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Introduction

The year 2016 was delightful for the SQL Server community—we put our hands on the 
new SQL Server build. This was quite a unique release; for the first time in more than ten 
years, the new version did not focus on specific technologies. In SQL Server 2016, you 
can find enhancements in all product areas, such as programmability, high availability, 
administration, and BI.

I, personally, was quite excited about all the enhancements in In-Memory OLTP. 
I really enjoyed this technology in SQL Server 2014; however, it had way too many 
limitations. This made it a niche technology and prevented its widespread adoption. In 
many cases, the cost of the required system refactoring put the first release of In-Memory 
OLTP in the “it’s not worth it” category.

I was incredibly happy that the majority of those limitations were removed in SQL 
Server 2016. There are still some, but they are not anywhere near as severe as in the first 
release. It is now possible to migrate systems into memory and start using the technology 
without significant code and database schema changes.

I would consider this simplicity, however, a double-edged sword. While it can 
significantly reduce the time and cost of adopting the technology, it can also open 
the door to incorrect decisions and suboptimal implementations. As with any other 
technology, In-Memory OLTP has been designed for a specific set of tasks, and it can hurt 
the performance of the systems when implemented incorrectly. Neither is it a “set it and 
forget it” type of solution; you have to carefully plan for it before implementing it and 
maintain it after the deployment.

In-Memory OLTP is a great tool, and it can dramatically improve the performance 
of systems. Nevertheless, you need to understand how it works under the hood to get the 
most from it. The goal for this book is to provide you with such an understanding. I will 
explain the internals of the In-Memory OLTP Engine and its components. I believe that 
knowledge is the cornerstone of a successful In-Memory OLTP implementation, and this 
book will help you make educated decisions on how and when to use the technology.

If you read my Pro SQL Server Internals book (Apress, 2016), you will notice some 
familiar content from there. However, this book is a much deeper dive into In-Memory 
OLTP, and you will find plenty of new topics covered. You will also learn how to address 
some of In-Memory OLTP’s limitations and how to benefit from it in existing systems 
when full in-memory migration is cost-ineffective.

Even though this book covers In-Memory OLTP in SQL Server 2016, the content 
should also be valid for the SQL Server 2017 implementation. Obviously, check what 
technology limitations were lifted there.

Finally, I would like to thank you for choosing this book and for your trust in me.  
I hope that you will enjoy reading it as much as I enjoyed writing it.
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How This Book Is Structured
This book consists of 13 chapters and is structured in the following way:

•	 Chapter 1 and Chapter 2 are the introductory chapters, which will 
provide you with an overview of the technology and show how 
In-Memory OLTP objects work together.

•	 Chapter 3, Chapter 4, and Chapter 5 explain how In-Memory 
OLTP stores and works with data in memory.

•	 Chapter 6 shows how In-Memory OLTP allocates memory for 
internal objects and works with off-row columns. I consider this 
as one of the most important topics for successful in-memory 
OLTP migrations.

•	 Chapter 7 covers columnstore indexes that help you to support 
operational analytics workloads.

•	 Chapter 8 explains how In-Memory OLTP handles concurrency in 
a multi-user environment.

•	 Chapter 9 talks about native compilation and the 
programmability aspect of the technology.

•	 Chapter 10 demonstrates how In-Memory OLTP persists data on 
disk and how it works with the transaction log.

•	 Chapter 11 covers the In-Memory OLTP garbage collection 
process.

•	 Chapter 12 discusses best practices for In-Memory OLTP 
deployments and shows how to perform common database 
administration tasks related to In-Memory OLTP.

•	 Chapter 13 demonstrates how to address some of the In-Memory 
OLTP surface area limitations and how to benefit from In-Memory 
OLTP components without moving all the data into memory.

The book also includes four appendixes.

•	 Appendix A explains how In-Memory OLTP works with memory 
pointers in a multi-user environment.

•	 Appendix B covers how the page splitting and merging processes 
are implemented.

•	 Appendix C shows you how to analyze the state of checkpoint file 
pairs and navigates you through their lifetime.

•	 Appendix D discusses SQL Server tools and wizards that can 
simplify In-Memory OLTP migration.

http://dx.doi.org/10.1007/978-1-4842-2772-5_1
http://dx.doi.org/10.1007/978-1-4842-2772-5_2
http://dx.doi.org/10.1007/978-1-4842-2772-5_3
http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_7
http://dx.doi.org/10.1007/978-1-4842-2772-5_8
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_11
http://dx.doi.org/10.1007/978-1-4842-2772-5_12
http://dx.doi.org/10.1007/978-1-4842-2772-5_13
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Downloading the Code
You can download the code used in this book from the Source Code section of  
the Apress web site (www.apress.com) or from the Publications section of my blog 
(http://aboutsqlserver.com). The source code consists of a SQL Server Management 
Studio solution, which includes a set of projects (one per chapter). Moreover, it includes 
several .NET C# projects, which provide the client application code used in the examples 
in Chapters 2 and 13.

I have tested all the scripts in an environment with 8GB of RAM available to SQL 
Server. In some cases, if you have less memory available, you will need to reduce the 
amount of test data generated by some of the scripts. You can also consider dropping 
some of the unused test tables to free up more memory.

http://www.apress.com/
http://aboutsqlserver.com/
http://dx.doi.org/10.1007/978-1-4842-2772-5_2
http://dx.doi.org/10.1007/978-1-4842-2772-5_13
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CHAPTER 1

Why In-Memory OLTP?

This introductory chapter explains the importance of in-memory databases and the 
problems they address. It provides an overview of the Microsoft In-Memory OLTP 
implementation (code name Hekaton) and its design goals. It discusses the high-level 
architecture of the In-Memory OLTP Engine and how it is integrated into SQL Server.

Finally, this chapter compares the SQL Server in-memory database product with 
several other solutions available.

Background
Way back when SQL Server and other major databases were originally designed, 
hardware was expensive. Servers at that time had just one or very few CPUs and a small 
amount of installed memory. Database servers had to work with data that resided on disk, 
loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years, 
memory prices have dropped by a factor of 10 every 5 years. Hardware has become 
more affordable. It is now entirely possible to buy a server with 32 cores and 1TB of RAM 
for less than $50,000. While it is also true that databases have become larger, it is often 
possible for active operational data to fit into the memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load on 
the I/O subsystem and improves system performance. However, when systems work under 
a heavy concurrent load, this is often not enough to obtain the required throughput. SQL 
Server manages and protects page structures in memory, which introduces large overhead 
and does not scale well. Even with row-level locking, multiple sessions cannot modify data 
on the same data page simultaneously and must wait for each other.

Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can 
modify data rows on the same data page, holding exclusive (X) locks on different rows 
simultaneously. However, they cannot update physical data page and row objects 
simultaneously because this could corrupt the in-memory page structure. SQL Server 
addresses this problem by protecting pages with latches. Latches work in a similar 
manner to locks, protecting internal SQL Server data structures on the physical level 
by serializing access to them, so only one thread can update data on the data page in 
memory at any given point of time.
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In the end, this limits the improvements that can be achieved with the current 
database engine’s architecture. Although you can scale hardware by adding more CPUs 
and cores, that serialization quickly becomes a bottleneck and a limiting factor in 
improving system scalability. Likewise, you cannot improve performance by increasing 
the CPU clock speed because the silicon chips would melt down. Therefore, the only 
feasible way to improve database system performance is by reducing the number of CPU 
instructions that need to be executed to perform an action.

Unfortunately, code optimization is not enough by itself. Consider the situation 
where you need to update a row in a table. Even when you know the clustered index key 
value, that operation needs to traverse the index tree, obtaining latches and locks on the 
data pages and a row. In some cases, it needs to update nonclustered indexes, obtaining 
the latches and locks there. All of that generates log records and requires writing them 
and the dirty data pages to disk.

All of those actions can lead to a hundred thousand or even millions of CPU 
instructions to execute. Code optimization can help reduce this number to some degree, 
but it is impossible to reduce it dramatically without changing the system architecture 
and the way the system stores and works with data.

These trends and architectural limitations led the Microsoft team to the conclusion 
that a true in-memory solution should be built using different design principles and 
architecture than the classic SQL Server Database Engine. The original concept was 
proposed at the end of 2008, serious planning and design started in 2010, actual 
development began in 2011, and the technology was finally released to the public in SQL 
Server 2014.

The main goal of the project was to build a solution that would be 100 times faster 
than the existing SQL Server Database Engine, which explains the code name Hekaton 
(Greek for “100”). This goal has yet to be achieved; however, it is not uncommon for  
In-Memory OLTP to provide 20 to 40 times faster performance in certain scenarios.

It is also worth mentioning that the Hekaton design has been targeted toward 
OLTP workloads. As we all know, specialized solutions designed for particular tasks and 
workloads usually outperform general-purpose systems in the targeted areas. The same 
is true for In-Memory OLTP. It shines with large and busy OLTP systems that support 
hundreds or even thousands of concurrent transactions. At the same time, the original 
release of In-Memory OLTP in SQL Server 2014 did not work well for a data warehouse 
workload, where other SQL Server technologies outperformed it.

The situation changes with the SQL Server 2016 release. The second release of  
In-Memory OLTP supports columnstore indexes, which allow you to run real-time 
operation analytics queries against hot OLTP data. Nevertheless, the technology is not as 
mature as disk-based column-based storage, and you should not consider it an  
in-memory data warehouse solution.

In-Memory OLTP has been designed with the following goals:

•	 Optimize data storage for main memory: Data in In-Memory OLTP 
is not stored on disk-based data pages, and it does not mimic 
a disk-based storage structure when loaded into memory. This 
permits the elimination of the complex buffer pool structure and 
the code that manages it. Moreover, regular (non-columnstore) 
indexes are not persisted on disk, and they are re-created upon 
startup when the data from memory-resident tables is loaded  
into memory.
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•	 Eliminate latches and locks: All In-Memory OLTP internal 
data structures are latch- and lock-free. In-Memory OLTP uses 
a multiversion concurrency control to provide transaction 
consistency. From a user standpoint, it behaves like the regular 
SNAPSHOT transaction isolation level; however, it does not use 
a locking or tempdb version store under the hood. This schema 
allows multiple sessions to work with the same data without 
locking and blocking each other and provides near-linear 
scalability of the system, allowing it to fully utilize modern 
multi-CPU/multicore hardware.

•	 Use native compilation: T-SQL is an interpreted language that 
provides great flexibility at the cost of CPU overhead. Even 
a simple statement requires hundreds of thousands of CPU 
instructions to execute. The In-Memory OLTP Engine addresses 
this by compiling row-access logic, stored procedures, and  
user-defined functions into native machine code.

The In-Memory OLTP Engine is fully integrated in the SQL Server Database Engine. 
You do not need to perform complex system refactoring, splitting data between  
in-memory and conventional database servers or moving all of the data from the 
database into memory. You can separate in-memory and disk data on a table-by-table 
basis, which allows you to move active operational data into memory, keeping other 
tables and historical data on disk. In some cases, that migration can even be done 
transparently to client applications.

This sounds too good to be true, and, unfortunately, there are still plenty of 
roadblocks that you may encounter when working with this technology. In SQL Server 
2014, In-Memory OLTP supported just a subset of the SQL Server data types and features, 
which often required you to perform costly code and schema refactoring to utilize it. Even 
though many of those limitations have been removed in SQL Server 2016, there are still 
incompatibilities and restrictions you need to address.

You should also design the system considering In-Memory OLTP behavior and 
internal implementation to get the most performance improvements from the technology.

In-Memory OLTP Engine Architecture
In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and 
client applications can access it transparently. Internally, however, it works and behaves 
very differently than the SQL Server Storage Engine. Figure 1-1 shows the architecture of 
the SQL Server Database Engine, including the In-Memory OLTP components.
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In-Memory OLTP stores the data in memory-optimized tables. These tables reside 
completely in memory and have a different structure compared to the classic disk-based 
tables. With one small exception, memory-optimized tables do not store data on the data 
pages; the rows are linked together through the chains of memory pointers. It is also 
worth noting that memory-optimized tables do not share memory with disk-based tables 
and live outside of the buffer pool.

■■ Note   I will discuss memory-optimized tables in detail in Chapter 3.

There are two ways the SQL Server Database Engine can work with memory-optimized 
tables. The first is the Query Interop Engine. It allows you to reference memory-optimized 
tables from interpreted T-SQL code. The data location is transparent to the queries; you can 
access memory-optimized tables, join them with disk-based tables, and work with them in 
the usual way. Most T-SQL features and language constructs are supported in this mode.

You can also access and work with memory-optimized tables using natively compiled 
modules, such as stored procedures, memory-optimized table triggers and scalar  
user-defined functions. You can define them similarly to the regular T-SQL modules  
using several additional language constructs introduced by In-Memory OLTP.

Natively compiled modules have been compiled into machine code and loaded 
into SQL Server process memory. Those modules can introduce significant performance 
improvements compared to the Interop Engine; however, they support just a limited set 
of T-SQL constructs and can access only memory-optimized tables.

■■ Note   I will discuss natively compiled modules in Chapter 9.

The memory-optimized tables use row-based storage with all columns combined 
into the data rows. It is also possible to define clustered columnstore indexes on those 
tables. These indexes are the separate data structures that store a heavily compressed 
copy of the data in column-based format, which is perfect for real-time operational 
analytics queries. In-Memory OLTP persists those indexes on disk and does not re-create 
them on a database restart.

Figure 1-1.  SQL Server Database Engine architecture

http://dx.doi.org/10.1007/978-1-4842-2772-5_3
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
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■■ Note   I will discuss clustered columnstore indexes in Chapter 7.

In-Memory OLTP and Other In-Memory Databases
In-Memory OLTP is hardly the only relational in-memory database (IMDB) available on 
the market. Let’s look at other popular solutions that exist as of 2017.

Oracle
As of this writing, Oracle provides two separate IMDB offerings. The mainstream Oracle 
12c database server includes the Oracle Database In-Memory option. When it is enabled, 
Oracle creates the copy of the data in column-based storage format and maintains it in 
the background. Database administrators may choose the tables, partitions, and columns 
that should be included in the copy.

This approach is targeted toward analytical queries and data warehouse workloads, 
which benefit from column-based storage and processing. It does not improve the 
performance of OLTP queries that continue to use disk-based row-based storage.

In-memory column-based data adds overhead during data modifications; it needs to 
be updated to reflect the data changes. Moreover, it is not persisted on disk and needs to 
be re-created every time the server restarts.

The same time, this implementation is fully transparent to the client applications. 
All data types and PL/SQL constructs are supported, and the feature can be enabled or 
disabled on the configuration level. Oracle chooses the data to access on a per-query 
basis using in-memory data for the analytical/data warehouse and disk-based data for 
OLTP workloads. This is different from SQL Server In-Memory OLTP where you should 
explicitly define memory-optimized tables and columnstore indexes.

In addition to the Database In-Memory option, Oracle offers the separate product 
Oracle TimesTen targeted toward OLTP workloads. This is a separate in-memory 
database that loads all data into memory and can operate in three modes.

Standalone In-Memory Database supports a traditional 
client-server architecture.

Embedded In-Memory Database allows applications to load 
Oracle TimesTen into an application’s address space and 
eliminate the latency of network calls. This is extremely useful 
when the data-tier response time is critical.

Oracle Database Cache (TimesTen Cache) allows the product 
to be deployed as an additional layer between the application 
and the Oracle database. The data in the cache is updatable, 
and synchronization between TimesTen and the Oracle 
database is done automatically.

http://dx.doi.org/10.1007/978-1-4842-2772-5_7
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Internally, however, Oracle TimesTen still relies on locking, which reduces 
transaction throughput under heavy concurrent loads. Also, it does not support native 
compilation, as In-Memory OLTP does.

It is also worth noting that both the Oracle In-Memory option and TimesTen require 
separate licenses. This may significantly increase implementation costs compared to  
In-Memory OLTP, which is available at no additional cost even in non-Enterprise editions 
of SQL Server.

IBM DB2
Like the Oracle Database In-Memory option, IDM DB2 10.5 with BLU Acceleration 
targets data warehouse and analytical workloads. It persists the copy of the row-based 
disk-based tables in column-based format in in-memory shadow tables, using them for 
analytical queries. The data in the shadow tables is persisted on disk and is not re-created 
at database startup. It is also worth noting that the size of the data in shadow tables may 
exceed the size of available memory.

IBM DB2 synchronizes the data between disk-based and shadow tables 
automatically and asynchronously, which reduces the overhead during data 
modifications. This approach, however, introduces latency during shadow table updates, 
and queries may work with slightly outdated data.

IBM DB2 BLU Acceleration puts the emphasis on query processing and provides 
great performance with data warehouse and analytical workloads. It does not have any 
OLTP-related optimizations and uses disk-based data and locking to support OLTP 
workloads.

SAP HANA
SAP HANA is relatively new database solution on the market; it has been available 
since 2010. Until recently, SAP HANA was implemented as a pure in-memory database, 
limiting the size of the data to the amount of memory available on the server.

This limitation has been addressed in the recent releases; however, it requires 
separate tools to manage the data. The applications should also be aware of the 
underlying storage architecture. For example, HANA supports disk-based extended tables; 
however, applications need to query them directly and also implement the logic to move 
data between in-memory and extended tables.

SAP HANA stores all data in a column-based format, and it does not support row-based  
storage. The data is fully modifiable; SAP HANA stores new rows in the delta stores, 
compressing them in the background. Concurrency is handled with Multiversion 
Concurrency Control (MVCC) when UPDATE operations generate new versions of the rows 
similarly to SQL Server In-Memory OLTP.

■■ Note  I will discuss the In-Memory OLTP concurrency model in depth in Chapter 8.

http://dx.doi.org/10.1007/978-1-4842-2772-5_8
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SAP claims that HANA may successfully handle both OLTP and data warehouse/
analytical workloads using the single copy of the data in column-based format. 
Unfortunately, it is pretty much impossible to find any benchmarks that prove this for 
OLTP workloads. Considering that pure column-based storage is not generally optimized 
for OLTP use cases, it is hard to recommend SAP HANA for the systems that require high 
OLTP throughput.

SAP HANA, however, may be a good choice for systems that are focused on 
operational analytics and BI and need to support infrequent OLTP queries.

It is impossible to cover all the in-memory database solutions available on the 
market. Many of them are targeted to and excel in specific workloads and use cases. 
Nevertheless, SQL Server provides a rich and mature set of features and technologies that 
may cover the wide spectrum of requirements. SQL Server is also a cost-effective solution 
compared to other major vendors on the market.

Summary
In-Memory OLTP was designed using different design principles and architecture than 
the classic SQL Server Database Engine. It is a specialized product targeted toward 
OLTP workloads and can improve performance by 20 to 40 times in certain scenarios. 
Nevertheless, it is fully integrated into the SQL Server Database Engine. The data storage 
is transparent to the client applications, which do not require any code changes if they 
use the features supported by In-Memory OLTP.

The data from memory-optimized tables is stored in memory separately from the 
buffer pool. All In-Memory OLTP data structures are completely latch- and lock-free, 
which allows you to scale the systems by adding more CPUs to the servers.

In-Memory OLTP may support operational analytics by defining the clustered 
columnstore indexes on memory-optimized tables. Those indexes store the copy of the 
data from the table in column-based storage format.

In-Memory OLTP uses native compilation to the machine code for any row-access 
logic. Moreover, it allows you to perform native compilation of the stored procedures, 
triggers and scalar user-defined functions, which dramatically increase their performance.
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CHAPTER 2

In-Memory OLTP Objects

This chapter provides a high-level overview of In-Memory OLTP objects. It shows 
how to create databases with an In-Memory OLTP filegroup and how to define 
memory-optimized tables and access them through the Interop Engine and natively 
compiled modules.

Finally, this chapter demonstrates performance improvements that can be achieved 
with the In-Memory OLTP Engine when a large number of concurrent sessions insert the 
data into the database and latch contention becomes a bottleneck.

Preparing a Database to Use In-Memory OLTP
The In-Memory OLTP Engine has been fully integrated into SQL Server and is always 
installed with the product. In SQL Server 2014 and 2016 RTM, In-Memory OLTP is 
available only in the Enterprise and Developer editions. This restriction has been 
removed in SQL Server 2016 SP1, and you can use the technology in every SQL Server 
edition.

You should remember, however, that non-Enterprise editions of SQL Server have a 
limitation on the amount of memory they can utilize. For example, buffer pool memory in 
SQL Server 2016 Standard and Express editions is limited to 128GB and 1,410MB of RAM, 
respectively. Similarly, memory-optimized tables cannot store more than 32GB of  
data per database in Standard and 352MB of data in Express editions. The data in 
memory-optimized tables will become read-only if In-Memory OLTP does not have 
enough memory to generate new versions of the rows.

■■ Note   I will discuss how to estimate the memory required for In-Memory OLTP objects 
in Chapter 12.

In-Memory OLTP is also available in the Premium tiers of the SQL Databases in 
Microsoft Azure, including the databases in the Premium Elastic Pools. However, the 
amount of memory the technology can utilize is based on DTUs of the service tier. As of 
this writing, Microsoft has provided 1GB of memory for each 125DTU or eDTU of the tier. 
This may change in the future, and you should review the Microsoft Azure documentation 
when you decide to use In-Memory OLTP with SQL Databases.

http://dx.doi.org/10.1007/978-1-4842-2772-5_12
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You do not need to install any additional packages or perform any configuration 
changes on the SQL Server level to use In-Memory OLTP. However, any database  
that utilizes In-Memory OLTP objects should have a separate filegroup to store 
memory-optimized data.

With an on-premise version of SQL Server, you can create this filegroup at database 
creation time or alter an existing database and add the filegroup using the CONTAINS 
MEMORY_OPTIMIZED_DATA keyword. It is not required, however, with SQL Databases in 
Microsoft Azure, where the storage level is abstracted from the users.

Listing 2-1 shows an example of the CREATE DATABASE statement with the In-Memory 
OLTP filegroup specified. The FILENAME property of the filegroup specifies the folder in 
which the In-Memory OLTP files would be located.

Listing 2-1.  Creating a Database with the In-Memory OLTP Filegroup

create database InMemoryOLTPDemo
on primary
(
    name = N'InMemoryOLTPDemo'
    ,filename = N'M:\Data\InMemoryOLTPDemo.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'InMemory_OLTP_Data'
    ,filename = N'H:\HKData\InMemory_OLTP_Data'
),
filegroup LOGDATA
(name = N'LogData1', filename = N'M:\Data\LogData1.ndf'),
(name = N'LogData2', filename = N'M:\Data\LogData2.ndf'),
(name = N'LogData3', filename = N'M:\Data\LogData3.ndf'),
(name = N'LogData4', filename = N'M:\Data\LogData4.ndf')
log on
(
    name = N'InMemoryOLTPDemo_log'
    ,filename = N'L:\Log\InMemoryOLTPDemo_log.ldf'
)

Internally, In-Memory OLTP utilizes a streaming mechanism based on the 
FILESTREAM technology. While coverage of FILESTREAM is outside the scope of this book,  
I will mention that it is optimized for sequential I/O access. In fact, In-Memory OLTP 
does not use random I/O access at all by design. It uses sequential append-only writes 
during a normal workload and sequential reads on the database startup and recovery 
stages. You should keep this behavior in mind and place In-Memory OLTP filegroups into 
the disk arrays optimized for sequential performance.

Similar to FILESTREAM filegroups, the In-Memory OLTP filegroup can include 
multiple containers placed on the different disk arrays, which allows you to spread the 
load across them.
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It is worth noting that In-Memory OLTP creates the set of files in the filegroup when 
you create the first In-Memory OLTP object. Unfortunately, SQL Server does not allow 
you to remove an In-Memory OLTP filegroup from the database even after you drop all 
memory-optimized tables and objects. However, you can still remove the In-Memory 
OLTP filegroup from the database while it is empty and does not contain any files.

■■ Note   You can read more about FILESTREAM at https://docs.microsoft.com/en-us/
sql/relational-databases/blob/filestream-sql-server.

I will discuss how In-Memory OLTP persists data on disk in Chapter 10 and cover the best 
practices in hardware and SQL Server configurations in Chapter 12.

DATABASE COMPATIBILITY LEVEL

As the general recommendation, Microsoft suggests that you set the database 
compatibility level to match the SQL Server version when you use In-Memory 
OLTP in the system. This will enable the latest T-SQL language constructs and 
performance improvements, which are disabled in the older compatibility levels.

You should remember, however, that the database compatibility level affects the 
choice of cardinality estimation model along with Query Optimizer hotfix servicing 
model formerly controlled by the trace flag T4199. This may and will change the 
execution plans in the system even when you enable the LEGACY_CARDINALITY_
ESTIMATION database-scoped configuration.

You should carefully plan that change when you migrate the system from the old 
versions of SQL Server regardless if you utilize In-Memory OLTP or not. You can 
use the new SQL Server 2016 component called the Query Store to capture the 
execution plans of the queries before changing the compatibility level and force the 
old plans to the system-critical queries in case of regressions.

Creating Memory-Optimized Tables
Syntax-wise, creating memory-optimized tables is similar to disk-based tables. You can 
use the regular CREATE TABLE statement specifying that the table is memory-optimized.

The code in Listing 2-2 creates three memory-optimized tables in the database. 
Please ignore all unfamiliar constructs; I will discuss them in detail later in the chapter.

https://docs.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/blob/filestream-sql-server
http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_12
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Listing 2-2.  Creating Memory-Optimized Tables

create table dbo.WebRequests_Memory
(
    RequestId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=1048576),
    RequestTime datetime2(4) not null
        constraint DEF_WebRequests_Memory_RequestTime
        default sysutcdatetime(),
    URL varchar(255) not null,
    RequestType tinyint not null, -- GET/POST/PUT
    ClientIP varchar(15) not null,
    BytesReceived int not null,

    index IDX_RequestTime nonclustered(RequestTime)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestHeaders_Memory
(
    RequestHeaderId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=8388608),
    RequestId int not null,
    HeaderName varchar(64) not null,
    HeaderValue varchar(256) not null,

    index IDX_RequestID nonclustered hash(RequestID)
    with (bucket_count=1048576)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestParams_Memory
(
    RequestParamId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=8388608),
    RequestId int not null,
    ParamName varchar(64) not null,
    ParamValue nvarchar(256) not null,

    index IDX_RequestID nonclustered hash(RequestID)
    with (bucket_count=1048576)
)
with (memory_optimized=on, durability=schema_and_data);
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Each memory-optimized table has a DURABILITY setting. The default SCHEMA_AND_DATA 
value indicates that the data in the tables is fully durable and persists on disk for recovery 
purposes. Operations on such tables are logged in the database transaction log.

SCHEMA_ONLY is another value, which indicates that data in memory-optimized tables 
is not durable and would be lost in the event of a SQL Server restart, crash, or failover to 
another node. Operations against nondurable memory-optimized tables are not logged in 
the transaction log. Nondurable tables are extremely fast and can be used if you need to 
store temporary data in use cases similar to temporary tables in tempdb. As the opposite 
to temporary tables, SQL Server persists the schema of nondurable memory-optimized 
tables, and you do not need to re-create them in the event of a SQL Server restart.

The indexes of memory-optimized tables must be created inline and defined as 
part of a CREATE TABLE statement. You cannot add or drop an index or change an index’s 
definition after a table is created.

SQL Server 2016 allows you to alter the table schema and indexes. This, however, 
creates the new table object in memory, copying data from the old table there. This is 
an offline operation, which is time- and resource-consuming and requires you to have 
enough memory to accommodate multiple copies of the data.

■■ Tip   You can combine multiple ADD or DROP operations into a single ALTER statement to 
reduce the number of table rebuilds.

In SQL Server 2016, memory-optimized tables support at most eight indexes. 
Durable memory-optimized tables should have a unique PRIMARY KEY constraint 
defined. Nondurable memory-optimized tables do not require the PRIMARY KEY 
constraint; however, they should still have at least one index to link the rows together. It is 
worth noting that the eight-index limitation will be removed in SQL Server 2017.

Memory-optimized tables support two main types of indexes, HASH and 
NONCLUSTERED. Hash indexes are optimized for point-lookup operations, which is the 
search of one or multiple rows with equality predicates. This is a conceptually new 
index type in SQL Server, and the Storage Engine does not have anything similar to it 
implemented. Nonclustered indexes, on the other hand, are somewhat similar to B-Tree 
indexes on disk-based tables. Finally, SQL Server 2016 allows you to create clustered 
columnstore indexes to support operational analytics queries in the system.

Hash and nonclustered indexes are never persisted on disk. SQL Server re-creates 
them when it starts the database and loads memory-optimized data into memory. As with 
disk-based tables, unnecessary indexes in memory-optimized tables slow down data 
modifications and use extra memory in the system.

■■ Note  I will discuss hash indexes in detail in Chapter 4 and nonclustered indexes in 
Chapter 5. I will cover columnstore indexes in Chapter 7.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_7
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Working with Memory-Optimized Tables
You can access data in memory-optimized tables either using interpreted T-SQL or from 
natively compiled modules. In interpreted mode, SQL Server treats memory-optimized 
tables pretty much the same way as disk-based tables. It optimizes queries and caches 
execution plans, regardless of where the table is located. The same set of operators is 
used during query execution. From a high level, when SQL Server needs to get a row from 
a table and the operator’s GetRow() method is called, it is routed either to the Storage 
Engine or to the In-Memory OLTP Engine, depending on the underlying table type.

Most T-SQL features and constructs are supported in interpreted mode. Some 
limitations still exist; for example, you cannot truncate a memory-optimized table or use 
it as the target in a MERGE statement. Fortunately, the list of such limitations is small.

Listing 2-3 shows an example of a T-SQL stored procedure that inserts data into the 
memory-optimized tables created in Listing 2-2. For simplicity’s sake, the procedure 
accepts the data that needs to be inserted into the dbo.WebRequestParams_Memory table 
as the regular parameters, limiting it to five values. Obviously, in production code it is 
better to use table-valued parameters in such a scenario.

Listing 2-3.  Stored Procedure That Inserts Data into Memory-Optimized Tables Through 
the Interop Engine

create proc dbo.InsertRequestInfo_Memory
(
   @URL varchar(255)
   ,@RequestType tinyint
   ,@ClientIP varchar(15)
   ,@BytesReceived int
   -- Header fields
   ,@Authorization varchar(256)
   ,@UserAgent varchar(256)
   ,@Host varchar(256)
   ,@Connection varchar(256)
   ,@Referer varchar(256)
   -- Hardcoded parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)
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as
begin
   set nocount on
   set xact_abort on

   declare
      @RequestId int

   begin tran
      insert into dbo.WebRequests_Memory
         (URL,RequestType,ClientIP,BytesReceived)
      values
         (@URL,@RequestType,@ClientIP,@BytesReceived);

      select @RequestId = SCOPE_IDENTITY();

      insert into dbo.WebRequestHeaders_Memory
         (RequestId,HeaderName,HeaderValue)
      values
         (@RequestId,'AUTHORIZATION',@Authorization)
         ,(@RequestId,'USERAGENT',@UserAgent)
         ,(@RequestId,'HOST',@Host)
         ,(@RequestId,'CONNECTION',@Connection)
         ,(@RequestId,'REFERER',@Referer);

      ;with Params(ParamName, ParamValue)
      as
      (
         select ParamName, ParamValue
         from (
            values
              (@Param1, @Param1Value)
               ,(@Param2, @Param2Value)
               ,(@Param3, @Param3Value)
               ,(@Param4, @Param4Value)
               ,(@Param5, @Param5Value)
            ) v(ParamName, ParamValue)
         where
            ParamName is not null and
            ParamValue is not null
      )
      insert into dbo.WebRequestParams_Memory
            (RequestID,ParamName,ParamValue)
         select @RequestID, ParamName, ParamValue
         from Params;
   commit
end
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As you can see, the stored procedure that works through the Interop Engine does not 
require any specific language constructs to access memory-optimized tables.

Natively compiled modules are also defined with a regular CREATE statement, and 
they use the T-SQL language. However, there are several additional options that must be 
specified at the creation stage.

The code in Listing 2-4 creates the natively compiled stored procedure that 
accomplishes the same logic as the dbo.InsertRequestInfo_Memory stored procedure 
defined in Listing 2-3.

Listing 2-4.  Natively Complied Stored Procedure

create proc dbo.InsertRequestInfo_NativelyCompiled
(
   @URL varchar(255) not null
   ,@RequestType tinyint not null
   ,@ClientIP varchar(15) not null
   ,@BytesReceived int not null
   -- Header fields
   ,@Authorization varchar(256) not null
   ,@UserAgent varchar(256) not null
   ,@Host varchar(256) not null
   ,@Connection varchar(256) not null
   ,@Referer varchar(256) not null
   -- Parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
   transaction isolation level = snapshot
   ,language = N'English'
)
   declare
      @RequestId int

    insert into dbo.WebRequests_Memory
        (URL,RequestType,ClientIP,BytesReceived)
    values
        (@URL,@RequestType,@ClientIP,@BytesReceived);
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    select @RequestId = SCOPE_IDENTITY();

    insert into dbo.WebRequestHeaders_Memory
    (RequestId,HeaderName,HeaderValue)
        select @RequestId,'AUTHORIZATION',@Authorization union all
        select @RequestId,'USERAGENT',@UserAgent union all
        select @RequestId,'HOST',@Host union all
        select @RequestId,'CONNECTION',@Connection union all
        select @RequestId,'REFERER',@Referer;

    insert into dbo.WebRequestParams_Memory
    (RequestID,ParamName,ParamValue)
        select @RequestID, ParamName, ParamValue
        from
        (
            select @Param1, @Param1Value union all
            select @Param2, @Param2Value union all
            select @Param3, @Param3Value union all
            select @Param4, @Param4Value union all
            select @Param5, @Param5Value
        ) v(ParamName, ParamValue)
        where
            ParamName is not null and
            ParamValue is not null;
end

You should specify that the module is natively compiled using the WITH NATIVE_
COMPILATION clause. All natively compiled modules are schema-bound, and they require 
you to specify the SCHEMABINDING option. Finally, you can set the optional execution 
security context and several other parameters. I will discuss them in detail in Chapter 9.

Natively compiled stored procedures execute as atomic blocks indicated by the 
BEGIN ATOMIC keyword, which is an “all or nothing” approach. Either all of the statements 
in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside the context of an active 
transaction, it starts a new transaction and either commits or rolls it back at the end of the 
execution.

In cases where a procedure is called in the context of an active transaction, SQL 
Server creates a savepoint at the beginning of the procedure’s execution. In case of an 
error in the procedure, SQL Server rolls back the transaction to the created savepoint. 
Based on the severity and type of error, the transaction is either going to be able to 
continue and commit or become doomed and uncommittable.

Even though the dbo.InsertRequestInfo_Memory and dbo.InsertRequestInfo_
NativelyCompiled stored procedures accomplish the same task, their implementation is 
slightly different. Natively compiled stored procedures have an extensive list of limitations 
and unsupported T-SQL features. In the previous example, you can see that neither the 
INSERT statement with multiple VALUES nor CTE were supported.

http://dx.doi.org/10.1007/978-1-4842-2772-5_9
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■■ Note   I will discuss natively compiled stored procedures, atomic transactions, and 
supported T-SQL language constructs in greater depth in Chapter 9.

Finally, it is worth mentioning that natively compiled modules can access only 
memory-optimized tables. It is impossible to query disk-based tables or, as another 
example, join memory-optimized and disk-based tables together. You have to use 
interpreted T-SQL and the Interop Engine for such tasks.

In-Memory OLTP in Action: Resolving Latch 
Contention
Latches are lightweight synchronization objects that SQL Server uses to protect the 
consistency of internal data structures. Multiple sessions (or, in that context, threads) 
cannot modify the same object simultaneously.

Consider the situation when multiple sessions try to access the same data page 
in the buffer pool. While it is safe for the multiple sessions/threads to read the data 
simultaneously, data modifications must be serialized and have exclusive access to the 
page. If such a rule is not enforced, multiple threads could update a different part of the 
data page at once, overwriting each other’s changes and making the data inconsistent, 
which would lead to page corruption.

Latches help to enforce that rule. The threads that need to read data from the page 
obtain shared (S) latches, which are compatible with each other. Data modification, on 
the other hand, requires an exclusive (X) latch, which prevents other readers and writers 
from accessing the data page.

■■ Note   Even though latches are conceptually similar to locks, there is a subtle difference 
between them. Locks enforce logical consistency of the data. For example, they reduce or 
prevent concurrency phenomena, such as dirty or phantom reads. Latches, on the other 
hand, enforce physical data consistency, such as preventing corruption of the data page 
structures.

Usually, latches have a short lifetime and are barely noticeable in the system. 
However, in busy OLTP systems, with a large number of CPUs and a high rate of 
simultaneous data modifications, latch contention can become a bottleneck. You can see 
the sign of such a bottleneck by the large percent of PAGELATCH waits in the wait statistics 
or by analyzing the sys.dm_os_latch_stats data management view.

In-Memory OLTP can be extremely helpful in addressing latch contention because 
of its latch-free architecture. It can help to dramatically increase data modification 
throughput in some scenarios. In this section, you will see one such example.

http://dx.doi.org/10.1007/978-1-4842-2772-5_9
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In my test environment, I used a Microsoft Azure DS15V2 virtual machine with the 
Enterprise edition of SQL Server 2016 SP1 installed. This virtual machine has 20 cores and 
140GB of RAM and disk subsystem that performs 62,500 IOPS.

I created the database shown in Listing 2-1 with 16 data files in the LOGDATA 
filegroup to minimize allocation maps latch contention. The log file has been placed 
on the local SSD storage, while data and In-Memory OLTP filegroups share the main 
disk array. It is worth noting that placing disk-based and In-Memory filegroups on 
the different arrays in production often leads to better I/O performance. However, it 
did not affect the test scenarios where I did not mix disk-based and In-Memory OLTP 
workloads in the same tests.

As the first step, I created a set of disk-based tables that mimics the structure 
of memory-optimized tables created earlier in the chapter, and I created the stored 
procedure that inserts data into those tables. Listing 2-5 shows the code to accomplish this.

Listing 2-5.  Creating Disk-Based Tables and a Stored Procedure

create table dbo.WebRequests_Disk
(
   RequestId int not null identity(1,1),
   RequestTime datetime2(4) not null
      constraint DEF_WebRequests_Disk_RequestTime
      default sysutcdatetime(),
   URL varchar(255) not null,
   RequestType tinyint not null, -- GET/POST/PUT
   ClientIP varchar(15) not null,
   BytesReceived int not null,

   constraint PK_WebRequests_Disk
   primary key nonclustered(RequestID)
   on [LOGDATA]
) on [LOGDATA];

create unique clustered index IDX_WebRequests_Disk_RequestTime_RequestId
on dbo.WebRequests_Disk(RequestTime,RequestId)
on [LOGDATA];

create table dbo.WebRequestHeaders_Disk
(
   RequestId int not null,
   HeaderName varchar(64) not null,
   HeaderValue varchar(256) not null,

   constraint PK_WebRequestHeaders_Disk
   primary key clustered(RequestID,HeaderName)
   on [LOGDATA]
);
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create table dbo.WebRequestParams_Disk
(
   RequestId int not null,
   ParamName varchar(64) not null,
   ParamValue nvarchar(256) not null,

   constraint PK_WebRequestParams_Disk
   primary key clustered(RequestID,ParamName)
   on [LOGDATA]
);
go

create proc dbo.InsertRequestInfo_Disk
(
   @URL varchar(255)
   ,@RequestType tinyint
   ,@ClientIP varchar(15)
   ,@BytesReceived int
   -- Header fields
   ,@Authorization varchar(256)
   ,@UserAgent varchar(256)
   ,@Host varchar(256)
   ,@Connection varchar(256)
   ,@Referer varchar(256)
   -- Parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)
as
begin
   set nocount on
   set xact_abort on

   declare
      @RequestId int
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   begin tran
      insert into dbo.WebRequests_Disk
         (URL,RequestType,ClientIP,BytesReceived)
      values
         (@URL,@RequestType,@ClientIP,@BytesReceived);

      select @RequestId = SCOPE_IDENTITY();

      insert into dbo.WebRequestHeaders_Disk
         (RequestId,HeaderName,HeaderValue)
      values
         (@RequestId,'AUTHORIZATION',@Authorization)
         ,(@RequestId,'USERAGENT',@UserAgent)
         ,(@RequestId,'HOST',@Host)
         ,(@RequestId,'CONNECTION',@Connection)
         ,(@RequestId,'REFERER',@Referer);

      ;with Params(ParamName, ParamValue)
      as
      (
         select ParamName, ParamValue
         from (
            values
               (@Param1, @Param1Value)
               ,(@Param2, @Param2Value)
               ,(@Param3, @Param3Value)
               ,(@Param4, @Param4Value)
               ,(@Param5, @Param5Value)
            ) v(ParamName, ParamValue)
         where
            ParamName is not null and
            ParamValue is not null
      )
      insert into dbo.WebRequestParams_Disk
         (RequestID,ParamName,ParamValue)
         select @RequestId, ParamName, ParamValue
            from Params;
   commit
end;

In the tests, I compared the insert throughput of disk-based and memory-optimized 
tables using the dbo.InsertRequestInfo_Disk, dbo.InsertRequestInfo_Memory, 
and dbo.InsertRequestInfo_NativelyCompiled stored procedures, calling them 
simultaneously from the multiple sessions in the loop. Each call inserted one row into the 
dbo.WebRequests table, five rows into the dbo.WebRequestHeaders table, and from one to 
five rows into the dbo.WebRequestDisks table, which makes nine rows total on average in 
the single transaction.
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■■ Note   The test application and scripts are included in the companion materials of 
the book.

In the case of the dbo.InsertRequestInfo_Disk stored procedure and disk-based 
tables, my test server achieved a maximum throughput of about 4,500 batches/calls per 
second with 150 concurrent sessions. Figure 2-1 shows several performance counters at 
the time of the test.

Even though I maxed out the insert throughput, the CPU load on the server was  
very low, which clearly indicated that the CPU was not the bottleneck during the test.  
At the same time, the server suffered from the large number of latches, which were used 
to serialize access to the data pages in the buffer pool. Even though the wait time of 
each individual latch was relatively low, the total latch wait time was high because of the 
excessive number of them acquired every second.

A further increase in the number of sessions did not help and, in fact, even slightly 
reduced the throughput. Figure 2-2 illustrates performance counters with 300 concurrent 
sessions. As you can see, the average latch wait time has been increasing with the load.

Figure 2-2.  Performance counters when data was inserted into disk-based tables (300 
concurrent sessions)

Figure 2-1.  Performance counters when data was inserted into disk-based tables (150 
concurrent sessions)



Chapter 2 ■ In-Memory OLTP Objects

23

You can confirm that latches were the bottleneck by analyzing the wait statistics 
collected during the test. Figure 2-3 illustrates the output from the sys.dm_os_wait_
stats view. You can see that latch waits are at the top of the list.

The situation changed when I repeated the tests with the dbo.InsertRequestInfo_
Memory stored procedure, which inserted data into memory-optimized tables through 
the Interop Engine. I maxed out the throughput with 300 concurrent sessions, which 
doubled the number of sessions from the previous test. In this scenario, SQL Server was 
able to handle about 74,000 batches/calls per second, which is more than a 16 times 
increase in the throughput. A further increase in the number of concurrent sessions 
did not change the throughput; however, the duration of each call linearly increased as 
more sessions were added.

Figure 2-4 illustrates the performance counters during the test. As you see, there 
were no latches with memory-optimized tables, and the CPUs were fully utilized.

Figure 2-3.  Wait statistics collected during the test (insert into disk-based tables)

Figure 2-4.  Performance counters when data was inserted into memory-optimized tables 
through the Interop Engine

Figure 2-5.  Wait statistics collected during the test (insert into memory-optimized tables 
through the Interop Engine)

As you can see in Figure 2-5, the only significant wait in the system was WRITELOG, 
which is related to the transaction log write performance.
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The natively compiled dbo.InsertRequestInfo_NativelyCompiled stored 
procedure improved the situation even further. With 400 concurrent sessions, SQL Server 
was able to handle about 106,000 batches/calls per second, which translates to about 
950,000 individual inserts per second.

Figure 2-6 illustrates the performance counters during test execution. Even with the 
increase in throughput, the natively compiled stored procedure put less load on the CPU 
than the Interop Engine, and disk performance became the clear bottleneck in this setup.

Waits in the wait statistics were similar to the previous test, with WRITELOG as the only 
significant wait in the system (see Figure 2-7).

You can confirm that disk performance was the limiting factor in this setup by 
running the same test with nondurable memory-optimized tables. You can do this by 
dropping and re-creating the database and creating the same set of memory-optimized 
tables using the DURABILITY=SCHEMA_ONLY option. No other code changes are required.

Figure 2-8 shows the performance counters collected during the test, with 400 
concurrent sessions calling the dbo.InsertRequestInfo_NativelyCompiled stored 
procedure to insert data into nondurable tables. As you can see, in that scenario, I was able 
to fully utilize the CPU on the system after I removed the I/O bottleneck, which improved 
throughput by another 50 percent compared to the durable memory-optimized tables.

Figure 2-6.  Performance counters when data was inserted into memory-optimized tables 
using natively compiled stored procedure

Figure 2-7.  Wait statistics collected during the test (insert into memory-optimized tables 
using natively compiled stored procedure)



Chapter 2 ■ In-Memory OLTP Objects

25

Finally, it is worth noting that In-Memory OLTP uses different and more efficient 
logging, which leads to a much smaller transaction log footprint. Figure 2-9 illustrates the 
log file write statistics collected during one minute of test execution using the sys.dm_io_
virtual_file_stats DMF. The order of outputs in the figure corresponds to the order in 
which the tests were run: disk-based table inserts, inserts into memory-optimized tables 
through the Interop Engine, and natively compiled stored procedures.

As you see, in interop mode In-Memory OLTP inserted more than 16 times more 
data; however, it used just 7.6 times more space in the transaction log than with disk-
based tables. The situation is even better with natively compiled stored procedures. Even 
though it wrote about 12 percent more to the log, it inserted about 30 percent more data 
compared to interop mode.

■■ Note   I will discuss In-Memory OLTP transaction logging in greater depth in Chapter 10.

Obviously, different scenarios will lead to different results, and performance 
improvements would greatly depend on the hardware, database schema, and use case 
and workload in the system. However, with OLTP workloads, it is not uncommon to see an 
improvement of 3 to 5 times when you access memory-optimized tables through the Interop 
Engine and an improvement of 10 to 40 times with natively compiled stored procedures.

Figure 2-8.  Performance counters when data was inserted into nondurable memory-
optimized tables using a natively compiled stored procedure

Figure 2-9.  Transaction log write statistics during the tests

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
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More importantly, In-Memory OLTP allows you to improve the performance of the 
system by scaling up and upgrading hardware. For example, in this scenario, you can 
achieve better throughput by adding more CPUs and/or increasing I/O performance. 
This would be impossible to do with disk-based tables where latch contention becomes a 
bottleneck.

Summary
The In-Memory OLTP engine is fully integrated into SQL Server and is installed with 
the product. It is an Enterprise edition feature in SQL Server 2016 RTM; however, it 
is available in all editions starting with SQL Server 2016 SP1. It is also available in the 
Premium tiers of Microsoft Azure SQL Database. You should remember, however, about 
the resource limitations that exist in non-Enterprise editions of SQL Server.

Every database that uses In-Memory OLTP objects should have the separate 
In-Memory OLTP filegroup created. This filegroup should be placed in the disk array 
optimized for sequential I/O performance. Microsoft Azure SQL Database does not 
require or allow you to create that filegroup.

You can create memory-optimized tables with the regular CREATE TABLE statement, 
marking tables as MEMORY_OPTIMIZED and specifying the table durability option. The 
data in the tables with SCHEMA_AND_DATA durability is persisted on disk. Tables with the 
SCHEMA_ONLY durability do not persist the data, and they can be used as in-memory 
temporary tables that provide extremely fast performance.

You can access memory-optimized tables either from interpreted T-SQL through 
the Interop Engine or from natively compiled modules. Almost all T-SQL features are 
supported in interpreted mode. Natively compiled modules, on the other hand, have 
the large set of limitations. Nevertheless, they can introduce significant performance 
improvements compared to the interop engine.



27© Dmitri Korotkevitch 2017 
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5_3

CHAPTER 3

Memory-Optimized Tables

This chapter discusses memory-optimized tables in detail. It shows how memory-optimized 
tables store their data and how SQL Server accesses them. It covers the format of the data 
rows in memory-optimized tables and talks about the process of native compilation.

Finally, the chapter provides an overview of the limitations of memory-optimized 
tables that exist in SQL Server 2016.

Disk-Based vs. Memory-Optimized Tables
Data and index structures in memory-optimized tables are different from those in 
disk-based tables. In disk-based tables, the data is stored in the 8KB data pages grouped 
together in eight-page extents on a per-index or per-heap basis. Every page stores the data 
from one or multiple data rows. Moreover, the data from variable-length or LOB columns 
can be stored off-row on ROW_OVERFLOW and LOB data pages when it does not fit on one 
in-row page.

All pages and rows in disk-based tables are referenced by in-file offsets, which are 
a combination of file_id, data page offset/position in the file, and, in the case of a data 
row, row offset/position on the data page.

Finally, every nonclustered index stores its own copy of the data from the index key 
columns, referencing the main row by row ID, which is either the clustered index key 
value or a physical address (offset) of the row in the heap table.

Figures 3-1 and 3-2 illustrate these concepts. They show clustered and nonclustered 
index B-Trees defined on a table. As you see, pages are linked through in-file offsets. The 
nonclustered index persists the separate copy of the data and references the clustered 
index through clustered index key values.
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Figure 3-1.  Clustered index on disk-based table
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Every time you need to access the data from the page, SQL Server loads the copy of 
the page to the memory, caching it in the buffer pool. However, the format and structure 
of the data page in the buffer pool does not change, and pages there still use in-file offsets 
to reference each other. The SQL Server component called the Buffer Manager manages 
the buffer pool, and it tracks the data page’s in-memory locations, translating in-file 
offsets to the corresponding memory addresses of the page structures.

Consider the situation when SQL Server needs to scan several data pages in the 
index. The worker thread requests the page from the Buffer Manager, using file_id and 
page_id to identify it. The Buffer Manager, in turn, checks whether the page is already 
cached, reading it from disk when necessary. When the page is read and processed, SQL 
Server obtains the address of the next page in the index and repeats the process.

It is also entirely possible that SQL Server needs to access multiple pages in order to 
read a single row. This happens in case of off-row storage and/or when the execution plan 
uses nonclustered indexes and issues Key or RID Lookup operations, obtaining the data 
from the clustered index or heap.

Figure 3-2.  Nonclustered index on disk-based table
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The process of locating a page in the buffer pool is very fast; however, it still introduces 
overhead that affects the performance of the queries. The performance hit is much worse 
when the data page is not in memory and a physical I/O operation is required.

As you already know, SQL Server protects the internal consistency of the data pages, 
with latches preventing multiple sessions from modifying the data on the data page 
simultaneously. Acquiring and managing those latches also adds overhead to the system.

Finally, SQL Server uses locking to protect the transactional consistency of the data 
acquiring locks on the data row- and page- and object- levels. Those locks may introduce 
blocking in the system, and they also add the overhead associated with their management.

The In-Memory OLTP engine uses a completely different approach with memory-
optimized tables. With the exception of Bw-Trees in nonclustered indexes, which I will 
discuss in Chapter 5, in-memory objects do not use data pages. Data rows reference each 
other through the memory pointers. Every row knows the memory address of the next 
row in the chain, and SQL Server does not need to do any extra steps to locate it.

Every memory-optimized table has at least one index row chain to link rows 
together; therefore, every table must have at least one index defined. In the case of 
durable memory-optimized tables, there is the requirement of creating a primary key 
constraint, which can serve this purpose.

To illustrate the concepts of row chains, let’s create the memory-optimized table 
shown in Listing 3-1.

Listing 3-1.  Creating the Memory-Optimized Table

create table dbo.People
(
   Name varchar(64) not null
      constraint PK_People
      primary key nonclustered
      hash with (bucket_count = 1024),
   City varchar(64) not null,

   index IDX_City nonclustered hash(City)
   with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only);

This table has two hash indexes defined on the Name and City columns. I will not 
discuss hash indexes in depth in this chapter, but as a general overview, they consist of a 
hash table, which is an array of hash buckets, each of which contains a memory pointer to 
the data row. SQL Server applies a hash function to the index key columns, and the result 
of the function determines to which bucket a row belongs. All rows that have the same 
hash value and belong to the same bucket are linked together in a row chain; every row 
has a pointer to the next row in a chain.

■■ Note   I will discuss hash indexes in detail in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_4
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Figure 3-3 illustrates this. Solid arrows represent pointers in the index on the 
Name column. Dotted arrows represent pointers in the index on the City column. For 
simplicity’s sake, let’s assume that the hash function generates a hash value based on the 
first letter of the string. Two numbers, displayed in each row, indicate the row lifetime, 
which I will explain in the next section of this chapter.

In contrast to disk-based tables, indexes on memory-optimized tables are not 
created as separate data structures but rather embedded as pointers in the data rows, 
which, in a nutshell, makes every index covering for in-row columns. The indexes, 
however, do not cover off-row column data, where data is stored in the separate internal 
tables. I will discuss them in depth in Chapter 6.

■■ Note   To be precise, nonclustered indexes and clustered columnstore indexes on 
memory-optimized tables introduce additional data structures in memory. I will discuss 
nonclustered indexes in detail in Chapter 5 and clustered columnstore indexes in Chapter 8.

Introduction to Multiversion Concurrency Control
As you already noticed in Figure 3-3, every row in a memory-optimized table has two 
values, called BeginTs and EndTs, which define the lifetime of the row. A SQL Server 
instance maintains the Global Transaction Timestamp value, which is auto-incremented 
when the transaction commits and is unique for every committed transaction. BeginTs 
stores the Global Transaction Timestamp of the transaction that inserted a row, and 
EndTs stores the timestamp of the transaction that deleted a row. A special value called 
Infinity is used as EndTs for the rows that have not been deleted.

Figure 3-3.  Memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_5
http://dx.doi.org/10.1007/978-1-4842-2772-5_8
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The rows in memory-optimized tables are never updated. The update operation 
creates the new version of the row with the new Global Transaction Timestamp set 
as BeginTs and marks the old version of the row as deleted by populating the EndTs 
timestamp with the same value.

When a new transaction starts, In-Memory OLTP assigns the logical start time 
for the transaction, which represents the Global Transaction Timestamp value when 
a transaction starts. It dictates what version of the rows is visible to the transaction. 
A transaction can see a row only when its logical start time (the Global Transaction 
Timestamp value when the transaction starts) is between the BeginTs and EndTs 
timestamps of the row.

To illustrate this, let’s assume you ran the statement shown in Listing 3-2 and 
committed the transaction when the Global Transaction Timestamp value was 100.

