

Exchanging Data between
SAS® and Microsoft Excel

 Tips and Techniques to
Transfer and Manage Data More Efficiently

William E. Benjamin, Jr.

support.sas.com/bookstore

The correct bibliographic citation for this manual is as follows: Benjamin, William E., Jr. 2015. Exchanging
Data Between SAS® and Microsoft Excel: Tips and Techniques to Transfer and Manage Data More Efficiently.
Cary, NC: SAS Institute Inc.

Exchanging Data Between SAS® and Microsoft Excel: Tips and Techniques to Transfer and Manage Data
More Efficiently

Copyright © 2015, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-60764-985-4 (Hardcopy)
ISBN 978-1-62959-690-7 (EPUB)
ISBN 978-1-62959-691-4 (MOBI)
ISBN 978-1-62959-689-1 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior
written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission
of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not
participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is
appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial
computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United
States Government. Use, duplication or disclosure of the Software by the United States Government is subject
to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted
rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice
under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

April 2015

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Contents

Preface .. xi

About This Book ... xiii

About The Author ...xvii

Chapter 1: Easy Data Movement between SAS and Microsoft Excel 1
1.1 Introduction ... 1

1.2 Examination of Excel Files ... 2

1.2.1 Purpose .. 2

1.2.2 Excel Data Types ... 2

1.2.3 General Excel Workbook Limitations .. 2

1.2.4 Excel Workbook Formatting Groups ... 3

1.2.5 Excel Data Ranges .. 4

1.3 Examples of Copy-and-Paste Techniques ... 4

1.3.1 Highlight, “Cut” or “Copy,” and Then “Paste” .. 5

1.3.2 Convert Text Data to Excel Column Data Fields .. 5

1.3.3 Copy Data to the SAS Enhanced Editor Window for Use in a SAS Program 7

1.3.4 Save Multiple Lines of Text in a Single Excel Cell.. 8

1.3.5 Converting Excel Tables to Text .. 9

1.4 Accessing Excel Data from the SAS Explorer Window and Toolbar ... 9

1.4.1 SAS Explorer Window and Toolbar Processing Method Descriptions 10

1.4.2 Picking the Export Wizard from the SAS Explorer Window “Export” Menu 11

1.4.3 Using the “Copy Contents to Clipboard” Option of the SAS Explorer Window 11

1.4.4 Selecting the “Save as Html” Option of the SAS Explorer Window 12

1.4.5 Using the “View in Excel” Option to Copy Data to Excel Files via HTML 13

1.4.6 SAS Toolbar File Option, the Gateway to the SAS Export / Import Wizards 15

1.4.7 Choosing the “Export Data” SAS Toolbar (Export Wizard) File Option 16

1.4.8 Electing the “Import Data” SAS Toolbar (Import Wizard) File Option 16

1.4.9 Using the Export / Import Wizards in a 32/64-Bit Mixed Environment 17

1.5 Chapter Summary ... 18

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel
Workbooks .. 19
2.1 Introduction ... 19

2.2 Purpose .. 20

2.3 Syntax of the SAS EXPORT Procedure ... 20

2.4 Data Access Methods for Excel Files Supported by PROC EXPORT .. 21

2.5 Overview of the Examples .. 22

iv

2.6 List of Examples .. 23

Example 2.1 SAS Code to Export Data to an Excel 4 or Excel 5 Format File 23

Example 2.2 PROC EXPORT Using the DBMS=DLM Option ... 24

Example 2.3 PROC EXPORT Using the DBMS=EXCEL Option.. 25

Example 2.4 PROC EXPORT Using the DBMS=EXCELCS Option... 27

Example 2.5 SAS Code to Export Data to an Excel File with No Column Headers 28

Example 2.6 SAS Code to Export Data to a Network Windows Computer 28

2.7 Conclusion ... 29

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks
into SAS .. 31
3.1 Introduction ... 31

3.2 Purpose .. 32

3.3 Syntax of the SAS IMPORT Procedure ... 32

3.4 Data Access Methods for Excel Files Supported by PROC IMPORT .. 33

3.5 Overview of the Examples .. 34

3.6 List of Examples .. 34

Example 3.1 PROC IMPORT Using the DBMS=EXCEL4 or EXCEL5 Option 35

Example 3.2 PROC IMPORT Using the DBMS=DLM Option .. 35

Example 3.3 PROC IMPORT Using the DBMS=EXCEL Option .. 37

Example 3.4 PROC IMPORT Using the DBMS=EXCELCS Option ... 40

Example 3.5 PROC IMPORT Using the DBMS=XLS or XLSX to Select Columns 42

Example 3.6 PROC IMPORT Using the DBMS=XLS or XLSX to Select Rows 43

Example 3.7 PROC IMPORT Using the DBMS=XLS or XLSX to Select Excel Ranges 44

3.7 Conclusion ... 45

Chapter 4: Using the SAS LIBNAME to Process Excel Files 47
4.1 Introduction ... 47

4.2 Purpose .. 48

4.3 Excel-Specific Features of the SAS LIBNAME Statement .. 48

4.4 Syntax of the SAS LIBNAME Statement ... 49

4.5 LIBNAME Statement ENGINE CONNECTION OPTION Descriptions .. 50

4.5.1 HEADER Option to Read Variable Names .. 50

4.5.2 MIXED Option to Select Data Types .. 50

4.5.3 PATH Option to Define Physical File Locations ... 51

4.5.4 VERSION Option to Identify Excel File Version .. 52

4.5.5 PROMPT Option to Interactively Assign a Libref ... 52

4.5.6 Other Common SAS PC File LIBNAME Options ... 53

4.6 Excel-Specific Dataset Options ... 53

4.7 UNIX, LINUX, and 64-Bit Windows Connection Options .. 54

4.8 Overview of the Examples .. 55

4.8 List of Examples ... 55

4.9 Examples .. 56

Example 4.1 Using the Engine Connection HEADER Option ... 56

Example 4.2 Using the Engine Connection MIXED Option .. 57

Example 4.3 Using the Engine Connection PATH Option .. 58

v

Example 4.4 Using the Engine Connection VERSION Option .. 58

Example 4.5 Using Named Literals with the LIBNAME Statement .. 59

Example 4.6 Using PROC CONTENTS to Examine an Excel Workbook 60

Example 4.7 Using Dataset Options to Process Date and Time Values 62

Example 4.8 Using Dataset Options to Process Variable Type Conversions 63

Example 4.9 Processing on 64-Bit Operating Systems .. 64

4.10 Conclusion ... 65

Chapter 5: SAS Enterprise Guide Methods and Examples 67
5.1 Introduction ... 67

5.2 Purpose .. 68

5.3 Typical Methods to Access Excel from SAS Enterprise Guide .. 68

5.4 Overview of the Examples .. 68

5.5 List of Examples .. 68

5.6 Examples .. 69

Example 5.1 Using the Export Method with Enterprise Guide ... 69

Example 5.2 Using the “Send To” Method ... 71

Example 5.3 Using the “Send To” Method to Output a Graph or Report 71

Example 5.4 Using the “Export” Method to Output a Graph or Report .. 75

Example 5.5 Using “Open” or “Import” Toolbar Options to Read Excel Workbooks 77

Example 5.6 Using the “Import Data” Toolbar Option to Read a Range of Cells 80

5.7 Conclusion ... 84

Chapter 6: Using JMP to Share Data with Excel ... 85
6.1 Introduction ... 85

6.2 Purpose .. 85

6.3 Methods of Sharing Data between JMP and Excel ... 86

6.4 List of Examples .. 87

6.5 Examples .. 87

Example 6.1 Within Excel, Set the JMP Preferences for Loading Excel Data 87

Example 6.2 Reading Data from Excel to JMP .. 88

Example 6.3 Writing Data from JMP to Excel .. 89

6.6 Conclusion ... 90

Chapter 7: SAS Add-In for Microsoft Office (Excel) .. 91
7.1 Introduction ... 91

7.2 Purpose .. 91

7.3 Methods of Sharing Data Using SAS Add-In for Microsoft Office ... 92

7.4 List of Examples .. 94

7.5 Examples .. 94

Example 7.1 Open a SAS Dataset Using SAS Add-In for Microsoft Office................................... 94

Example 7.2 Open a SAS Report Dataset (*.srx) Using SAS Add-In for Microsoft Office 99

7.6 Conclusion ... 105

vi

Chapter 8: Creating Output Files with ODS for Use by Excel 107
8.1 Introduction ... 108

8.2 Purpose .. 108

8.3 An Introduction to SAS Tagset Templates That Create Files for Excel 109

8.3.1 How to Locate a Tagset Template... 110

8.4 Difference Between an ODS Tagset and an ODS Destination ... 111

8.5 Syntax of the ODS CSV and CSVALL Output Processes .. 111

8.6 CSV and CSVALL Tagset Options ... 111

8.7 Overview of CSV and CSVALL Examples ... 113

8.8 CSV and CSVALL Examples to Write *.csv Files .. 113

Example 8.8.1 Simple CSV and CSVALL File Default Output Differences 113

Example 8.8.2 CSV and CSVALL Title and Footnote Output Differences 115

Example 8.8.3 Write Currency Values as Unformatted Numbers .. 118

Example 8.8.4 Change Delimiters When Outputting Data with CSV Tagset 120

Example 8.8.5 Save Leading Zeroes in Character Fields Sent to Excel 123

8.9 Syntax of ODS MSOFFICE2K Output Processes to Write HTML Files .. 124

8.10 MSOFFICE2K Tagset Template Options .. 125

8.11 Overview of MSOFFICE2K Examples .. 126

8.12 MSOFFICE2K Examples to Write HTML Files .. 126

Example 8.12.1 Generating an HTML Output File with No Options .. 126

Example 8.12.2 Generating an HTML File Using the Summary_Vars Option 127

8.13 Syntax of the ODS EXCELXP Tagset Template Output Processes ... 128

8.14 ODS EXCELXP Tagset Options ... 130

8.15 Overview of EXCELXP Examples .. 132

8.16 EXCELXP Examples to Write XML Files ... 133

Example 8.16.1 Generating an XML Output File with No Options ... 133

Example 8.16.2 Adjusting Column Width Using Tagset Template Options 134

Example 8.16.3 Tagset Option to Hide Columns While Writing the File 135

Example 8.16.4 Apply an Excel “AUTOFILTER” to Selected Output Columns 136

Example 8.16.5 Using Multiple Options to Produce a “Ready-to-Print” Spreadsheet 137

Example 8.16.6 Creating a Table of Contents in an Excel Workbook ... 138

Example 8.16.7 Methods of Naming Excel Worksheets ... 140

Example 8.16.8 Splitting One Report onto Multiple Excel Worksheets 141

Example 8.16.9 Methods of Placing Labels in Excel Worksheet Names 142

Example 8.16.10 Use SHEET_INTERVAL= BYGROUP to Create Worksheets 143

Example 8.16.11 Use SHEET_INTERVAL= PROC to Create Worksheets 144

Example 8.16.12 Build Separate Worksheets with Titles on Each Sheet 146

8.17 The New ODS Destination EXCEL for Writing Workbooks ... 147

8.18 Conclusion ... 148

Chapter 9: Accessing Excel with OLE DB or ODBC Application Program
Interfaces (API Methods) ... 149
9.1 Introduction ... 149

9.2 Purpose .. 149

9.3 Concept of the OLE DB or ODBC API Processes .. 149

vii

9.4 Guidelines for Setting Up OLE DB or ODBC Connections ... 150

9.5 List of Examples .. 150

9.6 Examples .. 151

Example 9.1 Assign a Libref to an Excel Worksheet with the OLE-DB Dialog Box 151

Example 9.2 Using LIBNAME Prompt Mode to Build an OLE-DB Connection 152

Example 9.3 Using an OLE-DB init_string to Open an Excel Workbook 154

Example 9.4 Using PROC CONTENTS to Verify Excel to OLE DB Connection 154

9.7 Conclusion ... 156

Chapter 10: Using PROC SQL to Access Excel Files ... 157
10.1 Introduction ... 157

10.2 Purpose .. 158

10.3 Basic Syntax of the SQL Procedure .. 158

10.4 A Simple Explanation of SQL “PASS-THROUGH” Processing ... 160

10.5 Overview of the Examples.. 160

10.5.1 List of Examples .. 160

10.6 Examples .. 160

Example 10.1 LIBNAME Assignments to Access Excel Using PROC SQL 160

Example 10.2 Create an Excel File, Read It with SQL, and Then Compare the Files 161

Example 10.3 Use PROC SQL to Read a Subset of Records from an Excel Workbook 162

Example 10.4 Use PROC SQL Pass-Through Facilities to Process an Excel File 162

Example 10.5 Read a Pre-defined Range of Cells from an Excel Workbook 163

Example 10.6 Calculate a New Variable within the SQL Code and Sort the Output 165

Example 10.7 Examine the Contents and Structure of an Excel Workbook with a “PCFILES::”
Special Query .. 165

10.7 Conclusion ... 166

Chapter 11: Using DDE to Read and Write to Excel Workbooks 167
11.1 Introduction ... 167

11.2 Purpose .. 167

11.3 Basic Concept of the DDE Client-Server Environment ... 168

11.3.1 How the DDE Client-Server Relationship Works ... 168

11.3.2 General DDE Syntax and Options .. 168

11.4 List of User-Written SAS Macros That Can Enhance DDE Processing 171

11.4.1 SAS Macro to Start Excel ... 171

11.4.2 SAS Macro to SAS to Issue Commands to Excel .. 172

11.4.3 SAS Macro to Define a Range of Excel Cells for Processing ... 172

11.4.4 SAS Macro to Save the Contents of an Excel Workbook ... 174

11.4.5 SAS Macro to Close Excel Workbook ... 174

11.4.6 SAS Macro to Write All or Selected Variables to an Excel Output Workbook 175

11.5 List of Examples .. 177

11.6 Examples .. 177

Example 11.6.1 The Hello World Project .. 177

Example 11.6.2 The Hello World Project When the Excel Workbook Is Closed 179

Example 11.6.3 The Hello World Project Using NOTAB and LRECL= Options 180

viii

Example 11.6.4 Writing “Hello World” to an Excel File Using DDE Macros 182

Example 11.6.5 Writing a SAS Dataset to an Excel File Using the SAS_2_EXCEL DDE Macro 184

11.7 Conclusion ... 187

Chapter 12: Building a System of Excel Macros Executable by SAS 189
12.1 Introduction ... 189

12.2 Purpose .. 190

12.3 General Design of a Tool to Control Excel Macros from SAS .. 190

12.3.1 Prepare a SAS File and Execute Excel to Process the Output ... 191

12.3.2 Prepare Excel to Open the File Output by SAS .. 192

12.3.3 Prepare Excel Macros to Reformat the Excel Workbooks ... 194

12.4 Automate the Tool So That SAS Creates a Formatted Excel Output Workbook 197

12.4.1 Eliminate the Manual Steps from the Processing .. 197

12.4.2 Create a SAS Output File with More Data and Control Information 202

12.4.3 Create an Excel Macro to Process the Output SAS File ... 203

12.4.4 Build an Excel Graph Using an Excel Macro .. 207

12.5 Conclusion ... 209

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel
Macros .. 211
13.1 Introduction ... 211

13.2 Purpose .. 212

13.3 Guidelines for Building and Using a VBS/VBA Macro Library .. 214

13.3.1 Create Naming Conventions for Storing and Executing VBS/VBA Macros 214

13.3.2 Set Up Workstation Options ... 215

13.3.3 Where to Store VBS/VBA Scripts and Macros ... 217

13.3.4 SAS Code to Execute a Visual Basic Script .. 219

13.3.5 Build a Parameter-Driven VBS Script to Control the Execution of Excel 220

13.3.6 Build a Control Macro for Each Excel Report .. 223

13.4 Conclusion ... 229

Chapter 14: Create an Excel Workbook That Runs SAS Programs 231
14.1 Introduction ... 231

14.2 Purpose .. 232

14.3 Guidelines for Building an Excel User Form Interface .. 233

14.3.1 Common Excel and Excel User Form Terms .. 233

14.3.2 Introduction to the Integrated Development Environment (IDE) 235

14.3.3 Using the Integrated Development Environment (IDE) Toolbox Menu 236

14.3.4 Building a Sample Integrated Development Environment (IDE) Menu 237

14.3.5 Linking the Integrated Development Environment (IDE) Menu and the Data 239

14.3.6 Storing Control Information in the Excel Workbook Worksheets 240

14.3.7 Set Up Control Variables to Access Data Stored in the Workbook 241

14.3.8 Learn How to Make the Excel UserForm Execute ... 245

14.4 Excel VBA Routines to Make the Workbook UserForm Active .. 248

14.4.1 Initialize the User Form ... 248

14.4.2 Write the User Parameters to a File in a Working Directory ... 253

14.4.3 Copy Source Program from a Production Directory to the Working Directory 253

ix

14.4.4 Verify the Output Batch File Points to the Correct SAS Run Time Module 254

14.4.5 A Routine to Save the Changes and Exit the Program .. 255

14.4.6 Directory Structure Associated with the Processing .. 255

14.4.7 Common Issues That Might Occur. ... 257

14.4.8 Prepare a VBA Macro to Process Your Output Report ... 258

14.5 Conclusion ... 259

Index ... 261

x

Preface
Over time, I have learned that, to keep life simple, you give the boss data in the format he or she wants. In
other words, if the boss wants an Excel workbook, you deliver an Excel workbook with all the data and
formatting requested. If the data comes from Excel, you need to find a way to read the data from the Excel
files. For this book, I wrestled with the question of how to describe merging the SAS and Excel distinct
skill sets in a way that would be understandable to both groups. This book is primarily written for people
who need to transfer data between SAS and Excel. That usually means that you are well-versed in one
application, but not the other. My choice of words was very careful when I used the word “BETWEEN.”

I have included detailed explanations for some tasks that seem relatively simple so that users in their first
week on the job can find a simple transfer method they can understand. I then build and show more
complex examples that help more experienced users. There is a difference between needing to transfer data
quickly and being able to repeatedly produce an identically formatted report month after month. I once saw
someone fired because it took them three days to write a CSV-formatted file without asking anyone for
help. This experience fortified my desire to find a way to help someone else avoid the same fate. I feel that
detailed explanations are critical to the development of the skills described within these pages.

The topics presented here address data transfer issues rather than data analysis tools. I focus on how to
move the data, and I let other authors tell you how to analyze the data. Each product, SAS and Excel, has a
rich set of features requiring many skills. This document focuses upon data preparation and data transfer
techniques of both SAS software and Excel in order to describe some of the many ways to transfer data
between the applications. The examples shown here highlight the data exchange methods, but spend little
time manipulating the data.

The transfer of data between the files that SAS can read and files that Microsoft Excel can read can be
accomplished in many ways. These methods range from the very simple to the very complex and require
different skill sets to accomplish the transfers. Once again, I note that the word “between” was chosen
carefully to avoid limiting the tools explained or the examples used. This book defines some of the methods
and enumerates various skills needed to complete these data transfers in both directions. The transformation
of data into information has been going on since the first shepherd sold his sheep at the local market, and
the buyer marked notches on a stick to record the amount due. Mankind has been looking for better ways
since then. Within this book, many methods are shown to provide users of both SAS and Excel with the
methods that fit their individual needs, giving even the most advanced SAS or Excel users at least one new
tool for transferring information between SAS and Excel.

Audience
I have written this book to address the needs of analysts, programmers, and others who use SAS and Excel
at any user level. Included in this book are simple commands that aid novice users to get started with
simple tasks. I used a step–by-step approach to increase the complexity of the commands presented and the
tasks explained. The book will stretch and teach even the most advanced users of both SAS and Excel.
While some basic knowledge of both SAS and Excel is assumed on the part of the reader, I have attempted
to present this material in such a way that the book can be used either to gain knowledge by reading it
sequentially or to find resource assistance from the table of contents or the index that to pinpoint a needed
explanation.

Approach
In my 40 plus years of programming computers, I have noticed that people who write system code (like
compilers, operating systems, and software languages) for other people tend to focus on the current release
and look forward to work for the next release. But this is done privately, because the next release is always
intended to improve the current release. On the other hand, applications programmers tend to look at the

xii Preface

current release and work to see how they can make the code from the past release step up to the current
release. For them (the vast majority of all programmers), the next release is behind the curtain and will
perpetually be delayed.

This book takes a tutorial approach to presenting the information. I also assume that old methods do not die
quickly. The concept of being “backward-compatible” is something that both SAS and Microsoft practice.
Therefore, older formats that are not actively supported are documented because they are still in use, and
current software is still compatible with them. I feel that older methods and simple techniques still have a
place in the programming life cycle. Young, new, or inexperienced programmers will always need to have
the simple processes shown and explained so their experience level can also grow. Therefore, in this book a
problem or method is presented with an explanation of procedures to solve the problem or method. Detailed
examples are presented and explained. Because of the number of SAS versions available and the way that
they interact individually with Excel, this book presents several different versions of SAS and Excel within
the examples.

This book is for programmers who are always upgrading their code to catch up with the current release.

I would be remiss if I failed to thank my wife for the patience she has shown over the last many years as
this project has slowly progressed to completion. Without her understanding and encouragement it may not
have been possible.

About This Book

Purpose
I wrote this book to help SAS users of all skill levels find out how to move data between SAS and
Microsoft Excel. My years of programming experience have helped me decode the mysteries of vendor-
supplied system documentation. I wanted to gather that information together and present it in an easy-to-
understand tutorial format with the prime emphasis on examples. I have also scattered in my observations
on the world of programming in general and pieced together an array of examples that include both simple
and complex task descriptions.

Is This Book for You?
Whatever your skill level, I hope you will find examples that will teach you something. In every class I
teach or paper I present, I always ask if anyone learned anything. I want you to be able to find a place on
your desk for this book, use it as you progress through the skills presented, and gain expertise to easily
move your data.

Prerequisites
This book is designed for you to use without need for prerequisites. If you can open the SAS program and
copy data using your mouse, then you can get started. I do not attempt to teach you how to write SAS
programs or build an Excel spreadsheet, but I present methods to move data between the two data storage
tools.

Scope of This Book
This book attempts to show you how to move data “BETWEEN” SAS and Excel. I have attempted to use
as many differing techniques as I could within the limited space available. As I worked my way through the
chapters, I created examples that progressively increased in power and complexity.

But, what I do not do is show you very much about how to use the data after it is moved or copied into
either Excel or SAS. Within this book I have covered many ways that show you how to shuffle your data
between SAS and Excel. I hope I have also opened ways to manipulate the worksheets after they have been
written. I have tried to keep the data simple and only change the methods. In fact, nearly every example
uses the same SAS dataset, as noted below.

About the Examples

Software Used to Develop the Book's Content
Because SAS users are likely to be working with different SAS versions, I have included examples that use
several versions of SAS software. Most of the examples use SAS 9.4. Some JMP examples and SAS
Enterprise Guide examples are also shown. Examples of Excel screens also vary across several versions of
Excel, from Excel 2003 to Excel 2013. The examples in the book cover the transition from the xls
workbooks to the xlsx workbooks and the way SAS has adapted to those Excel changes.

xiv

Example Code and Data
The primary dataset used for examples in this book is the SASHELP.SHOES SAS dataset; it is used as an
exported file to Excel and then as input from Excel. The SASHELP.SHOES dataset is shipped with every
version of SAS and is therefore convenient for all users.

You can access the example code and data for this book by accessing my author page
at http://support.sas.com/publishing/authors. Select the name of the author, look for the cover thumbnail of
this book, and select Example Code and Data to display the SAS programs that are included in this book.

For an alphabetical listing of all books for which example code and data is available,
see http://support.sas.com/bookcode. Select a title to display the book’s example code.

If you are unable to access the code through the website, email saspress@sas.com.

Additional Help
Although this book illustrates many analyses regularly performed in businesses across industries, questions
specific to your aims and issues may arise. To fully support you, SAS Institute and SAS Press offer you the
following help resources:

• For questions about topics covered in this book, contact the author through SAS Press:

◦ Send questions by email to saspress@sas.com; include the book title in your correspondence.

◦ Submit feedback on the author’s page at http://support.sas.com/author_feedback.

• For questions about topics in or beyond the scope of this book, post queries to the relevant SAS
Support Communities at https://communities.sas.com/welcome.

• SAS Institute maintains a comprehensive website with up-to-date information. One page that is
particularly useful to both the novice and seasoned SAS user is the SAS Knowledge Base. Search
for relevant notes in the “Samples and SAS Notes” section of the Knowledge Base at
http://support.sas.com/resources.

• Registered SAS users or their organizations can access SAS Customer Support at
http://support.sas.com. Here you can pose specific questions to SAS Customer Support.
Under Support, click Submit a Problem. You will need to provide an email address to which
replies can be sent, identify your organization, and provide a customer site number or license
information. This information can be found in your SAS logs.

Keep in Touch
We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact
us about a specific book, please include the book title in your correspondence.

Contact the Author through SAS Press
• By email: saspress@sas.com

• Via the web: http://support.sas.com/author_feedback

Purchase SAS Books
For a complete list of books available through SAS, visit sas.com/store/books.

• Phone: 1-800-727-0025

• Email: sasbook@sas.com

http://support.sas.com/publishing/authors
http://support.sas.com/bookcode
mailto:saspress@sas.com
mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
https://communities.sas.com/welcome
http://support.sas.com/resources/
http://support.sas.com/
mailto:saspress@sas.com
http://support.sas.com/publishing/bbu/companion_site/info.html
http://support.sas.com/bookstore

xv

Subscribe to the SAS Training and Book Report
Receive up-to-date information about SAS training, certification, and publications via email by subscribing
to the SAS Training & Book Report monthly eNewsletter. Read the archives and subscribe today
at http://support.sas.com/community/newsletters/training!

Publish with SAS
SAS is recruiting authors! Are you interested in writing a book? Visit http://support.sas.com/saspress for
more information.

http://support.sas.com/community/newsletters/training
http://support.sas.com/saspress

xvi

About The Author

William E. Benjamin, Jr., owns Owl Computer Consultancy, LLC, and works as a
consultant, trainer, and author. William has been a SAS user for over 30 years and a
consultant since 2007. He received an MBA from Western International University and
a BS in computer science from Arizona State University. He has written and presented
papers for SAS Global Forum, as well as many regional and local SAS users groups.

Learn more about this author by visiting his author page at
http://support.sas.com/publishing/authors/benjamin.html. There you can download free
book excerpts, access example code and data, read the latest reviews, get updates, and
more.

http://support.sas.com/publishing/authors/benjamin.html

xviii

Chapter 1: Easy Data Movement between SAS and
Microsoft Excel

1.1 Introduction ..1

1.2 Examination of Excel Files ...2
1.2.1 Purpose .. 2
1.2.2 Excel Data Types ... 2
1.2.3 General Excel Workbook Limitations .. 2
1.2.4 Excel Workbook Formatting Groups ... 3
1.2.5 Excel Data Ranges .. 4

1.3 Examples of Copy-and-Paste Techniques ...4
1.3.1 Highlight, “Cut” or “Copy,” and Then “Paste” ... 5
1.3.2 Convert Text Data to Excel Column Data Fields ... 5
1.3.3 Copy Data to the SAS Enhanced Editor Window for Use in a SAS Program 7
1.3.4 Save Multiple Lines of Text in a Single Excel Cell ... 8
1.3.5 Converting Excel Tables to Text .. 9

1.4 Accessing Excel Data from the SAS Explorer Window and Toolbar9
1.4.1 SAS Explorer Window and Toolbar Processing Method Descriptions 10
1.4.2 Picking the Export Wizard from the SAS Explorer Window “Export” Menu 11
1.4.3 Using the “Copy Contents to Clipboard” Option of the SAS Explorer Window ... 11
1.4.4 Selecting the “Save as Html” Option of the SAS Explorer Window 12
1.4.5 Using the “View in Excel” Option to Copy Data to Excel Files via HTML 13
1.4.6 SAS Toolbar File Option, the Gateway to the SAS Export / Import Wizards 15
1.4.7 Choosing the “Export Data” SAS Toolbar (Export Wizard) File Option 16
1.4.8 Electing the “Import Data” SAS Toolbar (Import Wizard) File Option 16
1.4.9 Using the Export / Import Wizards in a 32/64-Bit Mixed Environment 17

1.5 Chapter Summary .. 18

1.1 Introduction
It may seem a bit odd to start a book about SAS programming with examples of Excel files and their
limitations. But, because this information is at the front of the book, it will be easy to locate when you want
to figure out why some of your data seems to be missing or how much data this Excel format can hold.

Increased computer memory and speed have spurred the growth of computer capabilities. For example, the
software known as either the Joint Engine Technology (JET) database engine or the Access Connectivity
Engine (ACE) are built into the Microsoft Windows operating systems. These Microsoft database access
engines are used to access data for several Microsoft products including Microsoft Excel. These Microsoft
database engines provide an interface to Excel (and other Microsoft products) that can be used by SAS and
other database interface tools to access data in Excel workbooks.

When you are looking at a computer monitor or a printed page, both a view of a SAS file and the display of
an Excel worksheet are very similar. Each image has an array of rows and columns with data values. SAS
calls them observations and variables while Excel calls them rows and columns. While most SAS users
change all the values of individual elements of a SAS dataset with a SAS program or procedure, the

2 Exchanging Data between SAS and Microsoft Excel

Excel spreadsheet user often modifies one element (or cell) at a time. The major difference between SAS
datasets and Excel worksheets is that even though a SAS user can open a SAS dataset in “edit” mode and
change the values of individual elements, SAS will enforce data type restrictions. A character value cannot
be placed into a variable defined as a numeric variable. A number can be placed into a character variable,
but it will be converted to a character value. Excel has no such restriction. This puts a burden of examining
the output data on the user. This examination is often skipped and data losses can occur.

1.2 Examination of Excel Files

1.2.1 Purpose
Let’s take a minute to look at why we need to know anything about Excel files. Excel files have changed
over time. In the beginning, they had one worksheet and very few features or capabilities and proprietary
data formats. Today, the features, options, and capabilities of Excel are impressive. We will start here with
the simple things and, by the end of the book, show you not only how SAS can send data to Excel, but also
how Excel can interact with SAS.

1.2.2 Excel Data Types
This section provides general descriptions of Excel Workbook sheet elements with row and column
limitations, along with general descriptions of the file formats, data types, and range definitions.

Formulas
Excel cells can contain formulas. While these are not actually data types, the action taken by a formula may
represent and be displayed as either a number or a character value. The SAS EXCELXP tagset can process
character strings and output them to Excel as a formula within an Excel workbook.

Character
Character data fields can contain any text values and are usually alphanumeric data strings that may contain
characters, words, numbers, Excel formulas, date and/or time values including special characters. Up to
32,767 (32KB-1) characters may be stored in one cell.

Numeric
Numeric values are usually numbers like the digits 0-9, but the data in these cells may also include
formulas. The numeric character type also includes several special values that indicate error conditions like
#NULL!, #N/A, #VALUE!. Numeric dates are represented as numbers the integer portion is the number of
days and the fractional portion is the number of minutes and seconds within 24 hours. The counter resets at
midnight to 0.0, noon is 0.5, and one second before midnight is represented as 0.999988.

Other Excel Data Display Formats
Excel, like SAS, can display numeric data in several different formats. These include displays such as a
currency, percentage, accounting, numbers with integer and fractional parts, several date formats, and
several numeric formats. Other display formats exist but the data values underlying the display are either
character or numeric.

Other Excel File Elements
In addition to the data elements of an Excel file, an Excel workbook can also contain charts, graphs, and
other images. The SAS Enterprise Guide features described in this book can generate SAS graphs that can
be sent to Excel and displayed as Excel worksheet elements.

1.2.3 General Excel Workbook Limitations
Table 1.2.1 describes Excel workbook limitations and characteristics for versions of Microsoft Excel
formats. As noted in the table, the size and capacity of Excel workbook files has grown over the years.
However, care must be taken when processing large Excel files because the Microsoft JET and ACE

Chapter 1: Easy Data Movement between SAS and Excel 3

engines that read and write to Excel workbooks have limitations that may not allow for processing of all
data in an Excel workbook when using a SAS LIBNAME statement.

Table 1.2.1: Microsoft Excel Workbook File Limitations.

Version Limited to One
Sheet

Rows Columns Extension

EXCEL4 YES 16,384 256 * .xls
EXCEL 5 NO 16,384 256 * .xls

EXCEL 95 NO 16,384 256 * .xls
EXCEL 97 NO 65,536 * 256 * .xls

EXCEL 2000 NO 65,536 * 256 * .xls
EXCEL 2002 NO 65,536 * 256 * .xls
EXCEL 2003 NO 65,536 * 256 * .xls
EXCEL 2007 NO 1,048,576 * 16,384 * .xlsx, xlsb, xlsm
EXCEL 2010 NO 1,048,576 * 16,384 * .xlsx, xlsb, xlsm
EXCEL 2013 NO 1,048,576 * 16,384 * .xlsx, xlsb, xlsm
* The limits listed here are the limits for rows and columns of Excel files. However, the Microsoft JET
and ACE engines used by the LIBNAME statement to access Excel files for reading and writing data
are limited to 65,535 rows and 255 columns. Files larger than 255 columns and 65,535 rows should be
processed without using the LIBNAME statement or any method that uses the Microsoft JET or ACE
engines to refer to the Excel files.

1.2.4 Excel Workbook Formatting Groups

File Format Groups
● Excel 4 is unique with only one sheet and is the oldest of supported Excel formats. This format

may not be supported in future versions of Excel.
● Excel 5 and Excel 95 share the same format.
● Excel 97, Excel 2000, Excel 2002, and Excel 2003 share the same format.
● Excel 2007, Excel 2010, and Excel 2013 share the same format and are the newest versions of

Excel files.

• Excel 4 – Excel 2003 are binary formats, but as noted above they are not the same format.

NOTE: Newer Excel software can read and write any older Excel format.

Excel 2007, Excel 2010, and Excel 2013 file formats:

● .xlsx format does not allow Visual Basic for Applications (VBA) macros to be stored within the
spreadsheet.

● .xlsm format allows (VBA) macros to be stored within the spreadsheet.
● .xlsb format stores the data in a binary format.

• .xlsx, .xlsm, and .xlsb formatted files are .ZIP files of XML documents that comprise the Excel
workbook. .xlsb formatted files also contain binary formatted elements. While these files may also
contain style sheets, images and other components, this book generally addresses the data contents
unless otherwise specified.

Most Excel programs will open delimited or .xml files with a double click, but these are not Excel
formatted files—they are text files that Excel knows how to format.

4 Exchanging Data between SAS and Microsoft Excel

Excel-Readable Files
There are several general file types that Excel can open and directly read the data into an Excel workbook,
such as *.csv, *.tsv, *.txt, *.htm, *.html, and *.xml files. These are text files and can be edited with any text
editor, as long as you know the file format. SAS processes that read and write to Excel workbook files
generally can write out data files in several formats that Excel can read and convert to an Excel
spreadsheet, such as *.csv, *.tsv, *.txt, *.htm, *.html, and *.xml files. These will be discussed in turn
through this book, but here is a simple explanation of their general formats.

Simple File Formats
Files with a .csv, .tsv, or .txt file extension are strings of text usually separated by a comma, tab, or blank,
respectively. In these files, numbers are entered as text values. However, including commas in numbers
greater than 999 may cause Excel to treat the number as two data items and put the values into two cells.
These files may also contain quoted strings to avoid separating the character values into multiple cells. The
actual results you see may differ based upon the computer configuration you are using.

Complex File Formats
Files with a .htm, .html, or.xml file extension are strings of text that have had complex formatting rules
applied to the contents of the file. These formatting rules provide instructions to the program opening the
file that tell that program how to store, display, or format the data being read from the input file. These
instructions may also include applying colors to the text and background or inserting sheet formatting to the
worksheet.

1.2.5 Excel Data Ranges
Excel workbook files can contain groups of cells called named “ranges” that are not complete worksheets.
The name is assigned to a range of cells by selecting the cells and using the name box usually found on the
left side of the formula bar just below the control bar or ribbon on the Excel screen. SAS can read these
named ranges by using the name of the Excel worksheet range. By default the LIBNAME statement defines
a worksheet with a dollar sign “$” at the end of the name. Therefore, full Excel worksheets need to be
defined to SAS as name literals (in the form ‘sheetname$’n) when processed by SAS. A name literal is a
special SAS syntax structure. The named ranges need to be defined in Excel before SAS can read data from
them. Excel named ranges or worksheet names without blanks or invalid characters for SAS names do not
need to be referenced as a name literal.

1.3 Examples of Copy-and-Paste Techniques
One of the first methods of moving data around that people learn to use when starting to use a computer is
to “CUT” or “COPY” something and then “PASTE” it where you want it to appear. This works well for
many small applications. Moving data from Word documents to text documents, to Excel spreadsheets, or
even to the SAS Enhanced Editor window is pretty simple. The difference between cut and copy is that the
cut action removes the data from the original location while copy does not.

