
Expert
SQL Server
In-Memory
OLTP

Revolutionizing OLTP Performance
in SQL Server
—
Second Edition
—
Dmitri Korotkevitch

Expert SQL Server
In-Memory OLTP

Second Edition

Dmitri Korotkevitch

Expert SQL Server In-Memory OLTP

Dmitri Korotkevitch 				
Land O Lakes, Florida, USA			

ISBN-13 (pbk): 978-1-4842-2771-8		 ISBN-13 (electronic): 978-1-4842-2772-5
DOI 10.1007/978-1-4842-2772-5

Library of Congress Control Number: 2017952536

Copyright © 2017 by Dmitri Korotkevitch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Victor Isakov
Coordinating Editor: Jill Balzano
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484227718. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484227718
http://www.apress.com/9781484227718
http://www.apress.com/source-code

To all my friends in the SQL Server community and outside of it.

v

Contents at a Glance

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: Why In-Memory OLTP?��� 1

■■Chapter 2: In-Memory OLTP Objects�� 9

■■Chapter 3: Memory-Optimized Tables��� 27

■■Chapter 4: Hash Indexes�� 41

■■Chapter 5: Nonclustered Indexes�� 63

■■Chapter 6: Memory Consumers and Off-Row Storage������������������� 87

■■Chapter 7: Columnstore Indexes��� 99

■■Chapter 8: Transaction Processing in In-Memory OLTP�������������� 119

■■Chapter 9: In-Memory OLTP Programmability����������������������������� 139

■■Chapter 10: Data Storage, Logging, and Recovery���������������������� 165

■■Chapter 11: Garbage Collection��� 187

■■Chapter 12: Deployment and Management��������������������������������� 199

■■Chapter 13: Utilizing In-Memory OLTP��� 225

■■Appendix A: Memory Pointer Management��������������������������������� 267

■■�Appendix B: Page Splitting and Page Merging
in Nonclustered Indexes�� 271

■ Contents at a Glance

vi

■■Appendix C: Analyzing the States of Checkpoint Files���������������� 275

■■Appendix D: In-Memory OLTP Migration Tools���������������������������� 287

Index��� 297

vii

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■Chapter 1: Why In-Memory OLTP?��� 1

Background�� 1

In-Memory OLTP Engine Architecture��� 3

In-Memory OLTP and Other In-Memory Databases���������������������������������� 5

Oracle�� 5

IBM DB2��� 6

SAP HANA�� 6

Summary�� 7

■■Chapter 2: In-Memory OLTP Objects�� 9

Preparing a Database to Use In-Memory OLTP�� 9

Creating Memory-Optimized Tables��� 11

Working with Memory-Optimized Tables��� 14

In-Memory OLTP in Action: Resolving Latch Contention������������������������� 18

Summary�� 26

﻿ ■ Contents

viii

■■Chapter 3: Memory-Optimized Tables��� 27

Disk-Based vs. Memory-Optimized Tables��� 27

Introduction to Multiversion Concurrency Control���������������������������������� 31

Data Row Format��� 34

Native Compilation of Memory-Optimized Tables���������������������������������� 35

Memory-Optimized Tables: Surface Area and Limitations���������������������� 36

Supported Data Types�� 36

Table Features��� 37

Database-Level Limitations��� 37

High Availability Technologies Support��� 38

SQL Server 2016 Features Support�� 38

Summary�� 39

■■Chapter 4: Hash Indexes�� 41

Hashing Overview�� 41

Much Ado About Bucket Count��� 42

Bucket Count and Performance��� 43

Choosing the Right Bucket Count�� 48

Hash Indexes and SARGability��� 49

Statistics on Memory-Optimized Tables��� 53

Summary�� 60

■■Chapter 5: Nonclustered Indexes�� 63

Working with Nonclustered Indexes��� 63

Creating Nonclustered Indexes�� 64

Using Nonclustered Indexes�� 64

Nonclustered Index Internals��� 69

Bw-Tree Overview��� 69

Index Pages and Delta Records��� 71

﻿ ■ Contents

ix

Obtaining Information About Nonclustered Indexes������������������������������� 73

Index Design Considerations�� 76

Data Modification Overhead�� 76

Hash Indexes vs. Nonclustered Indexes�� 81

Summary�� 85

■■Chapter 6: Memory Consumers and Off-Row Storage������������������� 87

Varheaps�� 87

In-Row and Off-Row Storage��� 90

Performance Impact of Off-Row Storage��� 93

Summary�� 98

■■Chapter 7: Columnstore Indexes��� 99

Column-Based Storage Overview�� 99

Row-Based vs. Column-Based Storage��� 100

Columnstore Indexes Overview��� 101

Clustered Columnstore Indexes�� 104

Performance Considerations�� 109

Columnstore Indexes Limitations��� 112

Catalog and Data Management Views�� 113

sys.dm_db_column_store_row_group_physical_stats�� 113

sys.column_store_segments�� 114

sys.column_store_dictionaries��� 116

Summary�� 117

■■Chapter 8: Transaction Processing in In-Memory OLTP�������������� 119

ACID, Transaction Isolation Levels, and Concurrency
Phenomena Overview�� 119

Transaction Isolation Levels in In-Memory OLTP���������������������������������� 122

Cross-Container Transactions�� 128

﻿ ■ Contents

x

Transaction Lifetime��� 129

Referential Integrity Enforcement�� 134

Summary�� 136

■■Chapter 9: In-Memory OLTP Programmability����������������������������� 139

Native Compilation Overview��� 139

Natively Compiled Modules�� 144

Natively Compiled Stored Procedures��� 144

Natively Compiled Triggers and User-Defined Functions��������������������������������������� 146

Supported T-SQL Features��� 147

Atomic Blocks�� 150

Optimization of Natively Compiled Modules��� 152

Interpreted T-SQL and Memory-Optimized Tables�������������������������������� 153

Performance Comparison��� 154

Stored Procedures Performance��� 154

Scalar User-Defined Function Performance�� 159

Memory-Optimized Table Types and Variables������������������������������������� 161

Summary�� 164

■■Chapter 10: Data Storage, Logging, and Recovery���������������������� 165

Data Storage�� 165

Checkpoint Files States��� 167

Recovery�� 173

Transaction Logging��� 174

Table Alteration��� 178

Summary�� 186

﻿ ■ Contents

xi

■■Chapter 11: Garbage Collection��� 187

Garbage Collection Process Overview�� 187

Garbage Collection–Related Data Management Views������������������������ 192

Exploring the Garbage Collection Process��� 193

Summary�� 197

■■Chapter 12: Deployment and Management��������������������������������� 199

Hardware Considerations��� 199

CPU�� 200

I/O Subsystem��� 200

Memory��� 201

Estimating the Amount of Memory for In-Memory OLTP��������������������������������������� 202

Administration and Monitoring Tasks��� 204

Limiting the Amount of Memory Available to In-Memory OLTP������������������������������ 204

Monitoring Memory Usage for Memory-Optimized Tables������������������������������������ 206

Monitoring In-Memory OLTP Transactions��� 210

Collecting Execution Statistics for Natively Compiled Stored Procedures������������� 212

In-Memory OLTP and Query Store Integration��� 215

Metadata Changes and Enhancements�� 216

Catalog Views�� 216

Data Management Views��� 218

Extended Events and Performance Counters�� 221

Summary�� 224

■■Chapter 13: Utilizing In-Memory OLTP��� 225

Design Considerations for Systems Utilizing In-Memory OLTP������������ 225

Off-Row Storage�� 226

Unsupported Data Types�� 230

Indexing Considerations�� 232

Maintainability and Management Overhead�� 238

﻿ ■ Contents

xii

Using In-Memory OLTP in Systems with Mixed Workloads������������������ 239

Thinking Outside the In-Memory Box��� 252

Importing Batches of Rows from Client Applications�� 252

Using Memory-Optimized Objects as Replacements for Temporary and
Staging Tables��� 255

Using In-Memory OLTP as Session or Object State Store�������������������������������������� 259

Summary�� 265

■■Appendix A: Memory Pointer Management��������������������������������� 267

Memory Pointer Management�� 267

Summary�� 269

■■�Appendix B: Page Splitting and Page Merging in
Nonclustered Indexes�� 271

Internal Maintenance of Nonclustered Indexes������������������������������������ 271

Page Splitting�� 271

Page Merging�� 273

Summary�� 274

■■Appendix C: Analyzing the States of Checkpoint Files���������������� 275

sys.dm_db_xtp_checkpoint_files View�� 275

The Lifetime of Checkpoint Files�� 276

Summary�� 286

■■Appendix D: In-Memory OLTP Migration Tools���������������������������� 287

“Transaction Performance Analysis Overview” Report������������������������ 287

Memory Optimization and Native Compilation Advisors����������������������� 292

Summary�� 296

Index��� 297

xiii

About the Author

Dmitri Korotkevitch is a Microsoft Data Platform
MVP and Microsoft Certified Master (SQL Server 2008)
with more than 20 years of IT experience, including
years of experience working with Microsoft SQL Server
as an application and database developer, database
administrator, and database architect. He specializes
in the design, development, and performance tuning
of complex OLTP systems that handle thousands of
transactions per second around the clock. Dmitri
regularly speaks at various Microsoft and SQL
PASS events, and he provides SQL Server training
to clients around the world. He regularly blogs at
http://aboutsqlserver.com and rarely tweets as
@aboutsqlserver, and he can be reached at
dk@aboutsqlserver.com.

http://aboutsqlserver.com/
﻿dk@aboutsqlserver.com﻿

xv

About the Technical
Reviewer

Victor Isakov is a Microsoft Certified Architect,
Microsoft Certified Master, Microsoft Certified
Trainer, and Microsoft MVP with more than 20 years
of experience with SQL Server. He regularly speaks
at conferences internationally, including IT/Dev
Connections, Microsoft TechEd, and the PASS Summit.
He has written a number of books on SQL Server
and has worked on numerous projects for Microsoft,
developing SQL Server courseware, certifications, and
exams. In 2007, Victor was invited by Microsoft to attend
the SQL Ranger program in Redmond. Consequently,
he became one of the first IT professionals to achieve
the Microsoft Certified Master and Microsoft Certified
Architect certifications globally.

xvii

Acknowledgments

I would like to thank my family for their patience, understanding, and continuous
support. It would have been impossible for me to write this book without them!

It would also have been impossible to write this book without help from my friend
and eternal technical reviewer Victor Isakov. I just don’t understand why Victor still talks
to me after all my books he has reviewed!

On the same note, I would like to thank Nazanin Mashayekh, who read the
manuscript and provided many great advices and suggestions. Nazanin lives in Tehran
and has years of experience working with SQL Server in various roles.

I am enormously grateful to Jos de Bruijn from Microsoft who generously answered a
never-ending stream of my questions. Jos is one of the few people who shaped In-Memory
OLTP into its current form. I cannot understate his contribution to this book—it would
never cover the technology in such depth without his help. Thank you, Jos!

Finally, I would like to thank the entire Apress team, especially Jill Balzano, Kim
Wimpsett, and Jonathan Gennick. It is always a pleasure to work with all of you!

Thank you very much!

xix

Introduction

The year 2016 was delightful for the SQL Server community—we put our hands on the
new SQL Server build. This was quite a unique release; for the first time in more than ten
years, the new version did not focus on specific technologies. In SQL Server 2016, you
can find enhancements in all product areas, such as programmability, high availability,
administration, and BI.

I, personally, was quite excited about all the enhancements in In-Memory OLTP.
I really enjoyed this technology in SQL Server 2014; however, it had way too many
limitations. This made it a niche technology and prevented its widespread adoption. In
many cases, the cost of the required system refactoring put the first release of In-Memory
OLTP in the “it’s not worth it” category.

I was incredibly happy that the majority of those limitations were removed in SQL
Server 2016. There are still some, but they are not anywhere near as severe as in the first
release. It is now possible to migrate systems into memory and start using the technology
without significant code and database schema changes.

I would consider this simplicity, however, a double-edged sword. While it can
significantly reduce the time and cost of adopting the technology, it can also open
the door to incorrect decisions and suboptimal implementations. As with any other
technology, In-Memory OLTP has been designed for a specific set of tasks, and it can hurt
the performance of the systems when implemented incorrectly. Neither is it a “set it and
forget it” type of solution; you have to carefully plan for it before implementing it and
maintain it after the deployment.

In-Memory OLTP is a great tool, and it can dramatically improve the performance
of systems. Nevertheless, you need to understand how it works under the hood to get the
most from it. The goal for this book is to provide you with such an understanding. I will
explain the internals of the In-Memory OLTP Engine and its components. I believe that
knowledge is the cornerstone of a successful In-Memory OLTP implementation, and this
book will help you make educated decisions on how and when to use the technology.

If you read my Pro SQL Server Internals book (Apress, 2016), you will notice some
familiar content from there. However, this book is a much deeper dive into In-Memory
OLTP, and you will find plenty of new topics covered. You will also learn how to address
some of In-Memory OLTP’s limitations and how to benefit from it in existing systems
when full in-memory migration is cost-ineffective.

Even though this book covers In-Memory OLTP in SQL Server 2016, the content
should also be valid for the SQL Server 2017 implementation. Obviously, check what
technology limitations were lifted there.

Finally, I would like to thank you for choosing this book and for your trust in me.
I hope that you will enjoy reading it as much as I enjoyed writing it.

﻿ ■ Introduction

xx

How This Book Is Structured
This book consists of 13 chapters and is structured in the following way:

•	 Chapter 1 and Chapter 2 are the introductory chapters, which will
provide you with an overview of the technology and show how
In-Memory OLTP objects work together.

•	 Chapter 3, Chapter 4, and Chapter 5 explain how In-Memory
OLTP stores and works with data in memory.

•	 Chapter 6 shows how In-Memory OLTP allocates memory for
internal objects and works with off-row columns. I consider this
as one of the most important topics for successful in-memory
OLTP migrations.

•	 Chapter 7 covers columnstore indexes that help you to support
operational analytics workloads.

•	 Chapter 8 explains how In-Memory OLTP handles concurrency in
a multi-user environment.

•	 Chapter 9 talks about native compilation and the
programmability aspect of the technology.

•	 Chapter 10 demonstrates how In-Memory OLTP persists data on
disk and how it works with the transaction log.

•	 Chapter 11 covers the In-Memory OLTP garbage collection
process.

•	 Chapter 12 discusses best practices for In-Memory OLTP
deployments and shows how to perform common database
administration tasks related to In-Memory OLTP.

•	 Chapter 13 demonstrates how to address some of the In-Memory
OLTP surface area limitations and how to benefit from In-Memory
OLTP components without moving all the data into memory.

The book also includes four appendixes.

•	 Appendix A explains how In-Memory OLTP works with memory
pointers in a multi-user environment.

•	 Appendix B covers how the page splitting and merging processes
are implemented.

•	 Appendix C shows you how to analyze the state of checkpoint file
pairs and navigates you through their lifetime.

•	 Appendix D discusses SQL Server tools and wizards that can
simplify In-Memory OLTP migration.

http://dx.doi.org/10.1007/978-1-4842-2772-5_1
http://dx.doi.org/10.1007/978-1-4842-2772-5_2
http://dx.doi.org/10.1007/978-1-4842-2772-5_3
http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_7
http://dx.doi.org/10.1007/978-1-4842-2772-5_8
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_11
http://dx.doi.org/10.1007/978-1-4842-2772-5_12
http://dx.doi.org/10.1007/978-1-4842-2772-5_13

﻿ ■ Introduction

xxi

Downloading the Code
You can download the code used in this book from the Source Code section of
the Apress web site (www.apress.com) or from the Publications section of my blog
(http://aboutsqlserver.com). The source code consists of a SQL Server Management
Studio solution, which includes a set of projects (one per chapter). Moreover, it includes
several .NET C# projects, which provide the client application code used in the examples
in Chapters 2 and 13.

I have tested all the scripts in an environment with 8GB of RAM available to SQL
Server. In some cases, if you have less memory available, you will need to reduce the
amount of test data generated by some of the scripts. You can also consider dropping
some of the unused test tables to free up more memory.

http://www.apress.com/
http://aboutsqlserver.com/
http://dx.doi.org/10.1007/978-1-4842-2772-5_2
http://dx.doi.org/10.1007/978-1-4842-2772-5_13

1© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_1

CHAPTER 1

Why In-Memory OLTP?

This introductory chapter explains the importance of in-memory databases and the
problems they address. It provides an overview of the Microsoft In-Memory OLTP
implementation (code name Hekaton) and its design goals. It discusses the high-level
architecture of the In-Memory OLTP Engine and how it is integrated into SQL Server.

Finally, this chapter compares the SQL Server in-memory database product with
several other solutions available.

Background
Way back when SQL Server and other major databases were originally designed,
hardware was expensive. Servers at that time had just one or very few CPUs and a small
amount of installed memory. Database servers had to work with data that resided on disk,
loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years,
memory prices have dropped by a factor of 10 every 5 years. Hardware has become
more affordable. It is now entirely possible to buy a server with 32 cores and 1TB of RAM
for less than $50,000. While it is also true that databases have become larger, it is often
possible for active operational data to fit into the memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load on
the I/O subsystem and improves system performance. However, when systems work under
a heavy concurrent load, this is often not enough to obtain the required throughput. SQL
Server manages and protects page structures in memory, which introduces large overhead
and does not scale well. Even with row-level locking, multiple sessions cannot modify data
on the same data page simultaneously and must wait for each other.

Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can
modify data rows on the same data page, holding exclusive (X) locks on different rows
simultaneously. However, they cannot update physical data page and row objects
simultaneously because this could corrupt the in-memory page structure. SQL Server
addresses this problem by protecting pages with latches. Latches work in a similar
manner to locks, protecting internal SQL Server data structures on the physical level
by serializing access to them, so only one thread can update data on the data page in
memory at any given point of time.

Chapter 1 ■ Why In-Memory OLTP?

2

In the end, this limits the improvements that can be achieved with the current
database engine’s architecture. Although you can scale hardware by adding more CPUs
and cores, that serialization quickly becomes a bottleneck and a limiting factor in
improving system scalability. Likewise, you cannot improve performance by increasing
the CPU clock speed because the silicon chips would melt down. Therefore, the only
feasible way to improve database system performance is by reducing the number of CPU
instructions that need to be executed to perform an action.

Unfortunately, code optimization is not enough by itself. Consider the situation
where you need to update a row in a table. Even when you know the clustered index key
value, that operation needs to traverse the index tree, obtaining latches and locks on the
data pages and a row. In some cases, it needs to update nonclustered indexes, obtaining
the latches and locks there. All of that generates log records and requires writing them
and the dirty data pages to disk.

All of those actions can lead to a hundred thousand or even millions of CPU
instructions to execute. Code optimization can help reduce this number to some degree,
but it is impossible to reduce it dramatically without changing the system architecture
and the way the system stores and works with data.

These trends and architectural limitations led the Microsoft team to the conclusion
that a true in-memory solution should be built using different design principles and
architecture than the classic SQL Server Database Engine. The original concept was
proposed at the end of 2008, serious planning and design started in 2010, actual
development began in 2011, and the technology was finally released to the public in SQL
Server 2014.

The main goal of the project was to build a solution that would be 100 times faster
than the existing SQL Server Database Engine, which explains the code name Hekaton
(Greek for “100”). This goal has yet to be achieved; however, it is not uncommon for
In-Memory OLTP to provide 20 to 40 times faster performance in certain scenarios.

It is also worth mentioning that the Hekaton design has been targeted toward
OLTP workloads. As we all know, specialized solutions designed for particular tasks and
workloads usually outperform general-purpose systems in the targeted areas. The same
is true for In-Memory OLTP. It shines with large and busy OLTP systems that support
hundreds or even thousands of concurrent transactions. At the same time, the original
release of In-Memory OLTP in SQL Server 2014 did not work well for a data warehouse
workload, where other SQL Server technologies outperformed it.

The situation changes with the SQL Server 2016 release. The second release of
In-Memory OLTP supports columnstore indexes, which allow you to run real-time
operation analytics queries against hot OLTP data. Nevertheless, the technology is not as
mature as disk-based column-based storage, and you should not consider it an
in-memory data warehouse solution.

In-Memory OLTP has been designed with the following goals:

•	 Optimize data storage for main memory: Data in In-Memory OLTP
is not stored on disk-based data pages, and it does not mimic
a disk-based storage structure when loaded into memory. This
permits the elimination of the complex buffer pool structure and
the code that manages it. Moreover, regular (non-columnstore)
indexes are not persisted on disk, and they are re-created upon
startup when the data from memory-resident tables is loaded
into memory.

Chapter 1 ■ Why In-Memory OLTP?

3

•	 Eliminate latches and locks: All In-Memory OLTP internal
data structures are latch- and lock-free. In-Memory OLTP uses
a multiversion concurrency control to provide transaction
consistency. From a user standpoint, it behaves like the regular
SNAPSHOT transaction isolation level; however, it does not use
a locking or tempdb version store under the hood. This schema
allows multiple sessions to work with the same data without
locking and blocking each other and provides near-linear
scalability of the system, allowing it to fully utilize modern
multi-CPU/multicore hardware.

•	 Use native compilation: T-SQL is an interpreted language that
provides great flexibility at the cost of CPU overhead. Even
a simple statement requires hundreds of thousands of CPU
instructions to execute. The In-Memory OLTP Engine addresses
this by compiling row-access logic, stored procedures, and
user-defined functions into native machine code.

The In-Memory OLTP Engine is fully integrated in the SQL Server Database Engine.
You do not need to perform complex system refactoring, splitting data between
in-memory and conventional database servers or moving all of the data from the
database into memory. You can separate in-memory and disk data on a table-by-table
basis, which allows you to move active operational data into memory, keeping other
tables and historical data on disk. In some cases, that migration can even be done
transparently to client applications.

This sounds too good to be true, and, unfortunately, there are still plenty of
roadblocks that you may encounter when working with this technology. In SQL Server
2014, In-Memory OLTP supported just a subset of the SQL Server data types and features,
which often required you to perform costly code and schema refactoring to utilize it. Even
though many of those limitations have been removed in SQL Server 2016, there are still
incompatibilities and restrictions you need to address.

You should also design the system considering In-Memory OLTP behavior and
internal implementation to get the most performance improvements from the technology.

In-Memory OLTP Engine Architecture
In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and
client applications can access it transparently. Internally, however, it works and behaves
very differently than the SQL Server Storage Engine. Figure 1-1 shows the architecture of
the SQL Server Database Engine, including the In-Memory OLTP components.

Chapter 1 ■ Why In-Memory OLTP?

4

In-Memory OLTP stores the data in memory-optimized tables. These tables reside
completely in memory and have a different structure compared to the classic disk-based
tables. With one small exception, memory-optimized tables do not store data on the data
pages; the rows are linked together through the chains of memory pointers. It is also
worth noting that memory-optimized tables do not share memory with disk-based tables
and live outside of the buffer pool.

■■ Note  I will discuss memory-optimized tables in detail in Chapter 3.

There are two ways the SQL Server Database Engine can work with memory-optimized
tables. The first is the Query Interop Engine. It allows you to reference memory-optimized
tables from interpreted T-SQL code. The data location is transparent to the queries; you can
access memory-optimized tables, join them with disk-based tables, and work with them in
the usual way. Most T-SQL features and language constructs are supported in this mode.

You can also access and work with memory-optimized tables using natively compiled
modules, such as stored procedures, memory-optimized table triggers and scalar
user-defined functions. You can define them similarly to the regular T-SQL modules
using several additional language constructs introduced by In-Memory OLTP.

Natively compiled modules have been compiled into machine code and loaded
into SQL Server process memory. Those modules can introduce significant performance
improvements compared to the Interop Engine; however, they support just a limited set
of T-SQL constructs and can access only memory-optimized tables.

■■ Note  I will discuss natively compiled modules in Chapter 9.

The memory-optimized tables use row-based storage with all columns combined
into the data rows. It is also possible to define clustered columnstore indexes on those
tables. These indexes are the separate data structures that store a heavily compressed
copy of the data in column-based format, which is perfect for real-time operational
analytics queries. In-Memory OLTP persists those indexes on disk and does not re-create
them on a database restart.

Figure 1-1.  SQL Server Database Engine architecture

http://dx.doi.org/10.1007/978-1-4842-2772-5_3
http://dx.doi.org/10.1007/978-1-4842-2772-5_9

Chapter 1 ■ Why In-Memory OLTP?

5

■■ Note  I will discuss clustered columnstore indexes in Chapter 7.

In-Memory OLTP and Other In-Memory Databases
In-Memory OLTP is hardly the only relational in-memory database (IMDB) available on
the market. Let’s look at other popular solutions that exist as of 2017.

Oracle
As of this writing, Oracle provides two separate IMDB offerings. The mainstream Oracle
12c database server includes the Oracle Database In-Memory option. When it is enabled,
Oracle creates the copy of the data in column-based storage format and maintains it in
the background. Database administrators may choose the tables, partitions, and columns
that should be included in the copy.

This approach is targeted toward analytical queries and data warehouse workloads,
which benefit from column-based storage and processing. It does not improve the
performance of OLTP queries that continue to use disk-based row-based storage.

In-memory column-based data adds overhead during data modifications; it needs to
be updated to reflect the data changes. Moreover, it is not persisted on disk and needs to
be re-created every time the server restarts.

The same time, this implementation is fully transparent to the client applications.
All data types and PL/SQL constructs are supported, and the feature can be enabled or
disabled on the configuration level. Oracle chooses the data to access on a per-query
basis using in-memory data for the analytical/data warehouse and disk-based data for
OLTP workloads. This is different from SQL Server In-Memory OLTP where you should
explicitly define memory-optimized tables and columnstore indexes.

In addition to the Database In-Memory option, Oracle offers the separate product
Oracle TimesTen targeted toward OLTP workloads. This is a separate in-memory
database that loads all data into memory and can operate in three modes.

Standalone In-Memory Database supports a traditional
client-server architecture.

Embedded In-Memory Database allows applications to load
Oracle TimesTen into an application’s address space and
eliminate the latency of network calls. This is extremely useful
when the data-tier response time is critical.

Oracle Database Cache (TimesTen Cache) allows the product
to be deployed as an additional layer between the application
and the Oracle database. The data in the cache is updatable,
and synchronization between TimesTen and the Oracle
database is done automatically.

http://dx.doi.org/10.1007/978-1-4842-2772-5_7

Chapter 1 ■ Why In-Memory OLTP?

6

Internally, however, Oracle TimesTen still relies on locking, which reduces
transaction throughput under heavy concurrent loads. Also, it does not support native
compilation, as In-Memory OLTP does.

It is also worth noting that both the Oracle In-Memory option and TimesTen require
separate licenses. This may significantly increase implementation costs compared to
In-Memory OLTP, which is available at no additional cost even in non-Enterprise editions
of SQL Server.

IBM DB2
Like the Oracle Database In-Memory option, IDM DB2 10.5 with BLU Acceleration
targets data warehouse and analytical workloads. It persists the copy of the row-based
disk-based tables in column-based format in in-memory shadow tables, using them for
analytical queries. The data in the shadow tables is persisted on disk and is not re-created
at database startup. It is also worth noting that the size of the data in shadow tables may
exceed the size of available memory.

IBM DB2 synchronizes the data between disk-based and shadow tables
automatically and asynchronously, which reduces the overhead during data
modifications. This approach, however, introduces latency during shadow table updates,
and queries may work with slightly outdated data.

IBM DB2 BLU Acceleration puts the emphasis on query processing and provides
great performance with data warehouse and analytical workloads. It does not have any
OLTP-related optimizations and uses disk-based data and locking to support OLTP
workloads.

SAP HANA
SAP HANA is relatively new database solution on the market; it has been available
since 2010. Until recently, SAP HANA was implemented as a pure in-memory database,
limiting the size of the data to the amount of memory available on the server.

This limitation has been addressed in the recent releases; however, it requires
separate tools to manage the data. The applications should also be aware of the
underlying storage architecture. For example, HANA supports disk-based extended tables;
however, applications need to query them directly and also implement the logic to move
data between in-memory and extended tables.

SAP HANA stores all data in a column-based format, and it does not support row-based
storage. The data is fully modifiable; SAP HANA stores new rows in the delta stores,
compressing them in the background. Concurrency is handled with Multiversion
Concurrency Control (MVCC) when UPDATE operations generate new versions of the rows
similarly to SQL Server In-Memory OLTP.

■■ Note  I will discuss the In-Memory OLTP concurrency model in depth in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-2772-5_8

Chapter 1 ■ Why In-Memory OLTP?

7

SAP claims that HANA may successfully handle both OLTP and data warehouse/
analytical workloads using the single copy of the data in column-based format.
Unfortunately, it is pretty much impossible to find any benchmarks that prove this for
OLTP workloads. Considering that pure column-based storage is not generally optimized
for OLTP use cases, it is hard to recommend SAP HANA for the systems that require high
OLTP throughput.

SAP HANA, however, may be a good choice for systems that are focused on
operational analytics and BI and need to support infrequent OLTP queries.

It is impossible to cover all the in-memory database solutions available on the
market. Many of them are targeted to and excel in specific workloads and use cases.
Nevertheless, SQL Server provides a rich and mature set of features and technologies that
may cover the wide spectrum of requirements. SQL Server is also a cost-effective solution
compared to other major vendors on the market.

Summary
In-Memory OLTP was designed using different design principles and architecture than
the classic SQL Server Database Engine. It is a specialized product targeted toward
OLTP workloads and can improve performance by 20 to 40 times in certain scenarios.
Nevertheless, it is fully integrated into the SQL Server Database Engine. The data storage
is transparent to the client applications, which do not require any code changes if they
use the features supported by In-Memory OLTP.

The data from memory-optimized tables is stored in memory separately from the
buffer pool. All In-Memory OLTP data structures are completely latch- and lock-free,
which allows you to scale the systems by adding more CPUs to the servers.

In-Memory OLTP may support operational analytics by defining the clustered
columnstore indexes on memory-optimized tables. Those indexes store the copy of the
data from the table in column-based storage format.

In-Memory OLTP uses native compilation to the machine code for any row-access
logic. Moreover, it allows you to perform native compilation of the stored procedures,
triggers and scalar user-defined functions, which dramatically increase their performance.

9© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_2

CHAPTER 2

In-Memory OLTP Objects

This chapter provides a high-level overview of In-Memory OLTP objects. It shows
how to create databases with an In-Memory OLTP filegroup and how to define
memory-optimized tables and access them through the Interop Engine and natively
compiled modules.

Finally, this chapter demonstrates performance improvements that can be achieved
with the In-Memory OLTP Engine when a large number of concurrent sessions insert the
data into the database and latch contention becomes a bottleneck.

Preparing a Database to Use In-Memory OLTP
The In-Memory OLTP Engine has been fully integrated into SQL Server and is always
installed with the product. In SQL Server 2014 and 2016 RTM, In-Memory OLTP is
available only in the Enterprise and Developer editions. This restriction has been
removed in SQL Server 2016 SP1, and you can use the technology in every SQL Server
edition.

You should remember, however, that non-Enterprise editions of SQL Server have a
limitation on the amount of memory they can utilize. For example, buffer pool memory in
SQL Server 2016 Standard and Express editions is limited to 128GB and 1,410MB of RAM,
respectively. Similarly, memory-optimized tables cannot store more than 32GB of
data per database in Standard and 352MB of data in Express editions. The data in
memory-optimized tables will become read-only if In-Memory OLTP does not have
enough memory to generate new versions of the rows.

■■ Note  I will discuss how to estimate the memory required for In-Memory OLTP objects
in Chapter 12.

In-Memory OLTP is also available in the Premium tiers of the SQL Databases in
Microsoft Azure, including the databases in the Premium Elastic Pools. However, the
amount of memory the technology can utilize is based on DTUs of the service tier. As of
this writing, Microsoft has provided 1GB of memory for each 125DTU or eDTU of the tier.
This may change in the future, and you should review the Microsoft Azure documentation
when you decide to use In-Memory OLTP with SQL Databases.

http://dx.doi.org/10.1007/978-1-4842-2772-5_12

Chapter 2 ■ In-Memory OLTP Objects

10

You do not need to install any additional packages or perform any configuration
changes on the SQL Server level to use In-Memory OLTP. However, any database
that utilizes In-Memory OLTP objects should have a separate filegroup to store
memory-optimized data.

With an on-premise version of SQL Server, you can create this filegroup at database
creation time or alter an existing database and add the filegroup using the CONTAINS
MEMORY_OPTIMIZED_DATA keyword. It is not required, however, with SQL Databases in
Microsoft Azure, where the storage level is abstracted from the users.

Listing 2-1 shows an example of the CREATE DATABASE statement with the In-Memory
OLTP filegroup specified. The FILENAME property of the filegroup specifies the folder in
which the In-Memory OLTP files would be located.

Listing 2-1.  Creating a Database with the In-Memory OLTP Filegroup

create database InMemoryOLTPDemo
on primary
(
 name = N'InMemoryOLTPDemo'
 ,filename = N'M:\Data\InMemoryOLTPDemo.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'InMemory_OLTP_Data'
 ,filename = N'H:\HKData\InMemory_OLTP_Data'
),
filegroup LOGDATA
(name = N'LogData1', filename = N'M:\Data\LogData1.ndf'),
(name = N'LogData2', filename = N'M:\Data\LogData2.ndf'),
(name = N'LogData3', filename = N'M:\Data\LogData3.ndf'),
(name = N'LogData4', filename = N'M:\Data\LogData4.ndf')
log on
(
 name = N'InMemoryOLTPDemo_log'
 ,filename = N'L:\Log\InMemoryOLTPDemo_log.ldf'
)

Internally, In-Memory OLTP utilizes a streaming mechanism based on the
FILESTREAM technology. While coverage of FILESTREAM is outside the scope of this book,
I will mention that it is optimized for sequential I/O access. In fact, In-Memory OLTP
does not use random I/O access at all by design. It uses sequential append-only writes
during a normal workload and sequential reads on the database startup and recovery
stages. You should keep this behavior in mind and place In-Memory OLTP filegroups into
the disk arrays optimized for sequential performance.

Similar to FILESTREAM filegroups, the In-Memory OLTP filegroup can include
multiple containers placed on the different disk arrays, which allows you to spread the
load across them.

Chapter 2 ■ In-Memory OLTP Objects

11

It is worth noting that In-Memory OLTP creates the set of files in the filegroup when
you create the first In-Memory OLTP object. Unfortunately, SQL Server does not allow
you to remove an In-Memory OLTP filegroup from the database even after you drop all
memory-optimized tables and objects. However, you can still remove the In-Memory
OLTP filegroup from the database while it is empty and does not contain any files.

■■ Note  You can read more about FILESTREAM at https://docs.microsoft.com/en-us/
sql/relational-databases/blob/filestream-sql-server.

I will discuss how In-Memory OLTP persists data on disk in Chapter 10 and cover the best
practices in hardware and SQL Server configurations in Chapter 12.

DATABASE COMPATIBILITY LEVEL

As the general recommendation, Microsoft suggests that you set the database
compatibility level to match the SQL Server version when you use In-Memory
OLTP in the system. This will enable the latest T-SQL language constructs and
performance improvements, which are disabled in the older compatibility levels.

You should remember, however, that the database compatibility level affects the
choice of cardinality estimation model along with Query Optimizer hotfix servicing
model formerly controlled by the trace flag T4199. This may and will change the
execution plans in the system even when you enable the LEGACY_CARDINALITY_
ESTIMATION database-scoped configuration.

You should carefully plan that change when you migrate the system from the old
versions of SQL Server regardless if you utilize In-Memory OLTP or not. You can
use the new SQL Server 2016 component called the Query Store to capture the
execution plans of the queries before changing the compatibility level and force the
old plans to the system-critical queries in case of regressions.

Creating Memory-Optimized Tables
Syntax-wise, creating memory-optimized tables is similar to disk-based tables. You can
use the regular CREATE TABLE statement specifying that the table is memory-optimized.

The code in Listing 2-2 creates three memory-optimized tables in the database.
Please ignore all unfamiliar constructs; I will discuss them in detail later in the chapter.

https://docs.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server
http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_12

Chapter 2 ■ In-Memory OLTP Objects

12

Listing 2-2.  Creating Memory-Optimized Tables

create table dbo.WebRequests_Memory
(
 RequestId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=1048576),
 RequestTime datetime2(4) not null
 constraint DEF_WebRequests_Memory_RequestTime
 default sysutcdatetime(),
 URL varchar(255) not null,
 RequestType tinyint not null, -- GET/POST/PUT
 ClientIP varchar(15) not null,
 BytesReceived int not null,

 index IDX_RequestTime nonclustered(RequestTime)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestHeaders_Memory
(
 RequestHeaderId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=8388608),
 RequestId int not null,
 HeaderName varchar(64) not null,
 HeaderValue varchar(256) not null,

 index IDX_RequestID nonclustered hash(RequestID)
 with (bucket_count=1048576)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestParams_Memory
(
 RequestParamId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=8388608),
 RequestId int not null,
 ParamName varchar(64) not null,
 ParamValue nvarchar(256) not null,

 index IDX_RequestID nonclustered hash(RequestID)
 with (bucket_count=1048576)
)
with (memory_optimized=on, durability=schema_and_data);

Chapter 2 ■ In-Memory OLTP Objects

13

Each memory-optimized table has a DURABILITY setting. The default SCHEMA_AND_DATA
value indicates that the data in the tables is fully durable and persists on disk for recovery
purposes. Operations on such tables are logged in the database transaction log.

SCHEMA_ONLY is another value, which indicates that data in memory-optimized tables
is not durable and would be lost in the event of a SQL Server restart, crash, or failover to
another node. Operations against nondurable memory-optimized tables are not logged in
the transaction log. Nondurable tables are extremely fast and can be used if you need to
store temporary data in use cases similar to temporary tables in tempdb. As the opposite
to temporary tables, SQL Server persists the schema of nondurable memory-optimized
tables, and you do not need to re-create them in the event of a SQL Server restart.

The indexes of memory-optimized tables must be created inline and defined as
part of a CREATE TABLE statement. You cannot add or drop an index or change an index’s
definition after a table is created.

SQL Server 2016 allows you to alter the table schema and indexes. This, however,
creates the new table object in memory, copying data from the old table there. This is
an offline operation, which is time- and resource-consuming and requires you to have
enough memory to accommodate multiple copies of the data.

■■ Tip  You can combine multiple ADD or DROP operations into a single ALTER statement to
reduce the number of table rebuilds.

In SQL Server 2016, memory-optimized tables support at most eight indexes.
Durable memory-optimized tables should have a unique PRIMARY KEY constraint
defined. Nondurable memory-optimized tables do not require the PRIMARY KEY
constraint; however, they should still have at least one index to link the rows together. It is
worth noting that the eight-index limitation will be removed in SQL Server 2017.

Memory-optimized tables support two main types of indexes, HASH and
NONCLUSTERED. Hash indexes are optimized for point-lookup operations, which is the
search of one or multiple rows with equality predicates. This is a conceptually new
index type in SQL Server, and the Storage Engine does not have anything similar to it
implemented. Nonclustered indexes, on the other hand, are somewhat similar to B-Tree
indexes on disk-based tables. Finally, SQL Server 2016 allows you to create clustered
columnstore indexes to support operational analytics queries in the system.

Hash and nonclustered indexes are never persisted on disk. SQL Server re-creates
them when it starts the database and loads memory-optimized data into memory. As with
disk-based tables, unnecessary indexes in memory-optimized tables slow down data
modifications and use extra memory in the system.

■■ Note  I will discuss hash indexes in detail in Chapter 4 and nonclustered indexes in
Chapter 5. I will cover columnstore indexes in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_7

Chapter 2 ■ In-Memory OLTP Objects

14

Working with Memory-Optimized Tables
You can access data in memory-optimized tables either using interpreted T-SQL or from
natively compiled modules. In interpreted mode, SQL Server treats memory-optimized
tables pretty much the same way as disk-based tables. It optimizes queries and caches
execution plans, regardless of where the table is located. The same set of operators is
used during query execution. From a high level, when SQL Server needs to get a row from
a table and the operator’s GetRow() method is called, it is routed either to the Storage
Engine or to the In-Memory OLTP Engine, depending on the underlying table type.

Most T-SQL features and constructs are supported in interpreted mode. Some
limitations still exist; for example, you cannot truncate a memory-optimized table or use
it as the target in a MERGE statement. Fortunately, the list of such limitations is small.

Listing 2-3 shows an example of a T-SQL stored procedure that inserts data into the
memory-optimized tables created in Listing 2-2. For simplicity’s sake, the procedure
accepts the data that needs to be inserted into the dbo.WebRequestParams_Memory table
as the regular parameters, limiting it to five values. Obviously, in production code it is
better to use table-valued parameters in such a scenario.

Listing 2-3.  Stored Procedure That Inserts Data into Memory-Optimized Tables Through
the Interop Engine

create proc dbo.InsertRequestInfo_Memory
(
 @URL varchar(255)
 ,@RequestType tinyint
 ,@ClientIP varchar(15)
 ,@BytesReceived int
 -- Header fields
 ,@Authorization varchar(256)
 ,@UserAgent varchar(256)
 ,@Host varchar(256)
 ,@Connection varchar(256)
 ,@Referer varchar(256)
 -- Hardcoded parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)

Chapter 2 ■ In-Memory OLTP Objects

15

as
begin
 set nocount on
 set xact_abort on

 declare
 @RequestId int

 begin tran
 insert into dbo.WebRequests_Memory
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'AUTHORIZATION',@Authorization)
 ,(@RequestId,'USERAGENT',@UserAgent)
 ,(@RequestId,'HOST',@Host)
 ,(@RequestId,'CONNECTION',@Connection)
 ,(@RequestId,'REFERER',@Referer);

 ;with Params(ParamName, ParamValue)
 as
 (
 select ParamName, ParamValue
 from (
 values
 (@Param1, @Param1Value)
 ,(@Param2, @Param2Value)
 ,(@Param3, @Param3Value)
 ,(@Param4, @Param4Value)
 ,(@Param5, @Param5Value)
) v(ParamName, ParamValue)
 where
 ParamName is not null and
 ParamValue is not null
)
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 select @RequestID, ParamName, ParamValue
 from Params;
 commit
end

Chapter 2 ■ In-Memory OLTP Objects

16

As you can see, the stored procedure that works through the Interop Engine does not
require any specific language constructs to access memory-optimized tables.

Natively compiled modules are also defined with a regular CREATE statement, and
they use the T-SQL language. However, there are several additional options that must be
specified at the creation stage.

The code in Listing 2-4 creates the natively compiled stored procedure that
accomplishes the same logic as the dbo.InsertRequestInfo_Memory stored procedure
defined in Listing 2-3.

Listing 2-4.  Natively Complied Stored Procedure

create proc dbo.InsertRequestInfo_NativelyCompiled
(
 @URL varchar(255) not null
 ,@RequestType tinyint not null
 ,@ClientIP varchar(15) not null
 ,@BytesReceived int not null
 -- Header fields
 ,@Authorization varchar(256) not null
 ,@UserAgent varchar(256) not null
 ,@Host varchar(256) not null
 ,@Connection varchar(256) not null
 ,@Referer varchar(256) not null
 -- Parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare
 @RequestId int

 insert into dbo.WebRequests_Memory
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

Chapter 2 ■ In-Memory OLTP Objects

17

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 select @RequestId,'AUTHORIZATION',@Authorization union all
 select @RequestId,'USERAGENT',@UserAgent union all
 select @RequestId,'HOST',@Host union all
 select @RequestId,'CONNECTION',@Connection union all
 select @RequestId,'REFERER',@Referer;

 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 select @RequestID, ParamName, ParamValue
 from
 (
 select @Param1, @Param1Value union all
 select @Param2, @Param2Value union all
 select @Param3, @Param3Value union all
 select @Param4, @Param4Value union all
 select @Param5, @Param5Value
) v(ParamName, ParamValue)
 where
 ParamName is not null and
 ParamValue is not null;
end

You should specify that the module is natively compiled using the WITH NATIVE_
COMPILATION clause. All natively compiled modules are schema-bound, and they require
you to specify the SCHEMABINDING option. Finally, you can set the optional execution
security context and several other parameters. I will discuss them in detail in Chapter 9.

Natively compiled stored procedures execute as atomic blocks indicated by the
BEGIN ATOMIC keyword, which is an “all or nothing” approach. Either all of the statements
in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside the context of an active
transaction, it starts a new transaction and either commits or rolls it back at the end of the
execution.

In cases where a procedure is called in the context of an active transaction, SQL
Server creates a savepoint at the beginning of the procedure’s execution. In case of an
error in the procedure, SQL Server rolls back the transaction to the created savepoint.
Based on the severity and type of error, the transaction is either going to be able to
continue and commit or become doomed and uncommittable.

Even though the dbo.InsertRequestInfo_Memory and dbo.InsertRequestInfo_
NativelyCompiled stored procedures accomplish the same task, their implementation is
slightly different. Natively compiled stored procedures have an extensive list of limitations
and unsupported T-SQL features. In the previous example, you can see that neither the
INSERT statement with multiple VALUES nor CTE were supported.

http://dx.doi.org/10.1007/978-1-4842-2772-5_9

Chapter 2 ■ In-Memory OLTP Objects

18

■■ Note  I will discuss natively compiled stored procedures, atomic transactions, and
supported T-SQL language constructs in greater depth in Chapter 9.

Finally, it is worth mentioning that natively compiled modules can access only
memory-optimized tables. It is impossible to query disk-based tables or, as another
example, join memory-optimized and disk-based tables together. You have to use
interpreted T-SQL and the Interop Engine for such tasks.

In-Memory OLTP in Action: Resolving Latch
Contention
Latches are lightweight synchronization objects that SQL Server uses to protect the
consistency of internal data structures. Multiple sessions (or, in that context, threads)
cannot modify the same object simultaneously.

Consider the situation when multiple sessions try to access the same data page
in the buffer pool. While it is safe for the multiple sessions/threads to read the data
simultaneously, data modifications must be serialized and have exclusive access to the
page. If such a rule is not enforced, multiple threads could update a different part of the
data page at once, overwriting each other’s changes and making the data inconsistent,
which would lead to page corruption.

Latches help to enforce that rule. The threads that need to read data from the page
obtain shared (S) latches, which are compatible with each other. Data modification, on
the other hand, requires an exclusive (X) latch, which prevents other readers and writers
from accessing the data page.

■■ Note  Even though latches are conceptually similar to locks, there is a subtle difference
between them. Locks enforce logical consistency of the data. For example, they reduce or
prevent concurrency phenomena, such as dirty or phantom reads. Latches, on the other
hand, enforce physical data consistency, such as preventing corruption of the data page
structures.

Usually, latches have a short lifetime and are barely noticeable in the system.
However, in busy OLTP systems, with a large number of CPUs and a high rate of
simultaneous data modifications, latch contention can become a bottleneck. You can see
the sign of such a bottleneck by the large percent of PAGELATCH waits in the wait statistics
or by analyzing the sys.dm_os_latch_stats data management view.

In-Memory OLTP can be extremely helpful in addressing latch contention because
of its latch-free architecture. It can help to dramatically increase data modification
throughput in some scenarios. In this section, you will see one such example.

http://dx.doi.org/10.1007/978-1-4842-2772-5_9

Chapter 2 ■ In-Memory OLTP Objects

19

In my test environment, I used a Microsoft Azure DS15V2 virtual machine with the
Enterprise edition of SQL Server 2016 SP1 installed. This virtual machine has 20 cores and
140GB of RAM and disk subsystem that performs 62,500 IOPS.

I created the database shown in Listing 2-1 with 16 data files in the LOGDATA
filegroup to minimize allocation maps latch contention. The log file has been placed
on the local SSD storage, while data and In-Memory OLTP filegroups share the main
disk array. It is worth noting that placing disk-based and In-Memory filegroups on
the different arrays in production often leads to better I/O performance. However, it
did not affect the test scenarios where I did not mix disk-based and In-Memory OLTP
workloads in the same tests.

As the first step, I created a set of disk-based tables that mimics the structure
of memory-optimized tables created earlier in the chapter, and I created the stored
procedure that inserts data into those tables. Listing 2-5 shows the code to accomplish this.

Listing 2-5.  Creating Disk-Based Tables and a Stored Procedure

create table dbo.WebRequests_Disk
(
 RequestId int not null identity(1,1),
 RequestTime datetime2(4) not null
 constraint DEF_WebRequests_Disk_RequestTime
 default sysutcdatetime(),
 URL varchar(255) not null,
 RequestType tinyint not null, -- GET/POST/PUT
 ClientIP varchar(15) not null,
 BytesReceived int not null,

 constraint PK_WebRequests_Disk
 primary key nonclustered(RequestID)
 on [LOGDATA]
) on [LOGDATA];

create unique clustered index IDX_WebRequests_Disk_RequestTime_RequestId
on dbo.WebRequests_Disk(RequestTime,RequestId)
on [LOGDATA];

create table dbo.WebRequestHeaders_Disk
(
 RequestId int not null,
 HeaderName varchar(64) not null,
 HeaderValue varchar(256) not null,

 constraint PK_WebRequestHeaders_Disk
 primary key clustered(RequestID,HeaderName)
 on [LOGDATA]
);

Chapter 2 ■ In-Memory OLTP Objects

20

create table dbo.WebRequestParams_Disk
(
 RequestId int not null,
 ParamName varchar(64) not null,
 ParamValue nvarchar(256) not null,

 constraint PK_WebRequestParams_Disk
 primary key clustered(RequestID,ParamName)
 on [LOGDATA]
);
go

create proc dbo.InsertRequestInfo_Disk
(
 @URL varchar(255)
 ,@RequestType tinyint
 ,@ClientIP varchar(15)
 ,@BytesReceived int
 -- Header fields
 ,@Authorization varchar(256)
 ,@UserAgent varchar(256)
 ,@Host varchar(256)
 ,@Connection varchar(256)
 ,@Referer varchar(256)
 -- Parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)
as
begin
 set nocount on
 set xact_abort on

 declare
 @RequestId int

Chapter 2 ■ In-Memory OLTP Objects

21

 begin tran
 insert into dbo.WebRequests_Disk
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Disk
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'AUTHORIZATION',@Authorization)
 ,(@RequestId,'USERAGENT',@UserAgent)
 ,(@RequestId,'HOST',@Host)
 ,(@RequestId,'CONNECTION',@Connection)
 ,(@RequestId,'REFERER',@Referer);

 ;with Params(ParamName, ParamValue)
 as
 (
 select ParamName, ParamValue
 from (
 values
 (@Param1, @Param1Value)
 ,(@Param2, @Param2Value)
 ,(@Param3, @Param3Value)
 ,(@Param4, @Param4Value)
 ,(@Param5, @Param5Value)
) v(ParamName, ParamValue)
 where
 ParamName is not null and
 ParamValue is not null
)
 insert into dbo.WebRequestParams_Disk
 (RequestID,ParamName,ParamValue)
 select @RequestId, ParamName, ParamValue
 from Params;
 commit
end;

In the tests, I compared the insert throughput of disk-based and memory-optimized
tables using the dbo.InsertRequestInfo_Disk, dbo.InsertRequestInfo_Memory,
and dbo.InsertRequestInfo_NativelyCompiled stored procedures, calling them
simultaneously from the multiple sessions in the loop. Each call inserted one row into the
dbo.WebRequests table, five rows into the dbo.WebRequestHeaders table, and from one to
five rows into the dbo.WebRequestDisks table, which makes nine rows total on average in
the single transaction.

Chapter 2 ■ In-Memory OLTP Objects

22

■■ Note  The test application and scripts are included in the companion materials of
the book.

In the case of the dbo.InsertRequestInfo_Disk stored procedure and disk-based
tables, my test server achieved a maximum throughput of about 4,500 batches/calls per
second with 150 concurrent sessions. Figure 2-1 shows several performance counters at
the time of the test.

Even though I maxed out the insert throughput, the CPU load on the server was
very low, which clearly indicated that the CPU was not the bottleneck during the test.
At the same time, the server suffered from the large number of latches, which were used
to serialize access to the data pages in the buffer pool. Even though the wait time of
each individual latch was relatively low, the total latch wait time was high because of the
excessive number of them acquired every second.

A further increase in the number of sessions did not help and, in fact, even slightly
reduced the throughput. Figure 2-2 illustrates performance counters with 300 concurrent
sessions. As you can see, the average latch wait time has been increasing with the load.

Figure 2-2.  Performance counters when data was inserted into disk-based tables (300
concurrent sessions)

Figure 2-1.  Performance counters when data was inserted into disk-based tables (150
concurrent sessions)

Chapter 2 ■ In-Memory OLTP Objects

23

You can confirm that latches were the bottleneck by analyzing the wait statistics
collected during the test. Figure 2-3 illustrates the output from the sys.dm_os_wait_
stats view. You can see that latch waits are at the top of the list.

The situation changed when I repeated the tests with the dbo.InsertRequestInfo_
Memory stored procedure, which inserted data into memory-optimized tables through
the Interop Engine. I maxed out the throughput with 300 concurrent sessions, which
doubled the number of sessions from the previous test. In this scenario, SQL Server was
able to handle about 74,000 batches/calls per second, which is more than a 16 times
increase in the throughput. A further increase in the number of concurrent sessions
did not change the throughput; however, the duration of each call linearly increased as
more sessions were added.

Figure 2-4 illustrates the performance counters during the test. As you see, there
were no latches with memory-optimized tables, and the CPUs were fully utilized.

Figure 2-3.  Wait statistics collected during the test (insert into disk-based tables)

Figure 2-4.  Performance counters when data was inserted into memory-optimized tables
through the Interop Engine

Figure 2-5.  Wait statistics collected during the test (insert into memory-optimized tables
through the Interop Engine)

As you can see in Figure 2-5, the only significant wait in the system was WRITELOG,
which is related to the transaction log write performance.

Chapter 2 ■ In-Memory OLTP Objects

24

The natively compiled dbo.InsertRequestInfo_NativelyCompiled stored
procedure improved the situation even further. With 400 concurrent sessions, SQL Server
was able to handle about 106,000 batches/calls per second, which translates to about
950,000 individual inserts per second.

Figure 2-6 illustrates the performance counters during test execution. Even with the
increase in throughput, the natively compiled stored procedure put less load on the CPU
than the Interop Engine, and disk performance became the clear bottleneck in this setup.

Waits in the wait statistics were similar to the previous test, with WRITELOG as the only
significant wait in the system (see Figure 2-7).

You can confirm that disk performance was the limiting factor in this setup by
running the same test with nondurable memory-optimized tables. You can do this by
dropping and re-creating the database and creating the same set of memory-optimized
tables using the DURABILITY=SCHEMA_ONLY option. No other code changes are required.

Figure 2-8 shows the performance counters collected during the test, with 400
concurrent sessions calling the dbo.InsertRequestInfo_NativelyCompiled stored
procedure to insert data into nondurable tables. As you can see, in that scenario, I was able
to fully utilize the CPU on the system after I removed the I/O bottleneck, which improved
throughput by another 50 percent compared to the durable memory-optimized tables.

Figure 2-6.  Performance counters when data was inserted into memory-optimized tables
using natively compiled stored procedure

Figure 2-7.  Wait statistics collected during the test (insert into memory-optimized tables
using natively compiled stored procedure)

Chapter 2 ■ In-Memory OLTP Objects

25

Finally, it is worth noting that In-Memory OLTP uses different and more efficient
logging, which leads to a much smaller transaction log footprint. Figure 2-9 illustrates the
log file write statistics collected during one minute of test execution using the sys.dm_io_
virtual_file_stats DMF. The order of outputs in the figure corresponds to the order in
which the tests were run: disk-based table inserts, inserts into memory-optimized tables
through the Interop Engine, and natively compiled stored procedures.

As you see, in interop mode In-Memory OLTP inserted more than 16 times more
data; however, it used just 7.6 times more space in the transaction log than with disk-
based tables. The situation is even better with natively compiled stored procedures. Even
though it wrote about 12 percent more to the log, it inserted about 30 percent more data
compared to interop mode.

■■ Note  I will discuss In-Memory OLTP transaction logging in greater depth in Chapter 10.

Obviously, different scenarios will lead to different results, and performance
improvements would greatly depend on the hardware, database schema, and use case
and workload in the system. However, with OLTP workloads, it is not uncommon to see an
improvement of 3 to 5 times when you access memory-optimized tables through the Interop
Engine and an improvement of 10 to 40 times with natively compiled stored procedures.

Figure 2-8.  Performance counters when data was inserted into nondurable memory-
optimized tables using a natively compiled stored procedure

Figure 2-9.  Transaction log write statistics during the tests

http://dx.doi.org/10.1007/978-1-4842-2772-5_10

Chapter 2 ■ In-Memory OLTP Objects

26

More importantly, In-Memory OLTP allows you to improve the performance of the
system by scaling up and upgrading hardware. For example, in this scenario, you can
achieve better throughput by adding more CPUs and/or increasing I/O performance.
This would be impossible to do with disk-based tables where latch contention becomes a
bottleneck.

Summary
The In-Memory OLTP engine is fully integrated into SQL Server and is installed with
the product. It is an Enterprise edition feature in SQL Server 2016 RTM; however, it
is available in all editions starting with SQL Server 2016 SP1. It is also available in the
Premium tiers of Microsoft Azure SQL Database. You should remember, however, about
the resource limitations that exist in non-Enterprise editions of SQL Server.

Every database that uses In-Memory OLTP objects should have the separate
In-Memory OLTP filegroup created. This filegroup should be placed in the disk array
optimized for sequential I/O performance. Microsoft Azure SQL Database does not
require or allow you to create that filegroup.

