibrary. This means, when using Android Studio, the
AnymoteLibrary has to be imported into the BlackJackTVRemote project, similar to
ActionBarSherlock.

164

165

How to test an app running on TV
Like with any other Android device the adb needs to connect to the device ether via USB or
via WiFi (tcpip). If your Google TV device has a free USB you can connect it via USB cable
with your computer. But because the TV is often not right in front of your computer, you may
prefer the WiFi connection.

166

Setting up the adb WiFi connection
The default for adb is the USB connection. To change the connectivity type to WiFi, you need

connect your phone via USB with the computer
open a terminal window and navigate into the platform-tools folder
with dir (Windows) or ls (Linux/ Mac) you should see the adb
still in a terminal window, use the command
adb tcpip 5555 or ./adb tcpip 5555 (Mac, Linux)

now in your Google TV

go to Settings -> About -> Status to find the IP-Address

for example, the IP-Address is 192.168.0.103

in the Terminal window use the command

adb connect 192.168.0.103

From now on, you can run the app and see the Google TV device in Choose Device:

Run the App, monitor and make screenshots.

167

168

Things to think about when developing from Scratch
The TV screen is much bigger in size than a phone or tablet but not in the resolution. The
screen resolution is ether 720p or 1080p.

720p means:

1280 x 720 px screen size in pixel
tvdpi is the qualifier for the image resource folder, for example drawable-tvdpi
the screen density is 213 dp
the qualifier for the layout folder is large, like layout-large

1080p means:

1920 x 1080 px screen size in pixel
xhdpi is the qualifier for the image resource folder
the screen density is 320 dp
the qualifier for the layout folder is large

The TV is always in landscape.

And because People are sitting some feet away from the TV, the layout must not be
overloaded. Big text, big buttons. The navigation should be possible with a D-Pad (up,
down, left, right, OK). Not everybody has a mouse.

Google make a lot of recommendations for the layout, but unfortunately their don't follow these
recommendations with their own apps.

For example "Light text on a dark background is slightly easier to read on a TV". But when you
look at the Google apps like the Browser or Gmail, you have white background and black text.

Especially the colors are looking different on TV. Therefore it's important to test the app on
TV and not only on the Emulator.

Of course, the Emulator can be helpful too. Best choice for testing on an Emulator is the
device

"10.1 WXGA (Tablet) (1280 x 800: mdpi) "

169

Android Code Templates
What are Android Code Templates?
An Android Code Template generates a boilerplate Android Code and assets from the input of
simple UI parameters.

The Templates are written using FreeMarker, a Java templating engine.

The default ADT templates integrated in Android Studio are divided into 3 different types:

1. Android Application Templates
2. Android Activity Templates
3. Android Object Templates

Android Application Templates:

can be reached when via New Project and offer the 2 choices, Android Application and
Android Library.

Android Activity Templates:

from the Project Wizard:

Blank Activity
Full Screen Activity
Master/ Detail Flow
your own customized templates, like the None-Fragment Template we'll make later.

from the context menu New -> Activity (right-click on the package):

Blank Activity
Full Screen Activity
Login Activity
Master/ Detail Flow
Settings

Android Object Templates:

from the context menu New -> Android Component (right-click on the package):

170

New App Widget
New Blank Fragment
Broadcast Receiver
Content Provider
Custom View
New Daydream
New Intent Service
New ListFragment
Service

171

Where are the ADT Templates located?
The Templates are under your Android Studio installation folder, in plugins, android, lib,
templates.

Under templates are the folders activities, projects and others, where the different types of
templates are stored.

projects: Android Application Templates
activities: Android Activity Templates
others: Android Object Templates

172

Making Custom Code Templates
For Eclipse there exist a FreeMarker IDE plugin, but not yet for Android Studio.

In the meantime, you can create new templates with your favorite text editor.