Listing 3-2.  Updating Data in the dbo.People Table

update dbo.People
set City = 'Cincinnati'
where Name = 'Ann'

Figure 3-4 illustrates the data in the table after an update transaction has been 
committed. As you can see, you now have two rows with Name='Ann' and different 
lifetimes. The new row has been appended to the row chain referenced by the hash 
bucket for the value of A in the index on the Name column. The hash index on the City 
column did not have any rows referenced by the C bucket; therefore, the new row 
becomes the first in the row chain referenced from that bucket.

Figure 3-4.  Data in the table after update
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Let’s assume you need to run a query that selects all the rows with Name='Ann' in 
the transaction with the logical start time (Global Transaction Timestamp when the 
transaction started) of 110. SQL Server calculates the hash value for Ann, which is A, 
and finds the corresponding bucket in the hash index on the Name column. It follows 
the pointer from that bucket, which references a row with Name='Adam'. This row has 
a BeginTs value of 10 and an EndTs value of Infinity; therefore, it is visible to the 
transaction. However, the Name value does not match the predicate, and the row is ignored.

In the next step, SQL Server follows the pointer from the Adam index pointer array, 
which references the first Ann row. This row has a BeginTs value of 100 and an EndTs value 
of Infinity; therefore, it is visible to the transaction and needs to be selected.

As a final step, SQL Server follows the next pointer in the index. Even though the last 
row also has Name='Ann', it has an EndTs value of 100 and is invisible to the transaction.

As you should have already noticed, this concurrency behavior and data consistency 
corresponds to the SNAPSHOT transaction isolation level when every transaction sees the 
data as of the time the transaction started. SNAPSHOT is the default transaction isolation 
level in the In-Memory OLTP Engine, which also supports the REPEATABLE READ and 
SERIALIZABLE isolation levels. However, the REPEATABLE READ and SERIALIZABLE 
transactions in In-Memory OLTP behave differently than with disk-based tables.  
In-Memory OLTP raises an exception and rolls back a transaction if REPEATABLE READ or 
SERIALIZABLE data consistency rules were violated instead of blocking a transaction as 
with disk-based tables.

The In-Memory OLTP documentation also indicates that autocommitted (single-
statement) transactions can run in the READ COMMITTED isolation level. However, this is 
a bit misleading. SQL Server promotes and executes such transactions in the SNAPSHOT 
isolation level and does not require you to explicitly specify the isolation level in your 
code. Similarly to SNAPSHOT transactions, the autocommitted READ COMMITTED transaction 
would not see the changes committed after the transaction started, which is a different 
behavior compared to the READ COMMITTED transactions against disk-based tables.

■■ Note   I will discuss the concurrency model in In-Memory OLTP in Chapter 7.

SQL Server keeps track of the active transactions in the system and detects stale 
rows when their EndTs of stake rows is older than the logical start time of the oldest active 
transaction in the system. Stale rows are invisible for active transactions in the system, 
and eventually they are removed from the index row chains and deallocated by the 
garbage collection process.

■■ Note   I will cover the garbage collection process in more detail in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-2772-5_7
http://dx.doi.org/10.1007/978-1-4842-2772-5_11
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Data Row Format
As you can guess, the format of the data rows in memory-optimized tables is entirely 
different from disk-based tables and consists of two different sections, the row header and 
the payload, as shown in Figure 3-5.

You are already familiar with the BeginTs and EndTs timestamps in the row header. 
The next element there is StmtId, which references the statement that inserted that row. 
Every statement in a transaction has a unique 4-byte StmtId value, which works as a 
Halloween protection technique and allows the statement to skip rows it just inserted.

HALLOWEEN PROTECTION

The Halloween effect is a known problem in the relational database world. It was 
discovered by IBM researchers in 1976 around Halloween, which gave the name 
to phenomena. In a nutshell, it refers to the situation when the execution of a data 
modification query is affected by the previous modifications it performed.

You can think of the following statement as a classic example of the Halloween 
problem:

insert into T
    select * from T

Without Halloween protection, this query would fall into an infinitive loop, reading the 
data it just inserted and inserting it over and over again.

With disk-based tables, SQL Server implements Halloween protection by adding 
Spool operators to the execution plan. These operators create a temporary copy of 
the data before processing it. In this example, all data from the table is cached in the 
Table Spool first, which will work as the source of the data for the insert.

StmtId helps to avoid the Halloween problem in memory-optimized tables. 
Statements check the StmtId value of the rows and skip those they just inserted.

Figure 3-5.  The structure of a data row in a memory-optimized table
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The next element in the header, the 2-byte IdxLinkCount, indicates how many 
indexes (pointers) reference the row (or, in the other words, in how many index chains 
this row is participating). SQL Server uses it to detect rows that can be deallocated 
by the garbage collection process. SQL Server also adds empty 2-byte padding after 
IdxLinkCount to align the row header with 8-byte boundaries.

An array of 8-byte index pointers is the last element of the row header. As you already 
know, every memory-optimized table should have at least one index to link data rows 
together. In SQL Server 2016, you can define up to eight indexes per memory-optimized 
table, including the primary key constraint. This restriction has been removed in  
SQL Server 2017.

The actual row data is stored in the payload section of the row. The payload format may 
vary depending on the table schema. SQL Server works with the payload through a DLL that 
is generated and compiled for the table (more on that in the next section of this chapter).

I would like to reiterate that a key principle of In-Memory OLTP is that payload data 
is never updated. When a table row needs to be updated, In-Memory OLTP deletes the 
version of the row by setting the EndTs timestamp of the original row and inserts the new 
data row version with the new BeginTs value and an EndTs value of Infinity.

Native Compilation of Memory-Optimized Tables
One of the key differences between the Storage Engine and In-Memory OLTP Engine 
resides in how engines work with the data rows. The data in disk-based tables is always 
stored using one of the three predefined formats, which do not depend on the table 
schema and are controlled by the index data compression option.

As usual, that approach comes with benefits and downsides. It is extremely flexible 
and allows you to alter a table and mix per- and post-altered versions of the rows together. 
For example, adding a new nullable column to the table is the metadata-level operation, 
which does not change existing rows. The Storage Engine analyzes table metadata and 
different row attributes and handles multiple versions of the rows correctly.

However, such flexibility comes at a cost. Consider the situation when the query 
needs to access the data from the variable-length column in the row. In this scenario,  
SQL Server needs to find the offset of the variable-length array section in the row, calculate 
an offset and length of the column data from that array, and analyze whether the column 
data is stored in-row or off-row before getting the required data. All of that can lead to the 
large number of CPU instructions to execute.

The In-Memory OLTP Engine uses a completely opposite approach. SQL Server 
creates and compiles the separate DLLs for every memory-optimized table in the system. 
Those DLLs are loaded into the SQL Server address space, and they are responsible for 
accessing and manipulating the data in the payload section of the row. The In-Memory 
OLTP Engine is generic and does not know anything about the underlying payload part 
of the row; all data access is done through those DLLs, which are aware of the data row 
format and optimized to speed up the data access and data manipulation.

As you can guess, this approach significantly reduces processing overhead; however, 
it comes at the cost of reduced flexibility. The generated table DLLs require all rows to 
have the same structure. Table alteration generates the new version of the DLL and, 
in most cases, will require In-Memory OLTP to re-create all the data rows in the table, 
transforming them to the new format. I will discuss this in depth in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
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This restriction can lead to supportability and performance issues when tables 
and indexes are defined incorrectly. One such example is the wrong hash index bucket 
count definition, which can lead to an excessive number of rows in the row chains, which 
reduces index performance. I will discuss this problem in detail in Chapter 4.

■■ Note   SQL Server places the source code and compiled DLLs in the XTP subfolder of the 
SQL Server DATA directory. I will talk about those files and the native compilation process in 
more detail in Chapter 9.

Memory-Optimized Tables: Surface Area and 
Limitations
The first release of In-Memory OLTP in SQL Server 2014 had an extensive list of 
limitations. Fortunately, many of them have been removed in SQL Server 2016.

Let’s look at the supported surface area and existing limitations in detail.

Supported Data Types
One of the biggest limitations of In-Memory OLTP in SQL Server 2014 was the inability to 
support off-row storage. It was impossible to create a table with a row size that exceeded 
8,060 bytes or use the (n)varchar(max) and varbinary(max) data types.

Fortunately, this limitation has been removed in the second release of In-Memory 
OLTP. SQL Server 2016 supports off-row storage and allows data rows to exceed 8,060 
bytes. The (n)varchar(max) and varbinary(max) data types are now supported. I would 
like to reiterate, however, that off-row data is stored in the separate internal tables and 
can reduce the performance of the system. I will discuss this in detail in Chapter 6.

There are still several data types that are not supported in the SQL Server 2016 
release of In-Memory OLTP. They include the following:

•	 datetimeoffset, rowversion, and sql_variant

•	 image and (n)text

•	 CLR-based data types: geography, geometry, and hierarchyid

•	 User-defined data types

•	 xml

Even though the list of unsupported data types is not very extensive, those 
limitations can still complicate In-Memory OLTP migration for existing systems. In some 
cases, you can store the data from unsupported data types in varbinary(max) column, 
casting it to the appropriate data type in the code. This approach, however, would require 
you to use the Interop Engine and would not work with native compilation.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
http://dx.doi.org/10.1007/978-1-4842-2772-5_6
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Table Features
The memory-optimized tables have several other requirements and limitations, 
outlined here:

•	 Computed columns are not supported in SQL Server 2016. They 
are supported, however, in SQL Server 2017.

•	 Sparse columns are not supported.

•	 IDENTITY columns should have a SEED and INCREMENT value of (1,1).

•	 Memory-optimized tables cannot participate in FOREIGN KEY 
constraints with disk-based tables. You can define foreign keys 
between memory-optimized tables; however, they should always 
reference primary keys rather than UNIQUE constraints.

•	 Full-text indexes on memory-optimized tables are not supported.

•	 Memory-optimized tables cannot be defined as FILETABLE or use 
FILESTREAM storage.

In SQL Server 2016, every memory-optimized table, durable or nondurable, should 
have at least one and at most eight indexes. Moreover, the durable memory-optimized 
table should have a unique primary key constraint defined. This constraint is counted 
as one of the indexes toward the eight-index limit. The eight-index restriction has been 
removed in SQL Server 2017.

It is also worth noting that columns participating in the primary key constraint are 
nonupdatable. You can delete the old and insert the new row as the workaround.

Database-Level Limitations
In-Memory OLTP has several limitations that affect some of the database settings and 
operations. They include the following:

•	 You cannot create a database snapshot on databases that use  
In-Memory OLTP.

•	 The AUTO_CLOSE database option must be set to OFF.

•	 CREATE DATABASE FOR ATTACH_REBUILD_LOG is not supported.

•	 DBCC CHECKDB skips the memory-optimized tables.

•	 DBCC CHECKTABLE fails if called to check the memory-optimized 
table.

■■ Note   You can see the full list of limitations at https://docs.microsoft.com/en-
us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-

supported-by-in-memory-oltp.

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp
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High Availability Technologies Support
Memory-optimized tables are fully supported in AlwaysOn Failover Clusters and 
Availability Groups and with Log Shipping. However, in the case of a failover cluster, data 
from durable memory-optimized tables must be loaded into memory in the case of a 
failover, which could increase failover time and reduce database availability.

In the case of AlwaysOn Availability Groups, only durable memory-optimized tables 
are replicated to secondary nodes. You can access and query those tables on the readable 
secondary nodes if needed.

Data from nondurable memory-optimized tables, on the other hand, is not 
replicated and will be lost in the case of a failover. You should remember this behavior 
when you use In-Memory OLTP in Microsoft Azure SQL Database. Transient database 
failovers in Azure will erase the data from nondurable memory-optimized tables.

Memory-optimized tables can participate in transactional replication. All other 
replication types, including peer-to-peer replication, are not supported.

In-Memory OLTP is not supported in database mirroring sessions. This does not 
appear to be a big limitation, however. Database mirroring is a deprecated feature, and 
you should use AlwaysOn Availability Groups as the replacement for the technology.

SQL Server 2016 Features Support
In-Memory OLTP is fully integrated with many new SQL Server 2016 features. Let’s list a 
few of them.

In-Memory OLTP workloads can be captured by Query Store. It automatically 
collects queries, plans, and optimization statistics for In-Memory OLTP objects without 
any additional configuration changes required. However, runtime statistics are not 
collected by default, and you need to explicitly enable them with the sys.sp_xtp_
control_query_exec_stats stored procedure.

Keep in mind that the collection of runtime statistics adds overhead, which can 
degrade the performance of In-Memory OLTP workloads.

■■ Note   I will talk about In-Memory OLTP Query Store integration in more detail in 
Chapter 12.

You can use system-versioned temporal tables with memory-optimized tables using 
disk-based history tables to store old row versions. When you enable system versioning 
in a memory-optimized table, SQL Server creates a staging memory-optimized table 
and synchronously populates it during UPDATE and DELETE operations. The data from 
the staging table is asynchronously moved to a disk-based history table by a background 
process called the data flush task. This task wakes up every minute with the light 
workload and can adjust its schedule to run every five seconds under a heavy workload.

By default, the data flush task moves the data from the staging table when it reaches 
8 percent of the size of the current memory-optimized table. You can also force data 
movement manually by calling the sys.sp_xtp_flush_temporal_history stored procedure.

http://dx.doi.org/10.1007/978-1-4842-2772-5_12
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■■ Note   You can read more about temporal tables support at https://docs.microsoft.
com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-

with-memory-optimized-tables.

Memory-optimized tables can be configured for row-level security. The 
configuration process is essentially the same with on-disk tables; however, an inline 
table-valued function that is used as a security predicate must be natively compiled. I will 
discuss native compilation in Chapter 9.

■■ Note   You can read more about row-level security at https://docs.microsoft.com/
en-us/sql/relational-databases/security/row-level-security.

It is also worth noting that starting with SQL Server 2016, the data from  
memory-optimized tables is encrypted on disk when Transparent Data Encryption 
(TDE) is enabled in the database. I will discuss how In-Memory OLTP persists data on 
disk in Chapter 10.

Summary
As the opposite of disk-based tables, where data is stored in 8KB data pages, memory-
optimized tables link data rows into the index row chains using regular memory pointers. 
Every row has multiple pointers, one per index row chain. In SQL Server 2016, every table 
must have at least one and at most eight indexes defined.

A SQL Server instance maintains the Global Transaction Timestamp value, 
which is auto-incremented when the transaction commits and is unique for every 
committed transaction. Every data row has BeginTs and EndTs timestamps that define 
the row lifetime. A transaction can see a row only when its logical start time (the Global 
Transaction Timestamp value when the transaction starts) is between the BeginTs and 
EndTs timestamps of the row.

The row data in memory-optimized tables is never updated. When a table row needs 
to be updated, In-Memory OLTP creates the new version of the row with a new BeginTs 
value and deletes the old version of the row by populating its EndTs timestamp.

SQL Server generates and compiles native DLLs for every memory-optimized 
table in the system. Those DLLs are loaded into the SQL Server process, and they are 
responsible for accessing and manipulating the row data.

The In-Memory OLTP engine is fully supported in AlwaysOn Failover Clusters, 
Availability Groups, and with Log Shipping. Memory-optimized tables can also 
participate in transactional replication.

In-Memory OLTP is integrated with many new SQL Server 2016 features.  
Memory-optimized tables can be configured as system-versioned temporal tables, and 
they also support row-level security. Query Store can capture optimization and execution 
statistics for In-Memory OLTP workloads; however, capturing execution statistics 
introduces noticeable performance overhead to the system.

https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/system-versioned-temporal-tables-with-memory-optimized-tables
http://dx.doi.org/10.1007/978-1-4842-2772-5_9
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
http://dx.doi.org/10.1007/978-1-4842-2772-5_10
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CHAPTER 4

Hash Indexes

This chapter discusses hash indexes, the new type of index introduced in the In-Memory 
OLTP Engine. It will show their internal structure and explain how SQL Server works 
with them. You will learn about the most critical property of hash indexes, bucket_count, 
which defines the number of hash buckets in the index hash array. You will see how 
incorrect bucket count estimations affect system performance.

Finally, this chapter talks about the SARGability of hash indexes and statistics on 
memory-optimized tables.

Hashing Overview
Hashing is a widely known concept in computer science that performs the transformation 
of the data into short, usually fixed-length values. Hashing is often used in scenarios 
when you need to optimize point-lookup operations that search within a set of large 
strings or binary data using equality predicates. Hashing significantly reduces an index 
key size, making the index compact, which, in turn, improves the performance of  
point-lookup operations.

A properly defined hashing algorithm, often called a hash function, provides a 
relatively random hash distribution. A hash function is always deterministic, which 
means that the same input always generates the same hash value. However, a hash 
function does not necessarily guarantee uniqueness, and different input values can 
generate the same hashes. That situation is called a collision, and the chance of it greatly 
depends on the quality of the hash algorithm and the range of allowed hash keys. For 
example, a hash function that generates a 2-byte hash has a significantly higher chance of 
collision compared to a function that generates a 4-byte hash.

Hash tables, often called hash maps, are the data structures that store hash keys, 
mapping them to the original data. The hash keys are assigned to buckets, in which the 
original data can be found. Ideally, each unique hash key is stored in the individual 
bucket; however, when the number of buckets in the table is not big enough, it is entirely 
possible that multiple unique hash keys would be placed into the same bucket. Such a 
situation is called a hash collision.
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■■ Tip   The HASHBYTES function allows you to generate hashes in T-SQL using one of the 
industry-standard algorithms such as MD5, SHA2_512, and a few others. However, the output 
of the HASHBYTES function is not ideal for point-lookup optimization because of the large size 
of the output. You can use a CHECKSUM function that generates a 4-byte hash instead.

You can index the hash generated by the CHECKSUM function and use it as the replacement for 
the indexes on uniqueidentifier columns. It is also useful when you need to perform point-
lookup operations on large (greater than 900/1,700 bytes) strings or binary data, which cannot 
be indexed. I discussed this scenario in Chapter 7 of my book Pro SQL Server Internals.

Much Ado About Bucket Count
In the In-Memory OLTP Engine, hash indexes are, in a nutshell, hash tables with buckets 
implemented as an array of a predefined size. Each bucket contains a pointer to a data 
row. SQL Server applies a hash function to the index key values, and the result of the 
function determines to which bucket a row belongs. All rows that have the same hash 
value and belong to the same bucket are linked together through a chain of index pointers 
in the data rows.

Figure 4-1 illustrates an example of a memory-optimized table with two hash indexes 
defined. You saw this diagram in the previous chapter; it’s displayed here for reference 
purposes. Remember that in this example you are assuming that a hash function 
generates a hash value based on the first letter of the string. Obviously, a real hash 
function used in In-Memory OLTP is much more random and does not use character-
based hashes.

Figure 4-1.  A memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-2772-5_7
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The number of buckets is the critical element for hash index performance. An 
efficient hash function allows you to avoid most collisions during hash key generation; 
however, you will have collisions in the hash table when the number of buckets is not big 
enough and SQL Server has to store different hashes together in the same buckets. Those 
collisions lead to longer row chains; this requires SQL Server to scan more rows through 
those links during the query processing.

Bucket Count and Performance
Let’s consider a hash function that generates a hash based on the first two letters of 
the string and can return 26 * 26 = 676 different hash keys. This is a purely hypothetical 
example that I am using just for illustration purposes.

Assuming that the hash table can accommodate all 676 different hash buckets and 
you have the data shown in Figure 4-2, you will need to traverse at most two rows in the 
chain when you run a query that looks for a specific value.

Figure 4-2.  Hash table lookup: 676 buckets
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The dotted arrows in Figure 4-2 illustrate the steps needed to look up the rows for 
Ann. The process requires you to traverse two rows after you find the right hash bucket in 
the table.

However, the situation changes if your hash table does not have enough buckets to 
separate unique hash keys from each other. Figure 4-3 illustrates the situation when a 
hash table has only 26 buckets and each of them stores multiple different hash keys. Now 
the same lookup of the Ann row requires you to traverse the chain of nine rows total.

The same principle applies to the hash indexes where choosing an incorrect number 
of buckets can lead to serious performance issues.

Let’s create two nondurable memory-optimized tables and populate them with 
1,000,000 rows each, as shown in Listing 4-1. Both tables have the same schema with a 
primary key constraint defined as the hash index. The number of buckets in the index 
is controlled by the bucket_count property. Internally, however, SQL Server rounds the 
provided value to the next power of 2, so the dbo.HashIndex_HighBucketCount table 
would have 1,048,576 buckets in the index, and the dbo.HashIndex_LowBucketCount 
table would have 1,024 buckets.

Listing 4-1.  Bucket_count and Performance: Creating Memory-Optimized Tables

create table dbo.HashIndex_LowBucketCount
(
    Id int not null
        constraint PK_HashIndex_LowBucketCount
        primary key nonclustered
        hash with (bucket_count=1000),
    Value int not null
)
with (memory_optimized=on, durability=schema_only);

create table dbo.HashIndex_HighBucketCount
(
    Id int not null
        constraint PK_HashIndex_HighBucketCount
        primary key nonclustered
        hash with (bucket_count=1000000),
    Value int not null
)

Figure 4-3.  Hash table lookup: 26 buckets
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with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_HighBucketCount(Id, Value)
    select Id, Id
    from ids
    where Id <= 1000000;

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_LowBucketCount(Id, Value)
    select Id, Id
    from ids
    where Id <= 1000000;

Table 4-1 shows the execution time of the INSERT statements in my test environment. 
As you can see, inserting data into the dbo.HashIndex_HighBucketCount table is about 35 
times faster compared to the dbo.HashIndex_LowBucketCount counterpart.

Table 4-1.  Execution Time of INSERT Statements

dbo.HashIndex_HighBucketCount 
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount  
(1,024 Buckets)

1,122 ms 39,955 ms

Listing 4-2 shows the query that returns the bucket count and row chains 
information using the sys.dm_db_xtp_hash_index_stats view. Keep in mind that this 
view scans the entire table, which is time-consuming when the tables are large.

Listing 4-2.  Obtaining Information About Hash Indexes

select
    s.name + '.' + t.name as [Table]
    ,i.name as [Index]
    ,stat.total_bucket_count as [Total Buckets]
    ,stat.empty_bucket_count as [Empty Buckets]
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    ,floor(100. * empty_bucket_count / total_bucket_count)
        as [Empty Bucket %]
    ,stat.avg_chain_length as [Avg Chain]
    ,stat.max_chain_length as [Max Chain]
from
    sys.dm_db_xtp_hash_index_stats stat
        join sys.tables t on
            stat.object_id = t.object_id
        join sys.indexes i on
            stat.object_id = i.object_id and
            stat.index_id = i.index_id
        join sys.schemas s on
            t.schema_id = s.schema_id

Figure 4-4 shows the output of the query. As you can see, the dbo.HashIndex_
HighBucketCount table has on average one row in the row chains, while the dbo.
HashIndex_LowBucketCount table has almost 1,000 rows per chain. It is worth noting 
that even though the hash function used by In-Memory OLTP provides relatively good 
random data distribution, some level of hash collision is still present.

The incorrect bucket count estimation and long row chains can significantly affect the 
performance of both reader and writer queries. You have already seen the performance 
impact for the insert operation. Now let’s look at a SELECT query.

Listing 4-3 shows the code that triggers 65,536 Index Seek operations in each 
memory-optimized table. I wrote this query in a very inefficient way just to demonstrate 
the impact of the long row chains.

Listing 4-3.  Bucket_count and Performance: Selecting Data in the Tables

declare
    @T table(Id int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Id)
    select Id from Ids;

Figure 4-4.  sys.dm_db_xtp_hash_index_stats output
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select t.id, c.Cnt
from @T t
    cross apply
     (
            select count(*) as Cnt
            from dbo.HashIndex_HighBucketCount h
            where h.Id = t.Id
    ) c;

select t.id, c.Cnt
from @T t
    cross apply
     (
            select count(*) as Cnt
            from dbo.HashIndex_LowBucketCount h
            where h.Id = t.Id
    ) c;

You can confirm that the queries traversed the row chains 65,536 times by analyzing 
the execution plan shown in Figure 4-5.

Table 4-2 shows the queries’ execution time in my environment where the query 
against the dbo.HashIndex_LowBucketCount table was about 20 times slower.

While you can clearly see that underestimation of the bucket counts can degrade 
system performance, overestimation is not good either. First, every bucket uses 8 bytes 
to store the memory pointer, and a large number of unused buckets is a waste of system 
memory. For example, defining the index with bucket_count=100000000 will introduce 
134,217,728 buckets, which will require 128MB of RAM. This does not seem much in 
the scope of a single index; however, it could become an issue as the number of indexes 
increases.

Figure 4-5.  Execution plan of the queries

Table 4-2.  Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount 
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount  
(1,024 Buckets)

301 ms 6,259 ms
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Moreover, SQL Server needs to scan all buckets in the index when it performs an 
Index Scan operation, and extra buckets add some overhead to the process. Listing 4-4 
shows the queries that demonstrate this kind of overhead.

Listing 4-4.  Bucket_count and Performance: Index Scan Queries

select count(*)
from dbo.HashIndex_HighBucketCount
    with (index= PK_HashIndex_HighBucketCount)
option (maxdop 1);

select count(*)
from dbo.HashIndex_LowBucketCount
    with (index= PK_HashIndex_LowBucketCount)
option (maxdop 1);

Table 4-3 shows the execution time in my environment. As you see, the overhead of 
scanning extra buckets is not significant; however, it still exists.

It is also worth noting that in the majority of cases, SQL Server 2016 will not scan the 
hash index but rather scan the table heap with the Table Scan operator. I will discuss this 
in more detail in Chapter 6.

Choosing the Right Bucket Count
Choosing the right number of buckets in a hash index is a tricky but important subject. To 
make matters worse, you have to make the right decision at the design stage; the only way 
to change the bucket_count value once a table is created is by altering the table, which 
creates the new table object in the background.

In an ideal situation, you should have the number of buckets that would exceed the 
cardinality (the number of unique keys) of the index. Obviously, you should take future 
system growth and projected workload changes into consideration. It is not a good idea 
to create an index based on the current data cardinality if you expect the system to handle 
much more data in the future.

■■ Note   Microsoft suggests setting bucket_count to be between one and two times the 
number of distinct values in the index. You can read more at https://docs.microsoft.
com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-

optimized-tables#configuring_bucket_count.

Table 4-3.  Execution Time of SELECT Statements (Empty Buckets Overhead)

dbo.HashIndex_HighBucketCount 
(1,048,576 Buckets)

dbo.HashIndex_LowBucketCount  
(1,024 Buckets)

51 ms 62 ms

http://dx.doi.org/10.1007/978-1-4842-2772-5_6
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/hash-indexes-for-memory-optimized-tables#configuring_bucket_count
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Low-cardinality columns with a large number of duplicated values are usually bad 
candidates for hash indexes. The same data values generate the same hash; therefore, 
rows will be linked to long row chains. Obviously, there are always exceptions, and you 
should analyze the queries and workload in your system, taking into consideration the 
data modification overhead introduced by the long row chains.

In existing indexes, you can analyze the output of the sys.dm_db_xpt_hash_index_
stats view and code from Listing 4-2 to determine whether the number of buckets in 
the index is sufficient. If the number of empty buckets is less than 10 percent of the total 
number of buckets in the index, the bucket count is likely to be too low. Ideally, at least 33 
percent of the buckets in the index should be empty.

With all that being said, it is often better to err on the side of caution and 
overestimate rather than underestimate the number. Even though overestimation impacts 
the performance of the Index Scan operation, this impact is much lower compared to the 
one introduced by long row chains. Obviously, you need to remember that every bucket 
uses 8 bytes of memory whether it is empty or not.

■■ Note   I will discuss In-Memory OLTP index design considerations and choices between 
hash indexes and nonclustered indexes in the next chapter.

Hash Indexes and SARGability
In the database world, predicates are treated as SARGable (Search ARGument Able) when 
they allow the Database Engine to utilize Index Seek operations during query execution.

Hash indexes have different SARGability rules than B-Tree indexes defined on  
disk-based tables. They are efficient only in the case of a point-lookup equality search, which 
allows SQL Server to calculate the corresponding hash value of the index key (or keys) and 
find a bucket that references the desired chain of rows. SQL Server is unable to use Index 
Seek operations with hash indexes in any other scenario, for example, with <, >, and 
BETWEEN predicates. Evaluation of those predicates requires comparison of the index key 
values, which cannot be done based on hash values.

In the case of composite hash indexes, SQL Server calculates the hash value for 
the combined value of all key columns. A hash value calculated on a subset of the key 
columns would be different, and therefore, a query should have equality predicates on all 
key columns for the index to be useful.

This behavior is different from indexes on disk-based tables. Consider the situation 
where you defined an index on (LastName, FirstName) columns. In the case of disk-based 
tables, that index can be used for an Index Seek operation, regardless of whether 
the predicate on the FirstName column is specified in the where clause of a query. 
Alternatively, a composite hash index on a memory-optimized table requires queries to 
have equality predicates on both LastName and FirstName in order to calculate a hash 
value that allows for choosing the right hash bucket in the index.

Let’s create disk-based and memory-optimized tables with composite indexes on the 
(LastName, FirstName) columns, populating them with the same data as in Listing 4-5.
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Listing 4-5.  Composite Hash Index: Test Tables Creation

create table dbo.CustomersOnDisk
(
    CustomerId int not null identity(1,1),
    FirstName varchar(64) not null,
    LastName varchar(64) not null,
    Placeholder char(100) null,

    constraint PK_CustomersOnDisk
    primary key clustered(CustomerId)
);

create nonclustered index IDX_CustomersOnDisk_LastName_FirstName
on dbo.CustomersOnDisk(LastName, FirstName)
go

create table dbo.CustomersMemoryOptimized
(
    CustomerId int not null identity(1,1)
        constraint PK_CustomersMemoryOptimized
        primary key nonclustered
        hash with (bucket_count = 32768),
    FirstName varchar(64) not null,
    LastName varchar(64) not null,
    Placeholder char(100) null,

    index IDX_CustomersMemoryOptimized_LastName_FirstName
    nonclustered hash(LastName, FirstName)
    with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only)
go

-- Inserting cross-joined data for all first and last names 50 times
-- using GO 50 command in Management Studio
;with FirstNames(FirstName)
as
(
    select Names.Name
    from
    (
        values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
        ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Donny'),
        ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
        ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
        ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
        ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
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        ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
        ('Uri'),('Vincent')
    ) Names(Name)
)
,LastNames(LastName)
as
(
    select Names.Name
    from
    (
        values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
            ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
            ('Anderson'),('Jackson'),('White'),('Harris')
    ) Names(Name)
)
insert into dbo.CustomersOnDisk(LastName, FirstName)
    select LastName, FirstName
    from FirstNames cross join LastNames
go 50

insert into dbo.CustomersMemoryOptimized(LastName, FirstName)
    select LastName, FirstName
    from dbo.CustomersOnDisk;

For the first test, let’s run SELECT statements against both tables, specifying both 
LastName and FirstName as predicates in the queries, as shown in Listing 4-6.

Listing 4-6.  Composite Hash Index: Selecting Data Using Both Index Columns as 
Predicates

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where FirstName = 'Paul' and LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where FirstName = 'Paul' and LastName = 'White';

As you can see in Figure 4-6, SQL Server is able to use an Index Seek operation in 
both cases.
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In the next step, let’s check what happens if you remove the filter by FirstName from 
the queries. Listing 4-7 shows the code.

Listing 4-7.  Composite Hash Index: Selecting Data Using the Leftmost Index Column 
Only

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where LastName = 'White';

In the case of the disk-based index, SQL Server is still able to utilize an Index Seek 
operation. This is not the case for the composite hash index defined on the  
memory-optimized table. You can see the execution plans for the queries in Figure 4-7.

Figure 4-6.  Composite hash index: execution plans when queries use both index columns 
as predicates
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Statistics on Memory-Optimized Tables
SQL Server 2016 creates and automatically updates index- and column-level statistics 
on memory-optimized tables. However, the tables created under database compatibility 
levels lower than 130 (SQL Server 2016) would have the statistics NORECOMPUTE option 
enabled, which prevents automatic statistics updates.

This situation may happen in two cases: either when memory-optimized tables were 
created in SQL Server 2014 and later migrated to SQL Server 2016 or when SQL Server 
2016 databases run under a lower compatibility level than 130.

Let’s look at this behavior and run the code from Listing 4-8. This code changes the 
database compatibility level to 120 and creates the table dbo.Stats120. As the next step, 
it switches the compatibility level back to 130 and creates another table, dbo.Stats130. 
Finally, the code looks at the statistics properties for the table indexes.

Listing 4-8.  Statistics NORECOMPUTE and Compatibility Level

alter database current set compatibility_level=120;
go

create table dbo.Stats120
(
    Id int not null
        constraint PK_Stats120
        primary key nonclustered
        hash with (bucket_count=1024),
    Value int not null
)

Figure 4-7.  Composite hash index: execution plans when queries use the leftmost index 
column only
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with (memory_optimized=on, durability=schema_only);
go

alter database current set compatibility_level=130;
go

create table dbo.Stats130
(
    Id int not null
        constraint PK_Stats130
        primary key nonclustered
        hash with (bucket_count=1024),
    Value int not null
)
with (memory_optimized=on, durability=schema_only);
go

select
    sc.name + '.' + t.name as [Table]
    ,s.name as [Statistics]
    ,s.no_recompute
from
    sys.stats s join sys.tables t on
        s.object_id = t.object_id
    join sys.schemas sc on
        t.schema_id = sc.schema_id
where
    t.name like 'Stats%';

As you can see in Figure 4-8, the dbo.Stats120.PK_Stats120 statistics has the 
NORECOMPUTE option enabled, which will prevent automatic statistics update for the 
statistics. This is not the case for the dbo.Stats130.PK_Stats130 statistics, which has 
been created under a database compatibility level of 130.

You can change the value of the NORECOMPUTE option and enable automatic statistics 
update by manually updating the affected statistics with an UPDATE STATISTICS statement. 
It is worth repeating that the statistics NORECOMPUTE option is controlled by the database 
compatibility level at the time of table creation rather than by the automatic statistics update 
setting. Statistics with the NORECOMPUTE=OFF option will be updated automatically regardless 
of the compatibility level, assuming the Auto Update Statistics database option is enabled.

Figure 4-8.  Statistics NORECOMPUTE option
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You should manually update all statistics on memory-optimized tables and enable 
automatic statistics update after you migrate the database from SQL Server 2014. You can 
achieve that by running the code shown in Listing 4-9. It generates UPDATE STATISTICS 
commands for all statistics with the NORECOMPUTE=ON option and runs them using 
dynamic SQL. 

Listing 4-9.  Updating All Statistics with NORECOMPUTE=ON

declare
    @SQL nvarchar(max)

select
    @SQL = convert(nvarchar(max),
    (
        select
            N'update statistics ' as [text()]
            ,sc.name + N'.' + t.name as [text()]
            ,N'(' + s.name + N'); ' as [text()]
        from
            sys.stats s join sys.tables t on
                s.object_id = t.object_id
            join sys.schemas sc on
                t.schema_id = sc.schema_id
        where
            t.is_memory_optimized = 1 and
            s.no_recompute = 1
        for xml path('')
    ));

exec sp_executesql @SQL;

Missing or inaccurate statistics on memory-optimized tables can have a somewhat 
smaller impact compared to disk-based tables. Indexes on memory-optimized tables 
reference the actual data rows and, in the nutshell, are covering the queries. In-Memory 
OLTP does not require Key Lookup operations to access the row data regardless of which 
index is chosen. Nevertheless, incorrect cardinality estimations could affect the size of 
the query memory grant and the choice of join type when a query is running through the 
Interop Engine. All of that may lead to suboptimal execution plans and bad performance. 

There is another, less obvious issue. Inaccurate statistics can introduce suboptimal 
execution plans with the nested loop joins when SQL Server chooses inner and outer 
inputs for the operator. As you know, the nested loop join algorithm processes the inner 
input for every row from the outer input, and it is more efficient to put smaller input on the 
outer side. Listing 4-10 shows the algorithm for the inner nested loop join as a reference.

Listing 4-10.  Inner Nested Loop Join Algorithm

for each row R1 in outer table
    for each row R2 in inner table
        if R1 joins with R2
            return join (R1, R2)
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Missing statistics can lead to a situation where SQL Server chooses the inner and 
outer inputs incorrectly, which can lead to highly inefficient plans.

Let’s create two tables under a database compatibility level of 120, populating them 
with some data, as shown in Listing 4-11. As you know, statistics will be created with the 
NORECOMPUTE=ON option, which prevents automatic statistics update.

Listing 4-11.  Missing Statistics and Inefficient Execution Plans: Table Creation

alter database current set compatibility_level=120;
go

create table dbo.T1
(
    ID int not null identity(1,1)
        primary key nonclustered hash
        with (bucket_count = 8192),
    T1Col int not null,
    Placeholder char(100) not null
        constraint DEF_T1_Placeholder
        default('1'),

    index IDX_T1Col
    nonclustered hash(T1Col)
    with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

create table dbo.T2
(
    ID int not null identity(1,1)
        primary key nonclustered hash
        with (bucket_count = 8192),
    T2Col int not null,
    Placeholder char(100) not null
        constraint DEF_T2_Placeholder
        default('2'),

    index IDX_T2Col
    nonclustered hash(T2Col)
    with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N3 as t2) -- 4,096 rows
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,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.T1(T1Col)
    select 1 from Ids;

insert into dbo.T2(T2Col)
    select -1 from dbo.T1;

update dbo.T1 set T1Col = 2 where ID = 4096;
update dbo.T2 set T2Col = -2 where ID = 1;

The data in both tables is distributed unevenly. You can confirm this by running the 
query in Listing 4-12. Figure 4-9 illustrates the data distribution in the tables.

Listing 4-12.  Missing Statistics and Inefficient Execution Plans: Checking Data 
Distribution in the Tables

select 'T1' as [Table], T1Col as [Value], count(*) as [Count]
from dbo.T1
group by T1Col

union all

select 'T2' as [Table], T2Col as [Value], count(*) as [Count]
from dbo.T2
group by T2Col;

As the next step, let’s run two queries that join the data from the tables, as shown in 
Listing 4-13. Both queries will return just a single row.

Listing 4-13.  Missing Statistics and Inefficient Execution Plans: Test Queries

select *
from dbo.T1 t1 join dbo.T2 t2 on
    t1.ID = t2.ID
where

Figure 4-9.  Missing statistics and inefficient execution plans: data distribution
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    t1.T1Col = 2 and
    t2.T2Col = -1;

select *
from dbo.T1 t1 join dbo.T2 t2 on
    t1.ID = t2.ID
where
    t1.T1Col = 1 and
    t2.T2Col = -2

As you can see in Figure 4-10, SQL Server generates identical execution plans for 
both queries using the dbo.T1 table in the outer part of the join. This plan is very efficient 
for the first query; there is only one row with T1Col = 2. Therefore, SQL Server had to 
perform an inner input lookup just once. Unfortunately, this is not the case for the second 
query, which leads to 4,095 Index Seek operations on the dbo.T2 table.

Figure 4-10.  Missing statistics and inefficient execution plans: execution plans
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Let’s update the statistics on both tables, as shown in Listing 4-14.

Listing 4-14.  Missing Statistics and Inefficient Execution Plans: Updating Statistics

update statistics dbo.T1;
update statistics dbo.T2;

dbcc show_statistics('dbo.T1','IDX_T1Col');
dbcc show_statistics('dbo.T2','IDX_T2Col');

Figure 4-11 illustrates that the statistics have been updated.

Now, if you run the queries from Listing 4-13 again, SQL Server can generate an 
efficient execution plan for the second query, as shown in Figure 4-12.

Figure 4-11.  Missing statistics and inefficient execution plans: index statistics after update
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You should remember this behavior when you use natively compiled modules, 
which have the queries’ execution plans embedded into the code. SQL Server does 
not recompile the modules when the statistics are updated, and you should manually 
recompile them either by altering them or by using the sp_recompile stored procedure 
when the data distribution has significantly changed.

■■ Note   I will talk about native compilation and the optimization of natively compiled 
modules in Chapter 9.

Summary
Hash indexes consist of an array of hash buckets, each of which stores the pointer to the 
chain of rows with the same index key column hash. Hash indexes help to optimize point-
lookup operations when queries search for the rows using equality predicates. In the case 
of composite hash indexes, the query should have equality predicates on all key columns 
for the index to be useful.

Figure 4-12.  Missing statistics and inefficient execution plans: execution plans after 
statistics update

http://dx.doi.org/10.1007/978-1-4842-2772-5_9
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Choosing the right bucket count is extremely important. Underestimations lead 
to long row chains, which could seriously degrade the performance of the queries. 
Overestimations increase memory consumption and decrease the performance of the 
index scans. Nevertheless, in many cases, it is better to slightly overestimate rather than to 
underestimate the value.

Low-cardinality columns lead to the long row chains and are usually bad candidates 
for hash indexes.

You should analyze index cardinality and consider future system growth when 
choosing the right bucket count. Ideally, you should have at least 33 percent of buckets 
empty. You can get information about buckets and row chains with the sys.dm_db_xtp_
hash_index_stats view.

SQL Server 2016 creates and automatically updates statistics on the indexes on 
memory-optimized tables; however, statistics created in databases with a compatibility 
level less than 130 have the NORECOMPUTE=ON option enabled. You should update statistics 
manually with the UPDATE STATISTICS statement to enable automatic statistics update 
for such tables.
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CHAPTER 5

Nonclustered Indexes

This chapter discusses nonclustered indexes, which is the second type of indexes 
supported by the In-Memory OLTP Engine. It shows how to define nonclustered indexes, 
talks about their SARGability rules, and explains their internal structure.

Finally, the chapter discusses several indexing strategies and design considerations 
for memory-optimized tables.

Working with Nonclustered Indexes
Nonclustered indexes are another type of index supported by the In-Memory OLTP Engine. 
In contrast to hash indexes, which are optimized to support point-lookup equality searches, 
nonclustered indexes help you search data based on a range of values. They have a 
somewhat similar structure to regular indexes on disk-based tables. They are not exactly the 
same, however, and I will discuss their internal implementation in depth later in this chapter.

Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and the documentation and 
whitepapers for that version used the term range indexes to reference them. However, in the 
production release of SQL Server 2014, Microsoft changed the terminology to nonclustered 
indexes. Nevertheless, you can still find the term range indexes in documentation and in data 
management views.

That terminology can be confusing because hash indexes are also not clustered. In 
fact, the concepts of clustered indexes cannot be applied to In-Memory OLTP. Data 
rows are not stored in any particular order in memory.

It is also worth mentioning that the minimal index_id value of In-Memory OLTP 
indexes is 2, which corresponds to nonclustered indexes in disk-based tables.

TERMINOLOGY ISSUE
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Creating Nonclustered Indexes
Nonclustered indexes are created inline as part of the CREATE TABLE statement. The 
syntax is similar to hash index creation; however, you should omit the keyword HASH, and 
you do not need to specify the number of buckets in the index properties.

The code in Listing 5-1 creates a memory-optimized table with two nonclustered 
indexes, one composite and another on the single column.

Listing 5-1.  Creating a Table with Two Nonclustered Indexes

create table dbo.Customers
(
    CustomerId int identity(1,1) not null
        constraint PK_Customers
        primary key nonclustered
        hash with (bucket_count=1024),
    FirstName varchar(32) not null,
    LastName varchar(64) not null,
    FullName varchar(97) not null,

    index IDX_LastName_FirstName
    nonclustered(LastName, FirstName),

    index IDX_FullName
    nonclustered(FullName)
)
with (memory_optimized=on, durability=schema_only);

Using Nonclustered Indexes
Similar to B-Tree indexes in disk-based tables, the data in nonclustered indexes is 
sorted according to the value of index key columns. As a result, nonclustered indexes 
are beneficial in a large number of use cases. They can lead to an Index Seek operation 
in scenarios when query predicates allow SQL Server to locate and isolate a subset 
of the index keys for processing. With very few exceptions, the SARGability rules for 
nonclustered indexes match the rules for indexes defined on disk-based tables.

Listing 5-2 shows several queries against the dbo.Customers table. SQL Server is able 
to use Index Seek operations with all of them.

Listing 5-2.  Queries That Lead to Index Seek Operations

-- Point-Lookup specifying all columns in the index
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White' and FirstName = 'Paul';
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-- Point-lookup using leftmost index column
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White';

-- Using ">", ">=", "<", "<=" comparison
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName > 'White';

-- Prefix Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like 'Wh%';

-- IN list
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName in ('White','Isakov');

Similar to B-Tree indexes, an Index Seek operation is impossible when query 
predicates do not allow you to isolate a subset of the index keys for processing. Listing 5-3 
shows several examples of such queries.

Listing 5-3.  Queries That Lead to Index Scan Operations

-- Omitting left-most index column(s)
select CustomerId, FirstName, LastName
from dbo.Customers
where FirstName = 'Paul';

-- Substring Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like '%hit%';

-- Functions
select CustomerId, FirstName, LastName
from dbo.Customers
where len(LastName) = 5;

As the opposite of B-Tree indexes on disk-based tables, nonclustered indexes are 
unidirectional, and SQL Server is unable to scan index keys in the opposite order of how 
they were sorted. You should keep this behavior in mind when you define an index and 
choose the sorting order for the columns.
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Let’s illustrate that with an example; we’ll create a disk-based table with the same 
structure as dbo.Customers and populate both tables with the same data. Listing 5-4 
shows the code to do this.

Listing 5-4.  Nonclustered Indexes and Sorting Order: Disk-Based Table Creation

create table dbo.Customers_OnDisk
(
    CustomerId int identity(1,1) not null,
    FirstName varchar(32) not null,
    LastName varchar(64) not null,
    FullName varchar(97) not null,

    constraint PK_Customers_OnDisk
    primary key clustered(CustomerId)
);

create nonclustered index IDX_Customers_OnDisk_LastName_FirstName
on dbo.Customers_OnDisk(LastName, FirstName);

create nonclustered index IDX_Customers_OnDisk_FullName
on dbo.Customers_OnDisk(FullName);
go

;with FirstNames(FirstName)
as
(
    select Names.Name
    from
    (
        values('Andrew'),('Andy'),('Anton'),('Ashley')
        ,('Boris'),('Brian'),('Cristopher'),('Cathy')
        ,('Daniel'),('Don'),('Edward'),('Eddy'),('Emy')
        �,('Frank'),('George'),('Harry'),('Henry'),('Ida')
        ,('John'),('Jimmy'),('Jenny'),('Jack'),('Kathy')
        ,('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
        ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
        ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
        ('Uri'),('Victor')
    ) Names(Name)
)
,LastNames(LastName)
as
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(
    select Names.Name
    from
    (
        values('Smith'),('Johnson'),('Williams'),('Jones')
        ,('Brown'),('Davis'),('Miller'),('Wilson')
        ,('Moore'),('Taylor'),('Anderson'),('Jackson')
        ,('White'),('Isakov')
    ) Names(Name)
)
insert into dbo.Customers(LastName, FirstName, FullName)
    select LastName, FirstName, FirstName + ' ' + LastName
    from FirstNames cross join LastNames;

insert into dbo.Customers_OnDisk(LastName, FirstName, FullName)
    select LastName, FirstName, FullName
    from dbo.Customers;

Let’s run the queries that select several rows in ascending order, which matches the 
index sorting order. Listing 5-5 shows the queries.

Listing 5-5.  Nonclustered Indexes and Sorting Order: Selecting Data in the Same Order 
with the Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName ASC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName ASC;

Figure 5-1 shows the execution plans for the queries. SQL Server scans the indexes 
starting with the lowest key and stops after it reads three rows. The execution plans  
are similar for both queries with the exception of the required Key Lookup operation  
with disk-based data. SQL Server uses it to obtain the values of the FirstName and 
LastName columns from the clustered index of the table. Key Lookup is not required  
with memory-optimized tables where the index pointers are part of the actual data rows 
and the indexes are covering all in-row columns in the queries.
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The situation changes if you need to sort the output in descending order, as shown in 
Listing 5-6.

Listing 5-6.  Nonclustered Indexes and Sorting Order: Selecting Data in the Opposite 
Order with Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName DESC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName DESC;

As you can see in Figure 5-2, SQL Server is able to scan the disk-based table index 
in the opposite order of how it was defined because of the bidirectional nature of B-Tree 
indexes. However, this is not the case for memory-optimized tables where indexes are 
unidirectional. SQL Server decides to scan the table and sort the data afterward.

Figure 5-1.  Execution plans when ORDER BY condition matches the index sorting order
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Finally, index statistics behavior, which I discussed in the previous chapter, still 
applies to the nonclustered indexes. SQL Server creates statistics at the time of index 
creation; however, the automatic statistics update behavior depends on the database 
compatibility level when the tables were created.

Nonclustered Index Internals
Nonclustered indexes use a lock- and latch-free variation of the B-Tree, called a Bw-Tree, 
which was designed by Microsoft Research in 2011. Let’s look at the Bw-Tree structure 
in detail.

Bw-Tree Overview
Similar to B-Tree, index pages in a Bw-Tree contain a set of ordered index key values. 
However, Bw-Tree pages do not have a fixed size, and they are unchangeable after they 
are built. The maximum page size, however, is 8KB.

Rows from a leaf level of the nonclustered index contain the pointers to the data row 
chains with the same index key values. This works in a similar manner to hash indexes, when 
multiple rows and/or versions of a row are linked together. Each index in the table adds a 
pointer to the index pointer array in the row, regardless of its type: hash or nonclustered.

Figure 5-2.  Execution plans when ORDER BY condition is the opposite of the index sorting 
order
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Root and intermediate levels in nonclustered indexes are called internal pages. 
Similar to B-Tree indexes, internal pages point to the next level in the index. However, 
instead of pointing to the actual data page, internal pages use a logical page ID (PID), 
which is a position (offset) in a separate array-like structure called a mapping table. In 
turn, each element in the mapping table contains a pointer to the actual index page. 
Mapping tables allow In-Memory OLTP to avoid rebuilding internal pages when the 
next-level pages they reference need to be changed (more about this later in the chapter). 
Only the mapping table pointer is updated in that case.

Figure 5-3 shows an example of a nonclustered index and a mapping table. Each 
index row from the internal page stores the highest key value on the next-level page and 
PID. This is different from a B-Tree index, where intermediate- and root-level index rows 
store the lowest key value of the next-level page instead. Another difference is that the 
pages in a Bw-Tree are not linked in a double-linked list. Each page knows the PID of the 
next page on the same level and does not know the PID of the previous page. Even though 
it appears as a pointer (arrow) in Figure 5-3, that link is done through the mapping table, 
similar to links to pages on the next level.

Even though a Bw-Tree looks similar to a B-Tree, there is one conceptual difference: 
the leaf level of a disk-based B-Tree index consists of separate index rows for each data 
row in the index. If multiple data rows have the same key value, the index would have 
multiple leaf-level rows with the same index key stored.

Alternatively, in-memory nonclustered indexes store one index row (pointer) to the 
row chain that includes all the data rows that have the same key value. Only one index 
row (pointer) per key value is stored in the index. You can see this in Figure 5-3, where the 
leaf level of the index has single rows for the key values of Ann and Nancy, even though the 
row chain includes more than one data row for each value.

Figure 5-3.  Nonclustered index structure
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■■ Tip   You can compare the structure of B-Tree and Bw-Tree indexes by looking at  
Figures 3-1 and 3-2 from Chapter 3, which show clustered and nonclustered B-Tree indexes 
on disk-based tables.

Index Pages and Delta Records
As mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL 
Server builds a new version of the page when it needs to be updated and replaces the 
page pointer in the mapping table, which avoids changing internal pages that reference 
an old (obsolete) page.

Every time SQL Server needs to change a leaf-level index page, it creates one or two 
delta records that represent the changes. INSERT and DELETE operations generate a single 
insert or delete delta record, while an UPDATE operation generates two delta records, 
deleting old value and inserting new value. Delta records for the same index page are 
linked through a chain of memory pointers with the last pointer to the actual index page. 
SQL Server also replaces a pointer in the mapping table with the address of the first delta 
record in the chain.

Figure 5-4 shows an example of a leaf-level page and delta records if the following 
actions occurred in this sequence: the R1 index row is updated, the R2 row is deleted, and 
the R3 row is inserted.

■■ Note   The internal implementation of the In-Memory OLTP Engine guarantees that 
multiple sessions cannot simultaneously update memory pointers in the various In-Memory 
OLTP objects, thereby overwriting each other’s changes. I will cover this process in detail in 
Appendix A.

The internal and leaf pages of nonclustered indexes consist of two areas: a header 
and data. The header area includes information about the page such as the following:

•	 PID: The position (offset) in the mapping table

•	 Page type: The type of page, such as leaf, internal, delta, or special

•	 Right-page PID: The position (offset) of the next page in the 
mapping table

Figure 5-4.  Delta records and nonclustered index leaf page

http://dx.doi.org/10.1007/978-1-4842-2772-5_3#Fig1
http://dx.doi.org/10.1007/978-1-4842-2772-5_3#Fig2
http://dx.doi.org/10.1007/978-1-4842-2772-5_3
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•	 Height: The number of levels from the current page to the leaf 
level of the index

•	 Key values: The number of key values (index rows) stored on the 
page

•	 Delta record statistics: The number of delta records and space 
used by the delta key values

•	 Max key value: The max value of a key on the page

The data area of the page includes either two or three arrays depending on the index 
key data types. The arrays are as follows:

•	 Values: An array of 8-byte pointers. Internal pages store the PID of 
next-level pages. Leaf-level pages store pointers to the first row in 
the row chain with the corresponding key value. It is worth noting 
that even though the PID requires 4 bytes to store a value, SQL 
Server uses 8-byte elements to preserve the same page structure 
between internal and leaf pages.

•	 Keys: An array of key values stored on the page.

•	 Offsets: An array of 2-byte offsets where the individual key values 
in the keys array start. Offsets are stored only if the keys have 
variable-length data.

Delta records, in a nutshell, are one-record index data pages. The structure of delta 
data pages is similar to the structure of internal and leaf pages. However, instead of arrays 
of values and keys, delta data pages store operation code (insert or delete) and a single 
key value and pointer to the first data row in a row chain.

Figure 5-5 shows an example of a leaf-level index page with an insert delta record for 
Bob. The delta record points to the leaf-level index page to which the value Bob logically 
belongs, and it also has the pointer to the row chain of the data rows with the index key 
values of Bob. Conceptually, you can think about an insert delta record as the leaf-level 
index row, which is physically separated from the leaf-level index page. A delete delta 
record, on the other hand, indicates that the leaf-level index row has been deleted.

Figure 5-5.  A leaf-level index page with an insert delta record
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SQL Server needs to traverse and analyze all delta records when accessing an index 
page. As you can guess, a long chain of delta records affects performance. When this is 
the case, SQL Server consolidates delta records and rebuilds an index page, creating a 
new one. The newly created page has the same PID and replaces the old page, which is 
marked for garbage collection. Replacement of the page is accomplished by changing a 
pointer in the mapping table. SQL Server does not need to change internal pages because 
they use the mapping table to reference leaf-level pages.