You can create memory-optimized tables with the regular CREATE TABLE statement,
marking tables as MEMORY_OPTIMIZED and specifying the table durability option. The
data in the tables with SCHEMA_AND_DATA durability is persisted on disk. Tables with the
SCHEMA_ONLY durability do not persist the data, and they can be used as in-memory
temporary tables that provide extremely fast performance.

You can access memory-optimized tables either from interpreted T-SQL through
the Interop Engine or from natively compiled modules. Almost all T-SQL features are
supported in interpreted mode. Natively compiled modules, on the other hand, have
the large set of limitations. Nevertheless, they can introduce significant performance
improvements compared to the interop engine.

27© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_3

CHAPTER 3

Memory-Optimized Tables

This chapter discusses memory-optimized tables in detail. It shows how memory-optimized
tables store their data and how SQL Server accesses them. It covers the format of the data
rows in memory-optimized tables and talks about the process of native compilation.

Finally, the chapter provides an overview of the limitations of memory-optimized
tables that exist in SQL Server 2016.

Disk-Based vs. Memory-Optimized Tables
Data and index structures in memory-optimized tables are different from those in
disk-based tables. In disk-based tables, the data is stored in the 8KB data pages grouped
together in eight-page extents on a per-index or per-heap basis. Every page stores the data
from one or multiple data rows. Moreover, the data from variable-length or LOB columns
can be stored off-row on ROW_OVERFLOW and LOB data pages when it does not fit on one
in-row page.

All pages and rows in disk-based tables are referenced by in-file offsets, which are
a combination of file_id, data page offset/position in the file, and, in the case of a data
row, row offset/position on the data page.

Finally, every nonclustered index stores its own copy of the data from the index key
columns, referencing the main row by row ID, which is either the clustered index key
value or a physical address (offset) of the row in the heap table.

Figures 3-1 and 3-2 illustrate these concepts. They show clustered and nonclustered
index B-Trees defined on a table. As you see, pages are linked through in-file offsets. The
nonclustered index persists the separate copy of the data and references the clustered
index through clustered index key values.

Chapter 3 ■ Memory-Optimized Tables

28

Figure 3-1.  Clustered index on disk-based table

Chapter 3 ■ Memory-Optimized Tables

29

Every time you need to access the data from the page, SQL Server loads the copy of
the page to the memory, caching it in the buffer pool. However, the format and structure
of the data page in the buffer pool does not change, and pages there still use in-file offsets
to reference each other. The SQL Server component called the Buffer Manager manages
the buffer pool, and it tracks the data page’s in-memory locations, translating in-file
offsets to the corresponding memory addresses of the page structures.

Consider the situation when SQL Server needs to scan several data pages in the
index. The worker thread requests the page from the Buffer Manager, using file_id and
page_id to identify it. The Buffer Manager, in turn, checks whether the page is already
cached, reading it from disk when necessary. When the page is read and processed, SQL
Server obtains the address of the next page in the index and repeats the process.

It is also entirely possible that SQL Server needs to access multiple pages in order to
read a single row. This happens in case of off-row storage and/or when the execution plan
uses nonclustered indexes and issues Key or RID Lookup operations, obtaining the data
from the clustered index or heap.

Figure 3-2.  Nonclustered index on disk-based table

Chapter 3 ■ Memory-Optimized Tables

30

The process of locating a page in the buffer pool is very fast; however, it still introduces
overhead that affects the performance of the queries. The performance hit is much worse
when the data page is not in memory and a physical I/O operation is required.

As you already know, SQL Server protects the internal consistency of the data pages,
with latches preventing multiple sessions from modifying the data on the data page
simultaneously. Acquiring and managing those latches also adds overhead to the system.

Finally, SQL Server uses locking to protect the transactional consistency of the data
acquiring locks on the data row- and page- and object- levels. Those locks may introduce
blocking in the system, and they also add the overhead associated with their management.

The In-Memory OLTP engine uses a completely different approach with memory-
optimized tables. With the exception of Bw-Trees in nonclustered indexes, which I will
discuss in Chapter 5, in-memory objects do not use data pages. Data rows reference each
other through the memory pointers. Every row knows the memory address of the next
row in the chain, and SQL Server does not need to do any extra steps to locate it.

Every memory-optimized table has at least one index row chain to link rows
together; therefore, every table must have at least one index defined. In the case of
durable memory-optimized tables, there is the requirement of creating a primary key
constraint, which can serve this purpose.

To illustrate the concepts of row chains, let’s create the memory-optimized table
shown in Listing 3-1.

Listing 3-1.  Creating the Memory-Optimized Table

create table dbo.People
(
 Name varchar(64) not null
 constraint PK_People
 primary key nonclustered
 hash with (bucket_count = 1024),
 City varchar(64) not null,

 index IDX_City nonclustered hash(City)
 with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only);

This table has two hash indexes defined on the Name and City columns. I will not
discuss hash indexes in depth in this chapter, but as a general overview, they consist of a
hash table, which is an array of hash buckets, each of which contains a memory pointer to
the data row. SQL Server applies a hash function to the index key columns, and the result
of the function determines to which bucket a row belongs. All rows that have the same
hash value and belong to the same bucket are linked together in a row chain; every row
has a pointer to the next row in a chain.

■■ Note  I will discuss hash indexes in detail in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_4

Chapter 3 ■ Memory-Optimized Tables

31

Figure 3-3 illustrates this. Solid arrows represent pointers in the index on the
Name column. Dotted arrows represent pointers in the index on the City column. For
simplicity’s sake, let’s assume that the hash function generates a hash value based on the
first letter of the string. Two numbers, displayed in each row, indicate the row lifetime,
which I will explain in the next section of this chapter.

In contrast to disk-based tables, indexes on memory-optimized tables are not
created as separate data structures but rather embedded as pointers in the data rows,
which, in a nutshell, makes every index covering for in-row columns. The indexes,
however, do not cover off-row column data, where data is stored in the separate internal
tables. I will discuss them in depth in Chapter 6.

■■ Note  To be precise, nonclustered indexes and clustered columnstore indexes on
memory-optimized tables introduce additional data structures in memory. I will discuss
nonclustered indexes in detail in Chapter 5 and clustered columnstore indexes in Chapter 8.

Introduction to Multiversion Concurrency Control
As you already noticed in Figure 3-3, every row in a memory-optimized table has two
values, called BeginTs and EndTs, which define the lifetime of the row. A SQL Server
instance maintains the Global Transaction Timestamp value, which is auto-incremented
when the transaction commits and is unique for every committed transaction. BeginTs
stores the Global Transaction Timestamp of the transaction that inserted a row, and
EndTs stores the timestamp of the transaction that deleted a row. A special value called
Infinity is used as EndTs for the rows that have not been deleted.

Figure 3-3.  Memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_8

Chapter 3 ■ Memory-Optimized Tables

32

The rows in memory-optimized tables are never updated. The update operation
creates the new version of the row with the new Global Transaction Timestamp set
as BeginTs and marks the old version of the row as deleted by populating the EndTs
timestamp with the same value.

When a new transaction starts, In-Memory OLTP assigns the logical start time
for the transaction, which represents the Global Transaction Timestamp value when
a transaction starts. It dictates what version of the rows is visible to the transaction.
A transaction can see a row only when its logical start time (the Global Transaction
Timestamp value when the transaction starts) is between the BeginTs and EndTs
timestamps of the row.

To illustrate this, let’s assume you ran the statement shown in Listing 3-2 and
committed the transaction when the Global Transaction Timestamp value was 100.

Listing 3-2.  Updating Data in the dbo.People Table

update dbo.People
set City = 'Cincinnati'
where Name = 'Ann'

Figure 3-4 illustrates the data in the table after an update transaction has been
committed. As you can see, you now have two rows with Name='Ann' and different
lifetimes. The new row has been appended to the row chain referenced by the hash
bucket for the value of A in the index on the Name column. The hash index on the City
column did not have any rows referenced by the C bucket; therefore, the new row
becomes the first in the row chain referenced from that bucket.

Figure 3-4.  Data in the table after update

Chapter 3 ■ Memory-Optimized Tables

33

Let’s assume you need to run a query that selects all the rows with Name='Ann' in
the transaction with the logical start time (Global Transaction Timestamp when the
transaction started) of 110. SQL Server calculates the hash value for Ann, which is A,
and finds the corresponding bucket in the hash index on the Name column. It follows
the pointer from that bucket, which references a row with Name='Adam'. This row has
a BeginTs value of 10 and an EndTs value of Infinity; therefore, it is visible to the
transaction. However, the Name value does not match the predicate, and the row is ignored.

In the next step, SQL Server follows the pointer from the Adam index pointer array,
which references the first Ann row. This row has a BeginTs value of 100 and an EndTs value
of Infinity; therefore, it is visible to the transaction and needs to be selected.

As a final step, SQL Server follows the next pointer in the index. Even though the last
row also has Name='Ann', it has an EndTs value of 100 and is invisible to the transaction.

As you should have already noticed, this concurrency behavior and data consistency
corresponds to the SNAPSHOT transaction isolation level when every transaction sees the
data as of the time the transaction started. SNAPSHOT is the default transaction isolation
level in the In-Memory OLTP Engine, which also supports the REPEATABLE READ and
SERIALIZABLE isolation levels. However, the REPEATABLE READ and SERIALIZABLE
transactions in In-Memory OLTP behave differently than with disk-based tables.
In-Memory OLTP raises an exception and rolls back a transaction if REPEATABLE READ or
SERIALIZABLE data consistency rules were violated instead of blocking a transaction as
with disk-based tables.

The In-Memory OLTP documentation also indicates that autocommitted (single-
statement) transactions can run in the READ COMMITTED isolation level. However, this is
a bit misleading. SQL Server promotes and executes such transactions in the SNAPSHOT
isolation level and does not require you to explicitly specify the isolation level in your
code. Similarly to SNAPSHOT transactions, the autocommitted READ COMMITTED transaction
would not see the changes committed after the transaction started, which is a different
behavior compared to the READ COMMITTED transactions against disk-based tables.

■■ Note  I will discuss the concurrency model in In-Memory OLTP in Chapter 7.

SQL Server keeps track of the active transactions in the system and detects stale
rows when their EndTs of stake rows is older than the logical start time of the oldest active
transaction in the system. Stale rows are invisible for active transactions in the system,
and eventually they are removed from the index row chains and deallocated by the
garbage collection process.

■■ Note  I will cover the garbage collection process in more detail in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-2772-5_7
http://dx.doi.org/10.1007/978-1-4842-2772-5_11

Chapter 3 ■ Memory-Optimized Tables

34

Data Row Format
As you can guess, the format of the data rows in memory-optimized tables is entirely
different from disk-based tables and consists of two different sections, the row header and
the payload, as shown in Figure 3-5.

You are already familiar with the BeginTs and EndTs timestamps in the row header.
The next element there is StmtId, which references the statement that inserted that row.
Every statement in a transaction has a unique 4-byte StmtId value, which works as a
Halloween protection technique and allows the statement to skip rows it just inserted.

HALLOWEEN PROTECTION

The Halloween effect is a known problem in the relational database world. It was
discovered by IBM researchers in 1976 around Halloween, which gave the name
to phenomena. In a nutshell, it refers to the situation when the execution of a data
modification query is affected by the previous modifications it performed.

You can think of the following statement as a classic example of the Halloween
problem:

insert into T
 select * from T

Without Halloween protection, this query would fall into an infinitive loop, reading the
data it just inserted and inserting it over and over again.

With disk-based tables, SQL Server implements Halloween protection by adding
Spool operators to the execution plan. These operators create a temporary copy of
the data before processing it. In this example, all data from the table is cached in the
Table Spool first, which will work as the source of the data for the insert.

StmtId helps to avoid the Halloween problem in memory-optimized tables.
Statements check the StmtId value of the rows and skip those they just inserted.

Figure 3-5.  The structure of a data row in a memory-optimized table

Chapter 3 ■ Memory-Optimized Tables

35

The next element in the header, the 2-byte IdxLinkCount, indicates how many
indexes (pointers) reference the row (or, in the other words, in how many index chains
this row is participating). SQL Server uses it to detect rows that can be deallocated
by the garbage collection process. SQL Server also adds empty 2-byte padding after
IdxLinkCount to align the row header with 8-byte boundaries.

An array of 8-byte index pointers is the last element of the row header. As you already
know, every memory-optimized table should have at least one index to link data rows
together. In SQL Server 2016, you can define up to eight indexes per memory-optimized
table, including the primary key constraint. This restriction has been removed in
SQL Server 2017.

The actual row data is stored in the payload section of the row. The payload format may
vary depending on the table schema. SQL Server works with the payload through a DLL that
is generated and compiled for the table (more on that in the next section of this chapter).

I would like to reiterate that a key principle of In-Memory OLTP is that payload data
is never updated. When a table row needs to be updated, In-Memory OLTP deletes the
version of the row by setting the EndTs timestamp of the original row and inserts the new
data row version with the new BeginTs value and an EndTs value of Infinity.

Native Compilation of Memory-Optimized Tables
One of the key differences between the Storage Engine and In-Memory OLTP Engine
resides in how engines work with the data rows. The data in disk-based tables is always
stored using one of the three predefined formats, which do not depend on the table
schema and are controlled by the index data compression option.

As usual, that approach comes with benefits and downsides. It is extremely flexible
and allows you to alter a table and mix per- and post-altered versions of the rows together.
For example, adding a new nullable column to the table is the metadata-level operation,
which does not change existing rows. The Storage Engine analyzes table metadata and
different row attributes and handles multiple versions of the rows correctly.

However, such flexibility comes at a cost. Consider the situation when the query
needs to access the data from the variable-length column in the row. In this scenario,
SQL Server needs to find the offset of the variable-length array section in the row, calculate
an offset and length of the column data from that array, and analyze whether the column
data is stored in-row or off-row before getting the required data. All of that can lead to the
large number of CPU instructions to execute.

The In-Memory OLTP Engine uses a completely opposite approach. SQL Server
creates and compiles the separate DLLs for every memory-optimized table in the system.
Those DLLs are loaded into the SQL Server address space, and they are responsible for
accessing and manipulating the data in the payload section of the row. The In-Memory
OLTP Engine is generic and does not know anything about the underlying payload part
of the row; all data access is done through those DLLs, which are aware of the data row
format and optimized to speed up the data access and data manipulation.

As you can guess, this approach significantly reduces processing overhead; however,
it comes at the cost of reduced flexibility. The generated table DLLs require all rows to
have the same structure. Table alteration generates the new version of the DLL and,
in most cases, will require In-Memory OLTP to re-create all the data rows in the table,
transforming them to the new format. I will discuss this in depth in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-2772-5_10

Chapter 3 ■ Memory-Optimized Tables

36

This restriction can lead to supportability and performance issues when tables
and indexes are defined incorrectly. One such example is the wrong hash index bucket
count definition, which can lead to an excessive number of rows in the row chains, which
reduces index performance. I will discuss this problem in detail in Chapter 4.

■■ Note  SQL Server places the source code and compiled DLLs in the XTP subfolder of the
SQL Server DATA directory. I will talk about those files and the native compilation process in
more detail in Chapter 9.

Memory-Optimized Tables: Surface Area and
Limitations
The first release of In-Memory OLTP in SQL Server 2014 had an extensive list of
limitations. Fortunately, many of them have been removed in SQL Server 2016.

Let’s look at the supported surface area and existing limitations in detail.

Supported Data Types
One of the biggest limitations of In-Memory OLTP in SQL Server 2014 was the inability to
support off-row storage. It was impossible to create a table with a row size that exceeded
8,060 bytes or use the (n)varchar(max) and varbinary(max) data types.

Fortunately, this limitation has been removed in the second release of In-Memory
OLTP. SQL Server 2016 supports off-row storage and allows data rows to exceed 8,060
bytes. The (n)varchar(max) and varbinary(max) data types are now supported. I would
like to reiterate, however, that off-row data is stored in the separate internal tables and
can reduce the performance of the system. I will discuss this in detail in Chapter 6.

There are still several data types that are not supported in the SQL Server 2016
release of In-Memory OLTP. They include the following:

•	 datetimeoffset, rowversion, and sql_variant

•	 image and (n)text

•	 CLR-based data types: geography, geometry, and hierarchyid

•	 User-defined data types

•	 xml

Even though the list of unsupported data types is not very extensive, those
limitations can still complicate In-Memory OLTP migration for existing systems. In some
cases, you can store the data from unsupported data types in varbinary(max) column,
casting it to the appropriate data type in the code. This approach, however, would require
you to use the Interop Engine and would not work with native compilation.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
http://dx.doi.org/10.1007/978-1-4842-2772-5_6

Chapter 3 ■ Memory-Optimized Tables

37

Table Features
The memory-optimized tables have several other requirements and limitations,
outlined here:

•	 Computed columns are not supported in SQL Server 2016. They
are supported, however, in SQL Server 2017.

•	 Sparse columns are not supported.

•	 IDENTITY columns should have a SEED and INCREMENT value of (1,1).

•	 Memory-optimized tables cannot participate in FOREIGN KEY
constraints with disk-based tables. You can define foreign keys
between memory-optimized tables; however, they should always
reference primary keys rather than UNIQUE constraints.

•	 Full-text indexes on memory-optimized tables are not supported.

•	 Memory-optimized tables cannot be defined as FILETABLE or use
FILESTREAM storage.

In SQL Server 2016, every memory-optimized table, durable or nondurable, should
have at least one and at most eight indexes. Moreover, the durable memory-optimized
table should have a unique primary key constraint defined. This constraint is counted
as one of the indexes toward the eight-index limit. The eight-index restriction has been
removed in SQL Server 2017.

It is also worth noting that columns participating in the primary key constraint are
nonupdatable. You can delete the old and insert the new row as the workaround.

Database-Level Limitations
In-Memory OLTP has several limitations that affect some of the database settings and
operations. They include the following:

•	 You cannot create a database snapshot on databases that use
In-Memory OLTP.

•	 The AUTO_CLOSE database option must be set to OFF.

•	 CREATE DATABASE FOR ATTACH_REBUILD_LOG is not supported.

•	 DBCC CHECKDB skips the memory-optimized tables.

•	 DBCC CHECKTABLE fails if called to check the memory-optimized
table.

■■ Note  You can see the full list of limitations at https://docs.microsoft.com/en-
us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-

supported-by-in-memory-oltp.

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp

Chapter 3 ■ Memory-Optimized Tables

38

High Availability Technologies Support
Memory-optimized tables are fully supported in AlwaysOn Failover Clusters and
Availability Groups and with Log Shipping. However, in the case of a failover cluster, data
from durable memory-optimized tables must be loaded into memory in the case of a
failover, which could increase failover time and reduce database availability.

In the case of AlwaysOn Availability Groups, only durable memory-optimized tables
are replicated to secondary nodes. You can access and query those tables on the readable
secondary nodes if needed.

Data from nondurable memory-optimized tables, on the other hand, is not
replicated and will be lost in the case of a failover. You should remember this behavior
when you use In-Memory OLTP in Microsoft Azure SQL Database. Transient database
failovers in Azure will erase the data from nondurable memory-optimized tables.

Memory-optimized tables can participate in transactional replication. All other
replication types, including peer-to-peer replication, are not supported.

In-Memory OLTP is not supported in database mirroring sessions. This does not
appear to be a big limitation, however. Database mirroring is a deprecated feature, and
you should use AlwaysOn Availability Groups as the replacement for the technology.

SQL Server 2016 Features Support
In-Memory OLTP is fully integrated with many new SQL Server 2016 features. Let’s list a
few of them.

In-Memory OLTP workloads can be captured by Query Store. It automatically
collects queries, plans, and optimization statistics for In-Memory OLTP objects without
any additional configuration changes required. However, runtime statistics are not
collected by default, and you need to explicitly enable them with the sys.sp_xtp_
control_query_exec_stats stored procedure.

Keep in mind that the collection of runtime statistics adds overhead, which can
degrade the performance of In-Memory OLTP workloads.

■■ Note  I will talk about In-Memory OLTP Query Store integration in more detail in
Chapter 12.

You can use system-versioned temporal tables with memory-optimized tables using
disk-based history tables to store old row versions. When you enable system versioning
in a memory-optimized table, SQL Server creates a staging memory-optimized table
and synchronously populates it during UPDATE and DELETE operations. The data from
the staging table is asynchronously moved to a disk-based history table by a background
process called the data flush task. This task wakes up every minute with the light
workload and can adjust its schedule to run every five seconds under a heavy workload.

By default, the data flush task moves the data from the staging table when it reaches
8 percent of the size of the current memory-optimized table. You can also force data
movement manually by calling the sys.sp_xtp_flush_temporal_history stored procedure.

http://dx.doi.org/10.1007/978-1-4842-2772-5_12

Chapter 3 ■ Memory-Optimized Tables

39

■■ Note  You can read more about temporal tables support at https://docs.microsoft.
com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-

with-memory-optimized-tables.

Memory-optimized tables can be configured for row-level security. The
configuration process is essentially the same with on-disk tables; however, an inline
table-valued function that is used as a security predicate must be natively compiled. I will
discuss native compilation in Chapter 9.

■■ Note  You can read more about row-level security at https://docs.microsoft.com/
en-us/sql/relational-databases/security/row-level-security.

It is also worth noting that starting with SQL Server 2016, the data from
memory-optimized tables is encrypted on disk when Transparent Data Encryption
(TDE) is enabled in the database. I will discuss how In-Memory OLTP persists data on
disk in Chapter 10.

Summary
As the opposite of disk-based tables, where data is stored in 8KB data pages, memory-
optimized tables link data rows into the index row chains using regular memory pointers.
Every row has multiple pointers, one per index row chain. In SQL Server 2016, every table
must have at least one and at most eight indexes defined.

A SQL Server instance maintains the Global Transaction Timestamp value,
which is auto-incremented when the transaction commits and is unique for every
committed transaction. Every data row has BeginTs and EndTs timestamps that define
the row lifetime. A transaction can see a row only when its logical start time (the Global
Transaction Timestamp value when the transaction starts) is between the BeginTs and
EndTs timestamps of the row.

The row data in memory-optimized tables is never updated. When a table row needs
to be updated, In-Memory OLTP creates the new version of the row with a new BeginTs
value and deletes the old version of the row by populating its EndTs timestamp.

SQL Server generates and compiles native DLLs for every memory-optimized
table in the system. Those DLLs are loaded into the SQL Server process, and they are
responsible for accessing and manipulating the row data.

The In-Memory OLTP engine is fully supported in AlwaysOn Failover Clusters,
Availability Groups, and with Log Shipping. Memory-optimized tables can also
participate in transactional replication.

In-Memory OLTP is integrated with many new SQL Server 2016 features.
Memory-optimized tables can be configured as system-versioned temporal tables, and
they also support row-level security. Query Store can capture optimization and execution
statistics for In-Memory OLTP workloads; however, capturing execution statistics
introduces noticeable performance overhead to the system.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
http://dx.doi.org/10.1007/978-1-4842-2772-5_10

41© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_4

CHAPTER 4

Hash Indexes

This chapter discusses hash indexes, the new type of index introduced in the In-Memory
OLTP Engine. It will show their internal structure and explain how SQL Server works
with them. You will learn about the most critical property of hash indexes, bucket_count,
which defines the number of hash buckets in the index hash array. You will see how
incorrect bucket count estimations affect system performance.

Finally, this chapter talks about the SARGability of hash indexes and statistics on
memory-optimized tables.

Hashing Overview
Hashing is a widely known concept in computer science that performs the transformation
of the data into short, usually fixed-length values. Hashing is often used in scenarios
when you need to optimize point-lookup operations that search within a set of large
strings or binary data using equality predicates. Hashing significantly reduces an index
key size, making the index compact, which, in turn, improves the performance of
point-lookup operations.

A properly defined hashing algorithm, often called a hash function, provides a
relatively random hash distribution. A hash function is always deterministic, which
means that the same input always generates the same hash value. However, a hash
function does not necessarily guarantee uniqueness, and different input values can
generate the same hashes. That situation is called a collision, and the chance of it greatly
depends on the quality of the hash algorithm and the range of allowed hash keys. For
example, a hash function that generates a 2-byte hash has a significantly higher chance of
collision compared to a function that generates a 4-byte hash.

Hash tables, often called hash maps, are the data structures that store hash keys,
mapping them to the original data. The hash keys are assigned to buckets, in which the
original data can be found. Ideally, each unique hash key is stored in the individual
bucket; however, when the number of buckets in the table is not big enough, it is entirely
possible that multiple unique hash keys would be placed into the same bucket. Such a
situation is called a hash collision.

Chapter 4 ■ Hash Indexes

42

■■ Tip  The HASHBYTES function allows you to generate hashes in T-SQL using one of the
industry-standard algorithms such as MD5, SHA2_512, and a few others. However, the output
of the HASHBYTES function is not ideal for point-lookup optimization because of the large size
of the output. You can use a CHECKSUM function that generates a 4-byte hash instead.

You can index the hash generated by the CHECKSUM function and use it as the replacement for
the indexes on uniqueidentifier columns. It is also useful when you need to perform point-
lookup operations on large (greater than 900/1,700 bytes) strings or binary data, which cannot
be indexed. I discussed this scenario in Chapter 7 of my book Pro SQL Server Internals.

Much Ado About Bucket Count
In the In-Memory OLTP Engine, hash indexes are, in a nutshell, hash tables with buckets
implemented as an array of a predefined size. Each bucket contains a pointer to a data
row. SQL Server applies a hash function to the index key values, and the result of the
function determines to which bucket a row belongs. All rows that have the same hash
value and belong to the same bucket are linked together through a chain of index pointers
in the data rows.

Figure 4-1 illustrates an example of a memory-optimized table with two hash indexes
defined. You saw this diagram in the previous chapter; it’s displayed here for reference
purposes. Remember that in this example you are assuming that a hash function
generates a hash value based on the first letter of the string. Obviously, a real hash
function used in In-Memory OLTP is much more random and does not use character-
based hashes.

Figure 4-1.  A memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-2772-5_7

Chapter 4 ■ Hash Indexes

43

The number of buckets is the critical element for hash index performance. An
efficient hash function allows you to avoid most collisions during hash key generation;
however, you will have collisions in the hash table when the number of buckets is not big
enough and SQL Server has to store different hashes together in the same buckets. Those
collisions lead to longer row chains; this requires SQL Server to scan more rows through
those links during the query processing.

Bucket Count and Performance
Let’s consider a hash function that generates a hash based on the first two letters of
the string and can return 26 * 26 = 676 different hash keys. This is a purely hypothetical
example that I am using just for illustration purposes.

Assuming that the hash table can accommodate all 676 different hash buckets and
you have the data shown in Figure 4-2, you will need to traverse at most two rows in the
chain when you run a query that looks for a specific value.

Figure 4-2.  Hash table lookup: 676 buckets

Chapter 4 ■ Hash Indexes

44

The dotted arrows in Figure 4-2 illustrate the steps needed to look up the rows for
Ann. The process requires you to traverse two rows after you find the right hash bucket in
the table.

However, the situation changes if your hash table does not have enough buckets to
separate unique hash keys from each other. Figure 4-3 illustrates the situation when a
hash table has only 26 buckets and each of them stores multiple different hash keys. Now
the same lookup of the Ann row requires you to traverse the chain of nine rows total.

The same principle applies to the hash indexes where choosing an incorrect number
of buckets can lead to serious performance issues.

Let’s create two nondurable memory-optimized tables and populate them with
1,000,000 rows each, as shown in Listing 4-1. Both tables have the same schema with a
primary key constraint defined as the hash index. The number of buckets in the index
is controlled by the bucket_count property. Internally, however, SQL Server rounds the
provided value to the next power of 2, so the dbo.HashIndex_HighBucketCount table
would have 1,048,576 buckets in the index, and the dbo.HashIndex_LowBucketCount
table would have 1,024 buckets.

Listing 4-1.  Bucket_count and Performance: Creating Memory-Optimized Tables

create table dbo.HashIndex_LowBucketCount
(
 Id int not null
 constraint PK_HashIndex_LowBucketCount
 primary key nonclustered
 hash with (bucket_count=1000),
 Value int not null
)
with (memory_optimized=on, durability=schema_only);

create table dbo.HashIndex_HighBucketCount
(
 Id int not null
 constraint PK_HashIndex_HighBucketCount
 primary key nonclustered
 hash with (bucket_count=1000000),
 Value int not null
)

Figure 4-3.  Hash table lookup: 26 buckets

Chapter 4 ■ Hash Indexes

45

with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_HighBucketCount(Id, Value)
 select Id, Id
 from ids
 where Id <= 1000000;

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_LowBucketCount(Id, Value)
 select Id, Id
 from ids
 where Id <= 1000000;

Table 4-1 shows the execution time of the INSERT statements in my test environment.
As you can see, inserting data into the dbo.HashIndex_HighBucketCount table is about 35
times faster compared to the dbo.HashIndex_LowBucketCount counterpart.

Table 4-1.  Execution Time of INSERT Statements

dbo.HashIndex_HighBucketCount
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount
(1,024 Buckets)

1,122 ms 39,955 ms

Listing 4-2 shows the query that returns the bucket count and row chains
information using the sys.dm_db_xtp_hash_index_stats view. Keep in mind that this
view scans the entire table, which is time-consuming when the tables are large.

Listing 4-2.  Obtaining Information About Hash Indexes

select
 s.name + '.' + t.name as [Table]
 ,i.name as [Index]
 ,stat.total_bucket_count as [Total Buckets]
 ,stat.empty_bucket_count as [Empty Buckets]

Chapter 4 ■ Hash Indexes

46

 ,floor(100. * empty_bucket_count / total_bucket_count)
 as [Empty Bucket %]
 ,stat.avg_chain_length as [Avg Chain]
 ,stat.max_chain_length as [Max Chain]
from
 sys.dm_db_xtp_hash_index_stats stat
 join sys.tables t on
 stat.object_id = t.object_id
 join sys.indexes i on
 stat.object_id = i.object_id and
 stat.index_id = i.index_id
 join sys.schemas s on
 t.schema_id = s.schema_id

Figure 4-4 shows the output of the query. As you can see, the dbo.HashIndex_
HighBucketCount table has on average one row in the row chains, while the dbo.
HashIndex_LowBucketCount table has almost 1,000 rows per chain. It is worth noting
that even though the hash function used by In-Memory OLTP provides relatively good
random data distribution, some level of hash collision is still present.

The incorrect bucket count estimation and long row chains can significantly affect the
performance of both reader and writer queries. You have already seen the performance
impact for the insert operation. Now let’s look at a SELECT query.

Listing 4-3 shows the code that triggers 65,536 Index Seek operations in each
memory-optimized table. I wrote this query in a very inefficient way just to demonstrate
the impact of the long row chains.

Listing 4-3.  Bucket_count and Performance: Selecting Data in the Tables

declare
 @T table(Id int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Id)
 select Id from Ids;

Figure 4-4.  sys.dm_db_xtp_hash_index_stats output

Chapter 4 ■ Hash Indexes

47

select t.id, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.HashIndex_HighBucketCount h
 where h.Id = t.Id
) c;

select t.id, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.HashIndex_LowBucketCount h
 where h.Id = t.Id
) c;

You can confirm that the queries traversed the row chains 65,536 times by analyzing
the execution plan shown in Figure 4-5.

Table 4-2 shows the queries’ execution time in my environment where the query
against the dbo.HashIndex_LowBucketCount table was about 20 times slower.

While you can clearly see that underestimation of the bucket counts can degrade
system performance, overestimation is not good either. First, every bucket uses 8 bytes
to store the memory pointer, and a large number of unused buckets is a waste of system
memory. For example, defining the index with bucket_count=100000000 will introduce
134,217,728 buckets, which will require 128MB of RAM. This does not seem much in
the scope of a single index; however, it could become an issue as the number of indexes
increases.

Figure 4-5.  Execution plan of the queries

Table 4-2.  Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount
(1,024 Buckets)

301 ms 6,259 ms

Chapter 4 ■ Hash Indexes

48

Moreover, SQL Server needs to scan all buckets in the index when it performs an
Index Scan operation, and extra buckets add some overhead to the process. Listing 4-4
shows the queries that demonstrate this kind of overhead.

Listing 4-4.  Bucket_count and Performance: Index Scan Queries

select count(*)
from dbo.HashIndex_HighBucketCount
 with (index= PK_HashIndex_HighBucketCount)
option (maxdop 1);

select count(*)
from dbo.HashIndex_LowBucketCount
 with (index= PK_HashIndex_LowBucketCount)
option (maxdop 1);

Table 4-3 shows the execution time in my environment. As you see, the overhead of
scanning extra buckets is not significant; however, it still exists.

It is also worth noting that in the majority of cases, SQL Server 2016 will not scan the
hash index but rather scan the table heap with the Table Scan operator. I will discuss this
in more detail in Chapter 6.

Choosing the Right Bucket Count
Choosing the right number of buckets in a hash index is a tricky but important subject. To
make matters worse, you have to make the right decision at the design stage; the only way
to change the bucket_count value once a table is created is by altering the table, which
creates the new table object in the background.

In an ideal situation, you should have the number of buckets that would exceed the
cardinality (the number of unique keys) of the index. Obviously, you should take future
system growth and projected workload changes into consideration. It is not a good idea
to create an index based on the current data cardinality if you expect the system to handle
much more data in the future.

■■ Note  Microsoft suggests setting bucket_count to be between one and two times the
number of distinct values in the index. You can read more at https://docs.microsoft.
com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-

optimized-tables#configuring_bucket_count.

Table 4-3.  Execution Time of SELECT Statements (Empty Buckets Overhead)

dbo.HashIndex_HighBucketCount
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount
(1,024 Buckets)

51 ms 62 ms

http://dx.doi.org/10.1007/978-1-4842-2772-5_6
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count

Chapter 4 ■ Hash Indexes

49

Low-cardinality columns with a large number of duplicated values are usually bad
candidates for hash indexes. The same data values generate the same hash; therefore,
rows will be linked to long row chains. Obviously, there are always exceptions, and you
should analyze the queries and workload in your system, taking into consideration the
data modification overhead introduced by the long row chains.

In existing indexes, you can analyze the output of the sys.dm_db_xpt_hash_index_
stats view and code from Listing 4-2 to determine whether the number of buckets in
the index is sufficient. If the number of empty buckets is less than 10 percent of the total
number of buckets in the index, the bucket count is likely to be too low. Ideally, at least 33
percent of the buckets in the index should be empty.

With all that being said, it is often better to err on the side of caution and
overestimate rather than underestimate the number. Even though overestimation impacts
the performance of the Index Scan operation, this impact is much lower compared to the
one introduced by long row chains. Obviously, you need to remember that every bucket
uses 8 bytes of memory whether it is empty or not.

■■ Note  I will discuss In-Memory OLTP index design considerations and choices between
hash indexes and nonclustered indexes in the next chapter.

Hash Indexes and SARGability
In the database world, predicates are treated as SARGable (Search ARGument Able) when
they allow the Database Engine to utilize Index Seek operations during query execution.

Hash indexes have different SARGability rules than B-Tree indexes defined on
disk-based tables. They are efficient only in the case of a point-lookup equality search, which
allows SQL Server to calculate the corresponding hash value of the index key (or keys) and
find a bucket that references the desired chain of rows. SQL Server is unable to use Index
Seek operations with hash indexes in any other scenario, for example, with <, >, and
BETWEEN predicates. Evaluation of those predicates requires comparison of the index key
values, which cannot be done based on hash values.

In the case of composite hash indexes, SQL Server calculates the hash value for
the combined value of all key columns. A hash value calculated on a subset of the key
columns would be different, and therefore, a query should have equality predicates on all
key columns for the index to be useful.

This behavior is different from indexes on disk-based tables. Consider the situation
where you defined an index on (LastName, FirstName) columns. In the case of disk-based
tables, that index can be used for an Index Seek operation, regardless of whether
the predicate on the FirstName column is specified in the where clause of a query.
Alternatively, a composite hash index on a memory-optimized table requires queries to
have equality predicates on both LastName and FirstName in order to calculate a hash
value that allows for choosing the right hash bucket in the index.

Let’s create disk-based and memory-optimized tables with composite indexes on the
(LastName, FirstName) columns, populating them with the same data as in Listing 4-5.

Chapter 4 ■ Hash Indexes

50

Listing 4-5.  Composite Hash Index: Test Tables Creation

create table dbo.CustomersOnDisk
(
 CustomerId int not null identity(1,1),
 FirstName varchar(64) not null,
 LastName varchar(64) not null,
 Placeholder char(100) null,

 constraint PK_CustomersOnDisk
 primary key clustered(CustomerId)
);

create nonclustered index IDX_CustomersOnDisk_LastName_FirstName
on dbo.CustomersOnDisk(LastName, FirstName)
go

create table dbo.CustomersMemoryOptimized
(
 CustomerId int not null identity(1,1)
 constraint PK_CustomersMemoryOptimized
 primary key nonclustered
 hash with (bucket_count = 32768),
 FirstName varchar(64) not null,
 LastName varchar(64) not null,
 Placeholder char(100) null,

 index IDX_CustomersMemoryOptimized_LastName_FirstName
 nonclustered hash(LastName, FirstName)
 with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only)
go

-- Inserting cross-joined data for all first and last names 50 times
-- using GO 50 command in Management Studio
;with FirstNames(FirstName)
as
(
 select Names.Name
 from
 (
 values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
 ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Donny'),
 ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
 ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
 ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
 ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),

Chapter 4 ■ Hash Indexes

51

 ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
 ('Uri'),('Vincent')
) Names(Name)
)
,LastNames(LastName)
as
(
 select Names.Name
 from
 (
 values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
 ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
 ('Anderson'),('Jackson'),('White'),('Harris')
) Names(Name)
)
insert into dbo.CustomersOnDisk(LastName, FirstName)
 select LastName, FirstName
 from FirstNames cross join LastNames
go 50

insert into dbo.CustomersMemoryOptimized(LastName, FirstName)
 select LastName, FirstName
 from dbo.CustomersOnDisk;

For the first test, let’s run SELECT statements against both tables, specifying both
LastName and FirstName as predicates in the queries, as shown in Listing 4-6.

Listing 4-6.  Composite Hash Index: Selecting Data Using Both Index Columns as
Predicates

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where FirstName = 'Paul' and LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where FirstName = 'Paul' and LastName = 'White';

As you can see in Figure 4-6, SQL Server is able to use an Index Seek operation in
both cases.

Chapter 4 ■ Hash Indexes

52

In the next step, let’s check what happens if you remove the filter by FirstName from
the queries. Listing 4-7 shows the code.

Listing 4-7.  Composite Hash Index: Selecting Data Using the Leftmost Index Column
Only

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where LastName = 'White';

In the case of the disk-based index, SQL Server is still able to utilize an Index Seek
operation. This is not the case for the composite hash index defined on the
memory-optimized table. You can see the execution plans for the queries in Figure 4-7.

Figure 4-6.  Composite hash index: execution plans when queries use both index columns
as predicates

Chapter 4 ■ Hash Indexes

53

Statistics on Memory-Optimized Tables
SQL Server 2016 creates and automatically updates index- and column-level statistics
on memory-optimized tables. However, the tables created under database compatibility
levels lower than 130 (SQL Server 2016) would have the statistics NORECOMPUTE option
enabled, which prevents automatic statistics updates.

This situation may happen in two cases: either when memory-optimized tables were
created in SQL Server 2014 and later migrated to SQL Server 2016 or when SQL Server
2016 databases run under a lower compatibility level than 130.

Let’s look at this behavior and run the code from Listing 4-8. This code changes the
database compatibility level to 120 and creates the table dbo.Stats120. As the next step,
it switches the compatibility level back to 130 and creates another table, dbo.Stats130.
Finally, the code looks at the statistics properties for the table indexes.

Listing 4-8.  Statistics NORECOMPUTE and Compatibility Level

alter database current set compatibility_level=120;
go

create table dbo.Stats120
(
 Id int not null
 constraint PK_Stats120
 primary key nonclustered
 hash with (bucket_count=1024),
 Value int not null
)

Figure 4-7.  Composite hash index: execution plans when queries use the leftmost index
column only

Chapter 4 ■ Hash Indexes

54

with (memory_optimized=on, durability=schema_only);
go

alter database current set compatibility_level=130;
go

create table dbo.Stats130
(
 Id int not null
 constraint PK_Stats130
 primary key nonclustered
 hash with (bucket_count=1024),
 Value int not null
)
with (memory_optimized=on, durability=schema_only);
go

select
 sc.name + '.' + t.name as [Table]
 ,s.name as [Statistics]
 ,s.no_recompute
from
 sys.stats s join sys.tables t on
 s.object_id = t.object_id
 join sys.schemas sc on
 t.schema_id = sc.schema_id
where
 t.name like 'Stats%';

As you can see in Figure 4-8, the dbo.Stats120.PK_Stats120 statistics has the
NORECOMPUTE option enabled, which will prevent automatic statistics update for the
statistics. This is not the case for the dbo.Stats130.PK_Stats130 statistics, which has
been created under a database compatibility level of 130.

You can change the value of the NORECOMPUTE option and enable automatic statistics
update by manually updating the affected statistics with an UPDATE STATISTICS statement.
It is worth repeating that the statistics NORECOMPUTE option is controlled by the database
compatibility level at the time of table creation rather than by the automatic statistics update
setting. Statistics with the NORECOMPUTE=OFF option will be updated automatically regardless
of the compatibility level, assuming the Auto Update Statistics database option is enabled.

Figure 4-8.  Statistics NORECOMPUTE option

Chapter 4 ■ Hash Indexes

55

You should manually update all statistics on memory-optimized tables and enable
automatic statistics update after you migrate the database from SQL Server 2014. You can
achieve that by running the code shown in Listing 4-9. It generates UPDATE STATISTICS
commands for all statistics with the NORECOMPUTE=ON option and runs them using
dynamic SQL.

Listing 4-9.  Updating All Statistics with NORECOMPUTE=ON

declare
 @SQL nvarchar(max)

select
 @SQL = convert(nvarchar(max),
 (
 select
 N'update statistics ' as [text()]
 ,sc.name + N'.' + t.name as [text()]
 ,N'(' + s.name + N'); ' as [text()]
 from
 sys.stats s join sys.tables t on
 s.object_id = t.object_id
 join sys.schemas sc on
 t.schema_id = sc.schema_id
 where
 t.is_memory_optimized = 1 and
 s.no_recompute = 1
 for xml path('')
));

exec sp_executesql @SQL;

Missing or inaccurate statistics on memory-optimized tables can have a somewhat
smaller impact compared to disk-based tables. Indexes on memory-optimized tables
reference the actual data rows and, in the nutshell, are covering the queries. In-Memory
OLTP does not require Key Lookup operations to access the row data regardless of which
index is chosen. Nevertheless, incorrect cardinality estimations could affect the size of
the query memory grant and the choice of join type when a query is running through the
Interop Engine. All of that may lead to suboptimal execution plans and bad performance.

There is another, less obvious issue. Inaccurate statistics can introduce suboptimal
execution plans with the nested loop joins when SQL Server chooses inner and outer
inputs for the operator. As you know, the nested loop join algorithm processes the inner
input for every row from the outer input, and it is more efficient to put smaller input on the
outer side. Listing 4-10 shows the algorithm for the inner nested loop join as a reference.

Listing 4-10.  Inner Nested Loop Join Algorithm

for each row R1 in outer table
 for each row R2 in inner table
 if R1 joins with R2
 return join (R1, R2)

Chapter 4 ■ Hash Indexes

56

Missing statistics can lead to a situation where SQL Server chooses the inner and
outer inputs incorrectly, which can lead to highly inefficient plans.

Let’s create two tables under a database compatibility level of 120, populating them
with some data, as shown in Listing 4-11. As you know, statistics will be created with the
NORECOMPUTE=ON option, which prevents automatic statistics update.

Listing 4-11.  Missing Statistics and Inefficient Execution Plans: Table Creation

alter database current set compatibility_level=120;
go

create table dbo.T1
(
 ID int not null identity(1,1)
 primary key nonclustered hash
 with (bucket_count = 8192),
 T1Col int not null,
 Placeholder char(100) not null
 constraint DEF_T1_Placeholder
 default('1'),

 index IDX_T1Col
 nonclustered hash(T1Col)
 with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

create table dbo.T2
(
 ID int not null identity(1,1)
 primary key nonclustered hash
 with (bucket_count = 8192),
 T2Col int not null,
 Placeholder char(100) not null
 constraint DEF_T2_Placeholder
 default('2'),

 index IDX_T2Col
 nonclustered hash(T2Col)
 with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N3 as t2) -- 4,096 rows

Chapter 4 ■ Hash Indexes

57

,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.T1(T1Col)
 select 1 from Ids;

insert into dbo.T2(T2Col)
 select -1 from dbo.T1;

update dbo.T1 set T1Col = 2 where ID = 4096;
update dbo.T2 set T2Col = -2 where ID = 1;

The data in both tables is distributed unevenly. You can confirm this by running the
query in Listing 4-12. Figure 4-9 illustrates the data distribution in the tables.

Listing 4-12.  Missing Statistics and Inefficient Execution Plans: Checking Data
Distribution in the Tables

select 'T1' as [Table], T1Col as [Value], count(*) as [Count]
from dbo.T1
group by T1Col

union all

select 'T2' as [Table], T2Col as [Value], count(*) as [Count]
from dbo.T2
group by T2Col;

As the next step, let’s run two queries that join the data from the tables, as shown in
Listing 4-13. Both queries will return just a single row.

Listing 4-13.  Missing Statistics and Inefficient Execution Plans: Test Queries

select *
from dbo.T1 t1 join dbo.T2 t2 on
 t1.ID = t2.ID
where

Figure 4-9.  Missing statistics and inefficient execution plans: data distribution

Chapter 4 ■ Hash Indexes

58

 t1.T1Col = 2 and
 t2.T2Col = -1;

select *
from dbo.T1 t1 join dbo.T2 t2 on
 t1.ID = t2.ID
where
 t1.T1Col = 1 and
 t2.T2Col = -2

As you can see in Figure 4-10, SQL Server generates identical execution plans for
both queries using the dbo.T1 table in the outer part of the join. This plan is very efficient
for the first query; there is only one row with T1Col = 2. Therefore, SQL Server had to
perform an inner input lookup just once. Unfortunately, this is not the case for the second
query, which leads to 4,095 Index Seek operations on the dbo.T2 table.

Figure 4-10.  Missing statistics and inefficient execution plans: execution plans

Chapter 4 ■ Hash Indexes

59

Let’s update the statistics on both tables, as shown in Listing 4-14.

Listing 4-14.  Missing Statistics and Inefficient Execution Plans: Updating Statistics

update statistics dbo.T1;
update statistics dbo.T2;

dbcc show_statistics('dbo.T1','IDX_T1Col');
dbcc show_statistics('dbo.T2','IDX_T2Col');

Figure 4-11 illustrates that the statistics have been updated.

Now, if you run the queries from Listing 4-13 again, SQL Server can generate an
efficient execution plan for the second query, as shown in Figure 4-12.

Figure 4-11.  Missing statistics and inefficient execution plans: index statistics after update

Chapter 4 ■ Hash Indexes

60

You should remember this behavior when you use natively compiled modules,
which have the queries’ execution plans embedded into the code. SQL Server does
not recompile the modules when the statistics are updated, and you should manually
recompile them either by altering them or by using the sp_recompile stored procedure
when the data distribution has significantly changed.

■■ Note  I will talk about native compilation and the optimization of natively compiled
modules in Chapter 9.

Summary
Hash indexes consist of an array of hash buckets, each of which stores the pointer to the
chain of rows with the same index key column hash. Hash indexes help to optimize point-
lookup operations when queries search for the rows using equality predicates. In the case
of composite hash indexes, the query should have equality predicates on all key columns
for the index to be useful.

Figure 4-12.  Missing statistics and inefficient execution plans: execution plans after
statistics update

http://dx.doi.org/10.1007/978-1-4842-2772-5_9

Chapter 4 ■ Hash Indexes

61

Choosing the right bucket count is extremely important. Underestimations lead
to long row chains, which could seriously degrade the performance of the queries.
Overestimations increase memory consumption and decrease the performance of the
index scans. Nevertheless, in many cases, it is better to slightly overestimate rather than to
underestimate the value.

Low-cardinality columns lead to the long row chains and are usually bad candidates
for hash indexes.

You should analyze index cardinality and consider future system growth when
choosing the right bucket count. Ideally, you should have at least 33 percent of buckets
empty. You can get information about buckets and row chains with the sys.dm_db_xtp_
hash_index_stats view.

SQL Server 2016 creates and automatically updates statistics on the indexes on
memory-optimized tables; however, statistics created in databases with a compatibility
level less than 130 have the NORECOMPUTE=ON option enabled. You should update statistics
manually with the UPDATE STATISTICS statement to enable automatic statistics update
for such tables.

63© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_5

CHAPTER 5

Nonclustered Indexes

This chapter discusses nonclustered indexes, which is the second type of indexes
supported by the In-Memory OLTP Engine. It shows how to define nonclustered indexes,
talks about their SARGability rules, and explains their internal structure.

Finally, the chapter discusses several indexing strategies and design considerations
for memory-optimized tables.

Working with Nonclustered Indexes
Nonclustered indexes are another type of index supported by the In-Memory OLTP Engine.
In contrast to hash indexes, which are optimized to support point-lookup equality searches,
nonclustered indexes help you search data based on a range of values. They have a
somewhat similar structure to regular indexes on disk-based tables. They are not exactly the
same, however, and I will discuss their internal implementation in depth later in this chapter.

Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and the documentation and
whitepapers for that version used the term range indexes to reference them. However, in the
production release of SQL Server 2014, Microsoft changed the terminology to nonclustered
indexes. Nevertheless, you can still find the term range indexes in documentation and in data
management views.

That terminology can be confusing because hash indexes are also not clustered. In
fact, the concepts of clustered indexes cannot be applied to In-Memory OLTP. Data
rows are not stored in any particular order in memory.

It is also worth mentioning that the minimal index_id value of In-Memory OLTP
indexes is 2, which corresponds to nonclustered indexes in disk-based tables.

TERMINOLOGY ISSUE

Chapter 5 ■ Nonclustered Indexes

64

Creating Nonclustered Indexes
Nonclustered indexes are created inline as part of the CREATE TABLE statement. The
syntax is similar to hash index creation; however, you should omit the keyword HASH, and
you do not need to specify the number of buckets in the index properties.

The code in Listing 5-1 creates a memory-optimized table with two nonclustered
indexes, one composite and another on the single column.

Listing 5-1.  Creating a Table with Two Nonclustered Indexes

create table dbo.Customers
(
 CustomerId int identity(1,1) not null
 constraint PK_Customers
 primary key nonclustered
 hash with (bucket_count=1024),
 FirstName varchar(32) not null,
 LastName varchar(64) not null,
 FullName varchar(97) not null,

 index IDX_LastName_FirstName
 nonclustered(LastName, FirstName),

 index IDX_FullName
 nonclustered(FullName)
)
with (memory_optimized=on, durability=schema_only);

Using Nonclustered Indexes
Similar to B-Tree indexes in disk-based tables, the data in nonclustered indexes is
sorted according to the value of index key columns. As a result, nonclustered indexes
are beneficial in a large number of use cases. They can lead to an Index Seek operation
in scenarios when query predicates allow SQL Server to locate and isolate a subset
of the index keys for processing. With very few exceptions, the SARGability rules for
nonclustered indexes match the rules for indexes defined on disk-based tables.

Listing 5-2 shows several queries against the dbo.Customers table. SQL Server is able
to use Index Seek operations with all of them.

Listing 5-2.  Queries That Lead to Index Seek Operations

-- Point-Lookup specifying all columns in the index
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White' and FirstName = 'Paul';

Chapter 5 ■ Nonclustered Indexes

65

-- Point-lookup using leftmost index column
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White';

-- Using ">", ">=", "<", "<=" comparison
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName > 'White';

-- Prefix Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like 'Wh%';

-- IN list
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName in ('White','Isakov');

Similar to B-Tree indexes, an Index Seek operation is impossible when query
predicates do not allow you to isolate a subset of the index keys for processing. Listing 5-3
shows several examples of such queries.

Listing 5-3.  Queries That Lead to Index Scan Operations

-- Omitting left-most index column(s)
select CustomerId, FirstName, LastName
from dbo.Customers
where FirstName = 'Paul';

-- Substring Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like '%hit%';

-- Functions
select CustomerId, FirstName, LastName
from dbo.Customers
where len(LastName) = 5;

As the opposite of B-Tree indexes on disk-based tables, nonclustered indexes are
unidirectional, and SQL Server is unable to scan index keys in the opposite order of how
they were sorted. You should keep this behavior in mind when you define an index and
choose the sorting order for the columns.

Chapter 5 ■ Nonclustered Indexes

66

Let’s illustrate that with an example; we’ll create a disk-based table with the same
structure as dbo.Customers and populate both tables with the same data. Listing 5-4
shows the code to do this.

Listing 5-4.  Nonclustered Indexes and Sorting Order: Disk-Based Table Creation

create table dbo.Customers_OnDisk
(
 CustomerId int identity(1,1) not null,
 FirstName varchar(32) not null,
 LastName varchar(64) not null,
 FullName varchar(97) not null,

 constraint PK_Customers_OnDisk
 primary key clustered(CustomerId)
);

create nonclustered index IDX_Customers_OnDisk_LastName_FirstName
on dbo.Customers_OnDisk(LastName, FirstName);

create nonclustered index IDX_Customers_OnDisk_FullName
on dbo.Customers_OnDisk(FullName);
go

;with FirstNames(FirstName)
as
(
 select Names.Name
 from
 (
 values('Andrew'),('Andy'),('Anton'),('Ashley')
 ,('Boris'),('Brian'),('Cristopher'),('Cathy')
 ,('Daniel'),('Don'),('Edward'),('Eddy'),('Emy')
 �,('Frank'),('George'),('Harry'),('Henry'),('Ida')
 ,('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy')
 ,('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
 ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
 ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
 ('Uri'),('Victor')
) Names(Name)
)
,LastNames(LastName)
as

Chapter 5 ■ Nonclustered Indexes

67

(
 select Names.Name
 from
 (
 values('Smith'),('Johnson'),('Williams'),('Jones')
 ,('Brown'),('Davis'),('Miller'),('Wilson')
 ,('Moore'),('Taylor'),('Anderson'),('Jackson')
 ,('White'),('Isakov')
) Names(Name)
)
insert into dbo.Customers(LastName, FirstName, FullName)
 select LastName, FirstName, FirstName + ' ' + LastName
 from FirstNames cross join LastNames;

insert into dbo.Customers_OnDisk(LastName, FirstName, FullName)
 select LastName, FirstName, FullName
 from dbo.Customers;

Let’s run the queries that select several rows in ascending order, which matches the
index sorting order. Listing 5-5 shows the queries.

Listing 5-5.  Nonclustered Indexes and Sorting Order: Selecting Data in the Same Order
with the Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName ASC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName ASC;

Figure 5-1 shows the execution plans for the queries. SQL Server scans the indexes
starting with the lowest key and stops after it reads three rows. The execution plans
are similar for both queries with the exception of the required Key Lookup operation
with disk-based data. SQL Server uses it to obtain the values of the FirstName and
LastName columns from the clustered index of the table. Key Lookup is not required
with memory-optimized tables where the index pointers are part of the actual data rows
and the indexes are covering all in-row columns in the queries.

Chapter 5 ■ Nonclustered Indexes

68

The situation changes if you need to sort the output in descending order, as shown in
Listing 5-6.

Listing 5-6.  Nonclustered Indexes and Sorting Order: Selecting Data in the Opposite
Order with Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName DESC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName DESC;

As you can see in Figure 5-2, SQL Server is able to scan the disk-based table index
in the opposite order of how it was defined because of the bidirectional nature of B-Tree
indexes. However, this is not the case for memory-optimized tables where indexes are
unidirectional. SQL Server decides to scan the table and sort the data afterward.

Figure 5-1.  Execution plans when ORDER BY condition matches the index sorting order

Chapter 5 ■ Nonclustered Indexes

69

Finally, index statistics behavior, which I discussed in the previous chapter, still
applies to the nonclustered indexes. SQL Server creates statistics at the time of index
creation; however, the automatic statistics update behavior depends on the database
compatibility level when the tables were created.

Nonclustered Index Internals
Nonclustered indexes use a lock- and latch-free variation of the B-Tree, called a Bw-Tree,
which was designed by Microsoft Research in 2011. Let’s look at the Bw-Tree structure
in detail.

Bw-Tree Overview
Similar to B-Tree, index pages in a Bw-Tree contain a set of ordered index key values.
However, Bw-Tree pages do not have a fixed size, and they are unchangeable after they
are built. The maximum page size, however, is 8KB.

Rows from a leaf level of the nonclustered index contain the pointers to the data row
chains with the same index key values. This works in a similar manner to hash indexes, when
multiple rows and/or versions of a row are linked together. Each index in the table adds a
pointer to the index pointer array in the row, regardless of its type: hash or nonclustered.

Figure 5-2.  Execution plans when ORDER BY condition is the opposite of the index sorting
order

Chapter 5 ■ Nonclustered Indexes

70

Root and intermediate levels in nonclustered indexes are called internal pages.
Similar to B-Tree indexes, internal pages point to the next level in the index. However,
instead of pointing to the actual data page, internal pages use a logical page ID (PID),
which is a position (offset) in a separate array-like structure called a mapping table. In
turn, each element in the mapping table contains a pointer to the actual index page.
Mapping tables allow In-Memory OLTP to avoid rebuilding internal pages when the
next-level pages they reference need to be changed (more about this later in the chapter).
Only the mapping table pointer is updated in that case.