The following example for creating a None-Fragment Activity Template shows an easy way to
do this:

The simplest way to create a new template is to make a copy of BlankActivity and rename it to
whatever you like - in our case NoneFragmentActivity.

This will give you a few icons and other bits and pieces that you don't really need in your
finished template, but it is much easier than starting from scratch.

At the End you can choose the New Template from the Project Wizard:

Template.xml

Just adding the NoneFragmentActivity folder will cause Android Studio to list Blank Activity
twice in the Activity types. To give your template an identity of it own, the first file you have
to edit is Template.xml.

If you load this into Android Studio or any XML editor you should be able to figure out what it
is all about. It controls the options that the user is presented with as the final page of the New
Project screen.

In our case all we need to modify is the name variable to give the template a new name and we
need to remove a number of parameters that are no longer needed.

We need to remove the parameter navType, and the parameter fragmentLayoutName.
Everything else can be left as it is, but there are some optional changes you might want to make
to tidy things up.

173

You can find details of what sorts of parameters etc. you can define by looking at the
documentation. Once you have seen an example it is fairly obvious.

The final Template.xml is:

<?xml version="1.0"?>

<template

 format="3"

 revision="1"

 name="Simple Blank None Fragment Activity"

 minApi="7"

 minBuildApi="14"

 description="Creates a new simple blank none-fragment activity">

 <category value="Activities" />

 <parameter

 id="activityClass"

 name="Activity Name"

 type="string"

 constraints="class|unique|nonempty"

 suggest="${layoutToActivity(layoutName)}"

 default="MainActivity"

 help="The name of the activity class to create" />

 <parameter

 id="layoutName"

 name="Layout Name"

 type="string"

 constraints="layout|unique|nonempty"

 suggest="${activityToLayout(activityClass)}"

174

 default="activity_main"

 help="The name of the layout to create for the activity" />

 <parameter

 id="activityTitle"

 name="Title"

 type="string"

 constraints="nonempty"

 default="MainActivity"

 suggest="${activityClass}"

 help="The name of the activity. For launcher activities, the
application title." />

 <parameter

 id="isLauncher"

 name="Launcher Activity"

 type="boolean"

 default="false"

 help="If true, this activity will have a CATEGORY_LAUNCHER intent
filter, making it visible in the launcher" />

 <parameter

 id="parentActivityClass"

 name="Hierarchical Parent"

 type="string"

 constraints="activity|exists|empty"

 default=""

 help="The hierarchical parent activity, used to provide a default
implementation for the 'Up' button" />

 <parameter

175

 id="packageName"

 name="Package name"

 type="string"

 constraints="package"

 default="com.mycompany.myapp" />

 <!-- 128x128 thumbnails relative to template.xml -->

 <thumb>template_blank_activity.png</thumb>

 <globals file="globals.xml.ftl" />

 <execute file="recipe.xml.ftl" />

</template>

The globals.xml.ftl file sets up some variables which apply to all of the template files. In
general you don't have to modify this as any global variables that it defines you can either use
or ignore.

What does matter however is the recipe.xml.ftl file, which is the script that sets up the project.

Recipe.xml.ftl

The Recipe file does all of the work setting up the project, but it does most of this by copying
and expanding directories which exist in the template root directory.

One key command that you are likely to use is copy, which copies a directory and all its
subdirectories from the template root to the project. The command instantiate does the same
job as copy, but it expands any FreeMarker tags within the files. The final command is merge,
which as you can guess merges the content of a source file in the template root with a project
file.

The Recipe file starts out by loading compatibility libraries if they are needed:

<?xml version="1.0"?>

<recipe>

 <#if appCompat?has_content>

 <dependency

176

 mavenUrl="com.android.support:appcompat-v7:+"/> </#if>

 <#if !appCompat?has_content &&

 hasViewPager?has_content>

 <dependency

 mavenUrl="com.android.support:support-v13:+"/>

 </#if>

 <#if !appCompat?has_content >

 <dependency

 mavenUrl="com.android.support:support-v4:+"/>

 </#if>

You might as well leave these lines in your own Recipe file.