But how does that information fit into a book about moving data between SAS and Excel? Well, let’s take a
look at how this technique can help shuffle data around. Some of these examples will be used in later
chapters to build more extensive tools. I use the Microsoft Windows environment. Other operating systems
may have modified version of these procedures or not allow them at all. Each of the following methods is
similar because they generally use the operating system to capture data with a cut or copy command and
store it until a location can be identified to accept the data from the “paste” command. Different methods
are shown here because the output of the “paste” command can be altered by the method used in the
examples. The results of the “paste” command can therefore present differing consequences.

Chapter 1: Easy Data Movement between SAS and Excel 5

1.3.1 Highlight, “Cut” or “Copy,” and Then “Paste”
When you are using Microsoft Windows, this method has only a few simple steps.

● Hold down the left mouse button and highlight the area you want to cut or copy.
● Release the left mouse button and leave the area highlighted.
● When using a Microsoft Windows (and some other systems) right-click on the highlighted area.
● Choose the menu option to either “cut” or “copy” the highlighted information.
● Move the cursor to the desired location and right-click.

• Choose the menu option to “paste”.

Microsoft Windows operating systems allow key stroke combinations to substitute for the menu choices:

● key combination “CNTL” and “x” substitute for “cut”
● key combination “CNTL” and “c” substitute for “copy”

• key combination “CNTL” and “v” substitute for “paste”

NOTE: The mouse devices on some computers have their left and right mouse button functions inverted.

1.3.2 Convert Text Data to Excel Column Data Fields
Here, we will select a small part of the SASHELP.SHOES file as an example. I recommend this method for
moving a few lines of data at a time, and I use this technique frequently. In SAS 9.3 and beyond, the default
is to output HTML and display it in the Results window. I usually go to the SAS Tools►Options►
Preferences window and, on the Results tab, select both “Create Listing” and “Create HTML.” That way I
can go to the Output window and highlight the data printed by the PROC PRINT statement below. The
SAS WHERE statement limits the output observations from the region “Asia” for products “Boot”,
“Sandal”, and “Slipper”.

PROC PRINT DATA= sashelp.shoes
 (WHERE=(region = "Asia" and
 product IN ("Boot", "Sandal", "Slipper")));
RUN;

Figure 1.3.1: SAS Output Window Showing the Output from the PROC PRINT Statement
Above.

The data in the SAS Output window can then be copied from the SAS Output window and pasted into
column A of an Excel spreadsheet. See Figure 1.3.2 below. Microsoft Excel applications have a wizard to
convert text values to Excel columns. The output in the SAS Output window will be separated by spaces.

6 Exchanging Data between SAS and Microsoft Excel

Figure 1.3.2: Excel Worksheet with the Copied SAS Data Pasted into Column A of the
Worksheet.

The Excel wizard to convert text to columns allows the data to be selected as either delimited or fixed-
length fields. When you choose the delimited option, a screen similar to Figure 1.3.3 appears. Since we
know that the output is delimited by spaces, the settings below allow us to convert the data from the SAS
Output window to Excel columns as shown in Figure 1.3.4.

Figure 1.3.3: Excel Convert Text to Columns Wizard Window 2.

When the “Excel Text to Column Wizard” completes, the leading spaces and blank line from the SAS
Output window may find their way into the Excel spreadsheet. If these are not needed, they can be removed
quickly.

Chapter 1: Easy Data Movement between SAS and Excel 7

Figure 1.3.4: Excel Worksheet after Converting the Text in Column A to Columns of Data.

1.3.3 Copy Data to the SAS Enhanced Editor Window for Use in a SAS
Program
This example highlights and copies the data in Figure 1.3.4 cells C3 to I8 into the SAS code segment
below. When data is copied from Excel, tab characters are used to separate the data columns. This code
shows the use of the INFILE command with the DLM option to identify the SPACE character as the
delimiter within the SAS code. The irregular spacing shown on the lines following the “CARDS;”
statement is caused by the character fields not being the same length and the characters shifting columns of
data. The TRUNCOVER option causes the data to read correctly.

DATA Copy_n_paste;

INFILE DATALINES DLM = ' ' TRUNCOVER;
INPUT Region $ Product $ Subsidiary $ Stores Sales $ Inventory $
Returns $;
CARDS;
Asia Boot Bangkok 1 $1,996 $9,576 $80
Asia Sandal Bangkok 1 $3,230 $15,087 $120
Asia Slipper Bangkok 1 $3,019 $16,075 $127
Asia Boot Seoul 17 $60,712 $160,589 $1,296
Asia Sandal Seoul 3 $4,978 $21,483 $105
Asia Slipper Seoul 21 $149,013 $469,007 $2,941
;
RUN;

Running the sample SAS code that appears above Figure 1.3.1 will produce the SAS dataset with six
observations and seven variables shown below in Figure 1.3.5.

8 Exchanging Data between SAS and Microsoft Excel

Figure 1.3.5: SAS Dataset Produced by Running Example 3.

1.3.4 Save Multiple Lines of Text in a Single Excel Cell
For this example we will place multiple lines of SAS code into a single Excel cell. Later in the book we
will find that this will be useful because we can recall the information and use it to send the SAS code back
to a running SAS program. We will start by highlighting and copying the sample code that appears in
Section 1.3.3 after the first paragraph. We place it into Excel by selecting cell A1, then selecting the
formula entry field, and pasting the text into that field. The result is shown below after the formula entry
field and cell A1 are expanded to show the full contents. Figure 1.4.1a shows the Excel worksheet after this
is complete.

Figure 1.4.1a: Several Lines of SAS Code Pasted into a Single Excel Cell of a Worksheet.

Chapter 1: Easy Data Movement between SAS and Excel 9

1.3.5 Converting Excel Tables to Text
This example starts by deleting the blank line in row 2 of the Excel spreadsheet from Figure 1.3.4 and
copying the data from Figure 1.3.4 (cols C to I) into a Microsoft Word document and making the table
borders visible. The second step is to place that same data into the SAS Enhanced Editor window and then
copy the data from there into Microsoft Word. The results are shown in Figure 1.4.2a.

Figure 1.4.2a: A Microsoft Word Document with Two Copy and Paste Outputs.

1.4 Accessing Excel Data from the SAS Explorer Window and Toolbar
I could have called this section “Accessing Excel Data Using the SAS Export/Import Wizards,” but not
all of the methods I describe here use the wizards. When using SAS without SAS/ACCESS Interface to PC
Files software, the conversion methods are very limited. The next six examples show how to access the
SAS Export wizard, Import wizard, and other conversion methods directly from the SAS Explorer window
and the SAS toolbar. I will show you how to do this without writing SAS code to do the conversion. Only
two of these routines write SAS code for you. These methods allow you to save the code wherever you can
write a data file. These two methods are the Export/Import wizards within SAS. They can be found on the
“File” menu of the toolbar. As the names imply, the Export wizard sends data to Excel, and the Import
wizard reads data from Excel. The examples shown here will use the SASHELP.SHOES data set. They
send data to and read data from Excel without writing any SAS code. Within this book I treat the
Export/Import wizards differently than PROC EXPORT and PROC IMPORT. The reason I treat them
differently is because the wizards do the work for you and provide only a limited number of option
selections, while the procedures require more knowledge about the software and the options that are

10 Exchanging Data between SAS and Microsoft Excel

available for use to read or write the SAS and Excel files. Not all versions of SAS will write to Excel files
formatted for use by Excel 2007, Excel 2010, Excel 2013, or later versions of Excel.

1.4.1 SAS Explorer Window and Toolbar Processing Method Descriptions
The data transfer methods described in the remainder of this chapter start from the SAS Explorer window.
These methods can be used to prepare data to be viewed with the Excel application. A right-click on the
SAS file icon in the SAS Explorer window displays a menu from which one of the following options can be
selected. The first option starts the SAS Export wizard, and the other three options create HTML code that
can be opened by Excel or other applications.

● Select the “Export” option to run the SAS Export wizard.
● Select the “Copy Contents to Clipboard” option to copy HTML text and paste to an Excel file.
● Select the “Save as Html” option to copy data an HTML file that Excel can read.

• Select the “View in Excel” option to copy data to Excel files via HTML.

From the SAS toolbar there are two “File” options that provide access to Excel files. These are the
IMPORT and EXPORT options. As their names imply, the first option reads data from Excel into a SAS
dataset, while the second option writes data to an Excel workbook. These two options work with Excel
formatted files.

● Menu option “Export Data” runs the Export wizard to copy data to an Excel file.

• Menu option “Import Data” runs the Import wizard to copy data from an Excel file.

I had been using SAS for nearly 25 years before someone showed me that I could right-click on a SAS
dataset icon in the SAS Explorer window and have a menu pop up with output options for SAS files. Figure
1.4.1b below is that menu. The process is to open the SAS Explorer window, and then right-click on a SAS
dataset. A menu will appear with options that can be selected. The next four examples discuss the options
that can either read or write data for an Excel workbook.

Figure 1.4.1b: SAS Explorer Window “Right-Click” Options.

Chapter 1: Easy Data Movement between SAS and Excel 11

The pop-up menu shown in Figure 1.4.1b lists items that are explained in the following sections. Each of
these menu items represents a method of transferring data between SAS and Excel. In some cases other
options also exist, but here we are looking for methods that work to get data into Excel. As a shortcut, once
the menu is displayed, type the underlined letter to invoke the option.

1.4.2 Picking the Export Wizard from the SAS Explorer Window “Export”
Menu

Example 1.4.2
Selecting the “Export” option displays the following Export wizard menu. This is the first of several menus
that will guide you through the SAS Export process. SAS versions have similar tools, but each version of
SAS may have slightly different features available based upon the underlying hardware, operating system,
and SAS software version you are using. But all of the versions will guide you through the menus and offer
to save the code into a file for reuse later.

Figure 1.4.2b: First Menu of the SAS Export Wizard Tool for SAS 9.2 TS Level 1M0.

The screen image shown in Figure 1.4.2b is from SAS 9.2 and does not present the options for 64-bit
hardware or software. The Export wizard will generally walk you through the process selecting the SAS
LIBNAME and data file, and then ask you questions about the output format you wish to use and the file
name and location where you want to store the output file. While the Export wizard menus are relatively
self-explanatory, you do need to know the output format you want and the location to which you can write
the output file. More information about the SAS Export wizard can be found in the SAS documentation for
each version of SAS.

1.4.3 Using the “Copy Contents to Clipboard” Option of the SAS Explorer
Window

Example 1.4.3
This option generates HTML code that contains the data from the SAS dataset and places that data on the
Windows clipboard. This HTML data can be pasted into any file or application that will accept a paste
command. When this is saved as an HTML file or a text (.txt) file, the resulting file can be opened with

12 Exchanging Data between SAS and Microsoft Excel

Excel or a browser. The *.txt file might need to be renamed to *.htm or *.html to be opened with Excel.

1 filename _temp_ clipbrd;
2 ods noresults;
3 ods listing close;
4 ods html file=_temp_ rs=none style=minimal;
NOTE: Writing HTML Body file: _TEMP_
5 proc print data=Sashelp.'Shoes'N noobs;
6 run;

NOTE: There were 395 observations read from the data set SASHELP.SHOES.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.51 seconds
 cpu time 0.29 seconds

7 ods html close;
8 ods results;
9 ods listing;
10 filename _temp_;
NOTE: Fileref _TEMP_ has been deassigned.

This information was printed onto the SAS log when the “Copy Contents to Clipboard” option was
selected. This code was generated by SAS and resulted in the output HTML data being placed onto the
Windows clipboard using the SAS FILENAME statement to define the output location.

1.4.4 Selecting the “Save as Html” Option of the SAS Explorer Window

Example 1.4.4
This option offers a “Save as” menu to allow the data from the SAS dataset to be saved in a file on any
device attached to your computer. The data will be saved in HTML file format. The options on the left side
of the “Save As” menu may vary from what is presented here because these options are unique to the
software installed on your computer. Specifically, my option to access network files may not be the same as
yours. When the output file directory and file name are selected and the “Save” button is clicked, the output
file is actually created. This file can be opened by any application that can read an HTML file. Notice that
the only real difference between Examples 1.4.3 and 1.4.4 is the Clipboard option on the FILENAME
statement instead of an actual file path and file name.

Figure 1.4.3: “Save As” SAS Screen Presented to Allow Naming the Output Location of an
HTML File.

Chapter 1: Easy Data Movement between SAS and Excel 13

The following information was printed onto the SAS log when the “Save as HTML” option was selected.
This code was generated by SAS and resulted in the output HTML data being placed into a file on my
computer using the SAS FILENAME statement to define the output location.

1 filename _temp_ "C:\My_HTLM_Output\Shoes.html";
2 ods noresults;
3 ods listing close;
4 ods chtml file=_temp_ rs=none;
NOTE: Writing CHTML Body file: _TEMP_
5 proc print data=Sashelp.'Shoes'N noobs;
6 run;

NOTE: There were 395 observations read from the data set SASHELP.SHOES.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.15 seconds
 cpu time 0.09 seconds

7 ods chtml close;
8 ods results;
9 ods listing;
10 filename _temp_;
NOTE: Fileref _TEMP_ has been deassigned.

1.4.5 Using the “View in Excel” Option to Copy Data to Excel Files via HTML

Example 1.4.5
The “View in Excel” option also generates an HTML file. This file is saved in your SAS Work directory as
a text file of HTML commands with the extension *.xls. The file is not visible in the SAS Explorer window
and Excel is invoked to open the file. The file will typically have a name similar to “#LNxxxxxx.xls”. This
naming convention dates back to when all file names were limited to 8 characters in length and had a 3-
character extension. This file-naming structure is known as the “8.3” format for names that were in use
before SAS and Microsoft Windows could support long file names. The 3-byte extension (xls) allows Excel
to open the file without hesitation before Excel 2007. The newer versions check the contents of the file and,
if the file name ends in .xls but contains HTML or XML formatted commands for Excel, then a message is
displayed asking you to verify that you want to proceed (see Figure 1.4.4).

Figure 1.4.4: Warning Message Shown when Excel 2007 or Later Opens the Generated
HTML File.

The SAS log output below is similar to the listing output in Example 1.4.4, but has the addition of the
Display Manager command at the bottom of the log. The “winexecfile” command caused the named file to
be opened with the application that is associated with the file extension. In this case, it would be Excel.

14 Exchanging Data between SAS and Microsoft Excel

1 filename _temp_ "C:\Users\owner\AppData\Local\Temp\SAS Temporary
Files_TD3228\#LN00008.xls";
2 ods noresults;
3 ods listing close;
4 ods html file=_temp_ rs=none style=minimal;
NOTE: Writing HTML Body file: _TEMP_
5 proc print data=Sashelp.'Shoes'N label noobs;
6 run;

NOTE: There were 395 observations read from the data set SASHELP.SHOES.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.23 seconds
 cpu time 0.12 seconds

7 ods html close;
8 ods results;
9 ods listing;
10 filename _temp_;
NOTE: Fileref _TEMP_ has been deassigned.
11 dm "winexecfile ""C:\Users\owner\AppData\Local\Temp\SAS Temporary
Files_TD3228\#LN00008.xls"" ";

On computers with Excel 2007 or newer versions installed, the pop-up screen appears to allow you to
verify that you still want to open the file even though the file is not formatted as an Excel file. When you
click on “Yes” to view the data using Microsoft Excel, the output HTML file is opened by Excel. The SAS
option “style=minimal” is applied to the HTML formatted output. It has simple formatting with a header
“The SAS System” in row one and the SAS variable labels in row three. When no labels exist, the variable
names are placed into row three. This output method is handy for getting SAS data directly into Excel
workbooks. But remember that big SAS files may exceed the limits of Excel worksheets, as noted in Table
1.2.1, Microsoft Excel Workbook File Limitations.

Figure 1.4.5: View of the HTML File Opened by Excel.

Chapter 1: Easy Data Movement between SAS and Excel 15

1.4.6 SAS Toolbar File Option, the Gateway to the SAS Export / Import
Wizards
The SAS view shown in Figure 1.4.6 is an image from Windows XP and SAS 9.3. It shows the toolbar
“File” option selected and the resulting pop-up menu. This figure will be referenced for both this example
and the example for the next section.

Figure 1.4.6: View of the SAS Toolbar File Pop-Up Menu.

The actual menu that is shown using the “File” option in the SAS toolbar varies. What is shown depends
upon the screen that is the currently active screen.

● When no SAS dataset is highlighted in the SAS Explorer window, the selection of the “File”
option on the SAS toolbar will show a pop-up menu (Figure 1.4.6). That menu, among other
things, has two options that read and write external files.

● When a SAS dataset is highlighted in the SAS Explorer window, the selection of the “File” option
on the SAS toolbar will show a pop-up menu similar to Figure 1.4.6 except that the following
options are not available.

◦ New
◦ Page Setup …
◦ Print setup …
◦ Print Preview
◦ Print …

These two options “Export Data” and “Import Data” start the SAS Export wizard and the SAS Import
wizard, respectively. The variations within the wizards are slight and depend upon SAS version and
operating system installed on your computer.

Note that Example 1.4.7 and Example 1.4.8 below write data to and read data from the same external Excel
file. If you want to use these exact examples you must use the SAS Export wizard to write the Excel file
before you can use the SAS Import wizard to read it. The SAS Export wizard asks for the SAS dataset first,
and then asks for the external file name and location. The SAS Import wizard asks for an external file to
import and then a SAS dataset to create.

16 Exchanging Data between SAS and Microsoft Excel

1.4.7 Choosing the “Export Data” SAS Toolbar (Export Wizard) File Option

Example 1.4.7
Select “Export Data” to start the SAS Export wizard. The variations between SAS versions of the Export
wizard are slight and depend upon the SAS version and operating system installed on your computer. This
example writes data to an external Excel file. The SAS Export wizard asks for the SAS dataset first, and
then asks for the external file name and location.

The SAS Export wizard defaults to pointing to your SAS datasets in your SAS WORK area, but allows you
to select an active libref assigned to your SAS session. Any SAS dataset referenced by an active
LIBNAME statement can be selected. If the SAS dataset you wish to use is not currently referenced by an
assigned libref, then you need to cancel the SAS Export wizard and return to submit a LIBNAME
statement. The wizard guides you through the process one screen at a time. Drop-down menu selections or
browse buttons on each screen allow you to search the directories and files available. This tool uses
methods similar to other Microsoft Windows search screens and should not present any navigation
problems. The SAS Export wizard will allow you to save the generated code anywhere on your computer
that you can write a file. A sample of the code generated appears below.

PROC EXPORT DATA= SASHELP.SHOES
 OUTFILE= "F:\My_Excel_File\test_file_1.xls"
 DBMS=EXCEL LABEL REPLACE;
 SHEET="Shoes_Sheet";
 NEWFILE=YES;
RUN;

1.4.8 Electing the “Import Data” SAS Toolbar (Import Wizard) File Option

Example 1.4.8
Select “Import Data” to start the SAS Import wizard. The variations between SAS versions of the Import
wizard are slight and depend upon SAS version and operating system installed on your computer. This
example reads data from an external Excel file. The SAS Import wizard asks for the external file name and
location first, and then asks for the SAS dataset name. The SAS Import wizard defaults to reading an Excel
workbook, but many other file type options are also available to read, including user-defined file formats
(see Figure 1.4.7). But, we will limit our work here to Excel file formats. The SAS Import wizard will
allow you to select both the Excel workbook and worksheet name to import. Then you can select a location
to save the generated code anywhere on your computer that you can write a file. The WORK libref is used
as the default output libref to save your data that is read from the external file, and must be assigned before
the Import wizard runs.

Chapter 1: Easy Data Movement between SAS and Excel 17

Figure 1.4.7: SAS V9.3 Import Wizard Running on a 32-bit Windows XP Operating System.

A sample of the code generated appears below. The code uses a DATAFILE statement to locate the input
file. You use the wizard windows to select this file. It must exist when the Import wizard runs.

PROC IMPORT OUT= WORK.Sample_import
 DATAFILE= "F:\My_Excel_File\test_file_1.xls"
 DBMS=EXCEL LABEL REPLACE;
 RANGE="Shoes_Sheet_1";
 GETNAMES=YES;
 MIXED=NO;
 SCANTEXT=YES;
 USEDATE=YES;
 SCANTIME=YES;
RUN;

1.4.9 Using the Export / Import Wizards in a 32/64-Bit Mixed Environment
Special requirements exist when SAS, Excel, and your operating system do not all conform to the same
“bit” size for executing software. Many different combinations exist and not all of them are compatible. For
SAS 9.2 TS Level 2M3 and above running on a 64-bit Windows operating system with SAS/ACCESS
Interface to PC Files installed, there are a few minor differences. There is an option to use SAS PC Files
Server to read or write the Excel workbooks. The “Connect to MS Excel” window shown in Figure 1.4.8
will be displayed when either wizard needs to define a connection that uses SAS PC Files Server. This is
required because SAS PC Files Server translates 64-bit data requests into instructions that the 32-bit access
tools can understand. All other screens and output SAS code are generally the same. In both SAS 9.2 and
SAS 9.3, SAS PC Files Server performs this way; however, the two versions of SAS PC Files Server have
the same name and therefore cannot reside on the same computer. They also use different default port
numbers. SAS 9.2 uses the port number 8621, and SAS 9.3 uses the port number 9621. SAS 9.4 can also
operate in these mixed environments.

18 Exchanging Data between SAS and Microsoft Excel

Figure 1.4.8: The “Connect to MS Excel” Options Screen May Appear in a 32/64 Bit Mixed
Environment.

To get an accurate assessment of the software installed on your computer, contact your IT department or
SAS Technical Support.

1.5 Chapter Summary
The examples in this chapter demonstrated how to move data between SAS datasets and Excel worksheets
using the following methods.

● Cut or copy then paste
● Convert text data to Excel column data
● Copy Excel data into a SAS Enhanced Editor window
● Save multiple lines of text into a single Excel cell
● Convert Excel tables to text
● The Export wizard from the SAS Explorer window
● Copy contents to the Windows clipboard
● Save SAS data as HTML
● View a SAS file in Excel
● SAS Export wizard from the File toolbar tab

• SAS Import wizard from the File toolbar tab

We also touched upon some cautions about using SAS to read or write data to Excel when running your
programs in a 32/64-bit mixed environment. These are introductory methods of moving data between the
two systems. In the rest of the book, I will use and expand on these and other methods that these two
powerful software tools use to transfer data and communicate with one another.

Chapter 2: Use PROC EXPORT to Write SAS Data
to External Files and Excel Workbooks

2.1 Introduction ... 19

2.2 Purpose ... 20

2.3 Syntax of the SAS EXPORT Procedure ... 20

2.4 Data Access Methods for Excel Files Supported by PROC EXPORT 21

2.5 Overview of the Examples ... 22

2.6 List of Examples .. 23
Example 2.1 SAS Code to Export Data to an Excel 4 or Excel 5 Format File 23
Example 2.2 PROC EXPORT Using the DBMS=DLM Option ... 24
Example 2.3 PROC EXPORT Using the DBMS=EXCEL Option 25
Example 2.4 PROC EXPORT Using the DBMS=EXCELCS Option 27
Example 2.5 SAS Code to Export Data to an Excel File with No Column Headers 28
Example 2.6 SAS Code to Export Data to a Network Windows Computer 28

2.7 Conclusion .. 29

 2.1 Introduction
This chapter will explain the syntax, usage, and the results that can be generated when using the SAS
EXPORT procedure. Examples will range from simple to complex. This chapter builds upon the Chapter 1
explanation and examples of the SAS Export Wizard.

As we saw in the last chapter, the SAS Export Wizard optionally can create a SAS code file of the PROC
EXPORT instructions used to write the output file. The SAS Export Wizard can execute SAS code to
output a SAS dataset in various formats. The code generated by the wizard can be saved, modified, and
reused. A SAS user can also write code to execute PROC EXPORT directly. The syntax of PROC
EXPORT will be explained and the options listed below in a table. PROC EXPORT is a general purpose
routine and is able to output data from SAS files in several different formats.

Because PROC EXPORT can write many of the file formats that Microsoft Excel can read directly, several
examples will be shown that write to files that can be loaded into Excel worksheets. But, because the focus
of this work is moving data from SAS to Excel and back, only options relative to creating Excel files will
be explored. Some of the code examined here was shown in Chapter 1, but in this chapter we will examine
the PROC EXPORT syntax in detail to show the flexibility of the SAS EXPORT procedure. One important
aspect of PROC EXPORT is its ability to interface with an external Data Base Management System
(DBMS). PROC EXPORT has a syntax argument called DBMS that makes this option available and
permits access to many different output data formats. We will focus on the ability to interface with different
versions of Excel.

20 Exchanging Data between SAS and Microsoft Excel

Depending upon what operating system and version of SAS you are using, you may be able to write to
some or all of the following formats. The details for reading these other formats are explained in the SAS
documentation.

● Microsoft Access database files
● Microsoft Excel workbook files
● Lotus 1-2-3 spreadsheet files
● Paradox files
● SPSS files
● Stata files
● dBase files
● JMP files
● delimited files

2.2 Purpose
I will discuss the syntax of the PROC EXPORT and point you to the SAS online documentation for your
version of SAS in this chapter. There will be several examples to show you how to write the code to use
PROC EXPORT and the results that the examples produce. Because not everyone has the latest version of
either SAS or Excel installed on his or her computer, I will not restrict my examples to those newest
versions. This chapter will show you how to write SAS code to use PROC EXPORT. Because of the size
and complexity of some of the reference tables, I suggest that you refer to SAS/ACCESS Interface to PC
Files: Reference for the version of SAS that you have installed. In addition, the volume of the options does
not allow for an example describing each option. While every effort has been made to reproduce the
concepts accurately, the SAS documentation is the final authority.

2.3 Syntax of the SAS EXPORT Procedure
PROC EXPORT DATA=<libref.>SAS data set <(SAS data set options)>

OUTFILE="filename" | OUTTABLE="tablename"

<DBMS=identifier> <REPLACE> <LABEL>;

<file-format-specific-statements>;

NOTE: Some features relating to Microsoft Excel 2007, 2010, and 2013 for operating systems Microsoft
Vista 64-bit, Microsoft Windows 7 and 8, LINUX, and UNIX may not be available in SAS versions prior
to the third maintenance release of SAS 9.2. Other operating systems may not be compatible until later
versions of SAS are released. SAS is not supported on some versions of the Microsoft Windows operating
system.

Table 2.1 provides a high-level definition of the parts of the syntax for PROC EXPORT as listed above.
See the SAS documentation for your version of SAS for more details about PROC EXPORT in the SAS
software version you are using.

Table 2.1: General Description of PROC EXPORT Syntax Options.

Argument / (Alias) Required Definition of the Function of the Argument

DATA= Yes Provide the input SAS dataset name.
SAS Data Set
Options

No Options like KEEP=, DROP=, RENAME=,
WHERE=, and others may be provided.

OUTFILE/(FILE) Yes

Provide the output file name. OUTTABLE (or
TABLE) is for Microsoft Access databases only.

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks 21

Argument / (Alias) Required Definition of the Function of the Argument
DBMS No See the examples below for specific options

relating to the individual DBMS identifier values.
Options are based upon the file types being
processed and direct the actions of the SAS
PROC EXPORT features.

LABEL
/(DBLABEL)

No When either “LABEL” or “DBLABEL” is
present, then SAS will use the SAS variable’s
label value as the column title in row one of the
output Excel file.

REPLACE No When “REPLACE” is present, then SAS will
overwrite an existing output file. A new file will
be created if the requested file name does not
exist.

2.4 Data Access Methods for Excel Files Supported by PROC EXPORT
The data access methods listed in Figure 2.1 are used to create output files Excel has the ability to read.
When you select a DBMS mode, it determines which utility will be used to process the SAS dataset to
create an output file. The output file may be a text file or an Excel spreadsheet. See the documents listed
above for more details about the SAS software version you are using. Some of these data access methods
(the DBMS=modes) require SAS/ACCESS Interface to PC Files software to function. You must have
SAS/ACCESS Interface to PC Files licensed before you can export files directly to Microsoft Excel
workbooks. Some features relating to Microsoft Excel 2007, Excel 2010, and Excel 2013 when using
Microsoft Windows, LINUX, and UNIX operating systems may not be available in SAS versions prior to
the third maintenance release of SAS 9.2. Because the number of SAS, Excel, and operating system
versions is large, I once again suggest that you refer to SAS/ACCESS Interface to PC Files: Reference for
the version of SAS that you have installed.

Here would also be a good place to introduce the SAS PC Files Server. This is a software tool used by SAS
to convert data when the computing environment you are using includes hardware and software of different
“bit” configurations. For a human like you and me, this would be equivalent to learning a new language
with more letters and more complex words. For a computer, this change is from processing data units with
32-bits (1s and 0s) to using 64-bits. These are the elements that are changing: SAS software can be either
32- or 64-bit software, Excel programs can be 32- or 64-bit software, the computer operating system can be
32- or 64- bit software, or the computer can be 32- or 64-bit hardware. Here I will say contact your IT
Department. The SAS PC Files Server helps clear up some of the confusion.

Figure 2.1: DBMS Output Formats Generated.

DBMS
Identifier

SAS/ACCESS
Interface to PC Files
Required

General Description of the DBMS Output File

CSV N Text file with a comma delimiter
TAB N Text file with a tab delimiter
DLM N Text file with a user defined delimiter
EXCEL Y Excel workbook referenced by a LIBNAME
EXCELCS Y Excel workbook referenced by using the SAS PC Files

Server
EXCEL4 Y Excel workbook
EXCEL5 Y Excel workbook

22 Exchanging Data between SAS and Microsoft Excel

DBMS
Identifier

SAS/ACCESS
Interface to PC Files
Required

General Description of the DBMS Output File

XLS Y Excel workbook using file formats prior to Excel 2007
except Excel 4 and Excel 5

XLSX Y Excel workbook using file formats 2007, 2010, and 2013

NOTE: The DBMS identifiers listed in Figure 2.2 are relative to the file formats that Microsoft Excel can
read or write. The SAS documentation lists other DBMS identifiers that PROC EXPORT can write. See the
SAS documentation for your version of SAS for other options to write file formats. Different versions of
SAS may not be able to write to all of the versions of Excel listed in Figure 2.2.

Figure 2.2: DBMS Output Methods of Accessing Excel Files.

DBMS
Identifier

Method of
Accessing
Excel Files

Excel
Version

Comments

EXCEL LIBNAME
statement

5, 95, 97,
2000, 2002,
2003, 2007,
2010, 2013

This DBMS option will use the LIBNAME
statement. Access is limited to the first 255
columns. Some older versions may be limited to
65,535 rows.

EXCELCS SAS PC Files
Server

5, 95, 97,
2000, 2002,
2003, 2007,
2010, 2013

This DBMS option will use the SAS PC Files
Server. Access is limited to the first 255 columns.
Some older versions may be limited to 65,535
rows.

EXCEL4 or
EXCEL5

DBLOAD
procedure

4, 5, 95 This is supported only on Microsoft Windows
operating systems and is for SAS 6 compatibility.

XLS XLS format 97, 2000,
2002, 2003

Chinese, Japanese, or Korean DBCS character
sets may not be supported in all versions of SAS.

XLSX XLSX format 2007, 2010,
and later
formats

This does not support the Chinese, Japanese, or
Korean DBCS character sets, which may not be
supported in all versions of SAS or *.xlsb Excel
files.

2.5 Overview of the Examples
The examples in this chapter will cover several but not all of the DBMS options used with PROC
EXPORT. I like to group the output processing for PROC EXPORT into general categories within the
DBMS options. Furthermore, I feel I must place a caveat onto these groupings because both SAS and
Microsoft Excel are mature products that have changed over time. While these categories are generally
accurate, your SAS version, Excel version, and computer hardware may not support every DBMS option,
and each DBMS option might operate slightly differently depending upon what software you have
installed. So, make sure you verify what is available to you by looking in the SAS manual that relates to
your environment.

● An example retained for backward compatibility with files in the Excel 4 and Excel 5 formats.
● Text file output options like CSV, TAB and DLM do not require SAS/ACCESS Interface to PC

Files because the methods write out text files.
● Options that use PROC DBLOAD to output the data.
● Options that write directly to a formatted Excel file.

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks 23

● LIBNAME options that do not use the SAS PC Files Server.

• LIBNAME options that do use the SAS PC Files Server.

The options that generate text files will show one example and explain the differences that make the other
options work.

2.6 List of Examples
The following is a table listing the examples in this chapter and some comments about each example.

Figure 2.3: List of Examples for PROC EXPORT.

Example Number General Description

2.1 SAS Code to Export Data to an Excel 4 or Excel 5 Format File.
This example is included for backward compatibility. The Excel
formats Excel 4 and Excel 5 were the first two Excel formats and it is
rare to find a computer using this Microsoft Excel software today. The
example shows how to write to these old Excel formats.

2.2 PROC EXPORT Using the DBMS=DLM Option. This example
shows how to use a delimiter to separate output values and eliminate
the header row of variable names at the top of the file. This example is
equivalent to DBMS=CSV and DBMS=TAB because you can provide
your own delimiter.

2.3 PROC EXPORT Using the DBMS=EXCEL Option. The three parts
of this example all write Excel workbooks that do not need the PC
Files Server to be processed. The main point of these code routines is
to show how to create multiple worksheets within one workbook, and
to create a sheet with a mixed case name. Also note that only some of
the input SAS dataset variables are output.

2.4 PROC EXPORT Using the DBMS=EXCELCS Option. This
example is similar to Example 2.3, but here the code is executed on a
64-bit operating system using a 64-bit copy of SAS 9.3 and a 32-bit
copy of Microsoft Excel. Since this computer operating system and
SAS use a 64-bit configuration, but Excel uses a 32-bit configuration,
PROC EXPORT requires the use of the PC Files Server. The “CS”
part of DBMS=EXCELCS annotates this feature is in use.

2.5 SAS Code to Export Data to an Excel File with No Column
Headers. This example writes an Excel worksheet with no column
headers (variable names) in the output Excel worksheet. It also
demonstrates that the SAS PROC EXPORT routine will not write an
Excel sheet name with spaces.

2.6 SAS Code to Export Data to a Network Windows Computer.
Writing SAS data to another computer that you have shared privileges.

Example 2.1 SAS Code to Export Data to an Excel 4 or Excel 5 Format File
The SAS EXPORT procedure maintains the backward compatibility features required to process Excel
workbooks in the Excel 4 and Excel 5 formats. This example shows how to write Excel files in those
formats. For Excel 4 workbooks, the sheet name is the same as the file name (without the .xls) and there is
only one sheet in the workbook. For Excel5 formatted workbooks the sheet name is “Sheet1”.

24 Exchanging Data between SAS and Microsoft Excel

Figure 2.4: SAS Code to Export to Version 4 and 5 Excel Files.

* Write an Excel4 formatted file;
PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes_to_Excel_4_file.xls'
 DBMS=EXCEL4
 REPLACE;
RUN;

* Write an Excel5 formatted file;
PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes_to_Excel_5_file.xls'
 DBMS=EXCEL5
 REPLACE;
RUN;

Example 2.2 PROC EXPORT Using the DBMS=DLM Option
This example uses PROC EXPORT to write a delimited file readable by Microsoft Excel. This example
does not produce an Excel file; however, it produces a comma-delimited *.csv formatted file that can be
read by Microsoft Excel. Using the SAS External File Interface (EFI), the following code writes out a
delimited file from the SASHELP.shoes data set. Any character could have been used here. Using a comma
makes the output file the same as if the DBMS=CSV option were used without the DELILITER=”,”
statement. Using DBMS =TAB would produce a similar file with Tab characters instead of commas.

Figure 2.5: SAS Code to Export to CSV File.

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\Shoes.csv'
 DBMS=DLM
 REPLACE;
 DELIMITER=',';
 PUTNAMES=NO;
RUN;

Figure 2.6: The Output Log Produced by the PROC EXPORT Code.

1 PROC EXPORT DATA=sashelp.shoes
2 OUTFILE='C:\My_Files\Shoes.csv'
3 DBMS=DLM
4 REPLACE;
5 DELIMITER=',';
6 PUTNAMES=NO;
7 RUN;

8 /**
9 * PRODUCT: SAS
10 * VERSION: 9.3
11 * CREATOR: External File Interface
12 * DATE: 11JAN14
13 * DESC: Generated SAS Datastep Code
14 * TEMPLATE SOURCE: (None Specified.)
15 ***/
16 data _null_;
17 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
18 %let _EFIREC_ = 0; /* clear export record count macro variable */
19 file 'C:\My_Files\Shoes.csv' delimiter=',' DSD DROPOVER lrecl=32767;
20 set SASHELP.SHOES end=EFIEOD;
21 format Region $25. ;
22 format Product $14. ;
23 format Subsidiary $12. ;
24 format Stores best12. ;
25 format Sales dollar12. ;
26 format Inventory dollar12. ;

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks 25

27 format Returns dollar12. ;
28 do;
29 EFIOUT + 1;
30 put Region $ @;
31 put Product $ @;
32 put Subsidiary $ @;
33 put Stores @;
34 put Sales @;
35 put Inventory @;
36 put Returns ;
37 ;
38 end;
39 if _ERROR_ then call symputx('_EFIERR_',1);
40 if EFIEOD then call symputx('_EFIREC_',EFIOUT);
41 run;

The next listing is the first few lines of the output-delimited file. There are no headers listed in the first row
because the “PUTNAMES=NO” command suppressed the header row. Notice also that fields with commas
embedded in the data are enclosed in quotation marks.