Figure 5-3 shows an example of a nonclustered index and a mapping table. Each
index row from the internal page stores the highest key value on the next-level page and
PID. This is different from a B-Tree index, where intermediate- and root-level index rows
store the lowest key value of the next-level page instead. Another difference is that the
pages in a Bw-Tree are not linked in a double-linked list. Each page knows the PID of the
next page on the same level and does not know the PID of the previous page. Even though
it appears as a pointer (arrow) in Figure 5-3, that link is done through the mapping table,
similar to links to pages on the next level.

Even though a Bw-Tree looks similar to a B-Tree, there is one conceptual difference:
the leaf level of a disk-based B-Tree index consists of separate index rows for each data
row in the index. If multiple data rows have the same key value, the index would have
multiple leaf-level rows with the same index key stored.

Alternatively, in-memory nonclustered indexes store one index row (pointer) to the
row chain that includes all the data rows that have the same key value. Only one index
row (pointer) per key value is stored in the index. You can see this in Figure 5-3, where the
leaf level of the index has single rows for the key values of Ann and Nancy, even though the
row chain includes more than one data row for each value.

Figure 5-3.  Nonclustered index structure

Chapter 5 ■ Nonclustered Indexes

71

■■ Tip  You can compare the structure of B-Tree and Bw-Tree indexes by looking at
Figures 3-1 and 3-2 from Chapter 3, which show clustered and nonclustered B-Tree indexes
on disk-based tables.

Index Pages and Delta Records
As mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL
Server builds a new version of the page when it needs to be updated and replaces the
page pointer in the mapping table, which avoids changing internal pages that reference
an old (obsolete) page.

Every time SQL Server needs to change a leaf-level index page, it creates one or two
delta records that represent the changes. INSERT and DELETE operations generate a single
insert or delete delta record, while an UPDATE operation generates two delta records,
deleting old value and inserting new value. Delta records for the same index page are
linked through a chain of memory pointers with the last pointer to the actual index page.
SQL Server also replaces a pointer in the mapping table with the address of the first delta
record in the chain.

Figure 5-4 shows an example of a leaf-level page and delta records if the following
actions occurred in this sequence: the R1 index row is updated, the R2 row is deleted, and
the R3 row is inserted.

■■ Note  The internal implementation of the In-Memory OLTP Engine guarantees that
multiple sessions cannot simultaneously update memory pointers in the various In-Memory
OLTP objects, thereby overwriting each other’s changes. I will cover this process in detail in
Appendix A.

The internal and leaf pages of nonclustered indexes consist of two areas: a header
and data. The header area includes information about the page such as the following:

•	 PID: The position (offset) in the mapping table

•	 Page type: The type of page, such as leaf, internal, delta, or special

•	 Right-page PID: The position (offset) of the next page in the
mapping table

Figure 5-4.  Delta records and nonclustered index leaf page

http://dx.doi.org/10.1007/978-1-4842-2772-5_3#Fig1
http://dx.doi.org/10.1007/978-1-4842-2772-5_3#Fig2
http://dx.doi.org/10.1007/978-1-4842-2772-5_3

Chapter 5 ■ Nonclustered Indexes

72

•	 Height: The number of levels from the current page to the leaf
level of the index

•	 Key values: The number of key values (index rows) stored on the
page

•	 Delta record statistics: The number of delta records and space
used by the delta key values

•	 Max key value: The max value of a key on the page

The data area of the page includes either two or three arrays depending on the index
key data types. The arrays are as follows:

•	 Values: An array of 8-byte pointers. Internal pages store the PID of
next-level pages. Leaf-level pages store pointers to the first row in
the row chain with the corresponding key value. It is worth noting
that even though the PID requires 4 bytes to store a value, SQL
Server uses 8-byte elements to preserve the same page structure
between internal and leaf pages.

•	 Keys: An array of key values stored on the page.

•	 Offsets: An array of 2-byte offsets where the individual key values
in the keys array start. Offsets are stored only if the keys have
variable-length data.

Delta records, in a nutshell, are one-record index data pages. The structure of delta
data pages is similar to the structure of internal and leaf pages. However, instead of arrays
of values and keys, delta data pages store operation code (insert or delete) and a single
key value and pointer to the first data row in a row chain.

Figure 5-5 shows an example of a leaf-level index page with an insert delta record for
Bob. The delta record points to the leaf-level index page to which the value Bob logically
belongs, and it also has the pointer to the row chain of the data rows with the index key
values of Bob. Conceptually, you can think about an insert delta record as the leaf-level
index row, which is physically separated from the leaf-level index page. A delete delta
record, on the other hand, indicates that the leaf-level index row has been deleted.

Figure 5-5.  A leaf-level index page with an insert delta record

Chapter 5 ■ Nonclustered Indexes

73

SQL Server needs to traverse and analyze all delta records when accessing an index
page. As you can guess, a long chain of delta records affects performance. When this is
the case, SQL Server consolidates delta records and rebuilds an index page, creating a
new one. The newly created page has the same PID and replaces the old page, which is
marked for garbage collection. Replacement of the page is accomplished by changing a
pointer in the mapping table. SQL Server does not need to change internal pages because
they use the mapping table to reference leaf-level pages.

The process of rebuilding is triggered at the moment a new delta record is created
for pages that already have 16 delta records in a chain. The action described by the delta
record, which triggers the rebuild, is incorporated into the newly created page.

Two other processes can create new or delete existing index pages, in addition to
delta records consolidation. The first process, page splitting, occurs when a page does not
have enough free space to accommodate a new data row. Another process, page merging,
occurs when a delete operation leaves an index page less than 10 percent from the
maximum page size, which is 8KB now, or when an index page contains just a single row.

■■ Note  I will cover the page splitting and page merging processes in depth in Appendix B.

Obtaining Information About Nonclustered
Indexes
In addition to the sys.dm_db_xtp_hash_index_stats view, which was discussed in
Chapter 4, SQL Server provides two other views to obtain information about indexes on
memory-optimized tables. Those views provide the data collected since the memory-
optimized tables were loaded into memory, which occurs at database startup.

You can obtain information about index access methods and ghost rows in both
hash and nonclustered indexes with the sys.dm_db_xtp_index_stats view. The notable
columns in the view are the following:

•	 xtp_object_id corresponds to the internal ID of the In-Memory
OLTP object. This value may change when you alter the table,
which rebuilds the table in the background.

•	 scans_started shows the number of times that row chains in the
index were scanned. Because of the nature of the index, every
operation, such as SELECT, INSERT, UPDATE, and DELETE, requires
SQL Server to scan a row chain and increment this column.

•	 rows_returned represents the cumulative number of rows
returned to the next operator in the execution plan. It does
not necessarily match the number of rows returned to a client
because further operators in the execution plan can change it.

•	 rows_touched represents the cumulative number of rows
accessed in the index.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4

Chapter 5 ■ Nonclustered Indexes

74

•	 rows_expired shows the number of detected stale rows. I will
discuss this in greater detail when I talk about the garbage
collection process in Chapter 11.

•	 rows_expired_removed returns the number of stale rows that
have been unlinked from the index row chains. I will also discuss
this in more detail when I talk about garbage collection.

Listing 5-7 shows the query that returns the information about indexes defined on
the dbo.Customers table.

Listing 5-7.  Querying the sys.dm_db_xtp_index_stats View

select
 s.name + '.' + t.name as [table]
 ,i.index_id
 ,i.name as [index]
 ,i.type_desc as [type]
 ,st.scans_started
 ,st.rows_returned
 ,iif(st.scans_started = 0, 0,
 floor(st.rows_returned / st.scans_started))
 as [rows per scan]
from
 sys.dm_db_xtp_index_stats st join sys.tables t on
 st.object_id = t.object_id
 join sys.indexes i on
 st.object_id = i.object_id and
 st.index_id = i.index_id
 join sys.schemas s on
 s.schema_id = t.schema_id
where
 s.name = 'dbo' and t.name = 'Customers'

Figure 5-6 illustrates the output of the query. A large number of rows per scan can
indicate heavy index scans, which can be the sign of a suboptimal indexing strategy and/
or poorly written queries.

It is also important to note that the view returns the row for the table heap object
(index_id=0). This heap allocates the memory for data rows in the table. In-Memory
OLTP accesses this heap at the time of Table Scan operations. I will discuss it in detail in
the next chapter.

Figure 5-6.  Output from the sys.dm_db_xtp_index_stats view

http://dx.doi.org/10.1007/978-1-4842-2772-5_11

Chapter 5 ■ Nonclustered Indexes

75

■■ Note  You can read more about the sys.dm_db_xtp_index_stats view at https://
docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-

views/sys-dm-db-xtp-index-stats-transact-sql.

The sys.dm_db_xtp_nonclustered_index_stats view returns information about
nonclustered indexes. It includes information about the total number of pages in the
index along with page splits, merges, and consolidation-related statistics.

Listing 5-8 shows information about nonclustered indexes defined on the dbo.
Customers table. Figure 5-7 shows the output of the query.

Listing 5-8.  Querying the sys.dm_db_xtp_nonclustered_index_stats View

select
 s.name + '.' + t.name as [table]
 ,i.index_id
 ,i.name as [index]
 ,i.type_desc as [type]
 ,st.delta_pages
 ,st.leaf_pages
 ,st.internal_pages
 ,st.leaf_pages + st.delta_pages + st.internal_pages
 as [total pages]
from
 sys.dm_db_xtp_nonclustered_index_stats st
 join sys.tables t on
 st.object_id = t.object_id
 join sys.indexes i on
 st.object_id = i.object_id and
 st.index_id = i.index_id
 join sys.schemas s on
 s.schema_id = t.schema_id
where
 s.name = 'dbo' and t.name = 'Customers'

■■ Note  You can read more about the sys.dm_db_xtp_nonclustered_index_stats view
at https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-
management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql.

Figure 5-7.  Output from the sys.dm_db_xtp_nonclustered_index_stats view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql

Chapter 5 ■ Nonclustered Indexes

76

Index Design Considerations
With the exception of the unidirectional nature of Bw-Tree indexes, nonclustered indexes
on memory-optimized tables behave similarly to the indexes on disk-based tables. They
also cover all in-row columns in the table, which simplifies the indexing process.

There are a couple of aspects of their behavior, however, that I want to mention.

Data Modification Overhead
Indexes on memory-optimized tables introduce data modification overhead similar to
indexes on disk-based tables. In-Memory OLTP needs to maintain multiple index row
chains along with internal index structures, such as hash and mapping tables and internal
and leaf nonclustered index pages.

Let’s look at this overhead in detail. The code in Listing 5-9 creates a disk-based table
and populates it with 65,536 rows. Next, it creates two memory-optimized tables, with two
and eight indexes, respectively.

Listing 5-9.  Insert Overhead: Table Creations

create table dbo.UpdateOverheadDisk
(
 Id int not null,
 IndexedCol int not null,
 NonIndexedCol int not null,
 Col3 int not null,
 Col4 int not null,
 Col5 int not null,
 Col6 int not null,
 Col7 int not null,
 Col8 int not null,

 constraint PK_UpdateOverheadDisk
 primary key clustered(ID)
);

create nonclustered index IDX_UpdateOverheadDisk_IndexedCol
on dbo.UpdateOverheadDisk(IndexedCol);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.UpdateOverheadDisk(ID,IndexedCol,NonIndexedCol,Col3
,Col4,Col5,Col6,Col7,Col8)
 select Id, Id, Id, Id, Id, Id, Id, Id, Id from Ids;
go

Chapter 5 ■ Nonclustered Indexes

77

create table dbo.UpdateOverheadMemory
(
 Id int not null
 constraint PK_UpdateOverheadMemory
 primary key nonclustered
 hash with (bucket_count=2097152),
 IndexedCol int not null,
 NonIndexedCol int not null,
 Col3 int not null,
 Col4 int not null,
 Col5 int not null,
 Col6 int not null,
 Col7 int not null,
 Col8 int not null,

 index IDX_IndexedCol nonclustered(IndexedCol)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.UpdateOverhead8Idx
(
 Id int not null
 constraint PK_UpdateOverhead8Idx
 primary key nonclustered
 hash with (bucket_count=2097152),
 IndexedCol int not null,
 NonIndexedCol int not null,
 Col3 int not null,
 Col4 int not null,
 Col5 int not null,
 Col6 int not null,
 Col7 int not null,
 Col8 int not null,

 index IDX_IndexedCol nonclustered(IndexedCol),
 index IDX_Col3 nonclustered(Col3),
 index IDX_Col4 nonclustered(Col4),
 index IDX_Col5 nonclustered(Col5),
 index IDX_Col6 nonclustered(Col6),
 index IDX_Col7 nonclustered(Col7),
 index IDX_Col8 nonclustered(Col8)
)
with (memory_optimized=on, durability=schema_only);

Chapter 5 ■ Nonclustered Indexes

78

Let’s insert the data into both memory-optimized tables using the code from
Listing 5-10.

Listing 5-10.  Insert Overhead: Inserting Data into Memory-Optimized Tables

insert into dbo.UpdateOverheadMemory(ID,IndexedCol,NonIndexedCol,Col3
 ,Col4,Col5,Col6,Col7,Col8)
 select ID,IndexedCol,NonIndexedCol,Col3,Col4,Col5,Col6,Col7,Col8
 from dbo.UpdateOverheadDisk;

insert into dbo.UpdateOverhead8Idx(ID,IndexedCol,NonIndexedCol,Col3
 ,Col4,Col5,Col6,Col7,Col8)
 select ID,IndexedCol,NonIndexedCol,Col3,Col4,Col5,Col6,Col7,Col8
 from dbo.UpdateOverheadDisk;

The execution times of the INSERT statements in my environment are 138 ms and
613 ms, respectively. As you can see, maintenance of the six extra indexes in the dbo.
UpdateOverhead8Idx table added significant overhead to the operation.

There is also overhead during UPDATE operations; however, it is different compared
to disk-based tables. Nonclustered indexes on disk-based tables are the separate data
structures that store the copy of the data from the table. SQL Server maintains all those
copies; therefore, the update operation modifies all indexes where updated columns were
present. There is no overhead, however, when you update the columns that were not
present in nonclustered indexes.

In-Memory OLTP, on the other hand, always generates the new row objects
regardless of what columns were updated. SQL Server maintains all index row chains,
which leads to overhead even when nonindexed columns were modified.

Let’s look at an example and perform two updates of the disk-based dbo.
UpdateOverheadDisk table, modifying indexed and nonindexed columns there. Both
operations change the value of integer fixed-length columns and do not lead to page
splits. Listing 5-11 shows the code.

Listing 5-11.  Update Overhead: Disk-Based Table Update

update dbo.UpdateOverheadDisk
set IndexedCol += 1;

update dbo.UpdateOverheadDisk
set NonIndexedCol += 1;

Chapter 5 ■ Nonclustered Indexes

79

Figure 5-8 illustrates the execution plan and execution time of both statements.
As you can see, updating the indexed column forced SQL Server to modify both indexes,
and it took significantly longer than updating the nonindexed column.

Figure 5-8.  Execution plans and times for disk-based table update

Listing 5-12 shows the same UPDATE statements for the memory-optimized table.
Both statements generated the new data row objects and had to maintain both indexes on
the table. That overhead always exists regardless of what columns were updated.

Listing 5-12.  Update Overhead: Memory-Optimized Table Update

update dbo.UpdateOverheadMemory
set IndexedCol += 1;

update dbo.UpdateOverheadMemory
set NonIndexedCol += 1;

Figure 5-9 illustrates the execution plan and execution time of the statements.

Chapter 5 ■ Nonclustered Indexes

80

Indexes on memory-optimized tables can also delay the garbage collection. In-
Memory OLTP needs to unlink old stale rows from all the index chains, which may take
longer when a row is included into the multiple indexes.

■■ Note  I will discuss the garbage collection process in depth in Chapter 11.

As you can see, unnecessary indexes introduce overhead into the system. You should
avoid them and create the minimally required set of indexes to support your workload.

Figure 5-9.  Execution plans and times for memory-optimized table update

http://dx.doi.org/10.1007/978-1-4842-2772-5_11

Chapter 5 ■ Nonclustered Indexes

81

Hash Indexes vs. Nonclustered Indexes
As you already know, hash indexes are useful only for point-lookup searches in cases
when queries use equality predicates on all index columns. Nonclustered indexes, on the
other hand, can be used in a much wider scope, which often makes the choice obvious.
You should use nonclustered indexes when your queries benefit from scenarios other
than point-lookups.

The situation is less obvious in the case of point-lookups. With the hash indexes,
SQL Server can locate the hash bucket, which is the entry point to the data row chain, in a
single step by calling the hash function and calculating the hash value. With nonclustered
indexes, SQL Server must traverse the Bw-Tree to find a leaf page, and the number of
steps depends on the height of the index and the number of delta records there.

Even though nonclustered indexes require more steps to find an entry point to
the data row chain, the chain can be smaller compared to hash indexes. Row chains
in nonclustered indexes are built based on unique index key values. In hash indexes,
row chains are built based on a nonunique hash key and can be larger because of hash
collisions, especially when the bucket_count value is insufficient.

Let’s compare hash and nonclustered index performance in a point-lookup scenario.
Listing 5-13 creates four tables of the same structure. Three of them have hash indexes
defined on the Value column using a different bucket_count value. The fourth table has
a nonclustered index defined on the same column instead. Finally, the code populates all
tables with the same data.

Listing 5-13.  Hash and Nonclustered Indexes’ Point Lookup Performance: Tables
Creation

create table dbo.Hash_131072
(
 Id int not null
 constraint PK_Hash_131072
 primary key nonclustered
 hash with (bucket_count=131072),
 Value int not null,

 index IDX_Value hash(Value)
 with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_16384
(
 Id int not null
 constraint PK_Hash_16384
 primary key nonclustered
 hash with (bucket_count=16384),
 Value int not null,

Chapter 5 ■ Nonclustered Indexes

82

 index IDX_Value hash(Value)
 with (bucket_count=16384)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_1024
(
 Id int not null
 constraint PK_Hash_1014
 primary key nonclustered
 hash with (bucket_count=1024),
 Value int not null,

 index IDX_Value hash(Value)
 with (bucket_count=1024)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.NonClusteredIdx
(
 Id int not null
 constraint PK_NonClusteredIdx
 primary key nonclustered
 hash with (bucket_count=131072),
 Value int not null,

 index IDX_Value nonclustered(Value)
)
with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Hash_131072(Id,Value)
 select Id, Id
 from ids
 where Id <= 75000;

insert into dbo.Hash_16384(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

Chapter 5 ■ Nonclustered Indexes

83

insert into dbo.Hash_1024(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

insert into dbo.NonClusteredIdx(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

Different numbers of buckets led to the different index row chain sizes in the indexes.
In this case, the dbo.Hash_131072, dbo.Hash_16384, and dbo.Hash_1024 tables have on
average 1, 4, and 73 rows per chain, respectively.

■■ Tip  You can analyze the hash index properties using the sys.dm_db_xtp_hash_index_stats
view and the code from Listing 4-2 in Chapter 4.

As the next step, let’s compare point-lookup performance using the code from
Listing 5-14. This code triggers 75,000 point-lookup selects against each table.

Listing 5-14.  Hash and Nonclustered Indexes’ Point Lookup Performance: Selecting Data

declare
 @T table(Value int not null primary key)

insert into @T(Value)
 select Id from dbo.Hash_131072;

select count(*)
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_131072 h
 where h.Value = t.Value
) c
where c.Cnt > 0;

select count(*)
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_16384 h
 where h.Value = t.Value
) c
where c.Cnt > 0;

http://dx.doi.org/10.1007/978-1-4842-2772-5_4

Chapter 5 ■ Nonclustered Indexes

84

select count(*)
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_1024 h
 where h.Value = t.Value
) c
where c.Cnt > 0;

select count(*)
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.NonClusteredIdx h
 where h.Value = t.Value
) c
where c.Cnt > 0;

Table 5-1 shows the execution time of the queries in my environment. With a
sufficient number of buckets, hash indexes outperform nonclustered indexes. However,
an insufficient number of buckets and long row chains significantly degrade their
performance, making them less efficient than nonclustered indexes.

Table 5-1.  Execution Time of Queries

Hash_131072 Hash_16384 Hash_1024 NonClusteredIdx

Average Index Row
Chain Size

1 4 73 N/A

Execution Time 62 ms 74 ms 129 ms 78 ms

In the end, it all depends on a correct bucket_count estimation. Unfortunately, the
volatility of the data makes this task complicated and requires you to factor the future
data growth into analysis.

In some cases, when data is relatively static, you can create hash indexes,
overestimating the number of buckets there. Consider the catalog entities, for example,
the Customers table and the CustomerId and Phone columns in it. Hash indexes on those
columns would improve the performance of point-lookup searches and joins. Even
though the customer base is growing over time, that growth rate is usually not excessive,
and reserving one million empty buckets could be sufficient for a long time. It will use
about 8MB of memory per index, which could be acceptable in most cases.

Chapter 5 ■ Nonclustered Indexes

85

Choosing the hash index for the OrderId column in the Orders table, on the other
hand, is more dangerous. Load growth and changes in data retention rules can make the
original bucket_count value insufficient. This still can be acceptable if you are planning
to monitor the system and can afford the downtime while rebuilding the index; however,
nonclustered index would be the safer choice in this scenario.

Memory requirements are another factor to consider. With the hash indexes,
memory usage depends on the number of buckets. The amount of memory required
for the nonclustered indexes depends on the size of the index key and index cardinality
(uniqueness of index key values). For example, if a table has a varchar column with
1,000,000 unique values of 100 bytes each, the nonclustered index on that column
would require about 800MB to support a Bw-Tree structure and store key values on
internal and leaf index pages. Alternatively, a hash index with 2,097,152 buckets will use
just 16MB of memory.

To summarize, for point-lookup and equality joins, create the hash indexes only
when you can correctly estimate the number of buckets, factoring future data growth into
the analysis. You should also monitor them and can afford the downtime rebuilding the
indexes when bucket_count becomes insufficient. Otherwise, use nonclustered indexes,
which are the safer choice and do not depend on the bucket count.

Summary
Nonclustered indexes are the second type of indexes supported by the In-Memory OLTP
Engine. They have similar SARGability rules, with the B-Tree indexes defined on disk-based
tables with exception of the scans in the opposite order to the index sorting order.

Internally, nonclustered indexes use a lock- and latch-free variation of a B-Tree,
called a Bw-Tree, which consists of internal and leaf data pages referencing each other
through the mapping table. Leaf data pages store one row per each individual key value,
with a pointer to the chain of data rows with the same key.

SQL Server never updates index pages. Any changes are referenced through the delta
records that correspond to individual INSERT and DELETE operations on the page. SQL
Server consolidates the large chains of delta records and performs splitting and merging
of the data pages when needed. All of those processes create the new data pages, marking
the old ones for garbage collection.

Indexes on memory-optimized tables introduce data modification overhead like
indexes on disk-based tables. SQL Server must maintain multiple index row chains when
you insert or update the data. You should avoid defining an excessive number of indexes
and create a minimally required set of indexes to support the workload.

The performance of hash indexes greatly depends on the bucket_count value. With
a correct bucket_count value, hash indexes would outperform nonclustered indexes in
point-lookup scenarios. They are a good choice for catalog entities where data is relatively
static. Nonclustered indexes, on the other hand, are a good choice in scenarios when
point-lookup is not an option and/or when it is hard to estimate the number of buckets in
the hash index.

87© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_6

CHAPTER 6

Memory Consumers and
Off-Row Storage

This chapter provides an overview of how In-Memory OLTP allocates the memory for
different objects and explains how off-row column data is stored. It also illustrates the
performance impact of having off-row columns in a table and explains how SQL Server
chooses columns that need to be stored off-row.

Varheaps
In-Memory OLTP database objects allocate memory from separate memory heaps called
varheaps. Varheaps are the data structures that respond to and track memory allocation
requests from various database objects, and they can grow and shrink in size when
needed. All database objects that consume memory are called memory consumers.

Internally, varheaps allocate memory in pages of various size, with 64KB pages
being the most common. Each page provides the memory for allocation requests of a
predefined size. For example, a varheap can have two 64KB pages; one handles 64-byte
allocations, and the other one handles 256-byte allocations.

Let’s look at the example shown in Listing 6-1. The code creates the table with the
hash index and analyzes the table’s memory consumers using the sys.dm_db_xtp_
memory_consumers view. As you can guess by the name, this view provides information
about memory consumers in the database. You will look at several memory-optimized
table-related consumers in this and the next chapter, and I will discuss this view in detail
in Chapter 12.

Listing 6-1.  Analyzing Varheaps: Table Creation

create table dbo.Varheaps
(
 Col varchar(8000) not null
 constraint PK_Varheaps
 primary key nonclustered hash
 with (bucket_count=16384)
)
with (memory_optimized = on, durability = schema_only);

http://dx.doi.org/10.1007/978-1-4842-2772-5_12

Chapter 6 ■ Memory Consumers and Off-Row Storage

88

select
 i.name as [Index], i.index_id, c.memory_consumer_id
 ,c.memory_consumer_type_desc as [mc type]
 ,c.memory_consumer_desc as [description], c.allocation_count as [allocs]
 ,c.allocated_bytes, c.used_bytes
from
 sys.dm_db_xtp_memory_consumers c
 left outer join sys.indexes i on
 c.object_id = i.object_id and c.index_id = i.index_id
where
 c.object_id = object_id('dbo.Varheaps');

As you can see in Figure 6-1, the table has two memory consumers/varheaps. The first
varheap with type HASH provides memory for the hash table in the hash index. The hash
index has 16,384 buckets and uses 131,072 bytes of memory, which was allocated at table
creation time. The second varheap with type VARHEAP and the description “Table heap” is
providing the memory for the data rows. It did not allocate any memory because the table
was empty.

Figure 6-1.  Memory consumers after table creation

Figure 6-2.  Memory consumers after inserting the first row

Figure 6-3.  Memory consumers after inserting the second row

Let’s insert a row into the table with the INSERT INTO dbo.Varheaps(Col) VALUES('a')
statement. If you check the memory consumers with the SELECT statement from Listing 6-1
again, you would see the results shown in Figure 6-2. As you can see, the table varheap
allocated one 64KB memory page and provided 40 bytes to store the data row object.

Let’s insert another row of the same size with the INSERT INTO dbo.Varheaps(Col)
VALUES('b') statement. Figure 6-3 illustrates the memory consumer state after the
second insert. The size of both rows was the same, and, therefore, the table heap provided
memory from the same, already allocated, memory page to the second row.

Chapter 6 ■ Memory Consumers and Off-Row Storage

89

Finally, let’s insert another row of a different size using the INSERT INTO dbo.
Varheaps(Col) VALUES('ccccc') statement. This row requires allocation of a different
size, and the table varheap allocated another 64KB memory page to handle those
allocations. Figure 6-4 illustrates that.

Figure 6-4.  Memory consumers after inserting the third row

Obviously, it is inefficient to allocate the separate memory pages for every possible
allocation size request. In some cases, the varheap provides the memory from a page that
serves allocations of the greater size. For example, a 62-byte memory allocation could
come from a page that serves 64-byte allocations. The page would still reserve and use
64 bytes of memory for this allocation even though the memory consumer requested a
smaller memory allocation.

Let’s see that in action and run the code in Listing 6-2. It inserts the data rows with
Col values varying from 2 to 8,000 characters.

Listing 6-2.  Analyzing Varheaps: Inserting Rows of Various Sizes

declare
 @I int = 2

while @I <= 8000
begin
 insert into dbo.Varheaps(Col) values(replicate('0',@I));
 set @I += 1;
end;

Figure 6-5 illustrates the state of the varheap. It allocated 39,452,673 bytes, which
correspond to 602 64KB memory pages despite that the table stores 8,000 possible
combinations of the data row sizes.

Figure 6-5.  Memory consumers after populating table with the data

Per-varheap memory consumer separation allows you to track memory usage
on a per-object basis. It also helps SQL Server to optimize some internal operations.
For example, it allows the garbage collection process to more quickly deallocate the
memory when you drop or alter the table.

This architecture also allows SQL Server to perform a Table Scan operation that
scans the varheap pages in a very efficient way. Each varheap page serves allocation
requests of the same size, and it is easy to calculate the location of each object stored on
the page. It makes the Table (Varheap) Scan operation more efficient compared to the
Index Scan operation.

Chapter 6 ■ Memory Consumers and Off-Row Storage

90

In-Row and Off-Row Storage
As you have already seen in this chapter, In-Memory OLTP uses separate varheaps for
a hash table in hash indexes and data rows. Let’s look what happens when you add the
nonclustered (range) index to the picture.

Listing 6-3 creates a table with one hash and one nonclustered index and provides
the information about memory consumers afterward. It is using a slightly modified
version of the SELECT statement you ran before, utilizing another view, sys.memory_
optimized_tables_internal_attributes. This view returns the information about
internal structures that are used by some table columns and indexes.

Listing 6-3.  Analyzing Memory Consumers: In-Row Storage

create table dbo.MemoryConsumers
(
 ID int not null
 constraint PK_MemoryConsumers
 primary key nonclustered hash with (bucket_count=1024),
 Name varchar(256) not null,
 index IDX_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_only);

select
 i.name as [Index], i.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
 ,c.memory_consumer_desc as [description], c.allocation_count as [allocs]
 ,c.allocated_bytes, c.used_bytes
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id
 left outer join sys.indexes i on
 c.object_id = i.object_id and
 c.index_id = i.index_id and
 a.minor_id = 0
where
 c.object_id = object_id('dbo.MemoryConsumers');

Figure 6-6 shows the output of the query. The xtp_object_id column represents the
internal In-Memory OLTP object_id, which is different from the SQL Server object_id.
The type of USER_TABLE indicates that the varheap belongs to the main table object.

Figure 6-6.  Memory consumer information (in-row storage)

Chapter 6 ■ Memory Consumers and Off-Row Storage

91

As you can see in Figure 6-6, the table has three memory consumers that have the
same xtp_object_id value as the main table. The range index heap stores internal and
leaf pages of nonclustered index. The hash index heap stores the hash table of the index.
Finally, the table heap stores actual table rows. Figure 6-7 illustrates that.

Figure 6-7.  Table memory consumers

Let’s alter the table and add off-row storage columns, as shown in Listing 6-4.
RowOverflowCol pushes the size of the row beyond 8,060 bytes, and it will be stored off-row.

Listing 6-4.  Adding Off-Row Columns

alter table dbo.MemoryConsumers add
 RowOverflowCol varchar(8000),
 LOBCol varchar(max);

Now, if you get the list of memory consumers using the query from Listing 6-3 again,
you would see the output shown in Figure 6-8. It is worth noting that the xtp_object_id
column of the USER_TABLE objects has changed because the ALTER TABLE operation
rebuilt the table and created the new table object internally.

Figure 6-8.  Memory consumers with off-row storage

As you can see, both off-row columns introduce their own range index heap and
table heap memory consumers. In addition, the LOB column adds a LOB page allocator
memory consumer (more about that later). The minor_id column provides the column_id
value in the table to which memory consumers belong. Varheaps from both off-row
columns have their own xtp_object_id values, which indicate that internally those
columns are stored as the different objects.

Chapter 6 ■ Memory Consumers and Off-Row Storage

92

As you can guess from the output, SQL Server stores both row-overflow and LOB
columns in the separate internal tables. The rows in those tables consist of an 8-byte
artificial primary key implemented as a nonclustered index and off-row column value.
The main row references an off-row column through that artificial key, which is generated
when a row is created. It is worth repeating that this reference is done though the artificial
value rather than the memory pointer.

This approach allows In-Memory OLTP to decouple off-row columns from the main
row using a different lifetime for them. For example, if you update the main row data
without touching off-row columns, SQL Server would not generate new versions of off-row
column rows. Vice versa, when only off-row data is modified, the main row stays intact.

In-Memory OLTP stores LOB data in the memory provided by the LOB page
allocator. That consumer is not limited to 8,060-byte row allocations and can allocate a
large amount of memory to store the data. The rows in the table heap of LOB columns
contain pointers to the row data in the LOB page allocator.

Let’s assume that you run several DML statements with the Global Transaction
Timestamp values shown in Listing 6-5.

Listing 6-5.  Modifying Data in the Table

-- Global Transaction Timestamp: 100
insert into dbo.MemoryConsumers(ID, Name, RowOverflowCol, LobCol)
values
(1,'Ann','A1',replicate(convert(varchar(max),'1'),100000))
,(2,'Bob','B1',replicate(convert(varchar(max),'2'),100000));

-- Global Transaction Timestamp: 110
update dbo.MemoryConsumers set RowOverflowCol = 'B2' where ID = 2;

-- Global Transaction Timestamp: 120
update dbo.MemoryConsumers set Name= 'Greg' where ID = 2;

-- Global Transaction Timestamp: 130
update dbo.MemoryConsumers
set LobCol = replicate(convert(varchar(max),'3'),100000)
where ID = 1;

-- Global Transaction Timestamp: 140
delete from dbo.MemoryConsumers where ID = 1;

Figure 6-9 illustrates the state of the data and links between the rows. For simplicity’s
sake, it is omitting the hash table and nonclustered index structures in the main table
along with internal pages of nonclustered indexes for off-row columns.

Chapter 6 ■ Memory Consumers and Off-Row Storage

93

SQL Server decides what columns should be stored off-row in the table creation
phase based on the table schema. The (n)varchar(max) and varbinary(max) columns are
always stored off-row as LOB columns. Moreover, the largest non-(max) variable-length
column (or columns) will be stored as a row-overflow column (or columns) off-row
when the data row size in the table definition exceeds 8,060 bytes.

This behavior is different from disk-based tables where such a decision is made on
a per-row basis based on the data row size. With disk-based tables, the data from LOB
and large variable-length columns will be stored in-row when it fits into the data page.
This is not the case with memory-optimized tables. Off-row columns are always stored
off-row regardless of the size of the data. For example, a one-character string in the
varchar(max) column will be stored as LOB data off-row even when the total row size is
less than 8,060 bytes.

Performance Impact of Off-Row Storage
The decoupling of in-row and off-row data reduces the overhead of creating extra row
versions during data modifications. However, it will add additional overhead when
you insert and delete the data. SQL Server should create several row objects during the
insert stage and update the EndTs value of multiple rows during deletion. It also needs to
maintain internal tables for off-row columns.

Let’s look at the example and create two tables of a similar schema, as shown
in Listing 6-6. One of the tables has 20 varchar(3) columns, while another uses 20
varchar(max) columns. As the next step, you will populate those tables with 100,000 rows
with a 1-character value in each column.

Figure 6-9.  In-row and off-row storage

Chapter 6 ■ Memory Consumers and Off-Row Storage

94

Listing 6-6.  Off-Row Storage Performance Impact: Insert Operation

create table dbo.DataInRow
(
 ID int not null
 constraint PK_DataInRow
 primary key nonclustered hash(ID)
 with (bucket_count = 262144)
 ,Col1 varchar(3) not null
 ,Col2 varchar(3) not null
 ,Col3 varchar(3) not null
 ,Col4 varchar(3) not null
 ,Col5 varchar(3) not null
 ,Col6 varchar(3) not null
 ,Col7 varchar(3) not null
 ,Col8 varchar(3) not null
 ,Col9 varchar(3) not null
 ,Col10 varchar(3) not null
 ,Col11 varchar(3) not null
 ,Col12 varchar(3) not null
 ,Col13 varchar(3) not null
 ,Col14 varchar(3) not null
 ,Col15 varchar(3) not null
 ,Col16 varchar(3) not null
 ,Col17 varchar(3) not null
 ,Col18 varchar(3) not null
 ,Col19 varchar(3) not null
 ,Col20 varchar(3) not null
)
with (memory_optimized = on, durability = schema_only);

create table dbo.DataOffRow
(
 ID int not null
 constraint PK_DataOffRow
 primary key nonclustered hash(ID)
 with (bucket_count = 262144)
 ,Col1 varchar(max) not null
 ,Col2 varchar(max) not null
 ,Col3 varchar(max) not null
 ,Col4 varchar(max) not null
 ,Col5 varchar(max) not null
 ,Col6 varchar(max) not null
 ,Col7 varchar(max) not null
 ,Col8 varchar(max) not null
 ,Col9 varchar(max) not null
 ,Col10 varchar(max) not null
 ,Col11 varchar(max) not null
 ,Col12 varchar(max) not null

Chapter 6 ■ Memory Consumers and Off-Row Storage

95

 ,Col13 varchar(max) not null
 ,Col14 varchar(max) not null
 ,Col15 varchar(max) not null
 ,Col16 varchar(max) not null
 ,Col17 varchar(max) not null
 ,Col18 varchar(max) not null
 ,Col19 varchar(max) not null
 ,Col20 varchar(max) not null
)
with (memory_optimized = on, durability = schema_only);

declare
 @Nums table(Num int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into @Nums(Num)
 select Id from Ids where Id <= 100000;

insert into dbo.DataInRow(ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9
 ,Col10,Col11,Col12,Col13,Col14,Col15,Col16,Col17,Col18,Col19,Col20)
 select Num,'0','0','0','0','0','0','0','0','0','0','0','0','0'
 ,'0','0','0','0','0','0','0'
 from @Nums;

insert into dbo.DataOffRow(ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9
 ,Col10,Col11,Col12,Col13,Col14,Col15,Col16,Col17,Col18,Col19,Col20)
 select Num,'0','0','0','0','0','0','0','0','0','0','0','0','0'
 ,'0','0','0','0','0','0','0'
 from @Nums;

Table 6-1 shows the execution times of INSERT statements in my environment.
As you can see, the management of multiple internal tables adds considerable
performance overhead.

Table 6-1.  Execution Time of INSERT Statements

dbo.DataInRow Insert Time dbo.DataOffRow Insert Time

157 ms 8,062 ms

Chapter 6 ■ Memory Consumers and Off-Row Storage

96

Figure 6-10 illustrates the partial list of memory consumers from both tables. As you
already know, each varchar(max) column in the dbo.DataOffRow table will introduce an
internal table with three memory consumers.

Figure 6-10.  Memory consumers for the tables

Listing 6-7 shows the query that calculates the total memory usage for the
dbo.DataInRow and dbo.DataOffRow tables, respectively.

Listing 6-7.  Off-Row Storage Performance Impact: Memory Usage

select
 sum(c.allocated_bytes) / 1024 as [Allocated KB]
 ,sum(c.used_bytes) / 1024 as [Used KB]
from
 sys.dm_db_xtp_memory_consumers c
where
 c.object_id = object_id('dbo.DataInRow');

select
 sum(c.allocated_bytes) / 1024 as [Allocated KB]
 ,sum(c.used_bytes) / 1024 as [Used KB]
from
 sys.dm_db_xtp_memory_consumers c
where
 c.object_id = object_id('dbo.DataOffRow');

As you can see in Figure 6-11, the dbo.DataOffRow table uses more than 30 times
more memory compared to the dbo.DataInRow table. Every off-row column adds
64+ bytes of overhead to each non-empty value. This overhead consists of the following:

32-byte row header and index array in off-row data row

8-byte artificial key stored in-row and twice off-row: on the
leaf level of nonclustered index and in the off-row data row

8-byte pointer on the leaf level index row

Additional memory to store the nonclustered index structures
in off-row column internal table

Chapter 6 ■ Memory Consumers and Off-Row Storage

97

The overhead is even bigger (80+ bytes) in the case of LOB columns that store
data in separate varheaps and require two extra pointers per row. Moreover, there is an
additional overhead of 32 bytes for every 8KB of LOB data, which may be significant if the
stored values are relatively small.

There is another important performance implication. Indexes defined in the
table are not covering the queries that select off-row data. SQL Server needs to traverse
nonclustered indexes on off-row columns to obtain their values. Conceptually, this looks
similar to Key Lookup operations in disk-based tables done in the reverse direction, from
clustered to nonclustered indexes. Even though the overhead is significantly smaller
compared to disk-based tables, it is still overhead you’d like to avoid.

Listing 6-8 shows the code that selects the data from all off-row columns in the table.
SQL Server needs to traverse nonclustered indexes in all internal tables to get the data.

Listing 6-8.  Off-Row Storage Performance Impact: Select Overhead

select count(*)
from dbo.DataInRow
where Col1='0' and Col2='0' and Col3='0' and Col4='0' and Col5='0'
 and Col6='0' and Col7='0' and Col8='0' and Col9='0' and Col10='0'
 and Col11='0' and Col12='0' and Col13='0' and Col14='0' and Col15='0'
 and Col16='0' and Col17='0' and Col18='0' and Col19='0' and Col20='0';

select count(*)
from dbo.DataOffRow
where Col1='0' and Col2='0' and Col3='0' and Col4='0' and Col5='0'
 and Col6='0' and Col7='0' and Col8='0' and Col9='0' and Col10='0'
 and Col11='0' and Col12='0' and Col13='0' and Col14='0' and Col15='0'
 and Col16='0' and Col17='0' and Col18='0' and Col19='0' and Col20='0';

Table 6-2 illustrates the execution time in my environment. As you can see, the
execution time is almost 20 times slower in the case of off-row data, which corresponds to
the number of off-row columns in the table.

Figure 6-11.  Table memory usage

Table 6-2.  Execution Time of SELECT Statements

dbo.DataInRow Select Time dbo.DataOffRow Select Time

86 ms 1,750 ms

Chapter 6 ■ Memory Consumers and Off-Row Storage

98

There is overhead during update operations when off-row columns are modified.
SQL Server needs to create the new row objects for each affected column.

Similarly, the deletion of the data requires SQL Server to delete the rows in all
internal tables. Table 6-3 shows the execution time of DELETE statements that delete all
data from both tables.

Table 6-3.  Execution Time of DELETE Statements

dbo.DataInRow Select Time dbo.DataOffRow Select Time

32 ms 1,406 ms

You should avoid off-row storage unless you have legitimate reasons to use such
columns. It is clearly a bad idea to define text columns as (n)varchar(max) just in case—
when you do not store a large amount of data there. Do not forget that In-Memory OLTP
would use off-row storage based on the table definition rather than the size of the data.

Summary
In-Memory OLTP database objects allocate memory from the separate memory heaps
called varheaps. Varheaps are the data structures that respond to and track memory
allocations from various database objects called memory consumers.

There are three most common varheap types related to memory-optimized tables.
The hash index varheap allocates memory for a hash table in the hash index. The range
index varheap provides memory to nonclustered index pages and the mapping table.
Finally, the table heap varheap allocates memory for the data rows.

Every off-row column stores the data in an internal table, which consists of an 8-byte
artificial primary key implemented as a nonclustered index along with the column data.
Row-overflow columns store the actual value in the column data. LOB columns, on the
other hand, store the pointer to another LOB Page Allocator varheap that stores the LOB
value. The data row references off-row columns through that artificial 8-byte primary key
rather than through the memory pointer.

Even though off-row storage simplifies the migration of the systems to In-Memory
OLTP, use it with extreme care. Every off-row value adds 64+ bytes of overhead to every
non-empty off-row value. Internal off-row tables introduce a significant performance
impact during data modifications. Finally, indexes defined on memory-optimized tables
do not cover off-row columns, and queries need to traverse internal tables similarly to Key
Lookup operations done on disk-based tables. You should avoid off-row storage unless it
is absolutely necessary.

99© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_7

CHAPTER 7

Columnstore Indexes

This chapter provides an overview of column-based storage and clustered columnstore
indexes that can be defined on memory-optimized tables. It explains their internal
structure and discusses several best practices that can improve the performance of data
warehouse/reporting and operational analytics queries in the system.

Column-Based Storage Overview
Even though each database system is unique, there are two distinct workload patterns
defined in the database world. The first one is online transaction processing (OLTP).
OLTP systems usually handle a large number of concurrent transactions from multiple
customers. Those transactions are usually small and lightweight and utilize either
point-lookup searches or small range scans.

The second type of workload is data warehouse, which includes analysis, reporting,
and decision support. These types of use cases use the complex queries that perform
aggregations and process a large amount of data. The data in dedicated data warehouse
systems is usually static and often updated based on some predefined schedules.

For example, consider a company that sells products to customers. A typical OLTP
queries from the company’s point-of-sale (POS) system might have the following semantic:
provide a list of orders that were placed by this particular customer this week. Alternatively,
a typical query in a data warehouse system might read as follows: provide the total number
of sales for the year to date, grouping the results by product categories and customer regions.

There are other differences between data warehouse and OLTP systems. The data
in OLTP systems is usually volatile. Such systems serve a large number of requests
simultaneously, and they often have a performance SLA associated with the customer-
facing queries. Alternatively, the data in data warehouse systems is relatively static and is
often updated based on a set schedule, such as at night or on weekends. Those systems
usually serve a small number of customers, typically business analysts, managers, and
executives who can accept the longer execution time of the queries because of the
amount of data that needs to be processed.

To put things into perspective, the response time of the short OLTP queries usually
needs to be in the milliseconds range. However, for complex data warehouse queries, a
response time in seconds or even minutes is often acceptable.

Chapter 7 ■ Columnstore Indexes

100

Obviously, it is almost impossible to find systems that do not have mixed OLTP and
data warehouse workloads. Some degree of reporting and analysis activities is always
present in OLTP systems even when companies have a dedicated data warehouse
solution implemented. To make matters more complicated, there is another category of
tasks called operational analytics, which has become popular nowadays. Consider the
POS system in which you want to monitor up-to-date sales and dynamically adjust a
product’s sale price based on its popularity. This requires you to run analytical queries
on the recent and volatile OLTP data.

Unfortunately, OLTP and data warehouse systems require different approaches for
optimization and performance tuning. They benefit from different database schemas and
indexing strategies. For example, data warehouse databases usually have over-normalized
star or snowflake database schemas with few huge facts and many dimension tables.
This design does not work efficiently for OLTP queries.

Moreover, OLTP and data warehouse workloads benefit from different storage and
processing technologies. This requires some explanation.

Row-Based vs. Column-Based Storage
In SQL Server, classic B-Tree indexes and heaps use row-based storage. All columns that
belong to the row are stored together in the single row object. Even though some of the
columns can be stored off-row, they are referenced from the main data row structure,
and SQL Server accesses them through the main data row. The same applies to memory-
optimized tables; the columns in the data rows are grouped into the single in-memory
data row objects.

Row-based storage works efficiently for OLTP workloads. OLTP queries usually
access a small number of data rows and, in many cases, return a large subset of the
columns from the table. Row-based storage allows those queries to access data rows in
a single operation, which is especially critical during data modifications when an entire
row object is inserted, updated, or deleted.

Data warehouse queries, on the other hand, behave differently. As I already
mentioned, the typical data warehouse query joins facts and dimension tables and
performs some calculations and aggregations accessing just a subset of a fact table’s
columns. Listing 7-1 shows an example of such a query in an imaginary POS data
warehouse.

Listing 7-1.  Typical Query in Data Warehouse Environment

select a.ArticleCode, sum(s.Quantity) as [Units Sold]
from dbo.FactSales s join dbo.DimArticles a on
 s.ArticleId = a.ArticleId
 join dbo.DimDates d on
 s.DateId = d.DateId
where d.AnYear = 2017
group by a.ArticleCode

Chapter 7 ■ Columnstore Indexes

101

As you can see, this query needs to perform a scan of a large amount of data from the
fact table; however, it uses just two table columns. With row-based storage, SQL Server
accesses rows one by one, loading the entire row into memory, regardless of how many
columns from the row are required. Considering that a typical fact table in a large data
warehouse environment could store hundreds of gigabytes or even terabytes of data,
the query would lead to millions of I/O operations reading a large amount of data from
columns that are not required for the query.

With disk-based tables, you can reduce the storage size of the table and, therefore,
the number of I/O operations by implementing page compression. However, page
compression works in the scope of a single page. All pages will maintain a separate copy
of the compression dictionary, which is used for all rows on the page. Different columns
in the row store different data, which reduces the possibility of duplicated byte sequences
and limits the space saving that can be achieved with the compression.

Obviously, scanning the data from memory-optimized tables does not lead to I/O
activity. Nevertheless, it will require traversing a large number of index row chains or
scanning many varheap memory pages, and the overhead of row-based storage still exists.

SQL Server addresses those problems with columnstore indexes that store the data
on a per-column rather than per-row basis. Figure 7-1 illustrates that approach.

Data in columnstore indexes is heavily compressed using algorithms that provide
significant space savings even when compared to page compression. Moreover, SQL Server
can skip columns that are not requested by a query reading the data on a per-column basis.

Column-based storage allows SQL Server to implement other query optimization
techniques. The most noticeable is batch mode execution. In this mode, SQL Server
processes data in groups or batches, rather than one row at a time. The size of the batches
varies to fit into the CPU cache, which reduces the number of times that the CPU needs
to request external data from memory. Moreover, the batch approach improves the
performance of aggregations, which can be calculated on a per-batch basis rather than on
a per-row basis. All of that allows you to achieve orders of magnitude improvement in the
performance of data warehouse workload queries.

Columnstore Indexes Overview
Each data column in column-based storage is stored separately in a set of structures called
row groups. Each row group stores data for up to approximately 1 million, or, to be precise,
2 ^ 20 = 1,048,576 rows. SQL Server tries to populate row groups completely during its creation,
leaving the last row group partially populated. For example, in the case of 1,500,000 rows,
SQL Server creates two row groups with 1,048,576 rows and 451,424 rows, respectively.

Figure 7-1.  Row-based and column-based storage

Chapter 7 ■ Columnstore Indexes

102

After row groups are built, SQL Server combines all the column data on a per-row
group basis and encodes and compresses them. The rows within a row group can be
rearranged if that helps to achieve a better compression rate. Column data within a row
group is called a segment. SQL Server also keeps the information about data stored in
each segment in segment metadata, for example, minimum and maximum values, and
can skip the segments that do not have required data from the processing.

The data row’s data can be reconstructed based on the row locator, which consists
of offsets of the values in the row group’s segments. All values with the same offset in the
row group (same row locator) belong to the same row. For example, the first values in
the segments in a particular row group belong to the first row, the second values belong
to the second row, and so forth.

SQL Server uses several methods to encode and compress the data with the goal to
replace all values in the data with 64-bit integers. The two most notable algorithms are
dictionary encoding and value-based encoding. With dictionary encoding, SQL Server
stores distinct values from the data in a separate structure called a dictionary. Every value
in a dictionary has a unique ID assigned. SQL Server replaces the actual value in the data
with an ID from the dictionary. Figure 7-2 illustrates the main idea of the algorithm.

The value-based encoding is mainly used for numeric and integer data types that
do not have enough duplicated values. With this condition, dictionary encoding is
inefficient. The purpose of value-based encoding is to convert integer and numeric values
to a smaller range of 64-bit integers. This process consists of the following two steps.

In the first step, numeric data types are converted to integers using the minimum positive
exponent that allows this conversion. Such an exponent is called magnitude. For example,
for a set of values such as 0.8, 1.24, and 1.1, the minimum exponent is 2, which represents a
multiplier of 100. After this exponent is applied, values would be converted to 80, 124, and 110,
respectively. The goal of this process is to convert all numeric values to integers.

Alternatively, for integer data types, SQL Server chooses the smallest negative
exponent that can be applied to all values without losing their precision. For example, for
the values 1340, 20, and 2,340, that exponent is -1, which represents a divider of 10. After
this operation, the values would be converted to 134, 2, and 234, respectively. The goal of
such an operation is to reduce the interval between the minimum and maximum values
stored in the segment.

During the second step, SQL Server chooses the base value, which is the minimum
value in the segment, and it subtracts it from all other values. This makes the minimum
value in the segment 0.

Figure 7-3 illustrates the process of value-based encoding.

Figure 7-2.  Dictionary encoding

Chapter 7 ■ Columnstore Indexes

103

Conceptually, each updatable columnstore index includes two additional elements
to support data modifications. The first is the delete bitmap, which indicates what rows
were deleted from a table. The second structure is the delta store, which includes newly
inserted rows. SQL Server does not update the data in compressed row groups during
regular data modifications. Every time you delete a row that is stored in a compressed row
group, SQL Server adds information about the deleted row to the delete bitmap. Nothing
happens to the original row. It is still stored in a row group. However, SQL Server checks
the delete bitmap during query execution, excluding deleted rows from the processing.

Similarly, when you insert data into a columnstore index, it goes into a delta store.
Updating a row that is stored in a compressed row group does not change the row data
either. Such an update triggers the deletion of a row, which is, in fact, insertion to a
delete bitmap and insertion of a new version of a row to a delta store. However, any data
modifications of the uncompressed rows in a delta store are done in place in the delta store.

The internal implementation of the delta store and the delete bitmap varies
depending on the different technologies. With disk-based tables, both the delta store and
delete bitmap are implemented as the set of internal B-Tree tables. Each table partition
can have one delete bitmap table and multiple delta store tables, as shown in Figure 7-4.
The In-Memory OLTP implementation is a bit different, as you will see later in the chapter.

■■ Note T he In-Memory OLTP documentation often references the delta store as the tail and
the delete bitmap as the deleted rows table. In this book, however, I will use classic terminology.

Figure 7-3.  Value-based encoding

Figure 7-4.  Disk-based clustered columnstore index structure

Chapter 7 ■ Columnstore Indexes

104

At some point, SQL Server compresses the data in the delta store, creating
another compressed row group. Most often it happens when the delta store reaches
1,048,576 rows; however, with disk-based tables, this compression can also be forced
by reorganizing the index. With memory-optimized tables, delta store compression is
triggered only when the delta store fills up.

Let’s look at the In-Memory OLTP implementation of columnstore indexes in detail.

Clustered Columnstore Indexes
Starting with SQL Server 2016, you can create clustered columnstore indexes on memory-
optimized tables. Do not be confused by the definition of columnstore indexes as
clustered, however. As the opposite of disk-based tables, clustered columnstore indexes
on memory-optimized tables are separate data structures that keep copies of the data. In
this context, clustered means that those indexes include all columns from the table.

The memory-optimized tables with clustered columnstore indexes have the hidden
column columnstore RID, which is used as the row locator in the columnstore index. As
with disk-based columnstore indexes, it consists of the row group ID and position of the
row in the row group. In-Memory OLTP uses this column as the row locator in the delete
bitmap, which is implemented as an internal table with a nonclustered range index.

Memory-optimized columnstore indexes do not have a dedicated delta store. The
most recent rows in the memory-optimized table become the delta store. When you create
a clustered columnstore index, In-Memory OLTP uses another memory consumer for
the rows in the delta store. All new row objects from INSERT or UPDATE operations are
allocated from this varheap. Figure 7-5 illustrates that.

The index row chains in the table can link the rows from both, main table heap and
the delta store varheaps.

Let’s look at an example and create a table with a clustered columnstore index, as
shown in Listing 7-2. After the table is created, let’s look at the indexes defined on the
table using the sys.indexes catalog view.

Figure 7-5.  Clustered columnstore index on memory-optimized table

Chapter 7 ■ Columnstore Indexes

105

Listing 7-2.  Creating Memory-Optimized Table with Columnstore Index

create table dbo.OrderItems
(
 OrderItemID int identity(1,1) not null
 constraint PK_OrderItems
 primary key nonclustered hash
 with (bucket_count = 4194329)
 ,OrderId int not null
 ,ArticleId int not null
 ,SalesPrice money not null
 ,index CCI_OrderItems clustered columnstore
)
with (memory_optimized = on, durability = schema_and_data);

select index_id, name, type, type_desc, compression_delay
from sys.indexes
where object_id = object_id('dbo.OrderItems');

As you can see in Figure 7-6, the table has two indexes: a primary key implemented
as the hash index and a clustered columnstore index. I would like to reiterate that despite
the term clustered in the index definition and index_id=1, the clustered columnstore
index does not represent the main storage format for the table data. It just indicates that
all table columns are included in the index.

As the opposite of hash and nonclustered indexes, which are re-created when data
is loaded into memory, SQL Server persists columnstore indexes on disk. I will talk about
In-Memory OLTP data storage in greater depth in Chapter 10.

Let’s populate the table with 3,200,000 rows, as shown in Listing 7-3.

Listing 7-3.  Populating the Table with Data and Analyzing Memory Consumers

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N4 as t2) -- 16,777,316 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.OrderItems(OrderId, ArticleId, SalesPrice)
 select ID / 3 + 1, ID % 50000, 49.99
 from Ids
 where ID <= 3200000;

Figure 7-6.  Indexes on memory-optimized table

http://dx.doi.org/10.1007/978-1-4842-2772-5_10

Chapter 7 ■ Columnstore Indexes

106

Listing 7-4 shows the code that analyzes memory consumers for the dbo.OrderItems
table.

Listing 7-4.  Populating the Table with Data and Analyzing Memory Consumers

select
 a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id as [mc id]
 ,c.memory_consumer_type_desc as [mc type]
 ,c.memory_consumer_desc as [description]
 ,c.allocation_count as [allocs]
 ,c.allocated_bytes / 1024 as [Allocated KB]
 ,c.used_bytes / 1024 as [Used KB]
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id
where
 c.object_id = object_id('dbo.OrderItems');

Figure 7-7 shows the output from Listing 7-4. As you can see, the main table object
(the first four rows in the output) has four memory consumers. The HKCS_COMPRESSED
consumer stores compressed row groups. The table heap consumer with id=74 is
providing memory for the delta store. All new data rows in the table are allocated there.
Another table heap with id=75 is the main table heap, and it is storing the rows that were
already compressed in the columnstore index. The data has not been compressed yet,
and therefore this consumer does not use any memory.

Columnstore indexes have several other internal objects.

DELETED_ROWS_TABLE is an internal table that stores the delete
bitmap, which is the information about the deleted rows. It is
implemented as a nonclustered (range) index and contains a
columnstore locator (RID) of the deleted rows.