Next we need to create the manifest:

<merge from="AndroidManifest.xml.ftl"

 to="${escapeXmlAttribute(manifestOut)}/

 AndroidManifest.xml"

/>

The template manifest is stored in the root:

<manifest xmlns:android=

 "http://schemas.android.com/apk/res/android" >

 <application>

 <activity android:name=

 "${packageName}.${activityClass}"

 <#if isNewProject>

 android:label="@string/app_name"

 <#else>

177

 android:label="@string/title_${

 activityToLayout(activityClass)}"

 </#if>

 <#if buildApi gte 16 &&

 parentActivityClass != "">

 android:parentActivityName=

 "${parentActivityClass}"

 </#if>

 >

 <#if parentActivityClass != "">

 <meta-data android:name=

 "android.support.PARENT_ACTIVITY"

 android:value="${parentActivityClass}"

 />

 </#if>

 <#if isLauncher>

 <intent-filter>

 <action android:name=

 "android.intent.action.MAIN" />

 <category android:name=

 "android.intent.category.LAUNCHER" />

 </intent-filter>

 </#if>

 </activity>

 </application>

</manifest>

178

When this file is processed it is merged with any existing manifest file in such a way that only
the new lines are added. What this means is that when the same template is used to create a
new activity within an existing project only the new definition of the activity is added to the
existing manifest.

Next we have to merge some resource files:

<merge from="res/values/strings.xml.ftl"

 to="${escapeXmlAttribute(resOut)}/

 values/strings.xml" />

<merge from="res/values/dimens.xml.ftl"

 to="${escapeXmlAttribute(resOut)}/

 values/dimens.xml" />

<merge from="res/values-w820dp/dimens.xml"

 to="${escapeXmlAttribute(resOut)}/

 values-w820dp/dimens.xml" />

As before, the values are merged with any existing files so there is no duplication of
definitions.

The strings.xml file is where we put the "Hello world" message:

<resources>

 <#if !isNewProject>

 <string name=

 "title_${activityToLayout(activityClass)}">

 ${escapeXmlString(activityTitle)}</string>

 </#if>

<string name="hello_world">Hello world!</string>

</resources>

The dimens file just contains some basic layout properties;

<resources>

179

<!-- Default screen margins,

 per the Android Design guidelines. -->

<dimen name=

 "activity_horizontal_margin">16dp</dimen>

<dimen name=

 "activity_vertical_margin">16dp</dimen>

</resources>

If you want to define additional string resources or layout parameters simply add them to the
appropriate file.

Our final task is to create the Java source and the xml layout files and this is just a matter of
copying and expanding two template files:

<instantiate from=

 "res/layout/simpleactivity.xml.ftl"

 to="${escapeXmlAttribute(resOut)}/

 layout/${layoutName}.xml" />

<instantiate from=

 "src/app_package/SimpleActivity.java.ftl"

 to="${escapeXmlAttribute(srcOut)}/

 ${activityClass}.java" />

The layout file template simpleactivity.xml (Hello World) is very simple:

<RelativeLayout xmlns:android=

 "http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingLeft=

180

 "@dimen/activity_horizontal_margin"

 android:paddingRight=

 "@dimen/activity_horizontal_margin"

 android:paddingTop=

 "@dimen/activity_vertical_margin"

 android:paddingBottom=

 "@dimen/activity_vertical_margin"

 tools:context="${packageName}.${activityClass}"><TextView

 android:text="@string/hello_world"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

</RelativeLayout>

You can modify RelativeLayout to be any sort of container you want and you can remove the
"hello world" message if you find it gets in the way.

The Java template is:

package ${packageName};

import

 <#if appCompat?has_content>

 android.support.v7.app.ActionBarActivity

 <#else>android.app.Activity

 </#if>;

import android.