Figure 2.7: Output in a CSV Format with PUTNAMES=NO Set Active.

Africa,Boot,Addis Ababa,12,"$29,761","$191,821",$769
Africa,Men's Casual,Addis Ababa,4,"$67,242","$118,036","$2,284"
Africa,Men's Dress,Addis Ababa,7,"$76,793","$136,273","$2,433"
Africa,Sandal,Addis Ababa,10,"$62,819","$204,284","$1,861"
Africa,Slipper,Addis Ababa,14,"$68,641","$279,795","$1,771"
Africa,Sport Shoe,Addis Ababa,4,"$1,690","$16,634",$79
Africa,Women's Casual,Addis Ababa,2,"$51,541","$98,641",$940
Africa,Women's Dress,Addis Ababa,12,"$108,942","$311,017","$3,233"
Africa,Boot,Algiers,21,"$21,297","$73,737",$710
Africa,Men's Casual,Algiers,4,"$63,206","$100,982","$2,221"
Africa,Men's Dress,Algiers,13,"$123,743","$428,575","$3,621"
Africa,Sandal,Algiers,25,"$29,198","$84,447","$1,530"
Africa,Slipper,Algiers,17,"$64,891","$248,198","$1,823"
Africa,Sport Shoe,Algiers,9,"$2,617","$9,372",$168
Africa,Women's Dress,Algiers,12,"$90,648","$266,805","$2,690"
Africa,Boot,Cairo,20,"$4,846","$18,965",$229

Example 2.3 PROC EXPORT Using the DBMS=EXCEL Option
This example runs PROC EXPORT three times. We do not need to define the SASHELP library, since it is
defined and initiated automatically by SAS at the beginning of each session. Each execution of a code
module places one output sheet into the Excel file. The first two times, we create sheets in the same
workbook showing examples of the options SHEET= and DBDSOPTS=. The “SHEET=” option defines
the Excel worksheet name. The second code module shows how to assign a mixed-case sheet name. Option
“DBDSOPTS=” allows several different options, but only the “KEEP=” option is shown.

The third time that PROC EXPORT is run, the output file is deleted and only one sheet is left in the file.
This is done with the “NEWFILE=YES” option. Quotes are not required around the sheet name as long as
it is a valid SAS name, containing neither spaces nor special characters. Unquoted sheet names will be all
capital letters when the code finishes running. This configuration did require SAS/ACCESS Interface to PC
Files, but did not require the PC Files Server. The data in all three of these worksheets is the same.

The three parts of this example all write Excel workbooks that do not need the PC Files Server to be
processed. The main point of these code routines is to show how to create multiple worksheets within one
workbook, and to create a sheet with a mixed-case name. Also note that only some of the input SAS dataset
variables are output.

26 Exchanging Data between SAS and Microsoft Excel

Step One – Write an Excel worksheet with the sheet name in Excel converted to
capital letters.
Write the file ‘c:\My_files\shoes.xls’ with only four variables from the SHOES dataset in the SASHELP
library. If this Excel workbook exists and the worksheet “MY_PAGE” also exists, the worksheet will be
overwritten. If the workbook does not exist, it will be created.

Figure 2.8: SAS Code Export Data to an XLS File.

* Write the MY_PAGE sheet, the sheet name is all capital letters;
* since the sheet name entered on the SHEET= statement is not quoted;
* only variables region, sales, returns, and inventory will be output;

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes.xls'
 DBMS=EXCEL
 REPLACE;
 SHEET=My_Page;
 DBDSOPTS='keep=region sales returns inventory';
RUN;

Step Two – Write an Excel worksheet with a mixed-case sheet name and spaces
converted to underscores by SAS for Excel.
There are two differences between step one and step two which involve the output Excel worksheet name.
The first is that the sheet name contains mixed case letters and underscores when viewed in the Excel file.
The second difference is there will be two sheets in the output Excel workbook.

Figure 2.9: SAS Code Export Data to an XLS File with Mixed-Case Sheet Names.

* Write a sheet called My_New_Page, the sheet name will be mixed case ;
* and the sheet name has underscores instead of spaces in the ;
* name because SAS generated sheet names do not have spaces however ;
* when a sheet name is created or renamed by Excel you can place a ;
* space into the sheet name. A sheet name generated by SAS can contain ;
* a single quote if the sheet name is enclosed in double quotes ;

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes.xls'
 DBMS=EXCEL
 REPLACE;
 SHEET='My New Page';
 DBDSOPTS='keep=region sales returns inventory';
RUN;

Step Three – Overwrite an existing Excel Workbook and output one sheet with a
name in uppercase letters.
Step two and step three have different results when you output an Excel workbook. The first is that the
sheet name contains uppercase letters. The second difference is that the old Excel workbook will be
replaced and the new workbook will have one worksheet.

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks 27

Figure 2.10: SAS Code Export Data to an XLS File with Uppercase Sheet Names.

* Write sheet called MY_PAGE, the sheet name will be all capital letters;
* Old output file will be deleted and the new file will have one sheet;

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes.xls'
 DBMS=EXCEL
 REPLACE;
 SHEET=My_Page;
 NEWFILE=YES;
 DBDSOPTS='keep=region sales returns inventory';
RUN;

Example 2.4 PROC EXPORT Using the DBMS=EXCELCS Option
This code was executed on a Windows 64-bit operating system using 64-bit SAS 9.3, but the Excel
program was a 32-bit based copy of Excel. Since this computer uses 64-bit hardware, PROC EXPORT
requires the use of SAS/ACCESS to PC Files Server software. The option NEWFILE= is not valid in that
configuration. Windows 64-bit operating systems and remote connections both require the use of the PC
Files Server to execute. This code uses the DBMS=EXCELCS and the SERVICE=SASPCFILE statements.

Also note that SAS 9.2 and SAS 9.3 use different SAS PC Files Server executable modules, but maintain
the same names and are therefore not compatible with each other. They also use different defaults ports
when the processing occurs. See the documentation for your version of SAS software for complete details.
In addition, be aware that some of these features may not be available in SAS versions prior to the third
maintenance release of SAS 9.2. The PROC EXPORT DBMS=EXCELCS statement will write to *.xls,
*.xlsb, and *.xlsx files but not to *.xlsm file formats.

Figure 2.11: SAS Code Export Data to an xls file with Uppercase Sheet Names.

* Write a sheet called MY_PAGE, the sheet name will be all capital;
* letters since the sheet name entered on the SHEET= statement is not;
* quoted;

* The PROC EXPORT DBMS=EXCELCS statement will write to *.xls, *.xlsb, ;
* *.xlsx but not to *.xlsm file formats.;

PROC EXPORT DATA=sashelp.shoes
OUTFILE='C:\My_Files\shoes.xlsb'
DBMS=EXCELCS
REPLACE;
SHEET=My_Page;
SERVICE=SASPCFILE;
RUN;

Figure 2.12a: The Result of the PROC EXPORT Execution.

1 PROC EXPORT DATA=sashelp.shoes
2 OUTFILE='C:\My_Files\shoes.xlsb'
3 DBMS=EXCELCS
4 REPLACE;
5 SHEET=My_Page;
6 SERVICE=SASPCFILE;
7 RUN;

NOTE: "MY_PAGE" range/sheet was successfully created.
NOTE: PROCEDURE EXPORT used (Total process time):
 real time 12.43 seconds
 cpu time 0.64 seconds

28 Exchanging Data between SAS and Microsoft Excel

As shown in the examples in this chapter, the file-format-specific-statements are listed after the PROC
EXPORT statement. In other words, the statements after the first semicolon are independent statements that
modify PROC EXPORT. While no spaces are shown between the option names and the “=” sign, spaces
are usually permitted in this syntax.

Example 2.5 SAS Code to Export Data to an Excel File with No Column
Headers
This example outputs an Excel file using PROC EXPORT with the DBMS=XLS option. For this output,
either the “REPLACE” option or the NEWFILE= file format statements are valid. The PUTNAMES=NO
statement puts only the data without row or column headers. While the sheet name, because it is enclosed
in quotes, remains case sensitive, the spaces are replaced with underscores. SAS PROC EXPORT will not
write a sheet name with spaces.

Figure 2.12b: SAS Code That Outputs the Result without a Header Row.

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='C:\My_Files\shoes_to_xls.xls'
 REPLACE
 DBMS=XLS;
 NEWFILE=YES;
 PUTNAMES=NO;
 SHEET='My Sheet Name';
RUN;

Figure 2.13: Screen Image from the Results of PROC EXPORT.

Example 2.6 SAS Code to Export Data to a Network Windows Computer
When writing SAS data to another computer, you need access to the other computer and shared ability to
write to the disk volume within the described path name.

Figure 2.14: SAS Code to Export Data to Another Computer.

PROC EXPORT DATA=sashelp.shoes
 OUTFILE='\\owl-2000-xp\E_Drive\My_Files\shoes_to_xls.xls'
 REPLACE
 DBMS=XLS;
 NEWFILE=YES;
 SHEET='My Sheet Name';
RUN;

Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks 29

2.7 Conclusion
The examples in this chapter covered a wide range of conditions, from simple text files that Excel can read
to complex examples that span multiple computers. I have not covered all options and all conditions when
you would need to write data using PROC EXPORT. Below is a simple list of the examples by title for a
quick review.

● SAS Code to Export Data to an Excel4 or Excel5 Format File
● PROC EXPORT using the DBMS=DLM option
● PROC EXPORT using the DBMS=EXCEL option
● PROC EXPORT Using the DBMS=EXCELCS Option
● SAS Code to Export Data to an Excel File with No Column Headers
● SAS Code to Export Data to a Network Windows Computer

30 Exchanging Data between SAS and Microsoft Excel

Chapter 3: Use PROC IMPORT to Read External Data
Files and Excel Workbooks into SAS

3.1 Introduction ...31

3.2 Purpose ...32

3.3 Syntax of the SAS IMPORT Procedure ...32

3.4 Data Access Methods for Files Supported by PROC IMPORT33

3.5 Overview of the Examples ...34

3.6 List of Examples ..34
Example 3.1 PROC IMPORT Using the DBMS=EXCEL4 or EXCEL5 Option 35
Example 3.2 PROC IMPORT Using the DBMS=DLM Option ... 35
Example 3.3 PROC IMPORT Using the DBMS=EXCEL Option ... 37
Example 3.4 PROC IMPORT Using the DBMS=EXCELCS Option .. 40
Example 3.5 PROC IMPORT Using the DBMS=XLS or XLSX to Select Columns 42
Example 3.6 PROC IMPORT Using the DBMS=XLS or XLSX to Select Rows 43
Example 3.7 PROC IMPORT Using the DBMS=XLS or XLSX to Select Excel Ranges 44

3.7 Conclusion ..45

3.1 Introduction
This chapter builds upon the Chapter 1 explanation and examples of the SAS Import Wizard, and will explain
the syntax, usage, and the results that can be generated when using the SAS IMPORT procedure, specifically
PROC IMPORT.

PROC IMPORT is a general purpose routine and is able to read data from text files and Excel workbook files
which can exist in several different formats. The ability to read files of many formats makes PROC IMPORT
extremely useful. The primary focus of this chapter will be upon reading Excel files. However, some examples
will show how to read text files with delimiters because Excel can write files with those formats. The syntax of
PROC IMPORT will be explained and the options listed below in Table 3.3.1. One important aspect of PROC
IMPORT is its ability to interface with an external Data Base Management System (DBMS). PROC IMPORT
has a syntax argument called DBMS that makes this option available and permits access to many different input
data formats. Options exist to enable the transfer of data between SAS and many other file formats, but because
the focus of this work is moving data from SAS to Excel and back, only options relative to Excel will be
explored.

Depending upon which operating system and version of SAS you are using, you may be able to read some or all
of the following formats. The details for reading these other formats are explained in the SAS documentation.

● Microsoft Access database files
● Microsoft Excel workbook files
● Lotus 1-2-3 spreadsheet files
● Paradox files
● SPSS files
● Stata files
● dBase files

32 Exchanging Data between SAS and Microsoft Excel

● JMP files
● delimited files

3.2 Purpose
I will discuss the syntax of the SAS IMPORT procedure and point you to the SAS online documentation for
your version of SAS in this chapter. There will be several examples to show you how to write the code to use
PROC IMPORT and the results that the examples produce. Because not everyone has the latest version of either
SAS or Excel installed on his or her computer, I will not restrict my examples to those newest versions. This
chapter will show you how to write SAS code to use PROC IMPORT. Because of the size and complexity of
some of the reference tables I suggest that you refer to SAS/ACCESS Interface to PC Files: Reference for the
version of SAS that you have installed.

3.3 Syntax of the SAS IMPORT Procedure
PROC IMPORT

DATAFILE= <'filename'> | DATATABLE= <'tablename'> (Not used for Microsoft Excel files)
<DBMS>= <data-source-identifier>
<OUT>= <libref.SAS data-set-name> <SAS data-set-option(s)>
<REPLACE>;
<file-format-specific-statements>;

NOTE: Some features relating to Microsoft Excel 2007, 2010, and 2013 for operating systems Microsoft Vista
64 bit, Microsoft Windows 7 and 8, LINUX, and UNIX, may not be available in SAS versions prior to the third
maintenance release of SAS 9.2. Other operating systems may not be compatible until later versions of SAS are
released. SAS is not supported on some versions of the Microsoft Windows operating system.

Table 3.3.1 provides a high-level definition of the parts of the syntax for PROC IMPORT as listed above. See
SAS/ACCESS to PC Files: Reference for more details about PROC EXPORT in the SAS software version you
are using.

Table 3.3.1: General Description of PROC IMPORT Syntax Options.

Argument / (Alias) Required Definition of the Function of the Argument
OUTFILE/(FILE) Yes Provide the output file name. DATATABLE

is not used for Excel files.
SAS Data Set Options No Options like KEEP=, DROP=, RENAME=,

WHERE=, and others may be provided.
OUT= Yes Provide the output SAS dataset name.
DBMS No See Tables below for specific options relating

to the individual DBMS <identifier> values.
Options are based upon the file types being
processed and direct the actions of the SAS
PROC IMPORT features.

REPLACE No When “REPLACE” is present then SAS will
overwrite an existing output file. A new file
will be created if the requested file name does
not exist.

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 33

3.4 Data Access Methods for Excel Files Supported by PROC IMPORT
The data access methods listed in Figure 3.4.1 are used to read data files Excel has the ability to create.
Selecting a DBMS mode determines which utility will be used to process the external file to create an output
SAS dataset. The input file may be a text file or an Excel spreadsheet. See the documents listed above for more
details about the SAS software version you are using. Some of these data access methods (the DBMS=modes)
require SAS/ACCESS Interface to PC Files software to function. You must have SAS/ACCESS Interface to PC
Files licensed before you can import files directly from some versions Microsoft Excel workbooks. Some
features relating to Microsoft Excel 2007, Excel 2010, and Excel 2013 when using Microsoft Windows,
LINUX, and UNIX operating systems may not be available in SAS versions prior to the third maintenance
release of SAS 9.2. Because the number of SAS, Excel, and operating system versions is large, I once again
refer you to the SAS documentation to help you figure out what you have installed.

If you suspect that your SAS and Excel software may have different bit configurations (32 or 64 bit), contact
your IT Department.

The DBMS identifiers listed in Table 3.4.1 are relative to the file formats that Microsoft Excel can read or write.
The SAS documentation lists other DBMS identifiers that the PROC IMPORT can read. See the SAS
documentation for your version of SAS for other options to read file formats available. Different versions of
SAS may not be able to read to all of the versions of Excel.

Table 3.4.1: DBMS Formats Available for Input.

DBMS
Identifier

SAS/ACCESS
Interface to PC Files
Required

General Description of the DBMS Output File

CSV N Text file with a comma delimiter
TAB N Text file with a tab delimiter
DLM N Text file with a user-defined delimiter
EXCEL Y Excel workbook (2003 xls – 2013 xlsx)
EXCELCS Y Excel workbook (2003 xls – 2007 xlsx) using the SAS

PC Files Server
EXCEL4 Y Excel workbook using PROC DBLOAD
EXCEL5 Y Excel workbook using PROC DBLOAD
XLS Y Excel workbook using file formats prior to Excel 2007

except Excel 4 and Excel 5
XLSX Y Excel workbook using file formats 2007, 2010, and 2013

Table 3.4.2 lists some information about the input methods available when reading Excel worksheets. Some of
these methods have limitations that are smaller than the full capabilities of the Excel version that created them.
These restrictions are as a result of using the Microsoft JET or ACE engines to access the Excel workbooks.

Table 3.4.2: DBMS Input Methods of Accessing Excel Files.

Utility DBMS Model Excel Version Comments
EXCEL LIBNAME statement 5, 95, 97, 2000,

2002, 2003, 2007,
2010, 2013

This DBMS option will use the LIBNAME
statement. Depending upon your version of
SAS and Excel, access may be limited to the
first 65,535 rows and 255 columns.

EXCELCS SAS PC Files Server 5, 95, 97, 2000,
2002, 2003, 2007,
2010, 2013

This DBMS option will use the SAS PC
Files Server. Depending upon your version
of SAS and Excel, access may be limited to
the first 65,535 rows and 255 columns.

34 Exchanging Data between SAS and Microsoft Excel

Utility DBMS Model Excel Version Comments
EXCEL4 or
EXCEL5

DBLOAD procedure 4, 5, 95 This is supported only on the Microsoft
Windows operating systems and is for SAS 6
compatibility.

XLS XLS format 97, 2000, 2002,
2003

Some versions of SAS may not support the
Chinese, Japanese, or Korean DBCS
character sets.

XLSX XLSX format 2007, 2010, and
later formats

Some versions of SAS may not support the
Chinese, Japanese, or Korean DBCS
character sets or *.xlsb Excel files.

3.5 Overview of the Examples
The examples in this chapter will cover several but not all of the DBMS options used with PROC IMPORT. I
like to group the input processing for PROC IMPORT into general categories within the DBMS options.
Furthermore, I feel I must place a caveat onto these groupings because both SAS and Microsoft Excel are
mature products that have changed over time. While these categories are generally accurate, your SAS version,
Excel version, and computer hardware may not support every DBMS option, and each DBMS option might
operate slightly differently depending upon what software you have installed. So make sure you verify what is
available to you by looking in the SAS manual that relates to your environment.

● An example retained for backward compatibility with files in the Excel 4 and Excel 5 formats.
● Text file output options like CSV, TAB and DLM do not require SAS/ACCESS Interface to PC Files

because the methods read text files.
● Options that read directly from a formatted Excel file.

• LIBNAME options that both use and do not use the SAS PC Files Server.

The options that generate text files will show one example and explain the differences that make the other
options work.

3.6 List of Examples
Table 3.6.1 is a general description of the functions included in the examples shown in this chapter. Some of the
examples here have minor overlaps in the features to show how they interact when additional features are
included.

Table 3.6.1: List of Examples for PROC IMPORT.

Example Number General Description

3.1 PROC IMPORT Using the DBMS=EXCEL4 or EXCEL5 Option.
This example is included for backward compatibility with Excel
formats Excel 4 and Excel 5, although I would consider it rare to find a
computer using this Microsoft Excel software today. The example
shows how to read to these old Excel formats.

3.2 PROC IMPORT Using the DBMS=DLM Option. This example
shows how to use a delimiter to separate input values and read the
header row of the input file as data. This example is equivalent to
DBMS=CSV and DBMS=TAB but allows you to provide your own
delimiter.

3.3 PROC IMPORT Using the DBMS=EXCEL Option. The three parts
of this example all read Excel workbooks that do not need the PC Files

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 35

Example Number General Description
Server to be processed. The main point of these code routines is to
show how to read parts of worksheets within one workbook, and to
change variable names and labels as the data is read from Excel into a
SAS dataset.

3.4 PROC IMPORT Using the DBMS=EXCELCS Option. This
example shows code that was executed on a 64-bit operating system
using a 64-bit copy of SAS 9.3 and a 32-bit copy of Microsoft Excel.
Since this computer operating system and SAS use a 64-bit
configuration but Excel uses a 32-bit configuration, PROC IMPORT
requires the use of the SAS PC Files Server. The “CS” part of
DBMS=EXCELCS annotates this feature is in use.

3.5 PROC IMPORT Using the DBMS=XLS or XLSX to Select
Columns. This example reads an Excel worksheet with no column
headers (variable names) in the output Excel worksheet. It also
demonstrates that PROC IMPORT will read an Excel sheet name with
spaces.

3.6 PROC IMPORT Using the DBMS=XLS or XLSX to Select Rows.
Reading Excel data from selected rows of an Excel worksheet.

3.7 PROC IMPORT Using the DBMS=XLS or XLSX to Select Excel
Ranges. This example shows you how to use PROC IMPORT to read
a range of cells from an Excel worksheet.

Example 3.1 PROC IMPORT Using the DBMS=EXCEL4 or EXCEL5 Option
The SAS IMPORT procedure maintains the backward compatibility features required to process Excel
workbooks in the Excel 4 and Excel 5 formats. This example shows how to write Excel files in those formats.
For Excel 4 workbooks the sheet name is the same as the file name (without the .xls) and there is only one sheet
in the workbook. For Excel 5 formatted workbooks, the sheet name is “Sheet1”.

* SAS code to import data from an Excel4 file.;
* there is only one sheet in Excel4 files;
PROC IMPORT
 DATAFILE='C:\My_Files\shoes_to_Excel_4_file.xls'
 DBMS=EXCEL4
 OUT=shoes_from_Excel_4
 REPLACE;
RUN;

* SAS code to import data from an Excel 5 file.;
PROC IMPORT
 DATAFILE='C:\My_Files\shoes_to_Excel_5_file.xls'
 DBMS=EXCEL5
 OUT=shoes_from_Excel_5
 REPLACE;
RUN;

Example 3.2 PROC IMPORT Using the DBMS=DLM Option
Using PROC IMPORT to read delimited files in Base SAS invokes the External File Interface (EFI), and the
following code reads in a delimited file with commas as the delimiter from the external file named Shoes.csv in
directory c:\My_files. This example uses the DBMS=DLM option with the DELIMITER=’,’ option to select a
comma for the delimiter. In addition, it uses the DATAROW=1 and GETNAMES=NO options. These options
cause the input SAS file to make the first row from the *.csv file appear as data in the SAS file.

36 Exchanging Data between SAS and Microsoft Excel

NOTE: In Example 2.2 in Chapter 2, the code for PROC EXPORT used the PUTNAMES=NO option to write
the 'c:\My_Files\Shoes.csv' output file with no variable names in the first row of the file.

The output log listing below shows the External File Interface SAS code created by the “Generated SAS
Datastep” when the PROC IMPORT step above ran. Notice that the input *.csv file did not have a row of
headers associated with the data. So, SAS assigned variable names to the input variables (VAR1 to VAR7).

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.txt'
 DBMS=DLM
 OUT=shoes
 REPLACE;

 DELIMITER=',';
 DATAROW=1;
 GETNAMES=NO;
 GUESSINGROWS=400;
RUN;

Output 3.1: Listing of the External File Interface Code Generated.

1
2 PROC IMPORT
3 DATAFILE='c:\My_Files\Shoes.txt'
4 DBMS=DLM
5 OUT=shoes
6 REPLACE;
7
8 DELIMITER=',';
9 DATAROW=1;
10 GETNAMES=NO;
11 GUESSINGROWS=400;
12 RUN;

13 /**
14 * PRODUCT: SAS
15 * VERSION: 9.4
16 * CREATOR: External File Interface
17 * DATE: 17FEB14
18 * DESC: Generated SAS Datastep Code
19 * TEMPLATE SOURCE: (None Specified.)
20 ***/
21 data WORK.SHOES ;
22 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
23 infile 'c:\My_Files\Shoes.txt' delimiter = ',' MISSOVER DSD lrecl=32767 ;
24 informat VAR1 $25. ;
25 informat VAR2 $14. ;
26 informat VAR3 $12. ;
27 informat VAR4 best32. ;
28 informat VAR5 $12. ;
29 informat VAR6 $12. ;
30 informat VAR7 $9. ;
31 format VAR1 $25. ;
32 format VAR2 $14. ;
33 format VAR3 $12. ;
34 format VAR4 best12. ;
35 format VAR5 $12. ;
36 format VAR6 $12. ;
37 format VAR7 $9. ;
38 input

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 37

39 VAR1 $
40 VAR2 $
41 VAR3 $
42 VAR4
43 VAR5 $
44 VAR6 $
45 VAR7 $
46 ;
47 if _ERROR_ then call symputx('_EFIERR_',1); /* set ERROR detection
macro variable */
48 run;

NOTE: The infile 'c:\My_Files\Shoes.txt' is:
 Filename=c:\My_Files\Shoes.txt,
 RECFM=V,LRECL=32767,File Size (bytes)=24901,
 Last Modified=17Feb2014:15:55:41,
 Create Time=17Feb2014:16:14:58

NOTE: 395 records were read from the infile 'c:\My_Files\Shoes.txt'.
 The minimum record length was 37.
 The maximum record length was 85.
NOTE: The data set WORK.SHOES has 395 observations and 7 variables.
NOTE: DATA statement used (Total process time):
 real time 0.07 seconds
 cpu time 0.03 seconds

395 rows created in WORK.SHOES from c:\My_Files\Shoes.txt.

NOTE: WORK.SHOES data set was successfully created.
NOTE: The data set WORK.SHOES has 395 observations and 7 variables.
NOTE: PROCEDURE IMPORT used (Total process time):
 real time 0.53 seconds
 cpu time 0.14 seconds

For SAS 6.12 and above, the External File Interface writes out “Generated SAS Datastep Code” that could be
captured and used elsewhere. The DELIMITER= statement is active only when DBMS=DLM, and this tells
PROC IMPORT what character separates the data values within the input file. When DBMS= has a value of
CSV or TAB, SAS assumes a delimiter of a comma or Tab character, respectively. The fact that the file name
was “Shoes.txt” caused the “file-format-specific-statement” DELIMITER=DLM to identify the input file as a
text file with values separated by commas not the default of spaces for *.txt files.

Example 3.3 PROC IMPORT Using the DBMS=EXCEL Option

Example 3.3 – Part 1
The code in parts 1, 2, and 3 of Example 2.3 in Chapter 2 showed how to create an Excel workbook with
different numbers of worksheets. The example shows how to create worksheet names with mixed-case letters in
the name. However, this method will not write an Excel worksheet with a blank in the sheet name. The
following code will read the Excel file and produce a SAS dataset called “Shoes” in the Work directory. Notice
that the RANGE= value for the spreadsheet name was in capital letters and ended in a Dollar sign “$”. The
spreadsheet name in the “RANGE=” statement did not need to be in uppercase letters.

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xls'
 DBMS=EXCEL
 OUT=shoes
 REPLACE;
 RANGE='SHOES$'n;
RUN;

38 Exchanging Data between SAS and Microsoft Excel

Example 3.3 – Part 2.
If we want only part of the input Excel file, there are several ways to go about getting just what we want. The
following code brings in only a few cells from the input Excel file. Here, we will also suppress the request to
pull the variable names from the first row of the input data, since we are pulling data from the middle of the
Excel file.

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xls'
 DBMS=EXCEL
 OUT=shoes
 REPLACE;
 GETNAMES=NO;
 RANGE='shoes$C2:F4'n;
RUN;

This SAS code does that job. The added command “GETNAMES=NO” and the modification of the
“RANGE=” operand are the key parts of this SAS code. The SAS output file looks something like the
following:

Figure 3.1: SAS Output from Reading the Excel Range Using Absolute Addressing of Excel
Cells.

Only 12 cells were read from the Excel worksheet called “SHOES” and the SAS variable names were converted
to F1, F2, F3, and F4 because the GETNAMES=NO statement suppressed reading any variable names. The
“RANGE=” worksheet name value was in lowercase and included the location of the Excel cells to read into the
SAS dataset.

Example 3.3 – Part 3
Users of Excel Workbooks have the option of creating subsets of cells in a worksheet that can be called by
name; these areas are called Named-Ranges. Figure 3.2 below shows one of these named ranges called
“small_range”. The range name was created while running Excel with the workbook Shoes.xls open.

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 39

Figure 3.2: An Excel 2013 Worksheet with a Named Range Called “small_range” Highlighted.

The SAS code below shows how to read the data from the Excel named-range called “small_range” into a SAS
dataset. Because the GETNAMES=NO option is used, the variable names F1, F2, F3, and F4 that SAS
generated are relatively vague variable names; this example will address a way to correct that issue. The
DBDSOPTS= option allows you to use other SAS dataset options to change the output SAS dataset while it is
being created. The SAS RENAME= dataset option was used here to change the variable names from F1, F2, …
to more descriptive variable names. This is done in one pass over the data and makes the output file more useful
when PROC IMPORT finishes. You do not need to make another pass over the data to rename the variables.
The PROC DATASETS code adds LABEL values to the SAS dataset. The DBMS=EXCEL form of PROC
IMPORT does not allow variable labels to be modified on input of the data; therefore, other code is needed to
change the variable labels.

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xls'
 DBMS=EXCEL
 OUT=shoes
 REPLACE;
 GETNAMES=NO;
 DBDSOPTS='RENAME=(F1=Subsidiary F2=Stores F3=Sales F4=Inventory)';
 RANGE=small_range;
RUN;
PROC DATASETS LIBRARY=work NOLIST;
 MODIFY shoes;
 LABEL Subsidiary = "Subsidiary"
 Stores = "Stores"
 Sales = "Sales"
 Inventory = "Inventory";
QUIT;

40 Exchanging Data between SAS and Microsoft Excel

Output 3.1: Listing of the PROC IMPORT Code generated and the PROC DATASETS Listing.

1
2
3 PROC IMPORT
4 DATAFILE='c:\My_Files\Shoes.xls'
5 DBMS=EXCEL
6 OUT=shoes
7 REPLACE;
8 GETNAMES=NO;
9 DBDSOPTS='RENAME=(F1=Subsidiary F2=Stores F3=Sales F4=Inventory)';
10 RANGE=small_range;
11 RUN;

NOTE: WORK.SHOES data set was successfully created.
NOTE: The data set WORK.SHOES has 7 observations and 4 variables.
NOTE: PROCEDURE IMPORT used (Total process time):
 real time 0.17 seconds
 cpu time 0.06 seconds

12 PROC DATASETS LIBRARY=work NOLIST;
NOTE: Writing HTML Body file: sashtml.htm
13 MODIFY shoes;
14 LABEL Subsidiary = "Subsidiary"
15 Stores = "Stores"
16 Sales = "Sales"
17 Inventory = "Inventory";
18 QUIT;

NOTE: MODIFY was successful for WORK.SHOES.DATA.
NOTE: PROCEDURE DATASETS used (Total process time):
 real time 0.25 seconds
 cpu time 0.15 seconds

Figure 3.3: The SAS Dataset Created by the Code Above.

Example 3.4 PROC IMPORT Using the DBMS=EXCELCS Option
This example is similar to Example 3.2, but the code was executed on a Windows 64-bit configuration. The 64-
bit operating system requires the use of the PC Files Server to execute any PROC IMPORT code where
DBMS=EXCELCS. The SAS code for Part 1 reads the full Excel worksheet. The difference in the code is the
use of the DBMS=EXCELCS option. Note that in most cases the “named-constants” are used as part of the

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 41

syntax of the RANGE= option; the “named-constants” are not required when a range-name is used with the
RANGE= statement.

Example 3.4 – Part 1
The following SAS code reads a full worksheet from an Excel file on a 64-bit computer; the DBMS=EXCELCS
option uses the SAS PC Files Server to access and read the input Excel 32-bit workbook.

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xlsb'
 DBMS=EXCELCS
 OUT=shoes
 REPLACE;
 RANGE='SHOES$'n;
RUN;

Example 3.4 – Part 2
The following segment of SAS code, while syntactically correct, reads the first row of data as variable names
and produces unpredictable results because GETNAMES= is not supported when DBMS=EXCELCS. This
code is intended to read three rows of data from the input Excel file. However, the first row is interpreted as
SAS variable names.

NOTE: The RANGE= value includes Excel cell references, which may not produce your desired output
because the GETNAMES= statement is not supported when using the DBMS=EXCELCS option. I suggest that
you use the DBMS=XLSX option instead, as shown in Example 3.5. This example shows what happens if you
do not use the DBMS=XLSX statement.

/* this code does not work */
PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xlsb'
 DBMS=EXCELCS
 OUT=shoes
 REPLACE;
 RANGE='shoes$C2:F4'n;
RUN;

Figure 3.4 shows the output SAS dataset generated by the PROC IMPORT code from above. The intended
result was to read three data rows into the SAS dataset. However, the first row was read and translated into
variable names.

Figure 3.4: The SAS Dataset Created by the Code Above.

42 Exchanging Data between SAS and Microsoft Excel

Example 3.5 PROC IMPORT Using the DBMS=XLS or XLSX to Select Columns
When using the DBMS=XLS option of PROC IMPORT with the ENDCOL and STARTCOL statements, the
output SAS dataset is restricted to only the columns requested. This works like a KEEP statement, except the
columns have to be contiguous. The input file is the SASHELP.SHOES dataset as exported to an Excel file.
This example imports columns 2, 3, and 4 (Product, Subsidiary, and Number of Stores).

NOTE: There is a comment in the SAS log about a name change for the variable named “Number of Stores”
because this text value has spaces embedded in the value. The value shown in Figure 3.5a for column 3
(Number of Stores) is the label applied to the variable named “Number_of_Stores”. Also, ENDCOL= was
placed before STARTCOL= to show the statement order is not important. The output SAS dataset has data from
three rows and five columns of the input Excel worksheet.

PROC IMPORT
 DATAFILE='c:\My_Excel_Files\Shoes.xls'
 DBMS=XLS
 OUT=shoes
 REPLACE;
 ENDCOL="4";
 STARTCOL="2";
RUN;

The system output log for Example 3.5 shows the name change of the variable “Number of Stores.” The log
also verifies that only three columns were output to the SAS dataset from Excel.

1 PROC IMPORT
2 DATAFILE='c:\My_Excel_Files\Shoes.xls'
3 DBMS=XLS
4 OUT=shoes
5 REPLACE;
6 ENDCOL="4";
7 STARTCOL="2";
8 RUN;

NOTE: Variable Name Change. Number of Stores -> Number_of_Stores
NOTE: The import data set has 395 observations and 3 variables.
NOTE: WORK.SHOES data set was successfully created.
NOTE: PROCEDURE IMPORT used (Total process time):
 real time 0.03 seconds
 cpu time 0.04 seconds

SAS output dataset:
In Figure 3.5a, the SAS dataset label shown for the variable Number_of_Stores has two spaces; however, the
actual variable name does not have any spaces embedded.

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 43

Figure 3.5a: The SAS Dataset Created by the Code Above.

Example 3.6 PROC IMPORT Using the DBMS=XLS or XLSX to Select Rows
This example uses the PROC IMPORT option pairs STARTROW= / ENDROW= and STARTCOL= /
ENDCOL= to show you how you can select a range of cells from an Excel worksheet without creating a named
range in an Excel workbook. When the NAMEROW=, GETNAMES=, and RANGE= statements are added to
the mix, you can pick names for your variable from inside the Excel file without needing a second pass over the
dataset or the need to use PROC DATASETS. The text values with spaces embedded in the value have had an
underscore added to replace the space in the variable name. Also, ENDROW= was placed before
STARTROW= to show the statement order in not important. The output SAS dataset has data from three
columns and five rows of the input Excel worksheet.

PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xls'
 DBMS=XLS
 OUT=shoes
 REPLACE;
 ENDCOL="4"; /* a quoted string is required */
 STARTCOL="2"; /* a quoted string is required */
 ENDROW=10; /* numeric value is required */
 STARTROW=6; /* numeric value is required */
 NAMEROW=1;
 GETNAMES=NO;
RUN;

44 Exchanging Data between SAS and Microsoft Excel

Output Log of Code Above

1
2
3 PROC IMPORT
4 DATAFILE='c:\My_Files\Shoes.xls'
5 DBMS=XLS
6 OUT=shoes
7 REPLACE;
8 ENDCOL="4"; /* a quoted string is required */
9 STARTCOL="2"; /* a quoted string is required */
10 ENDROW=10; /* numeric value is required */
11 STARTROW=6; /* numeric value is required */
12 NAMEROW=1;
13 GETNAMES=NO;
14 RUN;
NOTE: Variable Name Change. Number of Stores -> Number_of_Stores
NOTE: The import data set has 5 observations and 3 variables.
NOTE: WORK.SHOES data set was successfully created.
NOTE: PROCEDURE IMPORT used (Total process time):
 real time 0.06 seconds
 cpu time 0.01 seconds

Figure 3.5b: Using PROC IMPORT to Select Rows and Headers from an Excel Worksheet.