Figure 7-7.  Memory consumers after table has been populated with the data

Chapter 7 ■ Columnstore Indexes

107

ROW_GROUPS_INFO_TABLE stores the information about row
groups in columnstore indexes.

SEGMENTS_TABLE stores the information about column
segments in the row groups.

DICTIONARIES_TABLE stores columnstore index dictionaries.

There is the background process called the tuple mover, which wakes up about every
two minutes and estimates the number of rows in the delta store. In the case, when it
estimates that the delta store has at least 1,048,576 rows, the tuple mover creates the new
row group (or groups) by compressing and encoding the rows from the delta store. During
compression, the tuple mover updates the row locator RID column in the rows from the
delta store, which generates the new versions of the rows. The memory for the new row
objects are allocated from the main table heap.

Finally, the tuple mover deletes (populates the EndTs timestamp) the compressed rows
from the delta store, which will be eventually deallocated by the garbage collector process.

Figure 7-8 illustrates the memory consumers after the tuple mover has compressed
the data. As you can see, rows have been moved from the delta store to the main table
heaps, and compressed data is also stored in the HKCS_COMPRESSED allocator.

Let’s look what happens when you delete some data. Listing 7-5 shows the statement
that deletes every 100th row in the table.

Listing 7-5.  Deleting 1 Percent of the Rows

delete from dbo.OrderItems where OrderItemId % 100 = 0;

As I already mentioned, SQL Server does not remove deleted rows from columnstore
indexes. The information (RID) of deleted rows is inserted into the delete bitmap, which
is displayed as DELETED_ROWS_TABLE in Figure 7-9.

Figure 7-8.  Memory consumers after delta store is compressed

Chapter 7 ■ Columnstore Indexes

108

You can obtain detailed information about columnstore index row groups from the
sys.dm_db_column_store_row_group_physical_stats view, as shown in Listing 7-6.

Listing 7-6.  Analyzing Row Groups

select row_group_id, state_desc, total_rows, deleted_rows
 ,size_in_bytes, trim_reason_desc
from sys.dm_db_column_store_row_group_physical_stats
where object_id = object_id('dbo.OrderItems')
order by row_group_id

Figure 7-10 shows the output of the view. The row group with row_group_id=-1
corresponds to the delta store.

The trip_reason_desc column indicates why the compressed row group has less than
1,048,476 rows. For memory-optimized tables, it can contain one of the following values:

NO_TRIM indicates that the row group is fully populated.

STATS_MISTMATCH indicates an incorrect estimation of the
delta store size.

SPILLOVER indicates that the row group contains leftover rows
after all full row groups were created. SQL Server compresses
those rows into the smaller row group if there are more than
102,500 rows in the delta store. Otherwise, the rows remain in
the delta store, as shown in Figure 7-10.

Figure 7-9.  Memory consumers after rows were deleted

Figure 7-10.  Row group statistics

Chapter 7 ■ Columnstore Indexes

109

MEMORY_LIMITATION indicates that the system did not have
enough memory to compress all the rows together.

DICTIONARY_SIZE indicates that the dictionary grew too big to
compress all the rows together.

Performance Considerations
As you can guess, large delta store and delete bitmaps would add overhead during query
execution. SQL Server needs to scan noncompressed rows in the delta store, which is
significantly slower compared to compressed row groups. Similarly, a large number of
rows in the delete bitmap adds overhead of validation if compressed rows were deleted.

Let’s look at this overhead in detail and add 1,500,000 rows to the table using the
code from Listing 7-7.

Listing 7-7.  Inserting 1.5 Million Rows into Delta Store

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N4 as t2) -- 16,777,316 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.OrderItems(OrderId, ArticleId, SalesPrice)
 select 4000000 + ID / 3 + 1, ID % 50000, 49.99
 from Ids
 where ID <= 1500000;

If you run the code from Listing 7-6 again after the data was inserted, you would see
the output shown in Figure 7-11. The new rows have not been compressed, and they stay
in the delta store.

If you run the query from Listing 7-6 again after the tuple mover executes, you would
see that the new rows have been compressed into two new row groups. Figure 7-12 shows
the status of the row groups when it happens.

Figure 7-11.  Row group status after insert

Chapter 7 ■ Columnstore Indexes

110

Listing 7-8 shows the test query that benefits from the columnstore index.
I’ve executed this query twice, before and after the rows from the delta store were
compressed. The execution times in my environment were 343 ms and 160 ms,
respectively. As you can see, scanning of large number of uncompressed rows in the delta
store affects the performance of the query. It is worth noting, however, that this overhead
is significantly smaller compared to the delta store scan in disk-based columnstore
indexes because of the in-memory data access and efficiency of varheap scans.

Listing 7-8.  Test Query

select top 10 ArticleId, avg(SalesPrice)
from dbo.OrderItems
group by ArticleId
order by avg(SalesPrice) desc;

As the next step, let’s look at the overhead introduced by the large number of deleted
rows. Listing 7-9 shows the query, which deletes half the rows from the table. Figure 7-13
illustrates row group statistics after deletion.

Listing 7-9.  Deleting 50 Percent of the Data

delete from dbo.OrderItems where OrderItemId % 2 = 0;

The execution time of the test query from Listing 7-8 in my environment was 516 ms.
SQL Server should check whether the RID of compressed rows were present in DELETED_
ROWS_TABLE and exclude deleted rows from the processing. All of that added significant
overhead during query execution.

Figure 7-12.  Status of row groups after data is compressed

Figure 7-13.  Status of row groups after data was deleted

Chapter 7 ■ Columnstore Indexes

111

There is another implication of the large number of deleted rows and large delete
bitmaps. They reduce the amount of memory available to In-Memory OLTP and other
SQL Server components.

Unfortunately, it is common to have a large number of deleted rows in memory-optimized
columnstore indexes. The data in OLTP systems is usually highly volatile, and data rows
may be updated multiple times. If data rows are updated after they were compressed, each
obsolete row version would be referenced in the delete bitmap of the index.

Fortunately, it is also common that data rows become static after some time. SQL Server
allows you to delay compression of the delta store rows by specifying the COMPRESSION_DELAY
columnstore index option. This property indicates how long the rows should stay in the delta
store before they can be compressed into row groups. You should set COMPRESSION_DELAY to
the value that exceeds the typical post-processing time in the system.

Consider an online shopping cart system as an example. In this scenario, the status of
individual orders may be updated multiple times during the fulfillment process. It could be
beneficial to set COMPRESSION_DELAY to the value that exceeds the typical fulfillment time
and avoid compressing old versions of order rows until the order is fulfilled.

Listing 7-10 shows an example of a table with a columnstore index that has the
compression delay set to 1,440 minutes, which is 24 hours. Even though this increases the
size of the delta store, it would also prevent compressions of the versions of the rows that
have yet to be deleted. As the general rule, it is better to have a slightly larger delta store
than increase the size of the delete bitmap.

Listing 7-10.  Creating Columnstore Index with Compression Delay

create table dbo.OrdersCCI
(
 OrderId int not null
 constraint PK_OrdersCCI
 primary key nonclustered,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32) not null,
 Amount money not null,
 CustomerId int not null,
 OrderStatus tinyint not null,
 FulfillmentDate datetime2(0) not null,
 index CCI_OrdersCCI clustered columnstore
 with (compression_delay=1440)
)
with (memory_optimized=on, durability=schema_and_data);

You can monitor the percent of deleted rows in the row groups and fine-tune the index
COMPRESSION_DELAY value to minimize it. Unfortunately, changing the property will require
you to drop and re-create the columnstore index. This is an offline operation, which will
lead to two table rebuilds and can take a significant amount of time and memory in the case
of large tables. Neither can you rebuild columnstore indexes, reducing the size of the delete
bitmap. Dropping and re-creating the index is the only option available.

Chapter 7 ■ Columnstore Indexes

112

There is one case, however, when In-Memory OLTP rebuilds row groups internally.
SQL Server decompresses the row groups, moving rows back to the delta store when the
row group has 90 percent or more rows deleted.

Listing 7-11 illustrates the code that deletes 99 percent of the data from the table.
Figure 7-14 shows the status of the row groups right after deletion.

Listing 7-11.  Deleting 99 Percent of the Data

delete from dbo.OrderItems where OrderId % 100 < 98;

If you look at the row groups after a few minutes, you would see that the tuple mover
process moved all nondeleted rows back to the delta store, deallocating all compressed
row groups in the system. Figure 7-15 illustrates that condition.

Columnstore Indexes Limitations
There are several limitations related to columnstore indexes. Perhaps the most important
is that SQL Server can utilize columnstore indexes only in Query Interop mode. Those
indexes are never used from the natively compiled code.

Other important limitations include the following:

The columnstore index cannot be created if the table uses
off-row storage, and, therefore, the row size cannot exceed
8,060 bytes.

Memory-optimized tables with columnstore indexes cannot
be altered. You should drop the index, alter the table, and
re-create the index afterward.

Columnstore indexes on memory-optimized tables cannot be
rebuilt or reorganized.

Archive compression is not supported.

Figure 7-15.  Status of row groups after tuple mover run

Figure 7-14.  Status of row groups after 99 percent of the rows were deleted

Chapter 7 ■ Columnstore Indexes

113

Obviously, the system should have enough memory to accommodate columnstore
indexes. Those indexes, however, are heavily compressed and could use just a fraction
of the memory used by noncompressed rows.

Catalog and Data Management Views
SQL Server provides several columnstore index-related catalog and data management views.

sys.dm_db_column_store_row_group_physical_stats
The sys.dm_db_column_store_row_group_physical_stats view returns the information
about row groups in the columnstore index. You have already seen this view in action in
this chapter.

The columns in the output represent the following:

object_id and index_id provide the information about the
object and index to which the row group belongs.

partition_number is the number of partitions in the table.
It is always 1 for memory-optimized tables.

row_group_id is the ID of the row group within the partition.
The delta store in memory-optimized tables has row_group_
id=-1.

delta_store_hobt_id is the hobt_id of the open delta store.
It is NULL for memory-optimized tables.

state and state_description show the state of the row
group.

total_rows, deleted_rows, and size_in_bytes provide the
information about row count and row group size.

trim_reason and trim_reason_desc indicate why a row
group has less than 1,048,576 rows.

transition_to_compressed_state provides the reason why a
row group was compressed. In memory-optimized tables, the
row groups always are compressed by the tuple mover.

generation shows the sequence number in which the row
group has been created.

As I already discussed, it is beneficial to monitor the total number of rows and the
number of deleted rows in the row groups and fine-tune the COMPRESSION_DELAY index
option.

There is another view, called sys.column_store_row_groups, which provides a
subset of the columns from the sys.dm_db_column_store_row_group_physical_stats
view. The former one was introduced in SQL Server 2014, while the latter one is specific
to SQL Server 2016.

Chapter 7 ■ Columnstore Indexes

114

sys.column_store_segments
The sys.column_store_segments view returns one row for each column per segment.

Listing 7-12 shows a query that returns information about the CCI_OrderItems
columnstore index. There are a couple of things that you should note here. First, the
view does not return the object_id or index_id value of the index. This is not a problem
because a table can have only one columnstore index defined. However, you need to use
the sys.partitions view to obtain the object_id value when it is required.

Second, the column_id value does not match the column_id value in the sys.index_
columns view because of the internal columnstore locator (RID) column, which is not
exposed there. You need to decrement column_id in sys.column_store_segments by 1 in
the joins. This may or may not change in future versions of In-Memory OLTP.

Listing 7-12.  Examining the sys.column_store_segments View

select
 s.segment_id, s.column_id - 1 as [column_id], c.name as [column]
 ,s.version, s.encoding_type, s.row_count, s.has_nulls, s.magnitude
 ,s.primary_dictionary_id, s.secondary_dictionary_id, s.min_data_id
 ,s.max_data_id, s.null_value
 ,convert(decimal(12,3),s.on_disk_size / 1024.0 / 1024.0) as [Size MB]
from
 sys.column_store_segments s join sys.partitions p on
 p.partition_id = s.partition_id
 join sys.indexes i on
 p.object_id = i.object_id
 left join sys.index_columns ic on
 i.index_id = ic.index_id and
 i.object_id = ic.object_id and
 s.column_id - 1 = ic.index_column_id
 left join sys.columns c on
 ic.column_id = c.column_id and
 ic.object_id = c.object_id
where
 i.name = 'CCI_OrderItems'
order by
 s.segment_id, s.column_id

Chapter 7 ■ Columnstore Indexes

115

The columns in the output represent the following:

column_id is the ID of a column in the index, which you
can join with the sys.index_columns view. As I already
mentioned, you need to decrement it by 1 in the joins.

partition_id references the partition to which a row group
(and, therefore, a segment) belongs. It is always 1 in
memory-optimized tables.

segment_id is the ID of the segment, which is basically the ID
of a row group. The first segment/row group in a partition has
an ID of 1.

version represents a columnstore segment format.
SQL Server 2012, 2014, and 2016 return 1 as its value.

encoding_type represents the encoding used for this
segment. It can have one of the following four values:

A value-based encoding has encoding_type = 1.

A dictionary encoding of nonstrings has
encoding_type = 2.

A dictionary encoding of string values has
encoding_type = 3.

No encoding being used has encoding_type = 4.

Figure 7-16.  sys.column_store_segments output

Figure 7-16 shows the partial output of a query.

Chapter 7 ■ Columnstore Indexes

116

row_count represents the number of rows in the segment.

has_null indicates whether the data has null values.

magnitude is the magnitude used for value-based encoding.
For other encoding types, it returns -1.

min_data_id and max_data_id represent the minimum and
maximum values in a column within the segment. SQL Server
analyzes those values during query execution and eliminates
segments that do not store values that satisfy query predicates.
This process works in a similar way to partition elimination in
partitioned tables.

null_value represents the value used to indicate nulls.

on_disk_size indicates the size of a segment in bytes.

sys.column_store_dictionaries
The sys.column_store_dictionaries view provides information about the dictionaries
used by a columnstore index.

Listing 7-13 shows the code that you can use to examine the list of dictionaries.
Similarly to the sys.column_store_segments view, you should decrement column_id by
1 in the joins.

Listing 7-13.  Examining the sys.column_store_dictionaries View

select
 d.dictionary_id, d.column_id - 1 as [column_id], c.name as [column]
 ,d.version, d.type, d.last_id, d.entry_count
 ,convert(decimal(12,3),d.on_disk_size / 1024.0 / 1024.0) as [Size MB]
from
 sys.column_store_dictionaries d join sys.partitions p on
 p.partition_id = d.partition_id
 join sys.indexes i on
 p.object_id = i.object_id
 left join sys.index_columns ic on
 i.index_id = ic.index_id and
 i.object_id = ic.object_id and
 d.column_id - 1 = ic.index_column_id
 left join sys.columns c on
 ic.column_id = c.column_id and
 ic.object_id = c.object_id
where
 i.name = 'CCI_OrderItems'
order by
 d.dictionary_id

Chapter 7 ■ Columnstore Indexes

117

The columns in the output represent the following:

column_id is the ID of a column in the index.

dictionary_id is the ID of a dictionary.

version represents a dictionary format. SQL Server 2012,
2014, and 2016 return 1 as its value.

type represents the type of values stored in a dictionary. It can
have one of the following three values:

A dictionary that contains int values is specified by type = 1.

A dictionary that contains string values is specified by
type = 3.

A dictionary that contains float values is specified by
type = 4.

last_id is a last data ID in a dictionary.

entry_count contains the number of entries in a dictionary.

on_disk_size indicates the size of a dictionary in bytes.

Summary
In contrast to B-Tree and Bw-Tree indexes that store data on a per-row basis, columnstore
indexes store unsorted and compressed data on a per-column basis. They are beneficial
in data warehouse environments where typical queries perform a scan and aggregation
of data from large fact tables, selecting just a subset of table columns. With In-Memory
OLTP, those indexes help in an operational analytics scenario when systems execute
reporting and analytics queries against hot OLTP data.

In-Memory OLTP clustered columnstore indexes are separate data structures from
the main data rows. They consist of compressed row groups, a delete bitmap implemented
as an internal table with a nonclustered (range) index, and several other internal tables.
There is no dedicated delta store; the new versions of the rows are included into the
regular data row chain, although they are allocated from a different varheap. The tuple
mover process analyzes the number of allocated rows in this varheap and compresses
them, moving to the regular table heap once the number reaches 1,048,576 rows.

Figure 7-17.  sys.column_store_dictionaries output

Figure 7-17 illustrates the query output.

Chapter 7 ■ Columnstore Indexes

118

A large delta store and delete bitmap affects the performance of the queries. You
can delay the compression by specifying the COMPRESSION_DELAY index option. It is
recommended that you set this value to exceed the typical data post-processing time in
the system.

Columnstore indexes have several limitations. They do not support off-row storage,
limiting the size of the row to 8,060 bytes. They prevent table alteration, and you should
drop and re-create a columnstore index when you need to alter a table. Most importantly,
they can be utilized only through the Interop Engine; SQL Server does not use them in
natively compiled code.

119© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_8

CHAPTER 8

Transaction Processing
in In-Memory OLTP

This chapter discusses transaction processing in In-Memory OLTP. It elucidates what
isolation levels are supported with native compilation and cross-container transactions,
provides an overview of concurrency phenomena encountered in the database systems,
and explains how In-Memory OLTP addresses them. Finally, this chapter talks about the
lifetime of In-Memory OLTP transactions in detail.

ACID, Transaction Isolation Levels, and
Concurrency Phenomena Overview
Transactions are the unit of work that read and modify data in a database and help to
enforce the consistency and durability of the data in a system. Every transaction in a
properly implemented transaction management system has four characteristics known as
atomicity, consistency, isolation, and durability, often referenced as ACID.

•	 Atomicity guarantees that each transaction executes as an “all
or nothing” approach. All changes done within a transaction
are either committed or rolled back in full. Consider the classic
example of transferring money between checking and savings
bank accounts. That action consists of two separate operations:
decreasing the balance of the checking account and increasing the
balance of the savings account. Transaction atomicity guarantees
that both operations either succeed or fail together, so a system
will never be in the situation that money is deducted from the
checking account but never added to the savings account.

•	 Consistency ensures that any database transaction brings the
database from one consistent state to another with no defined
database rules or constraints violated.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

120

•	 Isolation ensures that the changes done in the transaction are
isolated and invisible to other transactions until the transaction is
committed. By the book, transaction isolation should guarantee
that the concurrent execution of multiple transactions should bring
the system to the same state as if those transactions were executed
serially. However, in most database systems, such a requirement is
often relaxed and controlled by transaction isolation levels.

•	 Durability guarantees that after a transaction is committed, all
changes done by the transaction stay permanent and will survive
a system crash. SQL Server achieves durability by using write-ahead
logging, which hardens log records in transaction log
synchronously with data modifications.

The isolation requirements are the most complex to implement in multi-user
environments. Even though it is possible to completely isolate different transactions
from each other, this could lead to a high level of blocking and other concurrency issues
in systems with volatile data. SQL Server addresses this situation by introducing several
transaction isolation levels that relax isolation requirements at the cost of possible
concurrency phenomena related to read data consistency.

•	 Dirty reads: A transaction reads uncommitted (dirty) data from
other uncommitted transactions.

•	 Nonrepeatable reads: Subsequent attempts to read the same
data from within the same transaction return different results.
This data inconsistency issue arises when the other transactions
modified, or even deleted, data between the reads done by the
affected transaction.

•	 Phantom reads: This phenomenon occurs when subsequent
reads within the same transaction return new rows (the ones that
the transaction did not read before). This happens when another
transaction inserted the new data in between the reads done by
the affected transaction.

Table 8-1 shows the data inconsistency issues that are possible for different
transaction isolation levels. It is worth mentioning that every isolation level resolves
write/write conflicts, preventing multiple active transactions from updating the same
rows simultaneously.

Table 8-1.  Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Dirty Reads Nonrepeatable Reads Phantom Reads

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

SNAPSHOT No No No

Chapter 8 ■ Transaction Processing in In-Memory OLTP

121

With the exception of the SNAPSHOT isolation level, SQL Server uses locking to
address concurrency phenomena when dealing with disk-based tables. When a
transaction modifies a row, it acquires exclusive (X) locks on the row and holds it until
the end of the transaction. That exclusive (X) lock prevents other sessions from accessing
uncommitted data until the transaction is completed and the locks are released. This
behavior is also known as pessimistic concurrency.

Such behavior also means that, in the case of a write/write conflict, the last
modification wins. For example, when two transactions are trying to modify the same
row, SQL Server blocks one of them until another transaction is committed, allowing
blocked transactions to modify the data afterward. No errors or exceptions are raised;
however, changes done by the first transaction are overwritten.

In the case of disk-based tables and pessimistic concurrency, transaction isolation
levels control how a session acquires and releases shared (S) locks when reading the data.
Table 8-2 demonstrates that behavior.

The SNAPSHOT isolation level uses a row-versioning model by creating the new
version of the row after modification. In this model, all data modifications done by other
transactions are invisible to the transaction after it starts.

Though SNAPSHOT isolation is implemented differently in disk-based and memory-
optimized tables, logically it behaves the same. A transaction will read a version of the
row valid at the time when the transaction started, and sessions do not block each other.
However, when two transactions try to update the same data, one of them will be aborted
and rolled back to resolve the write/write conflict. This behavior is known as optimistic
concurrency.

Table 8-2.  Transaction Isolation Levels and Shared (S) Locks Behavior with Disk-Based
Tables

Isolation Level Shared (S) Locks Behavior Comments

READ UNCOMMITTED (S) locks not acquired The transaction can see uncommitted
changes from the other sessions (dirty
reads).

READ COMMITTED (S) locks acquired and
released immediately

The transaction will be blocked when
it tries to read uncommitted rows
with exclusive (X) locks held by the
other sessions (no dirty reads).

REPEATABLE READ (S) locks acquired and held
until end of transaction

Other sessions cannot modify a row
after it was read (no non-repeatable
reads). However, they can still insert
new rows in between reads (phantom
reads).

SERIALIZABLE Range (S) locks acquired
and held until end of
transaction

Other sessions cannot modify a row
after it was read or insert new rows in
between rows that were read (no non-
repeatable or phantom reads).

Chapter 8 ■ Transaction Processing in In-Memory OLTP

122

SERIALIZABLE VS. SNAPSHOT ISOLATION LEVELS

While the SERIALIZABLE and SNAPSHOT isolation levels provide the same level of
protection against data inconsistency issues, there is a subtle difference in their
behavior with disk-based tables. A SNAPSHOT isolation level transaction sees data
as of the beginning of a transaction. With the SERIALIZABLE isolation level, the
transaction sees data as of the time when the data was accessed for the first time.

Consider the situation when a session is reading data from a disk-based table in the
middle of a transaction. If another session changed the data in that table after the
transaction started but before data was read, the transaction in the SERIALIZABLE
isolation level would see the changes, while the SNAPSHOT transaction would not.

Transaction Isolation Levels in In-Memory OLTP
In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE
READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different
approach to enforce data consistency rules compared to disk-based tables. Rather than
block or being blocked by other sessions, In-Memory OLTP validates data consistency
at the transaction COMMIT time and throws an exception and rolls back the transaction if
rules are violated.

•	 In the SNAPSHOT isolation level, any changes done by other sessions
are invisible to the transaction. A SNAPSHOT transaction always works
with a snapshot of the data as of the time when the transaction
started. The only validation at the time of the commit is checking for
primary key violations, which is called snapshot validation.

•	 In the REPEATABLE READ isolation level, In-Memory OLTP
validates that the rows that were read by the transaction have not
been modified or deleted by the other transactions. A REPEATABLE
READ transaction would not be able to commit if this was the case.
That action is called repeatable read validation, and it is executed
in addition to snapshot validation.

•	 In the SERIALIZABLE isolation level, SQL Server performs repeatable
read validation and also checks for phantom rows that were possibly
inserted by the other sessions. This process is called serializable
validation, and it is executed in addition to snapshot validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in
Listing 8-1, let’s create a memory-optimized table and insert a few rows there.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

123

Listing 8-1.  Data Consistency and Transaction Isolation Levels: Table Creation

create table dbo.HKData
(
 ID int not null
 constraint PK_HKData
 primary key nonclustered hash with (bucket_count=64),
 Col int not null
)
with (memory_optimized=on, durability=schema_only);

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

Table 8-3 shows how concurrency works in the REPEATABLE READ transaction
isolation level. It is important to note that SQL Server starts a transaction at the moment
of the first data access rather than at the time of the BEGIN TRAN statement. Therefore, the
Session 1 transaction starts when the first SELECT operator executes.

Table 8-3.  Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

update dbo.HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (repeatableread)

Return old version of a row (Col = 2).

commit Msg 41305, Level 16, State 0, Line 0.

The current transaction failed to
commit because of a repeatable read
validation failure.

begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

insert into dbo.
HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (repeatableread)

Does not return a new row (10,10).

commit Success.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

124

As you can see, with memory-optimized tables, other sessions are able to modify
data that is read by the active REPEATABLE READ transaction. This leads to a transaction
abort at the time of COMMIT when the repeatable read validation fails. This is completely
different behavior than that of disk-based tables, where other sessions are blocked,
unable to modify data until the REPEATABLE READ transaction successfully commits.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE READ
isolation level protects you from the phantom read phenomenon, which is not the case with
disk-based tables. The BeginTs value of the newly inserted rows would exceed the logical start
time of the active transaction (more on that later), making them invisible for the transaction.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can see
the code and the results of the execution in Table 8-4.

Table 8-4.  Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

update dbo.
HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (serializable)

Return old version of a row (Col = 2).

commit Msg 41305, Level 16, State 0, Line 0.

The current transaction failed to
commit because of a repeatable read
validation failure.

begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

insert into dbo.
HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (serializable)

Does not return new row (10,10).

commit Msg 41325, Level 16, State 0, Line 0.

The current transaction failed to
commit because of a serializable
validation failure.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

125

As you can see, the SERIALIZABLE isolation level prevents the session from
committing a transaction when another session inserted a new row and violated the
serializable validation. Like the REPEATABLE READ isolation level, this behavior is different
from that of disk-based tables, where the SERIALIZABLE transaction successfully blocks
other sessions until the transaction is completed.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. Table 8-5 shows the code
and results.

The SNAPSHOT isolation level behaves in a similar manner to disk-based tables, and it
protects from the nonrepeatable reads and phantom reads phenomena. As you can guess,
it does not need to perform repeatable read and serializable validations at the commit
stage; therefore, it reduces the load on SQL Server. However, there is still snapshot
validation, which checks for primary key violations and is done in any transaction
isolation level.

Table 8-6 shows the code that leads to the primary key violation condition. In
contrast to disk-based tables, the exception is raised at the commit stage rather than at
the time of the second INSERT operation.

Table 8-5.  Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

update dbo.HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (snapshot)

Return old version of a row (Col = 2).

commit Success.

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

insert into dbo.HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (snapshot)

Does not return new row (10,10).

commit Success.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

126

It is worth mentioning that the error number and message are the same with the
serializable validation failure even though SQL Server validated the different rule.

Write/write conflicts work the same way regardless of the transaction isolation level
in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has
been modified by other uncommitted transactions. Table 8-7 illustrates this behavior. It
uses the SNAPSHOT isolation level; however, the behavior does not change with different
isolation levels.

Table 8-6.  Primary Key Violation

Session 1 Session 2 Results

begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

commit Successfully commit the first
session.

commit Msg 41325, Level 16, State 1,
Line 0.

The current transaction
failed to commit because of a
serializable validation failure.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

127

Table 8-7.  Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2
commit

update dbo.HKData
 with (snapshot)
 set Col = -2
 where ID = 2

Msg 41302, Level 16, State 110, Line 1.

The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1.

The uncommittable transaction is
detected at the end of the batch. The
transaction is rolled back.

The statement has been terminated.

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2

update dbo.HKData
 with (snapshot)
set Col = -2
where ID = 2

Msg 41302, Level 16, State 110, Line 1.

The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1.

The uncommittable transaction is
detected at the end of the batch. The
transaction is rolled back.

The statement has been terminated.

commit Successful commit of Session 2
transaction.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

128

Cross-Container Transactions
Any access to memory-optimized tables from interpreted T-SQL is done through the
Query Interop Engine and leads to cross-container transactions. You can use different
transaction isolation levels for disk-based and memory-optimized tables. However, not all
combinations are supported. Table 8-8 illustrates possible combinations for transaction
isolation levels in cross-container transactions.

As you already know, internal implementations of the REPEATABLE READ and
SERIALIZABLE isolation levels are very different for disk-based and memory-optimized
tables. Data consistency rules with disk-based tables rely on locking, while In-Memory
OLTP uses pre-commit validation. This leads to a situation in cross-container transactions
where SQL Server supports only the SNAPSHOT isolation levels for memory-optimized
tables, while disk-based tables require REPEATABLE READ or SERIALIZABLE isolation.

Moreover, SQL Server does not allow access to memory-optimized tables when
disk-based tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell,
consist of two internal transactions: one for disk-based and another one for memory-
optimized tables. It is impossible to start both transactions at exactly the same time and
guarantee the state of the data at the moment the transaction starts.

As the general guideline, it is recommended that you use the READ COMMITTED/SNAPSHOT
combination in cross-container transactions during the regular workload. This combination
provides the minimal blocking and least pre-commit overhead and should be acceptable in a
large number of use cases. Other combinations are more appropriate during data migrations
when it is important to avoid the non-repeatable and phantom reads phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction
isolation level with a table hint when you are accessing memory-optimized tables. This
does not apply to individual statements that execute outside of the explicitly started
(with BEGIN TRAN) transaction. Those statements are called autocommitted transactions,
and each of them executes in a separate transaction that is active for the duration of the
statement execution. Listing 8-2 illustrates the code with three statements. Each of them
will run in their own autocommitted transactions.

Table 8-8.  Isolation Levels Allowed for Cross-Container Transactions

Isolation Levels for Disk-Based Tables Isolation Levels for Memory-Optimized Tables

READ UNCOMMITTED, READ COMMITTED,
READ COMMITTED SNAPSHOT

SNAPSHOT, REPEATABLE READ, SERIALIZABLE

REPEATABLE READ, SERIALIZABLE SNAPSHOT only

SNAPSHOT Not supported

Chapter 8 ■ Transaction Processing in In-Memory OLTP

129

Listing 8-2.  Autocommitted Transactions

delete from dbo.HKData;

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

select ID, Col from dbo.HKData;

An isolation level hint is not required for statements running in autocommitted
transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation level.

SQL Server allows you to keep a NOLOCK hint while accessing memory-optimized
tables from autocommitted transactions. That hint is ignored. A READUNCOMMITTED hint,
however, is not supported and triggers an error.

There is the useful database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT,
which is disabled by default. When this option is enabled, SQL Server allows you to
omit the isolation level hint in nonautocommitted transactions. SQL Server uses the
SNAPSHOT isolation level, as with autocommitted transactions, if the isolation level hint
is not specified when the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT option is enabled.
Consider enabling this option when you port an existing system to In-Memory OLTP and
have T-SQL code that accesses tables that become memory-optimized.

Transaction Lifetime
Although I have already discussed a few key elements used by In-Memory OLTP to
manage data access and the concurrency model, let's review them here.

•	 Global Transaction Timestamp is an auto-incremented value that
uniquely identifies every transaction in the system. SQL Server
increments and obtains this value at the transaction commit stage.

•	 Every row has BeginTs and EndTs timestamps, which correspond
to the Global Transaction Timestamp of the transaction that
created or deleted this version of a row.

When a new transaction starts, In-Memory OLTP generates a TransactionId value,
which uniquely identifies the transaction. Moreover, In-Memory OLTP assigns the logical
start time for the transaction, which represents the Global Transaction Timestamp
value when the transaction starts. It dictates what version of the rows is visible to the
transaction. The logical start time should be in between the BeginTs and EndTs values for
the row to be visible.

When the transaction issues a COMMIT statement, In-Memory OLTP increments the
Global Transaction Timestamp value and assigns it to the transaction logical end time.
The logical end time will become BeginTs for the rows inserted and EndTs for the rows
deleted by the transaction after it is committed.

Figure 8-1 shows the lifetime of a transaction that works with memory-optimized tables.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

130

When a transaction needs to delete a row, it updates the EndTs timestamp with the
TransactionId value. The insert operation creates a new row with the BeginTs value of
TransactionId and the EndTs value of Infinity. Finally, the update operation consists of
delete and insert operations internally. It is also worth noting that during data modification,
transactions raise an error if there are any uncommitted versions of the rows they were
modifying. It prevents write/write conflicts when multiple sessions modify the same data.

When the other transaction, called Tx1, encounters uncommitted rows with
TransactionId in the BeginTs or EndTs timestamps (TransactionId has a flag that
indicates such a condition), it checks the status of the transaction with TransactionId. If
that transaction is committing and the logical end time is already set, those uncommitted
rows may become visible for the Tx1 transaction, which leads to a situation called commit
dependency. Tx1 is not blocked; however, it does not return data to the client nor commit
until the original transaction on which it has a commit dependency commits itself. I will
talk about commit dependencies shortly.

Let’s look at the transaction lifetime in detail. Figure 8-2 shows the data rows after
you create and populate the dbo.HKData table in Listing 8-1, assuming that the rows were
created by a transaction with a Global Transaction Timestamp value of 5. (The hash index
structure is omitted for simplicity’s sake.)

Let’s assume you have a transaction that started at the time when the Global
Transaction Timestamp value was 9 and TransactionId generated as -8. (I am using
a negative value for TransactionId to illustrate the difference between two types of
timestamps in the figures.)

Figure 8-1.  Transaction lifetime

Figure 8-2.  Data in the dbo.HKData table after insert

Chapter 8 ■ Transaction Processing in In-Memory OLTP

131

Let’s assume that the transaction performs the operations shown in Listing 8-3. The
explicit transaction has already started, and the BEGIN TRAN statement is not included in
the listing. All three statements are executing in the context of a single active transaction.

Listing 8-3.  Data Modification Operations

insert into dbo.HKData with (snapshot) (ID, Col) values(10,10);
update dbo.HKData with (snapshot) set Col = -2 where ID = 2;
delete from dbo.HKData with (snapshot) where ID = 4;

Figure 8-3 illustrates the state of the data after data modifications. An INSERT
statement created a new row, a DELETE statement updated the EndTs value in the row with
ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2 and created
a new version of the row with the same ID.

It is important to note that the transaction maintains a write set, or pointers to
rows that have been inserted and deleted by a transaction, which is used to generate
transaction log records.

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation
levels, transactions maintain a read set of the rows read by a transaction and use it for
repeatable read validation. Finally, in the SERIALIZABLE isolation level, transactions
maintain a scan set, which contains information about predicates used by the queries in
the transaction. The scan set is used for serializable validation.

When a COMMIT request is issued, the transaction starts the validation phase. First, it
auto-increments the current Global Transaction Timestamp value, which becomes the
logical end time of the transaction. Figure 8-4 illustrates this state, assuming that the new
Global Transaction Timestamp value is 11. Note that the BeginTs and EndTs timestamps
in the rows still have TransactionId at this stage.

Figure 8-3.  Data in the dbo.HKData table after modifications

Chapter 8 ■ Transaction Processing in In-Memory OLTP

132

At this moment, the rows modified by transactions become visible to other
transactions in the system even though the transaction has yet to be committed, which
can lead to commit dependencies. Again, I will talk about them shortly.

As the next step, SQL Server performs several validations based on the isolation level
of the transaction, as shown in Table 8-9.

■■ Important R epeatable read and serializable validations add overhead to the system.
Do not use REPEATABLE READ and SERIALIZABLE isolation levels unless you have a
legitimate use case for such data consistency.

After the required rules have been validated, the transaction waits for the commit
dependencies to clear and the transaction on which it depends to commit. If those
transactions fail to commit for any reason (for example, the validation rules are violated),
the dependent transaction is also be rolled back, and an error 41301 is generated.

Figure 8-5 illustrates a commit dependency scenario. Transaction Tx2 can access
uncommitted rows from transaction Tx1 during Tx1 validation and commit phases;
therefore, Tx2 has a commit dependency on Tx1. After the Tx2 validation phase is
completed, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before
entering the commit phase.

Figure 8-4.  Start of validation phase

Table 8-9.  Validations Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read Validation Serializable
Validation

Checking for primary
key violations

Checking for nonrepeatable
reads

Checking for
phantom reads

SNAPSHOT Yes No No

REPEATABLE
READ

Yes Yes No

SERIALIZABLE Yes Yes Yes

Chapter 8 ■ Transaction Processing in In-Memory OLTP

133

If Tx1, for example, failed to commit because of serializable validation violation, Tx2
would be rolled back with error 41301, as shown in Figure 8-6.

■■ Note  Commit dependency is technically a case of blocking in In-Memory OLTP.
However, the validation and commit phases of the transactions are relatively short, and that
blocking should not be excessive.

SQL Server allows a maximum of eight commit dependencies on a single transaction.
When this number is reached, other transactions that try to take a dependency would fail
with error 41839.

Figure 8-5.  Commit dependency: successful commit

Figure 8-6.  Commit dependency: validation error

Chapter 8 ■ Transaction Processing in In-Memory OLTP

134

■■ Note  You can track commit dependencies using the dependency_acquiredtx_event
and waiting_for_dependenciestx_event extended events.

When all commit dependencies are cleared, the transaction moves to the commit phase,
generates one or more log records, and saves them to the transaction log, moving to the
post-commit phase afterward. I will talk about transaction logging in more detail in Chapter 10.

At the post-commit phase, the transaction replaces the BeginTs and EndTs
timestamps with the logical end time value and decrements commit dependency counters
in the dependent transactions. Figure 8-7 illustrates the final state of the transaction.

Finally, when the transaction is rolled back either because of an explicit ROLLBACK
command or because of validation violation, In-Memory OLTP resets the EndTs
timestamp of the deleted rows to infinity. The new versions of the rows inserted by the
transaction become ghosted. They will be deallocated by the regular garbage collection
process, which I will discuss in Chapter 11,

Referential Integrity Enforcement
It is impossible to enforce referential integrity in a pure SNAPSHOT isolation level because
transactions are completely isolated from each other. Consider the situation when a
transaction deletes a row that is referenced by a newly inserted row in another transaction
that started after the original one. SNAPSHOT isolation level would prevent transactions to
see the changes, which would violate referential integrity.

In-Memory OLTP addresses this problem by maintaining read and/or scan sets in
the SNAPSHOT isolation level for the tables and queries that were affected by referential
integrity validation. In contrast to REPEATABLE READ and SERIALIZABLE transactions,
those sets are maintained only for affected tables rather than for entire transactions. They,
however, would include all rows that were read and predicates that were applied during
the referential integrity check.

Figure 8-7.  Completed transaction

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_11

Chapter 8 ■ Transaction Processing in In-Memory OLTP

135

This behavior can lead to issues when the referencing table does not have an index
on the foreign key column (or columns). Similar to disk-based tables, SQL Server will
have to scan the entire referencing (detail) table when you delete a row in the referenced
(master) table. In addition to a performance impact, the transaction will maintain the
read set, which includes all rows it read during the scan, regardless of whether those rows
referenced a deleted row or not. If any other transactions update or delete any rows from
the read set, the original transaction would fail with a repeatable read rule violation error.

Let’s look at the example and create two tables with the code in Listing 8-4.

Listing 8-4.  Referential Integrity Validation: Tables Creation

create table dbo.Branches
(
 BranchId int not null
 constraint PK_Branches
 primary key nonclustered hash with (bucket_count = 4)
)
with (memory_optimized = on, durability = schema_only);

create table dbo.Transactions
(
 TransactionId int not null
 constraint PK_Transactions
 primary key nonclustered hash with (bucket_count = 4),
 BranchId int not null
 constraint FK_Transactions_Branches
 foreign key references dbo.Branches(BranchId),
 Amount money not null
)
with (memory_optimized = on, durability = schema_only);

insert into dbo.Branches(BranchId) values(1),(10);
insert into dbo.Transactions(TransactionId,BranchId,Amount)
values(1,1,10),(2,1,20);

The dbo.Transactions table has a foreign key constraint referencing the dbo.
Branches table. There are no rows, however, referencing the row with BranchId = 10.
As the next step, let’s run the code shown in Listing 8-5, deleting this row and leaving the
transaction active.

Listing 8-5.  Referential Integrity Validation: First Session Code

begin tran
 delete from dbo.Branches with (snapshot) where BranchId = 10;

The DELETE statement would validate the foreign key constraint and would complete
successfully. The dbo.Transactions table, however, does not have an index on the
BranchId column, and the validation will require you to scan the entire table, as you can
see in Figure 8-8.

Chapter 8 ■ Transaction Processing in In-Memory OLTP

136

At this time, all rows from the dbo.Transactions table would be included to the
transaction read set. If another session updated one of the rows from the read set with the
code shown in Listing 8-6, it would succeed, and the first session would fail to commit
with a repeatable read rule violation error.

Listing 8-6.  Referential Integrity Validation: Second Session Code

update dbo.Transactions with (snapshot)
set Amount = 30
where TransactionId = 2;

■■ Important S imilar to disk-based tables, you should always create an index on the
foreign key columns in the referencing table to avoid this problem.

Summary
In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE
READ, and SERIALIZABLE. In contrast to disk-based tables, where nonrepeatable and
phantom reads are addressed by acquiring and holding the locks, In-Memory OLTP
validates data consistency rules at the transaction commit phase. An exception will be
raised and the transaction will be rolled back if rules are violated.

Repeatable read and serializable validations add overhead to transaction processing.
It is recommended that you use the SNAPSHOT isolation level during a regular workload
unless you require REPEATABLE READ or SERIALIZABLE data consistency.

SQL Server performs repeatable read and serializable validations to enforce
referential integrity in the system. Always create an index on the foreign key columns in
the referencing tables to improve performance and avoid validation errors.

You can use different transaction isolation levels for disk-based and memory-
optimized tables in cross-container transactions; however, not all combinations are
supported. The recommended practice is to use the READ COMMITTED isolation level for
disk-based tables and the SNAPSHOT isolation level for memory-optimized tables.

Figure 8-8.  Referential integrity validation: execution plan of DELETE statement

Chapter 8 ■ Transaction Processing in In-Memory OLTP

137

SQL Server does not require you to specify the transaction isolation level when you
access memory-optimized tables through the Interop Engine in autocommitted (single
statement) transactions. SQL Server automatically promotes such transactions to the
SNAPSHOT isolation level. However, you should specify an isolation level hint when a
transaction is explicitly started with the BEGIN TRAN statement. You can avoid this by
enabling the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This option is
useful when you port the existing system to use In-Memory OLTP.

139© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_9

CHAPTER 9

In-Memory OLTP
Programmability

This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in
SQL Server. It describes the process of native compilation, and it provides an overview
of the natively compiled modules and T-SQL features that are supported in In-Memory
OLTP. Finally, this chapter compares the performance of several use cases that work with
the data in memory-optimized tables using natively compiled modules and interpreted
T-SQL with the Interop Engine.

Native Compilation Overview
As you already know, memory-optimized tables can be accessed from regular T-SQL code
using the Query Interop Engine. This approach is very flexible. As long as you work within
the supported feature set, the location of the data is transparent. The code does not
need to know, nor does it need to worry about, whether it works with disk-based or with
memory-optimized tables.

Unfortunately, this flexibility comes at a cost. T-SQL is an interpreted and CPU-intensive
language. Even a simple T-SQL statement requires thousands, and sometimes millions,
of CPU instructions to execute. Even though the in-memory data location speeds up
data access and eliminates latching and locking contentions, the overhead of T-SQL
interpretation sets limits on the level of performance improvements achievable with
In-Memory OLTP.

■■ Note  The native compilation does not help in operational analytics scenarios.
Columnstore indexes can be utilized only in query interop mode.

In practice, it is common to see a system throughput increase of two to four times
when memory-optimized data is accessed through the Interop Engine. To improve
performance even further, In-Memory OLTP utilizes native compilation. As a first step, it
converts any row-data manipulation and access logic into C code, which is compiled into
DLLs and loaded into SQL Server’s process memory. These DLLs (one per table) consist
of native CPU instructions, and they execute without any further code interpretation
overhead of T-SQL statements.

Chapter 9 ■ In-Memory OLTP Programmability

140

Consider the simple situation where you need to read the value of a fixed-length
column from a data row. In the case of disk-based tables, SQL Server obtains the starting
offset and length of the column from the system catalogs, and it performs the required
manipulations to convert the sequence of bytes to the required data type. With memory-
optimized tables, the DLL already knows the column offset and data type. SQL Server can
read data from a predefined offset in a row using a pointer of the correct data type without
any further overhead involved. As you can guess, this approach dramatically reduces the
number of CPU instructions required for the operation.

On the flip side, this approach brings some limitations. You cannot change the
format of a row after the DLL is generated. The compiled code would not know anything
about the changes. This problem is more complicated than it seems, and a simple
recompilation of the DLL does not address it.

Again, consider the situation where you need to add another nullable column to a
table. This is a metadata-level operation for disk-based tables, which does not change the
data in existing table rows. T-SQL would be able to detect that column data is not present
by analyzing the various data row properties at runtime.

The situation is far more complicated in the case of memory-optimized tables and
natively compiled code. It is easy to generate a new version of the DLL that knows about
the new data column; however, that is not enough. The DLL needs to handle different
versions of rows and different data formats depending on the presence of column data.
While this is technically possible, it adds extra logic to the DLL, which leads to additional
processing instructions, which slows data access. Moreover, the logic to support multiple
data formats remains in the code forever, degrading performance even further with each
table alteration.

As you already know, SQL Server addresses it by rebuilding the table in the
background. Table alteration generates the new version of the DLL and the new table
objects, converting the data rows to the new format. I will talk more about this process in
the next chapter.

To reduce the overhead of the T-SQL interpretation even further, the In-Memory
OLTP Engine allows you to perform native compilation of T-SQL modules, such as
the stored procedures, scalar user-defined functions, and triggers. These modules are
compiled in the same way as table-related DLLs and are also loaded into the SQL Server
process memory.

Native compilation utilizes both the SQL Server and In-Memory OLTP engines. As a
first step, SQL Server parses the T-SQL code and, in the case of T-SQL modules, generates
an execution plan using the Query Optimizer. At the end of this stage, SQL Server
generates a structure called a mixed abstract tree (MAT), which represents metadata,
imperative logic, expressions, and query plans. I will discuss how SQL Server optimizes
natively compiled modules later in this chapter.

As a next step, In-Memory OLTP transforms MAT to another structure called a pure
imperative tree (PAT), which is used to generate source code that is compiled and linked
into the DLL.

Chapter 9 ■ In-Memory OLTP Programmability

141

The code generated for native compilation uses the plain C language and is very
efficient. It is hard to read, however. For example, every method is implemented as a
single function, which does not call other functions but rather implements its code inline
using GOTO as a control flow statement. The intention has never been to generate human-
readable code; it is used as the source for native compilation only.

Binary DLL files are not persisted in a database backup. SQL Server re-creates
table-related DLLs on database startup and module-related DLLs at the time of the first
call. This approach mitigates security risks from hackers, who can substitute DLLs with
malicious copies. It is important to remember this behavior because it can add overhead
at database startup time and change the execution plans of natively compiled modules
after a database restart.

Figure 9-1.  Native compilation in SQL Server

Figure 9-1 illustrates the process of native compilation in SQL Server.

Chapter 9 ■ In-Memory OLTP Programmability

142

■■ Tip  Natively compiled modules are usually faster than interpreted T-SQL ones.
However, their compilation time can be significantly longer compared to T-SQL modules.
You should remember this behavior and avoid using extremely short timeouts in natively
compiled module calls.

SQL Server places binary DLLs and all other native compilation-related files in an
XTP subfolder under the main SQL Server data directory. It groups files on a per-database
basis by creating another level of subfolders. Figure 9-2 shows the content of the folder for
the database (with an ID of 9), which contains several In-Memory OLTP objects.

All the file names start with the prefix xtp_ followed either by a p (stored procedure,
scalar function, or trigger) or by a t (table), which indicates the object type. The two last
parts of the name include the database and object IDs for the object.

File extensions determine the type of the file, as shown here:

•	 *.mat.xml files store an XML representation of the MAT structure.

•	 *.c files are the source file generated by the C code generator.

•	 *.obj are the object files generated by the C compiler.

•	 *.pub are symbol files produced by the C compiler.

Figure 9-2.  Folder with natively compiled objects

Chapter 9 ■ In-Memory OLTP Programmability

143

•	 *.out are log files from the C compiler.

•	 *.dll are natively compiled DLLs generated by the C linker.
Those files are loaded into SQL Server memory and used by the
In-Memory OLTP engine.

■■ Tip  You can open and analyze the C source code and XML MAT in the text editor
application to get a sense of the native compilation process.

Listing 9-1 shows how to obtain a list of natively compiled objects loaded into
SQL Server memory. It also returns the list of tables and stored procedures from the
database to show the correlation between a DLL file name and object IDs.

Listing 9-1.  Obtaining a List of Natively Compiled Objects Loaded into SQL Server
Memory

select
 s.name + '.' + o.name as [Object Name]
 ,o.object_id
from
 (
 select schema_id, name, object_id
 from sys.tables
 where is_memory_optimized = 1
 union all
 select schema_id, name, object_id
 from sys.procedures
) o join sys.schemas s on
 o.schema_id = s.schema_id;

select base_address, file_version, language, description, name
from sys.dm_os_loaded_modules
where description = 'XTP Native DLL';

Figure 9-3 illustrates the output of the code.

Figure 9-3.  Natively compiled objects loaded into SQL Server memory

Chapter 9 ■ In-Memory OLTP Programmability

144

Natively Compiled Modules
Natively compiled modules are the stored procedures, scalar user-defined functions,
and triggers that are compiled into native code. They are extremely efficient, and they
can provide major performance improvements when working with memory-optimized
tables, compared to interpreted T-SQL statements, which access those tables through the
query interop component.

■■ Note  In this chapter, I will reference regular interpreted (non-natively compiled)
modules as T-SQL modules.

Natively Compiled Stored Procedures
You can create natively compiled stored procedures using the regular CREATE PROCEDURE
statement and T-SQL language. However, those procedures have several additional
options that need to be specified. Listing 9-2 shows the structure of natively compiled
stored procedures along with those options.

Listing 9-2.  Natively Compiled Stored Procedure Structure

create proc dbo.NativelyCompiledProc
(
 /* Parameters */
 @Param1 int not null = 1
 ,@Param2 int
)
with
 native_compilation -- Indicates natively compiled SP
 ,schemabinding -- Required
 ,execute as owner -- Optional security context
as
-- Natively compiled SPs are executed as atomic blocks
-- (all or nothing)
begin atomic with
(

 transaction isolation level = snapshot -- Required
 ,language = N'English' -- Required
 ,delayed_durability = off -- Optional
 ,datefirst = 7 -- Optional
 ,dateformat = 'mdy' -- Optional
)
 /* Stored Procedure Body */
end

Chapter 9 ■ In-Memory OLTP Programmability

145

You can define the parameters of natively compiled stored procedures the same way
as with T-SQL procedures. However, natively compiled stored procedures allow you to
specify whether parameters are required and must be provided at the time of a call using
the NOT NULL construct in the definition. SQL Server raises an error if you do not provide
their values at the time of the call.

■■ Important  It is recommended that you avoid type conversion and do not use named
parameters when you call natively compiled stored procedures. It is more efficient to use the
exec Proc value [..,value] calling format rather than the exec Proc @Param=value
[..,@Param=value] calling format.

You can detect inefficient parameterization with the hekaton_slow_parameter_parsing
extended event.

All natively compiled modules must be schema bound and could have an optional
security context specified. It is better to avoid the EXECUTE AS CALLER context because it
adds the overhead of per-statement permission checks during the execution.

■■ Note  You can read about execution context at https://docs.microsoft.com/en-us/
sql/t-sql/statements/execute-as-clause-transact-sql.

Two other required options include the transaction isolation level and the language
setting, which controls a message’s language and default date format. Natively compiled
modules do not use the runtime SET LANGUAGE session option, relying on the LANGUAGE
setting instead.

You can control the date format, first day of the week, and delayed durability of a
stored procedure using the DATEFORMAT, DATEFIRST, and DELAYED_DURABILITY settings,
respectively.

■■ Note  Delayed durability is a SQL Server feature that controls how SQL Server hardens
log records, flushing them from the log buffer to the transaction log. Enabling delayed
durability can help to improve transaction throughput in very busy OLTP systems at the cost
of a possible small data loss in the event of an unexpected SQL Server shutdown or crash.

You can read more about delayed durability at https://docs.microsoft.com/en-us/sql/
relational-databases/logs/control-transaction-durability. You can also read
about it in Chapter 30 of my Pro SQL Server Internals book.

Natively compiled modules are executed as atomic blocks, which is an “all or
nothing” approach; either all statements in the procedure succeed or all of them fail.
I will discuss how atomic blocks work later in the chapter.

https://docs.microsoft.com/en-us/sql/t-sql/statements/execute-as-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/execute-as-clause-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
http://dx.doi.org/10.1007/978-1-4842-2772-5_30

Chapter 9 ■ In-Memory OLTP Programmability

146

Natively Compiled Triggers and User-Defined Functions
SQL Server allows you to create natively compiled DML triggers on memory-optimized
tables and scalar user-defined functions. As with natively compiled stored procedures,
these modules cannot access disk-based objects.

Listing 9-3 shows the code that creates both types of objects.

Listing 9-3.  Natively Compiled Trigger and User-Defined Function

create trigger NativelyCompiledTrigger on dbo.MemoryOptimizedTable
with native_compilation, schemabinding
after insert
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 if @@rowcount = 0
 return;
 /* Trigger Body */
end
go

create function dbo.NativelyCompiledScalarFunction(@Param1 int not null)
returns int
with native_compilation, schemabinding
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'us_english'
)
 declare
 @Result int = 0
 /* Function Body */
 return @Result;
end

As with T-SQL triggers and scalar user-defined functions, you should consider the
overhead those modules introduce. You will look at performance overhead of user-defined
functions later in the chapter.

You can also mark inline table-valued functions as natively compiled. However,
they behave differently than other modules. When you mark those functions as natively
compiled, SQL Server just validates that they are using the language constructs supported
by native compilation. The functions are not actually compiled but rather embedded into
the other natively compiled modules that reference them.

Chapter 9 ■ In-Memory OLTP Programmability

147

When you call natively compiled inline table-valued functions from T-SQL via
Query Interop, SQL Server treats them as the regular T-SQL inline table-valued functions,
embedding their statement to the referenced query.

Listing 9-4 illustrates a natively compiled inline table-valued function. As you can
guess, you do not need to specify that the function executes as the atomic block.

Listing 9-4.  Natively Compiled Inline Table-Valued Function

create function dbo.NativeCompiledInlineTVF(@Param datetime)
returns table
with native_compilation, schemabinding
as
return
(
 select count(*) as Result
 from dbo.MemoryOptimizedTable
 where DateCol >= @Param
)

You can define the natively compiled module body pretty much the same way as
regular T-SQL modules. However, the natively compiled modules support only a limited
set of T-SQL constructs. Let’s look at the supported features and limitations in different
T-SQL areas in detail.

Supported T-SQL Features
One of the biggest limitations of natively compiled modules is that they can access only
memory-optimized tables. The only option to join data from memory-optimized and
disk-based tables is to use the interpreted T-SQL and the Interop Engine.

There are other limitations you need to remember. Natively compiled code does not
support parallelism and always has serial execution plans. Nor can it access and scan the
tables with the varheap Table Scan operator. The table scan is implemented as a scan of
one of the indexes.

The following T-SQL features and constructs are supported in SQL Server 2016 and
can be used with native compilation.

Control Flow
The following control flow options are supported:

•	 IF and WHILE.

•	 Assigning a value to a variable with the SELECT and SET operators.

•	 RETURN.

•	 TRY/CATCH/THROW (RAISERROR is not supported). It is
recommended that you use a single TRY/CATCH block for the entire
stored procedure for better performance.

Chapter 9 ■ In-Memory OLTP Programmability

148

•	 It is possible to declare variables as NOT NULL as long as they have
an initializer as part of the DECLARE statement.

•	 The nested execution is supported. For example, a natively
compiled stored procedure can call another natively compiled
procedure or function.

•	 The CASE statement is not supported in SQL Server 2016. It will be
supported, however, in SQL Server 2017.

Operators
The following operators are supported:

•	 Comparison operators, such as =, <, <=, >, >=, <>, and BETWEEN.

•	 Unary and binary operators, such as +, -, *, /, and %. Note that +
operators are supported for both numbers and strings.

•	 Bitwise operators, such as &, |, ~, ^.

•	 Logical operators, such as AND, OR, and NOT.

•	 IN, BETWEEN, and EXISTS operators.

Query Surface Area
The following query surface area functions are supported:

•	 SELECT, INSERT, UPDATE, and DELETE operators.

•	 SELECT DISTINCT operator.

•	 OUTPUT clause with INSERT, UPDATE, and DELETE operators.

•	 CROSS JOIN, INNER JOIN, LEFT OUTER JOIN, and RIGHT OUTER
JOIN are supported. All joins are implemented as LOOP JOIN
internally. Neither MERGE JOIN nor HASH JOIN is supported.
Finally, you can use joins only with the SELECT operator.

•	 Expressions in the SELECT list and the WHERE and HAVING clauses
are supported as long as they use supported operators.

•	 You can use subqueries in FROM and WHERE clauses and scalar
subqueries in a SELECT clause.

•	 IS NULL and IS NOT NULL.

•	 GROUP BY is supported with the exception of grouping by string or
binary data.