The process of rebuilding is triggered at the moment a new delta record is created 
for pages that already have 16 delta records in a chain. The action described by the delta 
record, which triggers the rebuild, is incorporated into the newly created page.

Two other processes can create new or delete existing index pages, in addition to 
delta records consolidation. The first process, page splitting, occurs when a page does not 
have enough free space to accommodate a new data row. Another process, page merging, 
occurs when a delete operation leaves an index page less than 10 percent from the 
maximum page size, which is 8KB now, or when an index page contains just a single row.

■■ Note   I will cover the page splitting and page merging processes in depth in Appendix B.

Obtaining Information About Nonclustered 
Indexes
In addition to the sys.dm_db_xtp_hash_index_stats view, which was discussed in 
Chapter 4, SQL Server provides two other views to obtain information about indexes on 
memory-optimized tables. Those views provide the data collected since the memory-
optimized tables were loaded into memory, which occurs at database startup.

You can obtain information about index access methods and ghost rows in both 
hash and nonclustered indexes with the sys.dm_db_xtp_index_stats view. The notable 
columns in the view are the following:

•	 xtp_object_id corresponds to the internal ID of the In-Memory 
OLTP object. This value may change when you alter the table, 
which rebuilds the table in the background.

•	 scans_started shows the number of times that row chains in the 
index were scanned. Because of the nature of the index, every 
operation, such as SELECT, INSERT, UPDATE, and DELETE, requires 
SQL Server to scan a row chain and increment this column.

•	 rows_returned represents the cumulative number of rows 
returned to the next operator in the execution plan. It does 
not necessarily match the number of rows returned to a client 
because further operators in the execution plan can change it.

•	 rows_touched represents the cumulative number of rows 
accessed in the index.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
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•	 rows_expired shows the number of detected stale rows. I will 
discuss this in greater detail when I talk about the garbage 
collection process in Chapter 11.

•	 rows_expired_removed returns the number of stale rows that 
have been unlinked from the index row chains. I will also discuss 
this in more detail when I talk about garbage collection.

Listing 5-7 shows the query that returns the information about indexes defined on 
the dbo.Customers table.

Listing 5-7.  Querying the sys.dm_db_xtp_index_stats View

select
    s.name + '.' + t.name as [table]
    ,i.index_id    
    ,i.name as [index]
    ,i.type_desc as [type]
    ,st.scans_started
    ,st.rows_returned
    ,iif(st.scans_started = 0, 0,
        floor(st.rows_returned / st.scans_started))
                as [rows per scan]
from
    sys.dm_db_xtp_index_stats st join sys.tables t on
        st.object_id = t.object_id
    join sys.indexes i on
        st.object_id = i.object_id and
        st.index_id = i.index_id
    join sys.schemas s on
        s.schema_id = t.schema_id
where
    s.name = 'dbo' and t.name = 'Customers'

Figure 5-6 illustrates the output of the query. A large number of rows per scan can 
indicate heavy index scans, which can be the sign of a suboptimal indexing strategy and/
or poorly written queries.

It is also important to note that the view returns the row for the table heap object 
(index_id=0). This heap allocates the memory for data rows in the table. In-Memory 
OLTP accesses this heap at the time of Table Scan operations. I will discuss it in detail in 
the next chapter.

Figure 5-6.  Output from the sys.dm_db_xtp_index_stats view

http://dx.doi.org/10.1007/978-1-4842-2772-5_11
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■■ Note   You can read more about the sys.dm_db_xtp_index_stats view at https://
docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-

views/sys-dm-db-xtp-index-stats-transact-sql.

The sys.dm_db_xtp_nonclustered_index_stats view returns information about 
nonclustered indexes. It includes information about the total number of pages in the 
index along with page splits, merges, and consolidation-related statistics.

Listing 5-8 shows information about nonclustered indexes defined on the dbo.
Customers table. Figure 5-7 shows the output of the query.

Listing 5-8.  Querying the sys.dm_db_xtp_nonclustered_index_stats View

select
    s.name + '.' + t.name as [table]
    ,i.index_id    
    ,i.name as [index]
    ,i.type_desc as [type]
    ,st.delta_pages
    ,st.leaf_pages
    ,st.internal_pages
    ,st.leaf_pages + st.delta_pages + st.internal_pages
                as [total pages]
from
    sys.dm_db_xtp_nonclustered_index_stats st
        join sys.tables t on
            st.object_id = t.object_id
        join sys.indexes i on
            st.object_id = i.object_id and
            st.index_id = i.index_id
        join sys.schemas s on
            s.schema_id = t.schema_id
where
    s.name = 'dbo' and t.name = 'Customers'

■■ Note   You can read more about the sys.dm_db_xtp_nonclustered_index_stats view 
at https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-
management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql.

Figure 5-7.  Output from the sys.dm_db_xtp_nonclustered_index_stats view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
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Index Design Considerations
With the exception of the unidirectional nature of Bw-Tree indexes, nonclustered indexes 
on memory-optimized tables behave similarly to the indexes on disk-based tables. They 
also cover all in-row columns in the table, which simplifies the indexing process.

There are a couple of aspects of their behavior, however, that I want to mention.

Data Modification Overhead
Indexes on memory-optimized tables introduce data modification overhead similar to 
indexes on disk-based tables. In-Memory OLTP needs to maintain multiple index row 
chains along with internal index structures, such as hash and mapping tables and internal 
and leaf nonclustered index pages.

Let’s look at this overhead in detail. The code in Listing 5-9 creates a disk-based table 
and populates it with 65,536 rows. Next, it creates two memory-optimized tables, with two 
and eight indexes, respectively.

Listing 5-9.  Insert Overhead: Table Creations

create table dbo.UpdateOverheadDisk
(
    Id int not null,
    IndexedCol int not null,
    NonIndexedCol int not null,
    Col3 int not null,
    Col4 int not null,
    Col5 int not null,
    Col6 int not null,
    Col7 int not null,
    Col8 int not null,

    constraint PK_UpdateOverheadDisk
    primary key clustered(ID)
);

create nonclustered index IDX_UpdateOverheadDisk_IndexedCol
on dbo.UpdateOverheadDisk(IndexedCol);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.UpdateOverheadDisk(ID,IndexedCol,NonIndexedCol,Col3
,Col4,Col5,Col6,Col7,Col8)
    select Id, Id, Id, Id, Id, Id, Id, Id, Id from Ids;
go
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create table dbo.UpdateOverheadMemory
(
    Id int not null
        constraint PK_UpdateOverheadMemory
        primary key nonclustered
        hash with (bucket_count=2097152),
    IndexedCol int not null,
    NonIndexedCol int not null,
    Col3 int not null,
    Col4 int not null,
    Col5 int not null,
    Col6 int not null,
    Col7 int not null,
    Col8 int not null,

    index IDX_IndexedCol nonclustered(IndexedCol)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.UpdateOverhead8Idx
(
    Id int not null
        constraint PK_UpdateOverhead8Idx
        primary key nonclustered
        hash with (bucket_count=2097152),
    IndexedCol int not null,
    NonIndexedCol int not null,
    Col3 int not null,
    Col4 int not null,
    Col5 int not null,
    Col6 int not null,
    Col7 int not null,
    Col8 int not null,

    index IDX_IndexedCol nonclustered(IndexedCol),
    index IDX_Col3 nonclustered(Col3),
    index IDX_Col4 nonclustered(Col4),
    index IDX_Col5 nonclustered(Col5),
    index IDX_Col6 nonclustered(Col6),
    index IDX_Col7 nonclustered(Col7),
    index IDX_Col8 nonclustered(Col8)
)
with (memory_optimized=on, durability=schema_only);    
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Let’s insert the data into both memory-optimized tables using the code from 
Listing 5-10.

Listing 5-10.  Insert Overhead: Inserting Data into Memory-Optimized Tables

insert into dbo.UpdateOverheadMemory(ID,IndexedCol,NonIndexedCol,Col3
        ,Col4,Col5,Col6,Col7,Col8)
    select ID,IndexedCol,NonIndexedCol,Col3,Col4,Col5,Col6,Col7,Col8
    from dbo.UpdateOverheadDisk;

insert into dbo.UpdateOverhead8Idx(ID,IndexedCol,NonIndexedCol,Col3
        ,Col4,Col5,Col6,Col7,Col8)
    select ID,IndexedCol,NonIndexedCol,Col3,Col4,Col5,Col6,Col7,Col8
    from dbo.UpdateOverheadDisk;

The execution times of the INSERT statements in my environment are 138 ms and 
613 ms, respectively. As you can see, maintenance of the six extra indexes in the dbo.
UpdateOverhead8Idx table added significant overhead to the operation.

There is also overhead during UPDATE operations; however, it is different compared 
to disk-based tables. Nonclustered indexes on disk-based tables are the separate data 
structures that store the copy of the data from the table. SQL Server maintains all those 
copies; therefore, the update operation modifies all indexes where updated columns were 
present. There is no overhead, however, when you update the columns that were not 
present in nonclustered indexes.

In-Memory OLTP, on the other hand, always generates the new row objects 
regardless of what columns were updated. SQL Server maintains all index row chains, 
which leads to overhead even when nonindexed columns were modified.

Let’s look at an example and perform two updates of the disk-based dbo.
UpdateOverheadDisk table, modifying indexed and nonindexed columns there. Both 
operations change the value of integer fixed-length columns and do not lead to page 
splits. Listing 5-11 shows the code.

Listing 5-11.  Update Overhead: Disk-Based Table Update

update dbo.UpdateOverheadDisk
set IndexedCol += 1;

update dbo.UpdateOverheadDisk
set NonIndexedCol += 1;
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Figure 5-8 illustrates the execution plan and execution time of both statements.  
As you can see, updating the indexed column forced SQL Server to modify both indexes, 
and it took significantly longer than updating the nonindexed column.

Figure 5-8.  Execution plans and times for disk-based table update

Listing 5-12 shows the same UPDATE statements for the memory-optimized table. 
Both statements generated the new data row objects and had to maintain both indexes on 
the table. That overhead always exists regardless of what columns were updated. 

Listing 5-12.  Update Overhead: Memory-Optimized Table Update

update dbo.UpdateOverheadMemory
set IndexedCol += 1;

update dbo.UpdateOverheadMemory
set NonIndexedCol += 1;

Figure 5-9 illustrates the execution plan and execution time of the statements.
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Indexes on memory-optimized tables can also delay the garbage collection. In-
Memory OLTP needs to unlink old stale rows from all the index chains, which may take 
longer when a row is included into the multiple indexes. 

■■ Note   I will discuss the garbage collection process in depth in Chapter 11.

As you can see, unnecessary indexes introduce overhead into the system. You should 
avoid them and create the minimally required set of indexes to support your workload.

Figure 5-9.  Execution plans and times for memory-optimized table update

http://dx.doi.org/10.1007/978-1-4842-2772-5_11
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Hash Indexes vs. Nonclustered Indexes
As you already know, hash indexes are useful only for point-lookup searches in cases 
when queries use equality predicates on all index columns. Nonclustered indexes, on the 
other hand, can be used in a much wider scope, which often makes the choice obvious. 
You should use nonclustered indexes when your queries benefit from scenarios other 
than point-lookups.

The situation is less obvious in the case of point-lookups. With the hash indexes, 
SQL Server can locate the hash bucket, which is the entry point to the data row chain, in a 
single step by calling the hash function and calculating the hash value. With nonclustered 
indexes, SQL Server must traverse the Bw-Tree to find a leaf page, and the number of 
steps depends on the height of the index and the number of delta records there.

Even though nonclustered indexes require more steps to find an entry point to 
the data row chain, the chain can be smaller compared to hash indexes. Row chains 
in nonclustered indexes are built based on unique index key values. In hash indexes, 
row chains are built based on a nonunique hash key and can be larger because of hash 
collisions, especially when the bucket_count value is insufficient.

Let’s compare hash and nonclustered index performance in a point-lookup scenario. 
Listing 5-13 creates four tables of the same structure. Three of them have hash indexes 
defined on the Value column using a different bucket_count value. The fourth table has 
a nonclustered index defined on the same column instead. Finally, the code populates all 
tables with the same data.

Listing 5-13.  Hash and Nonclustered Indexes’ Point Lookup Performance: Tables 
Creation

create table dbo.Hash_131072
(
    Id int not null
    constraint PK_Hash_131072
        primary key nonclustered
        hash with (bucket_count=131072),
    Value int not null,

    index IDX_Value hash(Value)
    with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_16384
(
    Id int not null
        constraint PK_Hash_16384
        primary key nonclustered
        hash with (bucket_count=16384),
    Value int not null,
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    index IDX_Value hash(Value)
    with (bucket_count=16384)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_1024
(
    Id int not null
        constraint PK_Hash_1014
        primary key nonclustered
        hash with (bucket_count=1024),
    Value int not null,

    index IDX_Value hash(Value)
    with (bucket_count=1024)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.NonClusteredIdx
(
    Id int not null
        constraint PK_NonClusteredIdx
        primary key nonclustered
        hash with (bucket_count=131072),
    Value int not null,

    index IDX_Value nonclustered(Value)
)
with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Hash_131072(Id,Value)
    select Id, Id
    from ids
    where Id <= 75000;

insert into dbo.Hash_16384(Id,Value)
    select Id, Value
    from dbo.Hash_131072;
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insert into dbo.Hash_1024(Id,Value)
    select Id, Value
    from dbo.Hash_131072;

insert into dbo.NonClusteredIdx(Id,Value)
    select Id, Value
    from dbo.Hash_131072;

Different numbers of buckets led to the different index row chain sizes in the indexes. 
In this case, the dbo.Hash_131072, dbo.Hash_16384, and dbo.Hash_1024 tables have on 
average 1, 4, and 73 rows per chain, respectively.

■■ Tip  You can analyze the hash index properties using the sys.dm_db_xtp_hash_index_stats 
view and the code from Listing  4-2 in Chapter 4.

As the next step, let’s compare point-lookup performance using the code from 
Listing 5-14. This code triggers 75,000 point-lookup selects against each table.

Listing 5-14.  Hash and Nonclustered Indexes’ Point Lookup Performance: Selecting Data

declare
    @T table(Value int not null primary key)

insert into @T(Value)
    select Id from dbo.Hash_131072;

select count(*)
from @T t
    cross apply
    (
        select count(*) as Cnt
        from dbo.Hash_131072 h
        where h.Value = t.Value
    ) c
where c.Cnt > 0;

select count(*)
from @T t
    cross apply
    (
        select count(*) as Cnt
        from dbo.Hash_16384 h
        where h.Value = t.Value
    ) c
where c.Cnt > 0;

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
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select count(*)
from @T t
    cross apply
    (
        select count(*) as Cnt
        from dbo.Hash_1024 h
        where h.Value = t.Value
    ) c
where c.Cnt > 0;

select count(*)
from @T t
    cross apply
    (
        select count(*) as Cnt
        from dbo.NonClusteredIdx h
        where h.Value = t.Value
    ) c
where c.Cnt > 0;

Table 5-1 shows the execution time of the queries in my environment. With a 
sufficient number of buckets, hash indexes outperform nonclustered indexes. However, 
an insufficient number of buckets and long row chains significantly degrade their 
performance, making them less efficient than nonclustered indexes.

Table 5-1.  Execution Time of Queries

Hash_131072 Hash_16384 Hash_1024 NonClusteredIdx

Average Index Row 
Chain Size

1 4 73 N/A

Execution Time 62 ms 74 ms 129 ms 78 ms

In the end, it all depends on a correct bucket_count estimation. Unfortunately, the 
volatility of the data makes this task complicated and requires you to factor the future 
data growth into analysis.

In some cases, when data is relatively static, you can create hash indexes, 
overestimating the number of buckets there. Consider the catalog entities, for example, 
the Customers table and the CustomerId and Phone columns in it. Hash indexes on those 
columns would improve the performance of point-lookup searches and joins. Even 
though the customer base is growing over time, that growth rate is usually not excessive, 
and reserving one million empty buckets could be sufficient for a long time. It will use 
about 8MB of memory per index, which could be acceptable in most cases.
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Choosing the hash index for the OrderId column in the Orders table, on the other 
hand, is more dangerous. Load growth and changes in data retention rules can make the 
original bucket_count value insufficient. This still can be acceptable if you are planning 
to monitor the system and can afford the downtime while rebuilding the index; however, 
nonclustered index would be the safer choice in this scenario.

Memory requirements are another factor to consider. With the hash indexes, 
memory usage depends on the number of buckets. The amount of memory required 
for the nonclustered indexes depends on the size of the index key and index cardinality 
(uniqueness of index key values). For example, if a table has a varchar column with 
1,000,000 unique values of 100 bytes each, the nonclustered index on that column 
would require about 800MB to support a Bw-Tree structure and store key values on 
internal and leaf index pages. Alternatively, a hash index with 2,097,152 buckets will use 
just 16MB of memory.

To summarize, for point-lookup and equality joins, create the hash indexes only 
when you can correctly estimate the number of buckets, factoring future data growth into 
the analysis. You should also monitor them and can afford the downtime rebuilding the 
indexes when bucket_count becomes insufficient. Otherwise, use nonclustered indexes, 
which are the safer choice and do not depend on the bucket count.

Summary
Nonclustered indexes are the second type of indexes supported by the In-Memory OLTP 
Engine. They have similar SARGability rules, with the B-Tree indexes defined on disk-based 
tables with exception of the scans in the opposite order to the index sorting order. 

Internally, nonclustered indexes use a lock- and latch-free variation of a B-Tree, 
called a Bw-Tree, which consists of internal and leaf data pages referencing each other 
through the mapping table. Leaf data pages store one row per each individual key value, 
with a pointer to the chain of data rows with the same key.

SQL Server never updates index pages. Any changes are referenced through the delta 
records that correspond to individual INSERT and DELETE operations on the page. SQL 
Server consolidates the large chains of delta records and performs splitting and merging 
of the data pages when needed. All of those processes create the new data pages, marking 
the old ones for garbage collection.

Indexes on memory-optimized tables introduce data modification overhead like 
indexes on disk-based tables. SQL Server must maintain multiple index row chains when 
you insert or update the data. You should avoid defining an excessive number of indexes 
and create a minimally required set of indexes to support the workload.

The performance of hash indexes greatly depends on the bucket_count value. With 
a correct bucket_count value, hash indexes would outperform nonclustered indexes in 
point-lookup scenarios. They are a good choice for catalog entities where data is relatively 
static. Nonclustered indexes, on the other hand, are a good choice in scenarios when 
point-lookup is not an option and/or when it is hard to estimate the number of buckets in 
the hash index.
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CHAPTER 6

Memory Consumers and  
Off-Row Storage

This chapter provides an overview of how In-Memory OLTP allocates the memory for 
different objects and explains how off-row column data is stored. It also illustrates the 
performance impact of having off-row columns in a table and explains how SQL Server 
chooses columns that need to be stored off-row.

Varheaps
In-Memory OLTP database objects allocate memory from separate memory heaps called 
varheaps. Varheaps are the data structures that respond to and track memory allocation 
requests from various database objects, and they can grow and shrink in size when 
needed. All database objects that consume memory are called memory consumers.

Internally, varheaps allocate memory in pages of various size, with 64KB pages 
being the most common. Each page provides the memory for allocation requests of a 
predefined size. For example, a varheap can have two 64KB pages; one handles 64-byte 
allocations, and the other one handles 256-byte allocations.

Let’s look at the example shown in Listing 6-1. The code creates the table with the 
hash index and analyzes the table’s memory consumers using the sys.dm_db_xtp_
memory_consumers view. As you can guess by the name, this view provides information 
about memory consumers in the database. You will look at several memory-optimized 
table-related consumers in this and the next chapter, and I will discuss this view in detail 
in Chapter 12.

Listing 6-1.  Analyzing Varheaps: Table Creation

create table dbo.Varheaps
(
    Col varchar(8000) not null
        constraint PK_Varheaps
        primary key nonclustered hash
        with (bucket_count=16384)
)
with (memory_optimized = on, durability = schema_only);

http://dx.doi.org/10.1007/978-1-4842-2772-5_12
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select
    i.name as [Index], i.index_id, c.memory_consumer_id
    ,c.memory_consumer_type_desc as [mc type]
    ,c.memory_consumer_desc as [description], c.allocation_count as [allocs]
    ,c.allocated_bytes, c.used_bytes
from
    sys.dm_db_xtp_memory_consumers c
        left outer join sys.indexes i on
            c.object_id = i.object_id and c.index_id = i.index_id
where
    c.object_id = object_id('dbo.Varheaps');

As you can see in Figure 6-1, the table has two memory consumers/varheaps. The first 
varheap with type HASH provides memory for the hash table in the hash index. The hash 
index has 16,384 buckets and uses 131,072 bytes of memory, which was allocated at table 
creation time. The second varheap with type VARHEAP and the description “Table heap” is 
providing the memory for the data rows. It did not allocate any memory because the table 
was empty.

Figure 6-1.  Memory consumers after table creation

Figure 6-2.  Memory consumers after inserting the first row

Figure 6-3.  Memory consumers after inserting the second row

Let’s insert a row into the table with the INSERT INTO dbo.Varheaps(Col) VALUES('a') 
statement. If you check the memory consumers with the SELECT statement from Listing 6-1 
again, you would see the results shown in Figure 6-2. As you can see, the table varheap 
allocated one 64KB memory page and provided 40 bytes to store the data row object.

Let’s insert another row of the same size with the INSERT INTO dbo.Varheaps(Col) 
VALUES('b') statement. Figure 6-3 illustrates the memory consumer state after the 
second insert. The size of both rows was the same, and, therefore, the table heap provided 
memory from the same, already allocated, memory page to the second row.
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Finally, let’s insert another row of a different size using the INSERT INTO dbo.
Varheaps(Col) VALUES('ccccc') statement. This row requires allocation of a different 
size, and the table varheap allocated another 64KB memory page to handle those 
allocations. Figure 6-4 illustrates that.

Figure 6-4.  Memory consumers after inserting the third row

Obviously, it is inefficient to allocate the separate memory pages for every possible 
allocation size request. In some cases, the varheap provides the memory from a page that 
serves allocations of the greater size. For example, a 62-byte memory allocation could 
come from a page that serves 64-byte allocations. The page would still reserve and use 
64 bytes of memory for this allocation even though the memory consumer requested a 
smaller memory allocation.

Let’s see that in action and run the code in Listing 6-2. It inserts the data rows with 
Col values varying from 2 to 8,000 characters.

Listing 6-2.  Analyzing Varheaps: Inserting Rows of Various Sizes

declare
    @I int = 2

while @I <= 8000
begin
    insert into dbo.Varheaps(Col) values(replicate('0',@I));
    set @I += 1;
end;

Figure 6-5 illustrates the state of the varheap. It allocated 39,452,673 bytes, which 
correspond to 602 64KB memory pages despite that the table stores 8,000 possible 
combinations of the data row sizes.

Figure 6-5.  Memory consumers after populating table with the data

Per-varheap memory consumer separation allows you to track memory usage  
on a per-object basis. It also helps SQL Server to optimize some internal operations.  
For example, it allows the garbage collection process to more quickly deallocate the 
memory when you drop or alter the table.

This architecture also allows SQL Server to perform a Table Scan operation that 
scans the varheap pages in a very efficient way. Each varheap page serves allocation 
requests of the same size, and it is easy to calculate the location of each object stored on 
the page. It makes the Table (Varheap) Scan operation more efficient compared to the 
Index Scan operation.
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In-Row and Off-Row Storage
As you have already seen in this chapter, In-Memory OLTP uses separate varheaps for 
a hash table in hash indexes and data rows. Let’s look what happens when you add the 
nonclustered (range) index to the picture.

Listing 6-3 creates a table with one hash and one nonclustered index and provides 
the information about memory consumers afterward. It is using a slightly modified 
version of the SELECT statement you ran before, utilizing another view, sys.memory_
optimized_tables_internal_attributes. This view returns the information about 
internal structures that are used by some table columns and indexes.

Listing 6-3.  Analyzing Memory Consumers: In-Row Storage

create table dbo.MemoryConsumers
(
    ID int not null
        constraint PK_MemoryConsumers
        primary key nonclustered hash with (bucket_count=1024),
    Name varchar(256) not null,
    index IDX_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_only);

select
    i.name as [Index], i.index_id, a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
    ,c.memory_consumer_desc as [description], c.allocation_count as [allocs]
    ,c.allocated_bytes, c.used_bytes
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id
    left outer join sys.indexes i on
            c.object_id = i.object_id and
            c.index_id = i.index_id and
            a.minor_id = 0
where
    c.object_id = object_id('dbo.MemoryConsumers');

Figure 6-6 shows the output of the query. The xtp_object_id column represents the 
internal In-Memory OLTP object_id, which is different from the SQL Server object_id. 
The type of USER_TABLE indicates that the varheap belongs to the main table object.

Figure 6-6.  Memory consumer information (in-row storage)
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As you can see in Figure 6-6, the table has three memory consumers that have the 
same xtp_object_id value as the main table. The range index heap stores internal and 
leaf pages of nonclustered index. The hash index heap stores the hash table of the index. 
Finally, the table heap stores actual table rows. Figure 6-7 illustrates that.

Figure 6-7.  Table memory consumers

Let’s alter the table and add off-row storage columns, as shown in Listing 6-4. 
RowOverflowCol pushes the size of the row beyond 8,060 bytes, and it will be stored off-row.

Listing 6-4.  Adding Off-Row Columns

alter table dbo.MemoryConsumers add
    RowOverflowCol varchar(8000),
    LOBCol varchar(max);

Now, if you get the list of memory consumers using the query from Listing 6-3 again, 
you would see the output shown in Figure 6-8. It is worth noting that the xtp_object_id 
column of the USER_TABLE objects has changed because the ALTER TABLE operation 
rebuilt the table and created the new table object internally.

Figure 6-8.  Memory consumers with off-row storage

As you can see, both off-row columns introduce their own range index heap and 
table heap memory consumers. In addition, the LOB column adds a LOB page allocator 
memory consumer (more about that later). The minor_id column provides the column_id 
value in the table to which memory consumers belong. Varheaps from both off-row 
columns have their own xtp_object_id values, which indicate that internally those 
columns are stored as the different objects.
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As you can guess from the output, SQL Server stores both row-overflow and LOB 
columns in the separate internal tables. The rows in those tables consist of an 8-byte 
artificial primary key implemented as a nonclustered index and off-row column value. 
The main row references an off-row column through that artificial key, which is generated 
when a row is created. It is worth repeating that this reference is done though the artificial 
value rather than the memory pointer.

This approach allows In-Memory OLTP to decouple off-row columns from the main 
row using a different lifetime for them. For example, if you update the main row data 
without touching off-row columns, SQL Server would not generate new versions of off-row 
column rows. Vice versa, when only off-row data is modified, the main row stays intact.

In-Memory OLTP stores LOB data in the memory provided by the LOB page 
allocator. That consumer is not limited to 8,060-byte row allocations and can allocate a 
large amount of memory to store the data. The rows in the table heap of LOB columns 
contain pointers to the row data in the LOB page allocator.

Let’s assume that you run several DML statements with the Global Transaction 
Timestamp values shown in Listing 6-5.

Listing 6-5.  Modifying Data in the Table

-- Global Transaction Timestamp: 100
insert into dbo.MemoryConsumers(ID, Name, RowOverflowCol, LobCol)
values
(1,'Ann','A1',replicate(convert(varchar(max),'1'),100000))
,(2,'Bob','B1',replicate(convert(varchar(max),'2'),100000));

-- Global Transaction Timestamp: 110
update dbo.MemoryConsumers set RowOverflowCol = 'B2' where ID = 2;

-- Global Transaction Timestamp: 120
update dbo.MemoryConsumers set Name= 'Greg' where ID = 2;

-- Global Transaction Timestamp: 130
update dbo.MemoryConsumers
set LobCol = replicate(convert(varchar(max),'3'),100000)
where ID = 1;

-- Global Transaction Timestamp: 140
delete from dbo.MemoryConsumers where ID = 1;

Figure 6-9 illustrates the state of the data and links between the rows. For simplicity’s 
sake, it is omitting the hash table and nonclustered index structures in the main table 
along with internal pages of nonclustered indexes for off-row columns.
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SQL Server decides what columns should be stored off-row in the table creation 
phase based on the table schema. The (n)varchar(max) and varbinary(max) columns are 
always stored off-row as LOB columns. Moreover, the largest non-(max) variable-length 
column (or columns) will be stored as a row-overflow column (or columns) off-row 
when the data row size in the table definition exceeds 8,060 bytes.

This behavior is different from disk-based tables where such a decision is made on 
a per-row basis based on the data row size. With disk-based tables, the data from LOB 
and large variable-length columns will be stored in-row when it fits into the data page. 
This is not the case with memory-optimized tables. Off-row columns are always stored 
off-row regardless of the size of the data. For example, a one-character string in the 
varchar(max) column will be stored as LOB data off-row even when the total row size is 
less than 8,060 bytes.

Performance Impact of Off-Row Storage
The decoupling of in-row and off-row data reduces the overhead of creating extra row 
versions during data modifications. However, it will add additional overhead when 
you insert and delete the data. SQL Server should create several row objects during the 
insert stage and update the EndTs value of multiple rows during deletion. It also needs to 
maintain internal tables for off-row columns.

Let’s look at the example and create two tables of a similar schema, as shown 
in Listing 6-6. One of the tables has 20 varchar(3) columns, while another uses 20 
varchar(max) columns. As the next step, you will populate those tables with 100,000 rows 
with a 1-character value in each column.

Figure 6-9.  In-row and off-row storage
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Listing 6-6.  Off-Row Storage Performance Impact: Insert Operation

create table dbo.DataInRow
(
    ID int not null
        constraint PK_DataInRow
        primary key nonclustered hash(ID)
        with (bucket_count = 262144)
    ,Col1 varchar(3) not null
    ,Col2 varchar(3) not null
    ,Col3 varchar(3) not null
    ,Col4 varchar(3) not null
    ,Col5 varchar(3) not null
    ,Col6 varchar(3) not null
    ,Col7 varchar(3) not null
    ,Col8 varchar(3) not null
    ,Col9 varchar(3) not null
    ,Col10 varchar(3) not null
    ,Col11 varchar(3) not null
    ,Col12 varchar(3) not null
    ,Col13 varchar(3) not null
    ,Col14 varchar(3) not null
    ,Col15 varchar(3) not null
    ,Col16 varchar(3) not null
    ,Col17 varchar(3) not null
    ,Col18 varchar(3) not null
    ,Col19 varchar(3) not null
    ,Col20 varchar(3) not null
)
with (memory_optimized = on, durability = schema_only);

create table dbo.DataOffRow
(
    ID int not null
        constraint PK_DataOffRow
        primary key nonclustered hash(ID)
        with (bucket_count = 262144)
    ,Col1 varchar(max) not null
    ,Col2 varchar(max) not null
    ,Col3 varchar(max) not null
    ,Col4 varchar(max) not null
    ,Col5 varchar(max) not null
    ,Col6 varchar(max) not null
    ,Col7 varchar(max) not null
    ,Col8 varchar(max) not null
    ,Col9 varchar(max) not null
    ,Col10 varchar(max) not null
    ,Col11 varchar(max) not null
    ,Col12 varchar(max) not null
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    ,Col13 varchar(max) not null
    ,Col14 varchar(max) not null
    ,Col15 varchar(max) not null
    ,Col16 varchar(max) not null
    ,Col17 varchar(max) not null
    ,Col18 varchar(max) not null
    ,Col19 varchar(max) not null
    ,Col20 varchar(max) not null
)
with (memory_optimized = on, durability = schema_only);

declare
    @Nums table(Num int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into @Nums(Num)
    select Id from Ids where Id <= 100000;

insert into dbo.DataInRow(ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9
    ,Col10,Col11,Col12,Col13,Col14,Col15,Col16,Col17,Col18,Col19,Col20)
    select Num,'0','0','0','0','0','0','0','0','0','0','0','0','0'
        ,'0','0','0','0','0','0','0'
    from @Nums;

insert into dbo.DataOffRow(ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7,Col8,Col9
    ,Col10,Col11,Col12,Col13,Col14,Col15,Col16,Col17,Col18,Col19,Col20)
    select Num,'0','0','0','0','0','0','0','0','0','0','0','0','0'
        ,'0','0','0','0','0','0','0'
    from @Nums;

Table 6-1 shows the execution times of INSERT statements in my environment.  
As you can see, the management of multiple internal tables adds considerable 
performance overhead.

Table 6-1.  Execution Time of INSERT Statements

dbo.DataInRow Insert Time dbo.DataOffRow Insert Time

157 ms 8,062 ms
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Figure 6-10 illustrates the partial list of memory consumers from both tables. As you 
already know, each varchar(max) column in the dbo.DataOffRow table will introduce an 
internal table with three memory consumers.

Figure 6-10.  Memory consumers for the tables

Listing 6-7 shows the query that calculates the total memory usage for the  
dbo.DataInRow and dbo.DataOffRow tables, respectively.

Listing 6-7.  Off-Row Storage Performance Impact: Memory Usage

select
   sum(c.allocated_bytes) / 1024 as [Allocated KB]
    ,sum(c.used_bytes) / 1024 as [Used KB]
from
    sys.dm_db_xtp_memory_consumers c
where
    c.object_id = object_id('dbo.DataInRow');

select
   sum(c.allocated_bytes) / 1024 as [Allocated KB]
    ,sum(c.used_bytes) / 1024 as [Used KB]
from
    sys.dm_db_xtp_memory_consumers c
where
    c.object_id = object_id('dbo.DataOffRow');

As you can see in Figure 6-11, the dbo.DataOffRow table uses more than 30 times 
more memory compared to the dbo.DataInRow table. Every off-row column adds  
64+ bytes of overhead to each non-empty value. This overhead consists of the following: 

32-byte row header and index array in off-row data row

8-byte artificial key stored in-row and twice off-row: on the 
leaf level of nonclustered index and in the off-row data row

8-byte pointer on the leaf level index row

Additional memory to store the nonclustered index structures 
in off-row column internal table
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The overhead is even bigger (80+ bytes) in the case of LOB columns that store 
data in separate varheaps and require two extra pointers per row. Moreover, there is an 
additional overhead of 32 bytes for every 8KB of LOB data, which may be significant if the 
stored values are relatively small.

There is another important performance implication. Indexes defined in the 
table are not covering the queries that select off-row data. SQL Server needs to traverse 
nonclustered indexes on off-row columns to obtain their values. Conceptually, this looks 
similar to Key Lookup operations in disk-based tables done in the reverse direction, from 
clustered to nonclustered indexes. Even though the overhead is significantly smaller 
compared to disk-based tables, it is still overhead you’d like to avoid.

Listing 6-8 shows the code that selects the data from all off-row columns in the table. 
SQL Server needs to traverse nonclustered indexes in all internal tables to get the data.

Listing 6-8.  Off-Row Storage Performance Impact: Select Overhead

select count(*)
from dbo.DataInRow
where Col1='0' and Col2='0' and Col3='0' and Col4='0' and Col5='0'
    and Col6='0' and Col7='0' and Col8='0' and Col9='0' and Col10='0'
    and Col11='0' and Col12='0' and Col13='0' and Col14='0' and Col15='0'
    and Col16='0' and Col17='0' and Col18='0' and Col19='0' and Col20='0';

select count(*)
from dbo.DataOffRow
where Col1='0' and Col2='0' and Col3='0' and Col4='0' and Col5='0'
    and Col6='0' and Col7='0' and Col8='0' and Col9='0' and Col10='0'
    and Col11='0' and Col12='0' and Col13='0' and Col14='0' and Col15='0'
    and Col16='0' and Col17='0' and Col18='0' and Col19='0' and Col20='0';

Table 6-2 illustrates the execution time in my environment. As you can see, the 
execution time is almost 20 times slower in the case of off-row data, which corresponds to 
the number of off-row columns in the table.

Figure 6-11.  Table memory usage

Table 6-2.  Execution Time of SELECT Statements

dbo.DataInRow Select Time dbo.DataOffRow Select Time

86 ms 1,750 ms
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There is overhead during update operations when off-row columns are modified. 
SQL Server needs to create the new row objects for each affected column.

Similarly, the deletion of the data requires SQL Server to delete the rows in all 
internal tables. Table 6-3 shows the execution time of DELETE statements that delete all 
data from both tables.

Table 6-3.  Execution Time of DELETE Statements

dbo.DataInRow Select Time dbo.DataOffRow Select Time

32 ms 1,406 ms

You should avoid off-row storage unless you have legitimate reasons to use such 
columns. It is clearly a bad idea to define text columns as (n)varchar(max) just in case—
when you do not store a large amount of data there. Do not forget that In-Memory OLTP 
would use off-row storage based on the table definition rather than the size of the data.

Summary
In-Memory OLTP database objects allocate memory from the separate memory heaps 
called varheaps. Varheaps are the data structures that respond to and track memory 
allocations from various database objects called memory consumers.

There are three most common varheap types related to memory-optimized tables. 
The hash index varheap allocates memory for a hash table in the hash index. The range 
index varheap provides memory to nonclustered index pages and the mapping table. 
Finally, the table heap varheap allocates memory for the data rows.

Every off-row column stores the data in an internal table, which consists of an 8-byte 
artificial primary key implemented as a nonclustered index along with the column data. 
Row-overflow columns store the actual value in the column data. LOB columns, on the 
other hand, store the pointer to another LOB Page Allocator varheap that stores the LOB 
value. The data row references off-row columns through that artificial 8-byte primary key 
rather than through the memory pointer.

Even though off-row storage simplifies the migration of the systems to In-Memory 
OLTP, use it with extreme care. Every off-row value adds 64+ bytes of overhead to every 
non-empty off-row value. Internal off-row tables introduce a significant performance 
impact during data modifications. Finally, indexes defined on memory-optimized tables 
do not cover off-row columns, and queries need to traverse internal tables similarly to Key 
Lookup operations done on disk-based tables. You should avoid off-row storage unless it 
is absolutely necessary.
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CHAPTER 7

Columnstore Indexes

This chapter provides an overview of column-based storage and clustered columnstore 
indexes that can be defined on memory-optimized tables. It explains their internal 
structure and discusses several best practices that can improve the performance of data 
warehouse/reporting and operational analytics queries in the system.

Column-Based Storage Overview
Even though each database system is unique, there are two distinct workload patterns 
defined in the database world. The first one is online transaction processing (OLTP). 
OLTP systems usually handle a large number of concurrent transactions from multiple 
customers. Those transactions are usually small and lightweight and utilize either  
point-lookup searches or small range scans.

The second type of workload is data warehouse, which includes analysis, reporting, 
and decision support. These types of use cases use the complex queries that perform 
aggregations and process a large amount of data. The data in dedicated data warehouse 
systems is usually static and often updated based on some predefined schedules.

For example, consider a company that sells products to customers. A typical OLTP 
queries from the company’s point-of-sale (POS) system might have the following semantic: 
provide a list of orders that were placed by this particular customer this week. Alternatively, 
a typical query in a data warehouse system might read as follows: provide the total number 
of sales for the year to date, grouping the results by product categories and customer regions.

There are other differences between data warehouse and OLTP systems. The data 
in OLTP systems is usually volatile. Such systems serve a large number of requests 
simultaneously, and they often have a performance SLA associated with the customer-
facing queries. Alternatively, the data in data warehouse systems is relatively static and is 
often updated based on a set schedule, such as at night or on weekends. Those systems 
usually serve a small number of customers, typically business analysts, managers, and 
executives who can accept the longer execution time of the queries because of the 
amount of data that needs to be processed.

To put things into perspective, the response time of the short OLTP queries usually 
needs to be in the milliseconds range. However, for complex data warehouse queries, a 
response time in seconds or even minutes is often acceptable.
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Obviously, it is almost impossible to find systems that do not have mixed OLTP and 
data warehouse workloads. Some degree of reporting and analysis activities is always 
present in OLTP systems even when companies have a dedicated data warehouse 
solution implemented. To make matters more complicated, there is another category of 
tasks called operational analytics, which has become popular nowadays. Consider the 
POS system in which you want to monitor up-to-date sales and dynamically adjust a 
product’s sale price based on its popularity. This requires you to run analytical queries 
on the recent and volatile OLTP data.

Unfortunately, OLTP and data warehouse systems require different approaches for 
optimization and performance tuning. They benefit from different database schemas and 
indexing strategies. For example, data warehouse databases usually have over-normalized 
star or snowflake database schemas with few huge facts and many dimension tables. 
This design does not work efficiently for OLTP queries.

Moreover, OLTP and data warehouse workloads benefit from different storage and 
processing technologies. This requires some explanation.

Row-Based vs. Column-Based Storage
In SQL Server, classic B-Tree indexes and heaps use row-based storage. All columns that 
belong to the row are stored together in the single row object. Even though some of the 
columns can be stored off-row, they are referenced from the main data row structure, 
and SQL Server accesses them through the main data row. The same applies to memory-
optimized tables; the columns in the data rows are grouped into the single in-memory 
data row objects.

Row-based storage works efficiently for OLTP workloads. OLTP queries usually 
access a small number of data rows and, in many cases, return a large subset of the 
columns from the table. Row-based storage allows those queries to access data rows in 
a single operation, which is especially critical during data modifications when an entire 
row object is inserted, updated, or deleted.

Data warehouse queries, on the other hand, behave differently. As I already 
mentioned, the typical data warehouse query joins facts and dimension tables and 
performs some calculations and aggregations accessing just a subset of a fact table’s 
columns. Listing 7-1 shows an example of such a query in an imaginary POS data 
warehouse.

Listing 7-1.  Typical Query in Data Warehouse Environment

select a.ArticleCode, sum(s.Quantity) as [Units Sold]
from dbo.FactSales s join dbo.DimArticles a on
        s.ArticleId = a.ArticleId
    join dbo.DimDates d on
        s.DateId = d.DateId
where d.AnYear = 2017
group by a.ArticleCode
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As you can see, this query needs to perform a scan of a large amount of data from the 
fact table; however, it uses just two table columns. With row-based storage, SQL Server 
accesses rows one by one, loading the entire row into memory, regardless of how many 
columns from the row are required. Considering that a typical fact table in a large data 
warehouse environment could store hundreds of gigabytes or even terabytes of data, 
the query would lead to millions of I/O operations reading a large amount of data from 
columns that are not required for the query.

With disk-based tables, you can reduce the storage size of the table and, therefore, 
the number of I/O operations by implementing page compression. However, page 
compression works in the scope of a single page. All pages will maintain a separate copy 
of the compression dictionary, which is used for all rows on the page. Different columns 
in the row store different data, which reduces the possibility of duplicated byte sequences 
and limits the space saving that can be achieved with the compression.

Obviously, scanning the data from memory-optimized tables does not lead to I/O 
activity. Nevertheless, it will require traversing a large number of index row chains or 
scanning many varheap memory pages, and the overhead of row-based storage still exists.

SQL Server addresses those problems with columnstore indexes that store the data 
on a per-column rather than per-row basis. Figure 7-1 illustrates that approach.

Data in columnstore indexes is heavily compressed using algorithms that provide 
significant space savings even when compared to page compression. Moreover, SQL Server 
can skip columns that are not requested by a query reading the data on a per-column basis.

Column-based storage allows SQL Server to implement other query optimization 
techniques. The most noticeable is batch mode execution. In this mode, SQL Server 
processes data in groups or batches, rather than one row at a time. The size of the batches 
varies to fit into the CPU cache, which reduces the number of times that the CPU needs 
to request external data from memory. Moreover, the batch approach improves the 
performance of aggregations, which can be calculated on a per-batch basis rather than on 
a per-row basis. All of that allows you to achieve orders of magnitude improvement in the 
performance of data warehouse workload queries.

Columnstore Indexes Overview
Each data column in column-based storage is stored separately in a set of structures called 
row groups. Each row group stores data for up to approximately 1 million, or, to be precise, 
2 ^ 20 = 1,048,576 rows. SQL Server tries to populate row groups completely during its creation, 
leaving the last row group partially populated. For example, in the case of 1,500,000 rows, 
SQL Server creates two row groups with 1,048,576 rows and 451,424 rows, respectively.

Figure 7-1.  Row-based and column-based storage
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After row groups are built, SQL Server combines all the column data on a per-row 
group basis and encodes and compresses them. The rows within a row group can be 
rearranged if that helps to achieve a better compression rate. Column data within a row 
group is called a segment. SQL Server also keeps the information about data stored in 
each segment in segment metadata, for example, minimum and maximum values, and 
can skip the segments that do not have required data from the processing.

The data row’s data can be reconstructed based on the row locator, which consists  
of offsets of the values in the row group’s segments. All values with the same offset in the  
row group (same row locator) belong to the same row. For example, the first values in  
the segments in a particular row group belong to the first row, the second values belong 
to the second row, and so forth.

SQL Server uses several methods to encode and compress the data with the goal to 
replace all values in the data with 64-bit integers. The two most notable algorithms are 
dictionary encoding and value-based encoding. With dictionary encoding, SQL Server 
stores distinct values from the data in a separate structure called a dictionary. Every value 
in a dictionary has a unique ID assigned. SQL Server replaces the actual value in the data 
with an ID from the dictionary. Figure 7-2 illustrates the main idea of the algorithm.

The value-based encoding is mainly used for numeric and integer data types that 
do not have enough duplicated values. With this condition, dictionary encoding is 
inefficient. The purpose of value-based encoding is to convert integer and numeric values 
to a smaller range of 64-bit integers. This process consists of the following two steps.

In the first step, numeric data types are converted to integers using the minimum positive 
exponent that allows this conversion. Such an exponent is called magnitude. For example, 
for a set of values such as 0.8, 1.24, and 1.1, the minimum exponent is 2, which represents a 
multiplier of 100. After this exponent is applied, values would be converted to 80, 124, and 110,  
respectively. The goal of this process is to convert all numeric values to integers.

Alternatively, for integer data types, SQL Server chooses the smallest negative 
exponent that can be applied to all values without losing their precision. For example, for 
the values 1340, 20, and 2,340, that exponent is -1, which represents a divider of 10. After 
this operation, the values would be converted to 134, 2, and 234, respectively. The goal of 
such an operation is to reduce the interval between the minimum and maximum values 
stored in the segment.

During the second step, SQL Server chooses the base value, which is the minimum 
value in the segment, and it subtracts it from all other values. This makes the minimum 
value in the segment 0.

Figure 7-3 illustrates the process of value-based encoding.

Figure 7-2.  Dictionary encoding
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Conceptually, each updatable columnstore index includes two additional elements 
to support data modifications. The first is the delete bitmap, which indicates what rows 
were deleted from a table. The second structure is the delta store, which includes newly 
inserted rows. SQL Server does not update the data in compressed row groups during 
regular data modifications. Every time you delete a row that is stored in a compressed row 
group, SQL Server adds information about the deleted row to the delete bitmap. Nothing 
happens to the original row. It is still stored in a row group. However, SQL Server checks 
the delete bitmap during query execution, excluding deleted rows from the processing.

Similarly, when you insert data into a columnstore index, it goes into a delta store. 
Updating a row that is stored in a compressed row group does not change the row data 
either. Such an update triggers the deletion of a row, which is, in fact, insertion to a 
delete bitmap and insertion of a new version of a row to a delta store. However, any data 
modifications of the uncompressed rows in a delta store are done in place in the delta store.

The internal implementation of the delta store and the delete bitmap varies 
depending on the different technologies. With disk-based tables, both the delta store and 
delete bitmap are implemented as the set of internal B-Tree tables. Each table partition 
can have one delete bitmap table and multiple delta store tables, as shown in Figure 7-4. 
The In-Memory OLTP implementation is a bit different, as you will see later in the chapter.

■■ Note T he In-Memory OLTP documentation often references the delta store as the tail and 
the delete bitmap as the deleted rows table. In this book, however, I will use classic terminology.

Figure 7-3.  Value-based encoding

Figure 7-4.  Disk-based clustered columnstore index structure
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At some point, SQL Server compresses the data in the delta store, creating 
another compressed row group. Most often it happens when the delta store reaches 
1,048,576 rows; however, with disk-based tables, this compression can also be forced 
by reorganizing the index. With memory-optimized tables, delta store compression is 
triggered only when the delta store fills up.

Let’s look at the In-Memory OLTP implementation of columnstore indexes in detail.

Clustered Columnstore Indexes
Starting with SQL Server 2016, you can create clustered columnstore indexes on memory-
optimized tables. Do not be confused by the definition of columnstore indexes as 
clustered, however. As the opposite of disk-based tables, clustered columnstore indexes 
on memory-optimized tables are separate data structures that keep copies of the data. In 
this context, clustered means that those indexes include all columns from the table.

The memory-optimized tables with clustered columnstore indexes have the hidden 
column columnstore RID, which is used as the row locator in the columnstore index. As 
with disk-based columnstore indexes, it consists of the row group ID and position of the 
row in the row group. In-Memory OLTP uses this column as the row locator in the delete 
bitmap, which is implemented as an internal table with a nonclustered range index.

Memory-optimized columnstore indexes do not have a dedicated delta store. The 
most recent rows in the memory-optimized table become the delta store. When you create 
a clustered columnstore index, In-Memory OLTP uses another memory consumer for 
the rows in the delta store. All new row objects from INSERT or UPDATE operations are 
allocated from this varheap. Figure 7-5 illustrates that.

The index row chains in the table can link the rows from both, main table heap and 
the delta store varheaps.

Let’s look at an example and create a table with a clustered columnstore index, as 
shown in Listing 7-2. After the table is created, let’s look at the indexes defined on the 
table using the sys.indexes catalog view.

Figure 7-5.  Clustered columnstore index on memory-optimized table
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Listing 7-2.  Creating Memory-Optimized Table with Columnstore Index

create table dbo.OrderItems
(
    OrderItemID int identity(1,1) not null
        constraint PK_OrderItems
        primary key nonclustered hash
        with (bucket_count = 4194329)
    ,OrderId int not null
    ,ArticleId int not null
    ,SalesPrice money not null
    ,index CCI_OrderItems clustered columnstore
)
with (memory_optimized = on, durability = schema_and_data);

select index_id, name, type, type_desc, compression_delay
from sys.indexes
where object_id = object_id('dbo.OrderItems');

As you can see in Figure 7-6, the table has two indexes: a primary key implemented 
as the hash index and a clustered columnstore index. I would like to reiterate that despite 
the term clustered in the index definition and index_id=1, the clustered columnstore 
index does not represent the main storage format for the table data. It just indicates that 
all table columns are included in the index.

As the opposite of hash and nonclustered indexes, which are re-created when data 
is loaded into memory, SQL Server persists columnstore indexes on disk. I will talk about 
In-Memory OLTP data storage in greater depth in Chapter 10.

Let’s populate the table with 3,200,000 rows, as shown in Listing 7-3.

Listing 7-3.  Populating the Table with Data and Analyzing Memory Consumers

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N4 as t2) -- 16,777,316 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.OrderItems(OrderId, ArticleId, SalesPrice)
    select ID / 3 + 1, ID % 50000, 49.99
    from Ids
    where ID <= 3200000;

Figure 7-6.  Indexes on memory-optimized table

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
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Listing 7-4 shows the code that analyzes memory consumers for the dbo.OrderItems 
table.

Listing 7-4.  Populating the Table with Data and Analyzing Memory Consumers

select
    a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id as [mc id]
    ,c.memory_consumer_type_desc as [mc type]
    ,c.memory_consumer_desc as [description]
    ,c.allocation_count as [allocs]
    ,c.allocated_bytes / 1024 as [Allocated KB]
    ,c.used_bytes / 1024 as [Used KB]    
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and a.xtp_object_id = c.xtp_object_id
where
    c.object_id = object_id('dbo.OrderItems');

Figure 7-7 shows the output from Listing 7-4. As you can see, the main table object 
(the first four rows in the output) has four memory consumers. The HKCS_COMPRESSED 
consumer stores compressed row groups. The table heap consumer with id=74 is 
providing memory for the delta store. All new data rows in the table are allocated there. 
Another table heap with id=75 is the main table heap, and it is storing the rows that were 
already compressed in the columnstore index. The data has not been compressed yet, 
and therefore this consumer does not use any memory.

Columnstore indexes have several other internal objects.

DELETED_ROWS_TABLE is an internal table that stores the delete 
bitmap, which is the information about the deleted rows. It is 
implemented as a nonclustered (range) index and contains a 
columnstore locator (RID) of the deleted rows.

Figure 7-7.  Memory consumers after table has been populated with the data
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ROW_GROUPS_INFO_TABLE stores the information about row 
groups in columnstore indexes.

SEGMENTS_TABLE stores the information about column 
segments in the row groups.

DICTIONARIES_TABLE stores columnstore index dictionaries.

There is the background process called the tuple mover, which wakes up about every 
two minutes and estimates the number of rows in the delta store. In the case, when it 
estimates that the delta store has at least 1,048,576 rows, the tuple mover creates the new 
row group (or groups) by compressing and encoding the rows from the delta store. During 
compression, the tuple mover updates the row locator RID column in the rows from the 
delta store, which generates the new versions of the rows. The memory for the new row 
objects are allocated from the main table heap.

Finally, the tuple mover deletes (populates the EndTs timestamp) the compressed rows 
from the delta store, which will be eventually deallocated by the garbage collector process.

Figure 7-8 illustrates the memory consumers after the tuple mover has compressed 
the data. As you can see, rows have been moved from the delta store to the main table 
heaps, and compressed data is also stored in the HKCS_COMPRESSED allocator.

Let’s look what happens when you delete some data. Listing 7-5 shows the statement 
that deletes every 100th row in the table.

Listing 7-5.  Deleting 1 Percent of the Rows

delete from dbo.OrderItems where OrderItemId % 100 = 0;

As I already mentioned, SQL Server does not remove deleted rows from columnstore 
indexes. The information (RID) of deleted rows is inserted into the delete bitmap, which 
is displayed as DELETED_ROWS_TABLE in Figure 7-9.

Figure 7-8.  Memory consumers after delta store is compressed
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You can obtain detailed information about columnstore index row groups from the 
sys.dm_db_column_store_row_group_physical_stats view, as shown in Listing 7-6.

Listing 7-6.  Analyzing Row Groups

select row_group_id, state_desc, total_rows, deleted_rows
    ,size_in_bytes, trim_reason_desc
from sys.dm_db_column_store_row_group_physical_stats
where object_id = object_id('dbo.OrderItems')
order by row_group_id

Figure 7-10 shows the output of the view. The row group with row_group_id=-1 
corresponds to the delta store.

The trip_reason_desc column indicates why the compressed row group has less than 
1,048,476 rows. For memory-optimized tables, it can contain one of the following values:

NO_TRIM indicates that the row group is fully populated.

STATS_MISTMATCH indicates an incorrect estimation of the 
delta store size.

SPILLOVER indicates that the row group contains leftover rows 
after all full row groups were created. SQL Server compresses 
those rows into the smaller row group if there are more than 
102,500 rows in the delta store. Otherwise, the rows remain in 
the delta store, as shown in Figure 7-10.

Figure 7-9.  Memory consumers after rows were deleted

Figure 7-10.  Row group statistics
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MEMORY_LIMITATION indicates that the system did not have 
enough memory to compress all the rows together.

DICTIONARY_SIZE indicates that the dictionary grew too big to 
compress all the rows together.