Example 3.7 PROC IMPORT Using the DBMS=XLS or XLSX to Select Excel
Ranges
This example was executed on a computer running 64-bit Windows 8.1 Professional on 64-bit hardware with
SAS 9.4 and 32-bit Excel 2013 installed. The DBMS option XLSX provides an alternative method to reading a
small group of cells from an Excel spreadsheet. However, this method does not always provide reliable variable
names when GETNAMES=YES. GETNAMES=YES looks for variable names in the first row of input cells.
Here, GETNAMES=NO is used to turn off the search for variable names in the Excel file. The
RANGE='shoes$C2:F4'n command selects only 12 cells from the Excel file.

 PROC IMPORT
 DATAFILE='c:\My_Files\Shoes.xlsx'
 DBMS=XLSX
 OUT=shoes
 REPLACE;
 GETNAMES=NO;
 RANGE='shoes$C2:F4'n;
 RUN;

Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS 45

1
2
3 PROC IMPORT
4 DATAFILE='c:\My_Files\Shoes.xlsx'
5 DBMS=XLSX
6 OUT=shoes
7 REPLACE;
8 GETNAMES=NO;
9 RANGE='shoes$C2:F4'n;
10 RUN;

NOTE: The import data set has 3 observations and 4 variables.
NOTE: WORK.SHOES data set was successfully created.
NOTE: PROCEDURE IMPORT used (Total process time):
 real time 0.03 seconds
 cpu time 0.01 seconds

Figure 3.6: SAS Output When Using PROC IMPORT to Select a Group of Cells from an Excel
Spreadsheet.

3.7 Conclusion
I have shown several methods of reading data and variable names from Excel workbooks. But, there are far too
many other combinations of options available for me to present an exhaustive list. This chapter showed features
of PROC IMPORT. Some of the important items to take away from this chapter are that the Microsoft Excel
JET and ACE engines have limitations. These limitations will occasionally affect the amount of data you can
extract from your Excel files. There may be times when you are required to fall back to the tried-and-true
delimited file formats to transfer your data to and from Excel. I suggest that you refer to SAS/ACCESS Interface
to PC Files: Reference for the version of SAS that you have installed. These documents have SAS version-
specific descriptions of the syntax and features available for the SAS Import Wizard and PROC IMPORT.

46 Exchanging Data between SAS and Microsoft Excel

Chapter 4: Using the SAS LIBNAME to Process
Excel Files

4.1 Introduction ... 47

4.2 Purpose ... 48

4.3 Excel-Specific Features of the SAS LIBNAME Statement 48

4.4 Syntax of the SAS LIBNAME Statement ... 49

4.5 LIBNAME Statement ENGINE CONNECTION OPTION Descriptions 50
4.5.1 HEADER Option to Read Variable Names .. 50
4.5.2 MIXED Option to Select Data Types ... 50
4.5.3 PATH Option to Define Physical File Locations ... 51
4.5.4 VERSION Option to Identify Excel File Version .. 52
4.5.5 PROMPT Option to Interactively Assign a Libref ... 52
4.5.6 Other Common SAS PC File LIBNAME Options .. 53

4.6 Excel-Specific Dataset Options ... 53

4.7 UNIX, LINUX, and 64-Bit Windows Connection Options 54

4.8 Overview of the Examples ... 55
4.8 List of Examples ... 55

4.9 Examples ... 56
Example 4.1 Using the Engine Connection HEADER Option .. 56
Example 4.2 Using the Engine Connection MIXED Option .. 57
Example 4.3 Using the Engine Connection PATH Option .. 58
Example 4.4 Using the Engine Connection VERSION Option ... 58
Example 4.5 Using Named Literals with the LIBNAME Statement 59
Example 4.6 Using PROC CONTENTS to Examine an Excel Workbook 60
Example 4.7 Using Dataset Options to Process Date and Time Values 62
Example 4.8 Using Dataset Options to Process Variable Type Conversions 63
Example 4.9 Processing on 64-Bit Operating Systems .. 64

4.10 Conclusion .. 65

4.1 Introduction
SAS LIBNAME statements are used everywhere in SAS, and they are the most common way for SAS
programmers to access SAS data files. They are used to read SAS data files and write SAS data files. SAS
data comes in. SAS data goes out. But, is that all there is? Well, for SAS users without SAS/ACCESS
Interface to PC Files installed that may be true. But users who want to read Excel files with Base SAS 9
and above and who have SAS/ACCESS Interface to PC Files installed have other options. The LIBNAME
statement will give them direct access to some files that are not SAS files. This tool will allow users to
directly read and write data files formatted for Microsoft Windows applications. Many people are not
aware that SAS/ACCESS Interface to PC Files will allow SAS programmers to access an Excel spreadsheet
the same way as any other SAS file. There are, of course, some restrictions, but there are also a lot of
options that help remove some of the bumps in the road. Most programmers use LIBNAME statements
only to access SAS data files. When external data is required, the data is converted to a text file and input
through a FILENAME connection of some sort. Or, PROC IMPORT or PROC EXPORT is used to process

48 Exchanging Data between SAS and Microsoft Excel

external files. The most popular of these applications (and the focus of this book) is moving data between
SAS files and Microsoft Excel. The LIBNAME statement allows the user to define an Excel file in SAS
terms. This gives the programmer access to LIBNAME and dataset options to control how the Excel file is
defined, accessed and, yes, even how the data will be formatted. Not all of the data formats of Excel can be
accessed, but the LIBNAME statement gives the SAS user more control over the data.

Complexities That Relate to SAS, Excel, and Your Hardware
Before we get started on the basics about the LIBNAME statement as it relates to SAS, Excel, and your
hardware, I need to make a few comments. To paraphrase the beginning of Dickens’ novel A Tale of Two
Cities: it is the best of times, it is the worst of times, as far as accessing Excel data from SAS goes. Why
would I, as an author who has spent the last several years working on this project, feel that way? The
increase in options relating to hardware (32-bit and 64-bit); the availability of 32-bit and 64-bit SAS 8.2,
9.0, 9.1, 9.2, 9.3, to 9.4; and the changes in the Excel version formats from Excel 2003, to Excel 2007 and
the addition of 2010 (32-bit and 64-bit), and 2013 (32-bit and 64-bit) present a very large number of
combinations. The examples I present here may not work on your configuration.

NOTE: IMPORTANT RESTRICTION. In the past, multiple copies of some SAS software versions
were able to reside on one computer, but the SAS PC Files Server (pcfservice.exe) for SAS 9.2 and SAS
9.3 have the same name, run as the same service, listen for commands on different computer I/O ports, and
are NOT compatible. So, even though you can install both SAS 9.2 and SAS 9.3 on the same computer
only one version of SAS will be able to read and write to Excel files using the SAS PC Files Server.

4.2 Purpose
SAS is a language of defaults; the runtime system looks to see how a variable is first used. Then, it assigns
a default type to the variable. When a programmer types “PROC PRINT; RUN;” the last SAS dataset
created is sent to the Output window with all of the observations and all of the variables listed. The SAS
language also gives the programmer choices about the code. The ATTRIB command assigns either a
numeric or a character data type to a variable. These assignments can change the size of the variable to a
small numeric with a limited range of values, or a large character variable bigger than the default.
LIBNAME statements are no different; they have options to change the behavior of the input/output
processes. This chapter addresses some options available for reading and writing data to and from Excel
files using SAS.

4.3 Excel-Specific Features of the SAS LIBNAME Statement

What Is the “LIBNAME” Feature for Excel Files?
The LIBNAME is the SAS door that opens onto Excel data, making it look like SAS data, allowing the
SET statement (and dataset options) to directly read and write Excel file data. This allows data to be input
or output by a DATA step or SAS procedure. SAS uses either the Microsoft JET or ACE SQL engine to
read and write to the Excel files. The LIBNAME statement employs special options to help make the task
easier. Of course, options, while being nice to have, often imply freedoms (or restrictions).

NOTE: Excel uses binary formats for Excel file versions Excel 5.0 to Excel 2003. However, Excel 2007,
Excel 2010, and Excel 2013 do not produce a native binary formatted file. These versions generate files
that are output in a new file format called Open XML. The Open XML files have a file name with the
extensions “xlsx”, “xlsm”, and “xlsb”. But, Microsoft Excel 2007, Excel 2010, and Excel 2013 can read
and write to other Excel version formats. Changing an Excel 2007 or later file extension to *.zip will allow
you to view the XML parts of the Excel files.

What Is Needed to Use a SAS LIBNAME to Access Excel Files?
The ability to use a LIBNAME to access data has long been restricted to SAS datasets. Beginning with
SAS 9, SAS/ACCESS Interface to PC Files can use Excel files as SAS input. Furthermore, SAS files can

Chapter 4: Using the SAS LIBNAME to Process Excel Files 49

be used for output to Excel. SAS offers other software besides SAS/ACCESS Interface to PC Files that
enables users to process data from Oracle, and MySQL databases among others. These and other
SAS/ACCESS interfaces will not be discussed here. If you want to find out if you have SAS/ACCESS to
PC Files installed on your system, then execute the SETINIT procedure as shown below.

proc setinit;
run;

Find Out What Hardware and Software Configuration Your Computer Uses.
All of the Windows operating systems since Windows XP are available in both 32-bit and 64-bit versions.
One good thing is that all versions of Excel 2003 and Excel 2007 are 32-bit applications. You can
determine the bit configuration of Excel 2010 by checking FILE>HELP and looking on the right side of the
screen under “About Microsoft Excel”. Similarly, you can determine the bit configuration of Microsoft
Excel 2013 by checking FILE>ACCOUNT>ABOUT EXCEL and looking on the upper right of the pop-up
screen “About Microsoft Excel”. UNIX, LINIX, and other operating systems have their own methods of
detecting the bit configuration in use. This information is important to know when selecting options to use
with the LIBNAME statement.

What Can the LIBNAME Statement Do for You?
When you use a SAS LIBNAME to read Excel data, the data can be read directly from native format binary
Excel files. The SAS LIBNAME can read data either from a full Excel worksheet or from a part of an
Excel worksheet defined by Excel to be a “named range”. Within Excel, a “named range” can be as small
as a single cell, or as large as the whole worksheet. That same data can be written out in nearly the same
way directly to a native Excel binary file. Named ranges can be written out in similar sized units, but not
necessarily in the same location. All “named range” output that is written begins in cell A1. Some
assumptions are made using LIBNAME statements on the input side and the output side, but knowing the
rules can make things easier. Writing data from a SAS file to Excel is generally a little safer. This is
because when a SAS file is written out, all of the data in one variable or Excel column is of the same data
type. Reading data from Excel is sometimes more of a challenge. The ability of Excel files to change data
formats on the data cell level can still present challenges to SAS programs reading input from Excel files.
SAS input routines predict the type of data that is in an Excel worksheet column, but generally by only
looking at the first few rows of the column. This tends to produce missing data values for columns where
both numeric and character values exist. In some cases, this issue can be overcome if named ranges are
defined within the Excel worksheet. But full columns of mixed values present a challenge. The MIXED
option described below can help to modify this behavior and make your results more consistent with data of
unknown types from the spreadsheets. Also, be aware that some configurations of the Microsoft JET/ACE
engines may be limited to 255 columns and 65,535 rows.

4.4 Syntax of the SAS LIBNAME Statement
First, let us look at the different syntax options and parameters available for the LIBNAME statement as
they relate to accessing Microsoft Excel files. Some general LIBNAME options are discussed in this
chapter. The SAS/ACCESS engine connection options change the way that the LIBNAME statement
interacts with Excel workbooks. But the SAS/ACCESS LIBNAME options work more directly with the
data in the worksheets.

LIBNAME libref <engine> <physical-file-name>
<SAS/ACCESS-engine-connection-options>
<SAS/ACCESS-libname-options>;

The following engine connection options are commonly used by SAS when opening Excel files. These
items will be discussed later below; other, less used options also exist.

● HEADER Affects the way that the first row or observation is processed.
● MIXED Affects how columns with both numeric and character data are treated.
● PATH Allows you to supply a path for an Excel file, this is not always needed.

50 Exchanging Data between SAS and Microsoft Excel

● PROMPT Enables SAS to provide help menus to assist with assigning librefs.

• VERSION Assigns the output Excel version; SAS can determine the input version.

The following SAS/ACCESS LIBNAME options are commonly used with Excel. However, space does not
permit an example of each option, so I have selected a few values and provided a short description of each
here. Other options are available for different input file types and access methods. The defaults for Excel
input files are listed in BOLD typeface. Aliases may also exist for these options.

● ACCESS=READONLY Limits SAS to Read-only mode.
● DBGEN_NAME=DBMS or SAS Specify how data source columns are named.
● DBMAX_TEXT=n (1-32767) Maximum length of an input character string.*
● DBSASLABEL=COMPT or NONE Select whether to save input column names as a label.
● FILELOCK=YES or NO Specify if the input file is locked to other users.
● SCAN_TEXTSIZE=YES or NO Scan the input file character columns for size of strings.
● SCAN_TIMETYPE=YES or NO Scan Excel variables for time values.
● STRINGDATES=YES OR NO Select to read dates as character strings.

• USEDATETYPE=YES or NO Use the SAS format DATE9. for date values.

*Default=1024.

4.5 LIBNAME Statement ENGINE CONNECTION OPTION Descriptions
The next part of the LIBNAME statement we will examine here is the way that SAS can open the Excel
files. By examining how these options interact with Excel workbooks, I will show how the options treat the
data when it is accessed after the Excel file is open. In the LIBNAME syntax chart listed in section 4.4 we
see SAS/ACCESS engine connection options and SAS/ACCESS LIBNAME statement options. These are
both little-used features of SAS LIBNAME statements. The example portion of this chapter shows some
examples and outputs from applying these options

4.5.1 HEADER Option to Read Variable Names
The first to be addressed is the set of SAS/ACCESS engine connection options. See Example 4.1, Using the
Engine Connection HEADER Option. The HEADER option affects the reading of the first line of the Excel
file. When the option value is set to YES (the default), the first row of data is read to build SAS variable
names. The cell values are converted to SAS variable names. When the text values would not generate
valid SAS variable names, underscores are inserted into the SAS variable name. Duplicate names are
avoided by adding a number to the end of the variable name. This number increases as duplicate columns
are found, moving from left to right.

When the HEADER option is set to NO or when the cell value does not convert to a text field, SAS
generates a variable name. Also, when the option is set to NO, then the first row is considered data, and
variable names are generated as F1, F2, F3, ... , to Fn with the n being the number of the last column in the
Excel spreadsheet.

4.5.2 MIXED Option to Select Data Types
The MIXED option is provided to assist in reading fields that are not obviously text or numeric. Excel files
can be generated by someone typing data into one cell after another without regard to the type of data that
they are entering (character or numeric). SAS has to make a default best guess about what the field
contains. When an Excel input column contains both character and numeric data, the intent of this option is
to read all of the data in the Excel column as character data. This option is handled by the Microsoft Jet or
ACE provider and is available only in Windows for Excel files. This does not work for delimited files;
remember, delimited files are read with a FILENAME statement.

Chapter 4: Using the SAS LIBNAME to Process Excel Files 51

However, the MIXED engine connection option has dependencies that are beyond the control of SAS
software. This small feature of the SAS LIBNAME statement is one of the complex concepts dealing with
reading data from Excel into SAS. This complexity comes from the environment that the software has to
deal with. In the introduction to this chapter, I discussed the complexities that relate to SAS, Excel, and
your hardware. Here is where those complexities converge. The following items make implementing this
feature difficult.

1. Hardware (32-bit or 64-bit).
2. Operating System (32-bit or 64-bit).
3. SAS Version (8.2, 9.0, 9.1, 9.2, 9.3, 9.4 - 32-bit or 64-bit).
4. SAS/ACCESS Interface to PC Files Server – for SAS 9.2, 9.3, 9.4, 9.4.1.
5. Microsoft Excel Version: Excel 2003 and Excel 2007 are 32-bit.
6. Microsoft Excel Version: Excel 2010 and Excel 2013 can be either 32-bit or 64-bit.
7. Microsoft JET engine processes file formats prior to Excel 2007.
8. Microsoft ACE engine processes all Excel formats including Excel 2007 and later.
9. Microsoft JET and ACE engines are embedded in the OS and use Windows Registry Keys as

inputs.
10. Changing Microsoft Registry Keys is risky and affects all programs that use the JET/ACE engines.
11. By default, the MIXED engine connection option examines the first eight rows of a spreadsheet.
12. The SAS GUESSINGROWS option is available only to PROC IMPORT.
13. Registry Values TypeGuessRows and ImportMixedTypes have different locations in each OS.
14. None of these things stays the same very long.
15. When using the Excel engine, HEADER=YES and MIXED=YES work.
16. If you are using the PC Files engine, neither of these will work.

Items 1 to 13 listed above combine to make it difficult for each configuration to work exactly the same. The
object of this MIXED option is to convert columns with a mix of numeric and character data into character
data so that a SAS programmer can examine the data within a program and make the adjustments relative
to the expected data and the data read from the file.

The MIXED option works, but by default checks only the first 8 rows of an Excel worksheet (without
registry key changes). The first row is typically considered to be a header row and, if all numeric values are
returned in rows 2 through 7, then the variable is considered to be numeric. In this case, any character
values are returned as missing values. All the worksheet columns are tested, and SAS variables are all
created based upon the results of the JET/ACE engine tests. Also, if the first different row is beyond the
limit of the guessing row parameter, then data of the opposite type is returned as missing. When this
MIXED option is used, then the Excel file is read in import mode, and no updates are allowed to the file.

When the MIXED option has a value of NO (the default value), a specified number of rows of the Excel
column are searched. A guess is returned about the data type of the input Excel data field. The default is to
search the first eight rows of an Excel spreadsheet. Examples later in this chapter will show you how to use
this option and some alternative methods.

NOTE: This option may cause the wrong variable length to be assigned to the field. The Windows Registry
settings TypeGuessRows and ImportMixedTypes control the behavior of this option, and require
administrative privileges to modify. I do not recommend changing these settings. Improperly edited
changes to the Windows Registry can cause your computer to stop working. These settings are described in
the SAS documentation.

4.5.3 PATH Option to Define Physical File Locations
The LIBNAME statement will at times allow you to enter a “<physical-file-name>”. You can
enter this value on the LIBNAME statement when the file type can be determined by the file name.
However, when your computer, operating system, and application software are not all the same bit
configuration, it is more difficult to determine how to access an Excel file using the SAS LIBNAME
statement. Therefore, you need to give SAS some more information about your environment or files that

52 Exchanging Data between SAS and Microsoft Excel

you are using. The engine connection option PATH= (in conjunction with the <engine> option of the
LIBNAME statement) allows SAS to select access methods that are appropriate for your configuration.

All of this may seem a little confusing because the “<physical-file-name>” is listed separately as
part of the LIBNAME statement, and the PATH option syntax as shown in Example 4.3, Using the Engine
Connection PATH Option, also includes a data path and file name. If the PATH option is used, “PATH=”
should immediately precede the “<physical-file-name>” and the LIBNAME statement can
include only one “<physical-file-name>”. More important, when you use the PATH option you
must also include an engine option on the LIBNAME statement.

 Some engine names used to access Excel workbooks in conjunction with the PATH option are:

● EXCELCS

• PCFILES

The PCFILES engine resolves bit configuration differences through the SAS PC Files Server, which is a
background windows service that can be configured to start when your computer starts. Example 4.3, Using
the Engine Connection PATH Option, will show you how to use this option.

4.5.4 VERSION Option to Identify Excel File Version
The VERSION option is not required on input because the Microsoft JET/ACE provider engines can
determine the format of the input file. However, the output format can be chosen to be one of the three
output Excel file formats (Excel 5, Excel 97 – 2003, and Excel 2007+). The default version is ‘97’. The
actual option codes are listed here ‘2007’,'2003', '2002', '2000', '97', '95', '5' (the quotes are valid but not
required.) NOTE – 2007 is valid only for SAS 9.2 Mod 2 and later. The Excel 2010 and Excel 2013
formats are compatible with the file format for Excel 2007.

4.5.5 PROMPT Option to Interactively Assign a Libref
This option can be used to interactively assign a file to a libref. There are several options available for this
command. I would not like to assign a libref to a file using interactive prompts every time that I use the file.
But it turns out that this option does have a useful feature. It will provide access to an initialization string of
characters that is useful when using the ODBC data sources. Both an Excel file and an Oracle database or
other databases can be accessed this way. When you use the PROMPT method to connect to an ODBC data
source, you can issue the following command to display the initialization string on the log.

%PUT %SUPERQ (SYSDBMSG)

Because each string is different, no example will be shown here. Also, because of the advanced nature of
this process, it should be used only when the exact syntax is known for all of the connection options
required for the ODBC data source being accessed.

The options available are the following.

● Yes
● No
● Required
● Noprompt
● Prompt

• UDL

NOTE: When you use PROMPT=NO or PROMPT=NOPROMPT, a “<physical-file-name>”
or PATH= for file identification is required.

A “UDL” is a Microsoft Datalink File, which is not discussed here.

Chapter 4: Using the SAS LIBNAME to Process Excel Files 53

4.5.6 Other Common SAS PC File LIBNAME Options
The final part of the syntax is for LIBNAME options. They, along with dataset options, modify how the
data elements are processed. The programmer can set the file to be Read-only, increase the default size of
character strings, change how dates are processed, and make several other file-level changes. The options
above applied to the files in their entirety, and the options are set for all data within the file. This next set of
options is not as absolute in the uniform application, and can affect the file or the variables within the file.

● ACCESS=READONLY Limits SAS file access to Read-only mode.
● DBGEN_NAME=DBMS or SAS Specify how data source columns are named.
● DBMAX_TEXT=n (1-32767) Maximum length of an input character string.*
● DBSASLABEL=COMPT or NONE Select whether to save input column names as a label.
● FILELOCK=YES or NO Specify if the input file is locked to other users.
● SCAN_TEXTSIZE=YES or NO Scan the input file character columns for size of strings.
● SCAN_TIMETYPE=YES or NO Scan Excel variables for time values.
● STRINGDATES=YES OR NO Select to read dates as character strings.

• USE_DATETYPE=YES or NO Use the SAS format DATE9. for date values.

*Default=1024.

4.6 Excel-Specific Dataset Options
Another important feature of reading data with a LIBNAME statement is that you have control of dataset
level options. With typical native SAS formatted datasets used with a LIBNAME statement, you are able to
modify what you allow into and out of the dataset when it is opened. While these options are not directly
part of the LIBNAME statement, I like to consider them a feature of using a LIBNAME statement.

The following are dataset options available to Excel files.

DBCREATE_TABLE_OPTS Appends specific SQL code to the CREATE TABLE command.

DBENCODING Defines a different character set to be used in accessing the Excel
file.

DBFORCE Forces insertion of character strings larger than defined length into
the file.

DBGEN_NAME Determines generation of SAS dataset variable names.

DBLABEL Chooses to use SAS variable labels or names as the output column
names.

DBMAX_TEXT Defines the maximum length of a character variable.

DBSASLABEL Chooses to use the source column names as SAS variable labels.

DBSASTYPE Specifies a data type that overrides input Excel default variable
data type.

DBTYPE Specifies a data type that overrides output default SAS variable
data type.

INSERT_SQL Determines the SQL insert method used to add new rows.

READBUFF Determines how many rows are read into the input buffer for
processing.

SASDATEFMT Defines specific date formatting by column when processing dates.
Similar formats must be available in SAS and Excel.

54 Exchanging Data between SAS and Microsoft Excel

The following are general dataset options that can also be applied to excel files.

DROP Excludes variables from being written or read to/from an input or output file.

FIRSTOBS Specifies the first record read from an input Excel file.

IN Creates a flag to indicate if a variable is from a specific input file.

KEEP Includes variables being written or read to/from an input or output file.

RENAME Renames variables when either reading or writing a file.

WHERE Selects observations for input or output based upon user-defined conditions.

4.7 UNIX, LINUX, and 64-Bit Windows Connection Options
This section of the chapter is still dealing with the LIBNAME statement, but here the hardware and
software changes. We begin to focus a little more directly upon the 64-bit options and options that are not
Windows options. Also, we will look at some of the features that extend the access of the LIBNAME
statement beyond the scope of a single computer into the realm of multiple computer environments. As
was mentioned earlier, the complexities introduced by multiple bit configurations and software versions has
made the job of maintaining ease of access a considerable task. I only have enough space here to introduce
a few simple concepts about interconnecting the many systems that exist.

SAS/ACCESS Interface to PC Files comes with what I call a translator. SAS calls it the SAS PC Files
Server. This program is normally started when the computer is re-booted and runs in the background
waiting for a command from SAS to interact with a PC file. The PC Files Server connection options are
available on UNIX, Linux, and 64-bit Windows Server systems. These descriptions, when used on
computer that is not a Windows computer, may be slightly different from the option descriptions used on
32-bit PC systems that are based on Windows. When the options contain characters that are not valid in
SAS names, then the values must be enclosed in quotation marks. Environment variables and system
options may be substituted for some of these connection options. The syntax for specifying options
is OPTIONNAME=value.

NOTE: To access PC files from UNIX, Linux, and 64-bit Windows systems, an active network connection
must exist from these systems to a PC-based system. The 64-bit Windows operating system is in fact a PC-
based system. However, the Excel files are accessed via the “PCFILES” server which may be either a 32-
bit or 64-bit interface. The “PCFILES” server must be accessible, and a Windows 64-bit PC may not
require the SERVER or PORT options.

This connection can be created using a LIBNAME statement similar to the following for these systems:

LIBNAME libref pcfiles <connection-options> <libname-options>;

4.7.1 Accessing Excel files on LINUX, UNIX, and 64-Bit Windows Systems
Contact your system administrator for the correct server name and port number because these can be
changed locally. An example would look something like the following LIBNAME statements. “PCFILES”
is the SAS/ACCESS engine name required for accessing files on a PC or PC network from Linux, UNIX,
or a 64-bit Windows system, and must be running on the server identified in the “SERVER” option. If you
are using 64-bit SAS and the PC Files server on the same computer, the SERVER and PORT options are
not required.

 LIBNAME myxls PCFILES SERVER=xxxx PORT=8621 PATH="c:\demo.xls"; * default port V9.2;
 LIBNAME myxls PCFILES SERVER=xxxx PORT=9621 PATH="c:\demo.xls"; * default port V9.3;

Chapter 4: Using the SAS LIBNAME to Process Excel Files 55

4.8 Overview of the Examples

4.8 List of Examples

Figure 4.8.1: List of Examples for Using LIBNAME Options.

Example Number General Description

4.1 Using the Engine Connection HEADER Option. This example
shows how the first row of an excel spreadsheet is treated when the
HEADER=NO option is used alone.

4.2 Using the Engine Connection MIXED Option. This example shows
how the MIXED=YES option can convert all of the data columns into
character values. But, be careful. This example takes advantage of the
HEADER=NO option, too. When all columns have a character value
in the first row, all columns will be character when read from the file.
Be ready to rename your variables.

4.3 Using the Engine Connection PATH Option. This example shows
two output Excel files being processed with a PATH= option to write
the spreadsheets.

4.4 Using the Engine Connection VERSION Option. The code in this
example shows how to write data to three different versions of Excel
output workbooks.

4.5 Using Named Literals with the LIBNAME Statement. The use of
Named Literals is explained in this example. These constants allow the
use of some special characters when reading or writing to an Excel
spreadsheet. The values are used to represent the sheet names and
allow some latitude when referencing Excel worksheets. The code first
writes a new worksheet into either a new or existing workbook. The
code then reads the same file into a SAS dataset.

4.6 Using PROC CONTENTS to Examine an Excel Workbook. The
code shown here produces a listing of the variables in the Excel
workbook. Both full worksheets and named ranges are displayed when
the output of the PROC CONTENTS is displayed.

4.7 Using Dataset Options to Process Date and Time Values. Dates and
time values are reformatted directly from Excel as the data is being
read into a SAS dataset. This can eliminate programming effort and
computer time to process date fields. But, always look to see how the
data is stored if you need the converted data values.

4.8 Using Dataset Options to Process Date Variable Type
Conversions. The DBSASTYPE option will allow you to convert an
Excel column of data values into SAS variables with specific formats.
This example converts two dates into variables with different formats.

4.9 Processing on 64-bit Operating Systems. This is an introduction to
the use of the PATH= option and the PCFILES engine as they relate to
32-bit and 64-bit software on a 64-bit computer.

56 Exchanging Data between SAS and Microsoft Excel

4.9 Examples

Example 4.1 Using the Engine Connection HEADER Option
This example relates how the first row of Excel data is treated. If the Excel file contains descriptive names
of the data and is useful to be converted to a SAS variable name, then the default value of
“HEADER=YES” should be used. The SAS programmer can also code this option directly on the
LIBNAME statement. The output is shown in Figure 4.9.1.

LIBNAME xls_data EXCEL 'C:\My_excel_files\my_excel_file.xls' HEADER=NO;
DATA Excel_data;
 Set xls_data.'sheet1'n;
Run;

Figure 4.9.1: Reading Excel Data with the HEADER=NO Option Turned On.

The HEADER=NO option suppresses using row one of the data in the Excel worksheet for the variable
names in the SAS output dataset. The SAS variable names generated are F1, F2, F3, F4, F5, F6, and F7 for
this file. The SAS dataset created is shown here. When we look at the first observation of the SAS dataset,
we expect to see the names of the variables as data values of observation number one. However, the first
row of the SAS dataset contains data values Region, Product, Subsidiary, “.”, “.”, “.”, and “.”. This occurs
because, when reading the data from Excel, an estimate is made about what type of data is in any given
column. Typically, the first eight rows of the Excel worksheet are scanned and the data is checked to see if
it has more character or numeric values. This testing determines whether or not the column is assigned to
use a character or numeric informat when the data is transferred to the SAS dataset. Therefore, the
character values in row 1, columns F4 to F7, of the Excel worksheet fail to be converted to numeric values
and are assigned a missing numeric value. This would be true for any character value in columns 4 through
7. Conversely, any numeric value in column 1 to 3 will be converted to a character missing value.

Chapter 4: Using the SAS LIBNAME to Process Excel Files 57

NOTE: There is a way to change the system-wide default for the GUESSINGROWS option, but it involves
modifying the SAS or WINDOWS system REGISTRY values.

Example 4.2 Using the Engine Connection MIXED Option
This example uses the MIXED=YES engine connection option to capture all data in the Excel worksheet
as character data values. This eliminates missing values in fields with mixed character and numeric values
in individual Excel cells. But it also places the burden of converting numeric data on the program that uses
the SAS dataset that was created. The code in Figure 4.9.2 will run using 32-bit SAS V9.2 on a 32-bit
operating system or 32-bit SAS V9.3 on a 32-bit operating system.

LIBNAME xls_data EXCEL 'C:\My_excel_files\my_excel_file.xls'
HEADER=NO MIXED=YES;
 DATA Excel_data;
 SET xls_data.'sheet1'n;
 RUN;

Figure 4.9.2: Reading Excel Data with the MIXED=YES and the HEADER=NO Options
Turned On.

The data shown in Figure 4.9.2 is an example of the MIXED option with a value of YES, combined with
HEADER=NO option. The combined use of these two options changed the values in row 1 from missing
values to the text from the worksheet for columns F4 through F7. The HEADER=NO option changes only
the top row of the SAS file. In addition, note that the MIXED=YES option affected all of the data in all of
the columns by left justifying it. That means that all of the data in the worksheet is read as character data.
This trick works only if the first row has character headers in every column.

As an aside, and not shown here, notice that the SAS variable names are all in a pattern: “F1”, “F2”, etc.
An alternative to hand-coding a rename for all of the variables is to read only one row from the file and
process the SAS file of headers with PROC CONTENTS and SQL to create a macro variable that can be
used to create a rename command.

58 Exchanging Data between SAS and Microsoft Excel

Example 4.3 Using the Engine Connection PATH Option
This example shows a simple application of the PATH= option. The SAS code shown also uses the SAS
Excel engine.

NOTE: Starting with SAS 9.2 TS Level 2M3, varying levels of support for reading the newer versions of
Excel have become available with each new release of SAS. Of course, the issues of hardware, software,
and bit configurations may affect each computer differently.

LIBNAME xls_data EXCEL path='C:\My_excel_files\my_excel_file.xls' ;
 DATA xls_data.'sheet1'n;
 Set sashelp.shoes;
 Run;

LIBNAME xls_data EXCEL path='C:\My_excel_files\my_excel_file.xlsb' ;
 DATA xls_data.'sheet1'n;
 Set sashelp.shoes;
 Run;

Example 4.4 Using the Engine Connection VERSION Option
The following example outputs three files, and each file will be written in a different Excel format. This
example shows how the VERSION= option is used to write the output files. These examples run on 32-bit
SAS 9.2 on a 32-bit operating system and 32-bit SAS 9.3 on a 32-bit operating system. The SAS code
shown also uses the SAS Excel engine.

NOTE: Starting with SAS 9.2 TS Level 2M3, varying levels of support for reading the newer versions of
Excel have become available with each new release of SAS. Of course, the issues of hardware, software,
and bit configurations may impact each computer differently. Workbooks with the Excel extension *.xlsm
may not be valid for this type of processing.

LIBNAME xls_V95 EXCEL 'C:\My_excel_files\my_excel_file_V95.xls'
version=95;
LIBNAME xls_V97 EXCEL 'C:\My_excel_files\my_excel_file_V97.xls' version=97;
LIBNAME xls_V07 EXCEL 'C:\My_excel_files\my_excel_file_V07.xlsb'
version=2007;
DATA xls_V95.'shoes'n
 xls_V97.'shoes'n
 xls_V07.'shoes'n;
Set sashelp.shoes;
Run;

36 LIBNAME xls_V95 EXCEL 'C:\My_excel_files\my_excel_file_V95.xls'
version=95;
NOTE: Libref XLS_V95 was successfully assigned as follows:
 Engine: EXCEL
 Physical Name: C:\My_excel_files\my_excel_file_V95.xls
37 LIBNAME xls_V97 EXCEL 'C:\My_excel_files\my_excel_file_V97.xls'
version=97;
NOTE: Libref XLS_V97 was successfully assigned as follows:
 Engine: EXCEL
 Physical Name: C:\My_excel_files\my_excel_file_V97.xls
38 LIBNAME xls_V07 EXCEL 'C:\My_excel_files\my_excel_file_V07.xlsb'
version=2007;
NOTE: Libref XLS_V07 was successfully assigned as follows:
 Engine: EXCEL
 Physical Name: C:\My_excel_files\my_excel_file_V07.xlsb
39 DATA xls_V95.'shoes'n
40 xls_V97.'shoes'n
41 xls_V07.'shoes'n;

Chapter 4: Using the SAS LIBNAME to Process Excel Files 59

42 Set sashelp.shoes;
43 Run;

NOTE: SAS variable labels, formats, and lengths are not written to DBMS
tables.
NOTE: SAS variable labels, formats, and lengths are not written to DBMS
tables.
NOTE: SAS variable labels, formats, and lengths are not written to DBMS
tables.
NOTE: There were 395 observations read from the data set SASHELP.SHOES.
NOTE: The data set XLS_V95.shoes has 395 observations and 7 variables.
NOTE: The data set XLS_V97.shoes has 395 observations and 7 variables.
NOTE: The data set XLS_V07.shoes has 395 observations and 7 variables.
NOTE: DATA statement used (Total process time):
 real time 0.06 seconds
 cpu time 0.04 seconds

Example 4.5 Using Named Literals with the LIBNAME Statement
Now let’s put some data into an Excel file. We will use what is called a named literal. This example creates
a new Excel workbook with one worksheet. When we create the new worksheet, we use the name “Sheet1”
to create the workbook and worksheet. When I open the SAS Explorer window, I see two items in the list
of objects that SAS can view. They are “Sheet1” and “Sheet1$”. See Figure 4.9.3 for an example. “Sheet1”
is treated as a “Named Range”. “Sheet1$” refers to all of the data on the worksheet. Either name can be
selected within a DATA step SET statement or procedure call. Either sheet icon in the Explorer window
should also be able to be selected and viewed by double-clicking on the icon and opening the SAS
“Viewtable” window. If you had defined any named ranges in any worksheets of the Excel workbook,
those named ranges would also be displayed in the SAS Explorer window. You can also view those Excel
cells. Remember, when you look at these items from the Explorer window you are looking at the Excel
data--not a SAS dataset. The code below shows one way to create an Excel worksheet and one way to read
the same full Excel worksheet.

LIBNAME xls_data EXCEL 'C:\My_excel_files\my_excel_file.xls';
DATA xls_data.'sheet1'n;
 SET sashelp.shoes;
RUN;
DATA test;
 set xls_data.'sheet1$'n;
RUN;

To show you how complex this processing is I want to point out the following cases that you can use when
you create an Excel worksheet. Three of these commands do the same thing. Can you guess which one does
not work? The same conditions exist when using a SET statement to read the Excel worksheet.

DATA Step Code Status

● DATA xls_data.sheet1; Valid SAS Command
● DATA xls_data.sheet1$; Invalid SAS Command (unquoted dollar sign)
● DATA xls_data.'sheet1'n; Valid SAS Command
● DATA xls_data.'sheet1$'n; Valid SAS Command

60 Exchanging Data between SAS and Microsoft Excel

Figure 4.9.3: SAS Enhanced Editor and Explorer Windows Showing Excel Worksheet
References.