Chapter 9 ■ In-Memory OLTP Programmability

149

•	 TOP and ORDER BY. However, you cannot use WITH TIES and
PERCENT in the TOP clause. Moreover, the TOP operator is limited
to 8,192 rows when the TOP <constant> is used, or even a lesser
number of rows in the case of joins. You can address this last
limitation by using a TOP <variable> approach. However, it is
less efficient in terms of performance. It is also worth mentioning
that TOP (N) WITH TIES will be supported in SQL Server 2017.

•	 INDEX, FORCESCAN, FORCESEEK, FORCE ORDER, INNER LOOP JOIN,
and OPTIMIZE FOR hints.

Built-in Functions
The following built-in functions are supported:

•	 All math functions are supported.

•	 Date/time functions: CURRENT_TIMESTAMP, DATEADD,
DATEDIFF, DATEFROMPARTS, DATEPART, DATETIME2FROMPARTS,
DATETIMEFROMPARTS, DAY, EOMONTH, GETDATE, GETUTCDATE, MONTH,
SMALLDATETIMEFROMPARTS, SYSDATETIME, SYSUTCDATETIME, and
YEAR.

•	 String functions: LEN, LTRIM, RTRIM, and SUBSTRING. SQL Server 2017
will also support TRIM, TRANSLATE, and CONCAT_WS.

•	 Error functions: ERROR_LINE, ERROR_MESSAGE, ERROR_NUMBER,
ERROR_PROCEDURE, ERROR_SEVERITY, and ERROR_STATE.

•	 Security functions: IS_MEMBER, IS_ROLEMEMBER, IS_
SRVROLEMEMBER, ORIGINAL_LOGIN, SESSION_USER, CURRENT_USER,
SUSER_ID, SUSER_SID, SUSER_SNAME, SYSTEM_USER, SUSER_NAME,
USER, USER_ID, USER_NAME, and CONTEXT_INFO.

•	 NEWID and NEWSEQUENTIALID.

•	 CAST and CONVERT. However, it is impossible to convert between a
non-Unicode and a Unicode string.

•	 ISNULL.

•	 SCOPE_IDENTITY.

•	 @@SPID.

•	 You can use @@ROWCOUNT within a natively compiled module;
however, its value is reset to 0 at the beginning and end of the
module.

Chapter 9 ■ In-Memory OLTP Programmability

150

Atomic Blocks
Natively compiled modules execute as atomic blocks, which is an “all or nothing”
approach; either all statements in the module succeed or all of them fail.

When a natively compiled module is called outside of the context of an active
transaction, it starts a new transaction and either commits or rolls it back at the end of the
execution.

In cases where a module is called in the context of an active transaction, SQL Server
creates a savepoint at the beginning of the module’s execution. In the case of an error in
the module, SQL Server rolls back the transaction to the created savepoint. Based on the
severity and type of the error, the transaction is either going to be able to continue and
commit or become doomed and uncommittable.

Let’s create a memory-optimized table and natively compiled stored procedure, as
shown in Listing 9-5.

Listing 9-5.  Atomic Blocks and Transactions: Object Creation

create table dbo.MOData
(
 ID int not null
 primary key nonclustered
 hash with (bucket_count=16),
 Value int null
)
with (memory_optimized=on, durability=schema_only);

insert into dbo.MOData(ID, Value)
values(1,1), (2,2);
go

create proc dbo.AtomicBlockDemo
(
 @ID1 int not null
 ,@Value1 bigint not null
 ,@ID2 int
 ,@Value2 bigint
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language=N'English'
)
 update dbo.MOData set Value = @Value1 where ID = @ID1;

 if @ID2 is not null
 update dbo.MOData set Value = @Value2 where ID = @ID2;
end;

Chapter 9 ■ In-Memory OLTP Programmability

151

At this point, the dbo.MOData table has two rows with the values (1,1) and (2,2). As a
first step, let’s start the transaction and call a stored procedure twice, as shown in Listing 9-6.

Listing 9-6.  Atomic Blocks and Transactions: Calling a Stored Procedure

begin tran
 exec dbo.AtomicBlockDemo 1, -1, 2, -2;
 exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999;

The first call of the stored procedure succeeds, while the second call triggers an
arithmetic overflow error, as shown here:

Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49
Arithmetic overflow error converting bigint to data type int.

You can check that the transaction is still active and committable with this select:
SELECT @@TRANCOUNT as [@@TRANCOUNT], XACT_STATE() as [XACT_STATE()]. It returns
the following results:

@@TRANCOUNT XACT_STATE()
----------- ------------
1 1

If you commit the transaction and check the content of the table, you will see that the
data reflects the changes caused by the first stored procedure call. Even though the first
update statement from the second call succeeded, SQL Server rolled it back because the
natively compiled stored procedure executed as an atomic block. You can see the data in
the dbo.MOData table.

ID Value
----------- -----------
1 -1
2 -2

As a second example, let’s trigger a critical error, which dooms the transaction,
making it uncommittable. One such situation is a write/write conflict, when multiple
sessions are trying to update the same rows. You can trigger it by executing the code in
Listing 9-7 in two different sessions.

Listing 9-7.  Atomic Blocks and Transactions: Write/Write Conflict

begin tran
 exec dbo.AtomicBlockDemo 1, 0, null, null;

Chapter 9 ■ In-Memory OLTP Programmability

152

When you run the code in the second session, it triggers the following exception:

Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13
The current transaction attempted to update a record that has been updated
since this transaction started. The transaction was aborted.
Msg 3998, Level 16, State 1, Line 1
Uncommittable transaction is detected at the end of the batch. The
transaction is rolled back.

If you check @@TRANCOUNT in the second session, you will see that SQL Server
terminates the transaction.

@@TRANCOUNT

0

As you can see, when the atomic block executes in the context of the active transaction,
severe errors in the atomic block roll back the entire transaction while noncritical errors roll
back transaction to the savepoint that corresponds to the beginning of the block.

Finally, it is worth mentioning that atomic blocks are an In-Memory OLTP feature
and are not supported in T-SQL stored procedures.

Optimization of Natively Compiled Modules
Interpreted T-SQL stored procedures and other modules are compiled at the time of the
first execution. Additionally, they can be recompiled after they are evicted from the plan
cache and in a few other cases, such as outdated statistics, changes in database schema,
or recompilations, which are explicitly requested in the code.

This behavior is different from natively compiled modules, which are compiled at
creation time. They are never automatically recompiled, only with the exception of a
SQL Server or database restart. In these cases, recompilation occurs at the time of the
first call. It is also worth noting that the DBCC FREEPROCCACHE command does not force
recompilation of natively compiled modules.

SQL Server does not sniff parameters at the time of compilation, optimizing
statements for UNKNOWN values. It uses memory-optimized table statistics during
optimization, which may or may not be up-to-date. The execution plan will not change
until the module is recompiled, either explicitly or the after database restart.

Fortunately, cardinality estimation errors have a smaller impact on the performance
in the case of natively compiled modules. Contrary to disk-based tables, where such
errors can lead to highly inefficient plans because of an incorrect index choice and,
therefore, a high number of Key or RID Lookup operations, all indexes in memory-
optimized tables reference the same data row and, in a nutshell, are covering indexes for
in-row columns. Moreover, errors will not affect the choice of join strategy—the nested
loop is the only join type supported in natively compiled modules.

Chapter 9 ■ In-Memory OLTP Programmability

153

Outdated statistics at the time of compilation, however, can still lead to inefficient
plans. One such example is a query with multiple predicates on indexed columns. SQL
Server needs to know the index’s selectivity to choose the most efficient one. Another
example is the incorrect choice of inner and outer input for the nested loop join, which
you saw in Chapter 4.

It is better to recompile natively compiled modules if the data in the table has
significantly changed. You can do it in two different ways—either by altering the module
or by using the sp_recompile stored procedure.

The internal implementation and impact of those methods are different. The
sp_recompile stored procedure just marks the natively compiled module as obsolete.
The first call of the module will trigger the recompilation, similarly to what happens after
database startup. The session that triggers recompilation and all other sessions calling the
module during recompilation will be blocked until the compilation is completed.

The module alteration, on the other hand, works differently. SQL Server recompiles
the module in the background, allowing other sessions to use the old version of the code
during this time. After compilation is completed, SQL Server waits for all sessions that are
running the old code to finish and replaces the code in memory afterward. Even though
there is still blocking during the final module replacement phase, there is no blocking
during the compilation, which typically takes a significant amount of time. Therefore,
module alteration introduces less impact on the workload compared to the sp_recompile
call, and it is the recommended approach to alter the modules in busy systems.

■■ Tip  Consider updating the statistics in the tables referenced from natively compiled
modules before module recompile or alteration.

Finally, it is worth mentioning that the presence of natively compiled modules
requires you to adjust the deployment process in the system. It is common to create all
database schema objects, including tables and modules, at the beginning of deployment.
While the time of deployment does not matter for T-SQL modules, such a strategy
compiles natively compiled modules when the database tables are empty. You should
recompile (re-create) natively compiled modules later, after the tables are populated with
data and statistics are up-to-date.

Interpreted T-SQL and Memory-Optimized Tables
The Query Interop component provides transparent, memory-optimized table access to
interpreted T-SQL code. In interpreted mode, SQL Server treats memory-optimized tables
pretty much the same way as disk-based tables. It optimizes queries and caches execution
plans, regardless of where the table is located. The same set of operators is used during
query execution. From a high level, when the operator’s GetRow() method is called, it is
routed either to the Storage Engine or to the In-Memory OLTP Engine, depending on the
underlying table type.

Most T-SQL features are supported in interpreted mode. There are still a few
exceptions, however.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4

Chapter 9 ■ In-Memory OLTP Programmability

154

•	 TRUNCATE TABLE.

•	 The MERGE operator with memory-optimized table as the target.

•	 Context connection from CLR code.

•	 Referencing memory-optimized tables in indexed views. You
can reference memory-optimized tables in partitioned views,
combining data from memory-optimized and disk-based tables.

•	 DYNAMIC and KEYSET cursors, which are automatically
downgraded to STATIC.

•	 Cross-database queries and transactions.

•	 Linked servers.

As you can see, the list of limitations is pretty small. However, the flexibility of query
interop access comes at a cost. Natively compiled modules are usually more efficient
compared to their interpreted T-SQL counterparts. In some cases, such as joins between
memory-optimized and disk-based tables, query interop is the only choice; however, it is
usually preferable to use natively compiled modules when possible.

Performance Comparison
Let’s run several tests comparing the performance of several use cases that work with
memory-optimized tables using natively compiled and T-SQL modules.

Stored Procedures Performance
As the first step, we will compare the performance of T-SQL and natively compiled stored
procedures. Let’s create two memory-optimized tables using a schema_only durability
option to avoid any I/O and transaction logging overhead during the tests. You can see the
code in Listing 9-8, which also creates a numbers table and populates it with the values.

Listing 9-8.  Creating Test Tables

create table dbo.Customers
(
 CustomerId int not null
 primary key nonclustered
 hash with (bucket_count=262144),
 Name nvarchar(255) not null,
 CreatedOn datetime2(0) not null
 constraint DEF_Customers_CreatedOn
 default sysutcdatetime(),
 Placeholder char(200) not null,

 index IDX_Name nonclustered(Name)
)

Chapter 9 ■ In-Memory OLTP Programmability

155

with (memory_optimized=on, durability=schema_only);

create table dbo.Orders
(
 OrderId int not null
 primary key nonclustered
 hash with (bucket_count=2097152),
 CustomerId int not null,
 OrderNum varchar(32) not null,
 OrderDate datetime2(0) not null
 constraint DEF_Orders_OrderDate
 default sysutcdatetime(),
 Amount money not null,
 Placeholder char(200) not null,

 index IDX_CustomerId
 nonclustered hash(CustomerId)
 with (bucket_count=262144),

 index IDX_OrderNum nonclustered(OrderNum)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Numbers
(
 Num int not null
 constraint PK_Numbers
 primary key clustered
);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Numbers(Num)
 select Id from Ids;

As the first step, you will measure the INSERT performance using three
different approaches and batches of different sizes. The first two stored procedures,
InsertCustomers_Row and InsertCustomers_NativelyCompiled, will run INSERT
statements on per-row basis using the Interop Engine and native compilation, respectively.
The third stored procedure, InsertCustomers_Batch, will insert all rows in the single batch
through the Interop Engine. Listing 9-9 shows the implementation of the stored procedures.

Chapter 9 ■ In-Memory OLTP Programmability

156

Listing 9-9.  Inserting Data into the dbo.Customers Table

create proc dbo.InsertCustomers_Row
(
 @NumCustomers int
)
as
begin
 set nocount on
 set xact_abort on

 declare
 @I int = 1;

 begin tran
 while @I <= @NumCustomers
 begin
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 values(@I,N'Customer ' + convert(nvarchar(10),@I),'Data');

 set @I += 1;
 end;
 commit
end
go

create proc dbo.InsertCustomers_Batch
(
 @NumCustomers int
)
as
begin
 set nocount on
 set xact_abort on

 if @NumCustomers > 1048576
 begin
 raiserror('@NumCustomers should not exceed 1,048,576',10,1);
 return;
 end;

 begin tran
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 select Num, N'Customer ' + convert(nvarchar(10),Num),'Data'
 from dbo.Numbers
 where Num <= @NumCustomers
 commit
end
go

Chapter 9 ■ In-Memory OLTP Programmability

157

create proc dbo.InsertCustomers_NativelyCompiled
(
 @NumCustomers int not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare
 @I int = 1;

 while @I <= @NumCustomers
 begin
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 values(@I,N'Customer ' + convert(nvarchar(10),@I), 'Data');

 set @I += 1;
 end;
end;

Table 9-1 shows the execution time of each stored procedure for the batches
of 10,000; 50,000; and 100,000 rows in my environment. As you can see, the natively
compiled stored procedure is almost three times faster at row-by-row inserts and about
30 to 40 percent faster compared to batch inserts through the Interop Engine.

As the next step, let’s compare the performance of UPDATE operations. Listing 9-10
shows a natively compiled stored procedure that updates 50 percent of the rows in the
dbo.Customers table.

Table 9-1.  Execution Times of InsertCustomers Stored Procedures

10,000 Rows 50,000 Rows 100,000 Rows

InsertCustomers_Row 77 ms 333 ms 640 ms

InsertCustomers_Batch 40 ms 170 ms 340 ms

InsertCustomers_
NativelyCompiled

24 ms 120 ms 222 ms

Chapter 9 ■ In-Memory OLTP Programmability

158

Listing 9-10.  Natively Compiled Stored Procedure That Updates Data in the dbo.
Customers Table

create proc dbo.UpdateCustomers
(
 @Placeholder char(100) not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 update dbo.Customers
 set Placeholder = @Placeholder
 where CustomerId % 2 = 0;
end;

Table 9-2 shows the execution time of the UpdateCustomers stored procedure and
the same UPDATE statement executed through the interop engine. As you see, the natively
compiled stored procedure is almost five times faster than the interop approach.

Finally, let’s compare the performance of DELETE operations. Listing 9-11 shows a
natively compiled stored procedure that deletes the data from both tables.

Listing 9-11.  Compiled Stored Procedure That Deletes the Data from Both Tables

create proc dbo.DeleteCustomersAndOrders
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 delete from dbo.Orders;
 delete from dbo.Customers;
end;

Table 9-2.  Execution Times of Update Operations

dbo.UpdateCustomers Natively Compiled
Stored Procedure

UPDATE Statement Executed Through
Interop Engine

33 ms 154 ms

Chapter 9 ■ In-Memory OLTP Programmability

159

Table 9-3 shows the execution times of the stored procedure and DELETE statements
executed through the Interop Engine. In both cases, the dbo.Customers and dbo.
Orders tables were populated with the same data, which are 100,000 and 1,000,000 rows,
respectively. Again, the natively compiled stored procedure is significantly faster.

The performance of SELECT queries, on the other hand, greatly depends on the use
case. Natively compiled code works best with OLTP workloads that consist of point-
lookup and small range scan operations. However, the Interop Engine could be the
better choice for reporting and data warehouse queries. As I already mentioned, natively
compiled code does not support parallel execution plans nor does it scan the data using
the varheap Table Scan operator. It is entirely possible that data warehouse queries
would run faster in interop mode, especially if they have parallel execution plans and/or
use columnstore indexes. Moreover, natively compiled code does not support hash and
merge joins, which could outperform nested loop joins on large and unsorted inputs with
data warehouse workloads.

Scalar User-Defined Function Performance
Even though native compilation could improve the performance of scalar user-defined
functions, there is still overhead associated with function invocation.

Let’s run a couple tests and compare the performance of interpreted T-SQL and
natively compiled scalar functions. Listing 9-12 creates two simple functions that just run
an empty WHILE loop without any data access.

Listing 9-12.  Natively Compiled vs. Interpreted Function: Function Creation

create function dbo.ScalarInterpret(@LoopCnt int)
returns int
as
begin
 declare
 @I int = 0
 while @I < @LoopCnt
 select @I += 1;
 return @I;
end
go

Table 9-3.  Execution Times of Delete Operations

dbo.DeleteCustomersAndOrders Natively
Compiled Stored Procedure

DELETE Statements Executed
Through Interop Engine

164 ms 690 ms

Chapter 9 ■ In-Memory OLTP Programmability

160

create function dbo.ScalarNativelyCompiled(@LoopCnt int)
returns int
with native_compilation, schemabinding
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'us_english')
 declare
 @I int = 0
 while @I < @LoopCnt
 select @I += 1;
 return @I;
end

In the first test, let’s call the functions running 1,000,000 execution loops inside
them, as shown in Listing 9-13.

Listing 9-13.  Natively Compiled vs. Interpreted Function: Running the Loop Within the
Function

select dbo.ScalarInterpret(1000000);
select dbo.ScalarNativelyCompiled(1000000);

Table 9-4 illustrates the execution time in my environment. As you can see, the natively
compiled function is the orders of magnitude faster than the interpreted T-SQL counterpart.

Let’s run another test and call the functions in the loop, as shown in Listing 9-14. The
functions do not execute a WHILE loo internally but rather are invoked 1,000,000 times.
Table 9-5 shows the execution time in my environment.

Listing 9-14.  Natively Compiled vs. Interpreted Function: Multiple Calls

declare
 @Dummy int
 ,@I int = 0

while @I < 1000000
begin
 select @Dummy = dbo.ScalarInterpret(0);
 select @I += 1;
end;

Table 9-4.  Esecution Time When Functions Run 1,000,000-Execution Loop

Interpreted T-SQL Function Natively Compiled Function

454 ms 5 ms

Chapter 9 ■ In-Memory OLTP Programmability

161

set @I = 0;
while @I < 1000000
begin
 select @Dummy = dbo.ScalarNativelyCompiled(0);
 select @I += 1;
end;

Even though natively compiled functions are significantly faster than interpreted
T-SQL functions, the invocation overhead is similar in both cases. You should avoid scalar
user-defined functions in your code even when they are natively compiled unless they are
absolutely necessary.

Memory-Optimized Table Types and Variables
SQL Server allows you to create memory-optimized table types. Table variables of these
types are called memory-optimized table variables. In contrast to regular disk-based table
variables, memory-optimized table variables live in memory only and do not utilize tempdb.

Memory-optimized table variables provide great performance. They can be used
as a replacement for disk-based table variables and, in some cases, temporary tables.
Obviously, they have the same set of functional limitations as memory-optimized tables.

Contrary to disk-based table types, you can define indexes on memory-optimized
table types; however, similar to disk-based table variables, SQL Server does not maintain
statistics on the indexes. Fortunately, as discussed, because of the nature of indexes on
memory-optimized tables, cardinality estimation errors yield a much lower negative
impact compared to those of disk-based tables.

■■ Note  A statement-level recompile with option (recompile) allows SQL Server to
estimate the number of rows in memory-optimized table variables. However, it does not
provide SQL Server any information about data distribution there.

SQL Server does not support the inline declaration of memory-optimized table
variables. For example, the code shown in Listing 9-15 will not compile, and it will raise
an error. The reason behind this limitation is that SQL Server compiles a DLL for every
memory-optimized table type, which will not work in the case of inline declaration.

Table 9-5.  Esecution Time of 1,000,000 Function Calls

Interpreted T-SQL Function Natively Compiled Function

12,344 ms 11,392 ms

Chapter 9 ■ In-Memory OLTP Programmability

162

Listing 9-15.  (Nonfunctional) Inline Declaration of Memory-Optimized Table Variables

declare
 @IDList table
 (
 ID int not null
 primary key nonclustered hash
 with (bucket_count=10000)
)
 with (memory_optimized=on)

Msg 319, Level 15, State 1, Line 91
Incorrect syntax near the keyword 'with'. If this statement is a common
table expression, an xmlnamespaces clause or a change tracking context
clause, the previous statement must be terminated with a semicolon.

You should define and use a memory-optimized table type instead, as shown in
Listing 9-16.

Listing 9-16.  Creating a Memory-Optimized Table Type and Memory-Optimized Table
Variable

create type dbo.mtvIDList as table
(
 ID int not null
 primary key nonclustered hash
 with (bucket_count=16384)
)
with (memory_optimized=on)
go

declare
 @IDList dbo.mtvIDList

You can use memory-optimized table variables as table-valued parameters (TVP)
in natively compiled and regular T-SQL modules. As with disk-based table-valued
parameters, it is an efficient way to pass a batch of rows to a T-SQL routine.

■■ Note  I will discuss the scenarios of passing a batch of rows to T-SQL routines and
using memory-optimized table variables as the replacement of temporary tables in greater
detail in Chapter 13.

You can use memory-optimized table variables to imitate row-by-row processing
using cursors, which are not supported in natively compiled stored procedures. Listing 9-17
illustrates an example of using a memory-optimized table variable to imitate a static cursor.
Obviously, it is better to avoid cursors and use set-based logic if at all possible.

http://dx.doi.org/10.1007/978-1-4842-2772-5_13

Chapter 9 ■ In-Memory OLTP Programmability

163

Listing 9-17.  Using a Memory-Optimized Table Variable to Imitate a Cursor

create type dbo.MODataStage as table
(
 ID int not null
 primary key nonclustered
 hash with (bucket_count=1024),
 Value int null
)
with (memory_optimized=on)
go

create proc dbo.CursorDemo
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language=N'English'
)
 declare
 @tblCursor dbo.MODataStage
 ,@ID int = -1
 ,@Value int
 ,@RC int = 1

 /* Staging data in temporary table to imitate STATIC cursor */
 insert into @tblCursor(ID, Value)
 select ID, Value
 from dbo.MOData

 while @RC = 1
 begin
 select top 1 @ID = ID, @Value = Value
 from @tblCursor
 where ID > @ID
 order by ID

 select @RC = @@rowcount
 if @RC = 1
 begin
 /* Row processing */
 update dbo.MOData set Value = Value * 2 where ID = @ID
 end
 end
end

Chapter 9 ■ In-Memory OLTP Programmability

164

Summary
SQL Server uses native compilation to minimize the processing overhead of the
interpreted T-SQL language. It generates separate DLLs for every memory-optimized
object and loads it into process memory.

SQL Server supports native compilation of regular T-SQL stored procedures, scalar
user-defined functions, and triggers. It compiles them into DLLs at creation time or, in
the case of a server or database restart, at the time of the first call. SQL Server optimizes
natively compiled modules for UNKNOWN values and embeds an execution plan into the
code. That plan never changes unless the module is recompiled—either explicitly or after
a SQL Server or database restart. You should recompile the module if data distribution
has been significantly changed after initial compilation.

You can recompile the module either by altering it or by calling the sp_recompile
stored procedure. Altering the module performs recompilation in background, and it
introduces less impact on the workload in the busy systems.

While natively compiled modules are incredibly fast, they support a limited set of
T-SQL language features. You can avoid such limitations by using interpreted T-SQL code
that accesses memory-optimized tables through the Query Interop component of SQL
Server. Almost all T-SQL language features are supported in this mode.

Memory-optimized table types and memory-optimized table variables are the
in-memory analog of table types and table variables. They live in memory only, and they
do not use tempdb. You can use memory-optimized table variables as a staging area for
the data and to pass a batch of rows to a T-SQL routine. Memory-optimized table types
allow you to create indexes similar to memory-optimized tables.

165© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_10

CHAPTER 10

Data Storage, Logging,
and Recovery

This chapter discusses how In-Memory OLTP stores the data from durable memory-
optimized tables on disk. It illustrates the concept of checkpoint file pairs used by SQL
Server to persist the data, provides an overview of the checkpoint process in In-Memory
OLTP, and discusses the recovery of memory-optimized data. It also explains why
In-Memory OLTP logging is more efficient compared to disk-based tables.

Finally, this chapter demonstrates how In-Memory OLTP performs table alteration
and logs it in the log and checkpoint files.

Data Storage
The data from durable memory-optimized tables is stored separately from disk-based
tables. SQL Server uses a streaming mechanism to store it, which is based on the
FILESTREAM technology. In-Memory OLTP and FILESTREAM, however, store data separately
from each other, and you should have two separate filegroups: one for In-Memory OLTP
and another for FILESTREAM data when the database uses both technologies.

There is a conceptual difference between how disk-based data and memory-
optimized data are stored. Disk-based tables store the single, most recent version of the
row. Multiple updates of the row change the same row object multiple times. Deletion of
the row removes it from the database. Finally, it is always possible to locate a data row in a
data file when needed.

In-Memory OLTP uses a completely different approach and persists multiple
versions of the row on disk. Multiple updates of the data row generate multiple row
objects, each of which has a different lifetime. SQL Server appends them to binary files
stored in the In-Memory OLTP filegroup, which are called checkpoint files or, sometimes,
checkpoint file pairs (CFP).

It is impossible to predict where a data row is stored in checkpoint files. Nor are there
use cases for such an operation. The only purposes these files serve are to provide data
durability and to improve the performance of loading data into memory on database startup.

Chapter 10 ■ Data Storage, Logging, and Recovery

166

As you can guess by the name, each checkpoint file pair consists of two files: a
data file and a delta file. Each CFP covers operations for a range of Global Transaction
Timestamp values, logging operations on the rows that have BeginTs values in this range.
Every time you insert a row, it is saved into a data file. Every time you delete a row, the
information about the deleted row is saved into a delta file. An update generates two
operations, INSERT and DELETE, and it saves this information to both files. You will see
how all those operations work in more detail later in the chapter.

Figure 10-1 provides a high-level overview of the structure of checkpoint file pairs.

Figure 10-1.  Data in checkpoint files

As you will remember, memory-optimized tables may include additional internal
tables that store data from off-row columns and columnstore index-related structures.
Those internal tables are treated as separate objects (the rows in checkpoint files use
xtp_object_id as the reference), and data from there is stored separately from the main
in-row data rows.

The data from LOB columns, such as (n)varchar(max) and varbinary(max), is
stored in another type of data file, called large data. The large data files have a similar
structure as the regular data files; however, they can store more than 8,060 bytes in the
payload section of the rows. It is worth noting that the data from the row-overflow column
tables is stored in the regular data files.

The large data files are also used to store compressed columnstore segments.
Compressed segment data is stored in the payload section of the row and referenced by
the segment_id and column_id values. The delete bitmap (the deleted rows table), on the
other hand, is stored separately, as the regular table in another checkpoint file pair.

Finally, there is another type of checkpoint file called the root file. Root files are generated
at each checkpoint event and are used to keep track of checkpoint files in the system.

Figure 10-2 shows an example of a database with 15 checkpoint files in different
states. I will cover the states of checkpoint files in detail shortly. This is just an illustration;
the actual databases will have at least 17 checkpoint files in various states.

Chapter 10 ■ Data Storage, Logging, and Recovery

167

Using a separate delta file to log deletions allows SQL Server to avoid modifications
in data files and random I/O when rows are deleted. All checkpoint files are append-only.
Moreover, when files are closed (again, more on this shortly), they become read-only.

Checkpoint Files States
Each checkpoint file can be in one of several states during its lifetime, as illustrated in
Figure 10-3.

Figure 10-2.  A database with multiple checkpoint file pairs

Figure 10-3.  Checkpoint file states

Chapter 10 ■ Data Storage, Logging, and Recovery

168

Let’s look at all of these states in more detail.

PRECREATED State
When you create the first In-Memory OLTP object in the database, including
memory-optimized table types and nondurable memory-optimized tables, SQL Server
generates 17 checkpoint files: 1 root and 16 empty files. This is done to minimize wait
time when new files are needed.

The initial size of the files is based on the amount of server memory, as shown in
Table 10-1. It is possible, however, that SQL Server changes the type of precreated file if
needed. For example, a precreated large data file can be converted and used as a regular
data file when required.

SQL Server 2016 RTM supports large checkpoints, which is another configuration of
checkpoint files and enables it when the server meets the following requirements:

The server has 16 or more logical processors.

The server has 128GB or greater memory.

The server I/O system provides more than 200MB/sec
throughput for the database.

In this mode, SQL Server used 1GB/128MB data and delta files and defers the
automatic checkpoint process to 12GB of log growth (more on this later). While this
configuration may help to improve the performance of the systems with a very high
transaction log generation rate, it may lead to a longer recovery time on database startup.
This behavior has been disabled in SQL Server 2016 CU1/SQL Server 2016 SP1.

UNDER CONSTRUCTION State and CHECKPOINT Process
As you already know, SQL Server uses the transaction log to persist information about
data modifications in the database. Transaction log records can be used to reconstruct
any data changes in the event of an unexpected shutdown or crash; however, that process
can be time-consuming if a large number of log records need to be replayed.

SQL Server uses checkpoints to mitigate that problem. Even though disk-based and
In-Memory OLTP checkpoint processes are independent from each other, they do the
same thing: they persist the data changes on disk, reducing the database recovery time.
The last checkpoint identifies up to which point the data changes have been persisted
and which log records need to be replayed.

Table 10-1.  Initial Size of Checkpoint Files

Server Memory Data File Size Large Data File Size Delta File Size Root File Size

Less than 16GB 16MB 8MB 8MB 2MB

16GB or more 128MB 64MB 8MB 16MB

Chapter 10 ■ Data Storage, Logging, and Recovery

169

With disk-based tables, the frequency of checkpoint operations depends on the
server-level recovery interval and database-level TARGET_RECOVERY_TIME settings.
While such an approach helps SQL Server to improve write performance by batching
multiple random I/O writes together, it leads to spikes in I/O activity at the time when the
checkpoint occurs.

In contrast, In-Memory OLTP implements continuous checkpoints. It continuously
scans the transaction log, streaming and appending the changes to checkpoint file pairs
in the UNDER CONSTRUCTION state. The new versions of the rows are appended to the data
files, and deletions are appended to delta files. The continuous checkpoint also appends
information about deletions to CFPs in the ACTIVE state, which I will discuss shortly.

■■ Note  It is worth repeating that the In-Memory OLTP checkpoint relies on transaction
log records, which is different from the Storage Engine checkpoint that scans and flushes
the dirty data pages from the buffer pool.

In SQL Server 2016, the In-Memory OLTP continuous checkpoint process is
multithreaded and significantly more efficient compared to the single-threaded
checkpoint in SQL Server 2014. The main work is done by serializer threads that scan
transaction logs based on about 1MB intervals called segments. Those threads process the
segments and populate data and delta files based on In-Memory OLTP transaction log
records from there.

The segments are identified by segment log records, which are generated when a
transaction log grows more than 1MB since the last segment log record. Those log records
contain information about the range of transactions within the segments. The controller
thread scans the log identifying the segments and passing them to the serializer threads.

Another thread—timer tasks—wakes up on schedule and checks whether the
transaction log grew 1.5GB since the last checkpoint event or whether the last checkpoint
event occurred more than six hours ago. When this happens, In-Memory OLTP creates
another internal transaction that closes the currently opened segment with a special flag
that indicates that it should trigger the checkpoint. When this segment is detected by the
controller thread, it wakes up another close thread, which performs the actual checkpoint
operation by converting all UNDER CONSTRUCTION data files to the ACTIVE state and
generating another root file with the information about all active files at the time of the
checkpoint. It is worth noting that the checkpoint is triggered regardless if the transaction
log grew because of disk-based or In-Memory OLTP transactions.

■■ Note  With large checkpoints in SQL Server 2016 RTM, checkpoints are triggered based
on a 12GB transaction log growth.

Chapter 10 ■ Data Storage, Logging, and Recovery

170

ACTIVE State
As already mentioned, the checkpoint event changes the state of all UNDER CONSTRUCTION
checkpoint files to ACTIVE. SQL Server does not append new data rows into ACTIVE data
files so they become read-only; however, it still appends the information about deleted
rows from ACTIVE data files into the ACTIVE delta files.

Consider the situation when the database has two checkpoint file pairs—one in
ACTIVE state covering the BeginTs interval between 0 and 1,000 and another one in
UNDER CONSTRUCTION state covering the interval starting with a BeginTs value of 1,001.
Let’s assume you have three data rows in the table stored in the ACTIVE data file.
Figure 10-4 illustrates this.

Figure 10-4.  ACTIVE and UNDER CONSTRUCTION checkpoint file pairs

Chapter 10 ■ Data Storage, Logging, and Recovery

171

Let’s assume you have two transactions that modify the data, as shown in Listing 10-1.

Listing 10-1.  Modifying the Data in the Table

-- Global Transaction Timestamp: 1100
begin tran
 delete from T where RowId = 1;
 update T set Col = 1 where RowId = 3;
 insert into T(RowId) values(4);
commit;

-- Global Transaction Timestamp: 1200
delete from T where RowId = 4;

The first transaction with a Global Transaction Timestamp value of 1,100 deletes the
row with RowId = 1, which adds the row to the delta file of ACTIVE CFP. It also updates
the row with RowId = 2, which adds another row to the ACTIVE delta file, marking deletion
of the old version of the row. The new version of the data row is inserted into the UNDER
CONSTRUCTION data file along with the row from the INSERT statement.

The second transaction deletes the newly inserted row, which adds the row to the
UNDER CONSTRUCTION delta file, as shown in Figure 10-5.

Figure 10-5.  ACTIVE and UNDER CONSTRUCTION checkpoint file pairs after data
modifications

Chapter 10 ■ Data Storage, Logging, and Recovery

172

Typically, the combined size of the ACTIVE checkpoint files on disk is about twice the
size of the durable memory-optimized tables in memory. However, in some cases,
SQL Server may require more space to store memory-optimized data.

MERGE TARGET State and Merge Process
Over time, as data modifications progress, the percent of deleted rows in the ACTIVE
checkpoint files increases. This condition adds unnecessary storage overhead and slows
down the data-loading process during recovery. SQL Server addresses this situation with
a process called merge.

A background task called the Merge Policy Evaluator periodically analyzes whether
adjacent ACTIVE CFPs can be merged in a way that active, nondeleted rows from the
merged data files would fit into the new 16MB or 128MB data file. When this happens,
SQL Server creates the new CFP in a MERGE TARGET state and populates it with the data
from the multiple ACTIVE CFPs, filtering out deleted rows.

Even though the Merge Policy Evaluator can identify multiple possible merges,
every CFP can participate in only one of them. Table 10-2 shows several examples of the
possible merges.

Table 10-2.  Merge Examples

Adjacent Source Files (% Full) Merge Results

CFP0 (40%), CFP1 (45%), CFP2 (60%) CFP0 + CFP1 (85%).

CFP0 (10%), CFP1 (15%), CFP2 (70%), CFP3 (10%) CFP0 + CFP1 + CFP2 (95%).

CFP0 (55%), CFP1 (50%) No merge is done.

Once the merge process is complete and the checkpoint has occurred, the
MERGE TARGET CFP is transitioned to ACTIVE and former ACTIVE CFPs to WAITING FOR
LOG TRUNCATION states.

In-Memory OLTP merges LOB-column large data files the same way as the regular
data files. However, large data files with columnstore segments and root files are not
merged and may transition to a WAITING FOR LOG TRUNCATION state without the need
for a merge operation. This transition happens after a new root file is generated at the
checkpoint event or when the columnstore index row group has been decompressed after
90 percent of the rows in the group are deleted.

WAITING FOR LOG TRUNCATION State
The data in former ACTIVE and now WAITING FOR LOG TRUNCATION files is no longer
needed for database recovery. Former MERGE TARGET and now ACTIVE CFPs can be used
for this purpose. However, those WAITING FOR LOG TRUNCATION files are still needed if
you want to restore the database from a backup.

Chapter 10 ■ Data Storage, Logging, and Recovery

173

The checkpoint files stay in that state until the log truncation point passed their
LSNs. In a FULL recovery model, this means that a log backup has been taken, log records
were sent to secondary nodes, and other processes that read transaction log have not
fallen behind. Obviously, in a SIMPLE recovery model, a log backup is not required, and
the log truncation point is controlled by checkpoints.

Once it happens, WAITING FOR LOG TRUNCATION files are no longer needed. They
can be either transitioned back to a PRECREATED state or deleted if the system has already
enough PRECREATED files.

■■ Note  You can analyze the state of checkpoint files using the sys.dm_db_xtp_
checkpoint_files view. Appendix C talks about this view in greater depth and shows how
checkpoint file states change through their lifetime.

Recovery
As you know, the recovery process may occur during a database or instance restart,
failover to another node, or after restoring the database from the backup. SQL Server
performs the recovery of disk-based and memory-optimized tables in parallel using
ACTIVE data files and transaction logs for In-Memory OLTP data.

At the beginning of the recovery stage, SQL Server locates the most recent root file
that contains information about checkpoint files and passes it to the In-Memory OLTP
Engine. The Engine obtains the list of all ACTIVE checkpoint file pairs and starts loading
data from them. It loads only the nondeleted versions of rows using delta files as the filter.
It checks that a row from a data file is not deleted and is not referenced in the delta files.
Based on the results of this check, a row is either loaded to memory or discarded.

The process of loading data is highly scalable. SQL Server creates one thread per
logical CPU, and each thread processes an individual checkpoint file pair. In a large
number of cases, the performance of the I/O subsystem becomes the limiting factor in
data-loading performance. This is the reason why you should place checkpoint files on
the fast, preferable flash-based, storage.

As the opposite of disk-based tables, indexes on memory-optimized tables are not
persisted. As you remember, indexes in In-Memory OLTP are just the memory pointers,
and the memory addresses of the rows change after they are reloaded into the memory.
Therefore, indexes must be re-created during the recovery stage.

Figure 10-6 illustrates the data-loading process.

Chapter 10 ■ Data Storage, Logging, and Recovery

174

After the data from CFPs has been loaded, SQL Server completes the recovery by
applying the changes from the tail of the transaction log, bringing the database back to
the state as of the time of crash or shutdown. As you already know, In-Memory OLTP does
not log uncommitted changes; therefore, no UNDO stage is required during the recovery.

Finally, it is important to mention the difference in recovery processes during
failover in AlwaysOn Availability Groups and Failover Cluster instances. With an
AlwaysOn Failover Cluster, failover is conceptually similar to a SQL Server restart. The
databases are brought online, and all memory-optimized data needs to be loaded into
the memory. AlwaysOn Availability Group nodes, on the other hand, just need to process
REDO queue replaying transactions from the unapplied portion of transaction log. The
data from memory-optimized tables is already loaded into the memory on all nodes.

You should remember this behavior and consider the memory-optimized data
recovery time when you have an availability SLA in your system. This is especially
important if you are using failover clusters in the infrastructure. As mentioned, you can
reduce this time by placing checkpoint files on the fast storage.

Transaction Logging
As you already know, transaction logging in In-Memory OLTP is more efficient compared
to the Storage Engine. Both engines share the same transaction log and perform write-
ahead logging (WAL); however, the log records format and algorithms are very different.

With disk-based tables, SQL Server generates transaction log records on a per-index
basis. For example, when you insert a single row into a table with clustered and nonclustered
indexes, it will log insert operations in every individual index separately. Moreover, it will log
internal operations, such as extent and page allocations, page splits, and a few others.

Figure 10-6.  Loading data to memory

Chapter 10 ■ Data Storage, Logging, and Recovery

175

All log records are saved in a transaction log and hardened on disk pretty much
synchronously at the time when they were created. Even though every database has
a cache called Log Buffer to batch log writes, that cache is very small, about 60KB.
Moreover, some operations, such as COMMIT and CHECKPOINT, flush that cache whether it
is full or not.

Finally, SQL Server has to include before-update (UNDO) and after-update (REDO)
versions of the row to the log records. The checkpoint process is asynchronous, and it
does not check the state of transaction that modified the page. It is entirely possible for
the checkpoint to save the dirty data pages from uncommitted transactions, and the UNDO
part of the log records are required to roll back the changes.

Transaction logging in In-Memory OLTP addresses these inefficiencies. The first
major difference is that In-Memory OLTP generates and saves log records at the time of the
transaction COMMIT rather than during each data row modification. Therefore, rolled-back
transactions do not generate any log activity.

The format of a log record is also different. Log records do not include any UNDO
information. Dirty data from uncommitted transactions will never materialize on disk;
therefore, In-Memory OLTP log data does not need to support the UNDO stage of crash
recovery or log uncommitted changes.

In-Memory OLTP generates log records based on the transactions write set. All data
modifications are combined in one or very few log records based on the write set and
inserted rows’ size.

Let’s examine this behavior and run the code shown in Listing 10-2. It starts a
transaction and inserts 500 rows into a memory-optimized table. Then it examines the
content of the transaction log using the undocumented sys.fn_dblog system function.

Listing 10-2.  Transaction Logging in In-Memory OLTP: Memory-Optimized Table Logging

create table dbo.HKData
(
 ID int not null,
 Col int not null,

 constraint PK_HKData
 primary key nonclustered hash(ID)
 with (bucket_count=2048),
)
with (memory_optimized=on, durability=schema_and_data);

declare
 @I int = 1

begin tran
 while @I <= 500
 begin
 insert into dbo.HKData with (snapshot)
 (ID, Col)
 values(@I, @I);

Chapter 10 ■ Data Storage, Logging, and Recovery

176

 set @I += 1
 end
commit
go

select *
from sys.fn_dblog(NULL, NULL)
order by [Current LSN];

Figure 10-7 illustrates the content of the transaction log. You can see the single
transaction record for the In-Memory OLTP transaction.

Let’s repeat this test with a disk-based table of a similar structure. Listing 10-3 shows
the code that creates a table and populates it with data.

Listing 10-3.  Transaction Logging in In-Memory OLTP: Disk-Based Table Logging

create table dbo.DiskData
(
 ID int not null,
 Col int not null,

 constraint PK_DiskData
 primary key nonclustered(ID)
);

declare
 @I int = 1

begin tran
 while @I <= 500
 begin
 insert into dbo.DiskData(ID, Col)
 values(@I, @I);

 set @I += 1;
 end
commit

As you can see in Figure 10-8, the same transaction generated more than 1,700 log
records.

Figure 10-7.  Transaction log content after the In-Memory OLTP transaction

Chapter 10 ■ Data Storage, Logging, and Recovery

177

You can use another undocumented function, sys.fn_dblog_xtp, to examine
the logical content of an In-Memory OLTP log record. Listing 10-4 shows the code that
utilizes this function. You should use the LSN of the LSN_HK log record from the
Listing 10-2 output as the parameter of the function.

Listing 10-4.  Analyzing an In-Memory OLTP Log Record

select [Current LSN], xtp_object_id, operation_desc
 ,tx_end_timestamp, total_size
from sys.fn_dblog_xtp(null, null)
-- <Use LSN of LOP_HK operation from result of sys.fn_dblog>
where [Current LSN] = '00000022:00000240:0035';

Figure 10-9 shows the output of that code.

Figure 10-8.  Transaction log content after disk-based table modification

Figure 10-9.  In-Memory OLTP transaction log record details

Finally, it is worth stating again that any data modification on nondurable tables
(DURABILITY=SCHEMA_ONLY) is not logged in the transaction log or is its data persisted on disk.

Chapter 10 ■ Data Storage, Logging, and Recovery

178

Table Alteration
As you already know, SQL Server 2016 supports table alteration using the ALTER TABLE
statement. This is an offline operation that blocks access to the table during execution.
SQL Server generates and compiles the new version of the table DLL and loads it into the
process memory.

The ALTER TABLE statement runs in two different modes depending on what changes
are required.

Metadata-only alteration: With metadata-only alteration, In-
Memory OLTP does not modify the structure of the data rows.
This may occur when you add or remove DEFAULT, CHECK, and
FOREIGN KEY constraints and/or enable or disable the system
versioning (temporal tables) for memory-optimized tables.

Regular alteration: That type of alteration requires In-Memory
OLTP to change the format of the data rows or internal table
objects. It occurs when you add or remove columns and
indexes, change column data types, and modify the bucket_
count value of the hash indexes, as well as in other cases that
require transformation of the data.

During metadata-only alteration, SQL Server updates the table metadata and
creates, drops, or flushes system-versioning-related objects to disk if needed. The data
rows are not re-created, but adding CHECK or FOREIGN KEY constraints may require In-
Memory OLTP to scan all the data from the table to validate the constraint.

Regular alteration, on the other hand, will require In-Memory OLTP to re-create the
table. This occurs when you need to change the data row format and/or indexing in the
table. In this case, SQL Server creates another table object with a different xtp_object_id
value and copies the data from the old to the new objects, transforming it during the
process. Obviously, the system needs to have enough memory to accommodate both
copies of the data.

Let’s look at the example and create two tables, obtaining xtp_object_id values for
them. Listing 10-5 shows the code that performs this.

Listing 10-5.  Creating Two Tables and Obtaining xtp_object_id Values

create table dbo.TableA
(
 Col1 int not null
 constraint PK_TableA
 primary key nonclustered hash
 with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data);

Chapter 10 ■ Data Storage, Logging, and Recovery

179

create table dbo.TableB
(
 Col1 int not null
 constraint PK_TableB
 primary key nonclustered hash
 with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data);

select
 'dbo.TableA' as [Table]
 ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and
 a.xtp_object_id = c.xtp_object_id
where
 c.object_id = object_id('dbo.TableA');

select
 'dbo.TableB' as [Table]
 ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and
 a.xtp_object_id = c.xtp_object_id
where
 c.object_id = object_id('dbo.TableB');

Figure 10-10 illustrates the output of the code.

Figure 10-10.  Xtp_object_id values after table creation

Chapter 10 ■ Data Storage, Logging, and Recovery

180

As the next step, let’s alter two tables, as shown in Listing 10-6. The code adds a
CHECK constraint to dbo.TableA and also adds a new column to dbo.TableB. Finally,
it queries the xtp_object_id value of the tables again.

Listing 10-6.  Altering the Tables

alter table dbo.TableA
add constraint CHK_Col1
check (Col1 > 0);

alter table dbo.TableB
add Col2 int null;

select
 'dbo.TableA' as [Table]
 ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and
 a.xtp_object_id = c.xtp_object_id
where
 c.object_id = object_id('dbo.TableA');

select
 'dbo.TableB' as [Table]
 ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
 ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
 sys.dm_db_xtp_memory_consumers c join
 sys.memory_optimized_tables_internal_attributes a on
 a.object_id = c.object_id and
 a.xtp_object_id = c.xtp_object_id
where
 c.object_id = object_id('dbo.TableB');

As you can see in Figure 10-11, adding a CHECK constraint is a metadata-only
alteration, which did not change the xtp_object_id value of the table. Adding a new
column, on the other hand, required SQL Server to create another table object internally.

Figure 10-11.  Xtp_object_id values after alteration

Chapter 10 ■ Data Storage, Logging, and Recovery

181

Obviously, SQL Server has to log and persist table alteration events. Moreover, in the
case of regular alteration, checkpoint data files may store the data rows in an old, pre-altered
format, which is incompatible with the new table schema and DLL. In-Memory OLTP
addresses this by applying the technique called log optimization, persisting the history
of schema changes in an internal transformation table. SQL Server uses that table to
transform the data rows into the new format during database startup while loading data
into the memory.

Let’s illustrate it with the example. Listing 10-7 shows the code that creates the table
and performs two table alterations adding some data rows to the table in between them.

Listing 10-7.  Log Optimization

-- Global Transaction Timestamp = 1
-- xtp_object_id = -2147483615
create table dbo.T1
(
 Id int not null
 constraint PK_T1
 primary key nonclustered hash
 with (bucket_count=1024),
 Col1 int not null;
)
with (memory_optimized=on, durability=schema_and_data);

-- Global Transaction Timestamp = 100
insert into dbo.T1(ID,Col1) values(1,1);

-- Global Transaction Timestamp = 200
-- xtp_object_id = -2147483612
alter table dbo.T1 add Col2 varchar(100);

-- Global Transaction Timestamp = 300
insert into dbo.T1(ID,Col1,Col2) values(2,2,'2');

-- Global Transaction Timestamp = 400
-- xtp_object_id = -2147483609
alter table dbo.T1 alter column Col1 money;

-- Global Transaction Timestamp = 500
insert into dbo.T1(ID,Col1,Col2) values(3,3.33,'3');

Table 10-3 illustrates the logical structure of the transformation table.

Table 10-3.  Logical Structure of the Transformation Table

BeginTs xtp_object_id Action

200 -2147483612 ADD Coll2 int

400 -2147483609 MODIFY Col1 money

Chapter 10 ■ Data Storage, Logging, and Recovery

182

During database startup, In-Memory OLTP reads the rows from checkpoint files and
transforms them to the latest schema based on the data from the transformation table.
Figure 10-12 illustrates this process.

As you can guess, log optimization requires transformation to be deterministic.
The column values in the rows after the transformation should be the same as after the
original alteration. Unfortunately, this is not always possible. Consider the situation
when you add a new column to the table either as identity or with the DEFAULT NEWID()
WITH VALUES constraint. This modification is nondeterministic. It is impossible to predict
the values that are generated during alteration and transformation; therefore, log
optimization would not work.

When log optimization is impossible, SQL Server uses naïve logging and logs the
table alteration as the set of individual inserts into the new table, as shown in Listing 10-8.
The rows are transformed according to the new table schema during the process.

Listing 10-8.  Naïve Logging: Alteration of Table T (Pseudocode)

create table NewVersionOfT(..);

insert into NewVersionOfT(..)
 select and transform rows according to the new schema
 from T;

drop table T;

In-Memory OLTP treats that INSERT SELECT actions the same way as regular INSERT
operations. It logs them in the transaction log, and the continuous checkpoint writes
the rows to the checkpoint data files. As you can guess, this approach can introduce
significant log overhead, especially in the case of the large tables. Moreover, table
alterations that require naïve logging are single-threaded and can be significantly slower
than multithreaded log-optimized alterations.

Several other cases lead to naïve logging. The most notable is adding new LOB or
row-overflow columns to the table. As you will know, off-row columns are stored in the
separate internal tables, with the main rows referencing them through the artificial IDs.
It is impossible to predict those ID values and use log optimization. Unfortunately, the
alteration of off-row columns is also not log-optimized and any changes of off-row columns,
including dropping them or bringing them back in-row, will lead to naïve logging.

Figure 10-12.  Data row transformation during database startup

Chapter 10 ■ Data Storage, Logging, and Recovery

183

Finally, SQL Server uses naïve logging with any DEFAULT WITH VALUES constraint that
uses system or user-defined functions even when functions are deterministic.

Let’s look at the overhead of naïve logging. Listing 10-9 creates the new database and
memory-optimized table and populates it with about 8GB of data. Finally, it performs a
CHECKPOINT operation making sure that In-Memory OLTP populates checkpoint data files.

Listing 10-9.  Naïve Logging Overhead: Object Creation

create database [InMemoryOLTP2016_Ch10]
on primary
(
 name = N'Ch10'
 ,filename = N'C:\Data\Ch10.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'Ch10_HKData'
 ,filename = N'C:\Data\HKData\Ch10'
)
log on
(
 name = N'Ch10_Log'
 ,filename = N'C:\Data\Ch10_log.ldf'
)
go

create table dbo.AlterLogging
(
 ID int not null
 constraint PK_AlterLogging
 primary key nonclustered,
 IntCol int not null,
 CharCol char(8000) not null
)
with (memory_optimized = on, durability = schema_and_data);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.AlterLogging(Id, IntCol, CharCol)
 select Id, Id, Replicate('0',8000)
 from Ids;

checkpoint;

Chapter 10 ■ Data Storage, Logging, and Recovery

184

Listing 10-10 shows how to obtain the information about the file size and the used
space in transaction log and checkpoint files.

Listing 10-10.  Naïve Logging Overhead: Obtaining the Size of Transaction Log and
Checkpoint Files

select
 convert(decimal(9,3),sum(file_size_in_bytes) / 1024. / 1024)
 as [Checkpoint Files Size MB]
 ,convert(decimal(9,3),sum(file_size_used_in_bytes) / 1024. / 1024)
 as [Checkpoint Files Size Used MB]
from
 sys.dm_db_xtp_checkpoint_files;

select
 name as [FileName]
 ,convert(decimal(9,3),size / 128.)
 as [Log Size MB]
 ,convert(decimal(9,3),fileproperty(name,'SpaceUsed') / 128.)
 as [Log Size Used MB]
from sys.database_files
where name = 'InMemoryOLTP2016_Ch10_log';

Figure 10-13 illustrates the size of the transaction log and checkpoint files after the
INSERT operation.

Figure 10-13.  The size of the log and checkpoint files after INSERT

As the next step, let’s perform a table alteration by adding another int column to the
table, as shown in Listing 10-11. As you know, this operation is log optimized, and it took
5.3 seconds in my environment.

Listing 10-11.  Naïve Logging Overhead: Altering the Table (Log Optimized Alteration)

alter table dbo.AlterLogging add IntCol2 int;
checkpoint;

If you ran the queries from Listing 10-10 again, you would see the results shown in
Figure 10-14. As you can see, the alteration does not significantly increase the size of the
log and checkpoint files.

Chapter 10 ■ Data Storage, Logging, and Recovery

185

Finally, let’s run another ALTER TABLE statement adding a LOB column to the table.
This operation does not support log optimization, and it requires naïve logging. Listing 10-12
shows the code to perform the action.

Listing 10-12.  Naïve Logging Overhead: Altering the Table (Naïve Logging)

alter table dbo.AlterLogging add LOBCol varchar(max);
checkpoint;

As I already mentioned, a non-log-optimized alteration is the single-threaded
process. The operation took 47.1 seconds in my environment, which is about nine times
slower than the log-optimized alteration. It also adds significant transaction log overhead
and doubles the size of checkpoint files on disk, as shown in Figure 10-15.

Table alteration overhead is another reason why you should be extremely careful
with off-row storage and LOB columns in memory-optimized tables.

You can reduce the impact of table alterations by combining multiple similar schema
changes into a single ALTER TABLE statement, as shown in Listing 10-13. Unfortunately,
it is impossible to combine different actions in the same ALTER TABLE statement; for
example, you cannot add and drop columns simultaneously.

Listing 10-13.  Combining Multiple Actions into a Single ALTER TABLE Statement

alter table dbo.TableA add
 Col3 int
 ,Col4 int
 ,constraint CHK_Columns_Positive
 check(Col3 > 0 and Col4 > 0);

alter table dbo.TableB drop column Col1, Col2;

Figure 10-14.  The size of the log and checkpoint files after log-optimized alteration

Figure 10-15.  The size of the log and checkpoint files after naïve logging alteration

Chapter 10 ■ Data Storage, Logging, and Recovery

186

Finally, SQL Server 2016 SP1 introduces several major performance improvements
that can dramatically reduce the time of table alteration. Moreover, adding the columnstore
index becomes log optimized, which was not the case in SQL Server 2016 RTM.

Summary
The data from durable memory-optimized tables is placed into a separate filegroup
utilizing FILESTREAM technology under the hood. The data is stored in a set of checkpoint
files of different types. Data files store the row version data. Delta files store the
information about deleted rows. The data from LOB columns and columnstore indexes is
stored in large data files. Finally, root files store the information about checkpoint files in
the system.

The data in checkpoint files is never updated. A DELETE operation generates the new
entry in the delta file. An UPDATE operation stores the new version of the row in the data
file, marking the old version as deleted in the delta file. SQL Server utilizes the sequential
streaming API to write data to those files without any random I/O involved.

Every checkpoint file pair covers a particular interval of Global Transaction
Timestamp values and goes through a set of predefined states. SQL Server stores the
new row data in CFPs in the UNDER CONSTRUCTION state. These CFPs are converted to the
ACTIVE state at a checkpoint event. Data files of ACTIVE CFPs are closed, and they do not
accept the new row versions; however, they still log information about deletions in the
delta files.

SQL Server merges the data from the ACTIVE checkpoint file pairs, filtering out
deleted rows. After the merge is completed and the source CFPs are backed up, SQL
Server either deallocates them or switches them back to the FREE state.

ACTIVE checkpoint file pairs are used during database recovery along with the tail of
the log. The In-Memory OLTP recovery process is highly scalable and very fast. Indexes
on memory-optimized tables are not persisted on disk and re-created when data is
loaded into the memory.

Transaction logging in In-Memory OLTP is more efficient compared to disk-based
tables. Transactions are logged at the time of COMMIT based on the transaction write set.
Log records are compact and contain information about multiple row-related operations.

There are two types of table alterations in SQL Server 2016. Metadata-only alteration
occurs when you add or remove table constraints and/or change system-versioning table
properties. SQL Server does not re-create the table object; however, it may scan the data
in the table to validate the constraints.

By contrast, a regular alteration re-creates a table object in the background,
assigning it a different xtp_object_id value. In the case of deterministic transformations,
SQL Server performs log optimization and persists only schema-change information,
transforming the rows from checkpoint files on database startup. In the case of
nondeterministic transformation, SQL Server uses naïve logging and logs INSERT events
for every row from the table.