Performance Considerations
As you can guess, large delta store and delete bitmaps would add overhead during query 
execution. SQL Server needs to scan noncompressed rows in the delta store, which is 
significantly slower compared to compressed row groups. Similarly, a large number of 
rows in the delete bitmap adds overhead of validation if compressed rows were deleted.

Let’s look at this overhead in detail and add 1,500,000 rows to the table using the 
code from Listing 7-7.

Listing 7-7.  Inserting 1.5 Million Rows into Delta Store

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N4 as t2) -- 16,777,316 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.OrderItems(OrderId, ArticleId, SalesPrice)
    select 4000000 + ID / 3 + 1, ID % 50000, 49.99
    from Ids
    where ID <= 1500000;

If you run the code from Listing 7-6 again after the data was inserted, you would see 
the output shown in Figure 7-11. The new rows have not been compressed, and they stay 
in the delta store.

If you run the query from Listing 7-6 again after the tuple mover executes, you would 
see that the new rows have been compressed into two new row groups. Figure 7-12 shows 
the status of the row groups when it happens.

Figure 7-11.  Row group status after insert
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Listing 7-8 shows the test query that benefits from the columnstore index. 
I’ve executed this query twice, before and after the rows from the delta store were 
compressed. The execution times in my environment were 343 ms and 160 ms, 
respectively. As you can see, scanning of large number of uncompressed rows in the delta 
store affects the performance of the query. It is worth noting, however, that this overhead 
is significantly smaller compared to the delta store scan in disk-based columnstore 
indexes because of the in-memory data access and efficiency of varheap scans.

Listing 7-8.  Test Query

select top 10 ArticleId, avg(SalesPrice)
from dbo.OrderItems
group by ArticleId
order by avg(SalesPrice) desc;

As the next step, let’s look at the overhead introduced by the large number of deleted 
rows. Listing 7-9 shows the query, which deletes half the rows from the table. Figure 7-13 
illustrates row group statistics after deletion.

Listing 7-9.  Deleting 50 Percent of the Data

delete from dbo.OrderItems where OrderItemId % 2 = 0;

The execution time of the test query from Listing 7-8 in my environment was 516 ms. 
SQL Server should check whether the RID of compressed rows were present in DELETED_
ROWS_TABLE and exclude deleted rows from the processing. All of that added significant 
overhead during query execution.

Figure 7-12.  Status of row groups after data is compressed

Figure 7-13.  Status of row groups after data was deleted
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There is another implication of the large number of deleted rows and large delete 
bitmaps. They reduce the amount of memory available to In-Memory OLTP and other 
SQL Server components.

Unfortunately, it is common to have a large number of deleted rows in memory-optimized 
columnstore indexes. The data in OLTP systems is usually highly volatile, and data rows 
may be updated multiple times. If data rows are updated after they were compressed, each 
obsolete row version would be referenced in the delete bitmap of the index.

Fortunately, it is also common that data rows become static after some time. SQL Server 
allows you to delay compression of the delta store rows by specifying the COMPRESSION_DELAY 
columnstore index option. This property indicates how long the rows should stay in the delta 
store before they can be compressed into row groups. You should set COMPRESSION_DELAY to 
the value that exceeds the typical post-processing time in the system.

Consider an online shopping cart system as an example. In this scenario, the status of 
individual orders may be updated multiple times during the fulfillment process. It could be 
beneficial to set COMPRESSION_DELAY to the value that exceeds the typical fulfillment time 
and avoid compressing old versions of order rows until the order is fulfilled.

Listing 7-10 shows an example of a table with a columnstore index that has the 
compression delay set to 1,440 minutes, which is 24 hours. Even though this increases the 
size of the delta store, it would also prevent compressions of the versions of the rows that 
have yet to be deleted. As the general rule, it is better to have a slightly larger delta store 
than increase the size of the delete bitmap.

Listing 7-10.  Creating Columnstore Index with Compression Delay

create table dbo.OrdersCCI
(
    OrderId int not null
        constraint PK_OrdersCCI
        primary key nonclustered,
    OrderDate datetime2(0) not null,
    OrderNum varchar(32) not null,
    Amount money not null,
    CustomerId int not null,
    OrderStatus tinyint not null,
    FulfillmentDate datetime2(0) not null,
    index CCI_OrdersCCI clustered columnstore
        with (compression_delay=1440)
)
with (memory_optimized=on, durability=schema_and_data);

You can monitor the percent of deleted rows in the row groups and fine-tune the index 
COMPRESSION_DELAY value to minimize it. Unfortunately, changing the property will require 
you to drop and re-create the columnstore index. This is an offline operation, which will 
lead to two table rebuilds and can take a significant amount of time and memory in the case 
of large tables. Neither can you rebuild columnstore indexes, reducing the size of the delete 
bitmap. Dropping and re-creating the index is the only option available.
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There is one case, however, when In-Memory OLTP rebuilds row groups internally. 
SQL Server decompresses the row groups, moving rows back to the delta store when the 
row group has 90 percent or more rows deleted.

Listing 7-11 illustrates the code that deletes 99 percent of the data from the table. 
Figure 7-14 shows the status of the row groups right after deletion.

Listing 7-11.  Deleting 99 Percent of the Data

delete from dbo.OrderItems where OrderId % 100 < 98;

If you look at the row groups after a few minutes, you would see that the tuple mover 
process moved all nondeleted rows back to the delta store, deallocating all compressed 
row groups in the system. Figure 7-15 illustrates that condition.

Columnstore Indexes Limitations
There are several limitations related to columnstore indexes. Perhaps the most important 
is that SQL Server can utilize columnstore indexes only in Query Interop mode. Those 
indexes are never used from the natively compiled code.

Other important limitations include the following:

The columnstore index cannot be created if the table uses  
off-row storage, and, therefore, the row size cannot exceed 
8,060 bytes.

Memory-optimized tables with columnstore indexes cannot 
be altered. You should drop the index, alter the table, and  
re-create the index afterward.

Columnstore indexes on memory-optimized tables cannot be 
rebuilt or reorganized.

Archive compression is not supported.

Figure 7-15.  Status of row groups after tuple mover run

Figure 7-14.  Status of row groups after 99 percent of the rows were deleted
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Obviously, the system should have enough memory to accommodate columnstore 
indexes. Those indexes, however, are heavily compressed and could use just a fraction  
of the memory used by noncompressed rows.

Catalog and Data Management Views
SQL Server provides several columnstore index-related catalog and data management views.

sys.dm_db_column_store_row_group_physical_stats
The sys.dm_db_column_store_row_group_physical_stats view returns the information 
about row groups in the columnstore index. You have already seen this view in action in 
this chapter.

The columns in the output represent the following:

object_id and index_id provide the information about the 
object and index to which the row group belongs.

partition_number is the number of partitions in the table.  
It is always 1 for memory-optimized tables.

row_group_id is the ID of the row group within the partition. 
The delta store in memory-optimized tables has row_group_
id=-1.

delta_store_hobt_id is the hobt_id of the open delta store. 
It is NULL for memory-optimized tables.

state and state_description show the state of the row 
group.

total_rows, deleted_rows, and size_in_bytes provide the 
information about row count and row group size.

trim_reason and trim_reason_desc indicate why a row 
group has less than 1,048,576 rows.

transition_to_compressed_state provides the reason why a 
row group was compressed. In memory-optimized tables, the 
row groups always are compressed by the tuple mover.

generation shows the sequence number in which the row 
group has been created.

As I already discussed, it is beneficial to monitor the total number of rows and the 
number of deleted rows in the row groups and fine-tune the COMPRESSION_DELAY index 
option.

There is another view, called sys.column_store_row_groups, which provides a 
subset of the columns from the sys.dm_db_column_store_row_group_physical_stats 
view. The former one was introduced in SQL Server 2014, while the latter one is specific 
to SQL Server 2016.
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sys.column_store_segments
The sys.column_store_segments view returns one row for each column per segment.

Listing 7-12 shows a query that returns information about the CCI_OrderItems 
columnstore index. There are a couple of things that you should note here. First, the 
view does not return the object_id or index_id value of the index. This is not a problem 
because a table can have only one columnstore index defined. However, you need to use 
the sys.partitions view to obtain the object_id value when it is required.

Second, the column_id value does not match the column_id value in the sys.index_
columns view because of the internal columnstore locator (RID) column, which is not 
exposed there. You need to decrement column_id in sys.column_store_segments by 1 in 
the joins. This may or may not change in future versions of In-Memory OLTP.

Listing 7-12.  Examining the sys.column_store_segments View

select
    s.segment_id, s.column_id - 1 as [column_id], c.name as [column]
    ,s.version, s.encoding_type, s.row_count, s.has_nulls, s.magnitude
    ,s.primary_dictionary_id, s.secondary_dictionary_id, s.min_data_id
    ,s.max_data_id, s.null_value
    ,convert(decimal(12,3),s.on_disk_size / 1024.0 / 1024.0)  as [Size MB]
from
    sys.column_store_segments s join sys.partitions p on
        p.partition_id = s.partition_id
    join sys.indexes i on
        p.object_id = i.object_id
    left join sys.index_columns ic on
        i.index_id = ic.index_id and
        i.object_id = ic.object_id and
        s.column_id - 1 = ic.index_column_id
     left join sys.columns c on
        ic.column_id = c.column_id and
        ic.object_id = c.object_id
where
    i.name = 'CCI_OrderItems'
order by
    s.segment_id, s.column_id
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The columns in the output represent the following:

column_id is the ID of a column in the index, which you 
can join with the sys.index_columns view. As I already 
mentioned, you need to decrement it by 1 in the joins.

partition_id references the partition to which a row group 
(and, therefore, a segment) belongs. It is always 1 in  
memory-optimized tables.

segment_id is the ID of the segment, which is basically the ID 
of a row group. The first segment/row group in a partition has 
an ID of 1.

version represents a columnstore segment format.  
SQL Server 2012, 2014, and 2016 return 1 as its value.

encoding_type represents the encoding used for this 
segment. It can have one of the following four values:

A value-based encoding has encoding_type = 1.

A dictionary encoding of nonstrings has  
encoding_type = 2.

A dictionary encoding of string values has  
encoding_type = 3.

No encoding being used has encoding_type = 4.

Figure 7-16.  sys.column_store_segments output

Figure 7-16 shows the partial output of a query.
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row_count represents the number of rows in the segment.

has_null indicates whether the data has null values.

magnitude is the magnitude used for value-based encoding. 
For other encoding types, it returns -1.

min_data_id and max_data_id represent the minimum and 
maximum values in a column within the segment. SQL Server 
analyzes those values during query execution and eliminates 
segments that do not store values that satisfy query predicates. 
This process works in a similar way to partition elimination in 
partitioned tables.

null_value represents the value used to indicate nulls.

on_disk_size indicates the size of a segment in bytes.

sys.column_store_dictionaries
The sys.column_store_dictionaries view provides information about the dictionaries 
used by a columnstore index.

Listing 7-13 shows the code that you can use to examine the list of dictionaries. 
Similarly to the sys.column_store_segments view, you should decrement column_id by 
1 in the joins.

Listing 7-13.  Examining the sys.column_store_dictionaries View

select
    d.dictionary_id, d.column_id - 1 as [column_id], c.name as [column]
    ,d.version, d.type, d.last_id, d.entry_count
    ,convert(decimal(12,3),d.on_disk_size / 1024.0 / 1024.0)  as [Size MB]
from
    sys.column_store_dictionaries d join sys.partitions p on
        p.partition_id = d.partition_id
    join sys.indexes i on
        p.object_id = i.object_id
    left join sys.index_columns ic on
        i.index_id = ic.index_id and    
        i.object_id = ic.object_id and
        d.column_id - 1 = ic.index_column_id
    left join sys.columns c on
        ic.column_id = c.column_id and
        ic.object_id = c.object_id
where
    i.name = 'CCI_OrderItems'
order by
    d.dictionary_id
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The columns in the output represent the following:

column_id is the ID of a column in the index.

dictionary_id is the ID of a dictionary.

version represents a dictionary format. SQL Server 2012, 
2014, and 2016 return 1 as its value.

type represents the type of values stored in a dictionary. It can 
have one of the following three values:

A dictionary that contains int values is specified by type = 1.

A dictionary that contains string values is specified by  
type = 3.

A dictionary that contains float values is specified by  
type = 4.

last_id is a last data ID in a dictionary.

entry_count contains the number of entries in a dictionary.

on_disk_size indicates the size of a dictionary in bytes.

Summary
In contrast to B-Tree and Bw-Tree indexes that store data on a per-row basis, columnstore 
indexes store unsorted and compressed data on a per-column basis. They are beneficial 
in data warehouse environments where typical queries perform a scan and aggregation 
of data from large fact tables, selecting just a subset of table columns. With In-Memory 
OLTP, those indexes help in an operational analytics scenario when systems execute 
reporting and analytics queries against hot OLTP data.

In-Memory OLTP clustered columnstore indexes are separate data structures from 
the main data rows. They consist of compressed row groups, a delete bitmap implemented 
as an internal table with a nonclustered (range) index, and several other internal tables. 
There is no dedicated delta store; the new versions of the rows are included into the 
regular data row chain, although they are allocated from a different varheap. The tuple 
mover process analyzes the number of allocated rows in this varheap and compresses 
them, moving to the regular table heap once the number reaches 1,048,576 rows.

Figure 7-17.  sys.column_store_dictionaries output

Figure 7-17 illustrates the query output.
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A large delta store and delete bitmap affects the performance of the queries. You 
can delay the compression by specifying the COMPRESSION_DELAY index option. It is 
recommended that you set this value to exceed the typical data post-processing time in 
the system.

Columnstore indexes have several limitations. They do not support off-row storage, 
limiting the size of the row to 8,060 bytes. They prevent table alteration, and you should 
drop and re-create a columnstore index when you need to alter a table. Most importantly, 
they can be utilized only through the Interop Engine; SQL Server does not use them in 
natively compiled code.
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CHAPTER 8

Transaction Processing  
in In-Memory OLTP

This chapter discusses transaction processing in In-Memory OLTP. It elucidates what 
isolation levels are supported with native compilation and cross-container transactions, 
provides an overview of concurrency phenomena encountered in the database systems, 
and explains how In-Memory OLTP addresses them. Finally, this chapter talks about the 
lifetime of In-Memory OLTP transactions in detail.

ACID, Transaction Isolation Levels, and 
Concurrency Phenomena Overview
Transactions are the unit of work that read and modify data in a database and help to 
enforce the consistency and durability of the data in a system. Every transaction in a 
properly implemented transaction management system has four characteristics known as 
atomicity, consistency, isolation, and durability, often referenced as ACID.

•	 Atomicity guarantees that each transaction executes as an “all 
or nothing” approach. All changes done within a transaction 
are either committed or rolled back in full. Consider the classic 
example of transferring money between checking and savings 
bank accounts. That action consists of two separate operations: 
decreasing the balance of the checking account and increasing the 
balance of the savings account. Transaction atomicity guarantees 
that both operations either succeed or fail together, so a system 
will never be in the situation that money is deducted from the 
checking account but never added to the savings account.

•	 Consistency ensures that any database transaction brings the 
database from one consistent state to another with no defined 
database rules or constraints violated.
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•	 Isolation ensures that the changes done in the transaction are 
isolated and invisible to other transactions until the transaction is 
committed. By the book, transaction isolation should guarantee 
that the concurrent execution of multiple transactions should bring 
the system to the same state as if those transactions were executed 
serially. However, in most database systems, such a requirement is 
often relaxed and controlled by transaction isolation levels.

•	 Durability guarantees that after a transaction is committed, all 
changes done by the transaction stay permanent and will survive 
a system crash. SQL Server achieves durability by using write-ahead  
logging, which hardens log records in transaction log 
synchronously with data modifications.

The isolation requirements are the most complex to implement in multi-user 
environments. Even though it is possible to completely isolate different transactions 
from each other, this could lead to a high level of blocking and other concurrency issues 
in systems with volatile data. SQL Server addresses this situation by introducing several 
transaction isolation levels that relax isolation requirements at the cost of possible 
concurrency phenomena related to read data consistency.

•	 Dirty reads: A transaction reads uncommitted (dirty) data from 
other uncommitted transactions.

•	 Nonrepeatable reads: Subsequent attempts to read the same 
data from within the same transaction return different results. 
This data inconsistency issue arises when the other transactions 
modified, or even deleted, data between the reads done by the 
affected transaction.

•	 Phantom reads: This phenomenon occurs when subsequent 
reads within the same transaction return new rows (the ones that 
the transaction did not read before). This happens when another 
transaction inserted the new data in between the reads done by 
the affected transaction.

Table 8-1 shows the data inconsistency issues that are possible for different 
transaction isolation levels. It is worth mentioning that every isolation level resolves 
write/write conflicts, preventing multiple active transactions from updating the same 
rows simultaneously.

Table 8-1.  Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Dirty Reads Nonrepeatable Reads Phantom Reads

READ UNCOMMITTED Yes Yes Yes

READ COMMITTED No Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

SNAPSHOT No No No



Chapter 8 ■ Transaction Processing in In-Memory OLTP 

121

With the exception of the SNAPSHOT isolation level, SQL Server uses locking to 
address concurrency phenomena when dealing with disk-based tables. When a 
transaction modifies a row, it acquires exclusive (X) locks on the row and holds it until 
the end of the transaction. That exclusive (X) lock prevents other sessions from accessing 
uncommitted data until the transaction is completed and the locks are released. This 
behavior is also known as pessimistic concurrency.

Such behavior also means that, in the case of a write/write conflict, the last 
modification wins. For example, when two transactions are trying to modify the same 
row, SQL Server blocks one of them until another transaction is committed, allowing 
blocked transactions to modify the data afterward. No errors or exceptions are raised; 
however, changes done by the first transaction are overwritten.

In the case of disk-based tables and pessimistic concurrency, transaction isolation 
levels control how a session acquires and releases shared (S) locks when reading the data. 
Table 8-2 demonstrates that behavior.

The SNAPSHOT isolation level uses a row-versioning model by creating the new 
version of the row after modification. In this model, all data modifications done by other 
transactions are invisible to the transaction after it starts.

Though SNAPSHOT isolation is implemented differently in disk-based and memory-
optimized tables, logically it behaves the same. A transaction will read a version of the 
row valid at the time when the transaction started, and sessions do not block each other. 
However, when two transactions try to update the same data, one of them will be aborted 
and rolled back to resolve the write/write conflict. This behavior is known as optimistic 
concurrency.

Table 8-2.  Transaction Isolation Levels and Shared (S) Locks Behavior with Disk-Based 
Tables

Isolation Level Shared (S) Locks Behavior Comments

READ UNCOMMITTED (S) locks not acquired The transaction can see uncommitted 
changes from the other sessions (dirty 
reads).

READ COMMITTED (S) locks acquired and 
released immediately

The transaction will be blocked when 
it tries to read uncommitted rows 
with exclusive (X) locks held by the 
other sessions (no dirty reads).

REPEATABLE READ (S) locks acquired and held 
until end of transaction

Other sessions cannot modify a row 
after it was read (no non-repeatable 
reads). However, they can still insert 
new rows in between reads (phantom 
reads).

SERIALIZABLE Range (S) locks acquired 
and held until end of 
transaction

Other sessions cannot modify a row 
after it was read or insert new rows in 
between rows that were read (no non-
repeatable or phantom reads).
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SERIALIZABLE VS. SNAPSHOT ISOLATION LEVELS

While the SERIALIZABLE and SNAPSHOT isolation levels provide the same level of 
protection against data inconsistency issues, there is a subtle difference in their 
behavior with disk-based tables. A SNAPSHOT isolation level transaction sees data 
as of the beginning of a transaction. With the SERIALIZABLE isolation level, the 
transaction sees data as of the time when the data was accessed for the first time.

Consider the situation when a session is reading data from a disk-based table in the 
middle of a transaction. If another session changed the data in that table after the 
transaction started but before data was read, the transaction in the SERIALIZABLE 
isolation level would see the changes, while the SNAPSHOT transaction would not.

Transaction Isolation Levels in In-Memory OLTP
In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE 
READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different 
approach to enforce data consistency rules compared to disk-based tables. Rather than 
block or being blocked by other sessions, In-Memory OLTP validates data consistency 
at the transaction COMMIT time and throws an exception and rolls back the transaction if 
rules are violated.

•	 In the SNAPSHOT isolation level, any changes done by other sessions 
are invisible to the transaction. A SNAPSHOT transaction always works 
with a snapshot of the data as of the time when the transaction 
started. The only validation at the time of the commit is checking for 
primary key violations, which is called snapshot validation.

•	 In the REPEATABLE READ isolation level, In-Memory OLTP 
validates that the rows that were read by the transaction have not 
been modified or deleted by the other transactions. A REPEATABLE 
READ transaction would not be able to commit if this was the case. 
That action is called repeatable read validation, and it is executed 
in addition to snapshot validation.

•	 In the SERIALIZABLE isolation level, SQL Server performs repeatable 
read validation and also checks for phantom rows that were possibly 
inserted by the other sessions. This process is called serializable 
validation, and it is executed in addition to snapshot validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in 
Listing 8-1, let’s create a memory-optimized table and insert a few rows there.
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Listing 8-1.  Data Consistency and Transaction Isolation Levels: Table Creation

create table dbo.HKData
(
    ID int not null
        constraint PK_HKData
        primary key nonclustered hash with (bucket_count=64),
    Col int not null
)
with (memory_optimized=on, durability=schema_only);  

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);

Table 8-3 shows how concurrency works in the REPEATABLE READ transaction 
isolation level. It is important to note that SQL Server starts a transaction at the moment 
of the first data access rather than at the time of the BEGIN TRAN statement. Therefore, the 
Session 1 transaction starts when the first SELECT operator executes.

Table 8-3.  Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran
    select ID, Col
    from dbo.HKData
        with (repeatableread)

update dbo.HKData
set Col = -2
where ID = 2

    select ID, Col
    from dbo.HKData
        with (repeatableread)

Return old version of a row (Col = 2).

commit Msg 41305, Level 16, State 0, Line 0.

The current transaction failed to 
commit because of a repeatable read 
validation failure.

begin tran
    select ID, Col
    from dbo.HKData
        with (repeatableread)

insert into dbo.
HKData
values(10,10)

    select ID, Col
    from dbo.HKData
        with (repeatableread)

Does not return a new row (10,10).

commit Success.
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As you can see, with memory-optimized tables, other sessions are able to modify 
data that is read by the active REPEATABLE READ transaction. This leads to a transaction 
abort at the time of COMMIT when the repeatable read validation fails. This is completely 
different behavior than that of disk-based tables, where other sessions are blocked, 
unable to modify data until the REPEATABLE READ transaction successfully commits.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE READ 
isolation level protects you from the phantom read phenomenon, which is not the case with 
disk-based tables. The BeginTs value of the newly inserted rows would exceed the logical start 
time of the active transaction (more on that later), making them invisible for the transaction.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can see 
the code and the results of the execution in Table 8-4.

Table 8-4.  Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran
    select ID, Col
    from dbo.HKData
        with (serializable)

update dbo.
HKData
set Col = -2
where ID = 2

    select ID, Col
    from dbo.HKData
        with (serializable)

Return old version of a row (Col = 2).

commit Msg 41305, Level 16, State 0, Line 0.

The current transaction failed to 
commit because of a repeatable read 
validation failure.

begin tran
    select ID, Col
    from dbo.HKData
        with (serializable)

insert into dbo.
HKData
values(10,10)

    select ID, Col
    from dbo.HKData
        with (serializable)

Does not return new row (10,10).

commit Msg 41325, Level 16, State 0, Line 0.

The current transaction failed to 
commit because of a serializable 
validation failure.
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As you can see, the SERIALIZABLE isolation level prevents the session from 
committing a transaction when another session inserted a new row and violated the 
serializable validation. Like the REPEATABLE READ isolation level, this behavior is different 
from that of disk-based tables, where the SERIALIZABLE transaction successfully blocks 
other sessions until the transaction is completed.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. Table 8-5 shows the code 
and results.

The SNAPSHOT isolation level behaves in a similar manner to disk-based tables, and it 
protects from the nonrepeatable reads and phantom reads phenomena. As you can guess, 
it does not need to perform repeatable read and serializable validations at the commit 
stage; therefore, it reduces the load on SQL Server. However, there is still snapshot 
validation, which checks for primary key violations and is done in any transaction 
isolation level. 

Table 8-6 shows the code that leads to the primary key violation condition. In 
contrast to disk-based tables, the exception is raised at the commit stage rather than at 
the time of the second INSERT operation.

Table 8-5.  Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran
    select ID, Col
    from dbo.HKData
         with (snapshot)

update dbo.HKData
set Col = -2
where ID = 2

    select ID, Col
    from dbo.HKData
         with (snapshot)

Return old version of a row (Col = 2).

commit Success.

begin tran
    select ID, Col
    from dbo.HKData
        with (snapshot)

insert into dbo.HKData
values(10,10)

    select ID, Col
    from dbo.HKData
        with (snapshot)

Does not return new row (10,10).

commit Success.
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It is worth mentioning that the error number and message are the same with the 
serializable validation failure even though SQL Server validated the different rule.

Write/write conflicts work the same way regardless of the transaction isolation level 
in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has 
been modified by other uncommitted transactions. Table 8-7 illustrates this behavior. It 
uses the SNAPSHOT isolation level; however, the behavior does not change with different 
isolation levels.

Table 8-6.  Primary Key Violation

Session 1 Session 2 Results

begin tran
    insert into dbo.HKData
    with (snapshot)
        (ID, Col)
    values(100,100)

begin tran
    insert into dbo.HKData
    with (snapshot)
         (ID, Col)
     values(100,100)

commit Successfully commit the first 
session.

commit Msg 41325, Level 16, State 1, 
Line 0.

The current transaction 
failed to commit because of a 
serializable validation failure.



Chapter 8 ■ Transaction Processing in In-Memory OLTP 

127

Table 8-7.  Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results

begin tran
    select ID, Col
    from dbo.HKData
        with (snapshot)

begin tran
    update dbo.HKData
        with (snapshot)
    set Col = -3
    where ID = 2
commit

update dbo.HKData
        with (snapshot)
    set Col = -2
    where ID = 2

Msg 41302, Level 16, State 110, Line 1.

The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1.

The uncommittable transaction is 
detected at the end of the batch. The 
transaction is rolled back.

The statement has been terminated.

begin tran
    select ID, Col
    from dbo.HKData
        with (snapshot)

begin tran
    update dbo.HKData
        with (snapshot)
    set Col = -3
    where ID = 2

update dbo.HKData
        with (snapshot)
set Col = -2
where ID = 2

Msg 41302, Level 16, State 110, Line 1.

The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1.

The uncommittable transaction is 
detected at the end of the batch. The 
transaction is rolled back.

The statement has been terminated.

commit Successful commit of Session 2 
transaction.
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Cross-Container Transactions
Any access to memory-optimized tables from interpreted T-SQL is done through the 
Query Interop Engine and leads to cross-container transactions. You can use different 
transaction isolation levels for disk-based and memory-optimized tables. However, not all 
combinations are supported. Table 8-8 illustrates possible combinations for transaction 
isolation levels in cross-container transactions.

As you already know, internal implementations of the REPEATABLE READ and 
SERIALIZABLE isolation levels are very different for disk-based and memory-optimized 
tables. Data consistency rules with disk-based tables rely on locking, while In-Memory 
OLTP uses pre-commit validation. This leads to a situation in cross-container transactions 
where SQL Server supports only the SNAPSHOT isolation levels for memory-optimized 
tables, while disk-based tables require REPEATABLE READ or SERIALIZABLE isolation.

Moreover, SQL Server does not allow access to memory-optimized tables when 
disk-based tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell, 
consist of two internal transactions: one for disk-based and another one for memory-
optimized tables. It is impossible to start both transactions at exactly the same time and 
guarantee the state of the data at the moment the transaction starts.

As the general guideline, it is recommended that you use the READ COMMITTED/SNAPSHOT 
combination in cross-container transactions during the regular workload. This combination 
provides the minimal blocking and least pre-commit overhead and should be acceptable in a 
large number of use cases. Other combinations are more appropriate during data migrations 
when it is important to avoid the non-repeatable and phantom reads phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction 
isolation level with a table hint when you are accessing memory-optimized tables. This 
does not apply to individual statements that execute outside of the explicitly started 
(with BEGIN TRAN) transaction. Those statements are called autocommitted transactions, 
and each of them executes in a separate transaction that is active for the duration of the 
statement execution. Listing 8-2 illustrates the code with three statements. Each of them 
will run in their own autocommitted transactions.

Table 8-8.  Isolation Levels Allowed for Cross-Container Transactions

Isolation Levels for Disk-Based Tables Isolation Levels for Memory-Optimized Tables

READ UNCOMMITTED, READ COMMITTED,
READ COMMITTED SNAPSHOT

SNAPSHOT, REPEATABLE READ, SERIALIZABLE

REPEATABLE READ, SERIALIZABLE SNAPSHOT only

SNAPSHOT Not supported
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Listing 8-2.  Autocommitted Transactions

delete from dbo.HKData;

insert into dbo.HKData(ID, Col) values(1,1),(2,2),(3,3),(4,4),(5,5);  

select ID, Col from dbo.HKData;

An isolation level hint is not required for statements running in autocommitted 
transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation level.

SQL Server allows you to keep a NOLOCK hint while accessing memory-optimized 
tables from autocommitted transactions. That hint is ignored. A READUNCOMMITTED hint, 
however, is not supported and triggers an error.

There is the useful database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT, 
which is disabled by default. When this option is enabled, SQL Server allows you to 
omit the isolation level hint in nonautocommitted transactions. SQL Server uses the 
SNAPSHOT isolation level, as with autocommitted transactions, if the isolation level hint 
is not specified when the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT option is enabled. 
Consider enabling this option when you port an existing system to In-Memory OLTP and 
have T-SQL code that accesses tables that become memory-optimized.

Transaction Lifetime
Although I have already discussed a few key elements used by In-Memory OLTP to 
manage data access and the concurrency model, let's review them here.

•	 Global Transaction Timestamp is an auto-incremented value that 
uniquely identifies every transaction in the system. SQL Server 
increments and obtains this value at the transaction commit stage.

•	 Every row has BeginTs and EndTs timestamps, which correspond 
to the Global Transaction Timestamp of the transaction that 
created or deleted this version of a row.

When a new transaction starts, In-Memory OLTP generates a TransactionId value, 
which uniquely identifies the transaction. Moreover, In-Memory OLTP assigns the logical 
start time for the transaction, which represents the Global Transaction Timestamp 
value when the transaction starts. It dictates what version of the rows is visible to the 
transaction. The logical start time should be in between the BeginTs and EndTs values for 
the row to be visible.

When the transaction issues a COMMIT statement, In-Memory OLTP increments the 
Global Transaction Timestamp value and assigns it to the transaction logical end time. 
The logical end time will become BeginTs for the rows inserted and EndTs for the rows 
deleted by the transaction after it is committed.

Figure 8-1 shows the lifetime of a transaction that works with memory-optimized tables.
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When a transaction needs to delete a row, it updates the EndTs timestamp with the 
TransactionId value. The insert operation creates a new row with the BeginTs value of 
TransactionId and the EndTs value of Infinity. Finally, the update operation consists of 
delete and insert operations internally. It is also worth noting that during data modification, 
transactions raise an error if there are any uncommitted versions of the rows they were 
modifying. It prevents write/write conflicts when multiple sessions modify the same data.

When the other transaction, called Tx1, encounters uncommitted rows with 
TransactionId in the BeginTs or EndTs timestamps (TransactionId has a flag that 
indicates such a condition), it checks the status of the transaction with TransactionId. If 
that transaction is committing and the logical end time is already set, those uncommitted 
rows may become visible for the Tx1 transaction, which leads to a situation called commit 
dependency. Tx1 is not blocked; however, it does not return data to the client nor commit 
until the original transaction on which it has a commit dependency commits itself. I will 
talk about commit dependencies shortly.

Let’s look at the transaction lifetime in detail. Figure 8-2 shows the data rows after 
you create and populate the dbo.HKData table in Listing 8-1, assuming that the rows were 
created by a transaction with a Global Transaction Timestamp value of 5. (The hash index 
structure is omitted for simplicity’s sake.)

Let’s assume you have a transaction that started at the time when the Global 
Transaction Timestamp value was 9 and TransactionId generated as -8. (I am using 
a negative value for TransactionId to illustrate the difference between two types of 
timestamps in the figures.)

Figure 8-1.  Transaction lifetime

Figure 8-2.  Data in the dbo.HKData table after insert
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Let’s assume that the transaction performs the operations shown in Listing 8-3. The 
explicit transaction has already started, and the BEGIN TRAN statement is not included in 
the listing. All three statements are executing in the context of a single active transaction.

Listing 8-3.  Data Modification Operations

insert into dbo.HKData with (snapshot) (ID, Col) values(10,10);
update dbo.HKData with (snapshot) set Col = -2 where ID = 2;
delete from dbo.HKData with (snapshot) where ID = 4;

Figure 8-3 illustrates the state of the data after data modifications. An INSERT 
statement created a new row, a DELETE statement updated the EndTs value in the row with 
ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2 and created 
a new version of the row with the same ID.

It is important to note that the transaction maintains a write set, or pointers to 
rows that have been inserted and deleted by a transaction, which is used to generate 
transaction log records.

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation 
levels, transactions maintain a read set of the rows read by a transaction and use it for 
repeatable read validation. Finally, in the SERIALIZABLE isolation level, transactions 
maintain a scan set, which contains information about predicates used by the queries in 
the transaction. The scan set is used for serializable validation.

When a COMMIT request is issued, the transaction starts the validation phase. First, it 
auto-increments the current Global Transaction Timestamp value, which becomes the 
logical end time of the transaction. Figure 8-4 illustrates this state, assuming that the new 
Global Transaction Timestamp value is 11. Note that the BeginTs and EndTs timestamps 
in the rows still have TransactionId at this stage.

Figure 8-3.  Data in the dbo.HKData table after modifications
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At this moment, the rows modified by transactions become visible to other 
transactions in the system even though the transaction has yet to be committed, which 
can lead to commit dependencies. Again, I will talk about them shortly.

As the next step, SQL Server performs several validations based on the isolation level 
of the transaction, as shown in Table 8-9.

■■ Important R epeatable read and serializable validations add overhead to the system. 
Do not use REPEATABLE READ and SERIALIZABLE isolation levels unless you have a 
legitimate use case for such data consistency.

After the required rules have been validated, the transaction waits for the commit 
dependencies to clear and the transaction on which it depends to commit. If those 
transactions fail to commit for any reason (for example, the validation rules are violated), 
the dependent transaction is also be rolled back, and an error 41301 is generated.

Figure 8-5 illustrates a commit dependency scenario. Transaction Tx2 can access 
uncommitted rows from transaction Tx1 during Tx1 validation and commit phases; 
therefore, Tx2 has a commit dependency on Tx1. After the Tx2 validation phase is 
completed, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before 
entering the commit phase.

Figure 8-4.  Start of validation phase

Table 8-9.  Validations Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read Validation Serializable  
Validation

Checking for primary 
key violations

Checking for nonrepeatable 
reads

Checking for 
phantom reads

SNAPSHOT Yes No No

REPEATABLE 
READ

Yes Yes No

SERIALIZABLE Yes Yes Yes
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If Tx1, for example, failed to commit because of serializable validation violation, Tx2 
would be rolled back with error 41301, as shown in Figure 8-6.

■■ Note  Commit dependency is technically a case of blocking in In-Memory OLTP. 
However, the validation and commit phases of the transactions are relatively short, and that 
blocking should not be excessive.

SQL Server allows a maximum of eight commit dependencies on a single transaction. 
When this number is reached, other transactions that try to take a dependency would fail 
with error 41839.

Figure 8-5.  Commit dependency: successful commit

Figure 8-6.  Commit dependency: validation error
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■■ Note   You can track commit dependencies using the dependency_acquiredtx_event 
and waiting_for_dependenciestx_event extended events.

When all commit dependencies are cleared, the transaction moves to the commit phase, 
generates one or more log records, and saves them to the transaction log, moving to the  
post-commit phase afterward. I will talk about transaction logging in more detail in Chapter 10.

At the post-commit phase, the transaction replaces the BeginTs and EndTs 
timestamps with the logical end time value and decrements commit dependency counters 
in the dependent transactions. Figure 8-7 illustrates the final state of the transaction.

Finally, when the transaction is rolled back either because of an explicit ROLLBACK 
command or because of validation violation, In-Memory OLTP resets the EndTs 
timestamp of the deleted rows to infinity. The new versions of the rows inserted by the 
transaction become ghosted. They will be deallocated by the regular garbage collection 
process, which I will discuss in Chapter 11,

Referential Integrity Enforcement
It is impossible to enforce referential integrity in a pure SNAPSHOT isolation level because 
transactions are completely isolated from each other. Consider the situation when a 
transaction deletes a row that is referenced by a newly inserted row in another transaction 
that started after the original one. SNAPSHOT isolation level would prevent transactions to 
see the changes, which would violate referential integrity.

In-Memory OLTP addresses this problem by maintaining read and/or scan sets in 
the SNAPSHOT isolation level for the tables and queries that were affected by referential 
integrity validation. In contrast to REPEATABLE READ and SERIALIZABLE transactions, 
those sets are maintained only for affected tables rather than for entire transactions. They, 
however, would include all rows that were read and predicates that were applied during 
the referential integrity check.

Figure 8-7.  Completed transaction

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
http://dx.doi.org/10.1007/978-1-4842-2772-5_11
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This behavior can lead to issues when the referencing table does not have an index 
on the foreign key column (or columns). Similar to disk-based tables, SQL Server will 
have to scan the entire referencing (detail) table when you delete a row in the referenced 
(master) table. In addition to a performance impact, the transaction will maintain the 
read set, which includes all rows it read during the scan, regardless of whether those rows 
referenced a deleted row or not. If any other transactions update or delete any rows from 
the read set, the original transaction would fail with a repeatable read rule violation error.

Let’s look at the example and create two tables with the code in Listing 8-4.

Listing 8-4.  Referential Integrity Validation: Tables Creation

create table dbo.Branches
(
    BranchId int not null
        constraint PK_Branches
        primary key nonclustered hash with (bucket_count = 4)
)
with (memory_optimized = on, durability = schema_only);

create table dbo.Transactions
(
    TransactionId int not null
        constraint PK_Transactions
        primary key nonclustered hash with (bucket_count = 4),
    BranchId int not null
        constraint FK_Transactions_Branches
        foreign key references dbo.Branches(BranchId),
    Amount money not null
)
with (memory_optimized = on, durability = schema_only);

insert into dbo.Branches(BranchId) values(1),(10);
insert into dbo.Transactions(TransactionId,BranchId,Amount)
values(1,1,10),(2,1,20);

The dbo.Transactions table has a foreign key constraint referencing the dbo.
Branches table. There are no rows, however, referencing the row with BranchId = 10. 
As the next step, let’s run the code shown in Listing 8-5, deleting this row and leaving the 
transaction active.

Listing 8-5.  Referential Integrity Validation: First Session Code

begin tran
    delete from dbo.Branches with (snapshot) where BranchId = 10;

The DELETE statement would validate the foreign key constraint and would complete 
successfully. The dbo.Transactions table, however, does not have an index on the 
BranchId column, and the validation will require you to scan the entire table, as you can 
see in Figure 8-8.
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At this time, all rows from the dbo.Transactions table would be included to the 
transaction read set. If another session updated one of the rows from the read set with the 
code shown in Listing 8-6, it would succeed, and the first session would fail to commit 
with a repeatable read rule violation error.

Listing 8-6.  Referential Integrity Validation: Second Session Code

update dbo.Transactions with (snapshot)
set Amount = 30
where TransactionId = 2;

■■ Important S imilar to disk-based tables, you should always create an index on the 
foreign key columns in the referencing table to avoid this problem.

Summary
In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE 
READ, and SERIALIZABLE. In contrast to disk-based tables, where nonrepeatable and 
phantom reads are addressed by acquiring and holding the locks, In-Memory OLTP 
validates data consistency rules at the transaction commit phase. An exception will be 
raised and the transaction will be rolled back if rules are violated.

Repeatable read and serializable validations add overhead to transaction processing. 
It is recommended that you use the SNAPSHOT isolation level during a regular workload 
unless you require REPEATABLE READ or SERIALIZABLE data consistency.

SQL Server performs repeatable read and serializable validations to enforce 
referential integrity in the system. Always create an index on the foreign key columns in 
the referencing tables to improve performance and avoid validation errors.

You can use different transaction isolation levels for disk-based and memory-
optimized tables in cross-container transactions; however, not all combinations are 
supported. The recommended practice is to use the READ COMMITTED isolation level for 
disk-based tables and the SNAPSHOT isolation level for memory-optimized tables.

Figure 8-8.  Referential integrity validation: execution plan of DELETE statement
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SQL Server does not require you to specify the transaction isolation level when you 
access memory-optimized tables through the Interop Engine in autocommitted (single 
statement) transactions. SQL Server automatically promotes such transactions to the 
SNAPSHOT isolation level. However, you should specify an isolation level hint when a 
transaction is explicitly started with the BEGIN TRAN statement. You can avoid this by 
enabling the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This option is 
useful when you port the existing system to use In-Memory OLTP.
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CHAPTER 9

In-Memory OLTP 
Programmability

This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in 
SQL Server. It describes the process of native compilation, and it provides an overview 
of the natively compiled modules and T-SQL features that are supported in In-Memory 
OLTP. Finally, this chapter compares the performance of several use cases that work with 
the data in memory-optimized tables using natively compiled modules and interpreted 
T-SQL with the Interop Engine.

Native Compilation Overview
As you already know, memory-optimized tables can be accessed from regular T-SQL code 
using the Query Interop Engine. This approach is very flexible. As long as you work within 
the supported feature set, the location of the data is transparent. The code does not 
need to know, nor does it need to worry about, whether it works with disk-based or with 
memory-optimized tables.

Unfortunately, this flexibility comes at a cost. T-SQL is an interpreted and CPU-intensive 
language. Even a simple T-SQL statement requires thousands, and sometimes millions, 
of CPU instructions to execute. Even though the in-memory data location speeds up 
data access and eliminates latching and locking contentions, the overhead of T-SQL 
interpretation sets limits on the level of performance improvements achievable with  
In-Memory OLTP.

■■ Note   The native compilation does not help in operational analytics scenarios. 
Columnstore indexes can be utilized only in query interop mode.

In practice, it is common to see a system throughput increase of two to four times 
when memory-optimized data is accessed through the Interop Engine. To improve 
performance even further, In-Memory OLTP utilizes native compilation. As a first step, it 
converts any row-data manipulation and access logic into C code, which is compiled into 
DLLs and loaded into SQL Server’s process memory. These DLLs (one per table) consist 
of native CPU instructions, and they execute without any further code interpretation 
overhead of T-SQL statements.
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Consider the simple situation where you need to read the value of a fixed-length 
column from a data row. In the case of disk-based tables, SQL Server obtains the starting 
offset and length of the column from the system catalogs, and it performs the required 
manipulations to convert the sequence of bytes to the required data type. With memory-
optimized tables, the DLL already knows the column offset and data type. SQL Server can 
read data from a predefined offset in a row using a pointer of the correct data type without 
any further overhead involved. As you can guess, this approach dramatically reduces the 
number of CPU instructions required for the operation.

On the flip side, this approach brings some limitations. You cannot change the 
format of a row after the DLL is generated. The compiled code would not know anything 
about the changes. This problem is more complicated than it seems, and a simple 
recompilation of the DLL does not address it.

Again, consider the situation where you need to add another nullable column to a 
table. This is a metadata-level operation for disk-based tables, which does not change the 
data in existing table rows. T-SQL would be able to detect that column data is not present 
by analyzing the various data row properties at runtime.

The situation is far more complicated in the case of memory-optimized tables and 
natively compiled code. It is easy to generate a new version of the DLL that knows about 
the new data column; however, that is not enough. The DLL needs to handle different 
versions of rows and different data formats depending on the presence of column data. 
While this is technically possible, it adds extra logic to the DLL, which leads to additional 
processing instructions, which slows data access. Moreover, the logic to support multiple 
data formats remains in the code forever, degrading performance even further with each 
table alteration.

As you already know, SQL Server addresses it by rebuilding the table in the 
background. Table alteration generates the new version of the DLL and the new table 
objects, converting the data rows to the new format. I will talk more about this process in 
the next chapter.

To reduce the overhead of the T-SQL interpretation even further, the In-Memory 
OLTP Engine allows you to perform native compilation of T-SQL modules, such as 
the stored procedures, scalar user-defined functions, and triggers. These modules are 
compiled in the same way as table-related DLLs and are also loaded into the SQL Server 
process memory.

Native compilation utilizes both the SQL Server and In-Memory OLTP engines. As a 
first step, SQL Server parses the T-SQL code and, in the case of T-SQL modules, generates 
an execution plan using the Query Optimizer. At the end of this stage, SQL Server 
generates a structure called a mixed abstract tree (MAT), which represents metadata, 
imperative logic, expressions, and query plans. I will discuss how SQL Server optimizes 
natively compiled modules later in this chapter.

As a next step, In-Memory OLTP transforms MAT to another structure called a pure 
imperative tree (PAT), which is used to generate source code that is compiled and linked 
into the DLL.
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The code generated for native compilation uses the plain C language and is very 
efficient. It is hard to read, however. For example, every method is implemented as a 
single function, which does not call other functions but rather implements its code inline 
using GOTO as a control flow statement. The intention has never been to generate human-
readable code; it is used as the source for native compilation only.

Binary DLL files are not persisted in a database backup. SQL Server re-creates 
table-related DLLs on database startup and module-related DLLs at the time of the first 
call. This approach mitigates security risks from hackers, who can substitute DLLs with 
malicious copies. It is important to remember this behavior because it can add overhead 
at database startup time and change the execution plans of natively compiled modules 
after a database restart.

Figure 9-1.  Native compilation in SQL Server

Figure 9-1 illustrates the process of native compilation in SQL Server.
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■■ Tip   Natively compiled modules are usually faster than interpreted T-SQL ones. 
However, their compilation time can be significantly longer compared to T-SQL modules. 
You should remember this behavior and avoid using extremely short timeouts in natively 
compiled module calls.

SQL Server places binary DLLs and all other native compilation-related files in an 
XTP subfolder under the main SQL Server data directory. It groups files on a per-database 
basis by creating another level of subfolders. Figure 9-2 shows the content of the folder for 
the database (with an ID of 9), which contains several In-Memory OLTP objects.

All the file names start with the prefix xtp_ followed either by a p (stored procedure, 
scalar function, or trigger) or by a t (table), which indicates the object type. The two last 
parts of the name include the database and object IDs for the object.

File extensions determine the type of the file, as shown here:

•	 *.mat.xml files store an XML representation of the MAT structure.

•	 *.c files are the source file generated by the C code generator.

•	 *.obj are the object files generated by the C compiler.

•	 *.pub are symbol files produced by the C compiler.

Figure 9-2.  Folder with natively compiled objects
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•	 *.out are log files from the C compiler.

•	 *.dll are natively compiled DLLs generated by the C linker. 
Those files are loaded into SQL Server memory and used by the 
In-Memory OLTP engine.

■■ Tip   You can open and analyze the C source code and XML MAT in the text editor 
application to get a sense of the native compilation process.

Listing 9-1 shows how to obtain a list of natively compiled objects loaded into  
SQL Server memory. It also returns the list of tables and stored procedures from the 
database to show the correlation between a DLL file name and object IDs.

Listing 9-1.  Obtaining a List of Natively Compiled Objects Loaded into SQL Server 
Memory

select
    s.name + '.' + o.name as [Object Name]
    ,o.object_id
from
     (
        select schema_id, name, object_id
        from sys.tables
        where is_memory_optimized = 1
        union all
        select schema_id, name, object_id
        from sys.procedures
    ) o join sys.schemas s on
        o.schema_id = s.schema_id;

select base_address, file_version, language, description, name  
from sys.dm_os_loaded_modules
where description = 'XTP Native DLL';

Figure 9-3 illustrates the output of the code.

Figure 9-3.  Natively compiled objects loaded into SQL Server memory
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Natively Compiled Modules
Natively compiled modules are the stored procedures, scalar user-defined functions, 
and triggers that are compiled into native code. They are extremely efficient, and they 
can provide major performance improvements when working with memory-optimized 
tables, compared to interpreted T-SQL statements, which access those tables through the 
query interop component.

■■ Note   In this chapter, I will reference regular interpreted (non-natively compiled) 
modules as T-SQL modules.

Natively Compiled Stored Procedures
You can create natively compiled stored procedures using the regular CREATE PROCEDURE 
statement and T-SQL language. However, those procedures have several additional 
options that need to be specified. Listing 9-2 shows the structure of natively compiled 
stored procedures along with those options.

Listing 9-2.  Natively Compiled Stored Procedure Structure

create proc dbo.NativelyCompiledProc
(
    /* Parameters */
    @Param1 int not null = 1
    ,@Param2 int
)
with
    native_compilation    -- Indicates natively compiled SP
    ,schemabinding        -- Required
    ,execute as owner     -- Optional security context
as
-- Natively compiled SPs are executed as atomic blocks
-- (all or nothing)
begin atomic with        
(

    transaction isolation level = snapshot  -- Required
    ,language = N'English'                  -- Required
    ,delayed_durability = off               -- Optional
    ,datefirst = 7                          -- Optional
    ,dateformat = 'mdy'                     -- Optional    
)
    /* Stored Procedure Body */
end
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You can define the parameters of natively compiled stored procedures the same way 
as with T-SQL procedures. However, natively compiled stored procedures allow you to 
specify whether parameters are required and must be provided at the time of a call using 
the NOT NULL construct in the definition. SQL Server raises an error if you do not provide 
their values at the time of the call.

■■ Important  It is recommended that you avoid type conversion and do not use named 
parameters when you call natively compiled stored procedures. It is more efficient to use the 
exec Proc value [..,value] calling format rather than the exec Proc @Param=value 
[..,@Param=value] calling format.

You can detect inefficient parameterization with the hekaton_slow_parameter_parsing 
extended event.

All natively compiled modules must be schema bound and could have an optional 
security context specified. It is better to avoid the EXECUTE AS CALLER context because it 
adds the overhead of per-statement permission checks during the execution.

■■ Note   You can read about execution context at https://docs.microsoft.com/en-us/
sql/t-sql/statements/execute-as-clause-transact-sql.

Two other required options include the transaction isolation level and the language 
setting, which controls a message’s language and default date format. Natively compiled 
modules do not use the runtime SET LANGUAGE session option, relying on the LANGUAGE 
setting instead.

You can control the date format, first day of the week, and delayed durability of a 
stored procedure using the DATEFORMAT, DATEFIRST, and DELAYED_DURABILITY settings, 
respectively.

■■ Note   Delayed durability is a SQL Server feature that controls how SQL Server hardens 
log records, flushing them from the log buffer to the transaction log. Enabling delayed 
durability can help to improve transaction throughput in very busy OLTP systems at the cost 
of a possible small data loss in the event of an unexpected SQL Server shutdown or crash.

You can read more about delayed durability at https://docs.microsoft.com/en-us/sql/
relational-databases/logs/control-transaction-durability. You can also read 
about it in Chapter 30 of my Pro SQL Server Internals book.

Natively compiled modules are executed as atomic blocks, which is an “all or 
nothing” approach; either all statements in the procedure succeed or all of them fail.  
I will discuss how atomic blocks work later in the chapter.

https://docs.microsoft.com/en-us/sql/t-sql/statements/execute-as-clause-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/execute-as-clause-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/en-us/sql/relational-databases/logs/control-transaction-durability
http://dx.doi.org/10.1007/978-1-4842-2772-5_30
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Natively Compiled Triggers and User-Defined Functions
SQL Server allows you to create natively compiled DML triggers on memory-optimized 
tables and scalar user-defined functions. As with natively compiled stored procedures, 
these modules cannot access disk-based objects.

Listing 9-3 shows the code that creates both types of objects.

Listing 9-3.  Natively Compiled Trigger and User-Defined Function

create trigger NativelyCompiledTrigger on dbo.MemoryOptimizedTable
with native_compilation, schemabinding
after insert
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    if @@rowcount = 0
        return;
    /* Trigger Body */
end
go

create function dbo.NativelyCompiledScalarFunction(@Param1 int not null)
returns int
with native_compilation, schemabinding
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'us_english'
)
    declare
        @Result int = 0
    /* Function Body */
    return @Result;
end

As with T-SQL triggers and scalar user-defined functions, you should consider the 
overhead those modules introduce. You will look at performance overhead of user-defined 
functions later in the chapter.

You can also mark inline table-valued functions as natively compiled. However, 
they behave differently than other modules. When you mark those functions as natively 
compiled, SQL Server just validates that they are using the language constructs supported 
by native compilation. The functions are not actually compiled but rather embedded into 
the other natively compiled modules that reference them.
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When you call natively compiled inline table-valued functions from T-SQL via 
Query Interop, SQL Server treats them as the regular T-SQL inline table-valued functions, 
embedding their statement to the referenced query.

Listing 9-4 illustrates a natively compiled inline table-valued function. As you can 
guess, you do not need to specify that the function executes as the atomic block.

Listing 9-4.  Natively Compiled Inline Table-Valued Function

create function dbo.NativeCompiledInlineTVF(@Param datetime)
returns table
with native_compilation, schemabinding
as
return
(
    select count(*) as Result
    from dbo.MemoryOptimizedTable
    where DateCol >= @Param
)

You can define the natively compiled module body pretty much the same way as 
regular T-SQL modules. However, the natively compiled modules support only a limited 
set of T-SQL constructs. Let’s look at the supported features and limitations in different 
T-SQL areas in detail.

Supported T-SQL Features
One of the biggest limitations of natively compiled modules is that they can access only 
memory-optimized tables. The only option to join data from memory-optimized and 
disk-based tables is to use the interpreted T-SQL and the Interop Engine.

There are other limitations you need to remember. Natively compiled code does not 
support parallelism and always has serial execution plans. Nor can it access and scan the 
tables with the varheap Table Scan operator. The table scan is implemented as a scan of 
one of the indexes.

The following T-SQL features and constructs are supported in SQL Server 2016 and 
can be used with native compilation.

Control Flow
The following control flow options are supported:

•	 IF and WHILE.

•	 Assigning a value to a variable with the SELECT and SET operators.

•	 RETURN.

•	 TRY/CATCH/THROW (RAISERROR is not supported). It is 
recommended that you use a single TRY/CATCH block for the entire 
stored procedure for better performance.
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•	 It is possible to declare variables as NOT NULL as long as they have 
an initializer as part of the DECLARE statement.

•	 The nested execution is supported. For example, a natively 
compiled stored procedure can call another natively compiled 
procedure or function.

•	 The CASE statement is not supported in SQL Server 2016. It will be 
supported, however, in SQL Server 2017.

Operators
The following operators are supported:

•	 Comparison operators, such as =, <, <=, >, >=, <>, and BETWEEN.