The next step, after verifying there are no errors on the log, is to look at the Excel file Figure 4.9.4 to see
what was generated. Notice that the SAS variable names were used as the Excel column headers in row 1.
Columns with numbers are right-justified, and columns with text values are left-justified. Multiple SAS
DATA steps can write to the same Excel workbook defined by one LIBNAME statement. However, each
DATA step or procedure must write to a separate worksheet. The LIBNAME statement does not support a
REPLACE option.

Figure 4.9.4: Data Written to an Excel Worksheet.

Figure 4.9.4 Excel file contents after the cells were widened to show the full dollar amounts in the columns.
Also notice that the sheet name is “sheet1” not “Sheet1” because the named constant generates a case-
sensitive sheet name.

Example 4.6 Using PROC CONTENTS to Examine an Excel Workbook
Figure 4.9.5a shows the SAS code to display the contents of the Excel file we created. First, we notice that
the Excel file has one worksheet, but the PROC CONTENTS output below shows two data tables, sheet1
and sheet1$. Next we ask “Why are there two sheets?” The answer is this: Excel has a feature called a
named-range that is a subset of the data on an Excel worksheet. SAS accounts for this by assigning a name

Chapter 4: Using the SAS LIBNAME to Process Excel Files 61

to the subset of used cells in the worksheet and the full worksheet. Both of names listed in the PROC
CONTENTS listing point to the same data. If the workbook had a named range created by Excel, the
named range would also show up in the PROC CONTENTS listing as a table. Full worksheet names end in
a $ when viewed as a SAS file, while the named ranges do not have a trailing $.

LIBNAME xls_data EXCEL 'C:\My_excel_files\my_excel_file.xls';
 proc contents data=xls_data._all_;
 run;

Figure 4.9.5a: Contents of the Created Excel File.

 The CONTENTS Procedure
 Directory

 Libref XLS_DATA
 Engine EXCEL
 Physical Name C:\My_excel_files\my_excel_file.xls
 User Admin
 DBMS
 Member Member
 # Name Type Type
 1 sheet1 DATA TABLE
 2 sheet1$ DATA TABLE

 The CONTENTS Procedure

 Data Set Name XLS_DATA.sheet1 Observations .
 Member Type DATA Variables 7
 Engine EXCEL Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation Default
 Encoding Default

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label
 6 Inventory Num 8 DOLLAR21.2 DOLLAR21.2 Inventory
 2 Product Char 14 $14. $14. Product
 1 Region Char 25 $25. $25. Region
 7 Returns Num 8 DOLLAR21.2 DOLLAR21.2 Returns
 5 Sales Num 8 DOLLAR21.2 DOLLAR21.2 Sales
 4 Stores Num 8 Stores
 3 Subsidiary Char 12 $12. $12. Subsidiary

 The CONTENTS Procedure

 Data Set Name XLS_DATA.'sheet1$'n Observations .
 Member Type DATA Variables 7
 Engine EXCEL Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation Default
 Encoding Default

62 Exchanging Data between SAS and Microsoft Excel

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label
 6 Inventory Num 8 DOLLAR21.2 DOLLAR21.2 Inventory
 2 Product Char 14 $14. $14. Product
 1 Region Char 25 $25. $25. Region
 7 Returns Num 8 DOLLAR21.2 DOLLAR21.2 Returns
 5 Sales Num 8 DOLLAR21.2 DOLLAR21.2 Sales
 4 Stores Num 8 Stores
 3 Subsidiary Char 12 $12. $12. Subsidiary

Example 4.7 Using Dataset Options to Process Date and Time Values
In the next SAS code segment, the same Excel worksheet is input twice. I wanted to give an example with
date and date/time processing options, but SAS has limited data in the SASHELP library with dates in the
file. Therefore, I created a small file that uses dates. This file will be available for download from the
Author website, http://support.sas.com/publishing/authors/benjamin.html. The file has a product name,
amount, and three dates with time segments attached. It is in a CSV format and can be loaded directly into
an Excel file. I do not show the full file in Figure 4.9.5b, but the examples here will give you enough detail
to understand what is going on in the processing. The first code line assigns a libref xls_data so that we can
read the data from the sales_data.xlsx file.

There are two DATA steps that follow and read the same Excel file to produce different results. The SAS
dataset Sales_data1 was created with default options applied to all of the date fields. So, all of the date
fields were read in and are displayed with a DATE9. format. In the second SAS dataset, fields are changed
upon input using the SAS dataset option SASDATEFMT as shown in the list below.

Field Name Processing Option Applied

● Product Default as a charcter string.
● Amount Default as a numeric currency value.
● Date_Ordered Default as a DATE9. Value.
● Date_Shipped SASDATEFMT option converted the date/time value to a TIME8. value.
● Date_Delivered SASDATEFMT option converted the Excel date to a DATETIME21.2.

value
The SAS and Excel systems both recognize dates, but each system has its own opinion about how to store
and represent dates. The reason for the difference is that SAS and Excel use different base dates for their
date reference point. SAS uses a base date of 01 Jan 1960, and Excel uses the Dublin Julian Day (30 DEC
1899) as the base date.

LIBNAME xls_data EXCEL 'C:\My_excel_files\sales_data.xlsx';

DATA Sales_data1;
 SET xls_data.'Sales_data$'n;
Run;

DATA Sales_data2;
 SET xls_data.'Sales_data$'n
 (SASDATEFMT=(Date_Shipped=TIME8. Date_Delivered=DATETIME21.2));
Run;

Chapter 4: Using the SAS LIBNAME to Process Excel Files 63

Figure 4.9.5b: SAS View Table of the Sales_data1 File Read from Excel.

Example 4.8 Using Dataset Options to Process Variable Type Conversions
The next segment of SAS code reads all five fields from the Sales_Data Excel file, and did nothing with the
first three fields (Product, Amount, and Date_Ordered). The DBSASTYPE= dataset option took control of
formatting the dates when processing the Date_Shipped and Date_Delivered fields.

Field Name Processing Option Applied

● Product Default as a character string.
● Amount Default as a numeric currency value.
● Date_Ordered Default as a DATE9. value.
● Date_Shipped DBSASTYPE option converted the date to a 22-byte character value.

• Date_Delivered DBSASTYPE option converted the Excel date value to a real number.

64 Exchanging Data between SAS and Microsoft Excel

The SAS documentation for your version will point out that the SAS date format and date informat must be
equivalent. This restricts the number and type of changes you can make on input from an Excel file. But,
you now have control over what changes are made. The following code is similar to Example 4.7, but it
changes the dates to different formats using the dataset option DBSASTYPE=.

LIBNAME xls_data EXCEL 'C:\My_excel_files\sales_data.xls';
DATA Sales_data3;
 SET xls_data.'Sales_data$'n
 (DBSASTYPE=(Date_Shipped='CHAR22.' Date_Delivered=NUMERIC));
Run;

Figure 4.9.6: SAS View Table of the Sales_data1 File Read from Excel.

The Date_Delivered field in Figure 4.9.6 shows numeric values similar to SAS DATE-time values except
the values are much larger than a SAS DATE numeric value. As mentioned above, the Excel base date is
30 DEC 1899,which is long before 01 JAN 1960.

Example 4.9 Processing on 64-Bit Operating Systems
This example demonstrates the syntax for accessing Excel files when running SAS on a Windows 64-bit
operating system. Similar syntax is required for using UNIX or LINUX operating systems. SAS/ACCESS
Interface to PC Files contains a program described as the SAS PC Files Server (pcfservice.exe). This
program runs as a service and can be configured to start automatically when your computer starts running.
This service program runs on a Windows operating system. It can be either a PC or a server, but it must run
on a Windows computer. Therefore, when UNIX and LINUX access Excel files, SAS must first log on to
the Windows system before they can access an Excel workbook. The PC Files Server must be running on a
Microsoft Windows platform that SAS can communicate with (i.e., send execution commands) for SAS to
process Excel data. The SAS PC Files Server program was written to communicate across the 32-bit / 64-
bit boundary. It was written before Excel 2010 became available as both a 32-bit and 64-bit application.

Chapter 4: Using the SAS LIBNAME to Process Excel Files 65

Remember, Excel 2007 and earlier are all 32-bit applications. Some of the options for UNIX and LINUX
are not displayed here because they are site-specific (CONNECT_STRING, DSN, PORT, PASSWORD,
PATH, PORT, SERVER, SERVERUSER, and SSPI).

LIBNAME xls_V97 PCFILES PATH='C:\My_excel_files\my_excel_file_V97.xls' ;
LIBNAME xls_V07x PCFILES PATH='C:\My_excel_files\my_excel_file_V07.xlsx';
LIBNAME xls_V07b PCFILES PATH='C:\My_excel_files\my_excel_file_V07.xlsb';
 DATA xls_V97.'sheet1'n
 xls_V07x.'sheet1'n /* writes a *.xlsb formatted file not *.xlsx */
 xls_V07b.'sheet1'n;
 Set sashelp.shoes;
 RUN;

4.10 Conclusion
The SAS LIBNAME statement is a very powerful tool, with many options that are opened up by having
SAS /ACCESS Interface to PC Files available. Since the release of SAS 9.2 TS Level 2M3, SAS users
again have access to read and write all versions of Microsoft Excel on a 32-bit Windows system and also
on the UNIX, LINUX, Windows 64-bit, and Windows 64-bit server systems. In addition, the Excel
application has been upgraded to run in a 64-bit mode. The connection options that process an Excel
workbook on a Windows 32-bit or 64-bit OS are critical to accessing Excel data. Not shown here: how to
read and write Excel files using PROC SQL. That is reserved for Chapter 10. The connection options from
Chapter 10 allow PROC SQL to find and access Excel files. This chapter looked only at the options that
apply directly to Microsoft Excel files on a PC. SAS/ACCESS Interface to PC Files will also process
Microsoft Access files. The LIBNAME and DATASET options described here enhance access to data files
that are not SAS files. The DATASET options are available in DATA steps, in SAS procedure executions,
and in PROC SQL processing, thus pushing the power of the LIBNAME engine far beyond the
Import/Export engines of Base SAS. Below is a summary of the options explained. However, it is not an
exhaustive list of all options available.

Engine Connection Options

• HEADER option controls processing of the first line of Excel worksheets.
• MIXED option controls conversion of input Excel data into character variables.
• PATH option assists in locating files for processing.
• VERSION option controls the output version of an Excel workbook.

Examples Using Selected Dataset Options

• Using Named Literals with the LIBNAME statement.
• Using PROC CONTENTS to Examine an Excel workbook.
• Using Dataset Options to Process Date and Time Values.
• Using Dataset Options to Process Variable Type Conversions.
• Processing on 64-bit Operating Systems.

66 Exchanging Data between SAS and Microsoft Excel

Chapter 5: SAS Enterprise Guide Methods and
Examples

5.1 Introduction ... 67

5.2 Purpose ... 68

5.3 Typical Methods to Access Excel from SAS Enterprise Guide 68

5.4 Overview of the Examples ... 68

5.5 List of Examples .. 68

5.6 Examples ... 69
Example 5.1 Using the Export Method with Enterprise Guide .. 69
Example 5.2 Using the “Send To” Method .. 71
Example 5.3 Using the “Send To” Method to Output a Graph or Report 71
Example 5.4 Using the “Export” Method to Output a Graph or Report 75
Example 5.5 Using “Open” or “Import” Toolbar Options to Read Excel Workbooks ... 77
Example 5.6 Using the “Import Data” Toolbar Option to Read a Range of Cells 80

5.7 Conclusion .. 84

5.1 Introduction
This chapter is an introduction to moving data between SAS Enterprise Guide and Microsoft Excel. SAS
Enterprise Guide has a lot of features that process and analyze data. Here we are interested in a few
processes that present data to and read data from Excel, and that are available when using SAS Enterprise
Guide. Some of these methods are found on the File tab of the Enterprise Guide toolbar and are handled by
software “wizard” tools. Many of the examples in this chapter offer step-by-step instructions with pictorial
explanations of the steps needed to perform the tasks. This chapter assumes a working knowledge of SAS
Enterprise Guide 4.3, 5.1, or 6.1 and shows examples of the following methods of moving data between
SAS and Excel.

Send data to - (Output to Excel)
Export data to - (Output to Excel)
Export a graph - (Output to Excel or Word)
Open a spreadsheet - (Input from Excel)
Import a spreadsheet - (Input from Excel)
Import a range of cells - (Input from Excel)

SAS Enterprise Guide 5.1 was the first release to be available in both 32-bit and 64-bit versions. As with all
of the SAS and Excel products, the bit compatibility will need to be watched to make sure the products
work together. SAS Enterprise Guide establishes a Microsoft client/server method of writing data to Excel
files even when executing on one computer. The Microsoft product DDE is not available to SAS Enterprise
Guide. Some of the examples in this chapter rely on the SAS Add-In for Microsoft Office, which is part of
the SAS Enterprise BI Server and SAS Enterprise Miner.

68 Exchanging Data between SAS and Microsoft Excel

NOTE: The examples shown in this chapter use SAS Enterprise Guide 6.1. Prior versions of SAS
Enterprise Guide may have slight different interfaces. While the “Import”, “Export”, and “Send To”
options also appear in several places within the SAS Enterprise Guide menus, each of the three options
performs similarly regardless of how you start the option.

5.2 Purpose
This chapter describes methods of sharing data between SAS and Microsoft Excel. I have explained most
of the methods previously; SAS Enterprise Guide just packages them into a wizard to standardize the
processing. The overall bit configuration of the hardware and software may influence the figures and
wizard options presented. This book does not deal with features of SAS Enterprise Guide other than those
that permit the movement of data between Excel and SAS Enterprise Guide. SAS Enterprise Guide can use
some advanced data access methods like OLEDB (Object Linking and Embedding, Database) and ODBC
(Open Database Connectivity). These will not be discussed in this chapter.

5.3 Typical Methods to Access Excel from SAS Enterprise Guide
Common methods of accessing Excel data from within SAS Enterprise Guide include importing and
exporting data from text files or Excel files. Most of the examples in this chapter deal directly with those
methods. In addition to Microsoft Excel workbooks, the SAS Enterprise Guide wizards can process other
types of data files like Microsoft Access database files, *.csv, *.tab, *.txt, *.htm, and *.html text files.

5.4 Overview of the Examples
The examples in this chapter were generated with SAS Enterprise Guide 6.1 on a system where the SAS
Add-In for Microsoft Office has been installed for Microsoft Word, Excel, Power Point, and Outlook.
Some of the features described here require this software. However, some older versions of SAS Enterprise
Guide are able to transfer data and graphs to Microsoft Excel and Word without the SAS Add-In for
Microsoft Office. While you were able to transfer data and graphs in much earlier versions of SAS
Enterprise Guide, this ability was not well publicized. These features can be found by searching the tool or
option menus of SAS Enterprise Guide for the Word () and Excel () icons and activating them. There
are no examples in this chapter using these icons, but they are mentioned here to increase your awareness
of the features present in older versions of SAS Enterprise Guide.

5.5 List of Examples

Figure 5.5.1: List of Examples for Enterprise Guide.

Example Number General Description

5.1 Using the Export Method with Enterprise Guide. This example shows
you how to open a SAS dataset within SAS Enterprise guide and then
Export the data to an Excel workbook. This example uses the “Save”
option.

5.2 Using the “Send To” Method. This example shows how to export the
data to an Excel workbook using the “Send To” option.

5.3 Using the “Send To” Method to Output a Graph or Report. This
example shows how to export a graph or report to an Excel workbook
using the “Send To” option.

5.4 Using the “Export” Method to Output a Graph or Report. This
example shows how to export a graph or report to an Excel workbook
using the “Export” method.

Chapter 5: SAS Enterprise Guide Methods and Examples 69

Example Number General Description

5.5 Using “Open” or “Import” Toolbar Options to Read Excel
Workbooks. This example shows how to import Excel data into SAS
Enterprise Guide.

5.6 Using the “Import Data” Toolbar Option to Read a Range of Cells.
This example shows how to import a range of Excel data cells into SAS
Enterprise Guide.

5.6 Examples

Example 5.1 Using the Export Method with Enterprise Guide
This example has the following steps. Note that the “Export” option button is in three locations.

1. Select a file to output.
2. Select the “Export” option on the File tab.
3. Select the “Export <DataSetName>” option, here shown as “Export SHOES”.
4. On the EXPORT window select the output file location and data format, your version of SAS

Enterprise Guide may allow you to choose “Microsoft Excel 97-2003 Workbooks (.xls)” or
“Microsoft Excel Workbooks (.xlsx)”, or one of several text formats that Excel can read.

5. Press the “SAVE” button, close the SAS file, and open the Excel file to view the results.

After opening SAS Enterprise Guide and selecting a new project, you have many ways to open a SAS file
to export the data to Excel. Figure 5.1 shows one simple method of selecting the SASHELP.shoes dataset
using the SAS toolbar options: FILE►OPEN►DATA►SERVERS►LOCAL►SASHELP►SHOES

Figure 5.1: SAS Enterprise Guide After Opening a SAS Dataset.

70 Exchanging Data between SAS and Microsoft Excel

This document does not describe output options available to the Microsoft Exchange Server. SAS
documentation indicates that with the Microsoft Exchange Server, Excel 2000, 2003, and 2007 can be
output. (Excel 2007, Excel 2010, and Excel 2013 use the same output format). Enterprise Guide 5.1 for 64-
bit SAS has the ability to write to the *.xlsx files along with some text formats that Excel can read. It
worked with Excel 2013. The exact list of output file formats available will depend upon the number and
type of SAS/ACCESS routines you have installed.

Four other output formats (shown in Figure 5.2) can be chosen instead of the *.xls or *.xlsx format. These
options create text files, but Microsoft Excel is able to process these file formats and create an Excel
workbook. These formats can also be input into Excel 2007, Excel 2010, or Excel 2013. They also can be
input into Excel using methods described in Chapter 2.

Figure 5.2: SAS Enterprise Guide “SAVE” Dialogue Window.

This is a list of other output file formats that Excel is able to read. Your system configuration may be able
to create other formats.

● Microsoft Excel 97-2003 workbooks (.xls)
● Microsoft Excel workbooks (.xlsx)
● Text files (Comma delimited) (*.csv)
● Text files (*.txt)
● Text files (Tab delimited) (*.tab)
● Text files (Space delimited) (*.txt)

Chapter 5: SAS Enterprise Guide Methods and Examples 71

Example 5.2 Using the “Send To” Method
This example has the following steps. Note that the “Send To” option button is in three locations.

1. Select a file to output. Any SAS dataset will do. See Example 5.1.
2. Select the “Send To” option on the File tab.
3. Select the “Microsoft Excel” option displayed on the pop-up menu.
4. Press the Microsoft Excel button to send the input SAS file directly to Microsoft Excel and to save

the workbook using Excel save options. This option opens the Microsoft Excel version installed
on your computer and allows you to save the output in any Excel format you have available
including Excel 2007, 2010, and 2013. Be aware that this method of sending data to Excel may
directly open Excel with the data displayed.

Figure 5.3: SAS Enterprise Guide “SEND TO” Menus.

Example 5.3 Using the “Send To” Method to Output a Graph or Report
This section assumes that you have generated a graph or report using SAS Enterprise Guide 4.3 or later.
SAS Add-In for Microsoft Office is required for this example of how to send data to Excel, Word, or Power
Point.

SAS Enterprise Guide 4.3 or later can send graphs and reports to Microsoft programs like Word, Excel, and
Power Point. This example will focus on Excel. Figure 5.4a is an example of a graph created with the bar
graph wizard. Note that the Enterprise Guide project tree also shows that a report has been generated. This
report simply includes a title and a footnote. Yours will be much nicer.

72 Exchanging Data between SAS and Microsoft Excel

Figure 5.4a: A Graph Generated Using the Enterprise Guide Bar Graph Wizard.

Note that the Enterprise Guide “Send To” option can be located in three places. This option allows you to
send the currently selected (active) file to the requested output destination you choose with the “Send To”
option menu.

1. In the Enterprise Guide toolbar under the “File” option.
2. When a graph or report is displayed in the toolbar as the “Send To” option.
3. In the project tree window by right-clicking on the “Report” you want to save. This option may

not be available in Enterprise Guide 5.1. See the documentation for your installation.

Chapter 5: SAS Enterprise Guide Methods and Examples 73

Figure 5.4b: Sending a Graph Generated Using Enterprise Guide Bar Graph Wizard to
Excel.

In Figure 5.4b, the “Send To” option in the Bar Chart toolbar was selected to send the graph to Excel.
Different messages may appear between the time you select the Excel button () and when the workbook
opens.

If there are no Excel workbooks open when you are sending the graph to Excel, then SAS Enterprise Guide
will send the graph to “Bookn” in your default “Documents” folder. If “Book1” does not exist, it will create
“Book1”. Otherwise, “n” will increment to the next available number. When a Microsoft Excel workbook
is open, you are given a choice of creating a new workbook (in your documents folder), sending the graph
to an open workbook, or opening a workbook to receive the output. The end result can be seen in Figure
5.5. Depending upon your system default settings, your version of SAS Enterprise Guide might even open
the Excel workbook that is created.

74 Exchanging Data between SAS and Microsoft Excel

Figure 5.5: The Resulting Graph in an Excel Workbook.

Also note that the graph is an “ActiveX” enabled graph. While it is outside of the scope of this book to
explain those features. An ActiveX-enabled graph can be manipulated by selecting parts of the graph, right
clicking, and selecting from a menu to modify the graph. The image in Figure 5.6 shows the result of right
clicking on the graph and selecting the “Pie Chart” option. Another option is “Copy”, which will allow the
graph to be placed into the Windows “Copy Buffer” so that you can “Paste” it wherever it is needed.

Chapter 5: SAS Enterprise Guide Methods and Examples 75

Figure 5.6: The Result of Changing an ActiveX Bar Chart to a Pie Chart in an Excel
Workbook.

The Excel version shown in Figure 5.6 is an older version of Excel than the image in Figure 5.5. I used the
older version because I was able to show the ActiveX command menus in this image. A SAS Enterprise
Guide report can be processed in the same manner as the graph above when you have the SAS Add-In for
Microsoft Office installed.

Example 5.4 Using the “Export” Method to Output a Graph or Report
This example shows how SAS can create a graph or report file to export to Microsoft Excel. SAS Add-In
for Microsoft Office must be installed. This section also assumes that you have generated a graph or report
using SAS Enterprise Guide 4.3 or later. The next chapter will deal directly with the features of SAS Add-
In for Microsoft Office.

76 Exchanging Data between SAS and Microsoft Excel

Choosing the “Export” option (See Figure 5.7) on the graph or report toolbar or the File tab of the
Enterprise Guide toolbar will open the Export window where you select the output directory to which you
write your files. The SAS Enterprise Guide Export option can generate different types of output files,
including SAS report files (*.srx), HTML files (*.htm, and *.html) XML files (*.xml), and portable
document format (*.pdf). When you choose the *.srx file type, SAS will generate a SAS report file. This
file can be opened by Microsoft Excel, Microsoft Word, and Microsoft Power Point when the SAS Add-In
for Microsoft Office is installed.

Figure 5.7: The Export Menu to Select the Output Directory and File Type Selection Menu.

When the Export option finishes, it outputs a *.srx file and a directory with a cascading style sheet for each
object exported. Figure 5.8 shows the outputs for both a graph and a report output. A cascading style sheet
is a file or a series of commands that tells the program opening the *.srx file how to format and color each
part of the file being opened. In this case, the cascading style sheet will describe our bar chart generated by
SAS Enterprise Guide. Because not all computers are configured the same way, the cascading style sheet
will usually allow for several fonts to be acceptable when displaying the output graph. This is why the same
input file may look different on two different computers.

Chapter 5: SAS Enterprise Guide Methods and Examples 77

Figure 5.8: The Directories and Files Output by the EXPORT Option for *.srx Files.

Example 5.5 Using “Open” or “Import” Toolbar Options to Read Excel
Workbooks
This example shows how to read an Excel workbook using the Open or Import options on the SAS
Enterprise Guide toolbar. The example has the following steps. Note that the “Open” and “Import” option
buttons are in two places.

1. Select either the “Import” or “Open” option on the File tab.
2. Select a file using the “Open” file dialogue box.
3. Follow the instructions on the “Import Data” screens that are presented.
4. Press the “Finish” button to read the data into a SAS dataset.

NOTE: Once again, the user is cautioned that this process uses the Microsoft JET or ACE engine to read
data from Excel and is limited to 255 columns and 65,535 rows of data.

78 Exchanging Data between SAS and Microsoft Excel

Both the Open and Import options will begin the Import Wizard. When you select either of the toolbar tab
sequences shown in Figure 5.9 “FILE►OPEN►DATA►MY_COMPUTER” or “FILE►IMPORT
DATA►MY_COMPUTER”, a window similar to Figure 5.10 will appear.

Figure 5.9: The File Tab Menu Showing the “Open” and “Import” Options.

Chapter 5: SAS Enterprise Guide Methods and Examples 79

Figure 5.10: Screens Showing the Input Directory and Input File Types.

Figure 5.11: Four Screens Showing the SAS Wizard to Read and Select Data from an Input
Excel File.

Figure 5.11 shows the screens that comprise the Import wizard, and allow you to read data into SAS
Enterprise Guide, as shown in Figure 5.12.

80 Exchanging Data between SAS and Microsoft Excel

Figure 5.12: The SAS Dataset Generated Using the Import Wizard.

Example 5.6 Using the “Import Data” Toolbar Option to Read a Range of Cells
While this example is similar to Example 5.5, it is worth showing because of the differences in the input
and output values. An Excel file has embedded information about the nature of the file. This tool will
analyze the input file and provide information about the file structure. This example shows that the Import
Data tool can recognize a named range within an Excel file and extract only those cells from the
spreadsheet. In addition, you can choose to keep or drop fields within the range before reading the data into
a SAS dataset. Figure 5.13 shows how to use a predetermined named range as input. Excel named ranges
can be generated using the “FORMULA” tab and the “Name Manager” option shown in Figure 5.13. The
highlighted selection is entitled Addis_Ababa and is part of the “Shoes” worksheet that starts with the
upper left cell (C2) and includes all of the cells in the rows and columns that are between C2 to G9. This is
a group of 40 cells.

Chapter 5: SAS Enterprise Guide Methods and Examples 81

Figure 5.13: Excel Workbook Showing a Named Range called Addis_Ababa.

Although Example 5.5 is the basis of this example, there are several differences are between it and this
example. The first difference occurs within the Import Wizard when showing screen 2 of 4 of the SAS
Import Wizard (Figure 5.14). Notice that the “Use a predetermined named range” button is selected and
that the “First row of range contains field names” checkbox is not selected. Some versions of SAS
Enterprise Guide may also show a names range that would appear something like
“SHOES$(SHOES$A1:G396)”. This occurs because of the way that older versions of SAS opened Excel
workbooks and assigned a named range to all active cells of a worksheet. For you to be able to select data
from the Excel workbook, the data cells you wish to import must be within a named range.

82 Exchanging Data between SAS and Microsoft Excel

Figure 5.14: SAS Import Wizard Screen 2 of 4.

Figure 5.15: SAS Import Wizard Screen 3 of 4.

Screen 3 of the Import Data task allows you to select or reject fields, and modify any of the attributes that
were found when the tool analyzed the input file. The check mark in the “Inc” column will include the
variable in the output file. As noted above, notice that Figure 5.14 does not have the checkbox “First row of
range contains field names” checked. The Import Data Wizard detected the absence of field names and
supplied the names F1, F2, F3, F4, and F5. When you highlight any row and press the “Modify” button,
Figure 5.16 will be displayed and you can make changes to the attributes of the variable. That will be left as
an exercise for you to play with. The original field names were “Subsidiary”, “Stores”, “Sales”,
“Inventory”, and “Returns”. Figure 5.16 shows the unchanged values.

Chapter 5: SAS Enterprise Guide Methods and Examples 83

Figure 5.16: Screen to Modify the Field Attributes of Input Variables.

The rest of the import process is the same as Example 5.5. In Figure 5.17, the imported data is displayed
without modifying any of the variable names or labels.

Figure 5.17: SAS Enterprise Guide Resulting Data File.

84 Exchanging Data between SAS and Microsoft Excel

5.7 Conclusion
Within this chapter I have shown how SAS Enterprise guide is able to import and export data to and from
Microsoft Excel using these processes.

Send data to - (Output to Excel)
Export data to - (Output to Excel)
Export a graph - (Output to Excel or Word)
Open a Spreadsheet - (Input from Excel)
Import a Spreadsheet - (Input from Excel)
Import a range of cells - (Input from Excel)

All SAS Enterprise Guide versions are excellent tools that give the SAS user many ways to process data
with both graphical interfaces and SAS program code. This chapter just touched upon a few of the methods
that allow SAS Enterprise Guide to interact with Microsoft Office products. These are the kinds of tools
that allow a team of SAS programmers to easily provide managers with data in Excel format.

Chapter 6: Using JMP to Share Data with Excel

6.1 Introduction ... 85

6.2 Purpose ... 85

6.3 Methods of Sharing Data between JMP and Excel .. 86

6.4 List of Examples .. 87

6.5 Examples ... 87
Example 6.1 Within Excel, Set the JMP Preferences for Loading Excel Data 87
Example 6.2 Reading Data from Excel to JMP ... 88
Example 6.3 Writing Data from JMP to Excel ... 89

6.6 Conclusion .. 90

6.1 Introduction
JMP is a SAS product that works like a spreadsheet. I apologize to all JMP users who believe differently,
but from my vantage point as a SAS and Excel user, that is my first impression. Since JMP is an
independent product from SAS that seems to run with or without both Excel and SAS, that is what I see.
But, just because something “works like” something else, that does not mean that the two are always and
forever just alike. I am impressed by JMP and, after having started my career using punched cards, a sorter,
hard-wired plug boards, and paper tape, it takes a lot to impress me. There are a lot of good books written
about JMP; the only thing I have to add here is how the tab on the ribbon in Excel helps get data into JMP.
While any data that is in an Excel spreadsheet will work just fine, we will build upon the data files built in a
previous chapter about using the SAS Add-In for Microsoft Office. We will do that because there is a direct
path from SAS to Excel to JMP. It is also done all from within Excel, as though you are using one tool.

6.2 Purpose
Once again, like many other chapters in this book, the object is not to do anything with the data, but just to
find and move the data. We will assume that we have already spent hours (well, a few seconds anyway)
moving the “Shoes” data from a SAS dataset into Excel. Figure 6.1a shows the result of all that hard work.
The data from the SASHELP.SHOES dataset has been copied into a Microsoft Excel workbook, and filters
have been added to the Excel columns. Figure 6.1b shows the expanded “JMP” tab on the Excel ribbon.
This chapter will examine the contents of the JMP tab.

86 Exchanging Data between SAS and Microsoft Excel

Figure 6.1a: Excel Workbook of SHOES Data with Excel Filters Applied.

6.3 Methods of Sharing Data between JMP and Excel
The following table shows several methods of moving data between JMP and Excel. This list of options is
found by selecting the JMP tab on the Excel ribbon along with a short description of their functions. Other
options exist on the tabs, but do not relate to moving data between JMP and Excel.

Table 6.1: Excel Workbook Options under the JMP Tab That Deal with Excel Data and
JMP.

Group Option Function
Transfer to JMP Preferences Identify Excel data to load into JMP.

Data Table Load data into a JMP table; this will also start JMP if
it is not running.

Graph Builder Transfer Excel data and launch the Graph Builder
platform.

Distribution Transfer Excel data and launch the Distribution
platform.

Profile in JMP Create/Edit Model Set up preferences in the JMP Profiler with Excel
data.

Run Model Run the JMP Profiler.

Chapter 6: Using JMP to Share Data with Excel 87

Figure 6.1b: Excel Workbook with JMP Tab Showing “Transfer to JMP” and “Profile in
JMP”.

6.4 List of Examples

Figure 6.6.1: List of Examples for JMP.

Example Number General Description

6.1 Within Excel, Set the JMP Preferences for Loading Excel
Data. This example shows you how to set up your preferences that
describe how you want to read data into JMP from Excel workbooks.
You can select to process the first row of data as headers or data, and
whether or not to transfer hidden rows and columns.

6.2 Reading Data from Excel to JMP. This example shows how to read
data from Excel into JMP.

6.3 Writing Data from JMP to Excel. This example shows how to write
data from JMP to Excel.

6.5 Examples

Example 6.1 Within Excel, Set the JMP Preferences for Loading Excel Data
After data is loaded into an Excel spreadsheet, the JMP Preferences pop-up menu gives you the following
choices about how to select your data for JMP, make these choices before copying any data to JMP.

Preferences:
● Select the output JMP table name.
● Choose whether or not to use the first rows of Excel cells as column names.
● Choose how many rows to use as column names.

88 Exchanging Data between SAS and Microsoft Excel

● Turn on or off the transfer of hidden rows.

• Turn on or off the transfer of hidden columns.

Figure 6.2 shows the setting options of the JMP Preferences window. Your actual display may differ from
these settings. Use this window to set the preferences listed above. The data table name
“My_JMP_Shoes_data” is the user-supplied output JMP data table name. As listed above, there are four
other options that you can set when you transfer data from Excel to JMP.

Figure 6.2: Excel JMP Preferences Window Showing User-Supplied Values.

Example 6.2 Reading Data from Excel to JMP
This process also occurs while using Excel and the JMP tab on Windows. Next, use the Data Table menu
option to transfer data to JMP. Selecting that menu option produces the following when using JMP 11. The
JMP program starts, and the JMP Home window (Figure 6.3) appears along with the JMP Data window
that displays the imported data file (Figure 6.4).

Figure 6.3: JMP Home Window.

Figure 6.4 is also a JMP window; it looks similar to the Excel windows with data columns and rows, but
has many extra options and features not available in Excel. Once again, this book is about moving data, not
using the data.

Chapter 6: Using JMP to Share Data with Excel 89

Figure 6.4: JMP Data Window.

Example 6.3 Writing Data from JMP to Excel
This example will demonstrate how to send data from JMP to Excel (and other file types we have seen
before). Figure 6.4 shows the JMP data window for JMP 11.1 from Example 6.2. The “File” tab has a
“SEND” option and, when it is opened, the “Save JMP File As” menu opens and looks similar to Figure
6.5. The output files can be created as Excel files, comma-separated value files (CSV), tab-delimited files
(TSV), and text files (TXT). Other SAS output formats are also available; and you can select the older
Excel *.xls format for Excel 97-2003 formats.

Figure 6.5: JMP Save Data Window.

90 Exchanging Data between SAS and Microsoft Excel

6.6 Conclusion
JMP may also open up four windows: a home window, a JMP log window, a “Tip of the Day” window, and
a data window. The number of windows that open when you select an option may vary if you have already
seen the tip of the day or if you have more JMP data files open. Once the data is in the JMP data window,
there are several options that relate to sending it somewhere else. You can save the file and any changes
made; you can also save the file as something else. Or, if you have the proper metadata connections
established, the data can be sent to any of the metadata connections. No JMP application or metadata
examples are shown here because the object of this book is moving the data, not how you use the data.

While many JMP features require a metadata connection, it is possible to use JMP without that connection
because you are able to access the data. That is true either because it is output by SAS to an Excel file or
because JMP can read a file formatted by SAS. The object of this chapter is to show that real SAS dataset
files can be processed through Excel to hand off the data to JMP.

Chapter 7: SAS Add-In for Microsoft Office (Excel)

7.1 Introduction ... 91

7.2 Purpose ... 91

7.3 Methods of Sharing Data Using SAS Add-In for Microsoft Office 92

7.4 List of Examples .. 94

7.5 Examples ... 94
Example 7.1 Open a SAS Dataset Using SAS Add-In for Microsoft Office 94
Example 7.2 Open a SAS Report Dataset (*.srx) Using SAS Add-In for Microsoft
Office .. 99

7.6 Conclusion .. 105

7.1 Introduction
The software architecture of the Microsoft products incorporate something called a Component Object
Model (COM) software package. The SAS Add-In for Microsoft Office is a COM package. Once installed
into Microsoft Excel and other Microsoft products, the SAS Add-In for Microsoft Office gives you access
to SAS features directly from Excel. The SAS Add-In for Microsoft Office is part of SAS Enterprise Guide,
SAS Enterprise Business Intelligence Server, and SAS Enterprise Miner. These are separately available
SAS products.

The ability to use Excel to access SAS data will be described here. My system has these products installed,
so I will show you some of the methods that Excel can use to access SAS data using the SAS Add-In for
Microsoft Office. This software extends the functionality of Microsoft Office products using the add-in by
allowing direct access to SAS datasets from within the Microsoft products.

Here we will demonstrate how you can identify and use SAS data from within Excel to perform limited
Read and Write functions from Excel with SAS Add-In for Microsoft Office 6.1. Specifically, SAS Add-In
for Microsoft Office can function and process SAS datasets without using a metadata server, as long as
SAS Enterprise Business Intelligence Server and SAS Enterprise Miner are installed.

7.2 Purpose
This chapter will introduce you to the features of SAS Add-In for Microsoft Office as it relates to reading
and writing SAS data to and from Excel workbooks. Once the data is in the workbook or out of the
workbook, then my task of showing you how to move the data is complete.