Table alteration is an offline operation that blocks access to the table during the
execution. You can reduce the impact of alteration by combining multiple similar actions
into a single ALTER TABLE statement.

187© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_11

CHAPTER 11

Garbage Collection

This chapter covers the garbage collection process used in the In-Memory OLTP Engine.
It provides an overview of the various components involved in garbage collection and
demonstrates how they interact with each other.

Garbage Collection Process Overview
In-Memory OLTP is a row-versioning system. UPDATE operations generate new versions
of rows rather than updating row data. DELETE operations do not remove the rows but
rather update the EndTs row timestamp. Rows created by aborted transactions are not
deallocated immediately, and they stay as part of the index row chains even after rollback.

As you know, every row has two timestamps (BeginTs and EndTs) that indicate row
lifetime by specifying when the row was created and when it was deleted. Transactions
can see only the versions of rows that were valid when the transaction started. In practice,
this means that a row is visible for a transaction only if the transaction logical start time
(the Global Transaction Timestamp value at the start of the transaction) is between the
BeginTs and EndTs timestamps of the row.

At some point, when the EndTs timestamp of a row is older than the Global
Transaction Timestamp of the oldest active transaction in the system, the row expires.
Expired rows are invisible for active transactions, and eventually they need to be
deallocated to reclaim system memory and speed up index chain navigation. This process
is called garbage collection.

The garbage collection process in In-Memory OLTP has been designed with the
following goals:

•	 Nonblocking: The garbage collection process should not block
user threads and should produce minimal performance impact
on the system.

•	 Responsive: The garbage collection process should react to
memory pressure.

•	 Cooperative and scalable: The garbage collection process
should not rely on a single system thread to perform memory
deallocation and should also utilize regular worker threads during
the process.

Chapter 11 ■ Garbage Collection

188

The cooperative nature of garbage collection makes it quite different from the typical
SQL Server background processes. Even though there is a dedicated system garbage
collection thread (one per NUMA node) called the idle worker thread, the major part of
the work is done by the regular user worker threads. This allows the process to scale and
keep up with the workload in the system.

User threads participate in the garbage collection process in two different ways. They
unlink old, expired rows from the row chains and perform actual deallocation. These
actions are separate from each other, as you will see shortly.

Let’s look at the process in detail. Figure 11-1 illustrates the logical structure
of a table with two hash indexes on the Name and City columns. You saw this figure
in previous chapters; however, in this chapter I’ve added another element called
idxLinkCount, which indicates in how many index chains the rows are participating. It is
displayed with an underline in the figure; note that all the rows have a value of 2, which
corresponds to the number of indexes in the table.

Assume that you have a session that runs two queries, as shown in Listing 11-1, at a
time when the Oldest Active Transaction Timestamp is 110 and the Global Transaction
Timestamp is 125.

Listing 11-1.  First Batch

select * from dbo.People where Name = 'Adam';
select * from dbo.People where Name = 'Carl';

The first SELECT scanned the Name index row chain for the bucket with the value
A and detected the Ann row with an EndTs value of 100. The Oldest Active Transaction
Timestamp is 110, so this row is expired and invisible for the active transactions in the
system. As result, the user thread unlinked the row from the Name index row chain and
decreased the idxLinkCnt value.

Figure 11-1.  Initial state of the data

Chapter 11 ■ Garbage Collection

189

I would like to reiterate that this operation has been done by the regular user worker
thread rather than the system thread. This illustrates the cooperative nature of garbage
collection.

The second SELECT detects the deleted Carl row. However, the EndTs value of this
row is greater than the Oldest Active Transaction Timestamp, so this row is still visible for
some of the active transactions. Therefore, this row cannot be unlinked from the index
chain. Figure 11-2 illustrates the state of the data after the execution of the queries.

Now, let’s assume that some of the active transactions were completed and you
ran the second batch of the queries from Listing 11-2 at the time when the Oldest Active
Transaction Timestamp was 120 and the Global Transaction Timestamp was 130.

Listing 11-2.  Second Batch

select * from dbo.People where City = 'Cincinatti';
select * from dbo.People where City = 'Dallas';

The first SELECT found the expired Ann row in the City index chain and removed it from
there. At this point, the row is not participating in any row chains and, therefore, can be
deallocated. However, the row is not deallocated immediately; this is done at a later stage.

The Carl row now is also expired and invisible for the active transactions. The second
SELECT removed it from the City index chain; however, it is still present in the Name index
chain and cannot be deallocated. Figure 11-3 shows the state of the data at this moment.

Figure 11-2.  State of the data after the first two queries

Chapter 11 ■ Garbage Collection

190

■■ Important  You should remember that the Oldest Active Transaction Timestamp value
controls when expired rows can be removed from the index chains and deallocated.
Long-running and abandoned transactions can defer garbage collection and lead to a situation
when the system runs out of memory because of an excessive number of expired rows.

When the transaction is complete, In-Memory OLTP places the information about it
in the queue used by the idle worker thread, which is responsible for garbage collection
management. The idle worker thread wakes up every minute or, in case of a heavy
load, when the number of completed transactions exceeds the predefined threshold. It
analyzes the list of completed transactions and the Oldest Active Transaction Timestamp
in the system and separates completed transactions to 16 different queues called
generations, sorting them based on their Global Transaction Timestamp values.

•	 Generation 0 contains the list of transactions that were completed
earlier than the current Oldest Active Transaction Timestamp.
Rows generated by those transactions are immediately available
for the garbage collection. There is no limit on the number of
transactions that can be stored there.

•	 Generations 1–14 store the list of transactions that were
completed after the current Oldest Active Transaction
Timestamp. Each generation can hold information up to about
16 transactions. As you can guess, a system can hold up to 224
transactions in generations 1–14 queues.

•	 Generation 15 stores the information about the remaining
transactions completed after the current Oldest Active
Transaction Timestamp. There is no limit on the number of
transactions that can be stored there.

Figure 11-3.  State of the data after the second two queries

Chapter 11 ■ Garbage Collection

191

Every transaction in the queue exposes its write set to the idle worker thread, which
builds the set of 16-row work items for deallocation. Those work items are distributed
across another set of worker queues—one queue per scheduler—and then they are picked
up and processed by the user threads. The user threads pick up the items and perform
deallocation after they complete their work on the other user transactions.

Figure 11-4 illustrates an example of the garbage collection workflow in a system that
has an Oldest Active Transaction Timestamp of 10,000.

The user thread usually picks up the work items from the queue that belong to the
same scheduler on which it is running. However, if the queue is empty, the thread checks
the queues from the other CPUs that belong to the same NUMA node. Finally, in the
case of a heavy load in the system, the thread can pick up a work item from any queue,
regardless of the NUMA node to which it belongs.

With the hot data and actively used indexes, user threads detect expired rows
relatively quickly. However, with rarely used indexes and/or rarely accessed data, there is
the possibility that expired rows may not be detected in a timely manner.

This is addressed by the idle worker threads that periodically scan the indexes and
detect expired rows there. The idle worker threads can either deallocate those rows
immediately or add them to the work items after those rows have been unlinked from all
index chains. This process is called a dusty corners scan or, sometimes, a sweep scan.

As you can see, the garbage collection process in In-Memory OLTP is done
asynchronously. Deleted rows and rows from aborted transactions continue to use
system memory until they are deallocated. You need to remember this and reserve
enough memory in the system to accommodate those rows.

Figure 11-4.  Garbage collection workflow

Chapter 11 ■ Garbage Collection

192

Garbage Collection–Related Data Management
Views
SQL Server exposes several data management views that can be used to monitor and
analyze the garbage collection process.

•	 The sys.dm_xtp_gc_stats view provides statistics about the
garbage collection process. It includes information about the
number of rows examined by the garbage collection subsystem,
the number of rows processed by user and idle worker threads,
and quite a few other attributes. You can read more about this
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-xtp-gc-
stats-transact-sql.

•	 The sys.dm_xtp_gc_queue_stats view provides information
about garbage collector worker queues. It provides information
about the total number of work items that were enqueued and
dequeued, the current queue length, the last time the queue was
accessed, and the maximum depth the queue has seen. You can
monitor the current queue length, making sure that the garbage
collector is keeping up. More information is available at https://
docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-xtp-gc-queue-
stats-transact-sql.

•	 The sys.dm_db_xtp_gc_cycle_stats view provides information
about the last (up to 1,024) garbage collection execution cycles
including the time and duration of the cycle and the distribution
of transactions between generations. You can use this view to find
spikes in the garbage collection activity and during long-running
transaction troubleshooting. You can read more about this view
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
gc-cycle-stats-transact-sql.

•	 Finally, the sys.dm_db_xtp_index_stats view includes several
garbage collection–related metrics. The rows_expired column
indicates how many rows have expired. The rows_expired_
removed value indicates the number of rows unlinked from
the index chain. Phantom row columns provide information
about rows inserted by aborted transactions. You can read more
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-index-stats-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql

Chapter 11 ■ Garbage Collection

193

Exploring the Garbage Collection Process
Let’s examine the garbage collection process and its asynchronous nature. As the first
step, create a memory-optimized table and populate it with 65,536 rows, as shown in
Listing 11-3.

Listing 11-3.  Table Creation

create table dbo.GCDemo
(
 ID int not null,
 Placeholder char(8000) not null,

 constraint PK_GCDemo primary key nonclustered(ID)
)
with (memory_optimized=on, durability=schema_only)
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.GCDemo(Id, Placeholder)
 select Id, Replicate('0',8000)
 from ids;

Let’s look at the amount of memory used in the table, index statistics, and garbage
collection worker queues statistics using the code from Listing 11-4.

Listing 11-4.  Analyzing Table Memory Usage, Index, and Worker Queues Statistics

select
 convert(decimal(7,2),memory_allocated_for_table_kb / 1024.)
 as [memory allocated for table]
 ,convert(decimal(7,2),memory_used_by_table_kb / 1024.)
 as [memory used by table]
from
 sys.dm_db_xtp_table_memory_stats
where
 object_id = object_id(N'dbo.GCDemo');

select
 s.index_id, i.name, s.rows_touched
 ,s.rows_expired, s.rows_expired_removed
from
 sys.dm_db_xtp_index_stats s left join sys.indexes i on

Chapter 11 ■ Garbage Collection

194

 s.object_id = i.object_id and
 s.index_id = i.index_id
where
 s.object_id = object_id(N'dbo.GCDemo');

select
 sum(total_enqueues) as [total enqueues]
 ,sum(total_dequeues) as [total dequeues]
from
 sys.dm_xtp_gc_queue_stats;

select sweep_scans_started, sweep_rows_touched
 ,sweep_rows_expired, sweep_rows_expired_removed
from sys.dm_xtp_gc_stats;

Figure 11-5 illustrates the output of the queries. As you can see, the table has about
585MB allocated and 514MB of used space. None of the rows has been deleted or touched
(scanned). I also restarted my test server right before the test, so the garbage collection
worker queues are empty. As the reminder, the row in the second output with index_id = 0
represents the table varheap.

Let’s run a few queries, analyzing the statistics after each run. As the first step, run a
script that deletes 1,500 rows in the individual transactions (see Listing 11-5).

Listing 11-5.  Deleting 1,500 Rows from the Table

declare
 @I int = 1

while @I <= 1500
begin
 delete from dbo.GCDemo where ID = @I;
 set @I += 1;
end;

Figure 11-5.  Memory and garbage collection statistics after table creation

Chapter 11 ■ Garbage Collection

195

Now run the code from Listing 11-4 again and look at the output. As you can see
in Figure 11-6, index statistics indicate that the deletion statement touched 1,500 rows;
however, none of them was marked as expired even though the deletion statements ran in
the individual autocommitted transactions.

As the next step, run a SELECT query that scans the entire index, as shown in Listing 11-6.
I am forcing the index rather than the table scan by using index hint in the query.

Listing 11-6.  Scanning the Table

select count(*) from dbo.GCDemo with (index = 2);

Figure 11-7 illustrates the statistics after the scan. As you can see, the user thread
correctly identified rows as expired and unlinked a majority of them from the index
row chains. Some of the expired rows have not been unlinked, though, and they will be
processed by either other user threads or the idle worker thread during the sweep scan.

Figure 11-6.  Memory and garbage collection statistics after deletion

Figure 11-7.  Memory and garbage collection statistics after scan

Chapter 11 ■ Garbage Collection

196

It is also important to note that none of the work items was enqueued in the garbage
collector worker items queues because the idle worker thread has not started yet.

If you look at the statistics again after the idle worker thread execution, you will see
the output shown in Figure 11-8. As you can see, the idle worker thread put items into the
garbage collection worker queues and deallocated them afterward. You can also see that the
sweep scan detected and removed the remaining 94 expired rows from the index row chains.

As I already mentioned, garbage collection is a cooperative process, and in other
cases, the items will be deallocated by the user threads rather than the idle worker threads.

The sys.dm_db_xtp_gc_cycle_stats view shows that the garbage collection idle
worker threads performed just a handful of cycles (remember, I restarted SQL Server in
my test environment before the test) and processed all the completed transactions at
once. You can see the partial output from the view in Figure 11-9.

The situation will change if you repeat the entire test, deleting more rows from the
table. The garbage collection process will be triggered based on the number of completed
transactions in the queue rather than based on the timer.

Figure 11-10 shows the summary statistics from my environment when I repeated
the test, deleting 32,768 rows in the individual transactions. Note that the garbage
collection process was started at the middle of deletions rather than based on a timer. You
can also see that in this test some of the items were deallocated by the user thread during
the first SELECT scan.

Figure 11-8.  Memory and garbage collection statistics after the idle worker thread cycle
and sweep scan

Figure 11-9.  Sys.dm_db_xtp_gc_cycle_stats view after the test

Chapter 11 ■ Garbage Collection

197

You can also confirm this by looking at the sys.dm_db_xtp_gc_cycle_stats view
output in Figure 11-11. It shows a much higher number of cycles with very short delays in
between them.

Summary
The garbage collection process in In-Memory OLTP is designed to be nonblocking,
cooperative, and scalable. Even though it is managed by a dedicated system thread
(the idle worker thread), most of the work is done by the user threads. The idle worker
thread (one per NUMA node) wakes up every minute or when the number of completed
transactions exceeds an internal threshold.

Deleted rows can be deallocated only after they are expired and their EndTs
timestamp is older the than the Oldest Active Transaction Timestamp in the system.
Moreover, they need to be removed from all index row chains before deallocation. When
the user thread encounters an expired row, the thread may unlink it from the row chain.
In-Memory OLTP periodically scans rarely accessed parts of the indexes during its dusty
corners (sweep) scan and processes expired rows that were missed by the user threads.

User threads provide information about completed transactions to the idle worker
threads, which build the list of work items that consist of 16-row batches to deallocate.
The work items are distributed between garbage collector worker queues—one queue
per scheduler in the system. In turn, user threads pick up one or several items from the
worker queues and deallocate them. The work items can also be deallocated by the idle
worker threads.

Long-running and uncommitted transactions prevent rows from expiring by freezing
the Oldest Active Transaction Timestamp in the system. This defers the garbage collection
process and can lead to a situation where deleted rows use a large amount of memory.

Figure 11-10.  Memory and garbage collection statistics during the second set of tests

Figure 11-11.  Sys.dm_db_xtp_gc_cycle_stats view after the second test

199© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_12

CHAPTER 12

Deployment and
Management

This chapter discusses the deployment and management aspects of systems that
utilize In-Memory OLTP. It provides a set of guidelines about hardware and server
configurations, and it covers In-Memory OLTP–related database administration
and management tasks. Finally, this chapter gives an overview of the changes and
enhancements in the catalog and data management objects related to In-Memory OLTP.

Hardware Considerations
In-Memory OLTP uses hardware in a different, and often more efficient, way than the
SQL Server Storage Engine. It is often possible to achieve high OLTP throughput even
with midrange servers. Moreover, In-Memory OLTP is highly scalable, and it is possible
to increase transaction throughput by adding more CPUs and memory to the server and
more drives to the disk array as the load and amount of data in the system increases.

Obviously, you should not forget that In-Memory OLTP plays in the same sandbox
with other SQL Server components, sharing resources with them. Memory becomes
one of the most critical resources for which the In-Memory OLTP and Storage Engines
compete. The memory used by memory-optimized data is inaccessible to the Storage
Engine and, therefore, cannot be used by the buffer pool. It is entirely possible that using
In-Memory OLTP on servers with an insufficient amount of memory would degrade the
performance of the queries against disk-based tables if an excessive amount of physical
I/O was required. You should remember this when designing the system and avoid
putting unnecessary data into memory-optimized tables.

■■ Tip  Consider splitting hot current and rarely accessed historical data between
memory-optimized and disk-based tables. I will discuss this scenario in more depth in the
next chapter.

Chapter 12 ■ Deployment and Management

200

Let’s discuss the In-Memory OLTP requirements for different hardware components.
Obviously, you need to take the workload from other SQL Server components into
consideration when you build servers that utilize In-Memory OLTP.

CPU
The number of CPUs in the system greatly depends on the required OLTP throughput.
However, as mentioned, it is entirely possible to achieve high transactional throughput
even with a midrange server. It is impossible to predict how many CPUs you will need
without performing some testing and analysis; however, it is beneficial to use the proper
hardware, which will allow you to scale and add more CPUs as load grows.

When possible, you should choose processors with a higher base clock speed. With
SQL Server per-core licensing, you can often get a better OLTP performance/cost ratio
by using high-end CPUs with fewer cores and higher single-threaded performance
compared to slower CPUs with more cores. This is also extremely critical in the case of
the Standard Edition of SQL Server, which is limited to the lesser of 4 sockets or 24 cores.
You would be unable to scale the CPUs beyond this limit, and faster CPUs will allow you
to achieve better transaction throughput in non-Enterprise editions of SQL Server.

Finally, you should have hyperthreading enabled on the servers.

I/O Subsystem
As a general rule, you should place an In-Memory OLTP filegroup on the dedicated disk
array optimized for sequential I/O performance. It is better to use Flash-based storage
when possible. Even though HDD-based disk arrays can provide good enough sequential
I/O performance to handle a regular In-Memory OLTP workload, they may become the
bottleneck during database startup. As you know, the In-Memory OLTP recovery process
is highly scalable, with multiple schedulers loading data from the different checkpoint
files in parallel. Usually, I/O performance becomes the limiting factor in how fast SQL
Server can recover memory-optimized data.

Recovery performance becomes even more important if a database has a low
recovery time objective (RTO) metric in its service level agreement (SLA). Even though
databases with an In-Memory OLTP filegroup support piecemeal restore with the
Enterprise Edition, SQL Server must bring all In-Memory OLTP data online together with
the PRIMARY filegroup. You cannot postpone In-Memory OLTP filegroup recovery to a
later stage in the restore.

One of the ways to improve recovery performance is to create multiple containers in
the In-Memory OLTP filegroup, placing them in different disk arrays using different HBA
adapters and, in the case of network storage, different access paths. SQL Server spreads
checkpoint files across containers and will load them in parallel from multiple drives.

Listing 12-1 shows how to create a database with two containers in an In-Memory
OLTP filegroup, placing them into the H:\HKData and K:\HKData folders, respectively.

Chapter 12 ■ Deployment and Management

201

Listing 12-1.  Creating a Database with Two Containers in an In-Memory OLTP Filegroup

create database HKMultiContainers
on primary
(
 name = N'HKMultiContainers'
 ,filename = N'M:\HKMultiContainers.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'HKMultiContainers_HKData1'
 ,filename = N'H:\HKData\HKMultiContainers'
),
(
 name = N'HKMultiContainers_HKData2'
 ,filename = N'K:\HKData\HKMultiContainers'
)
log on
(
 name = N'HKMultiContainers_Log'
 ,filename = N'L:\KMultiContainers_log.ldf'
);

Continuous checkpoints do not usually put an extreme load on the disk subsystem.
The process utilizes a streaming API and uses a limited number of threads to write data to
disk. The actual requirements, obviously, will depend on the transaction log generation
rate for In-Memory OLTP transactions.

The disk subsystem, however, should provide enough bandwidth to handle the
merge process in parallel with a continuous checkpoint. Usually, if the checkpoint
populates the data and delta files at a given IOPS, the I/O subsystem should handle three
times that IOPS to account for both the checkpoint and merge processes.

As for disk space, Microsoft recommends that you have enough space to
accommodate four times the size of the data from the durable memory-optimized tables.
Obviously, you need to factor in the future data growth to your analysis.

Memory
You need to have enough memory in the system to accommodate the data from all
the memory-optimized tables. SQL Server fails a transaction when it cannot allocate
memory for the new row objects. Usually, SQL Server performs memory allocation
during INSERT and UPDATE operations; however, a DELETE operation could also fail if a
table has nonclustered indexes and there is not enough memory to accommodate new
delta records or perform page merge operations. Moreover, if a table has a clustered
columnstore index, a DELETE operation could require allocating memory for a new row in
the delete bitmap internal table.

Figure 12-1 shows an error message indicating an out-of-memory condition.

Chapter 12 ■ Deployment and Management

202

An out-of-memory situation essentially makes the In-Memory OLTP data read-only.
You can still query the data; however, you cannot perform any data modifications until
the problem is resolved. When such conditions occur, it is beneficial to check the status of
the garbage collection process to make sure that it has not been deferred by the old active
transactions. I will discuss how to detect such transactions later in the chapter.

In many cases, the only option to address an out-of-memory situation is to increase
the amount of memory available to SQL Server and the In-Memory OLTP Engine. When
this is impossible, especially with the Standard Edition of SQL Server, you should detect
the largest memory consumers in In-Memory OLTP and reduce their memory footprint
by either refactoring or migrating them to disk-based tables. I will talk about how to
detect them later in the chapter.

■■ Note  The Standard edition of SQL Server is limited to 32GB of memory-optimized data
per database.

Estimating the Amount of Memory for In-Memory OLTP
Estimating the amount of memory required for memory-optimized tables is not a trivial
task. As a rule of thumb, you can double the size of the data in the table as a basis for
the estimation if the table does not have off-row columns. For a more accurate estimate,
however, you should factor the memory requirements for several different components.

•	 Data rows consist of a 24-byte header, an index pointer array
(which is 8 bytes per index), and the payload (actual row data).
For example, if your table has 100,000,000 rows and 3 indexes and
each row is about 200 bytes on average, you will need (24 + 3 * 8
+ 200) * 100,000,000 = ~23.1GB of memory to store the row data
without any versioning overhead included in this number.

•	 Hash indexes use 8 bytes per bucket. If a table has two hash
indexes defined with 150,000,000 buckets each, SQL Server will
create indexes with 268,435,456 buckets, rounding the number of
buckets specified in the index properties to the next power of 2.
Those two indexes will use 268,435,456 * 2 * 8 = 4GB of memory.

•	 Nonclustered index memory usage is based on the number of
unique index keys and index key size. If a table has a nonclustered
index with 25,000,000 unique key values and each key value on
average uses 30 bytes, it would use (30 + 8(pointer)) * 25,000,000 =
~906MB of memory. You can ignore the page header and nonleaf
pages in your estimation as their sizes are insignificant compared
to the leaf-level row size.

Figure 12-1.  Out-of-memory error

Chapter 12 ■ Deployment and Management

203

•	 Off-row storage overhead depends on the number of not-null
values stored in off-row internal tables. Each row-overflow value
adds 64 bytes overhead, which consists of a 24-byte internal
table row structure, two 8-byte range index pointers (on the leaf
level and in-row), and 24 bytes to store the artificial off-row ID
three times (in-row, off-row, and in the leaf level of internal table
range index). In addition, LOB (max) columns introduce 16 extra
bytes for the pointers to the LOB PAGE ALLOCATOR varheap where
data is stored, and they have additional overhead of 32 bytes
per every 8KB of data there. There is also additional memory to
store internal range index data pages and a mapping table, but it
is insignificant compared to the actual data. As the example, if a
memory-optimized table has 10,000,000 not-null values in a row-
overflow varchar(8000) column, this will require 64 * 10,000,000
= ~610MB of memory to store the data in an internal off-row table.

•	 Columnstore index memory requirements are hard to estimate.
The data is usually heavily compressed and, as the rule of thumb,
will consume just 10 to 15 percent of the uncompressed data size
in the table. Remember, however, that In-Memory OLTP does not
deallocate old versions of the rows from compressed rowgroups
until about 90 percent of the rows there have expired. You should
factor the volatility of the data into your analysis and fine-tune the
compression_delay index option, deferring compression until the
data becomes static.

•	 Row versioning memory estimation depends on the duration
of the longest transactions and the average number of data
modifications (inserts and updates) per second. For example,
if some processes in a system have 10-second transactions and,
on average, the system handles 10,000 data modifications per
second, you can estimate 10 * 10,000 * 248(row size) = ~24MB of
memory for row versioning storage.

Obviously, these numbers outline the minimally required amount of memory. You
should factor in future growth and changes in workload and reserve some additional
memory just to be safe.

As mentioned, it is also important to remember that In-Memory OLTP does not
work in a vacuum; SQL Server needs to have enough memory available to the other
components. Make sure to include this in your analysis.

You should also remember In-Memory OLTP memory requirements when you
design high availability or disaster recovery strategies in your system. It is not uncommon
to see configurations where secondary or standby servers use less powerful hardware
than the primary one. This approach helps to reduce hardware costs by allowing the
system to operate with degraded performance in the event of a disaster.

You should be extremely careful with such an approach if your database is using the
In-Memory OLTP technology. An insufficient amount of memory on secondary servers
could break synchronization between nodes or prevent you from restoring the database in
the event of a disaster. The latter can also happen in scenarios when you want to bring the
copy of the production database to development or testing environments where SQL Server
does not have enough memory to accommodate In-Memory OLTP data from production.

Chapter 12 ■ Deployment and Management

204

Administration and Monitoring Tasks
Let's look at several common In-Memory OLTP–related database administration and
monitoring tasks.

Limiting the Amount of Memory Available to In-Memory
OLTP
The Enterprise Edition of SQL Server allows you to manage workload and system
resource consumption by utilizing a Resource Governor. Internally, the Resource
Governor uses resource pools, which represent a subset of the physical resources available
to SQL Server. You can think about each resource pool as a virtual instance inside SQL
Server, and you can control resources available to the resource pool by specifying its
parameters. Finally, you can distribute the workload between resource pools or, to be
precise, between resource pool workgroups using a classification process. Classification
is done based on a user-defined function, which allows you to define complex algorithms
for such a purpose.

■■ Note  You can read more about the Resource Governor at https://docs.microsoft.
com/en-us/sql/relational-databases/resource-governor/resource-governor and in
my Pro SQL Server Internal book.

Every Resource Governor configuration has two predefined resource pools created,
internal and default. As you can guess by the name, the internal pool handles the internal
SQL Server workload, and the default pool handles the unclassified workload, which is
all of the user workload that has not been classified to the other resource pools. You can
create other resource pools as needed.

As mentioned, you can control CPU, memory, and I/O allocations between resource
pools by specifying parameters, such as MIN_CPU_PERCENT and MAX_CPU_PERCENT, MIN_
MEMORY_PERCENT and MAX_MEMORY_PERCENT, AFFINITY, and a few others. You can bind a
database to the resource pool, which, in the case of In-Memory OLTP, will allow you to
limit the amount of memory for memory-optimized data in the database. Each database
can be bound to a single resource pool; however, multiple databases can share the same
pool. In this case, the limit would apply to all of them.

A resource pool can utilize up to 80 percent of the system memory, which sets the
limit on the amount of memory available to In-Memory OLTP. That threshold guarantees
that other SQL Server components have enough system memory to work and that the
system remains stable under the memory pressure.

Listing 12-2 illustrates how to create and configure the resource pool, allowing it to
use 40 percent of the system memory.

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor

Chapter 12 ■ Deployment and Management

205

Listing 12-2.  Creating a Resource Pool

create resource pool InMemoryDataPool
with
(
 min_memory_percent=40
 ,max_memory_percent=40
);

alter resource governor reconfigure;

When the resource pool is created, you can bind a database to it by using the
sys.sp_xtp_bind_db_resource_pool stored procedure, as shown in Listing 12-3.
As I already mentioned, this will allow In-Memory OLTP to use 80 percent of the resource
pool memory. In our example, resource pool memory usage is restricted to 40 percent,
which allows In-Memory OLTP to utilize up to 40 * 0.80 = 32 percent of the system memory.

Listing 12-3.  Binding a Database to the Resource Pool

exec sys.sp_xtp_bind_db_resource_pool
 @database_name = 'InMemoryOLTPDemo'
 ,@pool_name = 'InMemoryDataPool';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Unfortunately, binding the database to a resource pool does not automatically
transfer previously allocated memory to the new pool, and you need to take the database
offline and bring it back online to do so. Remember that this leads to a recovery process,
which can be time-consuming in the case of large amounts of In-Memory OLTP data.

Similarly, you can remove the binding by calling the sys.sp_xtp_unbind_db_
resource_pool stored procedure, as shown in Listing 12-4. The database will be bound
back to the default resource pool after the call.

Listing 12-4.  Removing the Binding Between a Database and a Resource Pool

exec sys.sp_xtp_unbind_db_resource_pool
 @database_name = 'InMemoryOLTPDemo';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

You should remember that resource pool memory will be shared between
In-Memory OLTP data and user sessions that were classified to the resource pool
workgroups. The queries may fail with an insufficient memory error or be blocked and
have to wait for available memory if the pool does not have enough workspace memory

Chapter 12 ■ Deployment and Management

206

to allocate memory grants to queries. It is safer to separate resource pools that are used to
limit In-Memory OLTP memory from the pools that handle user workloads.

■■ Tip  You can monitor RESOURCE_SEMAPHORE waits, the Memory Grants Pending
performance counter, and the sys.dm_exec_query_resource_semaphores and sys.dm_
exec_query_memory_grants views to troubleshoot workspace memory–related issues.

Monitoring Memory Usage for Memory-Optimized Tables
You can monitor the memory usage of the various In-Memory OLTP objects by using a
set of data management views along with the “Memory Usage by Memory Optimized
Objects” report in SQL Server Management Studio.

The sys.dm_db_xtp_table_memory_stats view provides high-level memory usage
statistics for the user and system memory-optimized tables in the current database.
Listing 12-5 illustrates the query that uses this view.

Listing 12-5.  Using the sys.dm_db_xtp_table_memory_stats View

select
 ms.object_id
 ,s.name + '.' + t.name as [table]
 ,ms.memory_allocated_for_table_kb
 ,ms.memory_used_by_table_kb
 ,ms.memory_allocated_for_indexes_kb
 ,ms.memory_used_by_indexes_kb
from
 sys.dm_db_xtp_table_memory_stats ms
 left outer join sys.tables t on
 ms.object_id = t.object_id
 left outer join sys.schemas s on
 t.schema_id = s.schema_id
order by
 ms.memory_allocated_for_table_kb desc

Figure 12-2 shows the output of the query when I ran it against one of the databases.
A negative object_id value would indicate the system tables (not present in the output).

Figure 12-2.  Output from sys.dm_db_xtp_table_memory_stats view

Chapter 12 ■ Deployment and Management

207

■■ Note  You can read more about the sys.dm_db_xtp_table_memory_stats view at
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-table-memory-stats-transact-sql.

The sys.dm_db_xtp_memory_consumers view provides detailed information about
database-level memory consumers. You already saw this view in action in Chapters 6 and 7
where you used it to obtain information about table memory consumers. You can group the
output from the view to obtain memory usage information with the required level of detail.

Listing 12-6 illustrates the query that provides memory usage information on the
per-internal-object (xtp_object_id) level.

Listing 12-6.  Using the sys.dm_db_xtp_memory_consumers View

;with MemConsumers(object_id, xtp_object_id, alloc_mb, used_mb, allocs)
as
(
 select
 mc.object_id, mc.xtp_object_id
 ,convert(decimal(9,3),sum(mc.allocated_bytes) / 1024. / 1024.)
 as [allocated (MB)]
 ,convert(decimal(9,3),sum(mc.used_bytes) / 1024. / 1024.)
 as [used (MB)]
 ,sum(mc.allocation_count) as [allocs]
 from
 sys.dm_db_xtp_memory_consumers mc
 group by
 mc.object_id, mc.xtp_object_id
)
select
 mc.object_id, mc.xtp_object_id
 ,a.minor_id, a.type_desc
 ,s.name + '.' + t.name +
 iif(a.minor_id = 0,'','.' + col.Name)
 as [Table/Column]
 ,mc.allocs as [Allocations]
 ,mc.alloc_mb as [Allocated (MB)]
 ,mc.used_mb as [Used (MB)]
from
 MemConsumers mc
 join sys.memory_optimized_tables_internal_attributes a on
 a.object_id = mc.object_id and
 a.xtp_object_id = mc.xtp_object_id
 left outer join sys.columns col on
 a.object_id = col.object_id and
 a.minor_id > 0 and
 a.minor_id = col.column_id

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_7

Chapter 12 ■ Deployment and Management

208

 left outer join sys.tables t on
 a.object_id = t.object_id
 left outer join sys.schemas s on
 s.schema_id = t.schema_id
order by
 [Allocated (MB)] desc

Figure 12-3 shows the output of the query. As you can see, the output includes a
separate row for the internal table that stores the data for the LOB Delivery.Orders.
Notes column.

■■ Note  You can read more about the sys.dm_db_xtp_memory_consumers view at
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-memory-consumers-transact-sql.

The sys.dm_xtp_system_memory_consumers view provides information about
memory used by internal In-Memory OLTP components. Listing 12-7 illustrates the query
that uses this view.

Listing 12-7.  Using the sys.dm_xtp_system_memory_consumers View

select
 memory_consumer_type_desc
 ,memory_consumer_desc
 ,convert(decimal(9,3),allocated_bytes / 1024. / 1024.)
 as [allocated (MB)]
 ,convert(decimal(9,3),used_bytes / 1024. / 1024.)
 as [used (MB)]
 ,allocation_count
from
 sys.dm_xtp_system_memory_consumers
order by
 [allocated (MB)] desc

Figure 12-3.  Output from sys.dm_db_memory_consumers view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-memory-consumers-transact-sql

Chapter 12 ■ Deployment and Management

209

Figure 12-4 shows the partial output of the query in my system.

■■ Note  You can read more about the sys.dm_xtp_system_memory_consumers view at
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-xtp-system-memory-consumers-transact-sql.

You can access the “Memory Usage by Memory Optimized Objects” report in the
Reports ➤ Standard Reports section in the database context menu of the SQL Server
Management Studio Object Explorer. Figure 12-5 illustrates the output of the report. As you
can see, this report returns similar data to the sys.dm_db_xtp_table_memory_stats view.

Figure 12-4.  Output from sys.dm_xtp_system_memory_consumers view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql

Chapter 12 ■ Deployment and Management

210

Monitoring In-Memory OLTP Transactions
The sys.dm_db_xtp_transactions view provides information about active In-Memory
OLTP transactions in the system. The following are the most notable columns in the view:

•	 xtp_transaction_id is the internal ID of the transaction in the
In-Memory OLTP Transaction Manager.

•	 transaction_id is the transaction ID in the system. You can
use it in joins with other transaction management views, such
as sys.dm_tran_active_transactions. In-Memory OLTP–only
transactions, such as transactions started by natively compiled
stored procedures, return a transaction_id value of 0.

•	 session_id indicates the session that started a transaction.

•	 begin_tsn and end_tsn indicate transaction timestamps.

•	 state and state_desc indicate the state of a transaction. The
possible values are (0)-ACTIVE, (1)-COMMITTED, (2)-ABORTED,
and (3)-VALIDATING.

Figure 12-5.  “Memory Usage By Memory Optimized Objects” report output

Chapter 12 ■ Deployment and Management

211

•	 result and result_desc indicate the result of a transaction. The
possible values are (0)-IN PROGRESS; (1)-SUCCESS; (2)-ERROR,
(3)-COMMIT DEPENDENCY; (4)-VALIDATION FAILED (RR), which
indicates repeatable read rules violation; (5)-VALIDATION
FAILED (SR), which indicates serializable rules violation; and
(6)-ROLLBACK.

•	 read_set_row_count, write_set_row_count, and scan_set_row_
count provide information about size of read, write, and scan sets
of the transaction.

•	 commit_dependency_count indicates how many commits the
dependency transaction has taken.

You can use the sys.dm_db_xtp_transactions view to detect long-running and
orphan transactions in the system. As you probably remember, these transactions can
defer the garbage collection process and lead to out-of-memory errors.

Listing 12-8 shows a query that returns information about the five oldest active
In-Memory OLTP transactions in the system.

Listing 12-8.  Getting Information About the Five Oldest Active In-Memory OLTP
Transactions

select top 5
 t.session_id
 ,t.transaction_id
 ,t.begin_tsn
 ,t.end_tsn
 ,t.state_desc
 ,t.result_desc
 ,substring(
 qt.text
 ,er.statement_start_offset / 2 + 1
 ,(case er.statement_end_offset
 when -1 then datalength(qt.text)
 else er.statement_end_offset
 end - er.statement_start_offset
) / 2 +1
) as SQL
from
 sys.dm_db_xtp_transactions t
 left outer join sys.dm_exec_requests er on
 t.session_id = er.session_id
 outer apply
 sys.dm_exec_sql_text(er.sql_handle) qt
where
 t.state in (0,3) /* ACTIVE/VALIDATING */
order by
 t.begin_tsn

Chapter 12 ■ Deployment and Management

212

Figure 12-6 illustrates the output of the query.

■■ Note  You can read more about the sys.dm_db_xtp_transactions view at
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-transactions-transact-sql.

Collecting Execution Statistics for Natively Compiled
Stored Procedures
In query interop mode, SQL Server collects execution statistics of the statements that
access memory-optimized tables when their execution plans are cached. However,
it does not collect execution statistics for natively compiled modules because of the
performance impact this introduces. You can enable such a collection at the module level
with sys.sp_xtp_control_proc_exec_stats and at the statement level with the sys.
sp_xtp_control_query_exec_stats system stored procedures.

Both procedures accept a Boolean @new_collection_value parameter, which
indicates whether the collection needs to be enabled or disabled. In addition, sys.sp_
xtp_control_query_exec_stats allows you to provide @database_id and @xtp_object_
id values to specify a module to monitor. It is also worth noting that SQL Server does not
persist collection settings, and you will need to reenable statistics collection after each
SQL Server restart.

■■ Important  Collecting execution statistics degrades the performance of the system.
Do not collect execution statistics unless you are performing troubleshooting. Moreover,
consider limiting collection to specific natively compiled modules to reduce the performance
impact on the system.

When statistics have been collected, you can access them through the sys.dm_exec_
procedure_stats, sys.dm_exec_function_stats, and sys.dm_exec_query_stats views.

Listing 12-9 shows the code that returns execution statistics for stored procedures
using the sys.dm_exec_procedure_stats view. The code does not limit the output to
natively compiled stored procedures; however, you can do it by joining the sys.dm_
exec_procedure_stats and sys.sql_modules views and filtering by the uses_native_
compliation = 1 value.

Figure 12-6.  The five oldest active In-Memory OLTP transactions in the system

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql

Chapter 12 ■ Deployment and Management

213

Listing 12-9.  Analyzing Stored Procedures Execution Statistics

select
 object_name(ps.object_id) as [Proc Name]
 ,p.query_plan
 ,ps.execution_count as [Exec Cnt]
 ,ps.total_worker_time as [Total CPU]
 ,convert(int,ps.total_worker_time / ps.execution_count)
 as [Avg CPU] -- in Microseconds
 ,ps.total_elapsed_time as [Total Elps]
 ,convert(int,ps.total_elapsed_time / ps.execution_count)
 as [Avg Elps] -- in Microseconds
 ,ps.cached_time as [Cached]
 ,ps.last_execution_time as [Last Exec]
 ,ps.sql_handle
 ,ps.plan_handle
 ,ps.total_logical_reads as [Reads]
 ,ps.total_logical_writes as [Writes]
from
 sys.dm_exec_procedure_stats ps cross apply
 sys.dm_exec_query_plan(ps.plan_handle) p
order by
 [Avg CPU] desc

Figure 12-7 illustrates the output of the code from Listing 12-9. As you can see, in
SQL Server 2016, both the sql_handle and plan_handle columns are populated and can
be used to obtain the stored procedure text and execution plan. It is also worth noting
that there is no I/O-related statistics provided. Natively compiled modules work with
memory-optimized tables only, and therefore there is no I/O involved.

Listing 12-10 shows the code that obtains execution statistics for individual
statements using the sys.dm_exec_query_stats view.

Listing 12-10.  Analyzing Stored Procedure Statement Execution Statistics

select
 substring(qt.text
 ,(qs.statement_start_offset/2) + 1
 ,(case qs.statement_end_offset

Figure 12-7.  Data from sys.dm_exec_procedure_stats view

Chapter 12 ■ Deployment and Management

214

 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset) / 2 + 1
) as SQL
 ,p.query_plan
 ,qs.execution_count as [Exec Cnt]
 ,qs.total_worker_time as [Total CPU]
 ,convert(int,qs.total_worker_time / qs.execution_count)
 as [Avg CPU] -- in Microseconds
 ,total_elapsed_time as [Total Elps]
 ,convert(int,qs.total_elapsed_time / qs.execution_count)
 as [Avg Elps] -- in Microseconds
 ,qs.creation_time as [Cached]
 ,last_execution_time as [Last Exec]
 ,qs.plan_handle
 ,qs.total_logical_reads as [Reads]
 ,qs.total_logical_writes as [Writes]
from
 sys.dm_exec_query_stats qs
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
 cross apply sys.dm_exec_query_plan(qs.plan_handle) p
where -- it is null for natively compiled SPs
 qs.plan_generation_num is null
order by
 [Avg CPU] desc

Figure 12-8 illustrates the output of the code from Listing 12-10.

■■ Note  You can read more about the sys.sp_xtp_control_proc_exec_stats procedure
at https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-
procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql. More information
about the sys.sp_xtp_control_query_exec_stats procedure is available at https://
docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/

sys-sp-xtp-control-query-exec-stats-transact-sql.

Figure 12-8.  Data from sys.dm_exec_query_stats view

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql

Chapter 12 ■ Deployment and Management

215

Finally, it is worth noting that neither the DBCC FREEPROCCACHE nor ALTER DATABASE
SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE command removes natively compiled
modules execution statistics from the plan cache. Statistics would be removed, however,
when a module was recompiled.

In-Memory OLTP and Query Store Integration
Query Store is new SQL Server 2016 component that collects execution plans and runtime
statistics for the queries in the system. Those statistics are persisted in the database, and
they would survive database restart or failover, which is different from the plan cache–
based execution statistics I just discussed.

Similarly to plan cache–based execution statistics, Query Store does not collect the
execution statistics of natively compiled modules by default. You need to enable them
with the sys.sp_xtp_control_query_exec_stats system stored procedure. Consider the
performance overhead this introduces, and do not enable them unless you troubleshoot
performance issues.

Figure 12-9 shows a Query Store report that works with the statements from natively
compiled stored procedures. As you can see, Management Studio provides a powerful and
convenient set of tools that dramatically simplify performance troubleshooting and tuning.

■■ Note  The coverage of Query Store is outside the scope of this book. You can read
more about it at https://docs.microsoft.com/en-us/sql/relational-databases/
performance/monitoring-performance-by-using-the-query-store and in my Pro SQL
Server Internals book.

Figure 12-9.  The “Top Resource Consuming Queries” report in Query Store

https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store

Chapter 12 ■ Deployment and Management

216

Metadata Changes and Enhancements
In-Memory OLTP introduces a large number of changes in catalog and data management
views.

Catalog Views
There are two In-Memory OLTP–related catalog views in SQL Server 2016.

sys.hash_indexes
As you can guess by the name, the sys.hash_indexes view provides information about
hash indexes defined in the database. It is inherited from and has the same columns as
the sys.indexes view, adding one extra column called bucket_count. You can read about
this view at https://docs.microsoft.com/en-us/sql/relational-databases/system-
catalog-views/sys-hash-indexes-transact-sql.

sys.memory_optimized_tables_internal_attributes
As you already know, every memory-optimized table may include additional internal
tables to store off-row column data, columnstore index internal structures, and a few
other objects. The sys.memory_optimized_tables_internal_attributes catalog view
provides information about those internal tables, and it consists of the following columns:

•	 object_id is the ID of the user table. It is the same for all internal
tables that belong to the user table. The object_id value does not
change when you alter the table.

•	 xtp_object_id is internal object ID of an internal table. This
value may change when you re-create the table object during
table alteration.

•	 minor_id provides the column_id value of the table column when
the internal table stores off-row column data. It is 0 in other cases.

•	 The type and type_description columns indicate the type of
internal table. The possible values are as follows:

•	 (0): DELETED_ROWS_TABLE is the delete bitmap in a
columnstore index.

•	 (1): USER_TABLE is the main table structure that stores in-row
data.

•	 (2): DICTIONARIES_TABLE is the dictionaries for a
columnstore index.

•	 (3): SEGMENTS_TABLE is the compressed segments for a
columnstore index.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-hash-indexes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-hash-indexes-transact-sql

Chapter 12 ■ Deployment and Management

217

•	 (4): ROW_GROUPS_INFO_TABLE is the metadata about
compressed rowgroups in a columnstore index.

•	 (5): INTERNAL_OFF_ROW_DATA_TABLE is a table that stores off-
row column data. As I already mentioned, minor_id provides
the column_id value of the off-row column, and it can be
used in joins with the sys.columns catalog view.

•	 (252): INTERNAL_TEMPORAL_HISTORY_TABLE is an in-memory
buffer that contains the hot tail of the disk-based history
table. The history rows are inserted into this internal table
first, and then they asynchronously move to the disk-based
history table.

You can use sys.memory_optimized_tables_internal_attributes with the sys.
dm_db_xtp_memory_consumers view when you are analyzing memory consumption of the
memory-optimized tables in the system. You have already seen this in action many times
in the book.

You can read more about the sys.memory_optimized_tables_internal_attributes
view at https://docs.microsoft.com/en-us/sql/relational-databases/system-
catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql.

Changes in Other Catalog Views
Other catalog view changes include the following:

•	 The sys.tables view has three new columns. The is_memory_
optimized column indicates whether a table is memory-
optimized. The durability and durability_desc columns
indicate a durability mode for memory-optimized tables. The
values are (0)-SCHEMA_AND_DATA and (1)-SCHEMA_ONLY.

•	 The sys.indexes view has a new possible value in the type and
type_description columns, such as (7)-NONCLUSTERED HASH.
Nonclustered Bw-Tree indexes use a value of (2)-NONCLUSTERED
as the regular nonclustered B-Tree indexes defined on disk-based
tables. Clustered columnstore indexes use a value of
(5) – CLUSTERED COLUMNSTORE and an index_id value of 1.

•	 The sys.sql_modules and sys.all_sql_modules views have a
new column called uses_native_compilation.

•	 The sys.table_types view has a new column called is_memory_
optimized, which indicates whether a type represents a memory-
optimized table variable.

•	 The sys.data_spaces view now has new type and type_desc
values of (FX)-MEMORY_OPTIMIZED_DATA_FILEGROUP.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql

Chapter 12 ■ Deployment and Management

218

Data Management Views
In-Memory OLTP provides a large set of new data management views; they can
be easily detected by the xtp_ prefix in their names. The naming convention also
provides information about their scope. The sys.dm_xtp_* views return instance-level
information, and the sys.dm_db_xtp_* views provide database-level information. Let’s
look at them in more detail, grouping them by area.

Object and Index Statistics
The following data management views provide index-related and data modification–
related statistics:

•	 sys.dm_db_xtp_object_stats reports the number of rows
affected by data modifications along with write conflicts and
unique constraint violations on a per-object basis. You can use
this view to analyze the volatility of the data from memory-
optimized tables, correlating it with index usage statistics. As
with disk-based tables, you can improve data modification
performance by removing rarely used indexes defined on volatile
tables. More information about this view is available at
https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
object-stats-transact-sql.

•	 sys.dm_db_xtp_index_stats returns information about index
usage, including the number of row-chain scans, the number of
rows scanned (rows_touched), the number of rows returned to
the client (rows_returned), and data about expired rows. The
large discrepancy between rows_touched and rows_returned
may indicate an inefficient indexing strategy with queries
performing the large range scans. For hash indexes, it may also
indicate the large index row chains because of an insufficient
number of buckets in the hash table. You can read about this
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
index-stats-transact-sql.

•	 sys.dm_db_xtp_nonclustered_index_stats provides
information about nonclustered (range) indexes, such as the
number of pages in the index, the number of delta pages, and
page split and merge statistics. You can read about this view
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
nonclustered-index-stats-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql

Chapter 12 ■ Deployment and Management

219

•	 sys.dm_db_xtp_hash_index_stats provides information about
hash indexes, such as the number of buckets in the index, the
number of empty buckets, and row chain length information. This
view is useful when you need to analyze the state of hash indexes
and fine-tune their bucket_count allocations. You can read
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-hash-index-stats-transact-sql.

Listing 12-11 shows the script that you can use to find hash indexes with a potentially
suboptimal bucket_count value.

Listing 12-11.  Obtaining Information About Hash Indexes with a Potentially Suboptimal
bucket_count Value

select
 s.name + '.' + t.name as [Table]
 ,i.name as [Index]
 ,stat.total_bucket_count as [Total Buckets]
 ,stat.empty_bucket_count as [Empty Buckets]
 ,floor(100. * empty_bucket_count / total_bucket_count)
 as [Empty Bucket %]
 ,stat.avg_chain_length as [Avg Chain]
 ,stat.max_chain_length as [Max Chain]
from
 sys.dm_db_xtp_hash_index_stats stat
 join sys.tables t on
 stat.object_id = t.object_id
 join sys.indexes i on
 stat.object_id = i.object_id and
 stat.index_id = i.index_id
 join sys.schemas s on
 t.schema_id = s.schema_id
where
 stat.avg_chain_length > 3 or
 stat.max_chain_length > 50 or
 floor(100. * empty_bucket_count /
 total_bucket_count) > 50

Memory Usage Statistics
I already discussed memory usage–related views in this and other chapters. However, as a
quick overview, the views are as follows:

•	 sys.dm_xtp_system_memory_consumers reports information
about system-level memory consumers in the system. More
information about this view is available at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-xtp-system-memory-
consumers-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-hash-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-hash-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-hash-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql

Chapter 12 ■ Deployment and Management

220

•	 sys.dm_db_xtp_table_memory_stats provides memory usage
statistics on a per-object level. You can read more at https://
docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-db-xtp-table-
memory-stats-transact-sql.

•	 sys.dm_db_xtp_memory_consumers provides information about
database-level memory consumers. You can use this view to
analyze per-index memory allocation in the system along with
the memory consumed by internal tables. The documentation
is available at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-xtp-system-memory-consumers-transact-sql.

Transaction Management
The following views provide transaction-related statistics in the system:

•	 sys.dm_xtp_transaction_stats reports statistics about
transactional activity in the system since the last server restart.
It includes the number of transactions, information about
transaction log activity, and quite a few other metrics. More
information about this view is available at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-xtp-transaction-stats-
transact-sql.

•	 sys.dm_db_xtp_transactions provides information about
currently active transactions in the system. We discussed this view
in this chapter, and you can read more about it at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-xtp-transactions-
transact-sql.

Garbage Collection
The following views provide information about the garbage collection process in the system:

•	 sys.dm_xtp_gc_stats reports the overall statistics about the
garbage collection process. More information is available
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-xtp-gc-
stats-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-transaction-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-transaction-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-transaction-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-transaction-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql

Chapter 12 ■ Deployment and Management

221

•	 sys.dm_xtp_gc_queue_stats provides information about the
state of garbage collection worker item queues. You can use this
view to monitor whether the garbage collection deallocation
process is keeping up with the system load. You can read more
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-xtp-gc-queue-stats-transact-sql.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about idle
worker thread generation queues. I discussed this view in Chapter 11,
and you can read more about it at https://docs.microsoft.com/
en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-db-xtp-gc-cycle-stats-transact-sql.

Checkpoint
The following views provide information about checkpoint operations in the current
database:

•	 sys.dm_db_xtp_checkpoint_stats reports the overall statistics
about database checkpoint operations. It includes log file I/O
statistics, the amount of data processed during a continuous
checkpoint, the time since the last checkpoint operation, and
quite a few other metrics. More information about this view
is available at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-checkpoint-stats-transact-sql.

•	 sys.dm_db_xtp_checkpoint_files provides information about
checkpoint file pairs in the database. Appendix C shows this
view in action, and you can read more about it at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-xtp-checkpoint-files-
transact-sql.

Extended Events and Performance Counters
SQL Server has the large number of extended events and performance counters that can
be used to monitor and troubleshoot In-Memory OLTP–related actions. You can use the
code from Listing 12-12 to get the list of In-Memory OLTP extended events.

Listing 12-12.  Analyzing In-Memory OLTP Extended Events

select
 xp.name as [package]
 ,xo.name as [event]
 ,xo.description as [description]

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
http://dx.doi.org/10.1007/978-1-4842-2772-5_11
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql

Chapter 12 ■ Deployment and Management

222

from
 sys.dm_xe_packages xp
 join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
where
 xp.name like 'XTP%' or xo.name like '%XTP%'
order by
 xp.name, xo.name

Figure 12-10 shows the partial output from the query. I recommend you analyze
the full output from the query and get familiar with the events that may be useful for
monitoring and troubleshooting purposes.

Similarly, you can see In-Memory OLTP performance counters with the query shown
in Listing 12-13.

Listing 12-13.  Analyzing In-Memory OLTP Performance Counters

select object_name, counter_name
from sys.dm_os_performance_counters
where object_name like '%XTP%'
order by object_name, counter_name

Figure 12-10.  In-Memory OLTP extended events

Chapter 12 ■ Deployment and Management

223

Figure 12-11 shows a partial output of the query. As with extended events, it is
beneficial to get familiar with performance counters and use them to baseline the system
workload and use them while monitoring and troubleshooting performance issues.

■■ Note  You can read about In-Memory OLTP performance counters at https://docs.
microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-

xtp-in-memory-oltp-performance-counters.

Figure 12-11.  In-Memory OLTP performance counters

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters

Chapter 12 ■ Deployment and Management

224

Summary
Choosing the right hardware is a crucial part of achieving good In-Memory OLTP
performance and transactional throughput. In-Memory OLTP uses hardware in a
different manner than the Storage Engine, and you need to carefully plan the deployment
and server configuration when a system uses In-Memory OLTP.

In-Memory OLTP benefits from single-threaded CPU performance. You should
choose CPUs with a high base clock speed and have hyperthreading enabled in the
system.

You should store In-Memory OLTP checkpoint files in the disk array, which is
optimized for sequential I/O performance, preferably using SSD-based drives. You can
consider using multiple containers in an In-Memory OLTP filegroup, placing them on
different drives if the database recovery time is critical.

Obviously, you should have enough memory in the system to accommodate the
In-Memory OLTP data, while leaving enough memory for other SQL Server components.
In the Enterprise Edition of SQL Server, you can restrict In-Memory OLTP memory
usage by configuring memory in the Resource Governor resource pool and binding
the database there. In the Standard Edition, In-Memory OLTP is limited to 32GB of
memory-optimized data per database.

In-Memory OLTP provides a large set of data management views, performance
counters, and extended events that you can use for system monitoring.

225© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_13

CHAPTER 13

Utilizing In-Memory OLTP

This chapter discusses several design considerations for systems utilizing In-Memory
OLTP and demonstrates how to benefit from the technology when migrating the existing
systems is cost-ineffective. It also talks about implementing data partitioning, which can
be helpful in a system with a large amount of data and mixed workload.

Design Considerations for Systems Utilizing
In-Memory OLTP
Two years ago, when I worked on the first edition of the book, about half of this chapter
focused on the techniques that helped to address technology limitations. Those limitations
positioned In-Memory OLTP as a niche technology in SQL Server 2014 and prevented its
widespread adoption because of the high implementation and refactoring cost.

Fortunately, the majority of the limitations have been removed in SQL Server 2016.
Moreover, starting with SQL Server 2016 SP1, In-Memory OLTP is available in the Standard
Edition of SQL Server, which allows you to benefit from the technology and maintain a
single system architecture and code base across multiple editions of the product.

■■ Note  Remember that non-Enterprise editions limit the amount of memory they can
utilize. For example, the Standard Edition is limited to 32GB of memory-optimized data per
database.

Nevertheless, the adoption of In-Memory OLTP comes at a cost. You will need to
acquire or upgrade to SQL Server 2016, spend time learning the technology, and, if you
are migrating an existing system, refactor code and test the changes. It is important to
perform a cost-benefits analysis to determine whether In-Memory OLTP provides you
with adequate benefits to outweigh the costs.

In-Memory OLTP is hardly a magical solution that will improve server performance
by simply flipping a switch and moving data into memory. It is designed to address a
specific set of problems, such as latch and lock contentions on very active OLTP systems.
Moreover, it helps improve the performance of the small and frequently executed OLTP
queries that perform point-lookups and small-range scans.

Chapter 13 ■ Utilizing In-Memory OLTP

226

In-Memory OLTP is less beneficial in the case of data warehouse systems with
low concurrent activity, large amounts of data, and queries that require large scans
and complex aggregations. In some cases, it is still possible to achieve performance
improvements by moving data into memory or creating columnstore indexes on
memory-optimized tables; however, you will often obtain better results by using
columnstore indexes with disk-based tables, especially with dedicated data warehouse
implementations.