•	 Unary and binary operators, such as +, -, *, /, and %. Note that + 
operators are supported for both numbers and strings.

•	 Bitwise operators, such as &, |, ~, ^.

•	 Logical operators, such as AND, OR, and NOT.

•	 IN, BETWEEN, and EXISTS operators.

Query Surface Area
The following query surface area functions are supported:

•	 SELECT, INSERT, UPDATE, and DELETE operators.

•	 SELECT DISTINCT operator.

•	 OUTPUT clause with INSERT, UPDATE, and DELETE operators.

•	 CROSS JOIN, INNER JOIN, LEFT OUTER JOIN, and RIGHT OUTER 
JOIN are supported. All joins are implemented as LOOP JOIN 
internally. Neither MERGE JOIN nor HASH JOIN is supported. 
Finally, you can use joins only with the SELECT operator.

•	 Expressions in the SELECT list and the WHERE and HAVING clauses 
are supported as long as they use supported operators.

•	 You can use subqueries in FROM and WHERE clauses and scalar 
subqueries in a SELECT clause.

•	 IS NULL and IS NOT NULL.

•	 GROUP BY is supported with the exception of grouping by string or 
binary data.
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•	 TOP and ORDER BY. However, you cannot use WITH TIES and 
PERCENT in the TOP clause. Moreover, the TOP operator is limited 
to 8,192 rows when the TOP <constant> is used, or even a lesser 
number of rows in the case of joins. You can address this last 
limitation by using a TOP <variable> approach. However, it is 
less efficient in terms of performance. It is also worth mentioning 
that TOP (N) WITH TIES will be supported in SQL Server 2017.

•	 INDEX, FORCESCAN, FORCESEEK, FORCE ORDER, INNER LOOP JOIN, 
and OPTIMIZE FOR hints.

Built-in Functions
The following built-in functions are supported:

•	 All math functions are supported.

•	 Date/time functions: CURRENT_TIMESTAMP, DATEADD, 
DATEDIFF, DATEFROMPARTS, DATEPART, DATETIME2FROMPARTS, 
DATETIMEFROMPARTS, DAY, EOMONTH, GETDATE, GETUTCDATE, MONTH, 
SMALLDATETIMEFROMPARTS, SYSDATETIME, SYSUTCDATETIME, and 
YEAR.

•	 String functions: LEN, LTRIM, RTRIM, and SUBSTRING. SQL Server 2017 
will also support  TRIM, TRANSLATE, and CONCAT_WS.

•	 Error functions: ERROR_LINE, ERROR_MESSAGE, ERROR_NUMBER, 
ERROR_PROCEDURE, ERROR_SEVERITY, and ERROR_STATE.

•	 Security functions: IS_MEMBER, IS_ROLEMEMBER, IS_
SRVROLEMEMBER, ORIGINAL_LOGIN, SESSION_USER, CURRENT_USER, 
SUSER_ID, SUSER_SID, SUSER_SNAME, SYSTEM_USER, SUSER_NAME, 
USER, USER_ID, USER_NAME, and CONTEXT_INFO.

•	 NEWID and NEWSEQUENTIALID.

•	 CAST and CONVERT. However, it is impossible to convert between a 
non-Unicode and a Unicode string.

•	 ISNULL.

•	 SCOPE_IDENTITY.

•	 @@SPID.

•	 You can use @@ROWCOUNT within a natively compiled module; 
however, its value is reset to 0 at the beginning and end of the 
module.
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Atomic Blocks
Natively compiled modules execute as atomic blocks, which is an “all or nothing” 
approach; either all statements in the module succeed or all of them fail.

When a natively compiled module is called outside of the context of an active 
transaction, it starts a new transaction and either commits or rolls it back at the end of the 
execution.

In cases where a module is called in the context of an active transaction, SQL Server 
creates a savepoint at the beginning of the module’s execution. In the case of an error in 
the module, SQL Server rolls back the transaction to the created savepoint. Based on the 
severity and type of the error, the transaction is either going to be able to continue and 
commit or become doomed and uncommittable.

Let’s create a memory-optimized table and natively compiled stored procedure, as 
shown in Listing 9-5.

Listing 9-5.  Atomic Blocks and Transactions: Object Creation

create table dbo.MOData
(
    ID int not null
        primary key nonclustered
        hash with (bucket_count=16),
    Value int null
)
with (memory_optimized=on, durability=schema_only);

insert into dbo.MOData(ID, Value)
values(1,1), (2,2);
go

create proc dbo.AtomicBlockDemo
(
    @ID1 int not null
    ,@Value1 bigint not null
    ,@ID2 int
    ,@Value2 bigint
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language=N'English'
)
    update dbo.MOData set Value = @Value1 where ID = @ID1;

    if @ID2 is not null
        update dbo.MOData set Value = @Value2 where ID = @ID2;
end;
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At this point, the dbo.MOData table has two rows with the values (1,1) and (2,2). As a 
first step, let’s start the transaction and call a stored procedure twice, as shown in Listing 9-6.

Listing 9-6.  Atomic Blocks and Transactions: Calling a Stored Procedure

begin tran
    exec dbo.AtomicBlockDemo 1, -1, 2, -2;
    exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999;

The first call of the stored procedure succeeds, while the second call triggers an 
arithmetic overflow error, as shown here:

Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49
Arithmetic overflow error converting bigint to data type int.

You can check that the transaction is still active and committable with this select: 
SELECT @@TRANCOUNT as [@@TRANCOUNT], XACT_STATE() as [XACT_STATE()]. It returns 
the following results:

@@TRANCOUNT XACT_STATE()
----------- ------------
1           1

If you commit the transaction and check the content of the table, you will see that the 
data reflects the changes caused by the first stored procedure call. Even though the first 
update statement from the second call succeeded, SQL Server rolled it back because the 
natively compiled stored procedure executed as an atomic block. You can see the data in 
the dbo.MOData table.

ID          Value
----------- -----------
1           -1
2           -2

As a second example, let’s trigger a critical error, which dooms the transaction, 
making it uncommittable. One such situation is a write/write conflict, when multiple 
sessions are trying to update the same rows. You can trigger it by executing the code in 
Listing 9-7 in two different sessions.

Listing 9-7.  Atomic Blocks and Transactions: Write/Write Conflict

begin tran
    exec dbo.AtomicBlockDemo 1, 0, null, null;
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When you run the code in the second session, it triggers the following exception:

Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13
The current transaction attempted to update a record that has been updated 
since this transaction started. The transaction was aborted.
Msg 3998, Level 16, State 1, Line 1
Uncommittable transaction is detected at the end of the batch. The 
transaction is rolled back.

If you check @@TRANCOUNT in the second session, you will see that SQL Server 
terminates the transaction.

@@TRANCOUNT
-----------
0          

As you can see, when the atomic block executes in the context of the active transaction, 
severe errors in the atomic block roll back the entire transaction while noncritical errors roll 
back transaction to the savepoint that corresponds to the beginning of the block.

Finally, it is worth mentioning that atomic blocks are an In-Memory OLTP feature 
and are not supported in T-SQL stored procedures.

Optimization of Natively Compiled Modules
Interpreted T-SQL stored procedures and other modules are compiled at the time of the 
first execution. Additionally, they can be recompiled after they are evicted from the plan 
cache and in a few other cases, such as outdated statistics, changes in database schema, 
or recompilations, which are explicitly requested in the code.

This behavior is different from natively compiled modules, which are compiled at 
creation time. They are never automatically recompiled, only with the exception of a 
SQL Server or database restart. In these cases, recompilation occurs at the time of the 
first call. It is also worth noting that the DBCC FREEPROCCACHE command does not force 
recompilation of natively compiled modules.

SQL Server does not sniff parameters at the time of compilation, optimizing 
statements for UNKNOWN values. It uses memory-optimized table statistics during 
optimization, which may or may not be up-to-date. The execution plan will not change 
until the module is recompiled, either explicitly or the after database restart.

Fortunately, cardinality estimation errors have a smaller impact on the performance 
in the case of natively compiled modules. Contrary to disk-based tables, where such 
errors can lead to highly inefficient plans because of an incorrect index choice and, 
therefore, a high number of Key or RID Lookup operations, all indexes in memory-
optimized tables reference the same data row and, in a nutshell, are covering indexes for 
in-row columns. Moreover, errors will not affect the choice of join strategy—the nested 
loop is the only join type supported in natively compiled modules.
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Outdated statistics at the time of compilation, however, can still lead to inefficient 
plans. One such example is a query with multiple predicates on indexed columns. SQL 
Server needs to know the index’s selectivity to choose the most efficient one. Another 
example is the incorrect choice of inner and outer input for the nested loop join, which 
you saw in Chapter 4.

It is better to recompile natively compiled modules if the data in the table has 
significantly changed. You can do it in two different ways—either by altering the module 
or by using the sp_recompile stored procedure.

The internal implementation and impact of those methods are different. The 
sp_recompile stored procedure just marks the natively compiled module as obsolete. 
The first call of the module will trigger the recompilation, similarly to what happens after 
database startup. The session that triggers recompilation and all other sessions calling the 
module during recompilation will be blocked until the compilation is completed.

The module alteration, on the other hand, works differently. SQL Server recompiles 
the module in the background, allowing other sessions to use the old version of the code 
during this time. After compilation is completed, SQL Server waits for all sessions that are 
running the old code to finish and replaces the code in memory afterward. Even though 
there is still blocking during the final module replacement phase, there is no blocking 
during the compilation, which typically takes a significant amount of time. Therefore, 
module alteration introduces less impact on the workload compared to the sp_recompile 
call, and it is the recommended approach to alter the modules in busy systems.

■■ Tip   Consider updating the statistics in the tables referenced from natively compiled 
modules before module recompile or alteration.

Finally, it is worth mentioning that the presence of natively compiled modules 
requires you to adjust the deployment process in the system. It is common to create all 
database schema objects, including tables and modules, at the beginning of deployment. 
While the time of deployment does not matter for T-SQL modules, such a strategy 
compiles natively compiled modules when the database tables are empty. You should 
recompile (re-create) natively compiled modules later, after the tables are populated with 
data and statistics are up-to-date.

Interpreted T-SQL and Memory-Optimized Tables
The Query Interop component provides transparent, memory-optimized table access to 
interpreted T-SQL code. In interpreted mode, SQL Server treats memory-optimized tables 
pretty much the same way as disk-based tables. It optimizes queries and caches execution 
plans, regardless of where the table is located. The same set of operators is used during 
query execution. From a high level, when the operator’s GetRow() method is called, it is 
routed either to the Storage Engine or to the In-Memory OLTP Engine, depending on the 
underlying table type.

Most T-SQL features are supported in interpreted mode. There are still a few 
exceptions, however.

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
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•	 TRUNCATE TABLE.

•	 The MERGE operator with memory-optimized table as the target.

•	 Context connection from CLR code.

•	 Referencing memory-optimized tables in indexed views. You 
can reference memory-optimized tables in partitioned views, 
combining data from memory-optimized and disk-based tables.

•	 DYNAMIC and KEYSET cursors, which are automatically 
downgraded to STATIC.

•	 Cross-database queries and transactions.

•	 Linked servers.

As you can see, the list of limitations is pretty small. However, the flexibility of query 
interop access comes at a cost. Natively compiled modules are usually more efficient 
compared to their interpreted T-SQL counterparts. In some cases, such as joins between 
memory-optimized and disk-based tables, query interop is the only choice; however, it is 
usually preferable to use natively compiled modules when possible.

Performance Comparison
Let’s run several tests comparing the performance of several use cases that work with 
memory-optimized tables using natively compiled and T-SQL modules.

Stored Procedures Performance
As the first step, we will compare the performance of T-SQL and natively compiled stored 
procedures. Let’s create two memory-optimized tables using a schema_only durability 
option to avoid any I/O and transaction logging overhead during the tests. You can see the 
code in Listing 9-8, which also creates a numbers table and populates it with the values.

Listing 9-8.  Creating Test Tables

create table dbo.Customers
(
    CustomerId int not null
        primary key nonclustered
        hash with (bucket_count=262144),
    Name nvarchar(255) not null,
    CreatedOn datetime2(0) not null
        constraint DEF_Customers_CreatedOn
        default sysutcdatetime(),
    Placeholder char(200) not null,

    index IDX_Name nonclustered(Name)
)
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with (memory_optimized=on, durability=schema_only);

create table dbo.Orders
(
    OrderId int not null
        primary key nonclustered
        hash with (bucket_count=2097152),
    CustomerId int not null,
    OrderNum varchar(32) not null,
    OrderDate datetime2(0) not null
        constraint DEF_Orders_OrderDate
        default sysutcdatetime(),
    Amount money not null,
    Placeholder char(200) not null,

    index IDX_CustomerId
    nonclustered hash(CustomerId)
    with (bucket_count=262144),

    index IDX_OrderNum nonclustered(OrderNum)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Numbers
(
    Num int not null
        constraint PK_Numbers
        primary key clustered
);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Numbers(Num)
    select Id from Ids;

As the first step, you will measure the INSERT performance using three 
different approaches and batches of different sizes. The first two stored procedures, 
InsertCustomers_Row and InsertCustomers_NativelyCompiled, will run INSERT 
statements on per-row basis using the Interop Engine and native compilation, respectively. 
The third stored procedure, InsertCustomers_Batch, will insert all rows in the single batch 
through the Interop Engine. Listing 9-9 shows the implementation of the stored procedures.
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Listing 9-9.  Inserting Data into the dbo.Customers Table

create proc dbo.InsertCustomers_Row
(
    @NumCustomers int
)
as
begin
    set nocount on
    set xact_abort on

    declare
        @I int = 1;

    begin tran
        while @I <= @NumCustomers
        begin
            insert into dbo.Customers(CustomerId,Name,Placeholder)
            values(@I,N'Customer ' + convert(nvarchar(10),@I),'Data');

            set @I += 1;
        end;
    commit
end
go

create proc dbo.InsertCustomers_Batch
(
    @NumCustomers int
)
as
begin
    set nocount on
    set xact_abort on

    if @NumCustomers > 1048576
    begin
        raiserror('@NumCustomers should not exceed 1,048,576',10,1);
        return;
    end;

    begin tran
        insert into dbo.Customers(CustomerId,Name,Placeholder)
            select Num, N'Customer ' + convert(nvarchar(10),Num),'Data'
            from dbo.Numbers
            where Num <= @NumCustomers
    commit
end
go
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create proc dbo.InsertCustomers_NativelyCompiled
(
    @NumCustomers int not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    declare
        @I int = 1;

    while @I <= @NumCustomers
    begin
        insert into dbo.Customers(CustomerId,Name,Placeholder)
        values(@I,N'Customer ' + convert(nvarchar(10),@I), 'Data');

        set @I += 1;
    end;
end;

Table 9-1 shows the execution time of each stored procedure for the batches 
of 10,000; 50,000; and 100,000 rows in my environment. As you can see, the natively 
compiled stored procedure is almost three times faster at row-by-row inserts and about 
30 to 40 percent faster compared to batch inserts through the Interop Engine.

As the next step, let’s compare the performance of UPDATE operations. Listing 9-10 
shows a natively compiled stored procedure that updates 50 percent of the rows in the 
dbo.Customers table.

Table 9-1.  Execution Times of InsertCustomers Stored Procedures

10,000 Rows 50,000 Rows 100,000 Rows

InsertCustomers_Row 77 ms 333 ms 640 ms

InsertCustomers_Batch 40 ms 170 ms 340 ms

InsertCustomers_
NativelyCompiled

24 ms 120 ms 222 ms
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Listing 9-10.  Natively Compiled Stored Procedure That Updates Data in the dbo.
Customers Table

create proc dbo.UpdateCustomers
(
    @Placeholder char(100) not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    update dbo.Customers
    set Placeholder = @Placeholder
    where CustomerId % 2 = 0;
end;

Table 9-2 shows the execution time of the UpdateCustomers stored procedure and 
the same UPDATE statement executed through the interop engine. As you see, the natively 
compiled stored procedure is almost five times faster than the interop approach.

Finally, let’s compare the performance of DELETE operations. Listing 9-11 shows a 
natively compiled stored procedure that deletes the data from both tables.

Listing 9-11.  Compiled Stored Procedure That Deletes the Data from Both Tables

create proc dbo.DeleteCustomersAndOrders
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    delete from dbo.Orders;
    delete from dbo.Customers;
end;

Table 9-2.  Execution Times of Update Operations

dbo.UpdateCustomers Natively Compiled 
Stored Procedure

UPDATE Statement Executed Through 
Interop Engine

33 ms 154 ms



Chapter 9 ■ In-Memory OLTP Programmability

159

Table 9-3 shows the execution times of the stored procedure and DELETE statements 
executed through the Interop Engine. In both cases, the dbo.Customers and dbo.
Orders tables were populated with the same data, which are 100,000 and 1,000,000 rows, 
respectively. Again, the natively compiled stored procedure is significantly faster.

The performance of SELECT queries, on the other hand, greatly depends on the use 
case. Natively compiled code works best with OLTP workloads that consist of point-
lookup and small range scan operations. However, the Interop Engine could be the 
better choice for reporting and data warehouse queries. As I already mentioned, natively 
compiled code does not support parallel execution plans nor does it scan the data using 
the varheap Table Scan operator. It is entirely possible that data warehouse queries 
would run faster in interop mode, especially if they have parallel execution plans and/or 
use columnstore indexes. Moreover, natively compiled code does not support hash and 
merge joins, which could outperform nested loop joins on large and unsorted inputs with 
data warehouse workloads.

Scalar User-Defined Function Performance
Even though native compilation could improve the performance of scalar user-defined 
functions, there is still overhead associated with function invocation.

Let’s run a couple tests and compare the performance of interpreted T-SQL and 
natively compiled scalar functions. Listing 9-12 creates two simple functions that just run 
an empty WHILE loop without any data access.

Listing 9-12.  Natively Compiled vs. Interpreted Function: Function Creation

create function dbo.ScalarInterpret(@LoopCnt int)
returns int
as
begin
    declare
        @I int = 0
    while @I < @LoopCnt
        select @I += 1;
    return @I;
end
go

Table 9-3.  Execution Times of Delete Operations

dbo.DeleteCustomersAndOrders Natively 
Compiled Stored Procedure

DELETE Statements Executed  
Through Interop Engine

164 ms 690 ms
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create function dbo.ScalarNativelyCompiled(@LoopCnt int)
returns int
with native_compilation, schemabinding  
as   
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'us_english')  
    declare
        @I int = 0
    while @I < @LoopCnt
        select @I += 1;
    return @I;
end

In the first test, let’s call the functions running 1,000,000 execution loops inside 
them, as shown in Listing 9-13.

Listing 9-13.  Natively Compiled vs. Interpreted Function: Running the Loop Within the 
Function

select dbo.ScalarInterpret(1000000);
select dbo.ScalarNativelyCompiled(1000000);

Table 9-4 illustrates the execution time in my environment. As you can see, the natively 
compiled function is the orders of magnitude faster than the interpreted T-SQL counterpart.

Let’s run another test and call the functions in the loop, as shown in Listing 9-14. The 
functions do not execute a WHILE loo internally but rather are invoked 1,000,000 times. 
Table 9-5 shows the execution time in my environment.

Listing 9-14.  Natively Compiled vs. Interpreted Function: Multiple Calls

declare
    @Dummy int
    ,@I int = 0

while @I < 1000000
begin
    select @Dummy = dbo.ScalarInterpret(0);
    select @I += 1;
end;

Table 9-4.  Esecution Time When Functions Run 1,000,000-Execution Loop

Interpreted T-SQL Function Natively Compiled Function

454 ms 5 ms
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set @I = 0;
while @I < 1000000
begin
    select @Dummy = dbo.ScalarNativelyCompiled(0);
    select @I += 1;
end;

Even though natively compiled functions are significantly faster than interpreted 
T-SQL functions, the invocation overhead is similar in both cases. You should avoid scalar 
user-defined functions in your code even when they are natively compiled unless they are 
absolutely necessary.

Memory-Optimized Table Types and Variables
SQL Server allows you to create memory-optimized table types. Table variables of these 
types are called memory-optimized table variables. In contrast to regular disk-based table 
variables, memory-optimized table variables live in memory only and do not utilize tempdb.

Memory-optimized table variables provide great performance. They can be used 
as a replacement for disk-based table variables and, in some cases, temporary tables. 
Obviously, they have the same set of functional limitations as memory-optimized tables.

Contrary to disk-based table types, you can define indexes on memory-optimized 
table types; however, similar to disk-based table variables, SQL Server does not maintain 
statistics on the indexes. Fortunately, as discussed, because of the nature of indexes on 
memory-optimized tables, cardinality estimation errors yield a much lower negative 
impact compared to those of disk-based tables.

■■ Note   A statement-level recompile with option (recompile) allows SQL Server to 
estimate the number of rows in memory-optimized table variables. However, it does not 
provide SQL Server any information about data distribution there.

SQL Server does not support the inline declaration of memory-optimized table 
variables. For example, the code shown in Listing 9-15 will not compile, and it will raise 
an error. The reason behind this limitation is that SQL Server compiles a DLL for every 
memory-optimized table type, which will not work in the case of inline declaration.

Table 9-5.  Esecution Time of 1,000,000 Function Calls

Interpreted T-SQL Function Natively Compiled Function

12,344 ms 11,392 ms
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Listing 9-15.  (Nonfunctional) Inline Declaration of Memory-Optimized Table Variables

declare
    @IDList table
     (
        ID int not null
            primary key nonclustered hash
            with (bucket_count=10000)
    )
    with (memory_optimized=on)

Msg 319, Level 15, State 1, Line 91
Incorrect syntax near the keyword 'with'. If this statement is a common 
table expression, an xmlnamespaces clause or a change tracking context 
clause, the previous statement must be terminated with a semicolon.

You should define and use a memory-optimized table type instead, as shown in 
Listing 9-16.

Listing 9-16.  Creating a Memory-Optimized Table Type and Memory-Optimized Table 
Variable

create type dbo.mtvIDList as table
(
    ID int not null
        primary key nonclustered hash
        with (bucket_count=16384)
)
with (memory_optimized=on)
go

declare
    @IDList dbo.mtvIDList

You can use memory-optimized table variables as table-valued parameters (TVP) 
in natively compiled and regular T-SQL modules. As with disk-based table-valued 
parameters, it is an efficient way to pass a batch of rows to a T-SQL routine.

■■ Note   I will discuss the scenarios of passing a batch of rows to T-SQL routines and 
using memory-optimized table variables as the replacement of temporary tables in greater 
detail in Chapter 13.

You can use memory-optimized table variables to imitate row-by-row processing 
using cursors, which are not supported in natively compiled stored procedures. Listing 9-17 
illustrates an example of using a memory-optimized table variable to imitate a static cursor. 
Obviously, it is better to avoid cursors and use set-based logic if at all possible.

http://dx.doi.org/10.1007/978-1-4842-2772-5_13
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Listing 9-17.  Using a Memory-Optimized Table Variable to Imitate a Cursor

create type dbo.MODataStage as table
(
    ID int not null
        primary key nonclustered
        hash with (bucket_count=1024),
    Value int null
)
with (memory_optimized=on)
go

create proc dbo.CursorDemo
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language=N'English'
)
    declare
        @tblCursor dbo.MODataStage
        ,@ID int = -1
        ,@Value int
        ,@RC int = 1

    /* Staging data in temporary table to imitate STATIC cursor */
    insert into @tblCursor(ID, Value)
        select ID, Value
        from dbo.MOData

    while @RC = 1
    begin
        select top 1 @ID = ID, @Value = Value
        from @tblCursor
        where ID > @ID
        order by ID

        select @RC = @@rowcount
        if @RC = 1
        begin
            /* Row processing */
            update dbo.MOData set Value = Value * 2 where ID = @ID
        end
    end
end
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Summary
SQL Server uses native compilation to minimize the processing overhead of the 
interpreted T-SQL language. It generates separate DLLs for every memory-optimized 
object and loads it into process memory.

SQL Server supports native compilation of regular T-SQL stored procedures, scalar 
user-defined functions, and triggers. It compiles them into DLLs at creation time or, in 
the case of a server or database restart, at the time of the first call. SQL Server optimizes 
natively compiled modules for UNKNOWN values and embeds an execution plan into the 
code. That plan never changes unless the module is recompiled—either explicitly or after 
a SQL Server or database restart. You should recompile the module if data distribution 
has been significantly changed after initial compilation.

You can recompile the module either by altering it or by calling the sp_recompile 
stored procedure. Altering the module performs recompilation in background, and it 
introduces less impact on the workload in the busy systems.

While natively compiled modules are incredibly fast, they support a limited set of 
T-SQL language features. You can avoid such limitations by using interpreted T-SQL code 
that accesses memory-optimized tables through the Query Interop component of SQL 
Server. Almost all T-SQL language features are supported in this mode.

Memory-optimized table types and memory-optimized table variables are the  
in-memory analog of table types and table variables. They live in memory only, and they 
do not use tempdb. You can use memory-optimized table variables as a staging area for 
the data and to pass a batch of rows to a T-SQL routine. Memory-optimized table types 
allow you to create indexes similar to memory-optimized tables.
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CHAPTER 10

Data Storage, Logging,  
and Recovery

This chapter discusses how In-Memory OLTP stores the data from durable memory-
optimized tables on disk. It illustrates the concept of checkpoint file pairs used by SQL 
Server to persist the data, provides an overview of the checkpoint process in In-Memory 
OLTP, and discusses the recovery of memory-optimized data. It also explains why  
In-Memory OLTP logging is more efficient compared to disk-based tables.

Finally, this chapter demonstrates how In-Memory OLTP performs table alteration 
and logs it in the log and checkpoint files.

Data Storage
The data from durable memory-optimized tables is stored separately from disk-based 
tables. SQL Server uses a streaming mechanism to store it, which is based on the 
FILESTREAM technology. In-Memory OLTP and FILESTREAM, however, store data separately 
from each other, and you should have two separate filegroups: one for In-Memory OLTP 
and another for FILESTREAM data when the database uses both technologies.

There is a conceptual difference between how disk-based data and memory-
optimized data are stored. Disk-based tables store the single, most recent version of the 
row. Multiple updates of the row change the same row object multiple times. Deletion of 
the row removes it from the database. Finally, it is always possible to locate a data row in a 
data file when needed.

In-Memory OLTP uses a completely different approach and persists multiple 
versions of the row on disk. Multiple updates of the data row generate multiple row 
objects, each of which has a different lifetime. SQL Server appends them to binary files 
stored in the In-Memory OLTP filegroup, which are called checkpoint files or, sometimes, 
checkpoint file pairs (CFP). 

It is impossible to predict where a data row is stored in checkpoint files. Nor are there 
use cases for such an operation. The only purposes these files serve are to provide data 
durability and to improve the performance of loading data into memory on database startup.
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As you can guess by the name, each checkpoint file pair consists of two files: a 
data file and a delta file. Each CFP covers operations for a range of Global Transaction 
Timestamp values, logging operations on the rows that have BeginTs values in this range. 
Every time you insert a row, it is saved into a data file. Every time you delete a row, the 
information about the deleted row is saved into a delta file. An update generates two 
operations, INSERT and DELETE, and it saves this information to both files. You will see 
how all those operations work in more detail later in the chapter.

Figure 10-1 provides a high-level overview of the structure of checkpoint file pairs.

Figure 10-1.  Data in checkpoint files

As you will remember, memory-optimized tables may include additional internal 
tables that store data from off-row columns and columnstore index-related structures. 
Those internal tables are treated as separate objects (the rows in checkpoint files use 
xtp_object_id as the reference), and data from there is stored separately from the main 
in-row data rows.

The data from LOB columns, such as (n)varchar(max) and varbinary(max), is 
stored in another type of data file, called large data. The large data files have a similar 
structure as the regular data files; however, they can store more than 8,060 bytes in the 
payload section of the rows. It is worth noting that the data from the row-overflow column 
tables is stored in the regular data files.

The large data files are also used to store compressed columnstore segments. 
Compressed segment data is stored in the payload section of the row and referenced by 
the segment_id and column_id values. The delete bitmap (the deleted rows table), on the 
other hand, is stored separately, as the regular table in another checkpoint file pair.

Finally, there is another type of checkpoint file called the root file. Root files are generated 
at each checkpoint event and are used to keep track of checkpoint files in the system.

Figure 10-2 shows an example of a database with 15 checkpoint files in different 
states. I will cover the states of checkpoint files in detail shortly. This is just an illustration; 
the actual databases will have at least 17 checkpoint files in various states.
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Using a separate delta file to log deletions allows SQL Server to avoid modifications 
in data files and random I/O when rows are deleted. All checkpoint files are append-only. 
Moreover, when files are closed (again, more on this shortly), they become read-only.

Checkpoint Files States
Each checkpoint file can be in one of several states during its lifetime, as illustrated in 
Figure 10-3.

Figure 10-2.  A database with multiple checkpoint file pairs

Figure 10-3.  Checkpoint file states
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Let’s look at all of these states in more detail.

PRECREATED State
When you create the first In-Memory OLTP object in the database, including  
memory-optimized table types and nondurable memory-optimized tables, SQL Server 
generates 17 checkpoint files: 1 root and 16 empty files. This is done to minimize wait 
time when new files are needed.

The initial size of the files is based on the amount of server memory, as shown in 
Table 10-1. It is possible, however, that SQL Server changes the type of precreated file if 
needed. For example, a precreated large data file can be converted and used as a regular 
data file when required.

SQL Server 2016 RTM supports large checkpoints, which is another configuration of 
checkpoint files and enables it when the server meets the following requirements:

The server has 16 or more logical processors.

The server has 128GB or greater memory.

The server I/O system provides more than 200MB/sec 
throughput for the database.

In this mode, SQL Server used 1GB/128MB data and delta files and defers the 
automatic checkpoint process to 12GB of log growth (more on this later). While this 
configuration may help to improve the performance of the systems with a very high 
transaction log generation rate, it may lead to a longer recovery time on database startup. 
This behavior has been disabled in SQL Server 2016 CU1/SQL Server 2016 SP1.

UNDER CONSTRUCTION State and CHECKPOINT Process
As you already know, SQL Server uses the transaction log to persist information about 
data modifications in the database. Transaction log records can be used to reconstruct 
any data changes in the event of an unexpected shutdown or crash; however, that process 
can be time-consuming if a large number of log records need to be replayed. 

SQL Server uses checkpoints to mitigate that problem. Even though disk-based and 
In-Memory OLTP checkpoint processes are independent from each other, they do the 
same thing: they persist the data changes on disk, reducing the database recovery time. 
The last checkpoint identifies up to which point the data changes have been persisted 
and which log records need to be replayed.

Table 10-1.  Initial Size of Checkpoint Files

Server Memory Data File Size Large Data File Size Delta File Size Root File Size

Less than 16GB 16MB 8MB 8MB 2MB

16GB or more 128MB 64MB 8MB 16MB
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With disk-based tables, the frequency of checkpoint operations depends on the 
server-level recovery interval and database-level TARGET_RECOVERY_TIME settings. 
While such an approach helps SQL Server to improve write performance by batching 
multiple random I/O writes together, it leads to spikes in I/O activity at the time when the 
checkpoint occurs.

In contrast, In-Memory OLTP implements continuous checkpoints. It continuously 
scans the transaction log, streaming and appending the changes to checkpoint file pairs 
in the UNDER CONSTRUCTION state. The new versions of the rows are appended to the data 
files, and deletions are appended to delta files. The continuous checkpoint also appends 
information about deletions to CFPs in the ACTIVE state, which I will discuss shortly.

■■ Note   It is worth repeating that the In-Memory OLTP checkpoint relies on transaction 
log records, which is different from the Storage Engine checkpoint that scans and flushes 
the dirty data pages from the buffer pool.

In SQL Server 2016, the In-Memory OLTP continuous checkpoint process is 
multithreaded and significantly more efficient compared to the single-threaded 
checkpoint in SQL Server 2014. The main work is done by serializer threads that scan 
transaction logs based on about 1MB intervals called segments. Those threads process the 
segments and populate data and delta files based on In-Memory OLTP transaction log 
records from there.

The segments are identified by segment log records, which are generated when a 
transaction log grows more than 1MB since the last segment log record. Those log records 
contain information about the range of transactions within the segments. The controller 
thread scans the log identifying the segments and passing them to the serializer threads.

Another thread—timer tasks—wakes up on schedule and checks whether the 
transaction log grew 1.5GB since the last checkpoint event or whether the last checkpoint 
event occurred more than six hours ago. When this happens, In-Memory OLTP creates 
another internal transaction that closes the currently opened segment with a special flag 
that indicates that it should trigger the checkpoint. When this segment is detected by the 
controller thread, it wakes up another close thread, which performs the actual checkpoint 
operation by converting all UNDER CONSTRUCTION data files to the ACTIVE state and 
generating another root file with the information about all active files at the time of the 
checkpoint. It is worth noting that the checkpoint is triggered regardless if the transaction 
log grew because of disk-based or In-Memory OLTP transactions.

■■ Note   With large checkpoints in SQL Server 2016 RTM, checkpoints are triggered based 
on a 12GB transaction log growth.
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ACTIVE State
As already mentioned, the checkpoint event changes the state of all UNDER CONSTRUCTION 
checkpoint files to ACTIVE. SQL Server does not append new data rows into ACTIVE data 
files so they become read-only; however, it still appends the information about deleted 
rows from ACTIVE data files into the ACTIVE delta files.

Consider the situation when the database has two checkpoint file pairs—one in 
ACTIVE state covering the BeginTs interval between 0 and 1,000 and another one in  
UNDER CONSTRUCTION state covering the interval starting with a BeginTs value of 1,001. 
Let’s assume you have three data rows in the table stored in the ACTIVE data file. 
Figure 10-4 illustrates this.

Figure 10-4.  ACTIVE and UNDER CONSTRUCTION checkpoint file pairs
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Let’s assume you have two transactions that modify the data, as shown in Listing 10-1.

Listing 10-1.  Modifying the Data in the Table

-- Global Transaction Timestamp: 1100
begin tran
    delete from T where RowId = 1;
    update T set Col = 1 where RowId = 3;
    insert into T(RowId) values(4);
commit;

-- Global Transaction Timestamp: 1200
delete from T where RowId = 4;

The first transaction with a Global Transaction Timestamp value of 1,100 deletes the 
row with RowId = 1, which adds the row to the delta file of ACTIVE CFP. It also updates 
the row with RowId = 2, which adds another row to the ACTIVE delta file, marking deletion 
of the old version of the row. The new version of the data row is inserted into the UNDER 
CONSTRUCTION data file along with the row from the INSERT statement.

The second transaction deletes the newly inserted row, which adds the row to the 
UNDER CONSTRUCTION delta file, as shown in Figure 10-5.

Figure 10-5.  ACTIVE and UNDER CONSTRUCTION checkpoint file pairs after data 
modifications
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Typically, the combined size of the ACTIVE checkpoint files on disk is about twice the 
size of the durable memory-optimized tables in memory. However, in some cases,  
SQL Server may require more space to store memory-optimized data.

MERGE TARGET State and Merge Process
Over time, as data modifications progress, the percent of deleted rows in the ACTIVE 
checkpoint files increases. This condition adds unnecessary storage overhead and slows 
down the data-loading process during recovery. SQL Server addresses this situation with 
a process called merge. 

A background task called the Merge Policy Evaluator periodically analyzes whether 
adjacent ACTIVE CFPs can be merged in a way that active, nondeleted rows from the 
merged data files would fit into the new 16MB or 128MB data file. When this happens, 
SQL Server creates the new CFP in a MERGE TARGET state and populates it with the data 
from the multiple ACTIVE CFPs, filtering out deleted rows.

Even though the Merge Policy Evaluator can identify multiple possible merges, 
every CFP can participate in only one of them. Table 10-2 shows several examples of the 
possible merges.

Table 10-2.  Merge Examples

Adjacent Source Files (% Full) Merge Results

CFP0 (40%), CFP1 (45%), CFP2 (60%) CFP0 + CFP1 (85%).

CFP0 (10%), CFP1 (15%), CFP2 (70%), CFP3 (10%) CFP0 + CFP1 + CFP2 (95%).

CFP0 (55%), CFP1 (50%) No merge is done.

Once the merge process is complete and the checkpoint has occurred, the  
MERGE TARGET CFP is transitioned to ACTIVE and former ACTIVE CFPs to WAITING FOR 
LOG TRUNCATION states.

In-Memory OLTP merges LOB-column large data files the same way as the regular 
data files. However, large data files with columnstore segments and root files are not 
merged and may transition to a WAITING FOR LOG TRUNCATION state without the need 
for a merge operation. This transition happens after a new root file is generated at the 
checkpoint event or when the columnstore index row group has been decompressed after 
90 percent of the rows in the group are deleted.

WAITING FOR LOG TRUNCATION State
The data in former ACTIVE and now WAITING FOR LOG TRUNCATION files is no longer 
needed for database recovery. Former MERGE TARGET and now ACTIVE CFPs can be used 
for this purpose. However, those WAITING FOR LOG TRUNCATION files are still needed if 
you want to restore the database from a backup.
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The checkpoint files stay in that state until the log truncation point passed their 
LSNs. In a FULL recovery model, this means that a log backup has been taken, log records 
were sent to secondary nodes, and other processes that read transaction log have not 
fallen behind. Obviously, in a SIMPLE recovery model, a log backup is not required, and 
the log truncation point is controlled by checkpoints.

Once it happens, WAITING FOR LOG TRUNCATION files are no longer needed. They 
can be either transitioned back to a PRECREATED state or deleted if the system has already 
enough PRECREATED files.

■■ Note   You can analyze the state of checkpoint files using the sys.dm_db_xtp_
checkpoint_files view. Appendix C talks about this view in greater depth and shows how 
checkpoint file states change through their lifetime.

Recovery
As you know, the recovery process may occur during a database or instance restart, 
failover to another node, or after restoring the database from the backup. SQL Server 
performs the recovery of disk-based and memory-optimized tables in parallel using 
ACTIVE data files and transaction logs for In-Memory OLTP data.

At the beginning of the recovery stage, SQL Server locates the most recent root file 
that contains information about checkpoint files and passes it to the In-Memory OLTP 
Engine. The Engine obtains the list of all ACTIVE checkpoint file pairs and starts loading 
data from them. It loads only the nondeleted versions of rows using delta files as the filter. 
It checks that a row from a data file is not deleted and is not referenced in the delta files. 
Based on the results of this check, a row is either loaded to memory or discarded.

The process of loading data is highly scalable. SQL Server creates one thread per 
logical CPU, and each thread processes an individual checkpoint file pair. In a large 
number of cases, the performance of the I/O subsystem becomes the limiting factor in 
data-loading performance. This is the reason why you should place checkpoint files on 
the fast, preferable flash-based, storage.

As the opposite of disk-based tables, indexes on memory-optimized tables are not 
persisted. As you remember, indexes in In-Memory OLTP are just the memory pointers, 
and the memory addresses of the rows change after they are reloaded into the memory. 
Therefore, indexes must be re-created during the recovery stage.

Figure 10-6 illustrates the data-loading process.
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After the data from CFPs has been loaded, SQL Server completes the recovery by 
applying the changes from the tail of the transaction log, bringing the database back to 
the state as of the time of crash or shutdown. As you already know, In-Memory OLTP does 
not log uncommitted changes; therefore, no UNDO stage is required during the recovery.

Finally, it is important to mention the difference in recovery processes during 
failover in AlwaysOn Availability Groups and Failover Cluster instances. With an 
AlwaysOn Failover Cluster, failover is conceptually similar to a SQL Server restart. The 
databases are brought online, and all memory-optimized data needs to be loaded into 
the memory. AlwaysOn Availability Group nodes, on the other hand, just need to process 
REDO queue replaying transactions from the unapplied portion of transaction log. The 
data from memory-optimized tables is already loaded into the memory on all nodes.

You should remember this behavior and consider the memory-optimized data 
recovery time when you have an availability SLA in your system. This is especially 
important if you are using failover clusters in the infrastructure. As mentioned, you can 
reduce this time by placing checkpoint files on the fast storage.

Transaction Logging
As you already know, transaction logging in In-Memory OLTP is more efficient compared 
to the Storage Engine. Both engines share the same transaction log and perform write-
ahead logging (WAL); however, the log records format and algorithms are very different.

With disk-based tables, SQL Server generates transaction log records on a per-index 
basis. For example, when you insert a single row into a table with clustered and nonclustered 
indexes, it will log insert operations in every individual index separately. Moreover, it will log 
internal operations, such as extent and page allocations, page splits, and a few others.

Figure 10-6.  Loading data to memory
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All log records are saved in a transaction log and hardened on disk pretty much 
synchronously at the time when they were created. Even though every database has 
a cache called Log Buffer to batch log writes, that cache is very small, about 60KB. 
Moreover, some operations, such as COMMIT and CHECKPOINT, flush that cache whether it 
is full or not.

Finally, SQL Server has to include before-update (UNDO) and after-update (REDO) 
versions of the row to the log records. The checkpoint process is asynchronous, and it 
does not check the state of transaction that modified the page. It is entirely possible for 
the checkpoint to save the dirty data pages from uncommitted transactions, and the UNDO 
part of the log records are required to roll back the changes.

Transaction logging in In-Memory OLTP addresses these inefficiencies. The first 
major difference is that In-Memory OLTP generates and saves log records at the time of the 
transaction COMMIT rather than during each data row modification. Therefore, rolled-back 
transactions do not generate any log activity.

The format of a log record is also different. Log records do not include any UNDO 
information. Dirty data from uncommitted transactions will never materialize on disk; 
therefore, In-Memory OLTP log data does not need to support the UNDO stage of crash 
recovery or log uncommitted changes.

In-Memory OLTP generates log records based on the transactions write set. All data 
modifications are combined in one or very few log records based on the write set and 
inserted rows’ size.

Let’s examine this behavior and run the code shown in Listing 10-2. It starts a 
transaction and inserts 500 rows into a memory-optimized table. Then it examines the 
content of the transaction log using the undocumented sys.fn_dblog system function.

Listing 10-2.  Transaction Logging in In-Memory OLTP: Memory-Optimized Table Logging

create table dbo.HKData
(
    ID int not null,
    Col int not null,

    constraint PK_HKData
    primary key nonclustered hash(ID)
    with (bucket_count=2048),
)
with (memory_optimized=on, durability=schema_and_data);

declare
    @I int = 1

begin tran
    while @I <= 500
    begin
        insert into dbo.HKData with (snapshot)
           (ID, Col)
        values(@I, @I);
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        set @I += 1
    end
commit
go

select *
from sys.fn_dblog(NULL, NULL)
order by [Current LSN];

Figure 10-7 illustrates the content of the transaction log. You can see the single 
transaction record for the In-Memory OLTP transaction.

Let’s repeat this test with a disk-based table of a similar structure. Listing 10-3 shows 
the code that creates a table and populates it with data.

Listing 10-3.  Transaction Logging in In-Memory OLTP: Disk-Based Table Logging

create table dbo.DiskData
(
    ID int not null,
    Col int not null,

    constraint PK_DiskData
    primary key nonclustered(ID)
);

declare
    @I int = 1

begin tran
    while @I <= 500
    begin
        insert into dbo.DiskData(ID, Col)
        values(@I, @I);

        set @I += 1;
    end
commit

As you can see in Figure 10-8, the same transaction generated more than 1,700 log 
records.

Figure 10-7.  Transaction log content after the In-Memory OLTP transaction
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You can use another undocumented function, sys.fn_dblog_xtp, to examine 
the logical content of an In-Memory OLTP log record. Listing 10-4 shows the code that 
utilizes this function. You should use the LSN of the LSN_HK log record from the  
Listing 10-2 output as the parameter of the function.

Listing 10-4.  Analyzing an In-Memory OLTP Log Record

select [Current LSN], xtp_object_id, operation_desc
    ,tx_end_timestamp, total_size
from sys.fn_dblog_xtp(null, null)
-- <Use LSN of LOP_HK operation from result of sys.fn_dblog>
where [Current LSN] = '00000022:00000240:0035';

Figure 10-9 shows the output of that code.

Figure 10-8.  Transaction log content after disk-based table modification

Figure 10-9.  In-Memory OLTP transaction log record details

Finally, it is worth stating again that any data modification on nondurable tables 
(DURABILITY=SCHEMA_ONLY) is not logged in the transaction log or is its data persisted on disk.
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Table Alteration
As you already know, SQL Server 2016 supports table alteration using the ALTER TABLE 
statement. This is an offline operation that blocks access to the table during execution. 
SQL Server generates and compiles the new version of the table DLL and loads it into the 
process memory.

The ALTER TABLE statement runs in two different modes depending on what changes 
are required.

Metadata-only alteration: With metadata-only alteration, In-
Memory OLTP does not modify the structure of the data rows. 
This may occur when you add or remove DEFAULT, CHECK, and 
FOREIGN KEY constraints and/or enable or disable the system 
versioning (temporal tables) for memory-optimized tables.

Regular alteration: That type of alteration requires In-Memory 
OLTP to change the format of the data rows or internal table 
objects. It occurs when you add or remove columns and 
indexes, change column data types, and modify the bucket_
count value of the hash indexes, as well as in other cases that 
require transformation of the data.

During metadata-only alteration, SQL Server updates the table metadata and 
creates, drops, or flushes system-versioning-related objects to disk if needed. The data 
rows are not re-created, but adding CHECK or FOREIGN KEY constraints may require In-
Memory OLTP to scan all the data from the table to validate the constraint.

Regular alteration, on the other hand, will require In-Memory OLTP to re-create the 
table. This occurs when you need to change the data row format and/or indexing in the 
table. In this case, SQL Server creates another table object with a different xtp_object_id 
value and copies the data from the old to the new objects, transforming it during the 
process. Obviously, the system needs to have enough memory to accommodate both 
copies of the data.

Let’s look at the example and create two tables, obtaining xtp_object_id values for 
them. Listing 10-5 shows the code that performs this.

Listing 10-5.  Creating Two Tables and Obtaining xtp_object_id Values

create table dbo.TableA
(
    Col1 int not null
        constraint PK_TableA
        primary key nonclustered hash
        with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data);
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create table dbo.TableB
(
    Col1 int not null
        constraint PK_TableB
        primary key nonclustered hash
        with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data);

select
    'dbo.TableA' as [Table]
    ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and
            a.xtp_object_id = c.xtp_object_id
where
    c.object_id = object_id('dbo.TableA');

select
    'dbo.TableB' as [Table]
    ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and
            a.xtp_object_id = c.xtp_object_id
where
    c.object_id = object_id('dbo.TableB');

Figure 10-10 illustrates the output of the code.

Figure 10-10.  Xtp_object_id values after table creation
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As the next step, let’s alter two tables, as shown in Listing 10-6. The code adds a 
CHECK constraint to dbo.TableA and also adds a new column to dbo.TableB. Finally,  
it queries the xtp_object_id value of the tables again.

Listing 10-6.  Altering the Tables

alter table dbo.TableA
add constraint CHK_Col1
check (Col1 > 0);

alter table dbo.TableB
add Col2 int null;

select
    'dbo.TableA' as [Table]
    ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and
            a.xtp_object_id = c.xtp_object_id
where
    c.object_id = object_id('dbo.TableA');

select
    'dbo.TableB' as [Table]
    ,c.index_id, a.xtp_object_id, a.type_desc, a.minor_id
    ,c.memory_consumer_id, c.memory_consumer_type_desc as [mc type]
from
    sys.dm_db_xtp_memory_consumers c join
        sys.memory_optimized_tables_internal_attributes a on
            a.object_id = c.object_id and
            a.xtp_object_id = c.xtp_object_id
where
    c.object_id = object_id('dbo.TableB');

As you can see in Figure 10-11, adding a CHECK constraint is a metadata-only 
alteration, which did not change the xtp_object_id value of the table. Adding a new 
column, on the other hand, required SQL Server to create another table object internally.

Figure 10-11.  Xtp_object_id values after alteration
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Obviously, SQL Server has to log and persist table alteration events. Moreover, in the 
case of regular alteration, checkpoint data files may store the data rows in an old, pre-altered  
format, which is incompatible with the new table schema and DLL. In-Memory OLTP 
addresses this by applying the technique called log optimization, persisting the history 
of schema changes in an internal transformation table. SQL Server uses that table to 
transform the data rows into the new format during database startup while loading data 
into the memory.

Let’s illustrate it with the example. Listing 10-7 shows the code that creates the table 
and performs two table alterations adding some data rows to the table in between them.

Listing 10-7.  Log Optimization

-- Global Transaction Timestamp = 1
-- xtp_object_id = -2147483615
create table dbo.T1
(
    Id int not null
        constraint PK_T1
        primary key nonclustered hash
        with (bucket_count=1024),
    Col1 int not null;
)
with (memory_optimized=on, durability=schema_and_data);

-- Global Transaction Timestamp = 100
insert into dbo.T1(ID,Col1) values(1,1);

-- Global Transaction Timestamp = 200
-- xtp_object_id = -2147483612
alter table dbo.T1 add Col2 varchar(100);

-- Global Transaction Timestamp = 300
insert into dbo.T1(ID,Col1,Col2) values(2,2,'2');

-- Global Transaction Timestamp = 400
-- xtp_object_id = -2147483609
alter table dbo.T1 alter column Col1 money;

-- Global Transaction Timestamp = 500
insert into dbo.T1(ID,Col1,Col2) values(3,3.33,'3');

Table 10-3 illustrates the logical structure of the transformation table.

Table 10-3.  Logical Structure of the Transformation Table

BeginTs xtp_object_id Action

200 -2147483612 ADD Coll2 int

400 -2147483609 MODIFY Col1 money
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During database startup, In-Memory OLTP reads the rows from checkpoint files and 
transforms them to the latest schema based on the data from the transformation table. 
Figure 10-12 illustrates this process.

As you can guess, log optimization requires transformation to be deterministic. 
The column values in the rows after the transformation should be the same as after the 
original alteration. Unfortunately, this is not always possible. Consider the situation 
when you add a new column to the table either as identity or with the DEFAULT NEWID() 
WITH VALUES constraint. This modification is nondeterministic. It is impossible to predict 
the values that are generated during alteration and transformation; therefore, log 
optimization would not work.

When log optimization is impossible, SQL Server uses naïve logging and logs the 
table alteration as the set of individual inserts into the new table, as shown in Listing 10-8. 
The rows are transformed according to the new table schema during the process.

Listing 10-8.  Naïve Logging: Alteration of Table T (Pseudocode)

create table NewVersionOfT(..);

insert into NewVersionOfT(..)
    select and transform rows according to the new schema
    from T;

drop table T;

In-Memory OLTP treats that INSERT SELECT actions the same way as regular INSERT 
operations. It logs them in the transaction log, and the continuous checkpoint writes 
the rows to the checkpoint data files. As you can guess, this approach can introduce 
significant log overhead, especially in the case of the large tables. Moreover, table 
alterations that require naïve logging are single-threaded and can be significantly slower 
than multithreaded log-optimized alterations.

Several other cases lead to naïve logging. The most notable is adding new LOB or 
row-overflow columns to the table. As you will know, off-row columns are stored in the 
separate internal tables, with the main rows referencing them through the artificial IDs. 
It is impossible to predict those ID values and use log optimization. Unfortunately, the 
alteration of off-row columns is also not log-optimized and any changes of off-row columns, 
including dropping them or bringing them back in-row, will lead to naïve logging.

Figure 10-12.  Data row transformation during database startup
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Finally, SQL Server uses naïve logging with any DEFAULT WITH VALUES constraint that 
uses system or user-defined functions even when functions are deterministic.

Let’s look at the overhead of naïve logging. Listing 10-9 creates the new database and 
memory-optimized table and populates it with about 8GB of data. Finally, it performs a 
CHECKPOINT operation making sure that In-Memory OLTP populates checkpoint data files.

Listing 10-9.  Naïve Logging Overhead: Object Creation

create database [InMemoryOLTP2016_Ch10]
on primary
(
    name = N'Ch10'
    ,filename = N'C:\Data\Ch10.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'Ch10_HKData'
    ,filename = N'C:\Data\HKData\Ch10'
)
log on
(
    name = N'Ch10_Log'
    ,filename = N'C:\Data\Ch10_log.ldf'
)
go

create table dbo.AlterLogging
(
    ID int not null
        constraint PK_AlterLogging
        primary key nonclustered,
    IntCol int not null,
    CharCol char(8000) not null
)
with (memory_optimized = on, durability = schema_and_data);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.AlterLogging(Id, IntCol, CharCol)
    select Id, Id, Replicate('0',8000)
    from Ids;

checkpoint;
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Listing 10-10 shows how to obtain the information about the file size and the used 
space in transaction log and checkpoint files.

Listing 10-10.  Naïve Logging Overhead: Obtaining the Size of Transaction Log and 
Checkpoint Files

select
    convert(decimal(9,3),sum(file_size_in_bytes) / 1024. / 1024)
        as [Checkpoint Files Size MB]
    ,convert(decimal(9,3),sum(file_size_used_in_bytes) / 1024. / 1024)
        as [Checkpoint Files Size Used MB]
from
    sys.dm_db_xtp_checkpoint_files;

select
    name as [FileName]
    ,convert(decimal(9,3),size / 128.)
        as [Log Size MB]
    ,convert(decimal(9,3),fileproperty(name,'SpaceUsed') / 128.)
        as [Log Size Used MB]
from sys.database_files
where name = 'InMemoryOLTP2016_Ch10_log';

Figure 10-13 illustrates the size of the transaction log and checkpoint files after the 
INSERT operation.

Figure 10-13.  The size of the log and checkpoint files after INSERT

As the next step, let’s perform a table alteration by adding another int column to the 
table, as shown in Listing 10-11. As you know, this operation is log optimized, and it took 
5.3 seconds in my environment.

Listing 10-11.  Naïve Logging Overhead: Altering the Table (Log Optimized Alteration)

alter table dbo.AlterLogging add IntCol2 int;
checkpoint;

If you ran the queries from Listing 10-10 again, you would see the results shown in 
Figure 10-14. As you can see, the alteration does not significantly increase the size of the 
log and checkpoint files.
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Finally, let’s run another ALTER TABLE statement adding a LOB column to the table. 
This operation does not support log optimization, and it requires naïve logging. Listing 10-12 
shows the code to perform the action.

Listing 10-12.  Naïve Logging Overhead: Altering the Table (Naïve Logging)

alter table dbo.AlterLogging add LOBCol varchar(max);
checkpoint;

As I already mentioned, a non-log-optimized alteration is the single-threaded 
process. The operation took 47.1 seconds in my environment, which is about nine times 
slower than the log-optimized alteration. It also adds significant transaction log overhead 
and doubles the size of checkpoint files on disk, as shown in Figure 10-15.

Table alteration overhead is another reason why you should be extremely careful 
with off-row storage and LOB columns in memory-optimized tables.

You can reduce the impact of table alterations by combining multiple similar schema 
changes into a single ALTER TABLE statement, as shown in Listing 10-13. Unfortunately, 
it is impossible to combine different actions in the same ALTER TABLE statement; for 
example, you cannot add and drop columns simultaneously.