Table 7.1: SAS Add-In for Microsoft Office Task Availability, by Product and Task.

 Task
Product

Process SAS
Data

Run SAS
Tasks

Run SAS
Reports Share SAS Reports

Excel Yes Yes Yes No
Word No Yes Yes No
PowerPoint No Yes Yes No
Outlook No No No Yes

92 Exchanging Data between SAS and Microsoft Excel

7.3 Methods of Sharing Data Using SAS Add-In for Microsoft Office
The very first interaction with SAS Add-In for Microsoft Products that your computer, but probably not
you, will have is when your SAS software is installed. During deployment of SAS software, one of the
questions asked is this: Into which Microsoft products should I install the SAS Add-In for Microsoft
Office? The default answer for this question is to install the add-in into Microsoft Excel, Microsoft Word,
and Microsoft PowerPoint. In shown in Figure 7.1, the option to install the add-in into Microsoft Outlook is
also selected. Since your system administrator set up your machine, this may not be the case on your
computer.

Figure 7.1: SAS V9.3 Deployment Wizard Showing Options for SAS Add-In for Microsoft
Office.

When the SAS Add-In for Microsoft Office is installed, a new tab appears on the toolbar or ribbon of the
Microsoft Office products that can use the add-in. If your version of Excel (or Word, PowerPoint, or
Outlook) does not have a SAS tab, then stop here. You do not have the SAS Add-In for Microsoft Office
installed, and cannot use these features.

When we click on the SAS tab on the Excel toolbar or ribbon, we will see a screen similar to Figure 7.2.
This figure was generated using Windows XP Professional with Excel 2010 that had SAS 9.3 and SAS
Add-In for Microsoft Office 4.3 installed.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 93

Figure 7.2: Microsoft Excel with the SAS Tab on the Ribbon for the SAS Add-In for
Microsoft Office.

Table 7.2 shows the features available on the SAS tab for Microsoft Excel, but the other Microsoft products
(Word, PowerPoint, and Outlook) all have different sets of features available. Microsoft Excel is the only
Microsoft product that can open a data source. A data source is either a SAS dataset or an OLAP cube.

NOTE: The features described here do not require the activation of SAS Business Intelligence software,
but do require a license for SAS Business Intelligence software.

Table 7.2: SAS Add-In for Microsoft Office (Excel) Tab Options.

Group Option Function
Insert SAS Data Opens a SAS data source.

Tasks Performs one of over 75 options including sorting,
transposing, and graphing.

Reports Allows searching the network and executing available
*.srx report routines.

Quick Start Allows for the selection of multiple graphing tasks,
automatic charts, and statistical processes.

SAS Favorites Allows storing and executing favorite report routines in
a profile file.

Selection Refresh ** Re-runs an analysis.
 Modify ** Changes any optional parameters available to the task.
 Properties** Allows review and changing of report properties.
Tools Manage Content** Allows changing optional parameters and running

selected reports.

Tools Contains several features for managing data, reports,
styles, and scheduling reports.

Help Contains Help information for SAS Add-In for
Microsoft Office.

** Available after a report is executed.

94 Exchanging Data between SAS and Microsoft Excel

7.4 List of Examples

Table 7.3: List of Examples for SAS Add-In for Microsoft Office.

Example Number General Description

7.1 Open a SAS Dataset Using SAS Add-In for Microsoft Office.
7.2 Open a SAS Report Dataset (*.srx) Using SAS Add-In for

Microsoft Office.

7.5 Examples

Example 7.1 Open a SAS Dataset Using SAS Add-In for Microsoft Office
The first thing I do when I get a new piece of software is to figure out how to open a file. So, I will also use
that as my first example here. Using Excel 2013 and SAS 9.4, I click on the SAS Data Ribbon option on
the SAS tab. The pop-up View SAS Data menu appears, as shown in Figure 7.3 (View SAS Data). The
menu allows me to select the input SAS dataset, customize the display, and select the number of records
that will be visible. One of the features of the “View SAS Data” pop-up menu is the “Filter & Sort” option.
When that is selected, additional screens appear that allow you to select variables, filters, and sort order for
the input SAS data. Under the “Number of Records toView” option, be aware that when “All” is selected I
would always caution you to verify that the number of records and the number of columns that are actually
read into the Excel workbook match the number of rows and columns in the original SAS dataset. This is
especially true when reading more than 65,536 rows or 255 columns.

NOTE: The features described here do not require the activation of SAS Business Intelligence software,
but do require a license for SAS Business Intelligence software.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 95

Figure 7.3: “View SAS Data” Screen Allows You to Navigate Your System to Pick a SAS File
to Process.

The menu in Figure 7.3 has three sections called Data, View, and Location. Table 7.4 describes these
sections.

Table 7.4: Description of Options Available When Reading SAS Data into Excel.

Options for Loading a SAS Dataset into Excel Using the SAS Add-In for Microsoft Office

Section Option Description

Data Combo Box Lists file names that have been used.

Browse Allows you to search a file to select for input.

Details Displays or hides the data options selected.

Filter & Sort Causes a pop-up menu to appear that allows you to

● select columns to read or exclude.
● filter the rows to input.

• sort the data before displaying it.

96 Exchanging Data between SAS and Microsoft Excel

Options for Loading a SAS Dataset into Excel Using the SAS Add-In for Microsoft Office

Section Option Description

View Worksheet Controls the following:

● the number of records to view.
● whether or not record numbers are inserted into

the Excel worksheet.
● whether or not to display data source and filter

information in the worksheet.
● whether or not to create a pivot table.

• whether or not to use the SAS OLAP Analyzer.

Location New Worksheet Name of a new worksheet to create.

Existing Worksheet Supplies the location to place the data into an existing
worksheet.

New Workbook Allows for the creation of a new workbook, usually named in
the form Bookn, where n is the next number not used for an
Excel workbook named BOOK.

Example 7.1.1 Descriptions of the Data Options
Figure 7.4 shows the browse window that you can use to look for your SAS datasets to call into Excel using
the SAS Add-In for Microsoft Office. Excel has the only add-in that allows you read SAS datasets directly.

Figure 7.4: The Browse Window on the “SAS Data” Feature of the SAS Add-In Tab,
Showing the Input File Name and Details.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 97

Figure 7.5: The First Window on the “Filter & Sort” Tab. From Here, Select Variables to
Read.

Figure 7.5 shows all of the variable names and types found in the input SAS dataset. All variables are
shown here as selected. They had been highlighted and moved over to the right pane by clicking one of the
right-pointing arrows. You will be able to select a subset of the variables by highlighting only the variables
you wish to move. Figure 7.6 shows how to filter the selection to only the region “Asia”.

Figure 7.6: Filter Option Using SAS Add-In for Microsoft Office (Excel) to Read a SAS
Dataset.

98 Exchanging Data between SAS and Microsoft Excel

Figure 7.7: Data Options on the “SAS Data” Feature of the SAS Add-In Tab, Showing the
Input File Name and Details.

Figure 7.8 shows the result of adding the SAS data to an Excel worksheet with SAS Add-In for Microsoft
Office. The columns have the Excel filter option applied and the import routine read only the records where
“Region” equals “Asia”. You may notice that only the variable names and 14 data rows were imported into
the Excel worksheet.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 99

Figure 7.8: Excel Worksheet Showing Data Read by Selecting OK in Figure 7.3.

Example 7.2 Open a SAS Report Dataset (*.srx) Using SAS Add-In for
Microsoft Office
This example involves both SAS Enterprise Guide and Excel with the SAS Add-In for Microsoft Office
installed. SAS Add-In for Microsoft Office is used to read SAS datasets into an Excel workbook. The most
common type of SAS dataset is the familiar table of “Observations” and data “Variables”. These look much
like the Excel “Rows” and “Columns” of data. The second common, but not so well known, type of SAS
data file is the *.srx SAS report file. SAS Enterprise Guide can produce one of these files.

This example has the following general steps.

1. Build a chart from the SASHELP.SHOES dataset with the Bar Chart Wizard. The chart was
plotted by Region and Inventory.

2. Export the chart by using the Export SAS Report – Bar Chart option. This will create a file with
the .srx extension that the SAS Add-In for Microsoft Office can read into Excel as a bar chart. A
window will appear to allow you to save the report file anywhere on your network.

3. Import the output SAS *.srx file into Excel.

Step 1: Build a bar chart using SAS Enterprise Guide.
Remember that in Example 5.3 we built a bar chart similar to Figure 7.9. This Example shows how to
create a *.srx file using SAS Enterprise Guide and read it into Excel using the SAS Add-In for Microsoft
Office. Here we will start with the bar chart already created and show how to create a *.srx file.

100 Exchanging Data between SAS and Microsoft Excel

Figure 7.9: An Enterprise Guide Bar Chart of the Shoes Dataset Showing Total Sales by
Region.

Step 2: Export the bar chart as a *.srx file from using SAS Enterprise Guide.
Next, we need to create the *.srx file by using the “EXPORT” feature of SAS Enterprise Guide. Figure
7.10 shows an expanded view of the Export tab on the Project toolbar with the two options.

Figure 7.10: Expanded Area of Figure 7.9 Showing the Export Tab Options from SAS
Enterprise Guide.

Either option will create a *srx file. The first option will output the displayed bar chart directly into a
directory you choose. The output will be a *.srx file and a directory that contains a cascading style sheet.
This option will place the information into the directory when you press Save. Figure 7.11 appears when
you select “Export SAS Report – Bar Chart”. The message that appears when other charts or graphs are
exported may be different from this message. Figure 7.11 also shows that no other *.srx files exist in the
same directory; that may not always be the case.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 101

Figure 7.11: Save Screen for Outputting the *.srx Files.

Figure 7.12: A Windows Explorer View of the Output Directory Used in Figure 7.11-- After
the Save Is Done.

102 Exchanging Data between SAS and Microsoft Excel

When you select “Export SAS Report – Bar Chart As A Step In Project …” the screens shown in Figure
7.13 appear and allow you to select output options that occur as part of running your report.

Figure 7.13: Export Windows That Enable You to Generate a *.srx File as Part of Your
Report.

Step 3: Import the *.srx file into Excel.
After opening Excel, you can read the *.srx file by selecting the SAS►Insert►Reports tabs and then
browsing your system until you locate the report you just created with SAS Enterprise Guide (See Figure
7.14). After you select the report, an Open button appears that allows you to read the graph into Excel.
Figure 7.15 shows the result.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 103

Figure 7.14: Excel SAS Add-In for Microsoft Office “Reports” Window to Open a *.srx
Report File.

Figure 7.15: Excel Worksheet with the *.srx SAS Report File Open.

104 Exchanging Data between SAS and Microsoft Excel

The image shown in Figure 7.15 is the same image that was produced by the SAS Bar Chart Wizard. I
allowed the graph to have the default header and trailer and did not make any changes other than making
each column of data a different color. This was produced with SAS Enterprise Guide 6.1, SAS 9.4, and
Excel 2013. The first time I built this chart, I used Windows XP Pro operating system.

Figure 7.16: The Properties Window Associated with the Excel Graph from the *.srx SAS
Report.

The header and footer may not have exactly the same format in Excel, Word, and PowerPoint as is
available in SAS Enterprise Guide. With the proper profile connections, the graph can also be saved into
Microsoft Outlook. Now at this point, we have:

● Used Example 5.3 to build a graph in SAS Enterprise Guide.
● Exported a SAS bar chart (or any graph) to a SAS *.srx file.

• Read the *.srx file into an Excel workbook.

An added bonus is that the graph in Excel has Active-X capabilities. Figure 7.17 shows the same data
changed to a pie chart using the features available in Excel to make those changes.

Chapter 7: SAS Add-In for Microsoft Office (Excel) 105

Figure 7.17: Excel Workbook with *.srx File Loaded and Changes Made to Graph Using
Excel Options.

7.6 Conclusion
SAS Add-In for Microsoft Office provides an excellent method of transferring tables and graphs to
Microsoft products, by enabling Microsoft Office to read the SAS report files (*.srx). The *.srx files can be
generated by several of SAS products. SAS Add-In for Microsoft Office is part of SAS Enterprise Guide,
SAS Enterprise Business Intelligence Server, and SAS Enterprise Miner. These products are licensed
separately. The features described here do not require the activation of all features of SAS Business
Intelligence software, but do require a license for SAS Business Intelligence software.

106 Exchanging Data between SAS and Microsoft Excel

Chapter 8: Creating Output Files with ODS for Use
by Excel

8.1 Introduction ... 108

8.2 Purpose ... 108

8.3 An Introduction to SAS Tagset Templates That Create Files for Excel 109
8.3.1 How to Locate a Tagset Template .. 110

8.4 Difference Between an ODS Tagset and an ODS Destination 111

8.5 Syntax of the ODS CSV and CSVALL Output Processes 111

8.6 CSV and CSVALL Tagset Options ... 111

8.7 Overview of CSV and CSVALL Examples .. 113

8.8 CSV and CSVALL Examples to Write *.csv Files ... 113
Example 8.8.1 Simple CSV and CSVALL File Default Output Differences 113
Example 8.8.2 CSV and CSVALL Title and Footnote Output Differences 115
Example 8.8.3 Write Currency Values as Unformatted Numbers 118
Example 8.8.4 Change Delimiters When Outputting Data with CSV Tagset................ 120
Example 8.8.5 Save Leading Zeroes in Character Fields Sent to Excel 123

8.9 Syntax of ODS MSOFFICE2K Output Processes to Write HTML Files 124

8.10 MSOFFICE2K Tagset Template Options .. 125

8.11 Overview of MSOFFICE2K Examples ... 126

8.12 MSOFFICE2K Examples to Write HTML Files ... 126
Example 8.12.1 Generating an HTML Output File with No Options 126
Example 8.12.2 Generating an HTML File Using the Summary_Vars Option 127

8.13 Syntax of the ODS EXCELXP Tagset Template Output Processes 128

8.14 ODS EXCELXP Tagset Options .. 130

8.15 Overview of EXCELXP Examples ... 132

8.16 EXCELXP Examples to Write XML Files ... 133
Example 8.16.1 Generating an XML Output File with No Options 133
Example 8.16.2 Adjusting Column Width Using Tagset Template Options 134
Example 8.16.3 Tagset Option to Hide Columns While Writing the File 135
Example 8.16.4 Apply an Excel “AUTOFILTER” to Selected Output Columns 136
Example 8.16.5 Using Multiple Options to Produce a “Ready-to-Print”
Spreadsheet .. 137
Example 8.16.6 Creating a Table of Contents in an Excel Workbook 138
Example 8.16.7 Methods of Naming Excel Worksheets... 140
Example 8.16.8 Splitting One Report onto Multiple Excel Worksheets 141
Example 8.16.9 Methods of Placing Labels in Excel Worksheet Names 142
Example 8.16.10 Use SHEET_INTERVAL= BYGROUP to Create Worksheets 143
Example 8.16.11 Use SHEET_INTERVAL= PROC to Create Worksheets..................... 144
Example 8.16.12 Build Separate Worksheets with Titles on Each Sheet 146

108 Exchanging Data between SAS and Microsoft Excel

8.17 The New ODS Destination EXCEL for Writing Workbooks 147

8.18 Conclusion .. 148

8.1 Introduction
With the release of SAS 7 came the introduction of the Output Delivery System (ODS). This powerful
enhancement to SAS software expanded the standardization of SAS output processes. From the user’s
perspective, a new default system appeared that managed output files but did not intrude on the way things
worked already. While at the same time, the new ODS processes provided options that exceeded the status
quo and opened new ways to use the output data from SAS procedures. The ODS destinations called
OUTPUT and HTML first appeared with this release. SAS 8 soon followed with more options.

Delimited files had long provided a method to transport data between systems, including between SAS and
Excel. A common method of generating delimited files was to use the SAS DATA step and FILENAME
statement to write to an external text file that could be read and processed by Excel. The data in these files
was separated by characters not normally found within the data. The development of ODS provided a
platform for new tools that enabled the standardization of output methods for transporting data between
software systems like SAS and Excel. One of the first of these methods was the CSV destination, which
allowed an automatic output of text files formatted so that Excel could read the file and place data directly
into individual cells of a spreadsheet. Other options were soon to follow.

SAS 8.2 provided the first experimental look at the new tagset output feature of the ODS system. With the
proper ODS commands your output could be directed into a new processing path that formatted the output
data. With this new processing path ODS acquired the ability to store command files that controlled the
output formatting. These new command files are called tagsets. This chapter will discuss not only some of
these tagset command files, but also the new ODS destination called EXCEL. This destination became
available as an experimental ODS destination in SAS 9.4 TS Level 1M1. As with all of the experimental
SAS products, the final product may change.

8.2 Purpose
The purpose of this chapter is to examine some of the ODS data output methods. As noted in the
introduction, HTML was one of the first ODS destinations. While it is not a recommended method, it is still
supported and used by the SAS Explorer window. I will give you my interpretation of how I see the ODS-
to-Excel-readable-file generation process works. I do not expect you to find this definition in any SAS
manual, but here goes.

● Start running SAS.
● Issue an ODS command similar to the following to open the output file.

ODS (any SAS ODS Destination or TAGSETS=) (any output file name) (any
optional options);

● Run any SAS process that creates an output file.
● Issue an ODS command similar to the following to close the output file.

ODS (any SAS ODS destination or TAGSETS) CLOSE;

• Do anything else or end SAS.

Chapter 8: Creating Output Files with ODS for Use by Excel 109

Of course, this sample of pseudo code will not execute anywhere and to be useful the “ODS” commands
must be provided in the correct SAS syntax for the task you wish to accomplish. The important thing to
remember here is that prior to SAS 8.2 and SAS 7 (for the few people who used it) every non-HTML file
used to transport data had to be coded in a DATA step. It is important to realize that the ability to process
tagsets is a huge step forward for the ability to generate formatted SAS output. SAS software has long had
users wanting output that was easy to transport to other systems. Tagsets crossed that gap. This chapter will
discuss the following ODS tagsets and destinations because they have a direct relationship with making the
transfer of data from SAS to Excel easier for you as a programmer. The tagsets and destinations listed
reduce your coding effort from pages of SAS code to lines of code defining the output file, locations, and
structures.

Table 8.1: ODS Options That Create Files That Can Be Opened by Microsoft Excel.

ODS Option Destination or Tagset Output

CSV Both Create a text file with values
separated by a delimiter

CSVALL Both Create a text file with values
separated by a delimiter

MSOFFICE2K Both Create a text file with HTML
formatted data values

HTML Both Create a text file with HTML
formatted data values

EXCELXP Tagset Create a text file with XML
formatted data values

EXCEL Destination Create a Microsoft Excel file in
*.xlsx native format

The SAS ODS destinations and tagsets listed in Table 8.1 allow SAS to write delimited or formatted files
without interrupting the flow of the job, thereby enabling programmers to do more work in less time.
Simple commands turn the feature on and off, and most outputs in between are written to the output file.
The capabilities of ODS have been steadily increasing ever since the release of SAS 7. The power of
tagsets has increased from writing text-based (*.txt, *.csv, *.tab) files to writing Hyper Text Mark-up
Language (HTML) files and then to outputting Extensible Mark-up Language (XML)-formatted files. The
new experimental ODS destination EXCEL will actually write native Excel 2007 and later formatted files.
As with all of the experimental SAS products, the final product options may change.

8.3 An Introduction to SAS Tagset Templates That Create Files for Excel
As I mentioned in earlier, tagsets are text files stored for use by the Output Delivery System. Many of the
tagsets are delivered with, and are part of, Base SAS. PROC TEMPLATE prepares SAS code to be used as
a tagset. The syntax for coding a tagset is slightly different from that of regular SAS code. There are also
specific methods in place to store an access tagset templates. Tagsets delivered with your SAS product are
usually stored in a location that is Write protected (see Figure 8.1), so the contents cannot be easily
overwritten. Other storage levels are easily defined and are used to store changes to original tagsets. The
tagset names and the concatenated list of storage directories allow changes to be applied without
overwriting the original files. Tagsets can be updated by SAS and are stored on the SAS web site. You can
also make changes to a tagset and install the changes on your system.

110 Exchanging Data between SAS and Microsoft Excel

8.3.1 How to Locate a Tagset Template
SAS menus are context driven menus, this means that the command line menus may change depending
upon your currently displayed screens. For instance in Figure 8.1 you have to have the “Results” window
displayed as the current window before the "View" option will display the menu listing “Tagsets” as the
first item. Then the selection of “Sashelp.Tmplmast”, “Tagsets”, and “ExcelXP” will display the
information in Figure 8.2. The production SAS 9.4 TS Level 1M1 version of the ExcelXP tagset template
simply defines the name and includes a separate tagset code module. The code in your ExcelXP tagset code
file may be different.

Figure 8.1: How to Locate a Tagset Template.

Figure 8.1 shows the path to locating the tagset production code modules, and Figure 8.2 shows the SAS
9.4 TS Level 1M1 contents. This tagset simply defines the ExcelXP name and includes (references) other
tagset instructions from the module “tagsets.ExcelBase”. The code module “tagsets.ExcelBase” has over
8,500 lines of code that define and implement all of the options and features of the ExcelXP tagset
template.

Figure 8.2: Contents of the ExcelXP Tagset PROC TEMPLATE Code Module.

Chapter 8: Creating Output Files with ODS for Use by Excel 111

See the SAS Help files on your system for information about using PROC TEMPLATE.

8.4 Difference Between an ODS Tagset and an ODS Destination
An ODS tagset template is code that is used by PROC TEMPLATE to perform a task, like write a *.csv
file. Base SAS ships with many templates that are available to use. These tagsets can be edited and
modified and then stored in a place where you can have access to them. This is discussed later. An ODS
destination like the new EXCEL destination can be provided with options at the time you execute the ODS
command, but you cannot change the actual code that is used to process the data. Many SAS web pages
provide references to and downloadable copies of tagsets.

8.5 Syntax of the ODS CSV and CSVALL Output Processes
This section will describe CSV tagset templates, including options, along with the default values. Many of
the options will be further explained by an example. Section 8.3 describes how to locate a specific tagset.
You can then view the actual code, but it is often better left alone.

The tagset templates “CSV” and “CSVALL” are effectively the same tagset template; the difference is that
the “CSVALL” tagset template sets the “BYLINES”, “TITLES”, “PROC_TITLES”, “NOTES” options to
“yes”. Example 8.8.1 parts “a” and “b” show the actual differences. The “CSV” tagset template is the
“Parent” tagset of “CSVALL”. Therefore, everything not defined in tagset template CSVALL is defined in
the CSV tagset template. I refer to both the CSV and the CSVALL tagset template as the “CSV tagset
template” unless an option is specific to only one of them. The CSV tagset templates convert a SAS file to
an output text file of values separated by a delimiter. Text files of data separated by a delimiter have long
been used to transfer data between software packages.

The options for CSV tagset templates are described below, and in general fall in to several categories based
upon what part of the output the option modifies.

● Modify or display SAS outputs for titles, footnotes, bylines, and table headers
● Display of SAS log messages and tagset template “Help” messages
● Numeric variable formatting features

• Character variable formatting features

8.6 CSV and CSVALL Tagset Options
Table 8.2 highlights some of the CSV and the CSVALL tagset options, the option names default values and
a description. When you are using either the CSV or CSVALL tagset, current information about what is
installed on your computer can be printed to your log by adding either “OPTIONS(DOC='Quick') or
OPTIONS(DOC='help') to the ODS statement. The tagset options for the CSV and CSVALL tagset
templates fall into the following general categories. The asterisk “*” indicates that an option will be shown
in an example below.

112 Exchanging Data between SAS and Microsoft Excel

Table 8.2: ODS Options for the CSV and CSVALL Tagset Templates.

ODS Option Description

Options related to titles and footnotes

BYLINES Select if byline records will be put into the output file.

PROC_TITLES Select if procedure title records will be put into the output file.

TITLES Select if title and footnote records will be put into the output
file.

TABLE_HEADERS Select if header sections of output tables will be put into the
output file.

Options related to data and columns

CURRENCY_AS_NUMBER If selected, currency symbols and punctuation are removed from
output values,

CURRENCY_SYMBOL Select currency symbol to use,

DECIMAL_SEPARATOR Select decimal separator to use,

DELIMITER Select field delimiter to use,

QUOTE_BY_TYPE Select field types to enclose in quotes,

QUOTED_COLUMNS Select columns to enclose in quotes.

PERCENTAGE_AS_NUMBER Select if percent signs and punctuation are removed from output
values.

PREPEND_EQUALS Use with QUOTE_BY_TYPE to prepend an equal sign in front
of numeric values.

THOUSANDS_SEPARATOR

Select thousands separator to use in numeric fields, usually for
use in Europe or countries with different numeric formatting.

Options related to error messages

NOTES Select whether or not to suppress SAS system error messages.

Options related to Tagset template documentation

DOC Write user Help information about the tagset template options to
the system log.

Chapter 8: Creating Output Files with ODS for Use by Excel 113

8.7 Overview of CSV and CSVALL Examples
Example 8.8.1 includes ODS commands to execute the CSV and CSVALL features. There is more than one
way to write a CSV file using ODS. All six sets of code shown in Example 8.8.1 write the same data to an
output file into either a CSV or CSVALL directory with a slightly different name. All six of these methods
are part of Base SAS, and they all produce the same output. The code in Figures 8.3 and 8.4 and shown in
Example 8.8.1 demonstrates that there are only minor differences in the output files. However, if you need
an output file without titles you should use the CSV tagset.

Table 8.3 describes the examples shown in this chapter. Some of the examples here have minor overlaps in
the features to show how they interact when additional features are included. Example 8.8.1 will show
outputs from both the CSV and CSVALL tagset executions. However, the other examples will focus on the
output from only one tagset.

Table 8.3: List of Examples for ODS CSV and CSVALL Tagsets or Destinations.

Example Number General Description

8.8.1 Simple CSV and CSVALL File Default Output Differences. This
example compares the default behavior of both the CSV and
CSVALL tagset output files.

8.8.2 CSV and CSVALL Title and Footnote Output Differences. This
example shows the differences in the output files when more than
one ODS output is written to a CSV file, and compares the CSV
output to output produced by using CSVALL. Both PROC PRINT
and PROC FREQ are used in this example, along with WHERE and
BY clauses.

8.8.3 Write Currency Values as Unformatted Numbers. This example
shows how to write currency values as numbers without the dollar
signs and punctuation. The input file has whole dollar amounts, and
therefore the output file displays whole dollar values only. Only a
CSVALL example is shown.

8.8.4 Change Delimiters When Outputting Data with CSV Tagset.
This example shows how to create a “Tab”-delimited file using the
CSV tagset. Any other single character can be used as a delimiter,
but try to pick one that does not appear in the data to avoid problems.
Only a CSV example is shown. This example also shows the
difference between a *.csv file and a *.tab file when opened with
Excel.

8.8.5 Save Leading Zeroes in Character Fields Sent to Excel. This
example uses the QUOTE_BY_TYPE='Yes' and the
PREPEND_EQUALS='Yes' options to preserve leading zeros for
variables that are read into an Excel workbook. Only a CSV example
is shown.

8.8 CSV and CSVALL Examples to Write *.csv Files

Example 8.8.1 Simple CSV and CSVALL File Default Output Differences
The examples shown in this section relate to the CSV and CSVALL tagset templates. I will start by
showing the differences between the two tagset templates. The CSV tagset template is the “Parent” tagset
template, while the CSVALL tagset template is a child template. Essentially, the CSVALL tagset template
just changes some defaults, and then uses all of the code in the CSV tagset template. The CSV tagset
template is referred to in PROC TEMPLATE as a “PARENT.”

114 Exchanging Data between SAS and Microsoft Excel

Figure 8.3: Sample ODS Commands to Create a CSV Output File Using CSV Tagset or
Destination.

ODS MARKUP BODY='c:\temp\csv\shoes1.csv' TAGSET=CSV;
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS MARKUP CLOSE;

***;

ODS CSV BODY='c:\temp\csv\shoes2.csv';
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS CSV CLOSE;

***;

ODS TAGSETS.CSV BODY='c:\temp\csv\shoes3.csv';
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS TAGSETS.CSV CLOSE;

Figure 8.4: Sample ODS Commands to Create a CSV Output File Using CSVALL Tagset or
Destination.

ODS MARKUP BODY='c:\temp\csvall\shoes1.csv' TAGSET=CSVALL;
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS MARKUP CLOSE;

***;

ODS CSVALL BODY='c:\temp\csvall\shoes2.csv';
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS CSVALL CLOSE;

***;

ODS TAGSETS.CSVALL BODY='c:\temp\csvall\shoes3.csv';
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS TAGSETS.CSVALL CLOSE;

Chapter 8: Creating Output Files with ODS for Use by Excel 115

The two output screens shown in Figure 8.5 show the differences between using the ODS CSV and the
ODS CSVALL tagset or destination options. All three pairs of code listed in Figures 8.3 and 8.4 produce
the same output files. The output file names are the same in Figure 8.5, but the top left image was written
using the “TAGSETS.CSV” code and the bottom right image was created using the “TAGSETS.CSVALL”
code.

Figure 8.5: Output Differences Between CSV and CSVALL ODS Output Files.

Example 8.8.2 CSV and CSVALL Title and Footnote Output Differences
In this example, the tagset templates CSV and CSVALL will both be used to show the differences between
the default settings of the CSV and CSVALL tagset templates. This example highlights the differences in
the output *.csv files. By default, options “BYLINES”, “TITLES”, “PROC_TITLES”, and “NOTES” are
set to “yes” in the CSVALL tagset processing. The code in Figure 8.6 processes both the CSV and
CSVALL output files. The WHERE= clause in the PROC PRINT code in Figure 8.6 restricts the output,
and the “BY” clause groups the data when the output files are created.

Figure 8.6: SAS Code to Process Both CSV and CSVALL Output.

TITLE1
 "Testing Title options BYLINES - PROC_TITLES - TITLES and FOOTNOTES";

FOOTNOTE1
 "Testing footnote options BYLINES - PROC_TITLES - TITLES and FOOTNOTES";

ODS TAGSETS.CSV BODY='c:\temp\csv\csv_shoes.csv';
ODS TAGSETS.CSVALL BODY='c:\temp\csvall\csvall_shoes.csv';

PROC PRINT DATA=sashelp.shoes
 (WHERE=(product = 'Boot' and region in('Asia' , 'Canada')));
 BY region;
RUN;
PROC FREQ DATA=sashelp.shoes;
 TABLE product / LIST;
RUN;

ODS TAGSETS.CSV CLOSE;
ODS TAGSETS.CSVALL CLOSE;

116 Exchanging Data between SAS and Microsoft Excel

Figure 8.7: ODS Output from Tagset CSV as a Comma-Separated Value Text File.

Figure 8.7 show ODS output from a CSV tagset template showing a standard output with no options set.
This output was produced using SAS 9.4.

Figure 8.8: ODS Output from Tagset CSVALL as a Comma-Separated Value Text File.

Chapter 8: Creating Output Files with ODS for Use by Excel 117

Figure 8.8 shows ODS output from CSVALL tagset template showing standard output with options
“BYLINES”, “TITLES”, “PROC_TITLES”, “NOTES” set to “yes” in the CSVALL processing by default.
This output was produced using SAS 9.4.

Figure 8.9: ODS Output from Tagset CSV as Read into an Excel Workbook.

118 Exchanging Data between SAS and Microsoft Excel

Figure 8.10: ODS Output from Tagset CSVALL as Read into an Excel Workbook.

Figure 8.7 and Figure 8.9 show the output of the ODS CSV processing, while Figure 8.8 and Figure 8.10
show the output from the CSVALL processing.

Example 8.8.3 Write Currency Values as Unformatted Numbers
In the following example, the tagset template CSVALL is used to convert formatted dollar values directly
to numeric values. The source input file had only whole dollar amounts, so the output CSV file will have
only whole dollar amounts. Figure 8.11 shows the code to use the option CURRENCY_AS_NUMBER to
convert currency values to numbers. The output appears in Figures 8.12 and 8.13. This option strips the
currency symbol and displays only the numbers. The numbers displayed here are whole dollar amounts
because the input file deals with whole dollar amounts.

Chapter 8: Creating Output Files with ODS for Use by Excel 119

Figure 8.11: SAS Code to Create a CSV Test File Using the currency_as_number Option.

/* convert currency to numbers */
/* No titles or footnotes are assigned */

ODS TAGSETS.CSVALL BODY='c:\temp\csvall\csvall_shoes.csv'
 OPTIONS(CURRENCY_AS_NUMBER='Yes');

PROC PRINT DATA=sashelp.shoes
 (WHERE=(product = 'Boot' and region in('Asia', 'Canada')));
 BY region;
RUN;
ODS TAGSETS.CSVALL CLOSE;

Figure 8.12: ODS Output File Generated with CSVALL and “CURRENCY_AS_NUMBER”
Active.

Compare Figure 8.12 with Figure 8.8 to see the difference in the way the dollar amounts are displayed.

120 Exchanging Data between SAS and Microsoft Excel

Figure 8.13: The File from Figure 8.12 Opened with Microsoft Excel.

Example 8.8.4 Change Delimiters When Outputting Data with CSV Tagset
In this example only the CSVALL tagset template will be demonstrated to show the enhanced headers. The
following example deals with the delimiters used to separate the data values. In this case the “Tab”
character (‘09’ hexadecimal) was used.

Figure 8.14: SAS Code to Change the Delimiter for a CSV Text File to a Tab.

/* use a tab as delimiter */
/* a 'tab' character is hard to reproduce in code */
/* so the standard convention is to use a hexadecimal */
/* representation of a 'tab' character as '09'x */
/* Both of these files are "Tab" delimited but the */
/* CSV file will not open correctly when double clicking */
/* because Excel is expecting commas for delimiters */
/* and commas exist in the test lines of the file. */

ODS TAGSETS.CSVALL BODY='c:\temp\csv\csvall_shoes.csv'
 OPTIONS(DELIMITER='09'x);

PROC PRINT DATA=sashelp.shoes
 (where=(product = 'Boot' and region in('Asia', 'Canada')));
 BY region;
RUN;

ODS TAGSETS.CSVALL CLOSE;

Chapter 8: Creating Output Files with ODS for Use by Excel 121

ODS TAGSETS.CSVALL BODY='c:\temp\csv\csvall_shoes.tab'
 OPTIONS(DELIMITER='09'x);

PROC PRINT DATA=sashelp.shoes
 (where=(product = 'Boot' and region in('Asia', 'Canada')));
 BY region;
RUN;

ODS TAGSETS.CSVALL CLOSE;

The output CSV file 'c:\temp\csv\csvall_shoes.csv' shown in Figure 8.15 has a tab character as a delimiter.
This may not seem very useful, but some older systems I have used have reacted in funny ways when
commas appear in the numeric fields, even when they are enclosed in quotes. So, sometimes I use a tab as
my delimiter.

Figure 8.15: The CSVALL_Shoes.csv File Opened with Notepad.

Figure 8.16: The CSVALL_Shoes.tab File Opened with Notepad.

122 Exchanging Data between SAS and Microsoft Excel

Figure 8.15 and Figure 8.16 appear exactly the same when opened with Notepad. However, when opened
with Excel the files appear different. This is shown in Figure 8.17a and 8.17b below.

Figure 8.17a: The CSVALL_Shoes.csv File Opened with Excel.

When a text file with the name that ends in CSV is written with tabs as delimiters and opened with Excel,
any commas embedded in the file can cause problems. This is because the Excel workbook expects
commas to separate fields when the file name ends in “.CSV”.

Figure 8.17b: The CSVALL_Shoes.tab File Opened with Excel.

Chapter 8: Creating Output Files with ODS for Use by Excel 123

When a text file with the name that ends in TAB is written with tabs as delimiters and opened with Excel,
any commas embedded in the file are treated as text and placed into the cells. This is because the Excel
workbook expects tabs to separate fields when the file name ends in “.TAB”.

Example 8.8.5 Save Leading Zeroes in Character Fields Sent to Excel
Here is a clever little trick I found that has helped me to preserve leading zeros and force an Excel cell to
hold a character value even if it “looks” numeric. These options are used together to convert numeric
values in a SAS dataset to a test field in an Excel spreadsheet. The simple code below creates the dataset
“by_type”, which will do the trick. The option “PREPEND_EQUALS” will place an equals sign in front of
quoted numeric values, but only when the “QUOTE_BY_TYPE” option is set to “YES” to place numeric
values in quotes. I have found this to be a useful pair of options because Excel treats the value as a text
field. So, it is left justified, and leading zeros are retained. Then, the numeric value is left in quotes in the
CSV file, but is displayed as a number in Excel.

Figure 8.18: Code to Retain Leading Zeros When Sending Character Values to Excel.

ODS TAGSETS.CSVALL BODY='c:\temp\csv\by_type.csv'
 OPTIONS(QUOTE_BY_TYPE='Yes' PREPEND_EQUALS='Yes');

DATA by_type;
 a = "010";
 b = a * 2;
RUN;

PROC PRINT DATA=by_type;
RUN;

ODS TAGSETS.CSVALL CLOSE;

The code in Figure 8.18 produces a *.csv file, and it can be opened by Excel as a worksheet called
“by_type”. It has two character variables and one observation. The PROC PRINT output is sent to the CSV
file using the CSVALL tagset template.