You should remember that memory-optimized columnstore indexes are targeted
toward operational analytics scenarios when you need to run infrequent reporting and
analysis queries against hot OLTP data. Their implementation is limited compared to
disk-based column-based storage. Memory-optimized columnstore indexes cannot be
partitioned nor can they become the main copy of the data in the table like disk-based
clustered columnstore indexes do. Also, In-Memory OLTP does not allow you to rebuild
or reorganize columnstore indexes, reducing the size of the delta store and delete bitmap.

You should also remember that memory-optimized tables live completely in-
memory and out-of-memory conditions would lead to system downtime. This is
especially important in the case of non-Enterprise editions where you cannot scale the
system with the data growth by adding extra memory to the server. In many cases, it may
be beneficial to design the system utilizing data partitioning, keeping hot recent data in
memory-optimized and cold historical data in disk-based tables. I will discuss such an
implementation later in this chapter.

As you already know, SQL Server 2016 removes the majority of the limitations of the
technology that existed in SQL Server 2014. In many cases, you can migrate disk-based
tables into memory without any schema and code changes in the system. There are,
however, a few important considerations and behavior differences you need to remember
and factor into the decision. Let’s talk about the most important ones.

Off-Row Storage
Even though In-Memory OLTP supports LOB and row-overflow columns, it works with
them in a different way than the Storage Engine. With disk-based tables, the decision of
which columns are stored off-row is made on a per-row basis based on the row size;
all data will be stored in-row when it fits into the 8,060-byte limit. By contrast, with
memory-optimized tables, the decision is made strictly based on the table schema; the
off-row column data will be stored in separate internal tables for all rows, regardless of
the amount of data you store there.

As you will remember from Chapter 6, an excessive number of off-row columns leads
to serious performance implications because of the internal tables management that
In-Memory OLTP has to perform. Moreover, off-row columns increase the memory usage;
each not null off-row value adds 64+ bytes of overhead. You should be extremely careful
with off-row columns and avoid using them in memory-optimized tables unless they are
absolutely necessary.

It is common to see systems in which many text columns are defined as (n)
varchar(max) just in case. This is a bad practice that increases query memory grants,
introduces concurrency issues in the system, and complicates index management.
This overhead, however, is not always noticeable, or, perhaps, it is not always correlated
with the existence of off-row data.

http://dx.doi.org/10.1007/978-1-4842-2772-5_6

Chapter 13 ■ Utilizing In-Memory OLTP

227

The situation will change if you migrate those tables to In-Memory OLTP, keeping
off-row columns intact. This decision could significantly increase the memory usage and
slow down the queries against the table. After all, querying data from or modifying data in
multiple internal tables will always be slower than working with a single table. You need
to remember this behavior and analyze off-row column usage before migration. In many
cases, you can change the data types to (n)varchar(N) and store those columns in-row.

You can also consider implementing vertical partitioning and storing some off-row
columns in disk-based tables, as shown in Listing 13-1. The Description column is
stored in a disk-based table, while all other columns are stored in a memory-optimized
table. The majority of the use cases in the system would not work with the product
description, and therefore, you can utilize native compilation while working with the
dbo.ProductsInMem table. Moreover, moving a product description to a disk-based
table will allow you to utilize the Full-Text Search feature, which is not supported for
memory-optimized tables.

Listing 13-1.  Vertical Partitioning

create table dbo.ProductsInMem
(
 ProductId int not null identity(1,1)
 constraint PK_ ProductsInMem
 primary key nonclustered hash
 with (bucket_count = 65536),
 ProductName nvarchar(64) not null,
 ShortDescription nvarchar(256) not null,

 index IDX_ProductsInMem_ProductName
 nonclustered(ProductName)
)
with (memory_optimized = on, durability = schema_and_data);

create table dbo.ProductDescriptions
(
 ProductId int not null,
 Description nvarchar(max) not null,

 constraint PK_ ProductDescriptions
 primary key clustered(ProductId)
);

You can hide some of the implementation details from the interop SELECT queries
by defining a view, as shown in Listing 13-2. You can also define INSTEAD OF triggers on
the view and use them as the target for data modifications; however, it is more efficient to
update the data in the tables directly.

Chapter 13 ■ Utilizing In-Memory OLTP

228

Listing 13-2.  Creating a View That Combines Data from Both Tables

create view dbo.Products(ProductId, ProductName,
 ShortDescription, Description)
as
 select
 p.ProductId, p.ProductName, p.ShortDescription
 ,pd.Description
 from
 dbo.ProductsInMem p left outer join
 dbo.ProductDescriptions pd on
 p.ProductId = pd.ProductId

As you should notice, the view is using an outer join. This allows SQL Server to
perform join elimination when the client application does not reference any columns
from the dbo.ProductDescriptions table while querying the view. For example, if you
ran the query from Listing 13-3, you would see the execution plan shown in Figure 13-1.
As you can see, there are no joins in the plan, and the dbo.ProductDescriptions table is
not accessed.

Listing 13-3.  Query Against the View

select ProductId, ProductName
from dbo.Products

Figure 13-1.  Execution plan of the query

Unfortunately, it is impossible to define a FOREIGN KEY constraint for a disk-based
table referencing a memory-optimized table; furthermore, you should support referential
integrity in your code.

Listing 13-4 shows the stored procedure that inserts a row into the
dbo.ProductDescriptions table. The implementation looks trivial; however, there is one
very important detail. The code checks for the existence of the dbo.ProductsInMem row
using the REPEATABLE READ transaction isolation level. This forces In-Memory OLTP to
build the read set for the transaction and validate that the selected dbo.ProductsInMem
row exists at the time of transaction commit. The transaction would fail with a repeatable
read validation failure if the other session deleted the product row in between the SELECT
and INSERT statements.

Chapter 13 ■ Utilizing In-Memory OLTP

229

Listing 13-4.  Enforcing Referential Integrity Between Disk-Based and Memory-Optimized
Tables: Inserting the Row into the Referencing Table

create proc dbo.InsertProductDescription
(
 @ProductId int
 ,@Description nvarchar(max)
)
as
begin
 set nocount on

 declare
 @Exists int

 set transaction isolation level read committed
 begin tran
 -- using REPEATABLE READ isolation level
 -- to build transaction read set
 select @Exists = ProductId
 from dbo.ProductsInMem with (repeatableread)
 where ProductId = @ProductId;

 if @Exists is null
 raiserror('ProductId %d not found',16,1,@ProductId);
 else
 insert into dbo.ProductDescriptions
 (ProductId, Description)
 values(1,@Description);
 commit;
end

Listing 13-5 shows how to perform the deletion of the dbo.ProductsInMem row.
As you can see, the SELECT statement checks for the existence of the
dbo.ProductDescriptions rows using the SERIALIZABLE isolation level, which places a
key range shared lock and prevents other sessions from inserting a product description
with the same ProductId value.

Listing 13-5.  Enforcing Referential Integrity Between Disk-Based and Memory-Optimized
Tables: Deleting the Row from the Referenced Table

declare
 @Cnt int
 ,@ProductId int = 1

begin tran
 -- using SERIALIZABLE level to acquire the range lock
 select @Cnt = count(*)

Chapter 13 ■ Utilizing In-Memory OLTP

230

 from dbo.ProductDescriptions with (serializable)
 where ProductId = @ProductId;

 if @Cnt > 0
 raiserror('Referential Integrity Violation',16,1);
 else
 delete from dbo.ProductsInMem with (snapshot)
 where ProductId = @ProductId;
commit;

You can use a similar approach when you need to enforce referential integrity in
the opposite direction with memory-optimized tables referencing disk-based ones. In
this case, however, the latter example (checking for the existence of the referencing rows
in memory-optimized tables) would depend on serializable validation at the time of
transaction commit rather than on locking.

With all that being said, splitting the data into memory-optimized and disk-based
tables would increase the complexity of the system along as well as its development cost.
It may be beneficial when a table has a large number of off-row columns that may not be
moved in-row and/or when you want to utilize technologies not supported by In-Memory
OLTP (Full-Text Search, for example). However, in many cases, it may be more cost-
effective to keep off-row columns in memory-optimized tables, especially if you have just
a handful of them.

Unsupported Data Types
Even though In-Memory OLTP in SQL Server 2016 supports the majority of data types,
there are still a few unsupported types, such as xml, geometry, geography, hierarchyid,
datetimeoffset, rowversion, and sql_variant. Moreover, user-defined data types are
not supported either.

As the simplest workaround, you can store them either in binary or text format or, in
some cases, shred them into relational data types when it is possible.

Let’s look at an example. Listing 13-6 shows a disk-based table that stores event
information from devices along with the locations where the events occurred.

Listing 13-6.  DeviceEvents Disk-Based Table

create table dbo.DeviceEvents
(
 DeviceId int not null,
 EventTime datetime2(0) not null,
 Location geography not null,
 EventInfo xml not null,
);

create unique clustered index
IDX_DeviceEvents_DeviceId_EventTime
on dbo.DeviceEvents(DeviceId, EventTime);

Chapter 13 ■ Utilizing In-Memory OLTP

231

Neither the geography nor xml data type is supported in In-Memory OLTP. You can
address this by storing location information in a pair of decimal columns and using the
varbinary column to store the xml data, as shown in Listing 13-7.

Listing 13-7.  DeviceEvents Memory-Optimized Table

create table dbo.DeviceEvents
(
 DeviceId int not null,
 EventTime datetime2(0) not null,
 Lat decimal(9,6) not null,
 Long decimal(9,6) not null,
 EventInfo varbinary(max) not null,

 constraint PK_DeviceEvents
 primary key nonclustered(DeviceId, EventTime)
)
with (memory_optimized = on, durability = schema_and_data);

You can cast the data back to the geometry and xml data types and utilize the XQuery
and geospatial methods when you access the table through the Interop Engine, as shown
in Listing 13-8.

Listing 13-8.  Working with DeviceEvents Data

declare
 @Loc geography =
 geography::Point(47.65600,-122.36000, 4326);

;with DeviceData(DeviceId, EventTime, Location, EventInfo)
as
(
 select
 DeviceId, EventTime
 ,geography::Point(Lat, Long, 4326) as Location
 ,convert(xml,EventInfo) as EventInfo
 from dbo.DeviceEvents
)
select
 DeviceId, EventTime
 ,Location.STDistance(@Loc) as Distance
 ,EventInfo.value('/Event[1]/@Code','int') as [Code]
 ,EventInfo.value('/Event[1]/@Sensor1','varchar(3)')
 as [Status]
from DeviceData;

Chapter 13 ■ Utilizing In-Memory OLTP

232

Obviously, you can also split the data between memory-optimized and disk-based
tables similarly to the dbo.ProductsInMem and dbo.ProductDescriptions tables from
Listing 13-1. This may be beneficial if you need to utilize spatial or XML indexes for the data.

Unfortunately, there is no built-in support for rowversion data type behavior.
Fortunately, it is easy to implement this manually. Listing 13-9 shows how you can
implement optimistic concurrency in the code similarly to a disk-based implementation
that relies on the rowversion column.

Listing 13-9.  Implementing Optimistic Concurrency

create table dbo.OptimisticConcurrency
(
 ID int not null
 constraint PK_OptimisticConcurrency
 primary key nonclustered,
 Data int not null,
 RowVer uniqueidentifier not null
 constraint DEF_OptimisticConcurrency_RowVer
 default newid()
)
with (memory_optimized = on, durability = schema_only);

-- Reading data from the client
declare
 @Data int
 ,@OldRowVer uniqueidentifier

select @Data = Data, @OldRowVer = RowVer
from dbo.OptimisticConcurrency
where ID = @ID;

-- Saving data to the database
update dbo.OptimisticConcurrency
set
 Data = @NewData
 ,RowVer = newid()
where ID = @ID and RowVer = @OldRowVer;

if @@rowcount = 0
 raiserror('Row with ID: %d has been modified by other session',
 16,1,@ID);

Indexing Considerations
As I have already discussed in the book, an In-Memory OLTP indexing strategy and the
choice between nonclustered (range) and hash indexes both greatly depend on the data
and queries that utilize them. Nonclustered (range) indexes provide you with a similar
experience as regular B-Tree indexes. They can be used in the same use cases, and they

Chapter 13 ■ Utilizing In-Memory OLTP

233

provide a comparable set of SARGability rules. The only exception is scanning an index
in the opposite direction to the index sorting order. Nonclustered (range) indexes are
unidirectional, and In-Memory OLTP is unable to utilize them for such scans.

Hash indexes, on the other hand, are useful only for point-lookup searches and
equality joins when queries use the equality predicate on all index key columns. They
may outperform range indexes in those scenarios assuming that they have a sufficient
number of buckets in the hash table. However, an insufficient bucket_count value greatly
affects their performance and makes the indexes inefficient.

You can use hash indexes as the primary keys in the catalog entities where the
amount of data is relatively static and you can correctly estimate the number of bucket
for the index. Those entities are often used in the equality joins, and a hash index can be
very efficient in those scenarios. However, as the general rule, using range indexes is the
safer choice, which simplifies In-Memory OLTP migration and also reduces maintenance
overhead in the system.

There are a few other factors to consider. First, you should remember that indexes on
memory-optimized tables point to the actual data row objects and are covering for in-row
columns. They do not cover off-row columns, and In-Memory OLTP needs to perform
actions conceptually similar to a Key Lookup operation to obtain off-row values. You
should analyze the table structure and keep frequently selected columns in-row when
you migrate a disk-based table into memory.

Second, you should try to minimize the number of indexes in the table similar
to disk-based tables. Indexes add overhead during INSERT operations and slow down
database recovery and the garbage collection processes. Moreover, In-Memory OLTP is
using row versioning, and it creates a new version of the row every time you update it.
Every extra index adds update overhead; In-Memory OLTP has to maintain the index row
chains regardless of whether the index key columns were updated. This is different from
disk-based B-Tree indexes, which stay intact unless you update index columns.

Let’s look at the example and create memory-optimized and disk-based tables of
the same structure and insert some data there. Both tables have two indexes and four
columns, as shown in Listing 13-10.

Listing 13-10.  Update Overhead: Tables Creation

create table dbo.MOTable
(
 Id int not null,
 IdxCol int not null,
 IntCol int not null,
 VarCharCol varchar(128) null,

 constraint PK_MOTable
 primary key nonclustered hash(Id)
 with (bucket_count = 2097152),

 index IDX_IdxCol nonclustered hash(IdxCol)
 with (bucket_count = 2097152),
)
with (memory_optimized=on, durability=schema_only);

Chapter 13 ■ Utilizing In-Memory OLTP

234

create table dbo.DBTable
(
 Id int not null,
 IdxCol int not null,
 IntCol int not null,
 VarCharCol varchar(128) null,

 constraint PK_DBTable
 primary key clustered(Id)
);

create index IDX_DBTable_IdxCol on dbo.DBTable(IdxCol);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.MOTable(ID,IdxCol,IntCol)
 select Id, Id, Id from Ids;

insert into DBTable(Id, IdxCol, IntCol)
 select Id, IdxCol, IntCol from dbo.MOTable;

As the next step, let’s run three UPDATE statements against each table, as shown
in Listing 13-11. The first statement modifies the nonindexed fixed-length column.
The second changes the value of the indexed fixed-length column. The last statement
populates the empty variable-length column with a value, which increases the row size
and triggers a large number of page splits in the disk-based table.

Listing 13-11.  Update Overhead: Update Statements

update dbo.MOTable set IntCol += 1;
update dbo.MOTable set IdxCol += 1;
update dbo.MOTable set VarCharCol = replicate('a',128);

update dbo.DBTable set IntCol += 1;
update dbo.DBTable set IdxCol += 1;
update dbo.DBTable set VarCharCol = replicate('a',128);

Table 13-1 shows the execution time of the statements in my environment.
As you can see, the execution time stays pretty much the same in the case of the
memory-optimized table, and it depends on the number of indexes in the table. There is
still index update overhead associated with index maintenance during the update of the
index key column. In-Memory OLTP needs to calculate the hash bucket for the new index
key value in hash indexes or find the new index key row chain in nonclustered indexes.
This overhead, however, is relatively insignificant.

Chapter 13 ■ Utilizing In-Memory OLTP

235

Table 13-1.  Execution Time of Update Statements

Memory-Optimized Table Disk-Based Table

Update of nonindexed column 1,016 ms 1,879 ms

Update of indexed column 1,036 ms 4,586 ms

Update with row size increase 1,045 ms 3,906 ms

Table 13-2.  Execution Time of Update Statements with New Index

Memory-Optimized Table

Update of nonindexed column 1,840 ms

Update of indexed column 1,900 ms

Update with row size increase 1,921 ms

This is not the case with the disk-based tables where the update of the index key
column leads to the update of the nonclustered index B-Tree structure. Similarly,
increasing the size of the row leads to page splits. The Storage Engine has to allocate new
data pages and move data there when the new versions of the rows do not fit into the
original pages. This is a very expensive operation, which updates allocation map pages
and leads to significant transaction log overhead.

Just to illustrate that update overhead depends on the number of indexes in a
memory-optimized table, let’s add another index to the table with the code from
Listing 13-12.

Listing 13-12.  Update Overhead: Adding Extra Index to Memory-Optimized Table

alter table dbo.MOTable
add index IDX_VarCharCol nonclustered(VarCharCol);

Table 13-2 illustrates the execution time of the update statements after creating the
index. As you can see, adding an extra index adds overhead to the operation; however, all
three statements take a similar amount of time.

It is beneficial to analyze the indexing strategy in a system, adjusting and
redesigning it during migration. You can use the sys.dm_db_index_usage_stats and
sys.dm_db_index_operational_stats data management views to obtain index usage
statistics in the system. Remember that SQL Server does not persist these statistics at the
time of restart. Moreover, some versions may clear them at the time of an index rebuild.

Chapter 13 ■ Utilizing In-Memory OLTP

236

Finally, I will to discuss another SQL Server 2014 limitation, which has been removed
in SQL Server 2016. As you may remember, the first release of In-Memory OLTP required
you to use binary collations for the index key columns. In SQL Server 2014, this may
become a breaking change in the system behavior because of the case-sensitiveness of
the collation. However, in the grand scheme of things, binary collations have benefits.
The comparison operations on the columns that store data in binary collations are
much more efficient compared to nonbinary counterparts. You can achieve significant
performance improvements when a large number of rows need to be processed.

One such example is a substring search in large tables. Consider the situation when
you need to search by part of the product name in a large Products table. Unfortunately,
a substring search will lead to the following predicate: WHERE ProductName LIKE '%' + @
Param + '%'. This is not SARGable, and SQL Server cannot use an Index Seek operation
in such a scenario. The only option is to scan the data, evaluating every row in the table,
which is significantly faster with binary collation.

Let’s look at an example and create the table shown in Listing 13-13. The table has
four text columns that store Unicode and non-Unicode data in binary and nonbinary
formats. Finally, you populate it with 65,536 rows of random data.

Listing 13-13.  Binary Collation Performance: Table Creation

create table dbo.CollationTest
(
 ID int not null,
 VarCol varchar(108) not null,
 NVarCol nvarchar(108) not null,
 VarColBin varchar(108)
 collate Latin1_General_100_BIN2 not null,
 NVarColBin nvarchar(108)
 collate Latin1_General_100_BIN2 not null,

 constraint PK_CollationTest
 primary key nonclustered hash(ID)
 with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table #CollData
(
 ID int not null,
 Col1 uniqueidentifier not null
 default NEWID(),
 Col2 uniqueidentifier not null
 default NEWID(),
 Col3 uniqueidentifier not null
 default NEWID()
);

Chapter 13 ■ Utilizing In-Memory OLTP

237

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
insert into #CollData(ID)
 select ID from IDs;

insert into dbo.CollationTest(ID,VarCol,NVarCol,VarColBin,NVarColBin)
 select
 ID
 /* VarCol */
 ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
 convert(varchar(36),Col3)
 /* NVarCol */
 ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
 convert(nvarchar(36),Col3)
 /* VarColBin */
 ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
 convert(varchar(36),Col3)
 /* NVarColBin */
 ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
 convert(nvarchar(36),Col3)
 from
 #CollData

As the next step, run the queries from Listing 13-14, comparing the performance
of a search in different scenarios. All the queries scan the table varheap, evaluating the
predicate for every row in the table.

Listing 13-14.  Binary Collation Performance: Test Queries

declare
 @Param varchar(16)
 ,@NParam varchar(16)

-- Getting substring for the search
select
 @Param = substring(VarCol,43,6)
 ,@NParam = substring(NVarCol,43,6)
from
 dbo.CollationTest
where
 ID = 1000;

Chapter 13 ■ Utilizing In-Memory OLTP

238

select count(*)
from dbo.CollationTest
where VarCol like '%' + @Param + '%';

select count(*)
from dbo.CollationTest
where NVarCol like '%' + @NParam + N'%';

select count(*)
from dbo.CollationTest
where VarColBin like '%' + upper(@Param) + '%'
 collate Latin1_General_100_Bin2;

select count(*)
from dbo.CollationTest
where NVarColBin like '%' + upper(@NParam) + N'%'
 collate Latin1_General_100_Bin2;

Table 13-3 shows the execution time of all queries in my system. As you can see, the
queries against the binary collation columns are significantly faster, especially in the case
of Unicode data.

Table 13-3.  Binary Collation Performace: Test Results

Varchar Column with
Nonbinary Collation

Varchar Column with
Binary Collation

Nvarchar Column
with Nonbinary
Collation

Nvarchar Column
with Binary Collation

135 ms 75 ms 624 ms 34 ms

Remember that binary collations are case-sensitive. You may want to create another
binary collation column and store the copy of the data there, converting it to uppercase or
lowercase when needed.

Finally, it is worth noting that this behavior is not limited to memory-optimized
tables. You will get a similar level of performance improvement with disk-based tables
when binary collations are used.

Maintainability and Management Overhead
In SQL Server 2014 and SQL Server 2016 RTM, In-Memory OLTP was included only in
the Enterprise Edition of the product. Starting with SQL Server 2016 SP1, you can use
In-Memory OLTP in every edition of SQL Server. It is also available in the premium tiers
of Microsoft Azure SQL Databases. While this allows you to maintain a single architecture
and code across multiple SQL Server editions, there is the hidden danger in this
approach.

Chapter 13 ■ Utilizing In-Memory OLTP

239

In-Memory OLTP is hardly a “set it and forget it” type of technology. Database
professionals should actively participate in system monitoring and maintenance after
deployment. They need to monitor system memory usage, analyze data, re-create hash
indexes if the bucket counts need to be adjusted, recompile natively compiled modules to
address data distribution and statistic changes, and perform other tasks as well.

The memory usage monitoring is, perhaps, the most important task. In-Memory
OLTP consumes system memory, which may affect the performance of the other SQL
Server components. For example, a large amount of data in memory-optimized tables
may reduce the size of the buffer pool, which will increase physical I/O and reduce query
performance against disk-based tables. Similarly, it may reduce the size of the plan cache,
which will lead to recompilations and increase CPU load in the system. Ironically, in the
Standard Edition, 32GB of memory-optimized data would not affect buffer pool memory
when the server has enough RAM to accommodate both of them.

You should also remember that data in memory-optimized tables will become
read-only if In-Memory OLTP does not have enough memory to proceed. This may lead
to prolonged system outages, especially in non-Enterprise instances of SQL Server. You
cannot address the issue by adding more memory and exceeding the edition limit. The
only option is to reduce the amount of data in memory-optimized tables.

■■ Important A bandoned uncommitted transactions may defer the garbage collection
process and lead to out-of-memory conditions in the system.

You should also consider In-Memory OLTP memory usage when you design a high
availability strategy in your system. It is not uncommon to have the implementations
with secondary nodes be less powerful than the primary ones. This decreases the
implementation cost of the solution and may provide a required high availability even
though the system would operate with a reduced performance after failover.

The situation changes if secondary nodes do not have enough memory to
accommodate In-Memory OLTP data. This will break the synchronization between the
nodes and may affect the availability of the system.

The cross-edition support of the technology in SQL Server 2016 SP1 and above allows
you to architect the system once and upgrade editions as the amount of data and the load
increase. It is not targeted for independent software vendors who develop products that
need be deployed to a large number of customers who may or may not have DBA teams to
support the system. In-Memory OLTP is not the best choice in that scenario.

Using In-Memory OLTP in Systems with Mixed
Workloads
In-Memory OLTP can provide significant performance improvements in OLTP systems.
However, with data warehouse workloads, the results may vary. The memory-optimized
columnstore indexes may help to improve the performance of some data warehouse and
operational analytics queries; however, memory-optimized columnstore indexes still
have plenty of limitations compared to disk-based column-based storage.

Chapter 13 ■ Utilizing In-Memory OLTP

240

When you run a query against a memory-optimized columnstore index, In-Memory
OLTP has to perform a scan of all the index row groups. Even though SQL Server may skip
some of the row groups based on segment metadata, you should not rely on that behavior.

By contrast, disk-based columnstore indexes may be partitioned, and entire
partitions can be eliminated from the scan. This may significantly reduce the amount of
data to process when a system has a long data retention policy and queries work with just
subset of the data.

Keeping the old data in memory-optimized tables also negatively affects the
performance of OLTP queries. It increases the length and slows down the scans of the
index row chains. More importantly, it will consume SQL Server memory. Even though
memory is relatively cheap nowadays, NUMA servers partition the memory on a
per-socket basis, and in some cases, you will have to add more CPUs to utilize the
memory. This may require you to license them, which is expensive.

Finally, there is another, less obvious aspect of the problem. Different data in the
system may have different availability requirements. For example, current hot data may
have a 99.99 percent or higher SLA in the mission-critical systems, while the availability
requirements for the old cold data may be significantly lower.

The Enterprise Edition of SQL Server allows you to utilize piecemeal restore, bringing
the database online on a per-filegroup basis. This can significantly reduce the downtime
in the case of a disaster. However, a piecemeal restore requires the In-Memory OLTP
filegroup to be online for the database to become partially available. Keeping a large
amount of old cold data in-memory would slow down the recovery process.

It is often beneficial to build separate data warehouse environments to handle
analysis and reporting for the system. However, there are still many cases when systems
need to retain data for a long time and support mixed OLTP and data warehouse
workloads against the same data. Moving the data completely into memory is usually not
the best option, especially when you expect the amount of data grow over time.

One of the solutions in this scenario is to partition the data between memory-optimized
and disk-based tables. You can put recent hot data into memory-optimized tables, keeping
old cold data disk-based. This allows you to create a different set of indexes and utilize
different technologies based on workload, obtaining the biggest performance gain and
reducing the size of the data on disk.

Figure 13-2 shows an example of the architecture that partitions data in the system.
Obviously, the criteria for partitioning should depend on the system workload and other
requirements.

Figure 13-2.  Example of data partitioning

Chapter 13 ■ Utilizing In-Memory OLTP

241

The hot operational data is stored in memory-optimized tables. This data is
customer-facing, and it handles the majority of OLTP activity in the system. The warm
data for several previous operational periods could be stored in disk-based B-Tree tables.
There is usually some degree of OLTP and data warehouse workload against such data.

The cold historical data mainly handles data warehouse workloads. It may be stored
in the tables with clustered columnstore indexes, potentially with COLUMNSTORE_ARCHIVE
compression. It is also possible to create nonclustered B-Tree indexes on such tables if
you need to support OLTP use cases. Finally, if the data is static, it is beneficial to put it in
a read-only filegroup and exclude it from the regular FULL database backups.

Let’s look at an example of such an implementation and assume that you have an
imaginary order entry system where the majority of OLTP transactions occur for the
current month’s data. Figure 13-3 shows the data partitioning that may exist in the system
as of June 2017.

Figure 13-3.  Order entry system: data partitioning

The hot data for the current (June 2017), previous (May 2017), and next (July 2017)
operation periods are stored in the memory-optimized tables. The warm data from
January to April 2017 is stored in a B-Tree table on the FG2017 filegroup. Lastly, the cold
data for 2016 is stored in the table with the clustered columnstore index on the FG2016
filegroup. The catalog entities, such as Articles and Customers, are implemented as
memory-optimized tables, which will allow you to utilize native compilation when you
are working with the hot orders.

It is also beneficial to partition disk-based tables according to operational periods.
This will help to manage data movement between the tables when the period changes.
You will see this shortly.

Listing 13-15 illustrates this implementation. I am omitting the dbo.Orders2017_07
table to save the space in the book. However, you should always have the table for the
next (future) operational period to avoid downtime in the system.

Chapter 13 ■ Utilizing In-Memory OLTP

242

Listing 13-15.  Data Partitioning: Object Creation

create table dbo.Customers
(
 CustomerId int not null
 constraint PK_Customers
 primary key nonclustered hash
 with (bucket_count=65536),
 Name nvarchar(256) not null,

 index IDX_Customers_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_and_data);

-- Storing data for 2017_06
create table dbo.Orders2017_06
(
 OrderId bigint identity(1,1) not null,
 OrderDate datetime2(0) not null,
 CustomerId int not null,
 Amount money not null,
 Status tinyint not null,

 /* Other columns */
 constraint PK_Orders2017_06
 primary key nonclustered (OrderId),

 index IDX_Orders2017_06_CustomerId
 nonclustered hash(CustomerId)
 with (bucket_count=65536),

 constraint CHK_Orders2017_06
 check (OrderDate >= '2017-06-01' and OrderDate < '2017-07-01'),

 constraint FK_Orders2017_06_Customers
 foreign key(CustomerId)
 references dbo.Customers(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data);

-- Storing data for 2017_05
create table dbo.Orders2017_05
(
 OrderId bigint identity(1,1) not null,
 OrderDate datetime2(0) not null,
 CustomerId int not null,
 Amount money not null,
 Status tinyint not null,

Chapter 13 ■ Utilizing In-Memory OLTP

243

 /* Other columns */
 constraint PK_Orders2017_05
 primary key nonclustered (OrderId),

 index IDX_Orders2017_05_CustomerId
 nonclustered hash(CustomerId)
 with (bucket_count=65536),

 constraint CHK_Orders2017_05
 check (OrderDate >= '2017-05-01' and OrderDate < '2017-06-01'),

 constraint FK_Orders2017_05_Customers
 foreign key(CustomerId)
 references dbo.Customers(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data);
go

create partition function pf2017(datetime2(0))
as range right for values
('2017-02-01','2017-03-01','2017-04-01','2017-05-01','2017-06-01','2017-07-01'
,'2017-08-01','2017-09-01','2017-10-01','2017-11-01','2017-12-01','2018-01-01');
go

create partition scheme ps2017
as partition pf2017
all to ([FG2017]);
go

-- Storing data for 2017
create table dbo.Orders2017
(
 OrderId bigint not null,
 OrderDate datetime2(0) not null,
 CustomerId int not null,
 Amount money not null,
 Status tinyint not null,

 constraint CHK_Order2017_01_05 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-05-01'),
 constraint CHK_Order2017_01_06 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-06-01'),
 constraint CHK_Order2017_01_07 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-07-01'),
 constraint CHK_Order2017_01_08 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-08-01'),

Chapter 13 ■ Utilizing In-Memory OLTP

244

 constraint CHK_Order2017_01_09 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-09-01'),
 constraint CHK_Order2017_01_10 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-10-01'),
 constraint CHK_Order2017_01_11 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-11-01'),
 constraint CHK_Order2017_01_12 check (OrderDate >= '2017-01-01' and
OrderDate < '2017-12-01'),
 constraint CHK_Order2017 check (OrderDate >= '2017-01-01' and OrderDate
< '2018-01-01')
);

create unique clustered index IDX_Orders2017_OrderDate_OrderId
on dbo.Orders2017(OrderDate, OrderId)
with (data_compression=row)
on ps2017(OrderDate);

create nonclustered index IDX_Orders2017_CustomerId
on dbo.Orders2017(CustomerId)
with (data_compression=row)
on ps2017(OrderDate);

create nonclustered index IDX_Orders2017_OrderId
on dbo.Orders2017(OrderId)
with (data_compression=row)
on ps2017(OrderDate);
go

create partition function pf2016(datetime2(0))
as range right for values
('2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'
,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01','2017-01-01');
go

create partition scheme ps2016
as partition pf2016
all to ([FG2016]);
go

create table dbo.Orders2016
(
 OrderDate datetime2(0) not null,
 OrderId bigint not null,
 CustomerId int not null,
 Amount money not null,
 Status tinyint not null,

Chapter 13 ■ Utilizing In-Memory OLTP

245

 constraint CHK_Order2016 check (OrderDate >= '2016-01-01' and OrderDate
< '2017-01-01'),
)
on ps2016(OrderDate);

create clustered columnstore index CCI_Orders2016
on dbo.Orders2016
with (data_compression=columnstore_archive)
on ps2016(OrderDate);

create nonclustered index IDX_Orders2016_CustomerId
on dbo.Orders2016(CustomerId)
include(Amount)
with (data_compression=row)
on ps2016(OrderDate);
go

create view dbo.Orders(OrderDate, OrderId, CustomerId, Amount, Status)
as
 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017_06

 union all

 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017_05

 union all

 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017

 union all

 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2016;

You can hide implementation details from read-only reporting queries by
implementing a partitioned view that combines data from all the tables there. Each table
should have the CHECK constraint that indicates what data is stored in the table. This will
allow SQL Server to skip processing unnecessary tables when you reference a view in the
queries. Do not focus on multiple CHECK constraints in the dbo.Orders2017 table now; I
will explain the need for them later.

Chapter 13 ■ Utilizing In-Memory OLTP

246

Figure 13-4.  Execution plan of the query

Listing 13-16 illustrates several queries against a partition view.

Listing 13-16.  Data Partitioning: Querying Partitioned View

select count(*)
from dbo.Orders
where OrderDate between '2017-06-02' and '2017-06-03';

select count(*)
from dbo.Orders
where OrderDate >= '2017-01-01';

select count(*) from dbo.Orders;

Figure 13-4 shows the execution plans for the queries. As you can see, SQL Server is
able to eliminate the scan of unnecessary tables during query execution.

As you have probably noticed, the memory-optimized tables define an OrderId
column as identity(1,1). In-Memory OLTP requires you to use a SEED value of 1 when
you define the identity column. Fortunately, you can re-seed it and enforce key uniqueness
by implementing identity_insert of the dummy row immediately after table creation.

Chapter 13 ■ Utilizing In-Memory OLTP

247

Listing 13-17 shows this approach. It assumes that the system handles fewer than
100,000,000 new orders per month.

Listing 13-17.  Data Partitioning: Changing Identity SEED Property

set identity_insert dbo.Orders2017_06 on

insert into dbo.Orders2017_06(OrderDate, OrderId, CustomerId, Amount, Status)
values('2017-06-01',201706000000000,1,1,1);

delete from dbo.Orders2017_06;

set identity_insert dbo.Orders2017_06 off;

As with any multitable data partitioning implementation, you should support the
data migration across the tables. As time goes on, the orders need to be moved from
memory-optimized to disk-based tables.

It is possible to use an INSERT..SELECT approach; however, the statement would
move the snapshot of the data taken when the transaction started. You will subsequently
need to move the data changes that occur during and after the statement execution. You
can capture those changes by defining triggers on the memory-optimized tables.

Let’s look at an example of data movement assuming that you want to move the
last-month (May 2017) data to a disk-based table. Listing 13-18 shows the first step in
the process, which inserts data into the separate disk-based staging table to avoid data
duplication in the system. This also creates two tables to keep the OrderId values of
updated and deleted rows using the triggers to populate them (I am assuming that there
are no inserts into the last-month table).

Listing 13-18.  Data Movement: Step 1

create table dbo.Orders2017_05_Tmp
(
 OrderId bigint not null,
 OrderDate datetime2(0) not null,
 CustomerId int not null,
 Amount money not null,
 Status tinyint not null,

 check (OrderDate >= '2017-05-01' and OrderDate < '2017-06-01')
)
on [FG2017];

create unique clustered index IDX_Orders2017_05_Tmp_OrderDate_OrderId
on dbo.Orders2017_05_Tmp(OrderDate, OrderId)
with (data_compression=row)
on [FG2017];

Chapter 13 ■ Utilizing In-Memory OLTP

248

create nonclustered index IDX_Orders2017_05_Tmp_CustomerId
on dbo.Orders2017_05_Tmp(CustomerId)
with (data_compression=row)
on [FG2017];

create nonclustered index IDX_Orders2017_05_Tmp_OrderId
on dbo.Orders2017_05_Tmp(OrderId)
with (data_compression=row)
on [FG2017]
go

create table dbo.OrdersUpdateQueue
(
 ID int not null identity(1,1)
 constraint PK_OrdersUpdateQueue
 primary key nonclustered hash
 with (bucket_count=262144),
 OrderId bigint not null,
)
with (memory_optimized=on, durability=schema_and_data)
go

create table dbo.OrdersDeleteQueue
(
 ID int not null identity(1,1)
 constraint PK_OrdersDeleteQueue
 primary key nonclustered hash
 with (bucket_count=262144),
 OrderId bigint not null
)
with (memory_optimized=on, durability=schema_and_data)
go

create trigger trgAfterUpdate on dbo.Orders2017_05
with native_compilation, schemabinding
after update
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 insert into dbo.OrdersUpdateQueue(OrderId)
 select OrderId from inserted;
end
go

Chapter 13 ■ Utilizing In-Memory OLTP

249

create trigger trgAfterDelete on dbo.Orders2017_05
with native_compilation, schemabinding
after delete
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 insert into dbo.OrdersDeleteQueue(OrderId)
 select OrderId from deleted;
end
go

-- Step 1: Copy data to the staging table
insert into dbo.Orders2017_05_Tmp(OrderDate, OrderId, CustomerId, Amount,
Status)
 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017_05 with (snapshot);

The OrderId of the rows that were updated and deleted during the INSERT..SELECT
execution are stored in the dbo.OrdersUpdateQueue and dbo.OrdersDeleteQueue tables.
You can apply those data modifications to the staging table by using the code from
Listing 13-19. Depending on the volatility of the data in your system, you may need to run
it several times until the tables are almost empty.

Listing 13-19.  Data Movement: Step 2

declare
 @MaxUpdateId int
 ,@MaxDeleteId int

select @MaxUpdateId = max(ID)
from dbo.OrdersUpdateQueue with (snapshot);

select @MaxDeleteId = max(ID)
from dbo.OrdersDeleteQueue with (snapshot);

begin tran
 if @MaxUpdateId is not null
 begin
 update t
 set t.Amount = s.Amount, t.Status = s.Status
 from
 dbo.OrdersUpdateQueue q with (snapshot) join
 dbo.Orders2017_05 s with (snapshot) on
 q.OrderId = s.OrderId

Chapter 13 ■ Utilizing In-Memory OLTP

250

 join dbo.Orders2017_05_Tmp t on
 t.OrderId = s.OrderId
 where
 q.ID <= @MaxUpdateId;

 delete from dbo.OrdersUpdateQueue with (snapshot)
 where ID <= @MaxUpdateId;
 end;

 if @MaxDeleteId is not null
 begin
 delete from t
 from
 dbo.OrdersDeleteQueue q with (snapshot) join
 dbo.Orders2017_05_Tmp t on
 t.OrderId = q.OrderId
 where
 q.ID <= @MaxDeleteId;

 delete from dbo.OrdersDeleteQueue with (snapshot)
 where ID <= @MaxDeleteId;
 end
commit;

Finally, you need to drop the dbo.Orders2017_05 table, switch the staging table as
the partition to the dbo.Orders2017 table, and change the partition view. You should
prevent client access to the May 2017 data during those operations. Fortunately, the
duration of the downtime will be very short; both update and delete queue tables are
almost empty, and other operations will be done on the metadata level, as shown in
Listing 13-20.

■■ Note  If you access the data in the dbo.Orders2017_05 table through the T-SQL
(interop) stored procedures, you can alter them at the beginning of the transaction and
obtain a schema modification (Sch-M) lock on them. This will block clients from calling
stored procedures until a transaction is committed.

Listing 13-20.  Data Movement: Final Step

-- Disconnect clients before running those steps.
-- Alternatively, if the Data Access Tier uses Interop
-- stored procedures, you can start the transaction and
-- alter SPs before the updates. This will block clients
-- from calling those SPs.

Chapter 13 ■ Utilizing In-Memory OLTP

251

update t
set t.Amount = s.Amount, t.Status = s.Status
from
 dbo.OrdersUpdateQueue q with (snapshot)
 join dbo.Orders2017_05 s with (snapshot) on
 q.OrderId = s.OrderId
 join dbo.Orders2017_05_Tmp t on
 t.OrderId = s.OrderId;

delete from t
from
 dbo.OrdersDeleteQueue q with (snapshot) join
 dbo.Orders2017_05_Tmp t on
 t.OrderId = q.OrderId;

alter table dbo.Orders2017
 drop constraint CHK_Order2017_01_05
go

alter table dbo.Orders2017_05_Tmp
switch to dbo.Orders2017 partition 5
go

alter view dbo.Orders(OrderDate, OrderId, CustomerId, Amount, Status)
as
 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017_06

 union all

 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2017

 union all

 select OrderDate, OrderId, CustomerId, Amount, Status
 from dbo.Orders2016
go

drop table dbo.Orders2017_05;

One of the things you need to do during this process is change the CHECK constraints
on the dbo.Orders2017 table indicating that the table stores May 2017 data now.
Unfortunately, SQL Server always scans one of the indexes in the table to validate new
CHECK constraints, holding the schema modification (SCH-M) lock and preventing access
to the table during the scan.

Chapter 13 ■ Utilizing In-Memory OLTP

252

One of the ways to address such a problem is by creating multiple CHECK
constraints—one constraint per month—as part of the CREATE TABLE statement. Every
time you move another month data into the table, you are dropping a constraint,
which is a metadata operation, rather than creating a new one. SQL Server evaluates all
constraints during optimization and picks the most restrictive one. This is the reason why
you created nine CHECK constraints in the dbo.Orders2017 table in Listing 13-15.

■■ Note  You can look at a more comprehensive and detailed version of the code in the
companion materials of the book.

While implementing data partitioning requires additional effort, it pays off in the
long run. It allows you to utilize the best technologies for each workload, simplifies
database administration and maintenance, improves system availability, and helps to
reduce the hardware and storage costs. Consider implementing it when you expect to
store a large amount of data in the system.

■■ Note  My Pro SQL Server Internals book includes a detailed chapter about data
partitioning. It shows how to implement tiered storage and move data between different
tables and filegroups while keeping it transparent to the users.

Thinking Outside the In-Memory Box
You can benefit from In-Memory OLTP even without fully utilizing the technology and
migrating the data into memory. Let’s look at several examples.

Importing Batches of Rows from Client Applications
In Chapter 13 of my book Pro SQL Server Internals, I compare the performance of several
methods that inserted a batch of rows from the client application into the database.
I looked at the performance of calling individual INSERT statements, encoding the data
into XML and JSON and passing it to a stored procedure, using the .NET SqlBulkCopy
class, and passing the data to a stored procedure utilizing table-valued parameters.
Table-valued parameters became the clear winner of the tests, providing performance on
par with the SqlBulkCopy implementation plus the flexibility of using stored procedures
during the import.

http://dx.doi.org/10.1007/978-1-4842-2772-5_13

Chapter 13 ■ Utilizing In-Memory OLTP

253

Listing 13-21 illustrates the database schema and stored procedure I used in the tests.

Listing 13-21.  Importing a Batch of Rows: Table, TVP, and Stored Procedure

create table dbo.Data
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns Col3 - Col19*/
 Col20 varchar(20) not null,

 constraint PK_DataRecords
 primary key clustered(ID)
)
go

create type dbo.tvpData as table
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns: Col3 - Col19 */
 Col20 varchar(20) not null,

 primary key(ID)
)
go

create proc dbo.InsertDataTVP
(
 @Data dbo.tvpData readonly
)
as
 insert into dbo.Data
 (
 ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7
 ,Col8,Col9,Col10,Col11,Col12,Col13,Col14
 ,Col15,Col16,Col17,Col18,Col19,Col20
)
 select ID,Col1,Col2,Col3,Col4,Col5,Col6
 ,Col7,Col8,Col9,Col10,Col11,Col12
 ,Col13,Col14,Col15,Col16,Col17,Col18
 ,Col19,Col20
 from @Data;

Listing 13-22 shows the ADO.NET code that performed the import in the case of a
table-valued parameter.

Chapter 13 ■ Utilizing In-Memory OLTP

254

Listing 13-22.  Importing a Batch of Rows: Client Code

using (SqlConnection conn = GetConnection())
{
 /* Creating and populating DataTable object with dummy data */
 DataTable table = new DataTable();
 table.Columns.Add("ID", typeof(Int32));
 for (int i = 1; i <= 20; i++)
 table.Columns.Add("Col" + i.ToString(), typeof(string));
 for (int i = 0; i < packetSize; i++)
 table.Rows.Add(i, "Parameter: 1"
 ,"Parameter: 2"
 /* Other columns */
 ,"Parameter: 20");

 /* Calling SP with TVP parameter */
 SqlCommand insertCmd =
 new SqlCommand("dbo.InsertDataTVP", conn);
 insertCmd.Parameters.Add("@Data", SqlDbType.Structured);
 insertCmd.Parameters[0].TypeName = "dbo.tvpData";
 insertCmd.Parameters[0].Value = table;
 insertCmd.ExecuteNonQuery();
}

You can improve performance even further by making the dbo.tvpData table type
memory-optimized, which is transparent to the stored procedure and client code.
Listing 13-23 shows the new type definition.

Listing 13-23.  Importing a Batch of Rows: Defining a Memory-Optimized Table Type

create type dbo.tvpData as table
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns: Col3 - Col19 */
 Col20 varchar(20) not null,

 primary key nonclustered hash(ID)
 with (bucket_count=65536)
)
with (memory_optimized=on);

The degree of performance improvement depends on the table schema, and it
grows with the size of the batch. In my test environment, I got about 5 to 10 percent
improvement on the small 5,000-row batches, 20 to 25 percent improvement on the
50,000-row batches, and 45 to 50 percent improvement on the 500,000-row batches.

Chapter 13 ■ Utilizing In-Memory OLTP

255

Moreover, memory-optimized tables do not utilize tempdb, which may reduce
tempdb page allocation contention (PAGELATCH waits) on very busy systems and improve
performance even further. They, however, cannot spill to tempdb, which can be dangerous
in the case of very large batches and with servers with an insufficient amount of memory.
You should also define the bucket_count value for the indexes based on a typical batch
size, as discussed in Chapter 4 of this book.

■■ Note  You can download the test application from this book’s companion materials and
compare the performance of the various import methods.

Using Memory-Optimized Objects as Replacements for
Temporary and Staging Tables
Memory-optimized tables and table variables can be used as replacements for disk-based
temporary and staging tables. However, the level of performance improvement may vary,
and it greatly depends on the table schema, workload patterns, and amount of data
in the table.

Let’s look at a few examples and first compare the performance of a memory-
optimized table variable with disk-based temporary objects in a simple scenario that you
will often encounter in OLTP systems. Listing 13-24 shows stored procedures that insert
up to 256 rows into an object, scanning it afterward.

Listing 13-24.  Comparing Performance of a Memory-Optimized Table Variable with
Disk-Based Temporary Objects

create table dbo.TestRows
(
 Id int not null
 primary key nonclustered hash
 with (bucket_count=512),
)
with (memory_optimized=on, durability=schema_only)
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N4)
insert into dbo.TestRows(Id)
 select Id from Ids;
go

http://dx.doi.org/10.1007/978-1-4842-2772-5_4

Chapter 13 ■ Utilizing In-Memory OLTP

256

create type dbo.InMemTV as table
(
 Id int not null
 primary key nonclustered hash
 with (bucket_count=512),
 Placeholder char(255)
)
with (memory_optimized=on)
go

create proc dbo.TestInMemTempTables(@Rows int)
as
 declare
 @ttTemp dbo.InMemTV
 ,@Cnt int

 insert into @ttTemp(Id)
 select Id
 from dbo.TestRows with (snapshot)
 where Id <= @Rows;

 select @Cnt = count(*) from @ttTemp;
go

create proc dbo.TestTempTables(@Rows int)
as
 declare
 @Cnt int

 create table #TTTemp
 (
 Id int not null primary key,
 Placeholder char(255)
)

 insert into #TTTemp (Id)
 select Id
 from dbo.TestRows with (snapshot)
 where Id <= @Rows;

 select @Cnt = count(*) from #TTTemp;
go

create proc dbo.TestTempVars(@Rows int)
as
 declare
 @Cnt int

Chapter 13 ■ Utilizing In-Memory OLTP

257

 declare
 @ttTemp table
 (
 Id int not null primary key,
 Placeholder char(255)
)

 insert into @ttTemp(Id)
 select Id
 from dbo.TestRows with (snapshot)
 where Id <= @Rows;

 select @Cnt = count(*) from @ttTemp;

Table 13-4 illustrates the execution time of the stored procedures called 10,000
times in the loop. I ran the tests in two environments, using Intel i7-4770HQ and AMD
Opteron 6328 CPUs. As you can see, the memory-optimized table variable outperformed
disk-based objects even in the system with a very fast PCI-e SSD drive. The level of
performance improvements grew with the amount of data when the disk-based tables
needed to allocate more data pages to store the data. This is also a good example that
demonstrates that In-Memory OLTP is usually CPU-bound and benefits from the faster
single-threaded performance provided by an Intel CPU.

Table 13-4.  Execution Time of Stored Procedures (10,000 Executions)

16 Rows 64 Rows 256 Rows

Memory-Optimized Table Variable
(i7-4770HQ)

843 ms 1,016 ms 1,850 ms

Memory-Optimized Table Variable
(AMD Opteron 6328)

980 ms 1,360 ms 2,617 ms

Table Variable 1,450 ms 3,054 ms 8,390 ms

Temporary Table 6,267 ms 8,020 ms 12,546 ms

It is also worth mentioning that performance improvements can be even more
significant in systems with heavy concurrent tempdb loads because of the possible
allocation maps contention.

You should remember that memory-optimized table variables do not keep index
statistics, similar to disk-based table variables. The Query Optimizer generates execution
plans with the assumption that they store just a single row. This cardinality estimation error
can lead to highly inefficient plans, especially when with a large amount of data and joins.

Similar to disk-based table variables, the statement-level recompile with OPTION
(RECOMPILE) allows the Query Optimizer to obtain a number of rows in memory-optimized
table variables. It does not provide the information about data distribution, however,
because of the missing statistics histogram. This behavior may lead to inefficient execution
plans even with a statement-level recompile involved.

Chapter 13 ■ Utilizing In-Memory OLTP

258

Let’s look at an example of cardinality estimations with and without a statement-
level recompile by using the code from Listing 13-25.

Listing 13-25.  Memory-Optimized Table Variables and Statement-Level Recompile

declare
 @InMemTV dbo.InMemTV;

insert into @InMemTV(Id)
 select Id from dbo.TestRows with (snapshot);

select count(*) from @InMemTV;
select count(*) from @InMemTV option (recompile);
select count(*) from @InMemTV where ID > 0 option (recompile);

You can see the cardinality estimations for the Index Scan and Filter operators
in Figure 13-5. Without a statement-level recompile, SQL Server assumed that the
memory-optimized table variable has just a single row. The statement-level recompile
allowed SQL Server to obtain the information about the number of rows in the table.
However, there is no information about data distribution in the table, and adding the
where clause led to the cardinality estimation error. This behavior matches the behavior
of disk-based table variables.

Figure 13-5.  Memory-optimized table variables and cardinality estimations

Memory-optimized tables can be used as the staging area for ETL processes. As a
general rule, they outperform disk-based tables in INSERT performance, especially if the
process imports the data from the multiple sources in parallel. The lock- and latch-free
nature of memory-optimized tables will eliminate latch contention and will provide a
significant increase of insert throughput. You already saw a similar example in Chapter 2
of the book.

http://dx.doi.org/10.1007/978-1-4842-2772-5_2

Chapter 13 ■ Utilizing In-Memory OLTP

259

In-Memory OLTP will also reduce I/O and transaction log overhead. Moreover, in the
case of nondurable memory-optimized tables, it will eliminate all disk and transaction
log activity generated by the staging tables.

The data modification overhead is different between technologies. As you already
know, with memory-optimized tables, the UPDATE overhead depends on the number of
indexes in the table. With disk-based tables, it depends on what columns were updated
and the number of page splits it generated.

Scan performance, on the other hand, greatly depends on the use case. In SQL
Server 2014, In-Memory OLTP did not support parallelism and varheap scans, which
greatly affected scan performance. Traversing memory pointers is a fast operation, and it
is significantly faster compared to getting a page from the buffer pool. However, on-page
row access could be faster than traversing long memory pointer chains. In SQL Server
2014, it was possible that with the small data rows and large number of rows per page,
disk-based tables outperformed memory-optimized tables during the scans, especially
with the parallel execution plans for the queries.

Fortunately, both limitations have been removed in SQL Server 2016, and in the
majority of the cases, memory-optimized table scans would outperform B-Tree disk-based
tables. Nevertheless, the results may vary based on the data, hardware, and ETL logic.

You should also remember that parallelism and varheaps scans are supported only
in query interop mode. You should compare the performance of natively compiled code
responsible for ETL logic with the interop T-SQL implementation. Those limitations may
offset the performance benefits provided by native compilation and make the interop
approach more efficient in the case of large scans and complex ETL transformations.

With all that being said, you can achieve the best results by adjusting ETL
processes to In-Memory OLTP. Consider the situation when you need to import data
to a data warehouse using many flat files as the source. In-Memory OLTP will allow
you to perform the import from multiple files in parallel without any latch contention
overhead. Moreover, you can achieve better results by performing the processing and
transformation of the data using large batches rather than doing it on per-file basis.

■■ Tip  Consider using a separate staging database when you utilize In-Memory OLTP
for ETL processes. This will allow you to avoid creating an In-Memory OLTP filegroup with
checkpoint files in the main database.

Using In-Memory OLTP as Session or Object State Store
Modern software systems have become extremely complex. They consist of a large
number of components and services responsible for various tasks, such as interaction
with users, data processing, integration with other systems, reporting, and quite a few
others. They must be scalable and redundant, they need to be able to handle load growth,
and they need to be able to survive hardware failures and crashes.

A common approach to solving scalability and redundancy issues is to design the
systems in a way that permits you to deploy and run multiple instances of individual
services. This allows you to add more servers and instances as the load grows and helps

Chapter 13 ■ Utilizing In-Memory OLTP

260

you survive hardware failures by distributing the load across other active servers. The
services are usually implemented in a stateless way, and they don’t store or rely on any
local data.

Most systems, however, have data that needs to be shared across instances. For
example, front-end web servers usually need to maintain web session states. Back-end
processing services often need to have a shared cache with some data.

Historically, there were two approaches to address this issue. The first one was to
use a dedicated storage/cache and host it somewhere in the system. Remember the old
ASP.NET model that used either a SQL Server database or a separate web server to store
session data? The problem with this approach was limited scalability and redundancy.
Storing session data in web server memory is fast, but it is not redundant. A SQL Server
database, on the other hand, can be protected, but it does not scale well under the load
because of page latch contention and other issues.

Another approach was to replicate the content of the cache across multiple servers.
Each instance worked with a local copy of the cache, while another background process
distributed the changes to the other servers. Several solutions on the market provide such
a capability; some are open source, and others are commercial products.

If your system is using SQL Server as the database back end, you have an option of
utilizing In-Memory OLTP as the session or object store in your system. This may not
necessarily be the best option because of the extra load it adds to SQL Server; however,
it may be one of the simplest approaches, especially if SQL Server has enough extra
bandwidth to handle the load.

In the nutshell, it looks similar to the ASP.NET SQL Server session-store model;
however, In-Memory OLTP throughput and performance improvements address the
scalability issues of the old disk-based solution. You can improve the performance even
further by using nondurable memory-optimized tables. Even though the data will be lost
when there is failover, this is acceptable in many cases.

Listing 13-26 shows the table and natively compiled stored procedures that you can
use to store and manipulate the data in the database. The client application calls the
LoadObjectFromStore and SaveObjectToStore stored procedures to load and save the
data. The PurgeExpiredObjects stored procedure removes expired rows from the table,
and it can be called from a SQL Agent or other process based on the schedule.

The serialized object data is stored in a varbinary(max) column. You can achieve
slightly better performance by using an in-row varbinary(8000) data type if your objects
will not exceed 8,000 bytes. Alternatively, you can use separate tables for large and small
objects if needed. Consider, however, the development and maintenance overhead and
the possibility of future object growth; it is entirely possible that the small performance
improvements gained by eliminating the off-row internal table is not worth the effort.

Listing 13-26.  Implementing Session Store: Database Schema

create table dbo.ObjStore
(
 ObjectKey uniqueidentifier not null,
 ExpirationTime datetime2(2) not null,
 Data varbinary(max) not null,

Chapter 13 ■ Utilizing In-Memory OLTP

261

 constraint PK_ObjStore
 primary key nonclustered hash(ObjectKey)
 with (bucket_count = 131072),
)
with (memory_optimized = on, durability = schema_only);

create proc dbo.SaveObjectToStore
(
 @ObjectKey uniqueidentifier
 ,@ExpirationTime datetime2(2)
 ,@Data varbinary(max)
)
with native_compilation, schemabinding, exec as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 -- @ObjectKeys are randomly generated and unique across
 -- multiple sessions
 update dbo.ObjStore
 set Data = @Data, ExpirationTime = @ExpirationTime
 where ObjectKey = @ObjectKey;

 if (@@rowcount = 0)
 insert into dbo.ObjStore(ObjectKey, ExpirationTime, Data)
 values(@ObjectKey, @ExpirationTime, @Data)
end;

create proc dbo.LoadObjectFromStore
(
 @ObjectKey uniqueidentifier not null
 ,@Data varbinary(max) output
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 select @Data = t.Data
 from dbo.ObjStore t
 where t.ObjectKey = @ObjectKey and
 ExpirationTime >= sysutcdatetime();
end;

Chapter 13 ■ Utilizing In-Memory OLTP

262

create proc dbo.PurgeExpiredObjects
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare @CurrentTime
 datetime2(2) = sysutcdatetime();

 delete dbo.ObjStore
 where ExpirationTime < @CurrentTime
end

The client implementation includes several static classes. The ObjStoreUtils class
provides two methods to serialize and deserialize objects into the byte arrays. You can see
the implementation in Listing 13-27.