Listing 10-13.  Combining Multiple Actions into a Single ALTER TABLE Statement

alter table dbo.TableA add
    Col3 int
    ,Col4 int
    ,constraint CHK_Columns_Positive
        check(Col3 > 0 and Col4 > 0);

alter table dbo.TableB drop column Col1, Col2;

Figure 10-14.  The size of the log and checkpoint files after log-optimized alteration

Figure 10-15.  The size of the log and checkpoint files after naïve logging alteration
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Finally, SQL Server 2016 SP1 introduces several major performance improvements 
that can dramatically reduce the time of table alteration. Moreover, adding the columnstore 
index becomes log optimized, which was not the case in SQL Server 2016 RTM.

Summary
The data from durable memory-optimized tables is placed into a separate filegroup 
utilizing FILESTREAM technology under the hood. The data is stored in a set of checkpoint 
files of different types. Data files store the row version data. Delta files store the 
information about deleted rows. The data from LOB columns and columnstore indexes is 
stored in large data files. Finally, root files store the information about checkpoint files in 
the system.

The data in checkpoint files is never updated. A DELETE operation generates the new 
entry in the delta file. An UPDATE operation stores the new version of the row in the data 
file, marking the old version as deleted in the delta file. SQL Server utilizes the sequential 
streaming API to write data to those files without any random I/O involved.

Every checkpoint file pair covers a particular interval of Global Transaction 
Timestamp values and goes through a set of predefined states. SQL Server stores the 
new row data in CFPs in the UNDER CONSTRUCTION state. These CFPs are converted to the 
ACTIVE state at a checkpoint event. Data files of ACTIVE CFPs are closed, and they do not 
accept the new row versions; however, they still log information about deletions in the 
delta files.

SQL Server merges the data from the ACTIVE checkpoint file pairs, filtering out 
deleted rows. After the merge is completed and the source CFPs are backed up, SQL 
Server either deallocates them or switches them back to the FREE state.

ACTIVE checkpoint file pairs are used during database recovery along with the tail of 
the log. The In-Memory OLTP recovery process is highly scalable and very fast. Indexes 
on memory-optimized tables are not persisted on disk and re-created when data is 
loaded into the memory.

Transaction logging in In-Memory OLTP is more efficient compared to disk-based 
tables. Transactions are logged at the time of COMMIT based on the transaction write set. 
Log records are compact and contain information about multiple row-related operations.

There are two types of table alterations in SQL Server 2016. Metadata-only alteration 
occurs when you add or remove table constraints and/or change system-versioning table 
properties. SQL Server does not re-create the table object; however, it may scan the data 
in the table to validate the constraints.

By contrast, a regular alteration re-creates a table object in the background, 
assigning it a different xtp_object_id value. In the case of deterministic transformations, 
SQL Server performs log optimization and persists only schema-change information, 
transforming the rows from checkpoint files on database startup. In the case of 
nondeterministic transformation, SQL Server uses naïve logging and logs INSERT events 
for every row from the table.

Table alteration is an offline operation that blocks access to the table during the 
execution. You can reduce the impact of alteration by combining multiple similar actions 
into a single ALTER TABLE statement.
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CHAPTER 11

Garbage Collection

This chapter covers the garbage collection process used in the In-Memory OLTP Engine. 
It provides an overview of the various components involved in garbage collection and 
demonstrates how they interact with each other.

Garbage Collection Process Overview
In-Memory OLTP is a row-versioning system. UPDATE operations generate new versions 
of rows rather than updating row data. DELETE operations do not remove the rows but 
rather update the EndTs row timestamp. Rows created by aborted transactions are not 
deallocated immediately, and they stay as part of the index row chains even after rollback.

As you know, every row has two timestamps (BeginTs and EndTs) that indicate row 
lifetime by specifying when the row was created and when it was deleted. Transactions 
can see only the versions of rows that were valid when the transaction started. In practice, 
this means that a row is visible for a transaction only if the transaction logical start time 
(the Global Transaction Timestamp value at the start of the transaction) is between the 
BeginTs and EndTs timestamps of the row.

At some point, when the EndTs timestamp of a row is older than the Global 
Transaction Timestamp of the oldest active transaction in the system, the row expires. 
Expired rows are invisible for active transactions, and eventually they need to be 
deallocated to reclaim system memory and speed up index chain navigation. This process 
is called garbage collection.

The garbage collection process in In-Memory OLTP has been designed with the 
following goals:

•	 Nonblocking: The garbage collection process should not block 
user threads and should produce minimal performance impact 
on the system.

•	 Responsive: The garbage collection process should react to 
memory pressure.

•	 Cooperative and scalable: The garbage collection process 
should not rely on a single system thread to perform memory 
deallocation and should also utilize regular worker threads during 
the process.
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The cooperative nature of garbage collection makes it quite different from the typical 
SQL Server background processes. Even though there is a dedicated system garbage 
collection thread (one per NUMA node) called the idle worker thread, the major part of 
the work is done by the regular user worker threads. This allows the process to scale and 
keep up with the workload in the system.

User threads participate in the garbage collection process in two different ways. They 
unlink old, expired rows from the row chains and perform actual deallocation. These 
actions are separate from each other, as you will see shortly.

Let’s look at the process in detail. Figure 11-1 illustrates the logical structure 
of a table with two hash indexes on the Name and City columns. You saw this figure 
in previous chapters; however, in this chapter I’ve added another element called 
idxLinkCount, which indicates in how many index chains the rows are participating. It is 
displayed with an underline in the figure; note that all the rows have a value of 2, which 
corresponds to the number of indexes in the table.

Assume that you have a session that runs two queries, as shown in Listing 11-1, at a 
time when the Oldest Active Transaction Timestamp is 110 and the Global Transaction 
Timestamp is 125.

Listing 11-1.  First Batch

select * from dbo.People where Name = 'Adam';
select * from dbo.People where Name = 'Carl';

The first SELECT scanned the Name index row chain for the bucket with the value 
A and detected the Ann row with an EndTs value of 100. The Oldest Active Transaction 
Timestamp is 110, so this row is expired and invisible for the active transactions in the 
system. As result, the user thread unlinked the row from the Name index row chain and 
decreased the idxLinkCnt value.

Figure 11-1.  Initial state of the data
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I would like to reiterate that this operation has been done by the regular user worker 
thread rather than the system thread. This illustrates the cooperative nature of garbage 
collection.

The second SELECT detects the deleted Carl row. However, the EndTs value of this 
row is greater than the Oldest Active Transaction Timestamp, so this row is still visible for 
some of the active transactions. Therefore, this row cannot be unlinked from the index 
chain. Figure 11-2 illustrates the state of the data after the execution of the queries.

Now, let’s assume that some of the active transactions were completed and you 
ran the second batch of the queries from Listing 11-2 at the time when the Oldest Active 
Transaction Timestamp was 120 and the Global Transaction Timestamp was 130.

Listing 11-2.  Second Batch

select * from dbo.People where City = 'Cincinatti';
select * from dbo.People where City = 'Dallas';

The first SELECT found the expired Ann row in the City index chain and removed it from 
there. At this point, the row is not participating in any row chains and, therefore, can be 
deallocated. However, the row is not deallocated immediately; this is done at a later stage.

The Carl row now is also expired and invisible for the active transactions. The second 
SELECT removed it from the City index chain; however, it is still present in the Name index 
chain and cannot be deallocated. Figure 11-3 shows the state of the data at this moment.

Figure 11-2.  State of the data after the first two queries
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■■ Important  You should remember that the Oldest Active Transaction Timestamp value 
controls when expired rows can be removed from the index chains and deallocated.  
Long-running and abandoned transactions can defer garbage collection and lead to a situation 
when the system runs out of memory because of an excessive number of expired rows.

When the transaction is complete, In-Memory OLTP places the information about it 
in the queue used by the idle worker thread, which is responsible for garbage collection 
management. The idle worker thread wakes up every minute or, in case of a heavy 
load, when the number of completed transactions exceeds the predefined threshold. It 
analyzes the list of completed transactions and the Oldest Active Transaction Timestamp 
in the system and separates completed transactions to 16 different queues called 
generations, sorting them based on their Global Transaction Timestamp values.

•	 Generation 0 contains the list of transactions that were completed 
earlier than the current Oldest Active Transaction Timestamp. 
Rows generated by those transactions are immediately available 
for the garbage collection. There is no limit on the number of 
transactions that can be stored there.

•	 Generations 1–14 store the list of transactions that were 
completed after the current Oldest Active Transaction 
Timestamp. Each generation can hold information up to about 
16 transactions. As you can guess, a system can hold up to 224 
transactions in generations 1–14 queues.

•	 Generation 15 stores the information about the remaining 
transactions completed after the current Oldest Active 
Transaction Timestamp. There is no limit on the number of 
transactions that can be stored there.

Figure 11-3.  State of the data after the second two queries
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Every transaction in the queue exposes its write set to the idle worker thread, which 
builds the set of 16-row work items for deallocation. Those work items are distributed 
across another set of worker queues—one queue per scheduler—and then they are picked 
up and processed by the user threads. The user threads pick up the items and perform 
deallocation after they complete their work on the other user transactions.

Figure 11-4 illustrates an example of the garbage collection workflow in a system that 
has an Oldest Active Transaction Timestamp of 10,000.

The user thread usually picks up the work items from the queue that belong to the 
same scheduler on which it is running. However, if the queue is empty, the thread checks 
the queues from the other CPUs that belong to the same NUMA node. Finally, in the 
case of a heavy load in the system, the thread can pick up a work item from any queue, 
regardless of the NUMA node to which it belongs.

With the hot data and actively used indexes, user threads detect expired rows 
relatively quickly. However, with rarely used indexes and/or rarely accessed data, there is 
the possibility that expired rows may not be detected in a timely manner.

This is addressed by the idle worker threads that periodically scan the indexes and 
detect expired rows there. The idle worker threads can either deallocate those rows 
immediately or add them to the work items after those rows have been unlinked from all 
index chains. This process is called a dusty corners scan or, sometimes, a sweep scan. 

As you can see, the garbage collection process in In-Memory OLTP is done 
asynchronously. Deleted rows and rows from aborted transactions continue to use 
system memory until they are deallocated. You need to remember this and reserve 
enough memory in the system to accommodate those rows.

Figure 11-4.  Garbage collection workflow
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Garbage Collection–Related Data Management 
Views
SQL Server exposes several data management views that can be used to monitor and 
analyze the garbage collection process.

•	 The sys.dm_xtp_gc_stats view provides statistics about the 
garbage collection process. It includes information about the 
number of rows examined by the garbage collection subsystem, 
the number of rows processed by user and idle worker threads, 
and quite a few other attributes. You can read more about this 
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-xtp-gc-
stats-transact-sql.

•	 The sys.dm_xtp_gc_queue_stats view provides information 
about garbage collector worker queues. It provides information 
about the total number of work items that were enqueued and 
dequeued, the current queue length, the last time the queue was 
accessed, and the maximum depth the queue has seen. You can 
monitor the current queue length, making sure that the garbage 
collector is keeping up. More information is available at https://
docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-xtp-gc-queue-
stats-transact-sql.

•	 The sys.dm_db_xtp_gc_cycle_stats view provides information 
about the last (up to 1,024) garbage collection execution cycles 
including the time and duration of the cycle and the distribution 
of transactions between generations. You can use this view to find 
spikes in the garbage collection activity and during long-running 
transaction troubleshooting. You can read more about this view 
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
gc-cycle-stats-transact-sql.

•	 Finally, the sys.dm_db_xtp_index_stats view includes several 
garbage collection–related metrics. The rows_expired column 
indicates how many rows have expired. The rows_expired_
removed value indicates the number of rows unlinked from 
the index chain. Phantom row columns provide information 
about rows inserted by aborted transactions. You can read more 
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-index-stats-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
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Exploring the Garbage Collection Process
Let’s examine the garbage collection process and its asynchronous nature. As the first 
step, create a memory-optimized table and populate it with 65,536 rows, as shown in 
Listing 11-3.

Listing 11-3.  Table Creation

create table dbo.GCDemo
(
    ID int not null,
    Placeholder char(8000) not null,

    constraint PK_GCDemo primary key nonclustered(ID)
)
with (memory_optimized=on, durability=schema_only)
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.GCDemo(Id, Placeholder)
    select Id, Replicate('0',8000)
    from ids;

Let’s look at the amount of memory used in the table, index statistics, and garbage 
collection worker queues statistics using the code from Listing 11-4.

Listing 11-4.  Analyzing Table Memory Usage, Index, and Worker Queues Statistics

select
    convert(decimal(7,2),memory_allocated_for_table_kb / 1024.)
        as [memory allocated for table]
    ,convert(decimal(7,2),memory_used_by_table_kb / 1024.)
        as [memory used by table]
from
    sys.dm_db_xtp_table_memory_stats
where
    object_id = object_id(N'dbo.GCDemo');

select
    s.index_id, i.name, s.rows_touched
    ,s.rows_expired, s.rows_expired_removed
from
    sys.dm_db_xtp_index_stats s left join sys.indexes i on
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        s.object_id = i.object_id and
        s.index_id = i.index_id
where
    s.object_id = object_id(N'dbo.GCDemo');

select
    sum(total_enqueues) as [total enqueues]
    ,sum(total_dequeues) as [total dequeues]
from
    sys.dm_xtp_gc_queue_stats;

select sweep_scans_started, sweep_rows_touched
    ,sweep_rows_expired, sweep_rows_expired_removed
from sys.dm_xtp_gc_stats;

Figure 11-5 illustrates the output of the queries. As you can see, the table has about 
585MB allocated and 514MB of used space. None of the rows has been deleted or touched 
(scanned). I also restarted my test server right before the test, so the garbage collection 
worker queues are empty. As the reminder, the row in the second output with index_id = 0 
represents the table varheap.

Let’s run a few queries, analyzing the statistics after each run. As the first step, run a 
script that deletes 1,500 rows in the individual transactions (see Listing 11-5).

Listing 11-5.  Deleting 1,500 Rows from the Table

declare
    @I int = 1

while @I <= 1500
begin
    delete from dbo.GCDemo where ID = @I;
    set @I += 1;
end;

Figure 11-5.  Memory and garbage collection statistics after table creation
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Now run the code from Listing 11-4 again and look at the output. As you can see 
in Figure 11-6, index statistics indicate that the deletion statement touched 1,500 rows; 
however, none of them was marked as expired even though the deletion statements ran in 
the individual autocommitted transactions.

As the next step, run a SELECT query that scans the entire index, as shown in Listing 11-6. 
I am forcing the index rather than the table scan by using index hint in the query.

Listing 11-6.  Scanning the Table

select count(*) from dbo.GCDemo with (index = 2);

Figure 11-7 illustrates the statistics after the scan. As you can see, the user thread 
correctly identified rows as expired and unlinked a majority of them from the index 
row chains. Some of the expired rows have not been unlinked, though, and they will be 
processed by either other user threads or the idle worker thread during the sweep scan.

Figure 11-6.  Memory and garbage collection statistics after deletion

Figure 11-7.  Memory and garbage collection statistics after scan
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It is also important to note that none of the work items was enqueued in the garbage 
collector worker items queues because the idle worker thread has not started yet.

If you look at the statistics again after the idle worker thread execution, you will see 
the output shown in Figure 11-8. As you can see, the idle worker thread put items into the 
garbage collection worker queues and deallocated them afterward. You can also see that the 
sweep scan detected and removed the remaining 94 expired rows from the index row chains.

As I already mentioned, garbage collection is a cooperative process, and in other 
cases, the items will be deallocated by the user threads rather than the idle worker threads.

The sys.dm_db_xtp_gc_cycle_stats view shows that the garbage collection idle 
worker threads performed just a handful of cycles (remember, I restarted SQL Server in 
my test environment before the test) and processed all the completed transactions at 
once. You can see the partial output from the view in Figure 11-9.

The situation will change if you repeat the entire test, deleting more rows from the 
table. The garbage collection process will be triggered based on the number of completed 
transactions in the queue rather than based on the timer.

Figure 11-10 shows the summary statistics from my environment when I repeated 
the test, deleting 32,768 rows in the individual transactions. Note that the garbage 
collection process was started at the middle of deletions rather than based on a timer. You 
can also see that in this test some of the items were deallocated by the user thread during 
the first SELECT scan.

Figure 11-8.  Memory and garbage collection statistics after the idle worker thread cycle 
and sweep scan

Figure 11-9.  Sys.dm_db_xtp_gc_cycle_stats view after the test
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You can also confirm this by looking at the sys.dm_db_xtp_gc_cycle_stats view 
output in Figure 11-11. It shows a much higher number of cycles with very short delays in 
between them.

Summary
The garbage collection process in In-Memory OLTP is designed to be nonblocking, 
cooperative, and scalable. Even though it is managed by a dedicated system thread 
(the idle worker thread), most of the work is done by the user threads. The idle worker 
thread (one per NUMA node) wakes up every minute or when the number of completed 
transactions exceeds an internal threshold.

Deleted rows can be deallocated only after they are expired and their EndTs 
timestamp is older the than the Oldest Active Transaction Timestamp in the system. 
Moreover, they need to be removed from all index row chains before deallocation. When 
the user thread encounters an expired row, the thread may unlink it from the row chain. 
In-Memory OLTP periodically scans rarely accessed parts of the indexes during its dusty 
corners (sweep) scan and processes expired rows that were missed by the user threads.

User threads provide information about completed transactions to the idle worker 
threads, which build the list of work items that consist of 16-row batches to deallocate. 
The work items are distributed between garbage collector worker queues—one queue 
per scheduler in the system. In turn, user threads pick up one or several items from the 
worker queues and deallocate them. The work items can also be deallocated by the idle 
worker threads.

Long-running and uncommitted transactions prevent rows from expiring by freezing 
the Oldest Active Transaction Timestamp in the system. This defers the garbage collection 
process and can lead to a situation where deleted rows use a large amount of memory.

Figure 11-10.  Memory and garbage collection statistics during the second set of tests

Figure 11-11.  Sys.dm_db_xtp_gc_cycle_stats view after the second test
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CHAPTER 12

Deployment and 
Management

This chapter discusses the deployment and management aspects of systems that 
utilize In-Memory OLTP. It provides a set of guidelines about hardware and server 
configurations, and it covers In-Memory OLTP–related database administration 
and management tasks. Finally, this chapter gives an overview of the changes and 
enhancements in the catalog and data management objects related to In-Memory OLTP.

Hardware Considerations
In-Memory OLTP uses hardware in a different, and often more efficient, way than the 
SQL Server Storage Engine. It is often possible to achieve high OLTP throughput even 
with midrange servers. Moreover, In-Memory OLTP is highly scalable, and it is possible 
to increase transaction throughput by adding more CPUs and memory to the server and 
more drives to the disk array as the load and amount of data in the system increases.

Obviously, you should not forget that In-Memory OLTP plays in the same sandbox 
with other SQL Server components, sharing resources with them. Memory becomes 
one of the most critical resources for which the In-Memory OLTP and Storage Engines 
compete. The memory used by memory-optimized data is inaccessible to the Storage 
Engine and, therefore, cannot be used by the buffer pool. It is entirely possible that using 
In-Memory OLTP on servers with an insufficient amount of memory would degrade the 
performance of the queries against disk-based tables if an excessive amount of physical 
I/O was required. You should remember this when designing the system and avoid 
putting unnecessary data into memory-optimized tables.

■■ Tip   Consider splitting hot current and rarely accessed historical data between 
memory-optimized and disk-based tables. I will discuss this scenario in more depth in the 
next chapter.
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Let’s discuss the In-Memory OLTP requirements for different hardware components. 
Obviously, you need to take the workload from other SQL Server components into 
consideration when you build servers that utilize In-Memory OLTP.

CPU
The number of CPUs in the system greatly depends on the required OLTP throughput. 
However, as mentioned, it is entirely possible to achieve high transactional throughput 
even with a midrange server. It is impossible to predict how many CPUs you will need 
without performing some testing and analysis; however, it is beneficial to use the proper 
hardware, which will allow you to scale and add more CPUs as load grows.

When possible, you should choose processors with a higher base clock speed. With 
SQL Server per-core licensing, you can often get a better OLTP performance/cost ratio 
by using high-end CPUs with fewer cores and higher single-threaded performance 
compared to slower CPUs with more cores. This is also extremely critical in the case of  
the Standard Edition of SQL Server, which is limited to the lesser of 4 sockets or 24 cores. 
You would be unable to scale the CPUs beyond this limit, and faster CPUs will allow you 
to achieve better transaction throughput in non-Enterprise editions of SQL Server.

Finally, you should have hyperthreading enabled on the servers.

I/O Subsystem
As a general rule, you should place an In-Memory OLTP filegroup on the dedicated disk 
array optimized for sequential I/O performance. It is better to use Flash-based storage 
when possible. Even though HDD-based disk arrays can provide good enough sequential 
I/O performance to handle a regular In-Memory OLTP workload, they may become the 
bottleneck during database startup. As you know, the In-Memory OLTP recovery process 
is highly scalable, with multiple schedulers loading data from the different checkpoint 
files in parallel. Usually, I/O performance becomes the limiting factor in how fast SQL 
Server can recover memory-optimized data.

Recovery performance becomes even more important if a database has a low 
recovery time objective (RTO) metric in its service level agreement (SLA). Even though 
databases with an In-Memory OLTP filegroup support piecemeal restore with the 
Enterprise Edition, SQL Server must bring all In-Memory OLTP data online together with 
the PRIMARY filegroup. You cannot postpone In-Memory OLTP filegroup recovery to a 
later stage in the restore.

One of the ways to improve recovery performance is to create multiple containers in 
the In-Memory OLTP filegroup, placing them in different disk arrays using different HBA 
adapters and, in the case of network storage, different access paths. SQL Server spreads 
checkpoint files across containers and will load them in parallel from multiple drives.

Listing 12-1 shows how to create a database with two containers in an In-Memory 
OLTP filegroup, placing them into the H:\HKData and K:\HKData folders, respectively.
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Listing 12-1.  Creating a Database with Two Containers in an In-Memory OLTP Filegroup

create database HKMultiContainers
on primary
(
    name = N'HKMultiContainers'
    ,filename = N'M:\HKMultiContainers.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'HKMultiContainers_HKData1'
    ,filename = N'H:\HKData\HKMultiContainers'
),
(
    name = N'HKMultiContainers_HKData2'
    ,filename = N'K:\HKData\HKMultiContainers'
)
log on
(
    name = N'HKMultiContainers_Log'
    ,filename = N'L:\KMultiContainers_log.ldf'
);

Continuous checkpoints do not usually put an extreme load on the disk subsystem. 
The process utilizes a streaming API and uses a limited number of threads to write data to 
disk. The actual requirements, obviously, will depend on the transaction log generation 
rate for In-Memory OLTP transactions.

The disk subsystem, however, should provide enough bandwidth to handle the 
merge process in parallel with a continuous checkpoint. Usually, if the checkpoint 
populates the data and delta files at a given IOPS, the I/O subsystem should handle three 
times that IOPS to account for both the checkpoint and merge processes.

As for disk space, Microsoft recommends that you have enough space to 
accommodate four times the size of the data from the durable memory-optimized tables. 
Obviously, you need to factor in the future data growth to your analysis.

Memory
You need to have enough memory in the system to accommodate the data from all 
the memory-optimized tables. SQL Server fails a transaction when it cannot allocate 
memory for the new row objects. Usually, SQL Server performs memory allocation 
during INSERT and UPDATE operations; however, a DELETE operation could also fail if a 
table has nonclustered indexes and there is not enough memory to accommodate new 
delta records or perform page merge operations. Moreover, if a table has a clustered 
columnstore index, a DELETE operation could require allocating memory for a new row in 
the delete bitmap internal table.

Figure 12-1 shows an error message indicating an out-of-memory condition.
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An out-of-memory situation essentially makes the In-Memory OLTP data read-only. 
You can still query the data; however, you cannot perform any data modifications until 
the problem is resolved. When such conditions occur, it is beneficial to check the status of 
the garbage collection process to make sure that it has not been deferred by the old active 
transactions. I will discuss how to detect such transactions later in the chapter.

In many cases, the only option to address an out-of-memory situation is to increase 
the amount of memory available to SQL Server and the In-Memory OLTP Engine. When 
this is impossible, especially with the Standard Edition of SQL Server, you should detect 
the largest memory consumers in In-Memory OLTP and reduce their memory footprint 
by either refactoring or migrating them to disk-based tables. I will talk about how to 
detect them later in the chapter.

■■ Note   The Standard edition of SQL Server is limited to 32GB of memory-optimized data 
per database.

Estimating the Amount of Memory for In-Memory OLTP
Estimating the amount of memory required for memory-optimized tables is not a trivial 
task. As a rule of thumb, you can double the size of the data in the table as a basis for 
the estimation if the table does not have off-row columns. For a more accurate estimate, 
however, you should factor the memory requirements for several different components.

•	 Data rows consist of a 24-byte header, an index pointer array 
(which is 8 bytes per index), and the payload (actual row data). 
For example, if your table has 100,000,000 rows and 3 indexes and 
each row is about 200 bytes on average, you will need (24 + 3 * 8 
+ 200) * 100,000,000 = ~23.1GB of memory to store the row data 
without any versioning overhead included in this number.

•	 Hash indexes use 8 bytes per bucket. If a table has two hash 
indexes defined with 150,000,000 buckets each, SQL Server will 
create indexes with 268,435,456 buckets, rounding the number of 
buckets specified in the index properties to the next power of 2. 
Those two indexes will use 268,435,456 * 2 * 8 = 4GB of memory.

•	 Nonclustered index memory usage is based on the number of 
unique index keys and index key size. If a table has a nonclustered 
index with 25,000,000 unique key values and each key value on 
average uses 30 bytes, it would use (30 + 8(pointer)) * 25,000,000 = 
~906MB of memory. You can ignore the page header and nonleaf 
pages in your estimation as their sizes are insignificant compared 
to the leaf-level row size.

Figure 12-1.  Out-of-memory error
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•	 Off-row storage overhead depends on the number of not-null 
values stored in off-row internal tables. Each row-overflow value 
adds 64 bytes overhead, which consists of a 24-byte internal 
table row structure, two 8-byte range index pointers (on the leaf 
level and in-row), and 24 bytes to store the artificial off-row ID 
three times (in-row, off-row, and in the leaf level of internal table 
range index). In addition, LOB (max) columns introduce 16 extra 
bytes for the pointers to the LOB PAGE ALLOCATOR varheap where 
data is stored, and they have additional overhead of 32 bytes 
per every 8KB of data there. There is also additional memory to 
store internal range index data pages and a mapping table, but it 
is insignificant compared to the actual data. As the example, if a 
memory-optimized table has 10,000,000 not-null values in a row-
overflow varchar(8000) column, this will require 64 * 10,000,000 
= ~610MB of memory to store the data in an internal off-row table.

•	 Columnstore index memory requirements are hard to estimate. 
The data is usually heavily compressed and, as the rule of thumb, 
will consume just 10 to 15 percent of the uncompressed data size 
in the table. Remember, however, that In-Memory OLTP does not 
deallocate old versions of the rows from compressed rowgroups 
until about 90 percent of the rows there have expired. You should 
factor the volatility of the data into your analysis and fine-tune the 
compression_delay index option, deferring compression until the 
data becomes static.

•	 Row versioning memory estimation depends on the duration 
of the longest transactions and the average number of data 
modifications (inserts and updates) per second. For example, 
if some processes in a system have 10-second transactions and, 
on average, the system handles 10,000 data modifications per 
second, you can estimate 10 * 10,000 * 248(row size) = ~24MB of 
memory for row versioning storage.

Obviously, these numbers outline the minimally required amount of memory. You 
should factor in future growth and changes in workload and reserve some additional 
memory just to be safe.

As mentioned, it is also important to remember that In-Memory OLTP does not 
work in a vacuum; SQL Server needs to have enough memory available to the other 
components. Make sure to include this in your analysis.

You should also remember In-Memory OLTP memory requirements when you 
design high availability or disaster recovery strategies in your system. It is not uncommon 
to see configurations where secondary or standby servers use less powerful hardware 
than the primary one. This approach helps to reduce hardware costs by allowing the 
system to operate with degraded performance in the event of a disaster.

You should be extremely careful with such an approach if your database is using the 
In-Memory OLTP technology. An insufficient amount of memory on secondary servers 
could break synchronization between nodes or prevent you from restoring the database in 
the event of a disaster. The latter can also happen in scenarios when you want to bring the 
copy of the production database to development or testing environments where SQL Server 
does not have enough memory to accommodate In-Memory OLTP data from production.
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Administration and Monitoring Tasks
Let's look at several common In-Memory OLTP–related database administration and 
monitoring tasks.

Limiting the Amount of Memory Available to In-Memory 
OLTP
The Enterprise Edition of SQL Server allows you to manage workload and system 
resource consumption by utilizing a Resource Governor. Internally, the Resource 
Governor uses resource pools, which represent a subset of the physical resources available 
to SQL Server. You can think about each resource pool as a virtual instance inside SQL 
Server, and you can control resources available to the resource pool by specifying its 
parameters. Finally, you can distribute the workload between resource pools or, to be 
precise, between resource pool workgroups using a classification process. Classification 
is done based on a user-defined function, which allows you to define complex algorithms 
for such a purpose.

■■ Note   You can read more about the Resource Governor at https://docs.microsoft.
com/en-us/sql/relational-databases/resource-governor/resource-governor and in 
my Pro SQL Server Internal book.

Every Resource Governor configuration has two predefined resource pools created, 
internal and default. As you can guess by the name, the internal pool handles the internal 
SQL Server workload, and the default pool handles the unclassified workload, which is 
all of the user workload that has not been classified to the other resource pools. You can 
create other resource pools as needed.

As mentioned, you can control CPU, memory, and I/O allocations between resource 
pools by specifying parameters, such as MIN_CPU_PERCENT and MAX_CPU_PERCENT, MIN_
MEMORY_PERCENT and MAX_MEMORY_PERCENT, AFFINITY, and a few others. You can bind a 
database to the resource pool, which, in the case of In-Memory OLTP, will allow you to 
limit the amount of memory for memory-optimized data in the database. Each database 
can be bound to a single resource pool; however, multiple databases can share the same 
pool. In this case, the limit would apply to all of them.

A resource pool can utilize up to 80 percent of the system memory, which sets the 
limit on the amount of memory available to In-Memory OLTP. That threshold guarantees 
that other SQL Server components have enough system memory to work and that the 
system remains stable under the memory pressure.

Listing 12-2 illustrates how to create and configure the resource pool, allowing it to 
use 40 percent of the system memory.

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor
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Listing 12-2.  Creating a Resource Pool

create resource pool InMemoryDataPool
with
(
    min_memory_percent=40
    ,max_memory_percent=40
);

alter resource governor reconfigure;

When the resource pool is created, you can bind a database to it by using the  
sys.sp_xtp_bind_db_resource_pool stored procedure, as shown in Listing 12-3.  
As I already mentioned, this will allow In-Memory OLTP to use 80 percent of the resource 
pool memory. In our example, resource pool memory usage is restricted to 40 percent, 
which allows In-Memory OLTP to utilize up to 40 * 0.80 = 32 percent of the system memory.

Listing 12-3.  Binding a Database to the Resource Pool

exec sys.sp_xtp_bind_db_resource_pool
    @database_name = 'InMemoryOLTPDemo'
    ,@pool_name = 'InMemoryDataPool';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Unfortunately, binding the database to a resource pool does not automatically 
transfer previously allocated memory to the new pool, and you need to take the database 
offline and bring it back online to do so. Remember that this leads to a recovery process, 
which can be time-consuming in the case of large amounts of In-Memory OLTP data.

Similarly, you can remove the binding by calling the sys.sp_xtp_unbind_db_
resource_pool stored procedure, as shown in Listing 12-4. The database will be bound 
back to the default resource pool after the call.

Listing 12-4.  Removing the Binding Between a Database and a Resource Pool

exec sys.sp_xtp_unbind_db_resource_pool
    @database_name = 'InMemoryOLTPDemo';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

You should remember that resource pool memory will be shared between 
In-Memory OLTP data and user sessions that were classified to the resource pool 
workgroups. The queries may fail with an insufficient memory error or be blocked and 
have to wait for available memory if the pool does not have enough workspace memory 
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to allocate memory grants to queries. It is safer to separate resource pools that are used to 
limit In-Memory OLTP memory from the pools that handle user workloads.

■■ Tip   You can monitor RESOURCE_SEMAPHORE waits, the Memory Grants Pending 
performance counter, and the sys.dm_exec_query_resource_semaphores and sys.dm_
exec_query_memory_grants views to troubleshoot workspace memory–related issues.

Monitoring Memory Usage for Memory-Optimized Tables
You can monitor the memory usage of the various In-Memory OLTP objects by using a 
set of data management views along with the “Memory Usage by Memory Optimized 
Objects” report in SQL Server Management Studio.

The sys.dm_db_xtp_table_memory_stats view provides high-level memory usage 
statistics for the user and system memory-optimized tables in the current database. 
Listing 12-5 illustrates the query that uses this view.

Listing 12-5.  Using the sys.dm_db_xtp_table_memory_stats View

select
    ms.object_id
    ,s.name + '.' + t.name as [table]
    ,ms.memory_allocated_for_table_kb
    ,ms.memory_used_by_table_kb
    ,ms.memory_allocated_for_indexes_kb
    ,ms.memory_used_by_indexes_kb
from
    sys.dm_db_xtp_table_memory_stats ms
       left outer join sys.tables t on
           ms.object_id = t.object_id
       left outer join sys.schemas s on
           t.schema_id = s.schema_id
order by
    ms.memory_allocated_for_table_kb desc

Figure 12-2 shows the output of the query when I ran it against one of the databases. 
A negative object_id value would indicate the system tables (not present in the output).

Figure 12-2.  Output from sys.dm_db_xtp_table_memory_stats view
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■■ Note   You can read more about the sys.dm_db_xtp_table_memory_stats view at 
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-table-memory-stats-transact-sql.

The sys.dm_db_xtp_memory_consumers view provides detailed information about 
database-level memory consumers. You already saw this view in action in Chapters 6 and 7 
where you used it to obtain information about table memory consumers. You can group the 
output from the view to obtain memory usage information with the required level of detail.

Listing 12-6 illustrates the query that provides memory usage information on the 
per-internal-object (xtp_object_id) level.

Listing 12-6.  Using the sys.dm_db_xtp_memory_consumers View

;with MemConsumers(object_id, xtp_object_id, alloc_mb, used_mb, allocs)
as
(
    select
        mc.object_id, mc.xtp_object_id
        ,convert(decimal(9,3),sum(mc.allocated_bytes) / 1024. / 1024.)
            as [allocated (MB)]
        ,convert(decimal(9,3),sum(mc.used_bytes) / 1024. / 1024.)
            as [used (MB)]
        ,sum(mc.allocation_count) as [allocs]
    from
        sys.dm_db_xtp_memory_consumers mc
    group by
        mc.object_id, mc.xtp_object_id
)
select 
    mc.object_id, mc.xtp_object_id
    ,a.minor_id, a.type_desc
    ,s.name + '.' + t.name  +
        iif(a.minor_id = 0,'','.' + col.Name)
            as [Table/Column]
    ,mc.allocs as [Allocations]
    ,mc.alloc_mb as [Allocated (MB)]
    ,mc.used_mb as [Used (MB)]
from
    MemConsumers mc
        join sys.memory_optimized_tables_internal_attributes a on
            a.object_id = mc.object_id and
            a.xtp_object_id = mc.xtp_object_id
        left outer join sys.columns col on
            a.object_id = col.object_id and
            a.minor_id > 0 and
            a.minor_id = col.column_id

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-table-memory-stats-transact-sql
http://dx.doi.org/10.1007/978-1-4842-2772-5_6
http://dx.doi.org/10.1007/978-1-4842-2772-5_7
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        left outer join sys.tables t on
            a.object_id = t.object_id
        left outer join sys.schemas s on
            s.schema_id = t.schema_id
order by
    [Allocated (MB)] desc

Figure 12-3 shows the output of the query. As you can see, the output includes a 
separate row for the internal table that stores the data for the LOB Delivery.Orders.
Notes column.

■■ Note   You can read more about the sys.dm_db_xtp_memory_consumers view at 
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-memory-consumers-transact-sql.

The sys.dm_xtp_system_memory_consumers view provides information about 
memory used by internal In-Memory OLTP components. Listing 12-7 illustrates the query 
that uses this view.

Listing 12-7.  Using the sys.dm_xtp_system_memory_consumers View

select
    memory_consumer_type_desc
    ,memory_consumer_desc
    ,convert(decimal(9,3),allocated_bytes / 1024. / 1024.)
        as [allocated (MB)]
    ,convert(decimal(9,3),used_bytes / 1024. / 1024.)
        as [used (MB)]
    ,allocation_count
from
   sys.dm_xtp_system_memory_consumers
order by
   [allocated (MB)] desc

Figure 12-3.  Output from sys.dm_db_memory_consumers view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-memory-consumers-transact-sql
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Figure 12-4 shows the partial output of the query in my system.

■■ Note   You can read more about the sys.dm_xtp_system_memory_consumers view at 
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-xtp-system-memory-consumers-transact-sql.

You can access the “Memory Usage by Memory Optimized Objects” report in the 
Reports ➤ Standard Reports section in the database context menu of the SQL Server 
Management Studio Object Explorer. Figure 12-5 illustrates the output of the report. As you 
can see, this report returns similar data to the sys.dm_db_xtp_table_memory_stats view.

Figure 12-4.  Output from sys.dm_xtp_system_memory_consumers view

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-system-memory-consumers-transact-sql
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Monitoring In-Memory OLTP Transactions
The sys.dm_db_xtp_transactions view provides information about active In-Memory 
OLTP transactions in the system. The following are the most notable columns in the view:

•	 xtp_transaction_id is the internal ID of the transaction in the 
In-Memory OLTP Transaction Manager.

•	 transaction_id is the transaction ID in the system. You can 
use it in joins with other transaction management views, such 
as sys.dm_tran_active_transactions. In-Memory OLTP–only 
transactions, such as transactions started by natively compiled 
stored procedures, return a transaction_id value of 0.

•	 session_id indicates the session that started a transaction.

•	 begin_tsn and end_tsn indicate transaction timestamps.

•	 state and state_desc indicate the state of a transaction. The 
possible values are (0)-ACTIVE, (1)-COMMITTED, (2)-ABORTED, 
and (3)-VALIDATING.

Figure 12-5.  “Memory Usage By Memory Optimized Objects” report output



Chapter 12 ■ Deployment and Management

211

•	 result and result_desc indicate the result of a transaction. The 
possible values are (0)-IN PROGRESS; (1)-SUCCESS; (2)-ERROR, 
(3)-COMMIT DEPENDENCY; (4)-VALIDATION FAILED (RR), which 
indicates repeatable read rules violation; (5)-VALIDATION 
FAILED (SR), which indicates serializable rules violation; and 
(6)-ROLLBACK.

•	 read_set_row_count, write_set_row_count, and scan_set_row_
count provide information about size of read, write, and scan sets 
of the transaction.

•	 commit_dependency_count indicates how many commits the 
dependency transaction has taken.

You can use the sys.dm_db_xtp_transactions view to detect long-running and 
orphan transactions in the system. As you probably remember, these transactions can 
defer the garbage collection process and lead to out-of-memory errors.

Listing 12-8 shows a query that returns information about the five oldest active  
In-Memory OLTP transactions in the system.

Listing 12-8.  Getting Information About the Five Oldest Active In-Memory OLTP 
Transactions

select top 5
    t.session_id
    ,t.transaction_id
    ,t.begin_tsn
    ,t.end_tsn
    ,t.state_desc
    ,t.result_desc
    ,substring(
        qt.text
        ,er.statement_start_offset / 2 + 1
        ,(case er.statement_end_offset
             when -1 then datalength(qt.text)
             else er.statement_end_offset
          end - er.statement_start_offset
        ) / 2 +1
    ) as SQL
from 
    sys.dm_db_xtp_transactions t
        left outer join sys.dm_exec_requests er on
            t.session_id = er.session_id
        outer apply
            sys.dm_exec_sql_text(er.sql_handle) qt
where
    t.state in (0,3) /* ACTIVE/VALIDATING */
order by
    t.begin_tsn
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Figure 12-6 illustrates the output of the query.

■■ Note   You can read more about the sys.dm_db_xtp_transactions view at  
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-db-xtp-transactions-transact-sql.

Collecting Execution Statistics for Natively Compiled 
Stored Procedures
In query interop mode, SQL Server collects execution statistics of the statements that 
access memory-optimized tables when their execution plans are cached. However, 
it does not collect execution statistics for natively compiled modules because of the 
performance impact this introduces. You can enable such a collection at the module level 
with sys.sp_xtp_control_proc_exec_stats and at the statement level with the sys.
sp_xtp_control_query_exec_stats system stored procedures.

Both procedures accept a Boolean @new_collection_value parameter, which 
indicates whether the collection needs to be enabled or disabled. In addition, sys.sp_
xtp_control_query_exec_stats allows you to provide @database_id and @xtp_object_
id values to specify a module to monitor. It is also worth noting that SQL Server does not 
persist collection settings, and you will need to reenable statistics collection after each 
SQL Server restart.

■■ Important  Collecting execution statistics degrades the performance of the system. 
Do not collect execution statistics unless you are performing troubleshooting. Moreover, 
consider limiting collection to specific natively compiled modules to reduce the performance 
impact on the system.

When statistics have been collected, you can access them through the sys.dm_exec_
procedure_stats, sys.dm_exec_function_stats, and sys.dm_exec_query_stats views.

Listing 12-9 shows the code that returns execution statistics for stored procedures 
using the sys.dm_exec_procedure_stats view. The code does not limit the output to 
natively compiled stored procedures; however, you can do it by joining the sys.dm_
exec_procedure_stats and sys.sql_modules views and filtering by the uses_native_
compliation = 1 value.

Figure 12-6.  The five oldest active In-Memory OLTP transactions in the system

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-transactions-transact-sql
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Listing 12-9.  Analyzing Stored Procedures Execution Statistics

select
    object_name(ps.object_id) as [Proc Name]
    ,p.query_plan
    ,ps.execution_count as [Exec Cnt]
    ,ps.total_worker_time as [Total CPU]
    ,convert(int,ps.total_worker_time / ps.execution_count)
        as [Avg CPU] -- in Microseconds
    ,ps.total_elapsed_time as [Total Elps]
    ,convert(int,ps.total_elapsed_time / ps.execution_count)
        as [Avg Elps] -- in Microseconds
    ,ps.cached_time as [Cached]
    ,ps.last_execution_time as [Last Exec]
    ,ps.sql_handle
    ,ps.plan_handle
    ,ps.total_logical_reads as [Reads]
    ,ps.total_logical_writes as [Writes]
from
    sys.dm_exec_procedure_stats ps cross apply
        sys.dm_exec_query_plan(ps.plan_handle) p
order by
    [Avg CPU] desc 

Figure 12-7 illustrates the output of the code from Listing 12-9. As you can see, in 
SQL Server 2016, both the sql_handle and plan_handle columns are populated and can 
be used to obtain the stored procedure text and execution plan. It is also worth noting 
that there is no I/O-related statistics provided. Natively compiled modules work with 
memory-optimized tables only, and therefore there is no I/O involved.

Listing 12-10 shows the code that obtains execution statistics for individual 
statements using the sys.dm_exec_query_stats view.

Listing 12-10.  Analyzing Stored Procedure Statement Execution Statistics

select
    substring(qt.text
        ,(qs.statement_start_offset/2) + 1
        ,(case qs.statement_end_offset

Figure 12-7.  Data from sys.dm_exec_procedure_stats view
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            when -1 then datalength(qt.text)
            else qs.statement_end_offset
        end - qs.statement_start_offset) / 2 + 1
    ) as SQL
    ,p.query_plan
    ,qs.execution_count as [Exec Cnt]
    ,qs.total_worker_time as [Total CPU]
    ,convert(int,qs.total_worker_time / qs.execution_count)
        as [Avg CPU] -- in Microseconds
    ,total_elapsed_time as [Total Elps]
    ,convert(int,qs.total_elapsed_time / qs.execution_count)
        as [Avg Elps] -- in Microseconds
    ,qs.creation_time as [Cached]
    ,last_execution_time as [Last Exec]
    ,qs.plan_handle
    ,qs.total_logical_reads as [Reads]
    ,qs.total_logical_writes as [Writes]
from 
    sys.dm_exec_query_stats qs
        cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
        cross apply sys.dm_exec_query_plan(qs.plan_handle) p
where -- it is null for natively compiled SPs
    qs.plan_generation_num is null
order by
    [Avg CPU] desc

Figure 12-8 illustrates the output of the code from Listing 12-10.

■■ Note   You can read more about the sys.sp_xtp_control_proc_exec_stats procedure 
at https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-
procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql. More information 
about the sys.sp_xtp_control_query_exec_stats procedure is available at https://
docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/

sys-sp-xtp-control-query-exec-stats-transact-sql.

Figure 12-8.  Data from sys.dm_exec_query_stats view

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-proc-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sys-sp-xtp-control-query-exec-stats-transact-sql
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Finally, it is worth noting that neither the DBCC FREEPROCCACHE nor ALTER DATABASE 
SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE command removes natively compiled 
modules execution statistics from the plan cache. Statistics would be removed, however, 
when a module was recompiled.

In-Memory OLTP and Query Store Integration
Query Store is new SQL Server 2016 component that collects execution plans and runtime 
statistics for the queries in the system. Those statistics are persisted in the database, and 
they would survive database restart or failover, which is different from the plan cache–
based execution statistics I just discussed.

Similarly to plan cache–based execution statistics, Query Store does not collect the 
execution statistics of natively compiled modules by default. You need to enable them 
with the sys.sp_xtp_control_query_exec_stats system stored procedure. Consider the 
performance overhead this introduces, and do not enable them unless you troubleshoot 
performance issues.

Figure 12-9 shows a Query Store report that works with the statements from natively 
compiled stored procedures. As you can see, Management Studio provides a powerful and 
convenient set of tools that dramatically simplify performance troubleshooting and tuning.

■■ Note   The coverage of Query Store is outside the scope of this book. You can read 
more about it at https://docs.microsoft.com/en-us/sql/relational-databases/
performance/monitoring-performance-by-using-the-query-store and in my Pro SQL 
Server Internals book.

Figure 12-9.  The “Top Resource Consuming Queries” report in Query Store

https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
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Metadata Changes and Enhancements
In-Memory OLTP introduces a large number of changes in catalog and data management 
views.

Catalog Views
There are two In-Memory OLTP–related catalog views in SQL Server 2016.

sys.hash_indexes
As you can guess by the name, the sys.hash_indexes view provides information about 
hash indexes defined in the database. It is inherited from and has the same columns as 
the sys.indexes view, adding one extra column called bucket_count. You can read about 
this view at https://docs.microsoft.com/en-us/sql/relational-databases/system-
catalog-views/sys-hash-indexes-transact-sql.

sys.memory_optimized_tables_internal_attributes
As you already know, every memory-optimized table may include additional internal 
tables to store off-row column data, columnstore index internal structures, and a few 
other objects. The sys.memory_optimized_tables_internal_attributes catalog view 
provides information about those internal tables, and it consists of the following columns:

•	 object_id is the ID of the user table. It is the same for all internal 
tables that belong to the user table. The object_id value does not 
change when you alter the table.

•	 xtp_object_id is internal object ID of an internal table. This 
value may change when you re-create the table object during 
table alteration.

•	 minor_id provides the column_id value of the table column when 
the internal table stores off-row column data. It is 0 in other cases.

•	 The type and type_description columns indicate the type of 
internal table. The possible values are as follows:

•	 (0): DELETED_ROWS_TABLE is the delete bitmap in a 
columnstore index.

•	 (1): USER_TABLE is the main table structure that stores in-row 
data.

•	 (2): DICTIONARIES_TABLE is the dictionaries for a 
columnstore index.

•	 (3): SEGMENTS_TABLE is the compressed segments for a 
columnstore index.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-hash-indexes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-hash-indexes-transact-sql
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•	 (4): ROW_GROUPS_INFO_TABLE is the metadata about 
compressed rowgroups in a columnstore index.

•	 (5): INTERNAL_OFF_ROW_DATA_TABLE is a table that stores off-
row column data. As I already mentioned, minor_id provides 
the column_id value of the off-row column, and it can be 
used in joins with the sys.columns catalog view.

•	 (252): INTERNAL_TEMPORAL_HISTORY_TABLE is an in-memory 
buffer that contains the hot tail of the disk-based history 
table. The history rows are inserted into this internal table 
first, and then they asynchronously move to the disk-based 
history table.

You can use sys.memory_optimized_tables_internal_attributes with the sys.
dm_db_xtp_memory_consumers view when you are analyzing memory consumption of the 
memory-optimized tables in the system. You have already seen this in action many times 
in the book.

You can read more about the sys.memory_optimized_tables_internal_attributes 
view at https://docs.microsoft.com/en-us/sql/relational-databases/system-
catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql.

Changes in Other Catalog Views
Other catalog view changes include the following:

•	 The sys.tables view has three new columns. The is_memory_
optimized column indicates whether a table is memory-
optimized. The durability and durability_desc columns 
indicate a durability mode for memory-optimized tables. The 
values are (0)-SCHEMA_AND_DATA and (1)-SCHEMA_ONLY.

•	 The sys.indexes view has a new possible value in the type and 
type_description columns, such as (7)-NONCLUSTERED HASH. 
Nonclustered Bw-Tree indexes use a value of (2)-NONCLUSTERED 
as the regular nonclustered B-Tree indexes defined on disk-based 
tables. Clustered columnstore indexes use a value of  
(5) – CLUSTERED COLUMNSTORE and an index_id value of 1.

•	 The sys.sql_modules and sys.all_sql_modules views have a 
new column called uses_native_compilation.

•	 The sys.table_types view has a new column called is_memory_
optimized, which indicates whether a type represents a memory-
optimized table variable.

•	 The sys.data_spaces view now has new type and type_desc 
values of (FX)-MEMORY_OPTIMIZED_DATA_FILEGROUP.

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-memory-optimized-tables-internal-attributes-transact-sql
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Data Management Views
In-Memory OLTP provides a large set of new data management views; they can 
be easily detected by the xtp_ prefix in their names. The naming convention also 
provides information about their scope. The sys.dm_xtp_* views return instance-level 
information, and the sys.dm_db_xtp_* views provide database-level information. Let’s 
look at them in more detail, grouping them by area.

Object and Index Statistics
The following data management views provide index-related and data modification–
related statistics:

•	 sys.dm_db_xtp_object_stats reports the number of rows 
affected by data modifications along with write conflicts and 
unique constraint violations on a per-object basis. You can use 
this view to analyze the volatility of the data from memory-
optimized tables, correlating it with index usage statistics. As 
with disk-based tables, you can improve data modification 
performance by removing rarely used indexes defined on volatile 
tables. More information about this view is available at  
https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
object-stats-transact-sql.

•	 sys.dm_db_xtp_index_stats returns information about index 
usage, including the number of row-chain scans, the number of 
rows scanned (rows_touched), the number of rows returned to 
the client (rows_returned), and data about expired rows. The 
large discrepancy between rows_touched and rows_returned 
may indicate an inefficient indexing strategy with queries 
performing the large range scans. For hash indexes, it may also 
indicate the large index row chains because of an insufficient 
number of buckets in the hash table. You can read about this 
view at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
index-stats-transact-sql.

•	 sys.dm_db_xtp_nonclustered_index_stats provides 
information about nonclustered (range) indexes, such as the 
number of pages in the index, the number of delta pages, and 
page split and merge statistics. You can read about this view 
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-db-xtp-
nonclustered-index-stats-transact-sql. 

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-object-stats-transact-sql
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•	 sys.dm_db_xtp_hash_index_stats provides information about 
hash indexes, such as the number of buckets in the index, the 
number of empty buckets, and row chain length information. This 
view is useful when you need to analyze the state of hash indexes 
and fine-tune their bucket_count allocations. You can read 
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-hash-index-stats-transact-sql.

Listing 12-11 shows the script that you can use to find hash indexes with a potentially 
suboptimal bucket_count value.

Listing 12-11.  Obtaining Information About Hash Indexes with a Potentially Suboptimal 
bucket_count Value

select
    s.name + '.' + t.name as [Table]
    ,i.name as [Index]
    ,stat.total_bucket_count as [Total Buckets]
    ,stat.empty_bucket_count as [Empty Buckets]
    ,floor(100. * empty_bucket_count / total_bucket_count)
        as [Empty Bucket %]
    ,stat.avg_chain_length as [Avg Chain]
    ,stat.max_chain_length as [Max Chain]
from
    sys.dm_db_xtp_hash_index_stats stat
        join sys.tables t on
            stat.object_id = t.object_id
        join sys.indexes i on
            stat.object_id = i.object_id and
            stat.index_id = i.index_id
        join sys.schemas s on
            t.schema_id = s.schema_id
where
    stat.avg_chain_length > 3 or
    stat.max_chain_length > 50 or
    floor(100. * empty_bucket_count /
        total_bucket_count) > 50

Memory Usage Statistics
I already discussed memory usage–related views in this and other chapters. However, as a 
quick overview, the views are as follows:

•	 sys.dm_xtp_system_memory_consumers reports information 
about system-level memory consumers in the system. More 
information about this view is available at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-xtp-system-memory-
consumers-transact-sql.

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-hash-index-stats-transact-sql
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•	 sys.dm_db_xtp_table_memory_stats provides memory usage 
statistics on a per-object level. You can read more at https://
docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-db-xtp-table-
memory-stats-transact-sql.

•	 sys.dm_db_xtp_memory_consumers provides information about 
database-level memory consumers. You can use this view to 
analyze per-index memory allocation in the system along with 
the memory consumed by internal tables. The documentation 
is available at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-xtp-system-memory-consumers-transact-sql.

Transaction Management
The following views provide transaction-related statistics in the system:

•	 sys.dm_xtp_transaction_stats reports statistics about 
transactional activity in the system since the last server restart. 
It includes the number of transactions, information about 
transaction log activity, and quite a few other metrics. More 
information about this view is available at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-xtp-transaction-stats-
transact-sql.

•	 sys.dm_db_xtp_transactions provides information about 
currently active transactions in the system. We discussed this view 
in this chapter, and you can read more about it at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-xtp-transactions-
transact-sql.

Garbage Collection
The following views provide information about the garbage collection process in the system:

•	 sys.dm_xtp_gc_stats reports the overall statistics about the 
garbage collection process. More information is available 
at https://docs.microsoft.com/en-us/sql/relational-
databases/system-dynamic-management-views/sys-dm-xtp-gc-
stats-transact-sql.
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•	 sys.dm_xtp_gc_queue_stats provides information about the 
state of garbage collection worker item queues. You can use this 
view to monitor whether the garbage collection deallocation 
process is keeping up with the system load. You can read more 
about this view at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-xtp-gc-queue-stats-transact-sql.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about idle 
worker thread generation queues. I discussed this view in Chapter 11, 
and you can read more about it at https://docs.microsoft.com/
en-us/sql/relational-databases/system-dynamic-management-
views/sys-dm-db-xtp-gc-cycle-stats-transact-sql.