Figure 8.19: CSV Output File Produced by the Code in Figure 8.18.

124 Exchanging Data between SAS and Microsoft Excel

Figure 8.20: Excel Output File Produced by the Code in Figure 8.18.

8.9 Syntax of ODS MSOFFICE2K Output Processes to Write HTML Files
The tagset template “MSOFFICE2K” is a Base SAS tagset template specifically designed to produce
HTML output files that are intended to be loaded into Microsoft Office products. The parent tagset
template for MSOFFICE2K is a version of the HTML tagset template. These tagset templates share the
same options. The options for the MSOFFICE2K tagset template are described below, and in general they
fall into several categories based upon what part of the output the option modifies.

MSOFFICE2K Tagset Template Options Grouped by Features
I like to group the options by the parts of the output they affect, by the features if you will:

● Modify or display SAS outputs for titles, footnotes, bylines, summary, and table headers.
● Display of SAS log messages and tagset template Help messages.
● Page formatting and style sheet selection.

• Summary table formatting.

ODS Syntax for MSOFFICE2K Tagset Template Use
The examples shown below will include ODS commands to execute the features for each example, but may
not include all of the ODS options available for each command. Three examples are shown in this section
that deal with the MSOFFICE2K tagset template. To get started let’s use different ODS command
sequences in Figure 8.21 that show three ways to execute the MSOFFICE2K processing. All three of these
methods are part of Base SAS, and they all produce the same output.

Figure 8.21: ODS MSOFFICE2K Calls Generate an Output HTML File.

ODS MARKUP BODY='c:\temp\msoffice2k\shoes1.htm' TAGSET=MSOFFICE2K;
PROC PRINT DATA=sashelp.shoes;
RUN;
ODS MARKUP CLOSE;

***;

ODS MSOFFICE2K BODY ='c:\temp\msoffice2k\shoes2.htm';
PROC PRINT DATA =sashelp.shoes;
RUN;
ODS MSOFFICE2K CLOSE;

Chapter 8: Creating Output Files with ODS for Use by Excel 125

***;

ODS TAGSETS.MSOFFICE2K BODY ='c:\temp\msoffice2k\shoes3.htm';
PROC PRINT DATA =sashelp.shoes;
RUN;
ODS TAGSETS.MSOFFICE2K CLOSE;

8.10 MSOFFICE2K Tagset Template Options
The following examples feature the MSOFFICE2K tagset templates, showing simple files being created
and loaded into Excel using many of the options listed above. I have compiled a list of the options available
for the MSOFFICE2K tagset template. The ODS Tagset MSOFFICE2K produces HTML formatted files.

Table 8.4: MSOFFICE2K Options.

MSOFFICE2K Option Description

Options related to titles and footnotes

HEADER_DATA_ASSOCIATIONS Associates data cells with header cells. (Used only in PROC
Report.)

HEADER_DOTS Add hidden dots to text in table headers.

PERCENTAGE_FONT_SIZE Adjust titles and footnotes to be a percentage of font size.

Options related to page formatting and style sheet selection

CSS_TABLE Select type of style attributes to use.

PAGE_BREAK Selects the type of page break to apply.

Options related to summary tables

SUMMARY Select quoted value to use as text on end of the table
summary.

SUMMARY_AS_CAPTION Select “YES” to use the table summary to create a table
caption.

SUMMARY_BYVALS Add the values of the BY variables to the table summary.

SUMMARY_BYVARS Selecting “YES” will add the BY variable list to the table
summary.

SUMMARY_PREFIX Quoted value to be added to the end of the table summary.

Options related to tagset template documentation

DOC Write user Help information about the tagset template options
to the system log.

126 Exchanging Data between SAS and Microsoft Excel

8.11 Overview of MSOFFICE2K Examples
The list of examples shown below generate HTML-formatted output text files. The recommended tagset for
generating HTML files is the MSOFFICE2K tagset. This tagset template is a predecessor to the ExcelXP
tagset. It also has a little more flexibility when it comes to what can be displayed. Some graphs are
permitted in the MSOFFICE2K outputs. But the focus here is moving data.

Table 8.5: MSOFFICE2K Examples.

Example
Number

General Description

8.12.1 Generating an HTML Output File with No Options. This example is a
simple output of the SASHELP Shoes dataset with the same output file
being displayed in both Microsoft Excel and Internet Explorer.

8.12.2 Generating HTML Output File Using the Summary_Vars Option. This
example shows how summary totals can be added to the output along with
default page formatting.

8.12 MSOFFICE2K Examples to Write HTML Files

Example 8.12.1 Generating an HTML Output File with No Options
The following code produces an HTML-formatted file that is acceptable to Microsoft Excel, Microsoft
Word, and many Internet browsers. While Microsoft Power Point cannot directly open one of these HTML
files, after the output is opened by Microsoft Excel or Microsoft Word, the output can be copied and pasted
into Microsoft PowerPoint.

Figure 8.22: ODS Code to Use the MSOFFICE2K Tagset.

ODS TAGSETS.MSOFFICE2K BODY ='c:\temp\msoffice2k\shoes3.htm';
PROC PRINT DATA =sashelp.shoes;
RUN;
ODS TAGSETS.MSOFFICE2K CLOSE;

The following figure shows the result of opening the file shoes3.htm using Microsoft Excel. Note that no
special commands or options were used to produce this output.

Chapter 8: Creating Output Files with ODS for Use by Excel 127

Figure 8.23: MSOFFICE2K Tagset Output with No Special Options Selected, Shown in
Excel.

Figure 8.24: MSOFFICE2K Tagset Output with No Special Options Selected, Shown in
Internet Explorer.

Example 8.12.2 Generating an HTML File Using the Summary_Vars Option
The following code produces an HTML-formatted file that is acceptable to Microsoft Excel, Microsoft
Word, and many Internet browsers. After the output is opened by Microsoft Excel or Microsoft Word, the
output can be copied and pasted into Microsoft PowerPoint; however, if the amount of data exceeds one
Power Point slide it may become unreadable, as shown in the code sample in Figure 8.25. The code in

128 Exchanging Data between SAS and Microsoft Excel

Figure 8.25 is the output to the region “Asia” and allows the display of the summary information in one
screen display. This example uses the default page formatting established on my system; yours may be
different.

Figure 8.25: Using Tagset MSOFFICE2K to Show and Summarize Data.

ODS TAGSETS.MSOFFICE2K BODY ='c:\temp\MSOFFICE2K\shoes4.htm'
 OPTIONS (summary_byvars='yes');
 PROC PRINT DATA =sashelp.shoes(where=(region='Asia'));
 BY region;
 SUM sales inventory returns;
 RUN;
ODS TAGSETS.MSOFFICE2K CLOSE;

Figure 8.26: Output from the MSOFFICE2K Tagset Using Summary_byvars = ‘YES’.

8.13 Syntax of the ODS EXCELXP Tagset Template Output Processes
The sole intent of the ExcelXP tagset template, as stated in the Help messages that are displayed, is to
facilitate moving data from the SAS system to Microsoft Excel files. Not all versions of the ExcelXP tagset
have the same features. However, each tagset version has only minor variations from one version to the
next. Because the August 2013 version has the richest option set, it is explained in Table 8.7. Also, the
ExcelXP tagset template must be accessed as a tagset. It cannot be referenced directly as an ODS
destination. The output files are spreadsheets in XML format and cannot contain graphics.

The XML source documentation references that are listed below can be found in the Help output listing.
The following SAS command will send the Help messages to the SAS Log window; valid options also
include ‘DOC’ and ‘ALL’:

ODS TAGSETS.EXCELXP file='test.xml' options(doc='Help');

Chapter 8: Creating Output Files with ODS for Use by Excel 129

The SAS web site http://support.sas.com/rnd/base/topics/odsmarkup/ provides access to many of the
ExcelXP versions listed in Table 8.6.

Table 8.6: List of ExcelXP Tagset Releases.

Version Comment

V1.28 Shipped with SAS V9.1.3M
V1.37 June 2006 version available on web site
V1.62 May 2007 version available on web site
V1.72 June 2007 version available on web site
V1.86 April 2008 version available on web site
V1.94 Shipped with SAS V9.2 *
V1.116 August 2010 version available on web site
V1.122 Shipped with SAS V9.3 *
V1.130 August 2013 version available on web site

* Check your maintenance release to verify the ExcelXP tagset version shipped with your software.

The options for the ExcelXP tagset template are described below, and fall into several categories based
upon what part of the output the option modifies.

ExcelXP Tagset Template Feature Groups:
● Column features including width, repetition, and visibility of the column on the Excel spreadsheet.
● Data features ASCII dots, subtotals, Excel column filtering, numeric formatting, and formulas.
● Excel display features that include frozen row and column headers, alignment of missing values,

page orientation, text wrapping in cells, and the Excel “ZOOM” level.
● Displaying Help text in the SAS Log window.
● Printing features controlling color printing, centering output, punctuation, print quality, scale, print

order, page breaks, gridlines, and sizing the data to the pages.
● Row features including height and repetition.
● Title and footnote features that allow control of titles, footnotes including content, merging, and

frequency.

• Workbook and worksheet features allowing the generation of blank sheets, table of contents
sheets, index sheets, sheet names, sheet labels, and style features.

The SAS code below shows two ways to invoke the ExcelXP tagset. The ExcelXP tagset template is not
available as an ODS destination.

Figure 8.27: SAS Code Using the Markup Option to Invoke the ODS Tagset ExcelXP.

ODS MARKUP BODY='c:\temp\ExcelXP\shoes1.xml' TAGSET=ExcelXP;
PROC PRINT DATA=sashelp.shoes;
RUN;
ODS MARKUP CLOSE;

http://support.sas.com/rnd/base/topics/odsmarkup/

130 Exchanging Data between SAS and Microsoft Excel

Figure 8.28: SAS Code Using the Tagsets Option to Invoke the ODS Tagset ExcelXP.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes2.xml';
PROC PRINT DATA=sashelp.shoes;
RUN;
ODS TAGSETS.EXCELXP CLOSE;

8.14 ODS EXCELXP Tagset Options
The following examples feature the ExcelXP tagset template, showing simple files being created and
loaded into Excel using many of the options listed above. The tagset template sub-options for the ExcelXP
tagset template fall into the following general categories. The asterisk “*” indicates an option will be shown
in an example below.

Table 8.7: ExcelXP Options.

ExcelXP Option Description

Options related to titles and footnotes

EMBED_TITLES_ONCE * If specified, embedded titles will appear only at the top of each
worksheet.

EMBEDDED_FOOTNOTES Put footnotes in the worksheet.
EMBEDDED_TITLES Put titles in the worksheet.
MERGE_TITLES_FOOTNOTES Merge left-justified titles and footnotes.

PRINT_FOOTER If no footers or embedded footnotes are on, this is used as print
footer.

PRINT_FOOTER_MARGIN This is the footer margin as set in the page set-up dialog box.
PRINT_HEADER If no titles or embedded titles are on, this is used as print header.
PRINT_HEADER_MARGIN This is the header margin as set in the page set-up dialog box.
TITLE_FOOTNOTE_WIDTH The number of columns titles and footnotes that are allowed to span.
Options related to Excel display features
FROZEN_HEADERS* Freeze rows from scrolling with the scrollbar.
FROZEN_ROWHEADERS Freeze columns from scrolling with the scrollbar.
MISSING_ALIGN Sets the alignment for missing values.
ORIENTATION* Print orientation for the worksheet: portrait or landscape.
WRAPTEXT* This value turns “WRAPTEXT” on and off for all style definitions.
ZOOM* This value determines the zoom level on the worksheet.
Options related to summary tables
SUMMARY Select quoted value to use as text on end of the table summary.
SUMMARY_AS_CAPTION Select “YES” to use the table summary to create a table caption.
SUMMARY_BYVALS Add the values of the BY variables to the table summary.
SUMMARY_BYVARS Selecting “YES” will add the BY variable list to the table summary.
SUMMARY_PREFIX Quoted value to be added to the end of the table summary.
Options related to Column features:
ABSOLUTE_COLUMN_WIDTH* List of widths to use for each column.
COLUMN_REPEAT Repeat columns across pages when printing.
DEFAULT_COLUMN_WIDTH List of widths to use for each column in a table, if there are no

widths.

Chapter 8: Creating Output Files with ODS for Use by Excel 131

ExcelXP Option Description

HIDDEN_COLUMNS* Range or list of column numbers to hide.
WIDTH_FUDGE This value is used to calculate an approximate table column width.
WIDTH_POINTS Override value for width calculations.
Options related to Row features
AUTOFIT_HEIGHT If selected, no row heights will be specified.
ROW_HEIGHT_FUDGE A fudge value to add to the row height for each row.
ROW_HEIGHTS Positional list of point sizes to use for row heights.
ROW_REPEAT Repeat rows across pages when printing.
ROWCOLHEADINGS This value turns on row and column headings for printing.
Options related to Data features
ASCII_DOTS Turn off and on leading dots in textual 'batch' output.
AUTO_SUBTOTALS Add a subtotal function to the summary line of PROC PRINT.
AUTOFILTER* Turn on auto filter for all columns or a range of columns.
AUTOFILTER_TABLE Specify which table on the worksheet should get the filters.
CONVERT_PERCENTAGES Remove percent sign, apply Excel percent format, and multiply by

100.
FORMULAS Data values that start with an '=' will become formulas.
NUMERIC_TEST_FORMAT Used for determining if a value is numeric or not.
THOUSANDS_SEPARATOR The character used for indicating thousands in numeric values.
Options related to Printing features
BLACKANDWHITE This value turns on black and white for printing.
CENTER_HORIZONTAL This value controls horizontal centering for printing.
CENTER_VERTICAL This value controls vertical centering for printing.
CURRENCY_FORMAT The currency format specified for Excel to use.
CURRENCY_SYMBOL Detection of currency formats and symbols so that Excel outputs

numbers.
DECIMAL_SEPARATOR The character used for the decimal point.
DPI* This value determines the dots per inch for printing.
DRAFTQUALITY This value turns on draft quality for printing.
FITTOPAGE Fit to page when printing.
GRIDLINES This value turns on gridlines for printing.
PAGE_ORDER_ACROSS If specified, the worksheet page order will be set to print across, and

then down.
PAGEBREAKS Insert page break lines in the worksheet.
PAGES_FITHEIGHT Determine number of pages down to fit the worksheet when

printing.
PAGES_FITWIDTH Determine number of pages across to fit the worksheet when

printing.
SCALE This value determines the scale level for printing.
SHEET_INTERVAL* Interval to divide the output between worksheets.

132 Exchanging Data between SAS and Microsoft Excel

ExcelXP Option Description

Options related to Workbook features
BLANK_SHEET Create a blank worksheet with the name given.
CONTENTS* Create a worksheet that will contain a table of contents.
CONTENTS_WORKBOOK Create a workbook table of contents and/or an index of workbooks

and/or an index of worksheets.
INDEX* Create a worksheet that will contain an index of worksheets.
MINIMIZE_STYLE Minimize styles written to stylesheets. (Caution: Can cause

unloadable XML files.)
SKIP_SPACE Multiplier for the space that follows the different types of output.
SUPPRESS_BYLINES Suppresses bylines in the worksheet.
SHEET_LABEL* Replace the prefix of the worksheet name with this value.
SHEET_NAME* Worksheet name to use for the next worksheet.
BLANK_SHEET Create a blank worksheet with the name given.
Options related to Tagset template documentation

DOC Write user Help information about the tagset template options to the
system log.

8.15 Overview of EXCELXP Examples
Each of these examples writes an XML file that can be processed by Excel into a workbook.

Table 8.8: Brief Description of ExcelXP Examples.

Example
Number

General Description

8.16.1 Generating an XML Output File with No Options. This example shows a
simple ODS command and a PROC PRINT to output data into an XML file
that can be read by Microsoft Excel.

8.16.2 Adjusting Column Width Using Tagset Template Options. The
difference between this example and Example 8.16.1 is that the width of the
columns has been adjusted by the ABSOLUTE_COLUMN_WIDTH option.
This can aid in preparing a workbook for delivery. It is often time-
consuming to adjust more than a few columns.

8.16.3 Tagset Option to Hide Output Columns While Writing the File. The
added part of this example is the hidden columns. This is another task that
can become repetitive. I like to let the program do this work for me.

8.16.4 Apply an Excel “AUTOFILTER” to Selected Output Columns. This
example applies a filter to three Excel columns in the spreadsheet that is
generated. I have selected the filter in the Excel image to show the contents
of the filter.

8.16.5 Using Multiple Options to Produce a “Ready-to-Print” Spreadsheet. By
applying multiple options, you can enhance your printable output and make
your spreadsheets look better. This can help you get a spreadsheet ready to
print before you open the spreadsheet.

8.16.6 Creating a Table of Contents in an Excel Workbook. This example
produces a table of contents on a worksheet. You can use this table of
contents to jump to the worksheet page that contains the data described.

Chapter 8: Creating Output Files with ODS for Use by Excel 133

Example
Number

General Description

8.16.7 Methods of Naming Excel Worksheets. This example allows you to assign
your own name to a worksheet. It moves away from letting ExcelXP assign
it for you.

8.16.8 Splitting One Report onto Multiple Excel Worksheets. This example uses
the “Sheet_Names” option with a BY statement in the PROC PRINT routine
to apply a prefix to the names of worksheets generated.

8.16.9 Methods of Placing Labels in Excel Worksheet Names. By using the
SHEET_LABEL option with the BY statement in a procedure, you can
create worksheet names that include both the prefix and the BY variable
value as part of the worksheet name.

8.16.10 Use SHEET_INTERVAL= BYGROUP to Create Worksheets. This
example uses the BYGROUP setting of the SHEET_INTERVAL option to
create a worksheet for each BY group of the output. Individual procedures
may create separate output worksheet groups using this option.

8.16.11 Use SHEET_INTERVAL= PROC to Create Worksheets. This example
uses the PROC setting of the SHEET_INTERVAL option to create a
worksheet for each procedure group of the output. This will produce
worksheets with multiple tables on a given worksheet based upon the
number of procedures that are executed.

8.16.12 Build Separate Worksheets with Titles on Each Sheet. This example will
place print-ready titles and footnotes into the Excel workbook. Each sheet
could have unique titles and footnotes.

8.16 EXCELXP Examples to Write XML Files

Example 8.16.1 Generating an XML Output File with No Options
The code in Figure 8.29 produces an XML-formatted file that is acceptable to Microsoft Excel, and many
Internet browsers. The output file can be opened with Excel, and this file has no special options set to
enhance the output. Figure 8.30 shows the output in an Excel worksheet.

Figure 8.29: ExcelXP Code to Write an Excel Workbook File with No Options Set.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes1.xml';
PROC PRINT DATA=sashelp.shoes;
RUN;
ODS TAGSETS.EXCELXP CLOSE;

134 Exchanging Data between SAS and Microsoft Excel

Figure 8.30: Output for Example Generating an ExcelXP File with No Options Set.

Example 8.16.2 Adjusting Column Width Using Tagset Template Options
This example shows how you can adjust the column width of each column in a worksheet by listing the size
of each column as part of an option called ABSOLUTE_COLUMN_WIDTH. Each column is listed as a
number describing the width of each column.

Table 8.9: Options Used in Example 8.16.2.

ExcelXP Option Setting in Example Result
ABSOLUTE_COLUMN_WIDTH '4,19,10.5,10,5,8,8,8' Set column widths for each

column.

Figure 8.31: ODS Code to Define Column Sizes While Writing the Output File.

ODS TAGSETS.EXCELXP BODY ='c:\temp\ExcelXP\shoes2.xml'
 OPTIONS(ABSOLUTE_COLUMN_WIDTH='4,19,10.5,10,5,8,8,8');
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

The code in Figure 8.31 will set the column widths to pre-selected values. Each number represents the
width of a column. The values are assigned in the order listed. If more columns exist than numbers in the
list, then the list is reused until all columns are assigned a width. Look at the differences in the column
widths in Figure 8.30 and Figure 8.32.

Chapter 8: Creating Output Files with ODS for Use by Excel 135

Figure 8.32: The Output Excel Worksheet Creates with Varying Sizes.

Example 8.16.3 Tagset Option to Hide Columns While Writing the File
This next example uses the code from Example 8.16.2 and adds an option to hide some of the columns. The
HIDDEN_COLUMNS option allows you to create a list of columns that you want to hide and does it
without opening the Excel file. This little bit of automation can save a lot of time when preparing the Excel
workbook for delivery to a user.

Table 8.10: Options Used in Example 8.16.3.

ExcelXP Option Setting in Example Result
ABSOLUTE_COLUMN_WIDTH '4,19,10.5,10,5,8,8,8' Set column widths for each

column.
HIDDEN_COLUMNS '6-8' Hide the output columns 6, 7, and 8

in the output Excel workbook.

Figure 8.33: Example That Builds on Example 8.16.2 and Also Hides Some of the Columns.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes3.xml'
 OPTIONS(ABSOLUTE_COLUMN_WIDTH='4,19,10.5,10,5,8,8,8'
 HIDDEN_COLUMNS='6-8');
 PROC PRINT DATA=sashelp.shoes;
RUN;
ODS TAGSETS.EXCELXP CLOSE;

136 Exchanging Data between SAS and Microsoft Excel

Figure 8.34: Output with Column Widths and Hidden Columns 6, 7, and 8.

I want you to notice here that columns F through H are hidden.

Example 8.16.4 Apply an Excel “AUTOFILTER” to Selected Output Columns
The following code will set the column widths and turn “AUTOFILTER” on for columns 6, 7, and 8. (See
columns “F”, “G”, and “H” below.) AUTOFILTER is an option in Excel that indicates special processing
for an Excel spreadsheet column. The processing features in Excel include showing all values, selecting
rows to show when only some of the values are visible, and hiding unwanted values. Columns set up in
Excel worksheets for the AUTOFILTER processing have an arrow icon in the title row.

Table 8.11: Options Used in Example 8.16.4.

ExcelXP Option Setting in Example Result
ABSOLUTE_COLUMN_WIDTH '4,11,10.5,10,5,8,8,8' Set column widths for each

column.
AUTOFILTER '6-8' Turn on the filtering for columns 6,

7, and 8 in the output Excel
workbook.

Figure 8.35: Using the ExcelXP AUTOFILTER Option to Enhance Several Columns.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes4.xml'
 OPTIONS(ABSOLUTE_COLUMN_WIDTH='4,19,10.5,10,5,8,8,8'
 AUTOFILTER='6-8'
);
 PROC PRINT DATA=sashelp.shoes;
RUN;
ODS TAGSETS.EXCELXP CLOSE;

Chapter 8: Creating Output Files with ODS for Use by Excel 137

Figure 8.36 has one of the columns with the filter applied highlighted by opening the Filter tab to show
some of the options available for selection in that column.

Figure 8.36: Excel Output Showing a Filtered Column Created by ExcelXP Directly.

Example 8.16.5 Using Multiple Options to Produce a “Ready-to-Print”
Spreadsheet
This example uses several features of the ExcelXP tagset to produce a customized output worksheet in the
Excel output workbook.

Table 8.12: Options Used in Example 8.16.5.

ExcelXP Option Setting in Example Result
ABSOLUTE_COLUMN_WIDTH '4,11,10.5,10,5,8,9,8' Set column widths for each

column.
FROZEN_HEADERS '1' Freeze the first row of the

spreadsheet when scrolling.
ORIENTATION 'Landscape' Pre-set the page output to landscape

for printing.
WRAPTEXT 'Yes' Allow text in an Excel cell to wrap

onto the next line.
ZOOM '50' Shrink the size of the displayed

spreadsheet to 50% of the original
size.

138 Exchanging Data between SAS and Microsoft Excel

Figure 8.37: Code to Prepare a Worksheet for Printing Using ExcelXP Automatically.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes5.xml'
 OPTIONS(ABSOLUTE_COLUMN_WIDTH='4,9,9,10,5,8,9,8'
 FROZEN_HEADERS='1'
 ORIENTATION='Landscape'
 WRAPTEXT='Yes'
 ZOOM='50');
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

The Excel 2010 screen print shown below contains the spreadsheet image and the “Page Setup” popup
menu image that can be found in the toolbar “File” and “Page Layout” options. The same “Page Setup”
screen can be found on the “Page Setup” and “Page Layout” tabs when using Excel 2003 or Excel 2007.

Figure 8.38 Excel Output Showing Print Ready Options That ExcelXP Can Provide.

In Figure 8.38 I want to point out a few of the changes that show up here.

● Column “C” was defined a little smaller for this example. See the WRAPTEXT option detail.
● We are looking at the bottom of the file, but the header row is still visible because the ODS

FROZEN_HEADERS option says to freeze the first line.
● The “PAGE SETUP” page indicates that the output when printed would print in Landscape mode.
● The WRAPTEXT option forces long lines to wrap onto the next line, and column “C” was

shortened to get it to wrap. All rows are also output at the same height.
● The ZOOM option allows the image of the spreadsheet to fit on one half of the page, and the slider

bar in the right-hand corner is scaled to 50%.

Example 8.16.6 Creating a Table of Contents in an Excel Workbook
The following code will perform functions that have not been shown yet. First, the PROC PRINT step of
the SAS code will create several worksheets in the workbook. One sheet for each value of the “BY
variable” will be output by SAS. Second, the ODS commands will set the CONTENTS option in the
ExcelXP tagset template, and this will cause the creation of a sheet in the output workbook with hyper-
links to each page in the workbook. Clicking on any of the hyperlinks (for example, “Region=Africa”) will
open the worksheet for that data. The ExcelXP option “BY” causes multiple worksheets to be created in
this workbook.

Chapter 8: Creating Output Files with ODS for Use by Excel 139

Table 8.13: Options Used in Example 8.16.6.

ExcelXP Option Setting in Example Result
CONTENTS 'Yes' Turn on the option to produce a

worksheet with a “CONTENTS”
page that lists all of the pages in the
workbook, and provides a hyperlink
to access each page.

Figure 8.39: EXCELXP Options to Create a Table of Contents in an XML Document.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes6.xml'
 OPTIONS(CONTENTS='Yes');
 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.40: Result of the Execution of SAS Code in Figure 8.39.

I have highlighted the hyperlink that the table of contents generated when writing this Excel workbook.
When you are looking at the table of contents page, holding the mouse over the cell that contains either a
“Region” name or the dataset name will expose the hyperlink instruction fly-over. Simply click on one of
the cells to select the data for viewing.

140 Exchanging Data between SAS and Microsoft Excel

Example 8.16.7 Methods of Naming Excel Worksheets
Up until Example 8.16.5, the examples for ExcelXP had output only a single worksheet in the output Excel
workbook, and the selection of the sheet name was left up to ExcelXP. Example 8.16.6 created more than
one output worksheet, but ExcelXP still assigned the names of the worksheets. This example will use the
SHEET_NAME option to give SAS control over creating the worksheet names.

Table 8.14: Options Used in Example 8.16.7.

ExcelXP Option Setting in Example Result
SHEET_NAME 'All Regions' Create a worksheet with the

specified name. When only one
worksheet is output, this is the name
generated, up to 32 characters.

Figure 8.41: SAS Code to Assign a Worksheet Name.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes7.xml'
 OPTIONS(SHEET_NAME='All Regions');
 PROC PRINT DATA=sashelp.shoes;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

By using this SAS ExcelXP option, you can rename the spreadsheets directly when they are being built,
without opening Excel to change the sheet name. See Figure 8.42.

Figure 8.42: Excel Workbook with a Sheet Name Assigned as the File Was Written.

I did compress the width of the columns to display all of the columns but the name was assigned when the
file was generated.

Chapter 8: Creating Output Files with ODS for Use by Excel 141

Example 8.16.8 Splitting One Report onto Multiple Excel Worksheets
This example uses the SHEET_NAME option with a BY statement. It causes the string specified to be used
as a prefix for the sheet names. A numeric value is added to the prefix to generate the sheet names by
ExcelXP, as shown below. This output report splits one PROC PRINT report into several worksheets.

Table 8.15: Options Used in Example 8.16.8.

ExcelXP Option Setting in Example Result
SHEET_NAME 'One Regions' Create a worksheet with the specified

name. When more than one worksheet is
output, unique worksheet names are
generated by adding a number on the end
of the sheet name, up to 32 characters.

Figure 8.43: Code to Create an Excel Workbook with Multiple Worksheets and User-
Supplied Prefixes.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes8.xml'
 OPTIONS(SHEET_NAME='One Region');
 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.44: Excel Output Using the “Sheet_Name” Prefix.

Notice that the worksheet has a “BY” variable title on the top of the worksheet identifying the data on the
worksheet.

142 Exchanging Data between SAS and Microsoft Excel

Example 8.16.9 Methods of Placing Labels in Excel Worksheet Names
Using the “SHEET_LABEL” option with a BY statement causes the string specified by the option to be
used as a prefix that is combined with a numeric value and the BY statement variable name and value to
generate the sheet names by ExcelXP, as shown below as shown in Figure 8.46. The first sheet name is
“One Region 1 – Region=Africa”.

Table 8.16: Options Used in Example 8.16.9.

ExcelXP Option Setting in Example Result
SHEET_LABEL 'One Region' Create a worksheet with the specified

name. When more than one worksheet is
output, the SHEET_LABEL, a number,
and the BY variable and value are used for
the sheet name, up to 32 characters.

Figure 8.45: Code That Uses EXCELXP to Add a Label to All Sheet Names Generated.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes9.xml'
 OPTIONS(SHEET_LABEL='One Region');
 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.46: Code That Uses the “Sheet_Label” Option to Add a Label to All Sheet Names
Generated.

Chapter 8: Creating Output Files with ODS for Use by Excel 143

Notice that the worksheet names and the top of the worksheet both have the “BY” value that describes the
variable name and its value.

Example 8.16.10 Use SHEET_INTERVAL= BYGROUP to Create Worksheets
This example uses the SHEET_INTERVAL option to build a separate worksheet at different intervals. This
ExcelXP option has several values that produce different results. See Table 8.18 for details. Here in this
example we will use the “BYGROPUP” setting and in the next example, 8.16.11, we will use the “PROC”
setting.

Table 8.17: Options Used in Example 8.16.10.

ExcelXP Option Setting in Example Result

SHEET_INTERVAL 'BYGROUP'

Create a worksheet with the specified name.
When more than one worksheet is output,
the BY variable and value are used for the
sheet name, up to 32 characters.

Table 8.18: Descriptions of Other Options Available for the SHEET_INTERVAL Option.

SHEET_INTERVAL Result
TABLE Split the outputs into new pages when a new “TABLE” starts. This is the

default.
PAGE Split the outputs into new pages when a new “PAGE” starts.
BYGROUP Split the outputs into new pages when a new “BYGROUP” starts.
PROC Split the outputs into new pages when a new “PROC” starts.
NONE Does not apply the option.

When you are using the SHEET_INTERVAL='BYGROUP' option in conjunction with the PROC PRINT
“BY” statement, each BY group is printed on a separate worksheet with the value of the BY group variable
as part of the name of the worksheet.

Figure 8.47: Code to Use “SHEET_INTERVAL” for Labeling Worksheet Names.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes10.xml'
 OPTIONS(SHEET_INTERVAL='BYGROUP');
 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.48 shows the result of running the code in Figure 8.47 and causes the data for each region to be on
a separate Excel worksheet.

144 Exchanging Data between SAS and Microsoft Excel

Figure 8.48: Result of Using “SHEET_INTERVAL” to Add a BYGROUP Name to a Sheet
Name.

Example 8.16.11 Use SHEET_INTERVAL= PROC to Create Worksheets
This example uses the SHEET_INTERVAL option to build a separate worksheet at different intervals. This
ExcelXP option has several values that produce different results. See Table 8.18 for details. Here in this
example we will use the “PROC” setting, and in the last example, 8.16.10, we used the “BYGROUP”
setting. This example writes two worksheets, one for each procedure executed.

Table 8.19: Options Used in Example 8.16.11.

ExcelXP Option Setting in Example Result
SHEET_INTERVAL 'PROC' Create a worksheet with the specified

name. When more than one worksheet is
output, the procedure name and a number
are used for the sheet name, up to 32
characters.

Figure 8.49: Code to Create a Multi-Sheet Workbook with Data for Each Procedure on a
Worksheet.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes11.xml'
 OPTIONS(SHEET_INTERVAL='PROC');
 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;

**;

Chapter 8: Creating Output Files with ODS for Use by Excel 145

 PROC FREQ DATA=sashelp.shoes;
 WEIGHT sales;
 TABLE region / LIST;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.50: Page 1 of a Multi-Page Excel Worksheet Generated with SHEET_INTERVAL =
“PROC”.

Figure 8.51. Page 2 of a Multi-Page Excel Worksheet Generated with SHEET_INTERVAL =
“PROC”.

146 Exchanging Data between SAS and Microsoft Excel

Example 8.16.12 Build Separate Worksheets with Titles on Each Sheet
The next example uses the EMBED_TITLES_ONCE option. This example builds a workbook with
separate sheets for each BY group, and the option places the title and footnote from the SAS code into the
print header and print footer for the Excel pages.

Table 8.20: Options Used in Example 8.16.12.

ExcelXP Option Setting in Example Result
EMBED_TITLES_ONCE 'yes' This option causes the SAS Title and

Footnote values to be used as the Excel
page setup Header and Footnote values.

Figure 8.52: Code to Put Heading and Footnote Information into Excel Worksheets.

ODS TAGSETS.EXCELXP BODY='c:\temp\ExcelXP\shoes12.xml'
 options(EMBED_TITLES_ONCE='yes');

 TITLE1 'This is my title line';
 FOOTNOTE1 'This is my footnote line';

 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;
ODS TAGSETS.EXCELXP CLOSE;

Figure 8.53: EXCELXP Code to Preset the Print Features of an Excel Workbook.

Notice here that I opened the Excel workbook and called up the “Page Setup” window manually to show
that Excel has preloaded values from the SAS TITLE and FOOTNOTE statements from the SAS code in
Figure 8.52.

Chapter 8: Creating Output Files with ODS for Use by Excel 147

8.17 The New ODS Destination EXCEL for Writing Workbooks
The last topic I want to discuss in this chapter is a new entry into the ODS arena of data transfer to Excel.
ExcelXP is a tagset that has many features and can be changed by you. It is delivered as source code within
the SASHELP.Tmplmst tagset files. This can be modified or a new version can be downloaded at any time.
But, there is something new on the horizon. It is called the EXCEL ODS Destination. This will be a process
included within SAS ODS features that is not available for updating by users. It was first shipped with SAS
9.4 TS Level 1M1. The outputs of this ODS destination are native format Excel workbooks for the version
2007 format and later.

As with all things SAS sends out in an “Experimental” mode, this ODS destination is likely to change
before it is in a production mode. I will show you it exists, but will show no options because they may
change.

Figure 8.54: ODS EXCEL Destination Code to Produce an Excel Workbook.

ODS EXCEL FILE='c:\temp\Excel\shoes_native.xlsx';

 PROC PRINT DATA=sashelp.shoes;
 BY region;
 RUN;

ODS EXCEL CLOSE;

Figure 8.55: Output Native Excel File from the Code in Figure 8.54.

148 Exchanging Data between SAS and Microsoft Excel

Figure 8.56: Demonstration That the XLSX File Is Truly a Native Excel XLSX File.

By changing the name to *.zip and opening the “zip” file you can view the XML code segments.

8.18 Conclusion
This chapter covers a lot of ground, ranging from the first ODS tools to write files that Excel could read to
new tools that can build native format output files simply by declaring an output filename and the data to
send.

While this chapter did not show examples of all of the CSV and CSVALL tagset template options, the
featured examples may be useful in transporting data using text-based files. Most applications that I have
seen that use CSV files use the files as a simple dump of the data from a SAS dataset. Perhaps some of the
features shown here will add some punch to the CSV file you create in the future. These CSV files can
actually be used to format a simple report for an Excel workbook.

I also did not show examples of all of the MSOFFICE2K tagset template options. The featured examples
should be useful in transporting data using text-based files. Most applications that I have seen that use
HTML files use the files to display information on an Internet or intranet web page. These files can be read
by Excel workbooks and, since they are in HTML format, any version of SAS can write these files. Some
of the features shown here should help you create better looking reports in the future. As with the CSV
files, these HTML files can actually be used to format a report for an Excel workbook, too.

I did show many examples using the EXCELXP tagset template options. The featured examples can
transport data to Excel using XML-based files. Most applications that I have written using these features
create files that are loaded into Excel and rewritten as an XLS or XLSX Excel file. Excel will reformat
these files in internal format from an XML file to an Excel formatted file. These files can be read by Excel
workbooks and since they are in XML format any version of SAS can write these files.

Finally, I have introduced you to the future of ODS to Excel processing by showing you the new “EXCEL”
destination for ODS. I have seen some of the new features but dare not go further because they may
change. I will let it be enough the make you aware that the changes are coming.