 <#if appCompat?has_content>support.v7.</#if>

app.ActionBar;

import android.os.Bundle;

import android.view.LayoutInflater;

181

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.view.ViewGroup;

import android.os.Build;public class ${activityClass} extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState){

 super.onCreate(savedInstanceState);

 setContentView(R.layout.${layoutName});

 }

}

As before, you can modify this to include features you might want, but this the very minimum.

Finally if you want to open some files in the editor ready for the programmer to start work you
can:

<open file=

 "${escapeXmlAttribute(srcOut)}/

 ${activityClass}.java" />

</recipe>

This opens the jave souce code ready to work.

And this is the end of the recipe file and the entire template.

The sample can be downloaded from GitHub:

https://github.com/janebabra/NoneFragmentActivity

182

Template Documentation
The FreeMarker documentation can be found here:

http://freemarker.org/docs/index.html

Google's Template Documentation

I cloned the side from Google:

http://google-android-studio.blogspot.se/p/android-code-templates.html

The original side:

https://android.googlesource.com/platform/sdk/+/refs/heads/master/templates/docs/index.html

183

Help and further information
Inside of Android Studio

From the Help menu and from the „Tip of the Day“.

Outside from the Android Studio:

Android Tools Project Site

Release Status

http://tools.android.com/overview

AVD- Emulator

http://developer.android.com/tools/devices/emulator.html

http://developer.android.com/tools/devices/emulator.html#acceleration

Android Developers Blog

http://android-developers.blogspot.se/2013/05/android-studio-ide-built-for-android.html

Welcome to Google Developers Live

https://developers.google.com/live/

The App Example for Android Studio from the I/O Google

https://github.com/bradabrams/stopwatchio13

Explains the Example

http://bradabrams.com/2013/06/google-io-2013-demo-android-studio-cloud-endpoints-
synchronized-stopwatch-demo/

Ultimate Stopwatch Apps (Eclipse)

https://code.google.com/p/android-ultimatestopwatch/

Overview of Google Cloud Endpoints

184

https://developers.google.com/appengine/docs/java/endpoints/

Google Cloud Console

https://cloud.google.com/console

From the Google API console, click Overview and locate the project number for your project:

https://code.google.com/apis/console

Google Cloud Messaging for Android Docu

http://developer.android.com/google/gcm/index.html

Google+ Community Android Studio

https://plus.google.com/u/0/communities/101262515781041757195

Issue Tracker

https://code.google.com/p/android/issues/list

Google's GIT Repository for Android Studio

https://android.googlesource.com/platform/tools/adt/idea/

IntelliJ Webhelp

http://www.jetbrains.com/idea/webhelp/getting-help.html

Google Analytics for Android Apps

https://developers.google.com/analytics/devguides/collection/android/resources

Flurry Analytics for Android Apps

http://www.flurry.com/flurry-analytics.html

Gradle Plugin User Guide

http://tools.android.com/tech-docs/new-build-system/user-guide

User Guide from gradle.org

185

http://www.gradle.org/docs/current/userguide/userguide.html

Multiple APK Support

http://developer.android.com/google/play/publishing/multiple-apks.html

Build Server and Test Server

AppThwack
https://appthwack.com/
TestDroid
http://testdroid.com/
InstrumentTest example
https://www.manymo.com/pages/blog/android-testing-in-the-cloud
Manymo
https://www.manymo.com
Travis
https://travis-ci.org/

186

	Preamble
	About Android Studio
	Installation and Configuration
	SDK Manager
	AVD's
	Starting a new Android Project
	Overview IDE
	Project Structur
	Gradle Build System
	Projekt Configuration
	Creating Layouts
	Activities
	Build & Run
	Debugging
	Testing
	Preparing the App for the Android Market
	Importing Projects
	Google Cloud Endpoints
	Google Play Service/ Maps
	Product Flavors - Build Types - Build Variants
	Game development with AndEngine
	Developing for Google TV
	Android Code Templates
	Links
	Impressum
	About the Author