Checkpoint
The following views provide information about checkpoint operations in the current 
database:

•	 sys.dm_db_xtp_checkpoint_stats reports the overall statistics 
about database checkpoint operations. It includes log file I/O 
statistics, the amount of data processed during a continuous 
checkpoint, the time since the last checkpoint operation, and 
quite a few other metrics. More information about this view 
is available at https://docs.microsoft.com/en-us/sql/
relational-databases/system-dynamic-management-views/
sys-dm-db-xtp-checkpoint-stats-transact-sql.

•	 sys.dm_db_xtp_checkpoint_files provides information about 
checkpoint file pairs in the database. Appendix C shows this 
view in action, and you can read more about it at https://docs.
microsoft.com/en-us/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-xtp-checkpoint-files-
transact-sql.

Extended Events and Performance Counters
SQL Server has the large number of extended events and performance counters that can 
be used to monitor and troubleshoot In-Memory OLTP–related actions. You can use the 
code from Listing 12-12 to get the list of In-Memory OLTP extended events.

Listing 12-12.  Analyzing In-Memory OLTP Extended Events

select
    xp.name as [package]
    ,xo.name as [event]
    ,xo.description as [description]

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-xtp-gc-queue-stats-transact-sql
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https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-gc-cycle-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-checkpoint-files-transact-sql


Chapter 12 ■ Deployment and Management

222

from
    sys.dm_xe_packages xp
        join sys.dm_xe_objects xo on
            xp.guid = xo.package_guid
where
    xp.name like 'XTP%' or xo.name like '%XTP%'
order by
    xp.name, xo.name

Figure 12-10 shows the partial output from the query. I recommend you analyze 
the full output from the query and get familiar with the events that may be useful for 
monitoring and troubleshooting purposes.

Similarly, you can see In-Memory OLTP performance counters with the query shown 
in Listing 12-13.

Listing 12-13.  Analyzing In-Memory OLTP Performance Counters

select object_name, counter_name
from sys.dm_os_performance_counters
where object_name like '%XTP%'
order by object_name, counter_name

Figure 12-10.  In-Memory OLTP extended events
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Figure 12-11 shows a partial output of the query. As with extended events, it is 
beneficial to get familiar with performance counters and use them to baseline the system 
workload and use them while monitoring and troubleshooting performance issues.

■■ Note   You can read about In-Memory OLTP performance counters at https://docs.
microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-

xtp-in-memory-oltp-performance-counters.

Figure 12-11.  In-Memory OLTP performance counters

https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-xtp-in-memory-oltp-performance-counters
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Summary
Choosing the right hardware is a crucial part of achieving good In-Memory OLTP 
performance and transactional throughput. In-Memory OLTP uses hardware in a 
different manner than the Storage Engine, and you need to carefully plan the deployment 
and server configuration when a system uses In-Memory OLTP.

In-Memory OLTP benefits from single-threaded CPU performance. You should 
choose CPUs with a high base clock speed and have hyperthreading enabled in the 
system.

You should store In-Memory OLTP checkpoint files in the disk array, which is 
optimized for sequential I/O performance, preferably using SSD-based drives. You can 
consider using multiple containers in an In-Memory OLTP filegroup, placing them on 
different drives if the database recovery time is critical.

Obviously, you should have enough memory in the system to accommodate the  
In-Memory OLTP data, while leaving enough memory for other SQL Server components. 
In the Enterprise Edition of SQL Server, you can restrict In-Memory OLTP memory  
usage by configuring memory in the Resource Governor resource pool and binding  
the database there. In the Standard Edition, In-Memory OLTP is limited to 32GB of 
memory-optimized data per database.

In-Memory OLTP provides a large set of data management views, performance 
counters, and extended events that you can use for system monitoring.
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CHAPTER 13

Utilizing In-Memory OLTP

This chapter discusses several design considerations for systems utilizing In-Memory 
OLTP and demonstrates how to benefit from the technology when migrating the existing 
systems is cost-ineffective. It also talks about implementing data partitioning, which can 
be helpful in a system with a large amount of data and mixed workload.

Design Considerations for Systems Utilizing  
In-Memory OLTP
Two years ago, when I worked on the first edition of the book, about half of this chapter 
focused on the techniques that helped to address technology limitations. Those limitations 
positioned In-Memory OLTP as a niche technology in SQL Server 2014 and prevented its 
widespread adoption because of the high implementation and refactoring cost.

Fortunately, the majority of the limitations have been removed in SQL Server 2016. 
Moreover, starting with SQL Server 2016 SP1, In-Memory OLTP is available in the Standard 
Edition of SQL Server, which allows you to benefit from the technology and maintain a 
single system architecture and code base across multiple editions of the product.

■■ Note  Remember that non-Enterprise editions limit the amount of memory they can 
utilize. For example, the Standard Edition is limited to 32GB of memory-optimized data per 
database.

Nevertheless, the adoption of In-Memory OLTP comes at a cost. You will need to 
acquire or upgrade to SQL Server 2016, spend time learning the technology, and, if you 
are migrating an existing system, refactor code and test the changes. It is important to 
perform a cost-benefits analysis to determine whether In-Memory OLTP provides you 
with adequate benefits to outweigh the costs.

In-Memory OLTP is hardly a magical solution that will improve server performance 
by simply flipping a switch and moving data into memory. It is designed to address a 
specific set of problems, such as latch and lock contentions on very active OLTP systems. 
Moreover, it helps improve the performance of the small and frequently executed OLTP 
queries that perform point-lookups and small-range scans.
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In-Memory OLTP is less beneficial in the case of data warehouse systems with 
low concurrent activity, large amounts of data, and queries that require large scans 
and complex aggregations. In some cases, it is still possible to achieve performance 
improvements by moving data into memory or creating columnstore indexes on 
memory-optimized tables; however, you will often obtain better results by using 
columnstore indexes with disk-based tables, especially with dedicated data warehouse 
implementations.

You should remember that memory-optimized columnstore indexes are targeted 
toward operational analytics scenarios when you need to run infrequent reporting and 
analysis queries against hot OLTP data. Their implementation is limited compared to 
disk-based column-based storage. Memory-optimized columnstore indexes cannot be 
partitioned nor can they become the main copy of the data in the table like disk-based 
clustered columnstore indexes do. Also, In-Memory OLTP does not allow you to rebuild 
or reorganize columnstore indexes, reducing the size of the delta store and delete bitmap.

You should also remember that memory-optimized tables live completely in-
memory and out-of-memory conditions would lead to system downtime. This is 
especially important in the case of non-Enterprise editions where you cannot scale the 
system with the data growth by adding extra memory to the server. In many cases, it may 
be beneficial to design the system utilizing data partitioning, keeping hot recent data in 
memory-optimized and cold historical data in disk-based tables. I will discuss such an 
implementation later in this chapter.

As you already know, SQL Server 2016 removes the majority of the limitations of the 
technology that existed in SQL Server 2014. In many cases, you can migrate disk-based 
tables into memory without any schema and code changes in the system. There are, 
however, a few important considerations and behavior differences you need to remember 
and factor into the decision. Let’s talk about the most important ones.

Off-Row Storage
Even though In-Memory OLTP supports LOB and row-overflow columns, it works with 
them in a different way than the Storage Engine. With disk-based tables, the decision of 
which columns are stored off-row is made on a per-row basis based on the row size;  
all data will be stored in-row when it fits into the 8,060-byte limit. By contrast, with 
memory-optimized tables, the decision is made strictly based on the table schema; the 
off-row column data will be stored in separate internal tables for all rows, regardless of 
the amount of data you store there.

As you will remember from Chapter 6, an excessive number of off-row columns leads 
to serious performance implications because of the internal tables management that  
In-Memory OLTP has to perform. Moreover, off-row columns increase the memory usage; 
each not null off-row value adds 64+ bytes of overhead. You should be extremely careful 
with off-row columns and avoid using them in memory-optimized tables unless they are 
absolutely necessary.

It is common to see systems in which many text columns are defined as (n)
varchar(max) just in case. This is a bad practice that increases query memory grants, 
introduces concurrency issues in the system, and complicates index management.  
This overhead, however, is not always noticeable, or, perhaps, it is not always correlated 
with the existence of off-row data.

http://dx.doi.org/10.1007/978-1-4842-2772-5_6
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The situation will change if you migrate those tables to In-Memory OLTP, keeping 
off-row columns intact. This decision could significantly increase the memory usage and 
slow down the queries against the table. After all, querying data from or modifying data in 
multiple internal tables will always be slower than working with a single table. You need 
to remember this behavior and analyze off-row column usage before migration. In many 
cases, you can change the data types to (n)varchar(N) and store those columns in-row.

You can also consider implementing vertical partitioning and storing some off-row 
columns in disk-based tables, as shown in Listing 13-1. The Description column is 
stored in a disk-based table, while all other columns are stored in a memory-optimized 
table. The majority of the use cases in the system would not work with the product 
description, and therefore, you can utilize native compilation while working with the  
dbo.ProductsInMem table. Moreover, moving a product description to a disk-based  
table will allow you to utilize the Full-Text Search feature, which is not supported for 
memory-optimized tables.

Listing 13-1.  Vertical Partitioning

create table dbo.ProductsInMem
(
    ProductId int not null identity(1,1)
        constraint PK_ ProductsInMem
        primary key nonclustered hash
        with (bucket_count = 65536),
    ProductName nvarchar(64) not null,
    ShortDescription nvarchar(256) not null,

    index IDX_ProductsInMem_ProductName
    nonclustered(ProductName)
)
with (memory_optimized = on, durability = schema_and_data);

create table dbo.ProductDescriptions
(
    ProductId int not null,
    Description nvarchar(max) not null,

    constraint PK_ ProductDescriptions
    primary key clustered(ProductId)
);

You can hide some of the implementation details from the interop SELECT queries 
by defining a view, as shown in Listing 13-2. You can also define INSTEAD OF triggers on 
the view and use them as the target for data modifications; however, it is more efficient to 
update the data in the tables directly.
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Listing 13-2.  Creating a View That Combines Data from Both Tables

create view dbo.Products(ProductId, ProductName,
    ShortDescription, Description)
as
    select
        p.ProductId, p.ProductName, p.ShortDescription
        ,pd.Description
    from
        dbo.ProductsInMem p left outer join
            dbo.ProductDescriptions pd on
                p.ProductId = pd.ProductId

As you should notice, the view is using an outer join. This allows SQL Server to 
perform join elimination when the client application does not reference any columns 
from the dbo.ProductDescriptions table while querying the view. For example, if you 
ran the query from Listing 13-3, you would see the execution plan shown in Figure 13-1. 
As you can see, there are no joins in the plan, and the dbo.ProductDescriptions table is 
not accessed.

Listing 13-3.  Query Against the View

select ProductId, ProductName
from dbo.Products

Figure 13-1.  Execution plan of the query

Unfortunately, it is impossible to define a FOREIGN KEY constraint for a disk-based 
table referencing a memory-optimized table; furthermore, you should support referential 
integrity in your code.

Listing 13-4 shows the stored procedure that inserts a row into the  
dbo.ProductDescriptions table. The implementation looks trivial; however, there is one 
very important detail. The code checks for the existence of the dbo.ProductsInMem row 
using the REPEATABLE READ transaction isolation level. This forces In-Memory OLTP to 
build the read set for the transaction and validate that the selected dbo.ProductsInMem 
row exists at the time of transaction commit. The transaction would fail with a repeatable 
read validation failure if the other session deleted the product row in between the SELECT 
and INSERT statements.
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Listing 13-4.  Enforcing Referential Integrity Between Disk-Based and Memory-Optimized 
Tables: Inserting the Row into the Referencing Table

create proc dbo.InsertProductDescription
(
    @ProductId int
    ,@Description nvarchar(max)
)
as
begin
    set nocount on

    declare
        @Exists int

    set transaction isolation level read committed
    begin tran
        -- using REPEATABLE READ isolation level
        -- to build transaction read set
        select @Exists = ProductId
        from dbo.ProductsInMem with (repeatableread)
        where ProductId = @ProductId;

        if @Exists is null
            raiserror('ProductId %d not found',16,1,@ProductId);
        else
            insert into dbo.ProductDescriptions
                (ProductId, Description)
            values(1,@Description);
    commit;
end

Listing 13-5 shows how to perform the deletion of the dbo.ProductsInMem row.  
As you can see, the SELECT statement checks for the existence of the  
dbo.ProductDescriptions rows using the SERIALIZABLE isolation level, which places a 
key range shared lock and prevents other sessions from inserting a product description 
with the same ProductId value.

Listing 13-5.  Enforcing Referential Integrity Between Disk-Based and Memory-Optimized 
Tables: Deleting the Row from the Referenced Table

declare
    @Cnt int
    ,@ProductId int = 1

begin tran
    -- using SERIALIZABLE level to acquire the range lock
    select @Cnt = count(*)
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    from dbo.ProductDescriptions with (serializable)
    where ProductId = @ProductId;

    if @Cnt > 0
        raiserror('Referential Integrity Violation',16,1);
    else
        delete from dbo.ProductsInMem with (snapshot)
        where ProductId = @ProductId;
commit;

You can use a similar approach when you need to enforce referential integrity in 
the opposite direction with memory-optimized tables referencing disk-based ones. In 
this case, however, the latter example (checking for the existence of the referencing rows 
in memory-optimized tables) would depend on serializable validation at the time of 
transaction commit rather than on locking.

With all that being said, splitting the data into memory-optimized and disk-based 
tables would increase the complexity of the system along as well as its development cost. 
It may be beneficial when a table has a large number of off-row columns that may not be 
moved in-row and/or when you want to utilize technologies not supported by In-Memory 
OLTP (Full-Text Search, for example). However, in many cases, it may be more cost-
effective to keep off-row columns in memory-optimized tables, especially if you have just 
a handful of them.

Unsupported Data Types
Even though In-Memory OLTP in SQL Server 2016 supports the majority of data types, 
there are still a few unsupported types, such as xml, geometry, geography, hierarchyid, 
datetimeoffset, rowversion, and sql_variant. Moreover, user-defined data types are 
not supported either.

As the simplest workaround, you can store them either in binary or text format or, in 
some cases, shred them into relational data types when it is possible.

Let’s look at an example. Listing 13-6 shows a disk-based table that stores event 
information from devices along with the locations where the events occurred.

Listing 13-6.  DeviceEvents Disk-Based Table

create table dbo.DeviceEvents
(
    DeviceId int not null,
    EventTime datetime2(0) not null,
    Location geography not null,
    EventInfo xml not null,
);

create unique clustered index
IDX_DeviceEvents_DeviceId_EventTime
on dbo.DeviceEvents(DeviceId, EventTime);
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Neither the geography nor xml data type is supported in In-Memory OLTP. You can 
address this by storing location information in a pair of decimal columns and using the 
varbinary column to store the xml data, as shown in Listing 13-7.

Listing 13-7.  DeviceEvents Memory-Optimized Table

create table dbo.DeviceEvents
(
    DeviceId int not null,
    EventTime datetime2(0) not null,
    Lat decimal(9,6) not null,
    Long decimal(9,6) not null,
    EventInfo varbinary(max) not null,

    constraint PK_DeviceEvents
    primary key nonclustered(DeviceId, EventTime)
)
with (memory_optimized = on, durability = schema_and_data);

You can cast the data back to the geometry and xml data types and utilize the XQuery 
and geospatial methods when you access the table through the Interop Engine, as shown 
in Listing 13-8.

Listing 13-8.  Working with DeviceEvents Data

declare
    @Loc geography =
        geography::Point(47.65600,-122.36000, 4326);

;with DeviceData(DeviceId, EventTime, Location, EventInfo)
as
(
    select
        DeviceId, EventTime
        ,geography::Point(Lat, Long, 4326) as Location
        ,convert(xml,EventInfo) as EventInfo
    from dbo.DeviceEvents
)
select
    DeviceId, EventTime
    ,Location.STDistance(@Loc) as Distance
    ,EventInfo.value('/Event[1]/@Code','int') as [Code]
    ,EventInfo.value('/Event[1]/@Sensor1','varchar(3)')
        as [Status]
from DeviceData;
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Obviously, you can also split the data between memory-optimized and disk-based 
tables similarly to the dbo.ProductsInMem and dbo.ProductDescriptions tables from 
Listing 13-1. This may be beneficial if you need to utilize spatial or XML indexes for the data.

Unfortunately, there is no built-in support for rowversion data type behavior. 
Fortunately, it is easy to implement this manually. Listing 13-9 shows how you can 
implement optimistic concurrency in the code similarly to a disk-based implementation 
that relies on the rowversion column.

Listing 13-9.  Implementing Optimistic Concurrency

create table dbo.OptimisticConcurrency
(
    ID int not null
        constraint PK_OptimisticConcurrency
        primary key nonclustered,
    Data int not null,
    RowVer uniqueidentifier not null
        constraint DEF_OptimisticConcurrency_RowVer
        default newid()
)
with (memory_optimized = on, durability = schema_only);

-- Reading data from the client
declare
    @Data int
    ,@OldRowVer uniqueidentifier

select @Data = Data, @OldRowVer = RowVer
from dbo.OptimisticConcurrency
where ID = @ID;

-- Saving data to the database
update dbo.OptimisticConcurrency
set
    Data = @NewData
    ,RowVer = newid()
where ID = @ID and RowVer = @OldRowVer;

if @@rowcount = 0
    raiserror('Row with ID: %d has been modified by other session',
        16,1,@ID);

Indexing Considerations
As I have already discussed in the book, an In-Memory OLTP indexing strategy and the 
choice between nonclustered (range) and hash indexes both greatly depend on the data 
and queries that utilize them. Nonclustered (range) indexes provide you with a similar 
experience as regular B-Tree indexes. They can be used in the same use cases, and they 
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provide a comparable set of SARGability rules. The only exception is scanning an index 
in the opposite direction to the index sorting order. Nonclustered (range) indexes are 
unidirectional, and In-Memory OLTP is unable to utilize them for such scans.

Hash indexes, on the other hand, are useful only for point-lookup searches and 
equality joins when queries use the equality predicate on all index key columns. They 
may outperform range indexes in those scenarios assuming that they have a sufficient 
number of buckets in the hash table. However, an insufficient bucket_count value greatly 
affects their performance and makes the indexes inefficient.

You can use hash indexes as the primary keys in the catalog entities where the 
amount of data is relatively static and you can correctly estimate the number of bucket 
for the index. Those entities are often used in the equality joins, and a hash index can be 
very efficient in those scenarios. However, as the general rule, using range indexes is the 
safer choice, which simplifies In-Memory OLTP migration and also reduces maintenance 
overhead in the system.

There are a few other factors to consider. First, you should remember that indexes on 
memory-optimized tables point to the actual data row objects and are covering for in-row 
columns. They do not cover off-row columns, and In-Memory OLTP needs to perform 
actions conceptually similar to a Key Lookup operation to obtain off-row values. You 
should analyze the table structure and keep frequently selected columns in-row when 
you migrate a disk-based table into memory.

Second, you should try to minimize the number of indexes in the table similar 
to disk-based tables. Indexes add overhead during INSERT operations and slow down 
database recovery and the garbage collection processes. Moreover, In-Memory OLTP is 
using row versioning, and it creates a new version of the row every time you update it. 
Every extra index adds update overhead; In-Memory OLTP has to maintain the index row 
chains regardless of whether the index key columns were updated. This is different from 
disk-based B-Tree indexes, which stay intact unless you update index columns.

Let’s look at the example and create memory-optimized and disk-based tables of 
the same structure and insert some data there. Both tables have two indexes and four 
columns, as shown in Listing 13-10.

Listing 13-10.  Update Overhead: Tables Creation

create table dbo.MOTable
(
    Id int not null,
    IdxCol int not null,
    IntCol int not null,
    VarCharCol varchar(128) null,

    constraint PK_MOTable
    primary key nonclustered hash(Id)
    with (bucket_count = 2097152),

    index IDX_IdxCol nonclustered hash(IdxCol)
    with (bucket_count = 2097152),
)
with (memory_optimized=on, durability=schema_only);
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create table dbo.DBTable
(
    Id int not null,
    IdxCol int not null,
    IntCol int not null,
    VarCharCol varchar(128) null,

    constraint PK_DBTable
    primary key clustered(Id)
);

create index IDX_DBTable_IdxCol on dbo.DBTable(IdxCol);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.MOTable(ID,IdxCol,IntCol)
    select Id, Id, Id from Ids;

insert into DBTable(Id, IdxCol, IntCol)
    select Id, IdxCol, IntCol from dbo.MOTable;

As the next step, let’s run three UPDATE statements against each table, as shown 
in Listing 13-11. The first statement modifies the nonindexed fixed-length column. 
The second changes the value of the indexed fixed-length column. The last statement 
populates the empty variable-length column with a value, which increases the row size 
and triggers a large number of page splits in the disk-based table.

Listing 13-11.  Update Overhead: Update Statements

update dbo.MOTable set IntCol += 1;
update dbo.MOTable set IdxCol += 1;
update dbo.MOTable set VarCharCol = replicate('a',128);

update dbo.DBTable set IntCol += 1;
update dbo.DBTable set IdxCol += 1;
update dbo.DBTable set VarCharCol = replicate('a',128);

Table 13-1 shows the execution time of the statements in my environment.  
As you can see, the execution time stays pretty much the same in the case of the  
memory-optimized table, and it depends on the number of indexes in the table. There is 
still index update overhead associated with index maintenance during the update of the 
index key column. In-Memory OLTP needs to calculate the hash bucket for the new index 
key value in hash indexes or find the new index key row chain in nonclustered indexes. 
This overhead, however, is relatively insignificant.
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Table 13-1.  Execution Time of Update Statements

Memory-Optimized Table Disk-Based Table

Update of nonindexed column 1,016 ms 1,879 ms

Update of indexed column 1,036 ms 4,586 ms

Update with row size increase 1,045 ms 3,906 ms

Table 13-2.  Execution Time of Update Statements with New Index

Memory-Optimized Table

Update of nonindexed column 1,840 ms

Update of indexed column 1,900 ms

Update with row size increase 1,921 ms

This is not the case with the disk-based tables where the update of the index key 
column leads to the update of the nonclustered index B-Tree structure. Similarly, 
increasing the size of the row leads to page splits. The Storage Engine has to allocate new 
data pages and move data there when the new versions of the rows do not fit into the 
original pages. This is a very expensive operation, which updates allocation map pages 
and leads to significant transaction log overhead. 

Just to illustrate that update overhead depends on the number of indexes in a 
memory-optimized table, let’s add another index to the table with the code from  
Listing 13-12.

Listing 13-12.  Update Overhead: Adding Extra Index to Memory-Optimized Table

alter table dbo.MOTable
add index IDX_VarCharCol nonclustered(VarCharCol);

Table 13-2 illustrates the execution time of the update statements after creating the 
index. As you can see, adding an extra index adds overhead to the operation; however, all 
three statements take a similar amount of time.

It is beneficial to analyze the indexing strategy in a system, adjusting and  
redesigning it during migration. You can use the sys.dm_db_index_usage_stats and 
sys.dm_db_index_operational_stats data management views to obtain index usage 
statistics in the system. Remember that SQL Server does not persist these statistics at the 
time of restart. Moreover, some versions may clear them at the time of an index rebuild.
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Finally, I will to discuss another SQL Server 2014 limitation, which has been removed 
in SQL Server 2016. As you may remember, the first release of In-Memory OLTP required 
you to use binary collations for the index key columns. In SQL Server 2014, this may 
become a breaking change in the system behavior because of the case-sensitiveness of 
the collation. However, in the grand scheme of things, binary collations have benefits. 
The comparison operations on the columns that store data in binary collations are 
much more efficient compared to nonbinary counterparts. You can achieve significant 
performance improvements when a large number of rows need to be processed.

One such example is a substring search in large tables. Consider the situation when 
you need to search by part of the product name in a large Products table. Unfortunately, 
a substring search will lead to the following predicate: WHERE ProductName LIKE '%' + @
Param + '%'. This is not SARGable, and SQL Server cannot use an Index Seek operation 
in such a scenario. The only option is to scan the data, evaluating every row in the table, 
which is significantly faster with binary collation.

Let’s look at an example and create the table shown in Listing 13-13. The table has 
four text columns that store Unicode and non-Unicode data in binary and nonbinary 
formats. Finally, you populate it with 65,536 rows of random data.

Listing 13-13.  Binary Collation Performance: Table Creation

create table dbo.CollationTest
(
    ID int not null,
    VarCol varchar(108) not null,
    NVarCol nvarchar(108) not null,
    VarColBin varchar(108)
        collate Latin1_General_100_BIN2 not null,
    NVarColBin nvarchar(108)
        collate Latin1_General_100_BIN2 not null,

    constraint PK_CollationTest
    primary key nonclustered hash(ID)
    with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table #CollData
(
    ID int not null,
    Col1 uniqueidentifier not null
        default NEWID(),
    Col2 uniqueidentifier not null
        default NEWID(),
    Col3 uniqueidentifier not null
        default NEWID()
);
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;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
insert into #CollData(ID)
    select ID from IDs;

insert into dbo.CollationTest(ID,VarCol,NVarCol,VarColBin,NVarColBin)
    select
        ID
        /* VarCol */
        ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
        convert(varchar(36),Col3)
        /* NVarCol */
        ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
        convert(nvarchar(36),Col3)
        /* VarColBin */
        ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
        convert(varchar(36),Col3)
        /* NVarColBin */
        ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
        convert(nvarchar(36),Col3)
    from
        #CollData

As the next step, run the queries from Listing 13-14, comparing the performance 
of a search in different scenarios. All the queries scan the table varheap, evaluating the 
predicate for every row in the table.

Listing 13-14.  Binary Collation Performance: Test Queries

declare
   @Param varchar(16)
   ,@NParam varchar(16)

-- Getting substring for the search
select
   @Param = substring(VarCol,43,6)
   ,@NParam = substring(NVarCol,43,6)
from
   dbo.CollationTest
where
   ID = 1000;
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select count(*)
from dbo.CollationTest
where VarCol like '%' + @Param + '%';

select count(*)
from dbo.CollationTest
where NVarCol like '%' + @NParam + N'%';

select count(*)
from dbo.CollationTest
where VarColBin like '%' + upper(@Param) + '%'
            collate Latin1_General_100_Bin2;

select count(*)
from dbo.CollationTest
where NVarColBin like '%' + upper(@NParam) + N'%'
            collate Latin1_General_100_Bin2;

Table 13-3 shows the execution time of all queries in my system. As you can see, the 
queries against the binary collation columns are significantly faster, especially in the case 
of Unicode data.

Table 13-3.  Binary Collation Performace: Test Results

Varchar Column with 
Nonbinary Collation

Varchar Column with 
Binary Collation

Nvarchar Column 
with Nonbinary 
Collation

Nvarchar Column 
with Binary Collation

135 ms 75 ms 624 ms 34 ms

Remember that binary collations are case-sensitive. You may want to create another 
binary collation column and store the copy of the data there, converting it to uppercase or 
lowercase when needed.

Finally, it is worth noting that this behavior is not limited to memory-optimized 
tables. You will get a similar level of performance improvement with disk-based tables 
when binary collations are used.

Maintainability and Management Overhead
In SQL Server 2014 and SQL Server 2016 RTM, In-Memory OLTP was included only in 
the Enterprise Edition of the product. Starting with SQL Server 2016 SP1, you can use 
In-Memory OLTP in every edition of SQL Server. It is also available in the premium tiers 
of Microsoft Azure SQL Databases. While this allows you to maintain a single architecture 
and code across multiple SQL Server editions, there is the hidden danger in this 
approach.
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In-Memory OLTP is hardly a “set it and forget it” type of technology. Database 
professionals should actively participate in system monitoring and maintenance after 
deployment. They need to monitor system memory usage, analyze data, re-create hash 
indexes if the bucket counts need to be adjusted, recompile natively compiled modules to 
address data distribution and statistic changes, and perform other tasks as well.

The memory usage monitoring is, perhaps, the most important task. In-Memory 
OLTP consumes system memory, which may affect the performance of the other SQL 
Server components. For example, a large amount of data in memory-optimized tables 
may reduce the size of the buffer pool, which will increase physical I/O and reduce query 
performance against disk-based tables. Similarly, it may reduce the size of the plan cache, 
which will lead to recompilations and increase CPU load in the system. Ironically, in the 
Standard Edition, 32GB of memory-optimized data would not affect buffer pool memory 
when the server has enough RAM to accommodate both of them.

You should also remember that data in memory-optimized tables will become 
read-only if In-Memory OLTP does not have enough memory to proceed. This may lead 
to prolonged system outages, especially in non-Enterprise instances of SQL Server. You 
cannot address the issue by adding more memory and exceeding the edition limit. The 
only option is to reduce the amount of data in memory-optimized tables.

■■ Important A bandoned uncommitted transactions may defer the garbage collection 
process and lead to out-of-memory conditions in the system.

You should also consider In-Memory OLTP memory usage when you design a high 
availability strategy in your system. It is not uncommon to have the implementations 
with secondary nodes be less powerful than the primary ones. This decreases the 
implementation cost of the solution and may provide a required high availability even 
though the system would operate with a reduced performance after failover.

The situation changes if secondary nodes do not have enough memory to 
accommodate In-Memory OLTP data. This will break the synchronization between the 
nodes and may affect the availability of the system.

The cross-edition support of the technology in SQL Server 2016 SP1 and above allows 
you to architect the system once and upgrade editions as the amount of data and the load 
increase. It is not targeted for independent software vendors who develop products that 
need be deployed to a large number of customers who may or may not have DBA teams to 
support the system. In-Memory OLTP is not the best choice in that scenario.

Using In-Memory OLTP in Systems with Mixed 
Workloads
In-Memory OLTP can provide significant performance improvements in OLTP systems. 
However, with data warehouse workloads, the results may vary. The memory-optimized 
columnstore indexes may help to improve the performance of some data warehouse and 
operational analytics queries; however, memory-optimized columnstore indexes still 
have plenty of limitations compared to disk-based column-based storage.
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When you run a query against a memory-optimized columnstore index, In-Memory 
OLTP has to perform a scan of all the index row groups. Even though SQL Server may skip 
some of the row groups based on segment metadata, you should not rely on that behavior.

By contrast, disk-based columnstore indexes may be partitioned, and entire 
partitions can be eliminated from the scan. This may significantly reduce the amount of 
data to process when a system has a long data retention policy and queries work with just 
subset of the data.

Keeping the old data in memory-optimized tables also negatively affects the 
performance of OLTP queries. It increases the length and slows down the scans of the 
index row chains. More importantly, it will consume SQL Server memory. Even though 
memory is relatively cheap nowadays, NUMA servers partition the memory on a  
per-socket basis, and in some cases, you will have to add more CPUs to utilize the 
memory. This may require you to license them, which is expensive.

Finally, there is another, less obvious aspect of the problem. Different data in the 
system may have different availability requirements. For example, current hot data may 
have a 99.99 percent or higher SLA in the mission-critical systems, while the availability 
requirements for the old cold data may be significantly lower.

The Enterprise Edition of SQL Server allows you to utilize piecemeal restore, bringing 
the database online on a per-filegroup basis. This can significantly reduce the downtime 
in the case of a disaster. However, a piecemeal restore requires the In-Memory OLTP 
filegroup to be online for the database to become partially available. Keeping a large 
amount of old cold data in-memory would slow down the recovery process.

It is often beneficial to build separate data warehouse environments to handle 
analysis and reporting for the system. However, there are still many cases when systems 
need to retain data for a long time and support mixed OLTP and data warehouse 
workloads against the same data. Moving the data completely into memory is usually not 
the best option, especially when you expect the amount of data grow over time.

One of the solutions in this scenario is to partition the data between memory-optimized 
and disk-based tables. You can put recent hot data into memory-optimized tables, keeping 
old cold data disk-based. This allows you to create a different set of indexes and utilize 
different technologies based on workload, obtaining the biggest performance gain and 
reducing the size of the data on disk.

Figure 13-2 shows an example of the architecture that partitions data in the system. 
Obviously, the criteria for partitioning should depend on the system workload and other 
requirements.

Figure 13-2.  Example of data partitioning
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The hot operational data is stored in memory-optimized tables. This data is 
customer-facing, and it handles the majority of OLTP activity in the system. The warm 
data for several previous operational periods could be stored in disk-based B-Tree tables. 
There is usually some degree of OLTP and data warehouse workload against such data.

The cold historical data mainly handles data warehouse workloads. It may be stored 
in the tables with clustered columnstore indexes, potentially with COLUMNSTORE_ARCHIVE 
compression. It is also possible to create nonclustered B-Tree indexes on such tables if 
you need to support OLTP use cases. Finally, if the data is static, it is beneficial to put it in 
a read-only filegroup and exclude it from the regular FULL database backups.

Let’s look at an example of such an implementation and assume that you have an 
imaginary order entry system where the majority of OLTP transactions occur for the 
current month’s data. Figure 13-3 shows the data partitioning that may exist in the system 
as of June 2017.

Figure 13-3.  Order entry system: data partitioning

The hot data for the current (June 2017), previous (May 2017), and next (July 2017) 
operation periods are stored in the memory-optimized tables. The warm data from 
January to April 2017 is stored in a B-Tree table on the FG2017 filegroup. Lastly, the cold 
data for 2016 is stored in the table with the clustered columnstore index on the FG2016 
filegroup. The catalog entities, such as Articles and Customers, are implemented as 
memory-optimized tables, which will allow you to utilize native compilation when you 
are working with the hot orders.

It is also beneficial to partition disk-based tables according to operational periods. 
This will help to manage data movement between the tables when the period changes. 
You will see this shortly.

Listing 13-15 illustrates this implementation. I am omitting the dbo.Orders2017_07 
table to save the space in the book. However, you should always have the table for the 
next (future) operational period to avoid downtime in the system.
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Listing 13-15.  Data Partitioning: Object Creation

create table dbo.Customers
(
    CustomerId int not null
        constraint PK_Customers
        primary key nonclustered hash
        with (bucket_count=65536),
    Name nvarchar(256) not null,

    index IDX_Customers_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_and_data);

-- Storing data for 2017_06
create table dbo.Orders2017_06
(
    OrderId bigint identity(1,1) not null,
    OrderDate datetime2(0) not null,
    CustomerId int not null,
    Amount money not null,
    Status tinyint not null,

    /* Other columns */
    constraint PK_Orders2017_06
    primary key nonclustered (OrderId),

    index IDX_Orders2017_06_CustomerId
    nonclustered hash(CustomerId)
    with (bucket_count=65536),

    constraint CHK_Orders2017_06
    check (OrderDate >= '2017-06-01' and OrderDate < '2017-07-01'),

    constraint FK_Orders2017_06_Customers
    foreign key(CustomerId)
    references dbo.Customers(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data);

-- Storing data for 2017_05
create table dbo.Orders2017_05
(
    OrderId bigint identity(1,1) not null,
    OrderDate datetime2(0) not null,
    CustomerId int not null,
    Amount money not null,
    Status tinyint not null,
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    /* Other columns */
    constraint PK_Orders2017_05
    primary key nonclustered (OrderId),

    index IDX_Orders2017_05_CustomerId
    nonclustered hash(CustomerId)
    with (bucket_count=65536),

    constraint CHK_Orders2017_05
    check (OrderDate >= '2017-05-01' and OrderDate < '2017-06-01'),

    constraint FK_Orders2017_05_Customers
    foreign key(CustomerId)
    references dbo.Customers(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data);
go

create partition function pf2017(datetime2(0))
as range right for values
('2017-02-01','2017-03-01','2017-04-01','2017-05-01','2017-06-01','2017-07-01'
,'2017-08-01','2017-09-01','2017-10-01','2017-11-01','2017-12-01','2018-01-01');
go

create partition scheme ps2017
as partition pf2017
all to ([FG2017]);
go

-- Storing data for 2017
create table dbo.Orders2017
(
    OrderId bigint not null,
    OrderDate datetime2(0) not null,
    CustomerId int not null,
    Amount money not null,
    Status tinyint not null,

    constraint CHK_Order2017_01_05 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-05-01'),
    constraint CHK_Order2017_01_06 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-06-01'),
    constraint CHK_Order2017_01_07 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-07-01'),
    constraint CHK_Order2017_01_08 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-08-01'),
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    constraint CHK_Order2017_01_09 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-09-01'),
    constraint CHK_Order2017_01_10 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-10-01'),
    constraint CHK_Order2017_01_11 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-11-01'),
    constraint CHK_Order2017_01_12 check (OrderDate >= '2017-01-01' and 
OrderDate < '2017-12-01'),
    constraint CHK_Order2017 check (OrderDate >= '2017-01-01' and OrderDate 
< '2018-01-01')
);

create unique clustered index IDX_Orders2017_OrderDate_OrderId
on dbo.Orders2017(OrderDate, OrderId)
with (data_compression=row)
on ps2017(OrderDate);

create nonclustered index IDX_Orders2017_CustomerId
on  dbo.Orders2017(CustomerId)
with (data_compression=row)
on ps2017(OrderDate);

create nonclustered index IDX_Orders2017_OrderId
on  dbo.Orders2017(OrderId)
with (data_compression=row)
on ps2017(OrderDate);
go

create partition function pf2016(datetime2(0))
as range right for values
('2016-02-01','2016-03-01','2016-04-01','2016-05-01','2016-06-01','2016-07-01'
,'2016-08-01','2016-09-01','2016-10-01','2016-11-01','2016-12-01','2017-01-01');
go

create partition scheme ps2016
as partition pf2016
all to ([FG2016]);
go

create table dbo.Orders2016
(
    OrderDate datetime2(0) not null,
    OrderId bigint not null,
    CustomerId int not null,
    Amount money not null,
    Status tinyint not null,
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    constraint CHK_Order2016 check (OrderDate >= '2016-01-01' and OrderDate 
< '2017-01-01'),
)
on ps2016(OrderDate);

create clustered columnstore index CCI_Orders2016
on dbo.Orders2016
with (data_compression=columnstore_archive)
on ps2016(OrderDate);

create nonclustered index IDX_Orders2016_CustomerId
on  dbo.Orders2016(CustomerId)
include(Amount)
with (data_compression=row)
on ps2016(OrderDate);
go

create view dbo.Orders(OrderDate, OrderId, CustomerId, Amount, Status)
as
    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017_06

    union all

    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017_05

    union all

    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017

    union all

    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2016;

You can hide implementation details from read-only reporting queries by 
implementing a partitioned view that combines data from all the tables there. Each table 
should have the CHECK constraint that indicates what data is stored in the table. This will 
allow SQL Server to skip processing unnecessary tables when you reference a view in the 
queries. Do not focus on multiple CHECK constraints in the dbo.Orders2017 table now; I 
will explain the need for them later.
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Figure 13-4.  Execution plan of the query

Listing 13-16 illustrates several queries against a partition view.

Listing 13-16.  Data Partitioning: Querying Partitioned View

select count(*)
from dbo.Orders
where OrderDate between '2017-06-02' and '2017-06-03';

select count(*)
from dbo.Orders
where OrderDate >= '2017-01-01';

select count(*) from dbo.Orders;

Figure 13-4 shows the execution plans for the queries. As you can see, SQL Server is 
able to eliminate the scan of unnecessary tables during query execution.

As you have probably noticed, the memory-optimized tables define an OrderId 
column as identity(1,1). In-Memory OLTP requires you to use a SEED value of 1 when 
you define the identity column. Fortunately, you can re-seed it and enforce key uniqueness 
by implementing identity_insert of the dummy row immediately after table creation.
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Listing 13-17 shows this approach. It assumes that the system handles fewer than 
100,000,000 new orders per month.

Listing 13-17.  Data Partitioning: Changing Identity SEED Property

set identity_insert dbo.Orders2017_06 on

insert into dbo.Orders2017_06(OrderDate, OrderId, CustomerId, Amount, Status)
values('2017-06-01',201706000000000,1,1,1);

delete from dbo.Orders2017_06;

set identity_insert dbo.Orders2017_06 off;

As with any multitable data partitioning implementation, you should support the 
data migration across the tables. As time goes on, the orders need to be moved from 
memory-optimized to disk-based tables.

It is possible to use an INSERT..SELECT approach; however, the statement would 
move the snapshot of the data taken when the transaction started. You will subsequently 
need to move the data changes that occur during and after the statement execution. You 
can capture those changes by defining triggers on the memory-optimized tables.

Let’s look at an example of data movement assuming that you want to move the 
last-month (May 2017) data to a disk-based table. Listing 13-18 shows the first step in 
the process, which inserts data into the separate disk-based staging table to avoid data 
duplication in the system. This also creates two tables to keep the OrderId values of 
updated and deleted rows using the triggers to populate them (I am assuming that there 
are no inserts into the last-month table).

Listing 13-18.  Data Movement: Step 1

create table dbo.Orders2017_05_Tmp
(
    OrderId bigint not null,
    OrderDate datetime2(0) not null,
    CustomerId int not null,
    Amount money not null,
    Status tinyint not null,

    check (OrderDate >= '2017-05-01' and OrderDate < '2017-06-01')
)
on [FG2017];

create unique clustered index IDX_Orders2017_05_Tmp_OrderDate_OrderId
on dbo.Orders2017_05_Tmp(OrderDate, OrderId)
with (data_compression=row)
on [FG2017];
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create nonclustered index IDX_Orders2017_05_Tmp_CustomerId
on  dbo.Orders2017_05_Tmp(CustomerId)
with (data_compression=row)
on [FG2017];

create nonclustered index IDX_Orders2017_05_Tmp_OrderId
on  dbo.Orders2017_05_Tmp(OrderId)
with (data_compression=row)
on [FG2017]
go

create table dbo.OrdersUpdateQueue
(
    ID int not null identity(1,1)
        constraint PK_OrdersUpdateQueue
        primary key nonclustered hash
        with (bucket_count=262144),
    OrderId bigint not null,
)
with (memory_optimized=on, durability=schema_and_data)
go

create table dbo.OrdersDeleteQueue
(
    ID int not null identity(1,1)
        constraint PK_OrdersDeleteQueue
        primary key nonclustered hash
        with (bucket_count=262144),
    OrderId bigint not null
)
with (memory_optimized=on, durability=schema_and_data)
go

create trigger trgAfterUpdate on dbo.Orders2017_05
with native_compilation, schemabinding
after update
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    insert into dbo.OrdersUpdateQueue(OrderId)
        select OrderId from inserted;
end
go
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create trigger trgAfterDelete on dbo.Orders2017_05
with native_compilation, schemabinding
after delete
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    insert into dbo.OrdersDeleteQueue(OrderId)
        select OrderId from deleted;
end
go

-- Step 1: Copy data to the staging table
insert into dbo.Orders2017_05_Tmp(OrderDate, OrderId, CustomerId, Amount, 
Status)
    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017_05 with (snapshot);

The OrderId of the rows that were updated and deleted during the INSERT..SELECT 
execution are stored in the dbo.OrdersUpdateQueue and dbo.OrdersDeleteQueue tables. 
You can apply those data modifications to the staging table by using the code from 
Listing 13-19. Depending on the volatility of the data in your system, you may need to run 
it several times until the tables are almost empty.

Listing 13-19.  Data Movement: Step 2

declare
    @MaxUpdateId int
    ,@MaxDeleteId int

select @MaxUpdateId = max(ID)
from dbo.OrdersUpdateQueue with (snapshot);

select @MaxDeleteId = max(ID)
from dbo.OrdersDeleteQueue with (snapshot);

begin tran
    if @MaxUpdateId is not null
    begin
        update t
        set t.Amount = s.Amount, t.Status = s.Status
        from
            dbo.OrdersUpdateQueue q with (snapshot) join
                dbo.Orders2017_05 s with (snapshot) on
                    q.OrderId = s.OrderId
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            join dbo.Orders2017_05_Tmp t on
                    t.OrderId = s.OrderId
        where
            q.ID <= @MaxUpdateId;

        delete from dbo.OrdersUpdateQueue with (snapshot)
        where ID <= @MaxUpdateId;
    end;

    if @MaxDeleteId is not null
    begin
        delete from t
        from
            dbo.OrdersDeleteQueue q with (snapshot) join
                dbo.Orders2017_05_Tmp t on
                    t.OrderId = q.OrderId
        where
            q.ID <= @MaxDeleteId;

        delete from dbo.OrdersDeleteQueue with (snapshot)
        where ID <= @MaxDeleteId;
    end
commit;

Finally, you need to drop the dbo.Orders2017_05 table, switch the staging table as 
the partition to the dbo.Orders2017 table, and change the partition view. You should 
prevent client access to the May 2017 data during those operations. Fortunately, the 
duration of the downtime will be very short; both update and delete queue tables are 
almost empty, and other operations will be done on the metadata level, as shown in 
Listing 13-20.

■■ Note   If you access the data in the dbo.Orders2017_05 table through the T-SQL 
(interop) stored procedures, you can alter them at the beginning of the transaction and 
obtain a schema modification (Sch-M) lock on them. This will block clients from calling 
stored procedures until a transaction is committed.

Listing 13-20.  Data Movement: Final Step

-- Disconnect clients before running those steps.
-- Alternatively, if the Data Access Tier uses Interop
-- stored procedures, you can start the transaction and
-- alter SPs before the updates. This will block clients
-- from calling those SPs.
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update t
set t.Amount = s.Amount, t.Status = s.Status
from
    dbo.OrdersUpdateQueue q with (snapshot)
        join dbo.Orders2017_05 s with (snapshot) on
            q.OrderId = s.OrderId
    join dbo.Orders2017_05_Tmp t on
            t.OrderId = s.OrderId;

delete from t
from
    dbo.OrdersDeleteQueue q with (snapshot) join
        dbo.Orders2017_05_Tmp t on
            t.OrderId = q.OrderId;

alter table dbo.Orders2017
    drop constraint CHK_Order2017_01_05
go

alter table dbo.Orders2017_05_Tmp
switch to dbo.Orders2017 partition 5
go

alter view dbo.Orders(OrderDate, OrderId, CustomerId, Amount, Status)
as
    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017_06

    union all

    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2017

    union all

    select OrderDate, OrderId, CustomerId, Amount, Status
    from dbo.Orders2016
go

drop table dbo.Orders2017_05;

One of the things you need to do during this process is change the CHECK constraints 
on the dbo.Orders2017 table indicating that the table stores May 2017 data now. 
Unfortunately, SQL Server always scans one of the indexes in the table to validate new 
CHECK constraints, holding the schema modification (SCH-M) lock and preventing access 
to the table during the scan.
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One of the ways to address such a problem is by creating multiple CHECK 
constraints—one constraint per month—as part of the CREATE TABLE statement. Every 
time you move another month data into the table, you are dropping a constraint, 
which is a metadata operation, rather than creating a new one. SQL Server evaluates all 
constraints during optimization and picks the most restrictive one. This is the reason why 
you created nine CHECK constraints in the dbo.Orders2017 table in Listing 13-15.

■■ Note   You can look at a more comprehensive and detailed version of the code in the 
companion materials of the book.

While implementing data partitioning requires additional effort, it pays off in the 
long run. It allows you to utilize the best technologies for each workload, simplifies 
database administration and maintenance, improves system availability, and helps to 
reduce the hardware and storage costs. Consider implementing it when you expect to 
store a large amount of data in the system.

■■ Note   My Pro SQL Server Internals book includes a detailed chapter about data 
partitioning. It shows how to implement tiered storage and move data between different 
tables and filegroups while keeping it transparent to the users.

Thinking Outside the In-Memory Box
You can benefit from In-Memory OLTP even without fully utilizing the technology and 
migrating the data into memory. Let’s look at several examples.

Importing Batches of Rows from Client Applications
In Chapter 13 of my book Pro SQL Server Internals, I compare the performance of several 
methods that inserted a batch of rows from the client application into the database. 
I looked at the performance of calling individual INSERT statements, encoding the data 
into XML and JSON and passing it to a stored procedure, using the .NET SqlBulkCopy 
class, and passing the data to a stored procedure utilizing table-valued parameters. 
Table-valued parameters became the clear winner of the tests, providing performance on 
par with the SqlBulkCopy implementation plus the flexibility of using stored procedures 
during the import.

http://dx.doi.org/10.1007/978-1-4842-2772-5_13
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Listing 13-21 illustrates the database schema and stored procedure I used in the tests. 

Listing 13-21.  Importing a Batch of Rows: Table, TVP, and Stored Procedure

create table dbo.Data
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,
    /* Seventeen more columns Col3 - Col19*/
    Col20 varchar(20) not null,

    constraint PK_DataRecords
    primary key clustered(ID)
)
go

create type dbo.tvpData as table
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,    
    /* Seventeen more columns: Col3 - Col19 */
    Col20 varchar(20) not null,

    primary key(ID)
)
go

create proc dbo.InsertDataTVP
(
    @Data dbo.tvpData readonly
)
as
    insert into dbo.Data
    (
        ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7
        ,Col8,Col9,Col10,Col11,Col12,Col13,Col14
        ,Col15,Col16,Col17,Col18,Col19,Col20
    )
        select ID,Col1,Col2,Col3,Col4,Col5,Col6
            ,Col7,Col8,Col9,Col10,Col11,Col12
            ,Col13,Col14,Col15,Col16,Col17,Col18
            ,Col19,Col20
        from @Data;

Listing 13-22 shows the ADO.NET code that performed the import in the case of a 
table-valued parameter.
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Listing 13-22.  Importing a Batch of Rows: Client Code

using (SqlConnection conn = GetConnection())
{
    /* Creating and populating DataTable object with dummy data */
    DataTable table = new DataTable();
    table.Columns.Add("ID", typeof(Int32));
    for (int i = 1; i <= 20; i++)
        table.Columns.Add("Col" + i.ToString(), typeof(string));
    for (int i = 0; i < packetSize; i++)
        table.Rows.Add(i, "Parameter: 1"
            ,"Parameter: 2"
            /* Other columns */
            ,"Parameter: 20");

    /* Calling SP with TVP parameter */
    SqlCommand insertCmd =
        new SqlCommand("dbo.InsertDataTVP", conn);
    insertCmd.Parameters.Add("@Data", SqlDbType.Structured);
    insertCmd.Parameters[0].TypeName = "dbo.tvpData";
    insertCmd.Parameters[0].Value = table;
    insertCmd.ExecuteNonQuery();
}

You can improve performance even further by making the dbo.tvpData table type 
memory-optimized, which is transparent to the stored procedure and client code.  
Listing 13-23 shows the new type definition.

Listing 13-23.  Importing a Batch of Rows: Defining a Memory-Optimized Table Type

create type dbo.tvpData as table
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,    
    /* Seventeen more columns: Col3 - Col19 */
    Col20 varchar(20) not null,

    primary key nonclustered hash(ID)
    with (bucket_count=65536)
)
with (memory_optimized=on);

The degree of performance improvement depends on the table schema, and it 
grows with the size of the batch. In my test environment, I got about 5 to 10 percent 
improvement on the small 5,000-row batches, 20 to 25 percent improvement on the 
50,000-row batches, and 45 to 50 percent improvement on the 500,000-row batches.



Chapter 13 ■ Utilizing In-Memory OLTP

255

Moreover, memory-optimized tables do not utilize tempdb, which may reduce 
tempdb page allocation contention (PAGELATCH waits) on very busy systems and improve 
performance even further. They, however, cannot spill to tempdb, which can be dangerous 
in the case of very large batches and with servers with an insufficient amount of memory. 
You should also define the bucket_count value for the indexes based on a typical batch 
size, as discussed in Chapter 4 of this book.

■■ Note   You can download the test application from this book’s companion materials and 
compare the performance of the various import methods.

Using Memory-Optimized Objects as Replacements for 
Temporary and Staging Tables
Memory-optimized tables and table variables can be used as replacements for disk-based 
temporary and staging tables. However, the level of performance improvement may vary, 
and it greatly depends on the table schema, workload patterns, and amount of data  
in the table.

Let’s look at a few examples and first compare the performance of a memory-
optimized table variable with disk-based temporary objects in a simple scenario that you 
will often encounter in OLTP systems. Listing 13-24 shows stored procedures that insert 
up to 256 rows into an object, scanning it afterward.

Listing 13-24.  Comparing Performance of a Memory-Optimized Table Variable with 
Disk-Based Temporary Objects

create table dbo.TestRows
(
    Id int not null
        primary key nonclustered hash
        with (bucket_count=512),
)
with (memory_optimized=on, durability=schema_only)
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N4)
insert into dbo.TestRows(Id)
    select Id from Ids;
go
    

http://dx.doi.org/10.1007/978-1-4842-2772-5_4
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create type dbo.InMemTV as table
(
    Id int not null
        primary key nonclustered hash
        with (bucket_count=512),
    Placeholder char(255)
)
with (memory_optimized=on)
go

create proc dbo.TestInMemTempTables(@Rows int)
as
    declare
        @ttTemp dbo.InMemTV
        ,@Cnt int

    insert into @ttTemp(Id)
        select Id
        from dbo.TestRows with (snapshot)
        where Id <= @Rows;

    select @Cnt = count(*) from @ttTemp;
go

create proc dbo.TestTempTables(@Rows int)
as
    declare
        @Cnt int

    create table #TTTemp
    (
        Id int not null primary key,
        Placeholder char(255)
    )

    insert into #TTTemp    (Id)
        select Id
        from dbo.TestRows with (snapshot)
        where Id <= @Rows; 

    select @Cnt = count(*) from #TTTemp;
go

create proc dbo.TestTempVars(@Rows int)
as
    declare
        @Cnt int



Chapter 13 ■ Utilizing In-Memory OLTP

257

    declare
        @ttTemp table
        (
            Id int not null primary key,
            Placeholder char(255)
        )

    insert into @ttTemp(Id)
        select Id
        from dbo.TestRows with (snapshot)
        where Id <= @Rows;

    select @Cnt = count(*) from @ttTemp;

Table 13-4 illustrates the execution time of the stored procedures called 10,000 
times in the loop. I ran the tests in two environments, using Intel i7-4770HQ and AMD 
Opteron 6328 CPUs. As you can see, the memory-optimized table variable outperformed 
disk-based objects even in the system with a very fast PCI-e SSD drive. The level of 
performance improvements grew with the amount of data when the disk-based tables 
needed to allocate more data pages to store the data. This is also a good example that 
demonstrates that In-Memory OLTP is usually CPU-bound and benefits from the faster 
single-threaded performance provided by an Intel CPU.

Table 13-4.  Execution Time of Stored Procedures (10,000 Executions)

16 Rows 64 Rows 256 Rows

Memory-Optimized Table Variable 
(i7-4770HQ)

843 ms 1,016 ms 1,850 ms

Memory-Optimized Table Variable 
(AMD Opteron 6328)

980 ms 1,360 ms 2,617 ms

Table Variable 1,450 ms 3,054 ms 8,390 ms

Temporary Table 6,267 ms 8,020 ms 12,546 ms

It is also worth mentioning that performance improvements can be even more 
significant in systems with heavy concurrent tempdb loads because of the possible 
allocation maps contention.

You should remember that memory-optimized table variables do not keep index 
statistics, similar to disk-based table variables. The Query Optimizer generates execution 
plans with the assumption that they store just a single row. This cardinality estimation error 
can lead to highly inefficient plans, especially when with a large amount of data and joins.