Listing 13-27.  Implementing Session Store: ObjStoreUtils Class

public static class ObjStoreUtils
{
 /// <summary>
 /// Serialize object of type T to the byte array
 /// </summary>
 public static byte[] Serialize<T>(T obj)
 {
 if (obj == null)
 return null;
 using (var ms = new MemoryStream())
 {
 var formatter = new BinaryFormatter();
 formatter.Serialize(ms, obj);

 return ms.ToArray();
 }
 }

 /// <summary>
 /// Deserialize byte array to the object
 /// </summary>
 public static T Deserialize<T>(byte[] data)
 {
 if (data == null || data.Length == 0)
 return default(T);

Chapter 13 ■ Utilizing In-Memory OLTP

263

 using (var output = new MemoryStream(data))
 {
 var binForm = new BinaryFormatter();
 return (T) binForm.Deserialize(output);
 }
 }
}

The ObjStoreDataAccess class shown in Listing 13-28 loads and saves binary data to
and from the database. It utilizes another static class called DBConnManager, which returns
the SqlConnection object to the target database. This class is not shown in the listing.

Listing 13-28.  Implementing Session Store: ObjStoreDataAccess Class

public static class ObjStoreDataAccess
{
 /// <summary>
 /// Saves serialized object to the database
 /// </summary>
 public static void SaveObjectData(Guid key,
 DateTime expirationTime, byte[] obj)
 {
 using (var cnn = DBConnManager.GetConnection())
 {
 using (var cmd = cnn.CreateCommand())
 {
 cmd.CommandText = "dbo.SaveObjectToStore";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("@ObjectKey",
 SqlDbType.UniqueIdentifier).Value = key;
 cmd.Parameters.Add("@ExpirationTime",
 SqlDbType.DateTime2).Value = expirationTime;
 cmd.Parameters.Add("@Data",
 SqlDbType.VarBinary,-1).Value = obj;

 cmd.ExecuteNonQuery();
 }
 }
 }

 /// <summary>
 /// Load serialized object from the database
 /// </summary>
 public byte[] LoadObjectData(Guid key)
 {
 using (var cnn = DBConnManager.GetConnection())
 {
 using (var cmd = cnn.CreateCommand())

Chapter 13 ■ Utilizing In-Memory OLTP

264

 {
 cmd.CommandText = "dbo.LoadObjectFromStore";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("ObjectKey",
 SqlDbType.UniqueIdentifier).Value = key;
 cmd.Parameters.Add("@Data",
 SqlDbType.VarBinary,-1).Direction =
 ParameterDirection.Output;
 cmd.ExecuteNonQuery();
 return (byte[])cmd.Parameters[1].Value;
 }
 }
 }
}

Finally, the ObjStoreService class shown in Listing 13-29 puts everything together
and manages the entire process. It implements two simple methods, Load and Save,
calling the helper classes defined earlier.

Listing 13-29.  Implementing Session Store: ObjStoreService Class

public static class ObjStoreService
{
 /// <summary>
 /// Saves object in the object store
 /// </summary>
 public static void Save(Guid key,
 DateTime expirationTime, object obj)
 {
 var objectBytes = ObjStoreUtils.Serialize(obj);
 ObjStoreDataAccess.SaveObjectData(key, expirationTime, objectBytes);
 }

 /// <summary>
 /// Loads object from the object store
 /// </summary>
 public static T Load<T>(Guid key) where T: class
 {
 var obj = ObjStoreDataAccess.LoadObjectData(key);
 if (obj == null)
 return default(T); // Object not found
 return ObjStoreUtils.Deserialize<T>(objectBytes);
 }
}

Chapter 13 ■ Utilizing In-Memory OLTP

265

Obviously, this is an oversimplified example, and the production implementation
could be significantly more complex, especially if there is the possibility that multiple
sessions can update the same object simultaneously. You can implement retry logic or
create some sort of object locking management in the system if this is the case.

It is also worth mentioning that you can compress binary data before saving it
into the database. The compression will introduce unnecessary overhead in the case
of small objects; however, it could provide significant space savings and performance
improvements if the objects are large.

I did not include the compression code in the example, although you can easily
implement it with the GZipStream or DeflateStream class.

■■ Note  The code and test application are included in the companion materials of this book.

Summary
SQL Server 2016 removes the majority of In-Memory OLTP limitations that existed in the
first release of the technology. However, migrating to In-Memory OLTP still incurs an
implementation cost. You should perform a cost-benefit analysis, making sure that the
cost is acceptable.

In-Memory OLTP can dramatically improve the performance of OLTP systems. It
is not necessarily the best choice for data warehouse workloads and in-memory data
warehouse implementations. You may consider implementing data partitioning and
combining the data from memory-optimized and disk-based tables to get the most from
all the SQL Server technologies.

You can benefit from the technology even if you do not perform a full In-Memory
OLTP migration. To name just a few use cases, memory-optimized table variables can be
used as a replacement of disk-based temporary objects. Memory-optimized table-valued
parameters are the fastest way to pass the batch of the rows between the client and T-SQL
routines. Memory-optimized tables can be used as the staging area for ETL processes.

Remember, however, that In-Memory OLTP is not a “set it and forget it” technology
and may require administration and monitoring after it is deployed to production.

267© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

APPENDIX A

Memory Pointer Management

This chapter explains how SQL Server works with memory pointers that link In-Memory
OLTP objects together.

Memory Pointer Management
The In-Memory OLTP Engine relies on memory pointers, using them to link objects
together. For example, pointers embedded into data rows link them into the data row
chains, which, in turn, are referenced by the hash and nonclustered index objects.

The lock- and latch-free nature of In-Memory OLTP adds the challenge of managing
memory pointers in highly volatile environments where multiple sessions can try to
simultaneously change them, overwriting each other’s changes.

Consider the situation when multiple sessions are trying to insert rows into the same
data row chain. Each session traverses that chain to locate the last row and update its
pointer with the address of the newly created row. SQL Server must guarantee that every
row will be added to the chain even when multiple sessions from the different parallel
threads are trying to perform that pointer update simultaneously.

SQL Server uses InterlockedCompareExchangePointer API functions
to guarantee that multiple sessions cannot update the same pointer and thus
overwrite each other’s changes, thereby losing references to each other’s objects.
InterlockedCompareExchangePointer functions change the value of the pointer,
checking that the existing (pre-update) value matches the expected (old) value provided
as another parameter. Only when the check succeeds is the pointer value updated. All of
those operations are completed as a single CPU instruction.

To illustrate this, assume you have two sessions that want to simultaneously insert
new delta records for the same nonclustered index leaf page. As a first step, shown in
Figure A-1, the sessions create delta records and set their pointers to a page based on the
address from the mapping table.

appendix a ■ Memory Pointer Management

268

In the next step, both sessions call the InterlockedCompareExchangePointer
function to try to update the mapping table by changing the reference from a page to the
delta records the sessions just created. InterlockedCompareExchangePointer serializes
the update of the mapping table element and changes it only if its current pre-update
value matches the old pointer (address of the page) provided as the parameter. The first
InterlockedCompareExchangePointer call succeeds. The second call, however, fails
because the mapping table element references the delta record from another session
rather than the page.

Figure A-2 illustrates such a scenario.

At this time, the second session will need to repeat the action. It will read the address
of the session 1 delta page from the mapping table and repoint its own delta page to
reference this delta page. Finally, it will call InterlockedCompareExchangePointer again
using the address of the session 1 delta page as the old pointer value during the call.
Figure A-3 illustrates that.

Figure A-1.  Data modifications and concurrency: step 1

Figure A-2.  Data modifications and concurrency: steps 2 and 3

appendix a ■ Memory Pointer Management

269

As you can see, with the exception of a short serialization during the
InterlockedCompareExchangePointer call, there is no locking or latching of the data
during the modifications.

SQL Server uses the same approach with InterlockedCompareExchangePointer
every time the pointer chain needs to be preserved, such as when it creates another
version of a row during an update, when it needs to change a pointer in the index
mapping or hash tables, and in quite a few other cases.

Summary
SQL Server uses an InterlockedCompareExchangePointer mechanism to guarantee
that multiple sessions cannot update the same memory pointers simultaneously, losing
references to each other’s objects.

InterlockedCompareExchangePointer functions change the value of the pointer,
checking that the existing (pre-update) value matches the expected (old) value provided
as another parameter. Only when the check succeeds is the pointer value updated. All of
those operations are completed as a single CPU instruction.

Figure A-3.  Data modifications and concurrency: final steps

271© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

APPENDIX B

Page Splitting and Page
Merging in Nonclustered
Indexes

This appendix provides an overview of the internal operations of nonclustered index,
such as page splitting and page merging.

Internal Maintenance of Nonclustered Indexes
The In-Memory OLTP engine has several internal operations that maintain the structure
of nonclustered indexes. As you already know from Chapter 5, page consolidation
rebuilds the nonclustered index page, consolidating all changes defined by the page delta
records. It helps avoid the performance hit introduced by long delta record chains. The
newly created page has the same PID in the mapping table and replaces the old page,
which is marked for garbage collection.

Two other processes can create new index pages, page splitting and page
merging. Both are complex actions and deserve detailed explanations of their internal
implementation.

Page Splitting
Page splitting occurs when a page does not have enough free space to accommodate a
new data row. Even though the process is similar to a B-Tree disk-based index page split,
there is one conceptual difference. In B-Tree indexes, the page split moves the part of
the data to the new data page, freeing up space on the original page. In Bw-Tree indexes,
however, the pages are nonmodifiable, and SQL Server replaces the old page with two
new ones, splitting the data between them.

Let’s look at this situation in more detail. Figure B-1 shows the internal and leaf
pages of a nonclustered index. Let’s assume that one of the sessions wants to insert a row
with a key of value Bob.

http://dx.doi.org/10.1007/978-1-4842-2772-5_5

Appendix B ■ Page Splitting and Page Merging in Nonclustered Indexes

272

When the delta record is created, SQL Server adjusts the delta record statistics on the
index page and detects that there is no space on the page to accommodate the new index
value once the delta records are consolidated. It triggers a page split process, which is
done in two atomic steps.

In the first step, SQL Server creates two new leaf-level pages and splits the old page
values between them. After that, it repoints the mapping table to the first newly created
page and marks the old page and the delta records for garbage collection.

Figure B-2 illustrates this state. At this state, there are no references to the second
newly created leaf-level page from the internal pages. The first leaf-level page, however,
maintains the link between pages (through the mapping table), and SQL Server is able to
access and scan the second page if needed.

During the second step, SQL Server creates another internal page with key values
that represent the new leaf-level page layout. When the new page is created, SQL Server
switches the pointer in the mapping table and marks the old internal page for garbage
collection. Figure B-3 illustrates this action.

Figure B-1.  Page splitting: initial state

Figure B-2.  Page splitting: first step

Appendix B ■ Page Splitting and Page Merging in Nonclustered Indexes

273

Eventually, the old data pages and delta records are deallocated by the garbage
collection process.

Page Merging
Page merging occurs when a delete operation leaves an index page less than 10 percent
from the maximum page size, which is 8KB now, or when an index page contains just a
single row. During this operation, SQL Server merges the data from two adjacent index
pages, replacing them with the new, combined data page.

Assume you have the page layout shown in Figure B-3 and you want to delete the index
key value Bob, which means that all data rows with the name Bob have been already deleted.
This leaves an index page with the single value Boris, which triggers page merging.

In the first step, SQL Server creates a delete delta record for Bob and another special
kind of delta record called a merge delta. Figure B-4 illustrates the layout after the first step.

During the second step of page merging, SQL Server creates a new internal page that
does not reference the leaf-level page that it is about to be merged. After that, SQL Server
switches the mapping table to point to the newly created internal page and marks the old
page for garbage collection. Figure B-5 illustrates this action.

Figure B-3.  Page splitting: second step

Figure B-4.  Page merging: first step

Appendix B ■ Page Splitting and Page Merging in Nonclustered Indexes

274

Finally, SQL Server builds a new leaf-level page, copying the Boris value there. After
the new page is created, it updates the mapping table and marks the old pages and delta
records for garbage collection.

Figure B-6 shows the final data layout after page merging is completed.

You can get page consolidation, merging, and splitting statistics from the sys.dm_db_
xtp_nonclustered_index_stats view.

■■ Note  You can read documentation about the sys.dm_db_xtp_nonclustered_index_
stats view at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-

transact-sql.

Summary
The In-Memory OLTP Engine uses several internal operations to maintain the structure of
nonclustered indexes. Page consolidation rebuilds the index page, combining page data
with the delta records. It helps avoid the performance impact introduced by long delta
records chains.

Page splitting occurs when the index page does not have enough space to
accommodate the new rows. In contrast to page splitting in disk-based B-Tree indexes,
which moves part of the data to the new page, Bw-Tree page splitting replaces the old
data page with new pages that contain the data.

Page merging occurs when an index page is less than 10 percent of the maximum
page size or when it has just a single row. SQL Server merges the data from adjacent data
pages and replaces them with the new page with the merged data.

Figure B-5.  Page merging: second step

Figure B-6.  Page merging: third (final) step

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql

275© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

APPENDIX C

Analyzing the States of
Checkpoint Files

SQL Server persists data from durable memory-optimized tables in checkpoint files. This
appendix demonstrates how to analyze the states of checkpoint files using the
sys.dm_db_xtp_checkpoint_files view and shows how the state transitions throughout
a file’s lifetime.

sys.dm_db_xtp_checkpoint_files View
The sys.dm_db_xtp_checkpoint_files view provides information about database
checkpoint files, including their state, size, and physical location. You will use this view
extensively in this appendix. Let’s look at the most important columns:

•	 The container_id and container_guid columns provide
information about the FILESTREAM container to which a
checkpoint file belongs. The container_id column corresponds
to the file_id column in the sys.database_files view.

•	 checkpoint_file_id is a GUID that represents the ID of the file.

•	 checkpoint_pair_file_id is the ID of the second, data or delta,
file in the pair.

•	 relative_file_path shows the relative file path in the container.

•	 state and state_desc describe the state of the file. As you already
know from Chapter 10, the checkpoint files can be in one of the
following states (the number represents the state column value):
0 for PRECREATED, 1 for UNDER CONSTRUCTION, 2 for ACTIVE, 3 for
MERGE TARGET, and 8 for WAITING FOR LOG TRUNCATION.

•	 file_type and file_type_desc describe the type of file: -1 for
FREE, 0 for DATA, 1 for DELTA, 2 for ROOT, and 3 for LARGE_DATA.

http://dx.doi.org/10.1007/978-1-4842-2772-5_10

appendix c ■ Analyzing the States of Checkpoint Files

276

•	 lower_bound_tsn and upper_bound_tsn indicate the timestamp
of the earliest and latest transactions covered by the file. These
columns are populated only for the ACTIVE and MERGE TARGET
states.

•	 file_size_in_bytes and file_size_used_in_bytes provide
information about the file size and space used in the file. The
file_size_used_in_bytes value is updated at the time of the
checkpoint event.

•	 logical_row_count provides the number of rows in the data and
delta files.

It is worth noting that in some cases, especially with early SQL Server 2016 builds,
the view may provide slightly outdated data. For example, the SQL Server 2016 RTM build
may omit information about some of PRECREATED files in the database.

Let’s use this view to analyze the state transitions of the checkpoint files.

The Lifetime of Checkpoint Files
As the first step in this test, let’s enable the undocumented trace flag T9851 using the
DBCC TRACEON(9851,-1) command. This trace flag disables the automatic merge process,
which will allow you to have more control over your test environment.

■■ Important D o not set T9851 in production.

Let’s create a database with an In-Memory OLTP filegroup and perform a full
backup, starting the backup chain, as shown in Listing C-1. I am doing this in a test
environment and not following best practices (such as placing In-Memory OLTP and
disk-based data on different drives, creating secondary filegroups for disk-based data, and
a few others). Obviously, you should remember to follow best practices when you design
your real databases.

Listing C-1.  Creating a Database and Performing a Backup

create database [InMemoryOLTP2016_AppendixC]
on primary
(
 name = N'AppendixC'
 ,filename = N'C:\Data\AppendixC.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'AppendixC_HKData'
 ,filename = N'C:\Data\HKData\AppendixC'
)

appendix c ■ Analyzing the States of Checkpoint Files

277

log on
(
 name = N'AppendixC_Log'
 ,filename = N'C:\Data\AppendixC_log.ldf'
)
go

create table InMemoryOLTP2016_AppendixC.dbo.T(ID int);
go

backup database [InMemoryOLTP2016_AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, init, name = 'AppendixC - Full', compression;

The database is currently empty; therefore, it does not have any checkpoint files
created. You can confirm this by querying the sys.dm_db_xtp_checkpoint_files view, as
shown in Listing C-2.

Listing C-2.  Checking Checkpoint Files

use [InMemoryOLTP2016_AppendixC]
go

select
 checkpoint_file_id
 ,checkpoint_pair_file_id
 ,file_type_desc
 ,state_desc
 ,file_size_in_bytes / 1024 / 1024 as [size MB]
 ,relative_file_path
from
 sys.dm_db_xtp_checkpoint_files;

Figure C-1 shows that the resultset is empty and that the sys.dm_db_xtp_checkpoint_
files view does not return any data.

Figure C-1.  State of checkpoint files after database creation

appendix c ■ Analyzing the States of Checkpoint Files

278

As the next step, let’s create a durable memory-optimized table, as shown in Listing C-3.

Listing C-3.  Creating a Durable Memory-Optimized Table

create table dbo.HKData
(
 ID int not null,
 Placeholder char(8000) not null,

 constraint PK_HKData
 primary key nonclustered hash(ID)
 with (bucket_count=8192),
)
with (memory_optimized=on, durability=schema_and_data);

If you check the state of the checkpoint files now and run the code from Listing C-2
again, you will see the output shown in Figure C-2. The size of the files may be different
in your environment and will depend on the hardware. My test machine has 16 CPUs and
256GB of RAM, so SQL Server preallocated 128MB for data, 64MB for large data, 8MB for
delta files, and 16MB for root files. The root file was created in ACTIVE state; all other file
types were empty and in a PRECREATED state.

Let’s enlarge the output for some of the files, as shown in Figure C-3.

Figure C-2.  State of checkpoint files after creating the durable memory-optimized table

Figure C-3.  Checkpoint files (enlarged)

appendix c ■ Analyzing the States of Checkpoint Files

279

The relative_file_path column provides the path to the file relative to the
FILESTREAM container in the In-Memory OLTP filegroup. Figure C-4 shows the checkpoint
files in the folder on the disk.

Now, let’s populate the dbo.HKData table with 1,000 rows and check the status of
the checkpoint files, as shown in Listing C-4. The query filters out the checkpoint files
in PRECREATED state from the output. The listing also inserts the data into the disk-based
table to generate the log record and force the checkpoint controller thread to scan the log
and start the In-Memory OLTP checkpoint process.

Listing C-4.  Populating the dbo.HKData Table and Checking the States of the Checkpoint
Files

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
 select Id, Replicate('0',8000)
 from ids
 where Id <= 1000;

Figure C-4.  Checkpoint files on disk

appendix c ■ Analyzing the States of Checkpoint Files

280

insert into dbo.T values(0);

select
 checkpoint_file_id
 ,checkpoint_pair_file_id
 ,file_type_desc
 ,state_desc
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes / 1024 / 1024 as [size MB]
 ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
 ,logical_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 file_type, lower_bound_tsn;

As you can see in Figure C-5, SQL Server converted two PRECREATED files to an UNDER
CONSTRUCTION state and inserted 1,000 rows into the data file there. The lower_bound_tsn
and upper_bound_tsn columns indicate the range of transactions that the files cover. You
can also see that the checkpoint_file_pair_id column indicates the corresponding data
or delta file in the pair.

Let’s run a manual CHECKPOINT and check the status of checkpoint files, as shown in
Listing C-5.

Listing C-5.  Forcing CHECKPOINT and Checking the Status of Checkpoint Files

checkpoint
go
select
 checkpoint_file_id
 ,checkpoint_pair_file_id
 ,file_type_desc
 ,state_desc

Figure C-5.  UNDER CONSTRUCTION files

appendix c ■ Analyzing the States of Checkpoint Files

281

 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes / 1024 / 1024 as [size MB]
 ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
 ,logical_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 file_type, lower_bound_tsn;

As you can see in Figure C-6, the CHECKPOINT operation transitioned the UNDER
CONSTRUCTION files to an ACTIVE state. It also created the new root file and switched the
old file to a WAITING FOR LOG TRUNCATION state.

Let’s insert another 1,000 rows into the dbo.HKData table and check the status of the
files. Listing C-6 shows the code to perform this.

Listing C-6.  Populating the dbo.HKData Table with Another Batch of Rows and Checking
the States of the Files Afterward

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
 select 1000 + Id, Replicate('0',8000)
 from ids
 where Id <= 1000;

insert into dbo.T values(1);

Figure C-6.  The file state after CHECKPOINT

appendix c ■ Analyzing the States of Checkpoint Files

282

select
 checkpoint_file_id
 ,checkpoint_pair_file_id
 ,file_type_desc
 ,state_desc
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes / 1024 / 1024 as [size MB]
 ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
 ,logical_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 file_type, lower_bound_tsn;

Figure C-7 shows the states of the checkpoint files after the second insert. As you can
see, SQL Server transitioned another set of data and delta files to the UNDER CONSTRUCTION
state with lower_bound_tsn = 4.

Another CHECKPOINT would transition the UNDER CONSTRUCTION files to the ACTIVE
state, as shown in Figure C-8. You can force it by running the code from Listing C-5 again.
At this point, you have two ACTIVE checkpoint file pairs covering different ranges of
transaction timestamps.

Figure C-7.  States of the files after the second INSERT

appendix c ■ Analyzing the States of Checkpoint Files

283

As the next step, let’s delete 99 percent of the rows from the table, as shown in Listing C-7.
In this listing, you are also running the query that combines the information about the
data and delta files and demonstrates that both checkpoint file pairs are mostly empty. You
also need to perform CHECKPOINT to update the logical_row_count column in the delta
files, which would generate another empty checkpoint file pair in the ACTIVE state.

Listing C-7.  Deleting 99 Percent of the Rows from the Table

delete from dbo.HKData
where ID % 100 <> 0;

checkpoint
go

select
 data.checkpoint_file_id
 ,data.state_desc
 ,data.lower_bound_tsn
 ,data.upper_bound_tsn
 ,data.file_size_in_bytes
 ,data.file_size_used_in_bytes
 ,data.logical_row_count
 ,delta.logical_row_count
 ,convert(decimal(5,2),
 iif(data.logical_row_count = 0,0,
 100. - 100. * delta.logical_row_count /
 data.logical_row_count))
 as [% Full]
from
 sys.dm_db_xtp_checkpoint_files data join
 sys.dm_db_xtp_checkpoint_files delta on
 data.checkpoint_pair_file_id = delta.checkpoint_file_id

Figure C-8.  States of the files after second CHECKPOINT

appendix c ■ Analyzing the States of Checkpoint Files

284

where
 data.file_type_desc = 'DATA' and
 data.state_desc <> 'PRECREATED'
order by
 data.lower_bound_tsn

As you can see in Figure C-9, the data files are almost empty, and they are perfect
candidates for the merge.

As the next step, let’s turn on the automatic merge process by switching off trace flag
T9851 with the DBCC TRACEOFF(9851,-1) command. After that, you will issue another
CHECKPOINT command to trigger the merge process.

Figure C-10 illustrates the state of the checkpoint file pairs after the merge was
initiated. As you can see, SQL Server created the new checkpoint file pair in the MERGE
TARGET state and merged data from four ACTIVE file pairs that cover a transaction range
from 0 to 9.

Figure C-10.  The state of checkpoint files after the merge is initiated

Figure C-9.  File states after deletion

appendix c ■ Analyzing the States of Checkpoint Files

285

The next CHECKPOINT will transition the checkpoint files that participated in the
merge from ACTIVE to WAITING FOR LOG TRUNCATION and from MERGE TARGET to ACTIVE.
Figure C-11 demonstrates this. As you can see, the new ACTIVE (formerly MERGE TARGET)
data file covers a range from 0 to 9 and now has only 20 data rows. The delta file in the
pair is empty.

After the transaction log backup is taken, the log records are transmitted to
secondary nodes, and the checkpoint event occurs, then the files in a WAITING FOR LOG
TRUNCATION state will be deleted or recycled back to a FREE state. Listing C-8 performs a
transaction log backup along with CHECKPOINT.

Listing C-8.  Performing Log Backup and Forcing Garbage Collection

backup log [InMemoryOLTP2016_AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, noinit, name = 'AppendixC - Log', compression
go

checkpoint;

■■ Note  In reality, it could take more than one log backup and checkpoint event to
deallocate files in the WAITING FOR LOG TRUNCATION state. You can execute the code from
Listing C-8 multiple times if this happens on your system.

Figure C-11.  The state of the checkpoint files after the merge is completed

appendix c ■ Analyzing the States of Checkpoint Files

286

Figure C-12 illustrates that some of the files were deleted.

Summary
Every checkpoint file transitions through various states during its lifetime. You can
analyze these states using the sys.dm_db_xtp_checkpoint_files data management
view. This view returns information about individual checkpoint files, including their
type, size, state, transaction interval they cover, number of rows there, and quite a few
other properties.

The merge process merges information from the ACTIVE checkpoint files that have a
large percent of deleted rows, creating a new checkpoint file pair. This helps to reduce the
size of the data on disk and speed up the database recovery process.

Merged checkpoint files should be included in the log backup before they are
deallocated. Regular transaction log backups will reduce the size of the In-Memory OLTP
data on disk. Make sure to design a database backup strategy in a way that accounts for
such behavior.

Figure C-12.  Checkpoint files after backup/log truncation

287© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

APPENDIX D

In-Memory OLTP Migration
Tools

This appendix discusses several SQL Server 2016 tools that help with In-Memory OLTP
migration.

“Transaction Performance Analysis Overview”
Report
One of the challenges during In-Memory OLTP migration is determining the list of
objects that will benefit the most from it. The Pareto principle can be easily applied here:
if the migration targets are identified correctly, you can achieve 80 percent of possible
gains by spending 20 percent of your time.

SQL Server 2016 provides you with a “Transaction Performance Analysis Overview”
report, which can help you to identify migration targets in the system. It shows the
tables that suffer from lock and latch contention along with frequently executed stored
procedures that consume the most CPU resources on the server. This report is similar to
the SQL Server 2014 version; however, it does not require you to set up a management
data warehouse. All the work is done by SQL Server automatically.

Let’s look at the information provided by the “Transaction Performance Analysis
Overview” report. In this appendix, I am using the demo application and the
WebRequests*_Disk tables from Chapter 2 of this book. I also added several unsupported
constructs to the tables and stored procedure to illustrate how tools provide information
about them.

You can access the report from the Standard Reports pop-up menu item in the
database you are analyzing, as shown in Figure D-1. As you can guess, this report works
on a per-database basis.

http://dx.doi.org/10.1007/978-1-4842-2772-5_2

Appendix D ■ In-Memory OLTP Migration Tools

288

Figure D-2 shows the report.

From this page, you have access to two drill-down reports. “Tables Analysis” provides
table-related statistics based on how often tables are accessed and how much they suffer
from lock and latch contention.

Figure D-3 illustrates the output of the “Table Analysis” report. As you can see, it
displays the output in four quadrants based on the amount of work required for the
migration and the estimated performance gain it will provide. Migrating the objects in the
upper-right quadrant will provide the most performance gain with the lowest amount of
work involved.

Figure D-1.  Accessing the “Transaction Performance Analysis Overview” report

Figure D-2.  The “Transaction Performance Analysis Overview” report

Appendix D ■ In-Memory OLTP Migration Tools

289

You can see the statistics on the table level by clicking the object in the graph.
Figure D-4 shows the details for the WebRequestHeaders_Disk table in the system. The
first output shows lock- and latch-related statistics for the table. The table suffers from a
large number of page latches, as you saw in Chapter 2.

Figure D-3.  The “Table Analysis” report

http://dx.doi.org/10.1007/978-1-4842-2772-5_2

Appendix D ■ In-Memory OLTP Migration Tools

290

The second output illustrates access method–related statistics. The demo application
does not read the data from the table, which affects the numbers you see in the output.

Finally, the third output illustrates the number of migration blockers and issues that
need to be addressed before migration. The table does not have any incompatibilities and
can be migrated into memory without any schema changes.

Similarly, the “Stored Procedure Analysis” report shows stored procedure usage
based on the amount of CPU time they consumed. Figure D-5 illustrates the output of the
report. The demo application called just a single procedure, which is displayed here.

Figure D-4.  Table-level statistics

Appendix D ■ In-Memory OLTP Migration Tools

291

You can drill down to the procedure-level statistics, which displays the execution
count, execution time metrics, and tables that are referenced by the stored procedure.
Figure D-6 illustrates this page.

Figure D-5.  The “Procedure Usage Analysis” report

Figure D-6.  Procedure-level statistics

Appendix D ■ In-Memory OLTP Migration Tools

292

The “Transaction Performance Analysis Overview” report is a great tool that can help
you identify objects that will benefit from migration. However, you should not rely solely
on its results. Look and analyze the entire system before making any decisions.

Finally, it is worth mentioning that, as with any tool, the quality of output greatly
depends on the quality of input. You need to run this report either on the production server
or in a test environment with a workload similar to production to get accurate results.

Memory Optimization and Native Compilation
Advisors
In addition to the “Transaction Performance Analysis Overview” report, SQL Server
2016 includes two other tools that can help with In-Memory OLTP migration. The
Memory Optimization and Native Compilation Advisors analyze database tables, stored
procedures, and user-defined functions to identify unsupported constructs. Moreover,
the Memory Optimization Advisor can perform the actual migration, creating an
In-Memory OLTP filegroup and memory-optimized table, and move data from the
disk-based table there.

You can access both advisors from the object context menu in SSMS. Figure D-7 shows
the table context menu with the Memory Optimization Advisor menu item highlighted.

As the first step, the wizard analyzes the table and displays constructs that are
unsupported by In-Memory OLTP. Figure D-8 shows the output of the validation on the
WebRequests_Disk table. As mentioned, I added xml and geography columns to the table,
which were reported by the advisor.

Figure D-7.  The Memory Optimization Advisor menu

Appendix D ■ In-Memory OLTP Migration Tools

293

If the table does not use any unsupported constructs, the advisor proceeds with
the option of creating an In-Memory OLTP filegroup and performing the actual table
migration.

The simplicity of the wizard, however, is a two-edged sword. It can simplify the
migration process and, in some cases, allow the enabling of In-Memory OLTP and
moving data into memory with a few mouse clicks. However, as you already know,
In-Memory OLTP deployments require careful hardware and infrastructure planning,
redesigning of indexing strategies, changes in database maintenance and monitoring,
and quite a few other steps to be successful. An improperly done migration can lead to
suboptimal results, and the simplicity of the advisor increases that chance.

The advisor is a useful tool for identifying migration roadblocks. You should be
careful, however, when relying on it to perform the actual migration process.

As the opposite of the Memory Optimization Advisor, the Native Compilation
Advisor does not create a natively compiled version of the modules. It just analyzes
whether the modules have unsupported constructs that prevent native compilation.

Figure D-9 illustrates the output of the Native Compilation Advisor for the
InsertRequestInfo_Disk stored procedure defined in Chapter 2 with an additional
MERGE statement added.

Figure D-8.  The Memory Optimization Advisor validation results

http://dx.doi.org/10.1007/978-1-4842-2772-5_2

Appendix D ■ In-Memory OLTP Migration Tools

294

The Generate Report button will create an HTML file with the results of the analysis,
similar to what is shown in the advisor window.

Finally, Management Studio allows you to run the Memory Optimization and Native
Compilation Advisors for multiple database objects using the In-Memory OLTP Migration
Checklists Wizard. You can access this wizard through the Tasks menu item in the
database pop-up menu, as shown in Figure D-10.

Figure D-9.  Native Compilation Advisor output

Appendix D ■ In-Memory OLTP Migration Tools

295

The Generate In-Memory OLTP Migration Checklists Wizard allows you to choose
the list of database objects to validate, as shown in Figure D-11.

After the process is complete, SQL Server generates the set of HTML files—one per
object—and saves them in a defined location. Each file will contain a report similar to
what is produced by the Memory Optimization and Native Compilation Advisors, as
shown in Figure D-12.

Figure D-11.  Generate In-Memory OLTP Migration Checklists Wizard’s parameters

Figure D-10.  Generate In-Memory OLTP Migration Checklists menu item

Appendix D ■ In-Memory OLTP Migration Tools

296

The In-Memory OLTP migration tools can help you identify targets for migration
and help you during the process. However, it is best to take their advice with a grain of
salt and not explicitly rely on their output. After all, you know your system better than any
automatic tool does.

Summary
SQL Server 2016 provides several tools that can help with In-Memory OLTP migration.
The “Transaction Performance Analysis Overview” report allows you to identify the
objects that would benefit from the migration. The Memory Optimization and Native
Compilation Advisors analyze tables, stored procedures, and user-defined functions
to identify the constructs unsupported by In-Memory OLTP. Finally, the Generate In-
Memory OLTP Migration Checklists Wizard allows you to run the Memory Optimization
and Native Compilation Advisors for multiple database objects.

Those tools are beneficial and can save you a good amount of time during the
migration process. However, you should not rely strictly on their output when you
perform the analysis. You need to analyze the entire system, including the infrastructure
and hardware, indexing strategies, database maintenance routines, and other factors to
achieve the best results with In-Memory OLTP.

Again, thank you very much for your interest in the technology! It was a pleasure to
write for you!

Figure D-12.  Generate In-Memory OLTP Migration Checklists Wizard’s report file

297© Dmitri Korotkevitch 2017
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

�       � A
Administration and monitoring tasks, 204

extended events, 221–223 (see also
Extended events)

memory-optimized tables, 206
Memory Usage by Memory Optimized

Objects report, 206–210
monitoring In-Memory OLTP

transactions, 210–212
monitoring memory usage, 206–210
resource governor, 204 (see also

Resource Governor, restricting
memory available to In
Memory OLTP)

internal and default resource
pools, 204

recovery process, 205
sys.dm_db_xtp_table_memory_stats,

206–207
Architecture of SQL Server Database

Engine, 3–4
Atomic blocks, 17, 144, 145, 150–152

�       � B
BEGIN ATOMIC,17. See also tomic blocks
Buffer Manager, 29
Buffer pool, 29
Bw-tree, 69

�       � C
Catalog views, 216–217. See also Data

management views
Checkpoint file, 165, 166

close thread, 169
controller thread, 169

I/O requirements, 200
segment log record, 169
segments, 166, 169
serializer thread, 169
timer task, 169

Checkpoint file pairs (CFPs), 165, 166,
169–171, 275. See also
Checkpoint file

ACTIVE checkpoint file, 282
data file, 166, 168–170
delta file, 166, 167, 169
forcing CHECKPOINT, 280
large data file, 166
lifetime of, 276

database creation, 276, 278
log backup and garbage collection, 285
merge process, 172
memory-optimized table, 278
root file, 166, 172
states, 166, 167

ACTIVE, 170–172
MERGE TARGET, 172
PRECREATED, 168
UNDER CONSTRUCTION, 168–169
WAITING FOR LOG

TRUNCATION, 172–173
CHECKSUM function, 42
Clustered columnstore indexes, 104–109.

See also Columnstore indexes
internal objects, 106
row groups, 108

Clustered index on disk-based table, 28, 29
Column-based storage

approach, 101
batch mode execution, 101
columnstore indexes, 101
format, 115
overview, 99

Index

■ INDEX

298

Columnstore indexes, 4, 5, 7
clustered indexes (see Clustered

columnstore indexes)
column-based storage (see Column-

based storage)
columnstore RID, 104
compression, 101, 104, 111

base value, 102
dictionary encoding, 102
magnitude, 102,
value-based encoding, 102

COMPRESSION_DELAY index
option, 113, 118

data storage
dictionary encoding, 102
magnitude, 102
value-based encoding, 102

delete bitmap, 103, 104
deleted rows table, 103, 106
delta store, 109
dictionary, 102
internal objects, 106–107
limitations, 112
memory-optimized table

structure, 104, 105
metadata, 116

dictionary encoding, 102
magnitude, 102
sys.column_store_dictionaries, 117
sys.column_store_segments, 114
sys.dm_db_column_store_row_

group_physical_stats, 113
value-based encoding, 102, 115

overview, 101–104
performance considerations, 109–112
row groups, 110
row locator, 104, 107
segment, 102
storage format, 105
tail, 103
tuple mover process, 112

CONTAINS MEMORY_OPTIMIZED_
DATA filegroup property, 10

Continuous checkpoint, 169,182. See also
Checkpoint file

Cross-container transactions, 128

�       � D
Database compatibility level, 11, 53, 54, 56
Database options, 129, 137

MEMORY_OPTIMIZED_ELEVATE_
TO_SNAPSHOT, 129, 137

TARGET_RECOVERY_TIME, 169
Database recovery, 168, 172, 186

naïve logging, 182–183
Data flush task in system-versioned

temporal tables, 38
Data management views, 18

sys.all_sql_modules, 217
sys.column_store_dictionaries, 116–117
sys.column_store_row_groups, 113
sys.column_store_segments, 114–116
sys.data_spaces, 217
sys.dm_db_column_store_row_

group_physical_stats, 108, 113
sys.dm_db_index_operational_

stats, 235
sys.dm_db_index_usage_stats, 235
sys.dm_db_xpt_hash_index_stats, 49
sys.dm_db_xtp_checkpoint_

files, 173, 221
sys.dm_db_xtp_checkpoint_stats, 221
sys.dm_db_xtp_gc_cycle_stats,

192, 196, 197, 221
sys.dm_db_xtp_hash_index_stats,

45, 46, 61, 73, 83, 219
sys.dm_db_xtp_index_stats, 73, 74,

192, 218
sys.dm_db_xtp_memory_consumers,

87, 207, 208, 217, 220
sys.dm_db_xtp_nonclustered_index_

stats, 75, 218
sys.dm_db_xtp_object_stats, 218
sys.dm_db_xtp_table_memory_stats,

206–207
sys.dm_db_xtp_transactions, 210,

211, 220
sys.dm_exec_function_stats, 212
sys.dm_exec_procedure_stats, 212, 213
sys.dm_exec_query_memory_

grants, 206
sys.dm_exec_query_resource_

semaphores, 206
sys.dm_exec_query_stats, 212–214
sys.dm_io_virtual_file_stats, 25
sys.dm_os_latch_stats, 18
sys.dm_os_wait_stats, 23
sys.dm_tran_active_transactions, 210
sys.dm_xtp_gc_queue_stats, 192,

194, 221
sys.dm_xtp_gc_stats, 192, 220

■ INDEX

299

sys.dm_xtp_system_memory_
consumers, 208, 209, 219

sys.dm_xtp_transaction_stats, 220
sys.hash_indexes, 216
sys.indexes, 216, 217
sys.memory_optimized_tables_

internal_attributes, 90, 207,
216–217

sys.sql_modules, 212, 217
sys.table_types, 217
sys.tables, 217

Data partitioning, 225, 226, 240–242, 247,
252, 265

Data row
BeginTs timestamp, 31, 32, 34, 39, 187
EndTs timestamp, 31–34, 39, 187, 197
IdxLinkCount, 35, 188
index pointers array, 33, 35
payload, 34, 35
row header, 34, 35
StmtId, 34,
structure of

Data storage, 165–167. See also
Checkpoint files

CFP, 165
CHECKPOINT process, 168
MERGED SOURCE CFP

state, 172
MERGE TARGET state, 172
UNDER CONSTRUCTION

state, 168, 170
on-disk tables, 165

Data warehouse workload, 100,101.
See also Columnstore indexes

Deployment and management, 199
administration andmonitoring

(see Administration and
monitoring tasks)

estimating memory requirements, 203
hardware components, 199

CPU, 200
I/O subsystem, 200–201
memory, 201

Design considerations, 225–239
binary collation, 236, 238
cost/benefits analysis, 225
data partitioning, 226, 240
indexing strategy, 232, 235 (see also

Index design considerations)
maintainability and management

overhead, 238–239

referential integrity, 229, 230
system with mixed workload,

239–252
unsupported data types, 230–232

�       � E
Extended events, 221–223

�       � F
FILESTREAM, 10

�       � G
Garbage collection, 73, 74, 80, 187–197

BeginTs and EndTs timestamps, 187
data management views, 192
DELETE operation, 187
drop/alter, table, 89
dusty corner scan, 191, 197
generations, 190
ghost rows, 73
goals, 187
idle worker thread, 188, 190
idxLinkCount element, 188
of index pages, 85
memory-optimized table

table creation, 193
memory statistics

table deletion, 195
non-blocking, 187
stale rows, 74, 80
summary statistics, 196
UPDATE operation, 187
workflow, 191
work items, 191, 192, 197
worker queues, 191

�       � H
Halloween effect, 34
HASHBYTES function, 42
Hash indexes

bucket_count, 44–45, 85
right number, 48
sys.dm_db_xtp_hash_index_

stats, 45
choosing bucket_count, 41
collision, 41
maps, 41

■ INDEX

300

vs. nonclustered indexes
data selection, 83
execution time, 84
point lookup performance, 81

SARGability rules, 49–53, 64, 85
Hashing, 41–42

collision, 41
hash function, 41
hash maps, 41
hash tables, 41

High Availability Technologies, 38

�       � I, J, K
IBM DB2, 6
In-memory database (IMDB), 5

IBM DB2, 6
Oracle, 5
SAP HANA, 6

In-memory OLTP migration, 287–296.
See also Migration tools

binary collation performance, 236–238
clustered columnstore indexes, 4
data management views, 218

transaction management, 220
data partitioning, 225, 226, 240–250

data movement, 247
execution plan, 246
object creation, 242–245
order entry system, 241
queries, 245

database-level limitations, 37
design goals, 1
design considerations, 225
disk-based tables, 4
engine architecture, 4
goals, 2
IMDB (see In-memory database

(IMDB))
importing batch of rows, 252

client code, 253
memory-optimized table type, 254
table, TVP and stored procedures,

253
indexing considerations, 232
limitations, 2
memory-optimized tables, 4, 255

scan performance, 259
statement-level recompile, 258
stored procedures, execution

time, 257

variables and cardinality
estimations, 258

with on-disk temporary
objects, 255–256

migration, 287
mixed workloads, 239

data partitioning, 240
natively compiled modules, 4
performance counters, 221–223
query interop engine, 4
session/object state-store, 259

dedicated storage/cache, 260
ObjStoreDataAccess class, 263
ObjStoreService class, 264
ObjStoreUtils class, 262
replicate content, 260
scalability issues, 260
session store implementation, 260

unsupported data types, 230–232
optimistic concurrency, 232

In-row storage
memory consumers, 90

Index design considerations, 76–85
data modification overhead, 76–80
hash indexes vs. nonclustered

indexes, 81–85
InterlockedCompareExchangePointer

function, 267–269
InteropEngine. See Query interop

�       � L
Latches, 1, 2, 18, 22, 23

on-disk tables
wait statistics, 23

LEGACY_CARDINALITY_ESTIMATION
database-scoped configurtion, 11

Log buffer, 175

�       � M
Management data warehouse

memory and native compilation
advisors, 292

menu configuration, 287
procedure-level statistics, 291
table contention analysis

report, 288
table-level statistics, 290
usage analysis report, 290

Memory consumers, 87–98. See also
Off-row storage

Hash indexes (cont.)

■ INDEX

301

Memory-optimized table
BeginTs timestamp, 187
data row

halloween effect, 34
structure of, 34

DURABILITY, 13, 24
SCHEMA_AND_DATA, 13, 26
SCHEMA_ONLY, 13, 24

EndTs timestamp, 187–189
limitations

database-level, 37
data types, 36
tables, 37

SQL Server 2016, 38
statistics, 53–60, 69, 72, 152, 153, 193

nested loop join algorithm, 55
variables, 161
supported data types, 36
supported table features, 37

Memory pointers management, 267
data modifications and

concurrency, 268
Microsoft Azure SQL Databases
Migration tools, 287

In-Memory OLTP Migration
Checklists Wizard, 294, 295

Memory Optimization Advisor,
292, 293

native compilation advisors, 292
Stored Procedure Analysis report, 290
Tables Analysis report, 288
Transaction Performance Analysis

Overview report, 287–292

�       � N
Native compilation

atomic blocks, 150–152 (see also
Atomic blocks)

inline table-valued function, 147
interop mode performance

comparison
InsertCustomers, 157

vs. interpreted function
function creation, 159
loop within function, 160
multiple calls, 160

memory-optimized table types,
161–163

memory-optimized table variables,
161–163, 206–210

natively compiled stored
procedures, 144–145

overview, 139
performance comparison, 154–161
security context, 144, 145
storedprocedure (see T-SQL stored

procedure)
supported T-SQL Features, 147–149

control flow, 147–148
functions, 149
operators, 148
query surface area, 148–149

triggers and user-defined functions, 146
Nested loop join algorithm, 55–56
Nonclustered index on disk-based table, 29
Nonclustered indexes, 271

Bw-Tree structure, 69, 85
creation, 64
data modification

updation, 78–80
delta record, 72
vs. hash indexes data selection, 83
vs. hash indexes execution time, 84
index page structure, 73
intermediate level, 70
internal pages, 70
index scan operations, 65
index seek operations, 64
leaf pages, 71
logical page ID, 70
mapping table, 70, 71
page consolidation, 75
page merging, 273
page splitting, 73
root level, 70
SARGability rules, 49, 63, 64, 85
sorting order

execution plans, 68–69
index key column, 67–68
on-disk table creation, 66

sys.dm_db_xtp_index_stats view, 74

�       � O
Objects (In-memory OLTP)

database, 9
compatibility level, 11
creation, 10
FILESTREAM, 10

latches (see Latches)
memory-optimized tables

■ INDEX

302

creation, 12
durability setting, 13
hash indexes, 13
natively complied stored

procedure, 16
nonclustered indexes, 13
performance counters, 23–25
T-SQL stored procedure, 14
wait statistics, 23–24

Off-row storage
choice of off-row columns, 87, 91, 92
columnstore index support, 99–118
design considerations, 226–230
internal tables, 92
LOB data, 27, 92, 97
memory consumers, 87–89, 91, 96,

107, 108
memory overhead, 93
minor_id, 91
performance impact, 93–98

dbo.DataInRow table, 96
insert operation, 93–94

ROW_OVERFLOW data, 27
table alteration, 178–186
varheaps, 87

HKCS Allocator, 106, 107
Hash Index
LOB page allocator, 91, 92
Range index heap, 91, 98
Table heap, 88, 91, 92, 98

Operationalanalytics. See also
Columnstore indexes

Oracle, 5
Oracle Database In-Memory

option, 5, 6
Oracle TimesTen, 5, 6

�       � P
Page merging, 273
Page splitting, 271
Performance counters, 221–223
Point-of-sale (POS) system, 99

�       � Q
Query interop, 112, 128, 139, 147, 153, 154

limitations, 154
Query Store, 11, 39, 215

Top Resource Consuming Queries
report, 215

�       � R
Range indexes, 63. See also Nonclustered

indexes
Recovery, 173–174. See also Database

recovery
Resource Governor, restricting memory

available to In-Memory
OLTP, 224

Row-based storage, 100–101
Row-level security, 39

�       � S
SAP HANA, 6
SQL Server 2017, 13, 35, 148, 149
Stored procedures, 38

CHECKSUM function, 42
HASHBYTES function, 42
sp_recompile, 60, 153
sys.fn_dblog function, 175
sys.fn_dblog_xtp function, 177
sys.sp_xtp_bind_db_resource_

pool, 205
sys.sp_xtp_control_proc_exec_

stats, 212, 214
sys.sp_xtp_control_query_exec_

stats, 212, 214, 215
sys.sp_xtp_flush_temporal_

history, 38
sys.sp_xtp_unbind_db_resource_

pool, 205
Sweep scan, 191, 196
System-versioned temporal

tables, 38, 39

�       � T, U
Table alteration, 178

log optimization, 182
metadata-only alteration, 178
naïve logging, 183
regular alteration, 178
transformation table, 181

Trace flags, 11
T4199, 11
T9851, 276, 284

Transaction
BeginTs, 124, 129, 130
characteristics, 119

atomicity, 119
consistency, 119

Objects (In-memory OLTP) (cont.)

■ INDEX

303

durability, 120
isolation, 120

concurrency phenomena, 119–122
atomicity, 119
consistency, 119
dirty reads, 120, 121
durability, 120
isolation, 120
nonrepeatable reads, 120
phantom reads, 120
READ COMMITTED, 33
REPEATABLE READ, 33, 120,

121, 123
SERIALIZABLE, 33
SNAPSHOT, 33, 120, 125

EndTs, 129–131, 134
Global Transaction Timestamp, 31–33,

129, 131
isolation levels, 33, 119–122

atomicity, 119
consistency, 119
dirty reads, 120, 121
durability, 120
isolation, 120
nonrepeatable reads, 120, 132
phantom reads, 120, 132
READ COMMITTED, 120, 121, 128
REPEATABLE READ, 33, 120–125,

128, 132, 228
SERIALIZABLE, 33
SNAPSHOT, 33, 120–122,

125–126
logical end time, 129
logical start time, 32, 129
oldest active transaction, 33
read set, 131
scan set, 131
transaction isolation level

REPEATABLE READ, 33, 122–124,
228

SERIALIZABLE, 33
SNAPSHOT, 33, 121, 122, 128
atomicity, 119
consistency, 119
durability, 120
isolation, 120

TransactionId, 129, 130
write set, 131, 175, 191
write-ahead logging, 120, 174

Transaction isolation levels, 119–120
concurrency phenomena, 120

dirty reads, 120
in-memory OLTP

primary key violation, 125
REPEATABLE READ, 33, 228
SERIALIZABLE, 122, 124
SNAPSHOT, 33, 37

logging, 174
COMMIT, 175
log buffer, 175
on-disk table modification, 177
UNDO and REDO, 175
write-ahead logging, 120, 174

non-repeatable reads, 120
optimistic concurrency, 121
performance analysis, 287–288
pessimistic concurrency, 121
shared locks, 121
SNAPSHOT, 121

Transaction processing, 119
atomicity, 119
autocommitted transactions,

128–129
BeginTs, 124, 129, 130
characteristics, 119

atomicity, 119
consistency, 119
durability, 120
isolation, 120

commit dependency, 130, 132–134
commit phase, 132–134
cross-container transactions,

119, 128–129
consistency, 119
cross-container, 128
data consistency rules, 122, 128

repeatable read validation, 122, 131
serializable validation, 131–133
snapshot validation, 122, 125

durability, 120
enforce referential integrity, 134
isolation, 120
optimistic concurrency, 121
pessimistic concurrency, 121
post-commit phase, 134
referential integrity enforcement,

134–136
transaction lifetime, 129–134
validation phase, 131, 132
write/write conflict #8

Transparent data encryption (TDE), 39
T-SQL stored procedure

■ INDEX

304

atomic blocks, 150–152 (see also
Atomic blocks)

features
CAST, 149
control flow, 147
CONVERT, 149
date/time functions, 149
error functions, 149
ISNULL, 149
math functions, 149
NEWID, 149
NEWSEQUENTIALID, 149
operators, 148
query surface area, 148
@@ROWCOUNT, 149
SCOPE_IDENTITY, 149
string functions, 149

limitations, 147
optimization, 152

Usage scenarios, 252–265
importing batch of rows, 252–253
session store, 259–265
temporary and staging tables, 255

�       � V, W
Varheaps, 87–90

definition, 87
insert option, 88
memory consumers, 88, 89, 104

�       � X, Y, Z
xtp_object_id, 73, 90, 91

T-SQL stored procedure (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why In-Memory OLTP?
	Background
	In-Memory OLTP Engine Architecture
	In-Memory OLTP and Other In-Memory Databases
	Oracle
	IBM DB2
	SAP HANA

	Summary

	Chapter 2: In-Memory OLTP Objects
	Preparing a Database to Use In-Memory OLTP
	Creating Memory-Optimized Tables
	Working with Memory-Optimized Tables
	In-Memory OLTP in Action: Resolving Latch Contention
	Summary

	Chapter 3: Memory-Optimized Tables
	Disk-Based vs. Memory-Optimized Tables
	Introduction to Multiversion Concurrency Control
	Data Row Format
	Native Compilation of Memory-Optimized Tables
	Memory-Optimized Tables: Surface Area and Limitations
	Supported Data Types
	Table Features
	Database-Level Limitations

	High Availability Technologies Support
	SQL Server 2016 Features Support
	Summary

	Chapter 4: Hash Indexes
	Hashing Overview
	Much Ado About Bucket Count
	Bucket Count and Performance
	Choosing the Right Bucket Count

	Hash Indexes and SARGability
	Statistics on Memory-Optimized Tables
	Summary

	Chapter 5: Nonclustered Indexes
	Working with Nonclustered Indexes
	Creating Nonclustered Indexes
	Using Nonclustered Indexes

	Nonclustered Index Internals
	Bw-Tree Overview
	Index Pages and Delta Records

	Obtaining Information About Nonclustered Indexes
	Index Design Considerations
	Data Modification Overhead
	Hash Indexes vs. Nonclustered Indexes

	Summary

	Chapter 6: Memory Consumers and Off-Row Storage
	Varheaps
	In-Row and Off-Row Storage
	Performance Impact of Off-Row Storage
	Summary

	Chapter 7: Columnstore Indexes
	Column-Based Storage Overview
	Row-Based vs. Column-Based Storage
	Columnstore Indexes Overview

	Clustered Columnstore Indexes
	Performance Considerations
	Columnstore Indexes Limitations
	Catalog and Data Management Views
	sys.dm_db_column_store_row_group_physical_stats
	sys.column_store_segments
	sys.column_store_dictionaries

	Summary

	Chapter 8: Transaction Processing in In-Memory OLTP
	ACID, Transaction Isolation Levels, and Concurrency Phenomena Overview
	Transaction Isolation Levels in In-Memory OLTP
	Cross-Container Transactions
	Transaction Lifetime
	Referential Integrity Enforcement
	Summary

	Chapter 9: In-Memory OLTP Programmability
	Native Compilation Overview
	Natively Compiled Modules
	Natively Compiled Stored Procedures
	Natively Compiled Triggers and User-Defined Functions
	Supported T-SQL Features
	Control Flow
	Operators
	Query Surface Area
	Built-in Functions

	Atomic Blocks

	Optimization of Natively Compiled Modules
	Interpreted T-SQL and Memory-Optimized Tables
	Performance Comparison
	Stored Procedures Performance
	Scalar User-Defined Function Performance

	Memory-Optimized Table Types and Variables
	Summary

	Chapter 10: Data Storage, Logging, and Recovery
	Data Storage
	Checkpoint Files States
	PRECREATED State
	UNDER CONSTRUCTION State and CHECKPOINT Process
	ACTIVE State
	MERGE TARGET State and Merge Process
	WAITING FOR LOG TRUNCATION State

	Recovery
	Transaction Logging
	Table Alteration
	Summary

	Chapter 11: Garbage Collection
	Garbage Collection Process Overview
	Garbage Collection–Related Data Management Views
	Exploring the Garbage Collection Process
	Summary

	Chapter 12: Deployment and Management
	Hardware Considerations
	CPU
	I/O Subsystem
	Memory
	Estimating the Amount of Memory for In-Memory OLTP

	Administration and Monitoring Tasks
	Limiting the Amount of Memory Available to In-Memory OLTP
	Monitoring Memory Usage for Memory-Optimized Tables
	Monitoring In-Memory OLTP Transactions
	Collecting Execution Statistics for Natively Compiled Stored Procedures
	In-Memory OLTP and Query Store Integration

	Metadata Changes and Enhancements
	Catalog Views
	sys.hash_indexes
	sys.memory_optimized_tables_internal_attributes
	Changes in Other Catalog Views

	Data Management Views
	Object and Index Statistics
	Memory Usage Statistics
	Transaction Management
	Garbage Collection
	Checkpoint

	Extended Events and Performance Counters

	Summary

	Chapter 13: Utilizing In-Memory OLTP
	Design Considerations for Systems Utilizing In-Memory OLTP
	Off-Row Storage
	Unsupported Data Types
	Indexing Considerations
	Maintainability and Management Overhead

	Using In-Memory OLTP in Systems with Mixed Workloads
	Thinking Outside the In-Memory Box
	Importing Batches of Rows from Client Applications
	Using Memory-Optimized Objects as Replacements for Temporary and Staging Tables
	Using In-Memory OLTP as Session or Object State Store

	Summary

	Appendix A: Memory Pointer Management
	Memory Pointer Management
	Summary

	Appendix B: Page Splitting and Page Merging in Nonclustered Indexes
	Internal Maintenance of Nonclustered Indexes
	Page Splitting
	Page Merging

	Summary

	Appendix C: Analyzing the States of Checkpoint Files
	sys.dm_db_xtp_checkpoint_files View
	The Lifetime of Checkpoint Files
	Summary
	In-Memory OLTP Migration Tools
	“Transaction Performance Analysis Overview” Report
	Memory Optimization and Native Compilation Advisors
	Summary

	Index