Similar to disk-based table variables, the statement-level recompile with OPTION 
(RECOMPILE) allows the Query Optimizer to obtain a number of rows in memory-optimized 
table variables. It does not provide the information about data distribution, however, 
because of the missing statistics histogram. This behavior may lead to inefficient execution 
plans even with a statement-level recompile involved.
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Let’s look at an example of cardinality estimations with and without a statement-
level recompile by using the code from Listing 13-25.

Listing 13-25.  Memory-Optimized Table Variables and Statement-Level Recompile

declare
        @InMemTV dbo.InMemTV;

insert into @InMemTV(Id)
        select Id from dbo.TestRows with (snapshot);

select count(*) from @InMemTV;
select count(*) from @InMemTV option (recompile);
select count(*) from @InMemTV where ID > 0 option (recompile);

You can see the cardinality estimations for the Index Scan and Filter operators  
in Figure 13-5. Without a statement-level recompile, SQL Server assumed that the 
memory-optimized table variable has just a single row. The statement-level recompile 
allowed SQL Server to obtain the information about the number of rows in the table. 
However, there is no information about data distribution in the table, and adding the 
where clause led to the cardinality estimation error. This behavior matches the behavior 
of disk-based table variables.

Figure 13-5.  Memory-optimized table variables and cardinality estimations

Memory-optimized tables can be used as the staging area for ETL processes. As a 
general rule, they outperform disk-based tables in INSERT performance, especially if the 
process imports the data from the multiple sources in parallel. The lock- and latch-free 
nature of memory-optimized tables will eliminate latch contention and will provide a 
significant increase of insert throughput. You already saw a similar example in Chapter 2 
of the book.

http://dx.doi.org/10.1007/978-1-4842-2772-5_2
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In-Memory OLTP will also reduce I/O and transaction log overhead. Moreover, in the 
case of nondurable memory-optimized tables, it will eliminate all disk and transaction 
log activity generated by the staging tables.

The data modification overhead is different between technologies. As you already 
know, with memory-optimized tables, the UPDATE overhead depends on the number of 
indexes in the table. With disk-based tables, it depends on what columns were updated 
and the number of page splits it generated.

Scan performance, on the other hand, greatly depends on the use case. In SQL 
Server 2014, In-Memory OLTP did not support parallelism and varheap scans, which 
greatly affected scan performance. Traversing memory pointers is a fast operation, and it 
is significantly faster compared to getting a page from the buffer pool. However, on-page 
row access could be faster than traversing long memory pointer chains. In SQL Server 
2014, it was possible that with the small data rows and large number of rows per page, 
disk-based tables outperformed memory-optimized tables during the scans, especially 
with the parallel execution plans for the queries.

Fortunately, both limitations have been removed in SQL Server 2016, and in the 
majority of the cases, memory-optimized table scans would outperform B-Tree disk-based 
tables. Nevertheless, the results may vary based on the data, hardware, and ETL logic.

You should also remember that parallelism and varheaps scans are supported only 
in query interop mode. You should compare the performance of natively compiled code 
responsible for ETL logic with the interop T-SQL implementation. Those limitations may 
offset the performance benefits provided by native compilation and make the interop 
approach more efficient in the case of large scans and complex ETL transformations.

With all that being said, you can achieve the best results by adjusting ETL 
processes to In-Memory OLTP. Consider the situation when you need to import data 
to a data warehouse using many flat files as the source. In-Memory OLTP will allow 
you to perform the import from multiple files in parallel without any latch contention 
overhead. Moreover, you can achieve better results by performing the processing and 
transformation of the data using large batches rather than doing it on per-file basis.

■■ Tip   Consider using a separate staging database when you utilize In-Memory OLTP 
for ETL processes. This will allow you to avoid creating an In-Memory OLTP filegroup with 
checkpoint files in the main database.

Using In-Memory OLTP as Session or Object State Store
Modern software systems have become extremely complex. They consist of a large 
number of components and services responsible for various tasks, such as interaction 
with users, data processing, integration with other systems, reporting, and quite a few 
others. They must be scalable and redundant, they need to be able to handle load growth, 
and they need to be able to survive hardware failures and crashes.

A common approach to solving scalability and redundancy issues is to design the 
systems in a way that permits you to deploy and run multiple instances of individual 
services. This allows you to add more servers and instances as the load grows and helps 
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you survive hardware failures by distributing the load across other active servers. The 
services are usually implemented in a stateless way, and they don’t store or rely on any 
local data.

Most systems, however, have data that needs to be shared across instances. For 
example, front-end web servers usually need to maintain web session states. Back-end 
processing services often need to have a shared cache with some data.

Historically, there were two approaches to address this issue. The first one was to 
use a dedicated storage/cache and host it somewhere in the system. Remember the old 
ASP.NET model that used either a SQL Server database or a separate web server to store 
session data? The problem with this approach was limited scalability and redundancy. 
Storing session data in web server memory is fast, but it is not redundant. A SQL Server 
database, on the other hand, can be protected, but it does not scale well under the load 
because of page latch contention and other issues.

Another approach was to replicate the content of the cache across multiple servers. 
Each instance worked with a local copy of the cache, while another background process 
distributed the changes to the other servers. Several solutions on the market provide such 
a capability; some are open source, and others are commercial products.

If your system is using SQL Server as the database back end, you have an option of 
utilizing In-Memory OLTP as the session or object store in your system. This may not 
necessarily be the best option because of the extra load it adds to SQL Server; however, 
it may be one of the simplest approaches, especially if SQL Server has enough extra 
bandwidth to handle the load.

In the nutshell, it looks similar to the ASP.NET SQL Server session-store model; 
however, In-Memory OLTP throughput and performance improvements address the 
scalability issues of the old disk-based solution. You can improve the performance even 
further by using nondurable memory-optimized tables. Even though the data will be lost 
when there is failover, this is acceptable in many cases.

Listing 13-26 shows the table and natively compiled stored procedures that you can 
use to store and manipulate the data in the database. The client application calls the 
LoadObjectFromStore and SaveObjectToStore stored procedures to load and save the 
data. The PurgeExpiredObjects stored procedure removes expired rows from the table, 
and it can be called from a SQL Agent or other process based on the schedule.

The serialized object data is stored in a varbinary(max) column. You can achieve 
slightly better performance by using an in-row varbinary(8000) data type if your objects 
will not exceed 8,000 bytes. Alternatively, you can use separate tables for large and small 
objects if needed. Consider, however, the development and maintenance overhead and 
the possibility of future object growth; it is entirely possible that the small performance 
improvements gained by eliminating the off-row internal table is not worth the effort. 

Listing 13-26.  Implementing Session Store: Database Schema

create table dbo.ObjStore
(
    ObjectKey uniqueidentifier not null,
    ExpirationTime datetime2(2) not null,
    Data varbinary(max) not null,
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    constraint PK_ObjStore
    primary key nonclustered hash(ObjectKey)
    with (bucket_count = 131072),
)
with (memory_optimized = on, durability = schema_only);

create proc dbo.SaveObjectToStore
(
    @ObjectKey uniqueidentifier
    ,@ExpirationTime datetime2(2)
    ,@Data varbinary(max)
)
with native_compilation, schemabinding, exec as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    -- @ObjectKeys are randomly generated and unique across
    -- multiple sessions
    update dbo.ObjStore
    set Data = @Data, ExpirationTime = @ExpirationTime
    where ObjectKey = @ObjectKey;

    if (@@rowcount = 0)
        insert into dbo.ObjStore(ObjectKey, ExpirationTime, Data)
        values(@ObjectKey, @ExpirationTime, @Data)
end;

create proc dbo.LoadObjectFromStore
(
    @ObjectKey uniqueidentifier not null
    ,@Data varbinary(max) output
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    select @Data = t.Data
    from dbo.ObjStore t
    where t.ObjectKey = @ObjectKey and
        ExpirationTime >= sysutcdatetime();
end;
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create proc dbo.PurgeExpiredObjects
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    declare @CurrentTime
        datetime2(2) = sysutcdatetime();

    delete dbo.ObjStore
    where ExpirationTime < @CurrentTime
end

The client implementation includes several static classes. The ObjStoreUtils class 
provides two methods to serialize and deserialize objects into the byte arrays. You can see 
the implementation in Listing 13-27.

Listing 13-27.  Implementing Session Store: ObjStoreUtils Class

public static class ObjStoreUtils
{
    /// <summary>
    /// Serialize object of type T to the byte array
    /// </summary>
    public static byte[] Serialize<T>(T obj)
    {
        if (obj == null)
            return null;
        using (var ms = new MemoryStream())
        {
            var formatter = new BinaryFormatter();
            formatter.Serialize(ms, obj);

            return ms.ToArray();
        }
    }

    /// <summary>
    /// Deserialize byte array to the object
    /// </summary>
    public static T Deserialize<T>(byte[] data)
    {
        if (data == null || data.Length == 0)
            return default(T);
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        using (var output = new MemoryStream(data))
        {
            var binForm = new BinaryFormatter();
            return (T) binForm.Deserialize(output);
        }
    }
}

The ObjStoreDataAccess class shown in Listing 13-28 loads and saves binary data to 
and from the database. It utilizes another static class called DBConnManager, which returns 
the SqlConnection object to the target database. This class is not shown in the listing.

Listing 13-28.  Implementing Session Store: ObjStoreDataAccess Class

public static class ObjStoreDataAccess
{
    /// <summary>
    /// Saves serialized object to the database
    /// </summary>
    public static void SaveObjectData(Guid key,
                DateTime expirationTime, byte[] obj)
    {
        using (var cnn = DBConnManager.GetConnection())
        {
            using (var cmd = cnn.CreateCommand())
            {
                cmd.CommandText = "dbo.SaveObjectToStore";
                cmd.CommandType = CommandType.StoredProcedure;
                cmd.Parameters.Add("@ObjectKey",
                    SqlDbType.UniqueIdentifier).Value = key;
                cmd.Parameters.Add("@ExpirationTime",
                    SqlDbType.DateTime2).Value = expirationTime;
                cmd.Parameters.Add("@Data",
                    SqlDbType.VarBinary,-1).Value = obj;

                cmd.ExecuteNonQuery();
            }
        }
    }

    /// <summary>
    /// Load serialized object from the database
    /// </summary>
    public byte[] LoadObjectData(Guid key)
    {
        using (var cnn = DBConnManager.GetConnection())
        {
            using (var cmd = cnn.CreateCommand())
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            {
                cmd.CommandText = "dbo.LoadObjectFromStore";
                cmd.CommandType = CommandType.StoredProcedure;
                cmd.Parameters.Add("ObjectKey",
                    SqlDbType.UniqueIdentifier).Value = key;
                cmd.Parameters.Add("@Data",
                    SqlDbType.VarBinary,-1).Direction =
                        ParameterDirection.Output;
                cmd.ExecuteNonQuery();
                return (byte[])cmd.Parameters[1].Value;
            }
        }
    }
}

Finally, the ObjStoreService class shown in Listing 13-29 puts everything together 
and manages the entire process. It implements two simple methods, Load and Save, 
calling the helper classes defined earlier.

Listing 13-29.  Implementing Session Store: ObjStoreService Class

public static class ObjStoreService
{
    /// <summary>
    /// Saves object in the object store
    /// </summary>
    public static void Save(Guid key,
                DateTime expirationTime, object obj)
    {
        var objectBytes = ObjStoreUtils.Serialize(obj);
        ObjStoreDataAccess.SaveObjectData(key, expirationTime, objectBytes);
    }

    /// <summary>
    /// Loads object from the object store
    /// </summary>
    public static T Load<T>(Guid key) where T: class
    {
        var obj = ObjStoreDataAccess.LoadObjectData(key);
        if (obj == null)
            return default(T); // Object not found
        return ObjStoreUtils.Deserialize<T>(objectBytes);
    }
}
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Obviously, this is an oversimplified example, and the production implementation 
could be significantly more complex, especially if there is the possibility that multiple 
sessions can update the same object simultaneously. You can implement retry logic or 
create some sort of object locking management in the system if this is the case.

It is also worth mentioning that you can compress binary data before saving it 
into the database. The compression will introduce unnecessary overhead in the case 
of small objects; however, it could provide significant space savings and performance 
improvements if the objects are large.

I did not include the compression code in the example, although you can easily 
implement it with the GZipStream or DeflateStream class.

■■ Note   The code and test application are included in the companion materials of this book.

Summary
SQL Server 2016 removes the majority of In-Memory OLTP limitations that existed in the 
first release of the technology. However, migrating to In-Memory OLTP still incurs an 
implementation cost. You should perform a cost-benefit analysis, making sure that the 
cost is acceptable.

In-Memory OLTP can dramatically improve the performance of OLTP systems. It 
is not necessarily the best choice for data warehouse workloads and in-memory data 
warehouse implementations. You may consider implementing data partitioning and 
combining the data from memory-optimized and disk-based tables to get the most from 
all the SQL Server technologies.

You can benefit from the technology even if you do not perform a full In-Memory 
OLTP migration. To name just a few use cases, memory-optimized table variables can be 
used as a replacement of disk-based temporary objects. Memory-optimized table-valued 
parameters are the fastest way to pass the batch of the rows between the client and T-SQL 
routines. Memory-optimized tables can be used as the staging area for ETL processes.

Remember, however, that In-Memory OLTP is not a “set it and forget it” technology 
and may require administration and monitoring after it is deployed to production.



267© Dmitri Korotkevitch 2017 
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

APPENDIX A

Memory Pointer Management

This chapter explains how SQL Server works with memory pointers that link In-Memory 
OLTP objects together.

Memory Pointer Management
The In-Memory OLTP Engine relies on memory pointers, using them to link objects 
together. For example, pointers embedded into data rows link them into the data row 
chains, which, in turn, are referenced by the hash and nonclustered index objects.

The lock- and latch-free nature of In-Memory OLTP adds the challenge of managing 
memory pointers in highly volatile environments where multiple sessions can try to 
simultaneously change them, overwriting each other’s changes.

Consider the situation when multiple sessions are trying to insert rows into the same 
data row chain. Each session traverses that chain to locate the last row and update its 
pointer with the address of the newly created row. SQL Server must guarantee that every 
row will be added to the chain even when multiple sessions from the different parallel 
threads are trying to perform that pointer update simultaneously.

SQL Server uses InterlockedCompareExchangePointer API functions 
to guarantee that multiple sessions cannot update the same pointer and thus 
overwrite each other’s changes, thereby losing references to each other’s objects. 
InterlockedCompareExchangePointer functions change the value of the pointer, 
checking that the existing (pre-update) value matches the expected (old) value provided 
as another parameter. Only when the check succeeds is the pointer value updated. All of 
those operations are completed as a single CPU instruction.

To illustrate this, assume you have two sessions that want to simultaneously insert 
new delta records for the same nonclustered index leaf page. As a first step, shown in 
Figure A-1, the sessions create delta records and set their pointers to a page based on the 
address from the mapping table.
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In the next step, both sessions call the InterlockedCompareExchangePointer 
function to try to update the mapping table by changing the reference from a page to the 
delta records the sessions just created. InterlockedCompareExchangePointer serializes 
the update of the mapping table element and changes it only if its current pre-update 
value matches the old pointer (address of the page) provided as the parameter. The first 
InterlockedCompareExchangePointer call succeeds. The second call, however, fails 
because the mapping table element references the delta record from another session 
rather than the page.

Figure A-2 illustrates such a scenario. 

At this time, the second session will need to repeat the action. It will read the address 
of the session 1 delta page from the mapping table and repoint its own delta page to 
reference this delta page. Finally, it will call InterlockedCompareExchangePointer again 
using the address of the session 1 delta page as the old pointer value during the call. 
Figure A-3 illustrates that.

Figure A-1.  Data modifications and concurrency: step 1 

Figure A-2.  Data modifications and concurrency: steps 2 and 3



appendix a ■ Memory Pointer Management

269

As you can see, with the exception of a short serialization during the 
InterlockedCompareExchangePointer call, there is no locking or latching of the data 
during the modifications.

SQL Server uses the same approach with InterlockedCompareExchangePointer 
every time the pointer chain needs to be preserved, such as when it creates another 
version of a row during an update, when it needs to change a pointer in the index 
mapping or hash tables, and in quite a few other cases.

Summary
SQL Server uses an InterlockedCompareExchangePointer mechanism to guarantee 
that multiple sessions cannot update the same memory pointers simultaneously, losing 
references to each other’s objects.

InterlockedCompareExchangePointer functions change the value of the pointer, 
checking that the existing (pre-update) value matches the expected (old) value provided 
as another parameter. Only when the check succeeds is the pointer value updated. All of 
those operations are completed as a single CPU instruction.

Figure A-3.  Data modifications and concurrency: final steps
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APPENDIX B

Page Splitting and Page 
Merging in Nonclustered 
Indexes

This appendix provides an overview of the internal operations of nonclustered index, 
such as page splitting and page merging.

Internal Maintenance of Nonclustered Indexes
The In-Memory OLTP engine has several internal operations that maintain the structure 
of nonclustered indexes. As you already know from Chapter 5, page consolidation 
rebuilds the nonclustered index page, consolidating all changes defined by the page delta 
records. It helps avoid the performance hit introduced by long delta record chains. The 
newly created page has the same PID in the mapping table and replaces the old page, 
which is marked for garbage collection.

Two other processes can create new index pages, page splitting and page 
merging. Both are complex actions and deserve detailed explanations of their internal 
implementation.

Page Splitting
Page splitting occurs when a page does not have enough free space to accommodate a 
new data row. Even though the process is similar to a B-Tree disk-based index page split, 
there is one conceptual difference. In B-Tree indexes, the page split moves the part of 
the data to the new data page, freeing up space on the original page. In Bw-Tree indexes, 
however, the pages are nonmodifiable, and SQL Server replaces the old page with two 
new ones, splitting the data between them.

Let’s look at this situation in more detail. Figure B-1 shows the internal and leaf 
pages of a nonclustered index. Let’s assume that one of the sessions wants to insert a row 
with a key of value Bob.

http://dx.doi.org/10.1007/978-1-4842-2772-5_5
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When the delta record is created, SQL Server adjusts the delta record statistics on the 
index page and detects that there is no space on the page to accommodate the new index 
value once the delta records are consolidated. It triggers a page split process, which is 
done in two atomic steps.

In the first step, SQL Server creates two new leaf-level pages and splits the old page 
values between them. After that, it repoints the mapping table to the first newly created 
page and marks the old page and the delta records for garbage collection.

Figure B-2 illustrates this state. At this state, there are no references to the second 
newly created leaf-level page from the internal pages. The first leaf-level page, however, 
maintains the link between pages (through the mapping table), and SQL Server is able to 
access and scan the second page if needed.

During the second step, SQL Server creates another internal page with key values 
that represent the new leaf-level page layout. When the new page is created, SQL Server 
switches the pointer in the mapping table and marks the old internal page for garbage 
collection. Figure B-3 illustrates this action.

Figure B-1.  Page splitting: initial state

Figure B-2.  Page splitting: first step
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Eventually, the old data pages and delta records are deallocated by the garbage 
collection process.

Page Merging
Page merging occurs when a delete operation leaves an index page less than 10 percent 
from the maximum page size, which is 8KB now, or when an index page contains just a 
single row. During this operation, SQL Server merges the data from two adjacent index 
pages, replacing them with the new, combined data page.

Assume you have the page layout shown in Figure B-3 and you want to delete the index 
key value Bob, which means that all data rows with the name Bob have been already deleted. 
This leaves an index page with the single value Boris, which triggers page merging.

In the first step, SQL Server creates a delete delta record for Bob and another special 
kind of delta record called a merge delta. Figure B-4 illustrates the layout after the first step.

During the second step of page merging, SQL Server creates a new internal page that 
does not reference the leaf-level page that it is about to be merged. After that, SQL Server 
switches the mapping table to point to the newly created internal page and marks the old 
page for garbage collection. Figure B-5 illustrates this action.

Figure B-3.  Page splitting: second step

Figure B-4.  Page merging: first step
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Finally, SQL Server builds a new leaf-level page, copying the Boris value there. After 
the new page is created, it updates the mapping table and marks the old pages and delta 
records for garbage collection.

Figure B-6 shows the final data layout after page merging is completed.

You can get page consolidation, merging, and splitting statistics from the sys.dm_db_
xtp_nonclustered_index_stats view.

■■ Note   You can read documentation about the sys.dm_db_xtp_nonclustered_index_
stats view at https://docs.microsoft.com/en-us/sql/relational-databases/
system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-

transact-sql.

Summary
The In-Memory OLTP Engine uses several internal operations to maintain the structure of 
nonclustered indexes. Page consolidation rebuilds the index page, combining page data 
with the delta records. It helps avoid the performance impact introduced by long delta 
records chains.

Page splitting occurs when the index page does not have enough space to 
accommodate the new rows. In contrast to page splitting in disk-based B-Tree indexes, 
which moves part of the data to the new page, Bw-Tree page splitting replaces the old 
data page with new pages that contain the data.

Page merging occurs when an index page is less than 10 percent of the maximum 
page size or when it has just a single row. SQL Server merges the data from adjacent data 
pages and replaces them with the new page with the merged data.

Figure B-5.  Page merging: second step

Figure B-6.  Page merging: third (final) step

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-xtp-nonclustered-index-stats-transact-sql
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APPENDIX C

Analyzing the States of 
Checkpoint Files

SQL Server persists data from durable memory-optimized tables in checkpoint files. This 
appendix demonstrates how to analyze the states of checkpoint files using the  
sys.dm_db_xtp_checkpoint_files view and shows how the state transitions throughout 
a file’s lifetime.

sys.dm_db_xtp_checkpoint_files View
The sys.dm_db_xtp_checkpoint_files view provides information about database 
checkpoint files, including their state, size, and physical location. You will use this view 
extensively in this appendix. Let’s look at the most important columns:

•	 The container_id and container_guid columns provide 
information about the FILESTREAM container to which a 
checkpoint file belongs. The container_id column corresponds 
to the file_id column in the sys.database_files view.

•	 checkpoint_file_id is a GUID that represents the ID of the file.

•	 checkpoint_pair_file_id is the ID of the second, data or delta, 
file in the pair.

•	 relative_file_path shows the relative file path in the container.

•	 state and state_desc describe the state of the file. As you already 
know from Chapter 10, the checkpoint files can be in one of the 
following states (the number represents the state column value): 
0 for PRECREATED, 1 for UNDER CONSTRUCTION, 2 for ACTIVE, 3 for 
MERGE TARGET, and 8 for WAITING FOR LOG TRUNCATION. 

•	 file_type and file_type_desc describe the type of file: -1 for 
FREE, 0 for DATA, 1 for DELTA, 2 for ROOT, and 3 for LARGE_DATA.

http://dx.doi.org/10.1007/978-1-4842-2772-5_10
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•	 lower_bound_tsn and upper_bound_tsn indicate the timestamp 
of the earliest and latest transactions covered by the file. These 
columns are populated only for the ACTIVE and MERGE TARGET 
states.

•	 file_size_in_bytes and file_size_used_in_bytes provide 
information about the file size and space used in the file. The 
file_size_used_in_bytes value is updated at the time of the 
checkpoint event.

•	 logical_row_count provides the number of rows in the data and 
delta files.

It is worth noting that in some cases, especially with early SQL Server 2016 builds, 
the view may provide slightly outdated data. For example, the SQL Server 2016 RTM build 
may omit information about some of PRECREATED files in the database.

Let’s use this view to analyze the state transitions of the checkpoint files.

The Lifetime of Checkpoint Files
As the first step in this test, let’s enable the undocumented trace flag T9851 using the 
DBCC TRACEON(9851,-1) command. This trace flag disables the automatic merge process, 
which will allow you to have more control over your test environment.

■■ Important D o not set T9851 in production.

Let’s create a database with an In-Memory OLTP filegroup and perform a full 
backup, starting the backup chain, as shown in Listing C-1. I am doing this in a test 
environment and not following best practices (such as placing In-Memory OLTP and 
disk-based data on different drives, creating secondary filegroups for disk-based data, and 
a few others). Obviously, you should remember to follow best practices when you design 
your real databases. 

Listing C-1.  Creating a Database and Performing a Backup

create database [InMemoryOLTP2016_AppendixC]
on primary
(
    name = N'AppendixC'
    ,filename = N'C:\Data\AppendixC.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'AppendixC_HKData'
    ,filename = N'C:\Data\HKData\AppendixC'
)
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log on
(
    name = N'AppendixC_Log'
    ,filename = N'C:\Data\AppendixC_log.ldf'
)
go

create table InMemoryOLTP2016_AppendixC.dbo.T(ID int);
go

backup database [InMemoryOLTP2016_AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, init, name = 'AppendixC - Full', compression;

The database is currently empty; therefore, it does not have any checkpoint files 
created. You can confirm this by querying the sys.dm_db_xtp_checkpoint_files view, as 
shown in Listing C-2.

Listing C-2.  Checking Checkpoint Files

use [InMemoryOLTP2016_AppendixC]
go

select
    checkpoint_file_id
    ,checkpoint_pair_file_id
    ,file_type_desc
    ,state_desc
    ,file_size_in_bytes / 1024 / 1024 as [size MB]
    ,relative_file_path
from
    sys.dm_db_xtp_checkpoint_files;

Figure C-1 shows that the resultset is empty and that the sys.dm_db_xtp_checkpoint_
files view does not return any data.

Figure C-1.  State of checkpoint files after database creation
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As the next step, let’s create a durable memory-optimized table, as shown in Listing C-3. 

Listing C-3.  Creating a Durable Memory-Optimized Table

create table dbo.HKData
(
    ID int not null,
    Placeholder char(8000) not null,

    constraint PK_HKData
    primary key nonclustered hash(ID)
    with (bucket_count=8192),
)
with (memory_optimized=on, durability=schema_and_data);

If you check the state of the checkpoint files now and run the code from Listing C-2 
again, you will see the output shown in Figure C-2. The size of the files may be different 
in your environment and will depend on the hardware. My test machine has 16 CPUs and 
256GB of RAM, so SQL Server preallocated 128MB for data, 64MB for large data, 8MB for 
delta files, and 16MB for root files. The root file was created in ACTIVE state; all other file 
types were empty and in a PRECREATED state.

Let’s enlarge the output for some of the files, as shown in Figure C-3.

Figure C-2.  State of checkpoint files after creating the durable memory-optimized table

Figure C-3.  Checkpoint files (enlarged)
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The relative_file_path column provides the path to the file relative to the 
FILESTREAM container in the In-Memory OLTP filegroup. Figure C-4 shows the checkpoint 
files in the folder on the disk.

Now, let’s populate the dbo.HKData table with 1,000 rows and check the status of 
the checkpoint files, as shown in Listing C-4. The query filters out the checkpoint files 
in PRECREATED state from the output. The listing also inserts the data into the disk-based 
table to generate the log record and force the checkpoint controller thread to scan the log 
and start the In-Memory OLTP checkpoint process.

Listing C-4.  Populating the dbo.HKData Table and Checking the States of the Checkpoint 
Files

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
    select Id, Replicate('0',8000)
    from ids
    where Id <= 1000;

Figure C-4.  Checkpoint files on disk
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insert into dbo.T values(0);

select
    checkpoint_file_id
    ,checkpoint_pair_file_id
    ,file_type_desc
    ,state_desc
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes / 1024 / 1024 as [size MB]
    ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
    ,logical_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    file_type, lower_bound_tsn;

As you can see in Figure C-5, SQL Server converted two PRECREATED files to an UNDER 
CONSTRUCTION state and inserted 1,000 rows into the data file there. The lower_bound_tsn 
and upper_bound_tsn columns indicate the range of transactions that the files cover. You 
can also see that the checkpoint_file_pair_id column indicates the corresponding data 
or delta file in the pair.

Let’s run a manual CHECKPOINT and check the status of checkpoint files, as shown in 
Listing C-5. 

Listing C-5.  Forcing CHECKPOINT and Checking the Status of Checkpoint Files

checkpoint
go
select
    checkpoint_file_id
    ,checkpoint_pair_file_id
    ,file_type_desc
    ,state_desc

Figure C-5.  UNDER CONSTRUCTION files
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    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes / 1024 / 1024 as [size MB]
    ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
    ,logical_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    file_type, lower_bound_tsn;

As you can see in Figure C-6, the CHECKPOINT operation transitioned the UNDER 
CONSTRUCTION files to an ACTIVE state. It also created the new root file and switched the 
old file to a WAITING FOR LOG TRUNCATION state.

Let’s insert another 1,000 rows into the dbo.HKData table and check the status of the 
files. Listing C-6 shows the code to perform this. 

Listing C-6.  Populating the dbo.HKData Table with Another Batch of Rows and Checking 
the States of the Files Afterward

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
    select 1000 + Id, Replicate('0',8000)
    from ids
    where Id <= 1000;

insert into dbo.T values(1);

Figure C-6.  The file state after CHECKPOINT
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select
    checkpoint_file_id
    ,checkpoint_pair_file_id
    ,file_type_desc
    ,state_desc
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes / 1024 / 1024 as [size MB]
    ,file_size_used_in_bytes / 1024 / 1024 as [size used MB]
    ,logical_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    file_type, lower_bound_tsn;

Figure C-7 shows the states of the checkpoint files after the second insert. As you can 
see, SQL Server transitioned another set of data and delta files to the UNDER CONSTRUCTION 
state with lower_bound_tsn = 4.

Another CHECKPOINT would transition the UNDER CONSTRUCTION files to the ACTIVE 
state, as shown in Figure C-8. You can force it by running the code from Listing C-5 again. 
At this point, you have two ACTIVE checkpoint file pairs covering different ranges of 
transaction timestamps. 

Figure C-7.  States of the files after the second INSERT



appendix c ■ Analyzing the States of Checkpoint Files

283

As the next step, let’s delete 99 percent of the rows from the table, as shown in Listing C-7.  
In this listing, you are also running the query that combines the information about the 
data and delta files and demonstrates that both checkpoint file pairs are mostly empty. You 
also need to perform CHECKPOINT to update the logical_row_count column in the delta 
files, which would generate another empty checkpoint file pair in the ACTIVE state.

Listing C-7.  Deleting 99 Percent of the Rows from the Table

delete from dbo.HKData
where ID % 100 <> 0;

checkpoint
go

select
    data.checkpoint_file_id
    ,data.state_desc
    ,data.lower_bound_tsn
    ,data.upper_bound_tsn
    ,data.file_size_in_bytes
    ,data.file_size_used_in_bytes
    ,data.logical_row_count
    ,delta.logical_row_count
    ,convert(decimal(5,2),
        iif(data.logical_row_count = 0,0,
            100. - 100. * delta.logical_row_count /
                 data.logical_row_count))
        as [% Full]
from
    sys.dm_db_xtp_checkpoint_files data join
        sys.dm_db_xtp_checkpoint_files delta on
            data.checkpoint_pair_file_id = delta.checkpoint_file_id

Figure C-8.  States of the files after second CHECKPOINT
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where
    data.file_type_desc = 'DATA' and
    data.state_desc <> 'PRECREATED'
order by
    data.lower_bound_tsn

As you can see in Figure C-9, the data files are almost empty, and they are perfect 
candidates for the merge.

As the next step, let’s turn on the automatic merge process by switching off trace flag 
T9851 with the DBCC TRACEOFF(9851,-1) command. After that, you will issue another 
CHECKPOINT command to trigger the merge process.

Figure C-10 illustrates the state of the checkpoint file pairs after the merge was 
initiated. As you can see, SQL Server created the new checkpoint file pair in the MERGE 
TARGET state and merged data from four ACTIVE file pairs that cover a transaction range 
from 0 to 9.

Figure C-10.  The state of checkpoint files after the merge is initiated

Figure C-9.  File states after deletion
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The next CHECKPOINT will transition the checkpoint files that participated in the 
merge from ACTIVE to WAITING FOR LOG TRUNCATION and from MERGE TARGET to ACTIVE. 
Figure C-11 demonstrates this. As you can see, the new ACTIVE (formerly MERGE TARGET) 
data file covers a range from 0 to 9 and now has only 20 data rows. The delta file in the 
pair is empty.

After the transaction log backup is taken, the log records are transmitted to 
secondary nodes, and the checkpoint event occurs, then the files in a WAITING FOR LOG 
TRUNCATION state will be deleted or recycled back to a FREE state. Listing C-8 performs a 
transaction log backup along with CHECKPOINT. 

Listing C-8.  Performing Log Backup and Forcing Garbage Collection

backup log [InMemoryOLTP2016_AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, noinit, name = 'AppendixC - Log', compression
go

checkpoint;

■■ Note   In reality, it could take more than one log backup and checkpoint event to 
deallocate files in the WAITING FOR LOG TRUNCATION state. You can execute the code from 
Listing C-8 multiple times if this happens on your system.

Figure C-11.  The state of the checkpoint files after the merge is completed
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Figure C-12 illustrates that some of the files were deleted.

Summary
Every checkpoint file transitions through various states during its lifetime. You can 
analyze these states using the sys.dm_db_xtp_checkpoint_files data management 
view. This view returns information about individual checkpoint files, including their 
type, size, state, transaction interval they cover, number of rows there, and quite a few 
other properties.

The merge process merges information from the ACTIVE checkpoint files that have a 
large percent of deleted rows, creating a new checkpoint file pair. This helps to reduce the 
size of the data on disk and speed up the database recovery process.

Merged checkpoint files should be included in the log backup before they are 
deallocated. Regular transaction log backups will reduce the size of the In-Memory OLTP 
data on disk. Make sure to design a database backup strategy in a way that accounts for 
such behavior.

Figure C-12.  Checkpoint files after backup/log truncation
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APPENDIX D

In-Memory OLTP Migration 
Tools

This appendix discusses several SQL Server 2016 tools that help with In-Memory OLTP 
migration.

“Transaction Performance Analysis Overview” 
Report
One of the challenges during In-Memory OLTP migration is determining the list of 
objects that will benefit the most from it. The Pareto principle can be easily applied here: 
if the migration targets are identified correctly, you can achieve 80 percent of possible 
gains by spending 20 percent of your time.

SQL Server 2016 provides you with a “Transaction Performance Analysis Overview” 
report, which can help you to identify migration targets in the system. It shows the 
tables that suffer from lock and latch contention along with frequently executed stored 
procedures that consume the most CPU resources on the server. This report is similar to 
the SQL Server 2014 version; however, it does not require you to set up a management 
data warehouse. All the work is done by SQL Server automatically.

Let’s look at the information provided by the “Transaction Performance Analysis 
Overview” report. In this appendix, I am using the demo application and the 
WebRequests*_Disk tables from Chapter 2 of this book. I also added several unsupported 
constructs to the tables and stored procedure to illustrate how tools provide information 
about them. 

You can access the report from the Standard Reports pop-up menu item in the 
database you are analyzing, as shown in Figure D-1. As you can guess, this report works 
on a per-database basis. 

http://dx.doi.org/10.1007/978-1-4842-2772-5_2
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Figure D-2 shows the report.

From this page, you have access to two drill-down reports. “Tables Analysis” provides 
table-related statistics based on how often tables are accessed and how much they suffer 
from lock and latch contention.

Figure D-3 illustrates the output of the “Table Analysis” report. As you can see, it 
displays the output in four quadrants based on the amount of work required for the 
migration and the estimated performance gain it will provide. Migrating the objects in the 
upper-right quadrant will provide the most performance gain with the lowest amount of 
work involved. 

Figure D-1.  Accessing the “Transaction Performance Analysis Overview” report

Figure D-2.  The “Transaction Performance Analysis Overview” report
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You can see the statistics on the table level by clicking the object in the graph. 
Figure D-4 shows the details for the WebRequestHeaders_Disk table in the system. The 
first output shows lock- and latch-related statistics for the table. The table suffers from a 
large number of page latches, as you saw in Chapter 2.

Figure D-3.  The “Table Analysis” report

http://dx.doi.org/10.1007/978-1-4842-2772-5_2
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The second output illustrates access method–related statistics. The demo application 
does not read the data from the table, which affects the numbers you see in the output.

Finally, the third output illustrates the number of migration blockers and issues that 
need to be addressed before migration. The table does not have any incompatibilities and 
can be migrated into memory without any schema changes. 

Similarly, the “Stored Procedure Analysis” report shows stored procedure usage 
based on the amount of CPU time they consumed. Figure D-5 illustrates the output of the 
report. The demo application called just a single procedure, which is displayed here. 

Figure D-4.  Table-level statistics
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You can drill down to the procedure-level statistics, which displays the execution 
count, execution time metrics, and tables that are referenced by the stored procedure. 
Figure D-6 illustrates this page. 

Figure D-5.  The “Procedure Usage Analysis” report

Figure D-6.  Procedure-level statistics
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The “Transaction Performance Analysis Overview” report is a great tool that can help 
you identify objects that will benefit from migration. However, you should not rely solely 
on its results. Look and analyze the entire system before making any decisions.

Finally, it is worth mentioning that, as with any tool, the quality of output greatly 
depends on the quality of input. You need to run this report either on the production server 
or in a test environment with a workload similar to production to get accurate results.

Memory Optimization and Native Compilation 
Advisors
In addition to the “Transaction Performance Analysis Overview” report, SQL Server 
2016 includes two other tools that can help with In-Memory OLTP migration. The 
Memory Optimization and Native Compilation Advisors analyze database tables, stored 
procedures, and user-defined functions to identify unsupported constructs. Moreover, 
the Memory Optimization Advisor can perform the actual migration, creating an  
In-Memory OLTP filegroup and memory-optimized table, and move data from the  
disk-based table there.

You can access both advisors from the object context menu in SSMS. Figure D-7 shows 
the table context menu with the Memory Optimization Advisor menu item highlighted.

As the first step, the wizard analyzes the table and displays constructs that are 
unsupported by In-Memory OLTP. Figure D-8 shows the output of the validation on the 
WebRequests_Disk table. As mentioned, I added xml and geography columns to the table, 
which were reported by the advisor.

Figure D-7.  The Memory Optimization Advisor menu
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If the table does not use any unsupported constructs, the advisor proceeds with 
the option of creating an In-Memory OLTP filegroup and performing the actual table 
migration.

The simplicity of the wizard, however, is a two-edged sword. It can simplify the 
migration process and, in some cases, allow the enabling of In-Memory OLTP and 
moving data into memory with a few mouse clicks. However, as you already know, 
In-Memory OLTP deployments require careful hardware and infrastructure planning, 
redesigning of indexing strategies, changes in database maintenance and monitoring, 
and quite a few other steps to be successful. An improperly done migration can lead to 
suboptimal results, and the simplicity of the advisor increases that chance.

The advisor is a useful tool for identifying migration roadblocks. You should be 
careful, however, when relying on it to perform the actual migration process.

As the opposite of the Memory Optimization Advisor, the Native Compilation 
Advisor does not create a natively compiled version of the modules. It just analyzes 
whether the modules have unsupported constructs that prevent native compilation.

Figure D-9 illustrates the output of the Native Compilation Advisor for the 
InsertRequestInfo_Disk stored procedure defined in Chapter 2 with an additional 
MERGE statement added.

Figure D-8.  The Memory Optimization Advisor validation results

http://dx.doi.org/10.1007/978-1-4842-2772-5_2
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The Generate Report button will create an HTML file with the results of the analysis, 
similar to what is shown in the advisor window.

Finally, Management Studio allows you to run the Memory Optimization and Native 
Compilation Advisors for multiple database objects using the In-Memory OLTP Migration 
Checklists Wizard. You can access this wizard through the Tasks menu item in the 
database pop-up menu, as shown in Figure D-10.

Figure D-9.  Native Compilation Advisor output
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The Generate In-Memory OLTP Migration Checklists Wizard allows you to choose 
the list of database objects to validate, as shown in Figure D-11.

After the process is complete, SQL Server generates the set of HTML files—one per 
object—and saves them in a defined location. Each file will contain a report similar to 
what is produced by the Memory Optimization and Native Compilation Advisors, as 
shown in Figure D-12.

Figure D-11.  Generate In-Memory OLTP Migration Checklists Wizard’s parameters

Figure D-10.  Generate In-Memory OLTP Migration Checklists menu item
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The In-Memory OLTP migration tools can help you identify targets for migration 
and help you during the process. However, it is best to take their advice with a grain of 
salt and not explicitly rely on their output. After all, you know your system better than any 
automatic tool does.

Summary
SQL Server 2016 provides several tools that can help with In-Memory OLTP migration. 
The “Transaction Performance Analysis Overview” report allows you to identify the 
objects that would benefit from the migration. The Memory Optimization and Native 
Compilation Advisors analyze tables, stored procedures, and user-defined functions 
to identify the constructs unsupported by In-Memory OLTP. Finally, the Generate In-
Memory OLTP Migration Checklists Wizard allows you to run the Memory Optimization 
and Native Compilation Advisors for multiple database objects.

Those tools are beneficial and can save you a good amount of time during the 
migration process. However, you should not rely strictly on their output when you 
perform the analysis. You need to analyze the entire system, including the infrastructure 
and hardware, indexing strategies, database maintenance routines, and other factors to 
achieve the best results with In-Memory OLTP.

Again, thank you very much for your interest in the technology! It was a pleasure to 
write for you!

Figure D-12.  Generate In-Memory OLTP Migration Checklists Wizard’s report file



297© Dmitri Korotkevitch 2017 
D. Korotkevitch, Expert SQL Server In-Memory OLTP, DOI 10.1007/978-1-4842-2772-5

�       � A
Administration and monitoring tasks, 204

extended events, 221–223 (see also 
Extended events)

memory-optimized tables, 206
Memory Usage by Memory Optimized 

Objects report, 206–210
monitoring In-Memory OLTP 

transactions, 210–212
monitoring memory usage, 206–210
resource governor, 204 (see also 

Resource Governor, restricting 
memory available to In  
Memory OLTP)

internal and default resource 
pools, 204

recovery process, 205
sys.dm_db_xtp_table_memory_stats, 

206–207
Architecture of SQL Server Database 

Engine, 3–4
Atomic blocks, 17, 144, 145, 150–152

�       � B
BEGIN ATOMIC,17. See also tomic blocks
Buffer Manager, 29
Buffer pool, 29
Bw-tree, 69

�       � C
Catalog views, 216–217. See also Data 

management views
Checkpoint file, 165, 166

close thread, 169
controller thread, 169

I/O requirements, 200
segment log record, 169
segments, 166, 169
serializer thread, 169
timer task, 169

Checkpoint file pairs (CFPs), 165, 166, 
169–171, 275. See also 
Checkpoint file

ACTIVE checkpoint file, 282
data file, 166, 168–170
delta file, 166, 167, 169
forcing CHECKPOINT, 280
large data file, 166
lifetime of, 276

database creation, 276, 278
log backup and garbage collection, 285
merge process, 172
memory-optimized table, 278
root file, 166, 172
states, 166, 167

ACTIVE, 170–172
MERGE TARGET, 172
PRECREATED, 168
UNDER CONSTRUCTION, 168–169
WAITING FOR LOG 

TRUNCATION, 172–173
CHECKSUM function, 42
Clustered columnstore indexes, 104–109. 

See also Columnstore indexes
internal objects, 106
row groups, 108

Clustered index on disk-based table, 28, 29
Column-based storage

approach, 101
batch mode execution, 101
columnstore indexes, 101
format, 115
overview, 99

Index



■ INDEX

298

Columnstore indexes, 4, 5, 7
clustered indexes (see Clustered 

columnstore indexes)
column-based storage (see Column-

based storage)
columnstore RID, 104
compression, 101, 104, 111

base value, 102
dictionary encoding, 102
magnitude, 102,
value-based encoding, 102

COMPRESSION_DELAY index  
option, 113, 118

data storage
dictionary encoding, 102
magnitude, 102
value-based encoding, 102

delete bitmap, 103, 104
deleted rows table, 103, 106
delta store, 109
dictionary, 102
internal objects, 106–107
limitations, 112
memory-optimized table  

structure, 104, 105
metadata, 116

dictionary encoding, 102
magnitude, 102
sys.column_store_dictionaries, 117
sys.column_store_segments, 114
sys.dm_db_column_store_row_

group_physical_stats, 113
value-based encoding, 102, 115

overview, 101–104
performance considerations, 109–112
row groups, 110
row locator, 104, 107
segment, 102
storage format, 105
tail, 103
tuple mover process, 112

CONTAINS MEMORY_OPTIMIZED_
DATA filegroup property, 10

Continuous checkpoint, 169,182. See also 
Checkpoint file

Cross-container transactions, 128

�       � D
Database compatibility level, 11, 53, 54, 56
Database options, 129, 137

MEMORY_OPTIMIZED_ELEVATE_
TO_SNAPSHOT, 129, 137

TARGET_RECOVERY_TIME, 169
Database recovery, 168, 172, 186

naïve logging, 182–183
Data flush task in system-versioned 

temporal tables, 38
Data management views, 18

sys.all_sql_modules, 217
sys.column_store_dictionaries, 116–117
sys.column_store_row_groups, 113
sys.column_store_segments, 114–116
sys.data_spaces, 217
sys.dm_db_column_store_row_

group_physical_stats, 108, 113
sys.dm_db_index_operational_ 

stats, 235
sys.dm_db_index_usage_stats, 235
sys.dm_db_xpt_hash_index_stats, 49
sys.dm_db_xtp_checkpoint_ 

files, 173, 221
sys.dm_db_xtp_checkpoint_stats, 221
sys.dm_db_xtp_gc_cycle_stats,  

192, 196, 197, 221
sys.dm_db_xtp_hash_index_stats,  

45, 46, 61, 73, 83, 219
sys.dm_db_xtp_index_stats, 73, 74, 

192, 218
sys.dm_db_xtp_memory_consumers, 

87, 207, 208, 217, 220
sys.dm_db_xtp_nonclustered_index_

stats, 75, 218
sys.dm_db_xtp_object_stats, 218
sys.dm_db_xtp_table_memory_stats, 

206–207
sys.dm_db_xtp_transactions, 210,  

211, 220
sys.dm_exec_function_stats, 212
sys.dm_exec_procedure_stats, 212, 213
sys.dm_exec_query_memory_ 

grants, 206
sys.dm_exec_query_resource_

semaphores, 206
sys.dm_exec_query_stats, 212–214
sys.dm_io_virtual_file_stats, 25
sys.dm_os_latch_stats, 18
sys.dm_os_wait_stats, 23
sys.dm_tran_active_transactions, 210
sys.dm_xtp_gc_queue_stats, 192,  

194, 221
sys.dm_xtp_gc_stats, 192, 220



■ INDEX

299

sys.dm_xtp_system_memory_
consumers, 208, 209, 219

sys.dm_xtp_transaction_stats, 220
sys.hash_indexes, 216
sys.indexes, 216, 217
sys.memory_optimized_tables_

internal_attributes, 90, 207, 
216–217

sys.sql_modules, 212, 217
sys.table_types, 217
sys.tables, 217

Data partitioning, 225, 226, 240–242, 247, 
252, 265

Data row
BeginTs timestamp, 31, 32, 34, 39, 187
EndTs timestamp, 31–34, 39, 187, 197
IdxLinkCount, 35, 188
index pointers array, 33, 35
payload, 34, 35
row header, 34, 35
StmtId, 34,
structure of

Data storage, 165–167. See also 
Checkpoint files

CFP, 165
CHECKPOINT process, 168
MERGED SOURCE CFP  

state, 172
MERGE TARGET state, 172
UNDER CONSTRUCTION  

state, 168, 170
on-disk tables, 165

Data warehouse workload, 100,101.  
See also Columnstore indexes

Deployment and management, 199
administration andmonitoring  

(see Administration and 
monitoring tasks)

estimating memory requirements, 203
hardware components, 199

CPU, 200
I/O subsystem, 200–201
memory, 201

Design considerations, 225–239
binary collation, 236, 238
cost/benefits analysis, 225
data partitioning, 226, 240
indexing strategy, 232, 235 (see also 

Index design considerations)
maintainability and management 

overhead, 238–239

referential integrity, 229, 230
system with mixed workload,  

239–252
unsupported data types, 230–232

�       � E
Extended events, 221–223

�       � F
FILESTREAM, 10

�       � G
Garbage collection, 73, 74, 80, 187–197

BeginTs and EndTs timestamps, 187
data management views, 192
DELETE operation, 187
drop/alter, table, 89
dusty corner scan, 191, 197
generations, 190
ghost rows, 73
goals, 187
idle worker thread, 188, 190
idxLinkCount element, 188
of index pages, 85
memory-optimized table

table creation, 193
memory statistics

table deletion, 195
non-blocking, 187
stale rows, 74, 80
summary statistics, 196
UPDATE operation, 187
workflow, 191
work items, 191, 192, 197
worker queues, 191

�       � H
Halloween effect, 34
HASHBYTES function, 42
Hash indexes

bucket_count, 44–45, 85
right number, 48
sys.dm_db_xtp_hash_index_ 

stats, 45
choosing bucket_count, 41
collision, 41
maps, 41



■ INDEX

300

vs. nonclustered indexes
data selection, 83
execution time, 84
point lookup performance, 81

SARGability rules, 49–53, 64, 85
Hashing, 41–42

collision, 41
hash function, 41
hash maps, 41
hash tables, 41

High Availability Technologies, 38

�       � I, J, K
IBM DB2, 6
In-memory database (IMDB), 5

IBM DB2, 6
Oracle, 5
SAP HANA, 6

In-memory OLTP migration, 287–296.  
See also Migration tools

binary collation performance, 236–238
clustered columnstore indexes, 4
data management views, 218

transaction management, 220
data partitioning, 225, 226, 240–250

data movement, 247
execution plan, 246
object creation, 242–245
order entry system, 241
queries, 245

database-level limitations, 37
design goals, 1
design considerations, 225
disk-based tables, 4
engine architecture, 4
goals, 2
IMDB (see In-memory database 

(IMDB))
importing batch of rows, 252

client code, 253
memory-optimized table type, 254
table, TVP and stored procedures, 

253
indexing considerations, 232
limitations, 2
memory-optimized tables, 4, 255

scan performance, 259
statement-level recompile, 258
stored procedures, execution 

time, 257

variables and cardinality 
estimations, 258

with on-disk temporary  
objects, 255–256

migration, 287
mixed workloads, 239

data partitioning, 240
natively compiled modules, 4
performance counters, 221–223
query interop engine, 4
session/object state-store, 259

dedicated storage/cache, 260
ObjStoreDataAccess class, 263
ObjStoreService class, 264
ObjStoreUtils class, 262
replicate content, 260
scalability issues, 260
session store implementation, 260

unsupported data types, 230–232
optimistic concurrency, 232

In-row storage
memory consumers, 90

Index design considerations, 76–85
data modification overhead, 76–80
hash indexes vs. nonclustered 

indexes, 81–85
InterlockedCompareExchangePointer 

function, 267–269
InteropEngine. See Query interop

�       � L
Latches, 1, 2, 18, 22, 23

on-disk tables
wait statistics, 23

LEGACY_CARDINALITY_ESTIMATION 
database-scoped configurtion, 11

Log buffer, 175

�       � M
Management data warehouse

memory and native compilation 
advisors, 292

menu configuration, 287
procedure-level statistics, 291
table contention analysis  

report, 288
table-level statistics, 290
usage analysis report, 290

Memory consumers, 87–98. See also 
Off-row storage

Hash indexes (cont.)



■ INDEX

301

Memory-optimized table
BeginTs timestamp, 187
data row

halloween effect, 34
structure of, 34

DURABILITY, 13, 24
SCHEMA_AND_DATA, 13, 26
SCHEMA_ONLY, 13, 24

EndTs timestamp, 187–189
limitations

database-level, 37
data types, 36
tables, 37

SQL Server 2016, 38
statistics, 53–60, 69, 72, 152, 153, 193

nested loop join algorithm, 55
variables, 161
supported data types, 36
supported table features, 37

Memory pointers management, 267
data modifications and  

concurrency, 268
Microsoft Azure SQL Databases
Migration tools, 287

In-Memory OLTP Migration 
Checklists Wizard, 294, 295

Memory Optimization Advisor,  
292, 293

native compilation advisors, 292
Stored Procedure Analysis report, 290
Tables Analysis report, 288
Transaction Performance Analysis 

Overview report, 287–292

�       � N
Native compilation

atomic blocks, 150–152 (see also 
Atomic blocks)

inline table-valued function, 147
interop mode performance 

comparison
InsertCustomers, 157

vs. interpreted function
function creation, 159
loop within function, 160
multiple calls, 160

memory-optimized table types, 
161–163

memory-optimized table variables, 
161–163, 206–210

natively compiled stored  
procedures, 144–145

overview, 139
performance comparison, 154–161
security context, 144, 145
storedprocedure (see T-SQL stored 

procedure)
supported T-SQL Features, 147–149

control flow, 147–148
functions, 149
operators, 148
query surface area, 148–149

triggers and user-defined functions, 146
Nested loop join algorithm, 55–56
Nonclustered index on disk-based table, 29
Nonclustered indexes, 271

Bw-Tree structure, 69, 85
creation, 64
data modification

updation, 78–80
delta record, 72
vs. hash indexes data selection, 83
vs. hash indexes execution time, 84
index page structure, 73
intermediate level, 70
internal pages, 70
index scan operations, 65
index seek operations, 64
leaf pages, 71
logical page ID, 70
mapping table, 70, 71
page consolidation, 75
page merging, 273
page splitting, 73
root level, 70
SARGability rules, 49, 63, 64, 85
sorting order

execution plans, 68–69
index key column, 67–68
on-disk table creation, 66

sys.dm_db_xtp_index_stats view, 74

�       � O
Objects (In-memory OLTP)

database, 9
compatibility level, 11
creation, 10
FILESTREAM, 10

latches (see Latches)
memory-optimized tables



■ INDEX

302

creation, 12
durability setting, 13
hash indexes, 13
natively complied stored 

procedure, 16
nonclustered indexes, 13
performance counters, 23–25
T-SQL stored procedure, 14
wait statistics, 23–24
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memory consumers, 87–89, 91, 96, 

107, 108
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Range index heap, 91, 98
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durability, 120
isolation, 120

commit dependency, 130, 132–134
commit phase, 132–134
cross-container transactions,  

119, 128–129
consistency, 119
cross-container, 128
data consistency rules, 122, 128

repeatable read validation, 122, 131
serializable validation, 131–133
snapshot validation, 122, 125

durability, 120
enforce referential integrity, 134
isolation, 120
optimistic concurrency, 121
pessimistic concurrency, 121
post-commit phase, 134
referential integrity enforcement, 

134–136
transaction lifetime, 129–134
validation phase, 131, 132
write/write conflict #8

Transparent data encryption (TDE), 39
T-SQL stored procedure



■ INDEX

304

atomic blocks, 150–152 (see also 
Atomic blocks)

features
CAST, 149
control flow, 147
CONVERT, 149
date/time functions, 149
error functions, 149
ISNULL, 149
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operators, 148
query surface area, 148
@@ROWCOUNT, 149
SCOPE_IDENTITY, 149
string functions, 149

limitations, 147
optimization, 152

Usage scenarios, 252–265
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