Chapter 9: Accessing Excel with OLE DB or ODBC
Application Program Interfaces (API Methods)

9.1 Introduction ... 149

9.2 Purpose ... 149

9.3 Concept of the OLE DB or ODBC API Processes ... 149

9.4 Guidelines for Setting Up OLE DB or ODBC Connections 150

9.5 List of Examples .. 150

9.6 Examples ... 151
Example 9.1 Assign a Libref to an Excel Worksheet with the OLE-DB Dialog Box 151
Example 9.2 Using LIBNAME Prompt Mode to Build an OLE-DB Connection 152
Example 9.3 Using an OLE-DB init_string to Open an Excel Workbook 154
Example 9.4 Using PROC CONTENTS to Verify Excel to OLE DB Connection 154

9.7 Conclusion .. 156

9.1 Introduction
The ability of SAS to reference external data sources has been enhanced by having access to application
program interface (API) standards and implementations. SAS uses the Microsoft API interface routines
(along with others) to communicate between SAS and other database systems. We are interested in the
ability to communicate with the Microsoft application Excel. OLE DB is an API interface that can interface
with many applications. The really great thing is that, as SAS programmers, we do not need to know how
to access these API routines, or anything about them. API routines are the building blocks of an operation
system. They allow an application to be programmed by using a standard interface--hence the name
Application Program Interface. By opening an API through the OLE DB interface, a programmer could
have direct SQL access to an OLE DB object, like an Excel workbook.

9.2 Purpose
This chapter shows you how to access Excel files from SAS using the OLE DB or ODBC API interfaces.
While newer methods do exist, these are being included here because they are still a viable method of
accessing Excel data from SAS.

9.3 Concept of the OLE DB or ODBC API Processes
One of the first places, and perhaps the main place, that the OLE DB interface surfaces is in the LIBNAME
statement. There are specific options that address the OLE DB interface to Excel. Options that apply to
OLE DB access to files other than Excel files are not shown here, but are easy to find in the SAS Help
menus. Select “OLEDB” or “OLE DB” and the name of the database you are using. Options that apply to
Microsoft JET or ACE providers are likely to be able to access Excel files. You can connect to OLE DB
services or directly to the data provider, like the Microsoft JET or ACE providers. The syntax of the OLE
DB options for the LIBNAME statement is shown below.

150 Exchanging Data between SAS and Microsoft Excel

9.4 Guidelines for Setting Up OLE DB or ODBC Connections
OLE DB LIBNAME syntax is shown below in Table 9.1. The engine name OLEDB is required to access
the OLE DB methods.

LIBNAME libref OLEDB <connection-options> <LIBNAME-options>;

Table 9.1: OLE DB LIBNAME Syntax Options.

Object Description
Libref This is a one- to eight-character SAS name that is used to reference

the connection within the SAS code. This may point to a database,
schema, server, tables, or a view supported by another system.

OLEDB This is a constant that indicates that the OLE DB tools will be used
to reference the external data files. The connection options and
LIBNAME options are not required to be submitted to activate the
LIBNAME statement.
A dialogue box will open and allow you to enter the required values
when only the following is submitted:
 LIBNAME libref OLEDB;

<connection-options> These are options that specify how and where to connect to the
external data source.

<LIBNAME-options> These options are used to decide how to tune performance, access
external records, and determine how to deal with variable names and
other tasks.

The examples in this chapter show how to connect to an OLE DB database management system. Space
does not permit showing an example of each option. Generally speaking, there are two methods to connect
with OLE DB. One is interactively by using the PROMPT= connection option (or getting it to appear
because you omitted required information). Additional packages exist that allow interaction with other
DBMS processing, but they are not discussed here. The following SAS software is needed to use the
features explained in this chapter that access Excel files from SAS:

● SAS/ACCESS Interface to PC Files
● SAS/ACCESS Interface to ODBC

• SAS/ACCESS Interface to OLE DB

9.5 List of Examples

Figure 9.5.1: List of Examples for PROC EXPORT.

Example
Number

General Description

9.1 Assign a Libref to an Excel Worksheet with the OLE-DB Dialog Box. This example
shows the steps to assign an OLE DB connection to a libref.

9.2 Using LIBNAME Prompt Mode to Build an OLE-DB Connection. This example shows
how to capture the init_string into the SAS log. The example also assigns the libref and
opens the Excel workbook.

9.3 Using an OLE-DB init_string to Open an Excel Workbook. This example shows how to
use the init_string to assign a file to the libref and open the Excel workbook.

9.4 Using PROC CONTENTS to Verify Excel to OLE DB Connection. This example prints
the output from PROC CONTENTS.

Chapter 9: Accessing Excel with OLE DB or ODBC Application Program Interfaces (API Methods) 151

9.6 Examples

Example 9.1 Assign a Libref to an Excel Worksheet with the OLE-DB Dialog
Box
The SAS code to request that a dialog box be displayed is simple. The following code produces a dialog
box:

libname my_lib OLEDB;

There is no real wizard for this processing, but the dialog boxes do a good job of allowing you to work your
way through the process to connect to an OLE DB connection.

Figure 9.1: Starting the Process of Assigning an OLE DB Connection.

The options available will depend upon the software installed on your computer. For these examples we
will use SAS 9.4 software on a 64-bit O/S. Other versions of SAS provide a similar window when running
on a Windows operating system. The same window appeared on SAS 9.3 on a 32-bit O/S. You may have to
try accessing more than one option on your computer to get the connection to work.

Pressing “Next” or “Connection” will display a screen similar to Figure 9.2. We will enter the required
values onto this screen to point to the data files we want to process. Of course, you will enter values that are
relevant to your data, your computer, or your network configuration. The four screen shots on the next
page step through the process of setting up the connection.

152 Exchanging Data between SAS and Microsoft Excel

Figure 9.2: Data Link Properties Connection Tab.

In Figure 9.2, you can pick a data source that relates to Excel files to proceed, and then enter the full path
and file name of an Excel file in box 3 as shown in Figure 9.2.

Figure 9.3: Data Link Properties Connection.

After completing the connection manually, you can save the information that is needed for the SAS
software. That way you can repeat the process. As long as your underlying configuration does not change,
the commands needed to access the data will not change. Of course, if the file name changes, then that will
need to change in your access string.

Example 9.2 Using LIBNAME Prompt Mode to Build an OLE-DB Connection
The procedure required to capture the “init_string” is to capture the value of the SAS system macro
variable “sysdbmsg”. The “%put %superq(SYSDBMSG);” instruction works well. See the log output
below.

Chapter 9: Accessing Excel with OLE DB or ODBC Application Program Interfaces (API Methods) 153

Figure 9.4: SAS Code to Ask for a Prompt to Assign an OLE DB Connection to a Libref.

LIBNAME my_lib OLEDB;
%put %superq(SYSDBMSG);

Figure 9.5: SAS Log Showing Results of Assigning an OLE DB Connection and Saving the
init_string.

NOTE: This session is executing on the X64_8PRO platform.
NOTE: Additional host information:X64_8PRO WIN 6.2.9200 Workstation
NOTE: SAS initialization used:
 real time 2.00 seconds
 cpu time 1.28 seconds

1 LIBNAME my_lib OLEDB;
NOTE: Libref MY_LIB was successfully assigned as follows:
 Engine: OLEDB
 Physical Name:
2 %put %superq(SYSDBMSG);
OLEDB: Provider=MSDASQL.1;Persist Security Info=True;Data Source=Excel
Files;Initial Catalog=C:\My_Excel_Files\Excel_Shoes.xlsb

Figure 9.5 shows the init_string needed to process an OLE DB connection. Your output may vary. On the
log listing above, the %PUT command wrote out the “OLEDB” string generated by the LIBNAME
statement. The actual string is prefixed by “OLEDB:” and one or more spaces. This information can be
captured (all except for the OLEDB: and any spaces) to be used as the INIT_STRING= value. Each of the
parameters provided is separated by a semicolon. Spaces are not shown between the parameters, but they
are permitted. Also, notice that the active libraries on the Explorer window now show a libref open for an
Excel file.

Figure 9.6: Data Read from the OLE DB Connection into a SAS Dataset.

154 Exchanging Data between SAS and Microsoft Excel

Example 9.3 Using an OLE-DB init_string to Open an Excel Workbook
By using the output from the “%put %superq(SYSDBMSG);” to build a new LIBNAME statement that
looks something like this (with one parameter per line), we can reassign the libref again using SAS code in
our programs.

Figure 9.7: SAS Code to Open an OLE-DB Connection to an Excel File.

libname my_lib oledb preserve_tab_names=yes
init_string="
Provider=MSDASQL.1;
Persist Security Info=True;
Data Source=Excel Files;
Initial Catalog=C:\My_Excel_Files\Excel_Shoes.xlsb";
%put %superq(SYSDBMSG);

The output SAS log looks something like Figure 9.8 with the actual init_string crossed out so that no one
can copy your information.

Figure 9.8: LIBNAME Assignment Using the OLE DB init_string= Option.

1 libname my_lib oledb preserve_tab_names=yes
2 init_string=X
3 XXXXXXXXXXXXXXXXXXX
4 XXXXXXXXXXXXXXXXXXXXXXXXXXX
5 XXXXXXXXXXXXXXXXXXXXXXXX
6 XX;
NOTE: Libref MY_LIB was successfully assigned as follows:
 Engine: OLEDB
 Physical Name:
7 %put %superq(SYSDBMSG);

Example 9.4 Using PROC CONTENTS to Verify Excel to OLE DB Connection
Using PROC CONTENTS you can determine if the data from the Excel workbook was able to be read by
SAS. See Figure 9.9 for the code.

Figure 9.9: PROC CONTENTS Code to Verify That the LIBNAME Connection Using OLE DB
Is Working.

proc contents data=my_lib._all_;
run;

Chapter 9: Accessing Excel with OLE DB or ODBC Application Program Interfaces (API Methods) 155

Figure 9.10: Page One of the PROC CONTENTS Output.

Figure 9.11: Page Two of the PROC CONTENTS Output.

156 Exchanging Data between SAS and Microsoft Excel

Figure 9.12: Page Three of the PROC CONTENTS Output.

9.7 Conclusion
The examples in this chapter showed how to use the dialog boxes to make a connection and how to capture
the information about that connection to create a LIBNAME statement. The LIBNAME connections open
up all of the other uses and routines to use the data and procedures available to SAS users. The
“preserve_tab_names=yes” on the LIBNAME statement allowed the SHOES$ table in the Excel file to be
visible to PROC CONTENTS, and showed an example of how to submit LIBNAME options for
processing. As mentioned before, full Excel pages are displayed with a “$” suffix, while Excel named
ranges do not have a suffix.

Chapter 10: Using PROC SQL to Access Excel
Files

10.1 Introduction ... 157

10.2 Purpose ... 158

10.3 Basic Syntax of the SQL Procedure ... 158

10.4 A Simple Explanation of SQL “PASS-THROUGH” Processing 160

10.5 Overview of the Examples ... 160
10.5.1 List of Examples .. 160

10.6 Examples ... 160
Example 10.1 LIBNAME Assignments to Access Excel Using PROC SQL 160
Example 10.2 Create an Excel File, Read It with SQL, and Then Compare the Files . 161
Example 10.3 Use PROC SQL to Read a Subset of Records from an Excel
Workbook .. 162
Example 10.4 Use PROC SQL Pass-Through Facilities to Process an Excel File 162
Example 10.5 Read a Pre-defined Range of Cells from an Excel Workbook 163
Example 10.6 Calculate a New Variable within the SQL Code and Sort the Output ... 165
Example 10.7 Examine the Contents and Structure of an Excel Workbook with a
“PCFILES::” Special Query .. 165

10.7 Conclusion .. 166

10.1 Introduction
Many books have been written about SQL in general and the SAS SQL procedure in particular, and within
those books many pages are devoted to Microsoft Access and SQL. However, the number of pages
dedicated to using PROC SQL to access Excel files is far more limited. SQL and PROC SQL are
considered tools for accessing database file systems where the files are interconnected by primary keys,
secondary keys, and foreign keys, and the results are output as right-joined, left-joined and full-joined data
sets. However, Excel is often overlooked by SQL users. Unlike entering data into an Excel spreadsheet,
getting data into a database system is generally not as easy as double clicking on the file and starting to
type. When you want to add data to a Microsoft Access database, you usually need a tool to enter the data;
it is hard to open an Access database and just start typing. Because of that, the “rows” and “columns” of
files in a Microsoft Access database (they are really called tables) are predictably uniform and considered
fair game for tools like PROC SQL.

Excel is a more open set of files and data storage units (workbooks and worksheets). These are frequently
edited and updated just by typing data into the files. This produces data files that are rarely uniform. They
also often have columns with mixed data types. But, as this document has shown, there are ways to
generate uniform Excel files and read data from these files. This chapter is about using PROC SQL to read
and write data to Excel files. The ins and outs of learning PROC SQL are covered in many other
documents. Therefore, this book will concentrate on showing you how to open Excel workbooks for
moving data by reading and writing between SAS datasets and Excel workbooks.

158 Exchanging Data between SAS and Microsoft Excel

10.2 Purpose
Within this chapter I intend to show how PROC SQL can locate and access the data within and about a
Microsoft Excel workbook. The Structured Query Language standard that defines SQL and PROC SQL has
been developed over a long period of time. The SQL standard is an independent query language intended to
run on multiple operating systems and computer hardware. Some implementations of SQL extend the
features and options to meet the needs and features of their system. For example, some date functions of
Oracle SQL software do not produce the same output as similar date features of the SAS SQL
implementation. While on the surface this seems like a problem, the SQL standard allows a feature called
“Pass-Through”. This allows the user to send instructions from one SQL platform to another. An example
of this would be a SAS SQL user sending a command to retrieve a date value as it was formatted in Oracle
directly to a SAS SQL table that was created.

10.3 Basic Syntax of the SQL Procedure
PROC SQL<options-list>

CONNECT TO data-source-name AS <alias>
<(connect-statement-arguments)>,<(database-connection-arguments)>
 DISCONNECT FROM <data-source-name> <alias>
 EXECUTE (data-source-specific-SQL-statement)
 BY <data-source-name> <alias>
 SELECT column-list
 FROM CONNECTION TO data source-name AS <alias>

 <database-connection-arguments;>

Ordering of the SELECT Statement Commands
When you build an SQL SELECT statement, the SQL syntax for clauses that you use dictates that they
must appear in this order. The SQL system will verify that the commands are in the proper order before
proceeding to execute the submitted SQL commands. These clauses are not discussed here because they are
a part of the normal SQL syntax and do not directly relate to using Excel specifically. Only the SELECT
and FROM clauses are required in order to use an SQL SELECT statement.

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

In the SQL syntax definition above, the clauses below are used to connect to an external database.

● CONNECT TO
● DISCONNECT FROM
● EXECUTE BY

• CONNECTION TO

Chapter 10: Using PROC SQL to Access Excel Files 159

We will use these clauses to connect to Excel files. They are also useful to connect to other database
systems like Microsoft Access. We will examine some PCFILES query options and JET/ACE query
options. For you to connect to an external database using the pass-through facility, the following must
occur:

Start PROC SQL.
Use the PCFILES engine with a CONNECT clause (and optionally any alias).
Provide any arguments and/or attributes required.
Issue the CONNECTION TO statement.

The following SAS PROC SQL syntax is used to connect to another data source, usually a different data
base system. The CONNECTION TO statement below allows you to connect to another database system
on either your current computer or another remote computer that could be thousands of miles away.

Figure 10.1: SQL Code Syntax.

SELECT column-list
FROM CONNECTION TO data-source-name AS <alias>
<database-connection-arguments;>

The “CONNECTION TO” option in SQL usually means you want to connect to something other than a
SAS dataset. Example 10.4 below will show how to connect to an Excel workbook using this method.
Knowing how to do this kind of connection is really useful, since this is a book about moving data between
SAS and Excel.

The SQL command in Figure 10.2 is a little different from the others. Notice the “SELECT FROM”
keywords that precede the CONNECTION TO statement. The power of this statement comes from the fact
that the “SELECT FROM” pair can have nested commands. The code in Figure 10.2 has two “SELECT”
and two “FROM” commands.

Figure 10.2: SQL Code Syntax.

SELECT column-list (SELECT
 FROM . . .
 WHERE . . .
 GROUP BY . . .
HAVING . . .
ORDER BY)
FROM CONNECTION TO<other SQL commands>

The PCFILES Special Queries
These queries have a special format that includes the case-sensitive constant “PCFILES::” (yes, both colons
are required) in front of the query name and arguments. Also note that the arguments themselves are case-
sensitive and must be entered that way. An argument “OneTwoThree” is not the same as “onetwothree”.
When submitted to the query, the parameters in Table 10.6.1 below are enclosed in quotation marks like
(“parameter”). Example 10.7 deals with some of these queries.

The JET or ACE Special Queries
These queries have a special format that includes one of the case-sensitive constants “JET::” or “ACE::” in
front of the query name and arguments. Also note that the arguments themselves are case-sensitive and
must be entered that way. An argument “OneTwoThree” is not the same as “onetwothree”. When submitted
to the query, the parameters are enclosed in quotation marks (“parameter”).

160 Exchanging Data between SAS and Microsoft Excel

10.4 A Simple Explanation of SQL “PASS-THROUGH” Processing
SQL “PASS-THROUGH” processing usually involves sending commands from one version of SQL to
another for execution. Just because there is a Structured Query Language Standard that each
implementation of “SQL” follows, that does not mean that all SQL versions are the same. The SAS version
of SQL has some features that do not adhere strictly to the standard. This is the same for other versions of
SQL like Oracle, IBM, MySQL, and many others. Because SQL is designed to be a standardized language,
it was necessary to implement a method of bridging the gap between what one language can understand and
the language version of SQL that is used to access data stored on a specific computer. This method is called
the “PASS-THROUGH” processing. It allows a SAS user to pass commands that are specific to Oracle to
a computer storing data in an Oracle database, even if the commands would not have the correct syntax if
executed as a SAS SQL command.

10.5 Overview of the Examples

10.5.1 List of Examples

Table 10.5.1: List of Examples for Using PROC SQL.

Example Number General Description

10.1 LIBNAME Assignments to Access Excel Using PROC SQL. This
example shows how to code a LIBNAME statement when using PROC
SQL with SAS 9.4.

10.2 Create an Excel File, Read It with SQL, and Then Compare the
Files. This example creates an Excel file, reads the file using SAS
PROC SQL, and compares the files.

10.3 Use PROC SQL to Read a Subset of Records from an Excel
Workbook. This example uses a SAS WHERE clause to read a subset
of the records from an Excel worksheet.

10.4 Use PROC SQL Pass-Through Facilities to Process an Excel
File. This example uses a pass-through connection to send commands
to a different SQL version. Here, PROC SQL is sending commands to
Microsoft SQL to get data from the Excel worksheet.

10.5 Read a Pre-defined Range of Cells from an Excel Workbook.

10.6 Calculate a New Variable within the SQL Code and Sort the
Output.

10.7 Examine the Contents and Structure of an Excel Workbook with a
“PCFILES::” Special Query.

10.6 Examples

Example 10.1 LIBNAME Assignments to Access Excel Using PROC SQL
The code in Figure 10.3 shows the LIBNAME construct available when using PROC SQL for the three
Excel formats that can be used as input and then output with PROC SQL in SAS 9.4. The macro version of
Excel files (*.xlsm) is not supported, and older versions of SAS may support only some of these
configurations.

Chapter 10: Using PROC SQL to Access Excel Files 161

Figure 10.3: SAS LIBNAME Statements Valid Using 64-bit SAS on a 64-bit O/S with SAS
9.4.

LIBNAME out_data PCFILES PATH="C:\My_Excel_Files\Excel_Shoes.xlsb";
LIBNAME out_data PCFILES PATH="C:\My_Excel_Files\Excel_Shoes.xlsx";
LIBNAME out_data PCFILES PATH="C:\My_Excel_Files\Excel_Shoes.xls";

The *.xlsm version of the Excel files does not work in this configuration for a LIBNAME statement.

Example 10.2 Create an Excel File, Read It with SQL, and Then Compare
the Files
This example creates an Excel file with a LIBNAME statement, and a SAS DATA step then reads it into a
SAS dataset with PROC SQL and compares the files. The first file to be created will be an Excel 2007
formatted file. Notice the *.xlsb extension on the output file. This extension is required. There are no
macros allowed, and the Excel workbook is in binary format.

Figure 10.4: SAS Code and SQL to Create an Excel Workbook, Read the Worksheet, and
Compare.

LIBNAME out_data PCFILES PATH="C:\My_Excel_Files\Excel_Shoes.xlsb";
 DATA out_data."Shoes"n;
 SET SASHELP.Shoes;
 RUN;
 PROC SQL;
 CREATE TABLE New_shoes AS
 SELECT * FROM out_data."Shoes"n;
 QUIT;
 PROC COMPARE BASE=SASHELP.shoes COMP=New_Shoes;
 RUN;

The output report from PROC COMPARE shows some minor differences in the files. The labels are not
output and minor differences appear in the FORMAT and INFORMAT values, but the data values are all
equal. The next two figures (10.5 and 10.6) are partial output listings and show the differences.

The following is true of the output shown in Figure 10.5:

● It relates to the SAS dataset SASHELP.SHOES.
● The variables were created in this file without formats or informats for the character variables.
● Some of the numeric variables were assigned the DOLLAR12 format and informat to aid in the

display of the data.
● Some of the variables were also given descriptive labels when the SAS dataset was created.

Figure 10.5: SAS Variable Characteristics of SASHELP.SHOES Dataset.
Variable Dataset Type Length Format Informat Label
----------- -------------- ----- ------ --------- ---------- --------------
Region SASHELP.SHOES Char 25
Product SASHELP.SHOES Char 14
Subsidiary SASHELP.SHOES Char 12
Stores SASHELP.SHOES Num 8 Number of Stores
Sales SASHELP.SHOES Num 8 DOLLAR12. DOLLAR12. Total Sales
Inventory SASHELP.SHOES Num 8 DOLLAR12. DOLLAR12. Total Inventory
Returns SASHELP.SHOES Num 8 DOLLAR12. DOLLAR12. Total Returns

162 Exchanging Data between SAS and Microsoft Excel

The following is true of the output shown in Figure 10.6:

● It is the data sent to the Excel file by the SAS DATA step and reread from Excel by PROC SQL.
● The variable names were assigned as labels.
● The character variables now have formats and informats.

• The numeric variables do not have formats or informats.

Figure 10.6: SAS Variable Characteristics of SAS Dataset Read by PROC SQL.
Variable Dataset Type Length Format Informat Label
----------- --------------- ----- ------ --------- ---------- --------------
Region WORK.NEW_SHOES Char 25 $25. $25. Region
Product WORK.NEW_SHOES Char 14 $14. $14. Product
Subsidiary WORK.NEW_SHOES Char 12 $12. $12. Subsidiary
Stores WORK.NEW_SHOES Num 8 Stores
Sales WORK.NEW_SHOES Num 8 Sales
Inventory WORK.NEW_SHOES Num 8 Inventory
Returns WORK.NEW_SHOES Num 8 Returns

Example 10.3 Use PROC SQL to Read a Subset of Records from an Excel
Workbook
The code in Figure 10.7 uses the Excel workbook that was created in Example 10.2 by opening it with a
LIBNAME statement. Then PROC SQL read a subset of the records and created a SAS dataset with those
Excel rows. The comparison output is not shown because it looks very similar to Figure 10.6, but these
SAS datasets contain only the data where Region equals Africa.

Figure 10.7: SAS Variable Characteristics.

LIBNAME out_data pcfiles path="C:\My_Excel_Files\Excel_Shoes.xlsb";

PROC SQL;
 CREATE TABLE New_shoes AS
 SELECT *
 FROM out_data."SHOES$"n
 WHERE region='Africa';
QUIT;

PROC COMPARE
BASE=SASHELP.shoes(where=(region='Africa'))
COMP=New_Shoes;
RUN;

Example 10.4 Use PROC SQL Pass-Through Facilities to Process an Excel
File
This example uses the PCFILES engine for the connection to Excel. The code shown in Figure 10.8 is
reading a named range of cells (called my_range) assigned by Excel to the cells B1 to G17 of an Excel
workbook that contains the shoes data.

In the SAS code the PATH= option takes the place of the LIBNAME statement for defining the Excel file.
The range named “my_range” is shown in Figure 10.8 below. This example takes advantage of the fact
that the first row of data values from the Excel file are used as the variable names. Other ranges that do not
include the first data row may produce unpredictable SAS variable names while opening the file because of
the fact that the SAS normally uses first row of the input range to define the variable names. See Example
10.5 for a workaround the converts a blank row in the names range to special SAS variable names.

Chapter 10: Using PROC SQL to Access Excel Files 163

Figure 10.8: SAS SQL Reading a Named Range of Excel Cells.

PROC SQL;
 CONNECT TO pcfiles AS db (PATH="C:\My_Excel_Files\Shoes_1.xls");
 SELECT * FROM CONNECTION TO db
 (
 SELECT * FROM "my_range"n
);
 DISCONNECT FROM db;
 QUIT;

Figure 10.9: The Input Excel File.

The SQL code in Figure 10.8 does not create a file. Instead, it just writes the data to the output listing
window (or with the default settings for SAS 9.3 and above, it will write the data to an HTML display).
Notice that the range “my_range” is case-sensitive in the code and here includes the top row of the Excel
worksheet, but not the first column of the worksheet. The workbook in Figure 10.9 was the input file for
this task.

Example 10.5 Read a Pre-defined Range of Cells from an Excel Workbook
This example uses a PCFILES engine for the connection to Excel. The code reads a named range of cells
(called New_range2) assigned by Excel. This range includes cells copied from [B10 to E24] to [I10 to L24]
of an Excel workbook that contains the shoes data. This named range does not include a title row with
variable names, but it does include a blank row of cells at the top of the range (starting at I9). This
simulates a case where you may have to read a small group of cells from a spreadsheet, or even several
groups of cells. SAS changes the way that SQL reads the spreadsheet and creates the SAS variable names.
When the first row is blank, the names and labels are assigned the values F1, F2, F3 etc.

164 Exchanging Data between SAS and Microsoft Excel

Figure 10.10: Excel File with a New Named Range.

Figure 10.11a: PROC SQL Code to Read a Named Range from an Excel Workbook.

PROC SQL;
 CONNECT TO pcfiles AS db (PATH="C:\My_Excel_Files\Shoes_1.xlsx");
 CREATE TABLE New_shoes1 as
 SELECT * FROM CONNECTION TO db
 (
 SELECT * FROM "New_range2"n
) ;
 DISCONNECT FROM db;
QUIT;

The SQL code in Figure 10.11a reads the Excel named range and converts the blank row in the named
range to variable names F1, F2, F3, etc., the SAS variable names are generated, as shown in Figure 10.11b.

Chapter 10: Using PROC SQL to Access Excel Files 165

Figure 10.11b: SAS Output Dataset from Reading the Named Range from Excel.

Example 10.6 Calculate a New Variable within the SQL Code and Sort the
Output
This example shows how to calculate a new variable within the SQL code. Here the calculation is done
after the data is returned from the connection to Excel. There is no table created here; the data is just
printed.

Figure 10.12: SQL Code to Calculate a New Variable from an Excel Workbook.

Proc SQL ;
 CONNECT TO PCFILES AS db (PATH="C:\My_Excel_Files\Shoes_2.xls");
 SELECT * ,Total_Sales – Total_Returns as net_sales
FROM CONNECTION TO DB
(SELECT * FROM "Shoes$"n
 WHERE region='Asia'
 ORDER BY product);
 DISCONNECT FROM DB;
 QUIT;

Example 10.7 Examine the Contents and Structure of an Excel Workbook
with a “PCFILES::” Special Query
Figure 10.13 shows a set of three “PCFILES::” special queries in one PROC SQL call. The first query
shows the columns in the worksheet “Shoes$”, the second shows the columns in all of the Worksheets and
ranges in the workbook, and the third query shows all of the tables in the workbook.

166 Exchanging Data between SAS and Microsoft Excel

Figure 10.13: SQL Code to Examine the Structure of an Excel Workbook.

PROC SQL ;
 CONNECT TO pcfiles AS db (PATH="C:\My_Excel_Files\Excel_Shoes.xlsb");
 CREATE TABLE work1 AS
 SELECT * FROM CONNECTION TO DB
 (PCFILES::SQLColumns "","","Shoes$","");
 CREATE TABLE work2 AS
 SELECT * FROM CONNECTION TO DB
 (PCFILES::SQLColumns "","","","");
 CREATE TABLE work3 AS
 SELECT * FROM CONNECTION TO DB
 (PCFILES::SQLTables "","","","");
 QUIT;

The results of the SQL code in Figure 10.13 is a set of three output tables, as shown in Figure 10.14. These
tables contain information that is very similar to the output of PROC CONTENTS. The CREATE TABLE
command could be eliminated and the result would print on the output listing destination. The outputs
shown below are the SAS “Form View” to show variable names, but not all values.

Figure 10.14: SAS Form View Showing the Result of the SQL Code in Figure 10.13.

10.7 Conclusion
Many people use PROC SQL with their SAS programming applications; here, I have shown examples of
how to use PROC SQL when reading and writing to an Excel workbook. When you write your programs,
you should take into consideration both your hardware and the software that is available. This chapter
presented alternatives to using PROC CONTENTS, and showed how to read data from Excel in several
different ways. It is my hope that you will find these examples to be efficient and maintainable by you and
the person that you might hand the program off to. Many books have been written about using different
versions of SQL. It is becoming more popular as a programming tool. The SAS version of SQL called
PROC SQL is also a popular topic for SAS authors. The few pages in this chapter looked at the usage of
SQL as it relates directly to usage with Excel workbooks.

Chapter 11: Using DDE to Read and Write to Excel
Workbooks

11.1 Introduction ... 167

11.2 Purpose ... 167

11.3 Basic Concept of the DDE Client-Server Environment 168
11.3.1 How the DDE Client-Server Relationship Works ... 168
11.3.2 General DDE Syntax and Options .. 168

11.4 List of User-Written SAS Macros That Can Enhance DDE Processing 171
11.4.1 SAS Macro to Start Excel ... 171
11.4.2 SAS Macro to SAS to Issue Commands to Excel .. 172
11.4.3 SAS Macro to Define a Range of Excel Cells for Processing 172
11.4.4 SAS Macro to Save the Contents of an Excel Workbook 174
11.4.5 SAS Macro to Close Excel Workbook ... 174
11.4.6 SAS Macro to Write All or Selected Variables to an Excel Output Workbook . 175

11.5 List of Examples .. 177

11.6 Examples ... 177
Example 11.6.1 The Hello World Project .. 177
Example 11.6.2 The Hello World Project When the Excel Workbook Is Closed.......... 179
Example 11.6.3 The Hello World Project Using NOTAB and LRECL= Options 180
Example 11.6.4 Writing “Hello World” to an Excel File Using DDE Macros 182
Example 11.6.5 Writing a SAS Dataset to an Excel File Using the SAS_2_EXCEL DDE
Macro ... 184

11.7 Conclusion .. 187

11.1 Introduction
Dynamic Data Exchange (DDE) has been around for a long time. DDE is a feature of the Microsoft Office
operating system and is available only if your computer is running Microsoft products. This is a method of
trading data between clients and servers. In this case, SAS is the client and Excel is the server. The magic
of DDE is that it boils down to using SAS as a way to enter data directly into an open Excel spreadsheet.
You can also write to Microsoft Word and many other products. Note that the Excel spreadsheet must be
open, and SAS must be running, because the data transfer is a “real time” “do it right now” type of a data
transfer. But, never fear, the SAS application can open the Excel program and close it when you issue
simple “X” commands.

11.2 Purpose
DDE is the oldest of the automated data transfer methods. The roots of DDE date back to Excel 4. Many
programmers and companies still use this method today, but it seems to work best only if you know exactly
where the input and output Excel data cells are within the worksheets. You as a programmer need to make
your programs keep track of exactly which Excel worksheet cells are to be read from or written to.

168 Exchanging Data between SAS and Microsoft Excel

Microsoft Excel 2007 and 2010 have a feature that allows them to ignore DDE commands. So, if DDE does
not work, check to see if you have the proper settings to allow Microsoft products to process DDE
commands. This option is found by opening the “Excel Options” and looking under the “Advanced”
features. Also, DDE is a “real-time” application, so sometimes your SAS program has to wait. This can be
accomplished through the SAS SLEEP function. SAS Enterprise Guide can execute DDE commands.
However, SAS Enterprise Guide does not have access to the SAS “X” command; therefore, you must open
the Excel files manually before running DDE commands when using SAS Enterprise Guide.

11.3 Basic Concept of the DDE Client-Server Environment

11.3.1 How the DDE Client-Server Relationship Works
A client-server relationship as it relates to computers means that one computer or program issues
commands, or requests data, from another computer or program. That action in turn fills the request and
returns the data to the original computer or program. When SAS uses DDE to communicate with Excel, the
two programs are working together to transfer data or commands between SAS and Excel when they are
running programs. Here are some of the actions available as DDE commands:

● Use the SAS ”X” command to open an Excel workbook. (This is not really a DDE command, but
the workbook needs to be open, and SAS needs to know how to reference the Excel file,)

● Read data from specific cells in the Excel worksheet.
● Write data to specific cells in the Excel worksheet.
● Open a DDE session.
● Close a DDE session.

• Save the output Excel file.

11.3.2 General DDE Syntax and Options
The DDE filename has two main forms: the first form points to Excel cells; the second form issues
commands. The general syntax form is shown below.

 Format 1: FILENAME fileref DDE 'DDE-triplet' <DDE-options>;

 Format 2: FILENAME fileref DDE "excel|system";

Figure 11.1: DDE Filename Options for Reading and Writing Data.

Format 1 - FILENAME fileref DDE 'DDE-triplet' <DDE-options>;

Fileref This is the standard 8-character pointer used to identify any file that is not a
SAS file.

DDE Is the engine name for the fileref to use for the output commands.

‘DDE-TRIPLET’

Has the general form of ‘application-name|topic!item’. An example would be
‘excel|[book1.xls]Sheet1!r1c1:r1c2’. This “Triplet” served as the pointer to a
location within the Excel file. The SAS “INPUT” and “PUT” commands start
the process of transferring the actual data.

The Application Name is
separated by “|” from the topic
value.

The example shows ‘excel’ as the
Application Name.

The Topic Name is separated
from the “item” by a “!”.

The example shows
‘[book1.xls]Sheet1’ as the Topic
Name.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 169

Format 1 - FILENAME fileref DDE 'DDE-triplet' <DDE-options>;
The Item value is the last part of
the triplet.

Here the item value is “r1c1:r1c2”,
which points to two cells in
worksheet “SHEET1” (cells a1-a2).

 <DDE-options> DDE Options describe additional
features and functions that apply to
the DDE Triplet. These features are
described here.

COMMAND Some systems (other DDE server
applications) may not accept the
“system” command, and this is an
alternate form of issuing commands
to the system. This is not required
for use with Excel.

HOTLINK This option opens an active link
between SAS and Excel. Every time
a cell in the Excel range is
modified, SAS can detect the
change by repeatedly checking the
Excel libref with a SAS INPUT
statement. When there are no
changes, a zero length record is
returned.

LRECL= This option specifies the length of
the DDE character string records.
The default on Windows is 256
bytes, but can be changed to be
anywhere in the range of 1 byte to 1
gigabyte-1 (1,073,741,823 bytes –
(2**30)-1),

NOTAB This keeps SAS from placing tab
characters (ascii value hex ‘09’) in
output streams of data, and causes
SAS to ignore tabs in input streams
of data. This allows character
strings with spaces included to be
stored in a single Excel cell. When
this option is used, SAS can accept
delimiters other than a tab character
in the input data.

170 Exchanging Data between SAS and Microsoft Excel

Format 1 - FILENAME fileref DDE 'DDE-triplet' <DDE-options>;
RECFM= This option identifies the record

format of the data. One of the
following options can be specified
on Windows.

V or D – This is the default and
indicates a variable length record.

F – This is for fixed length
records.

N – This is for binary input data.
The data is read as a byte stream,
and, without specifying LRECL, the
data will be read in groups of 256
bytes.

P – This indicates a print format.

Figure 11.2: DDE Filename Options for Issuing Commands to Excel.

Format 2 - FILENAME fileref DDE "excel|system";
fileref This is the standard 8-character pointer used to identify any file that is not

a SAS file.

DDE Is the engine name for the fileref to use for the output commands.

‘excel|system’ The Application Name is
separated by “|” from the topic
value.

“excel” is the name of the server
type.

The Item value is the last part of
the command.

“system” – A special topic
name. The use of this syntax
“excel|system” allows SAS to act
as a client application and use
SAS INPUT and PUT
commands to issue commands to
Excel, the server application
pointed to by the SAS
FILENAME statement.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 171

11.4 List of User-Written SAS Macros That Can Enhance DDE
Processing

This section describes the SAS macros that were written as a companion to the book. These macros are
available on the SAS Author page. What follows here are written descriptions of the macros, their
parameters, and their functions. These macros execute a DATA step, and therefore must be executed
between DATA steps and procedure calls within your code, rather than within them. The macros were not
tested with file or sheet names that had embedded blanks; this was left as an enhancement that you could
work on to make the macros your own. The file type (*.xls or *.xlsx) must be the same for the input and
output filenames because the file output formats are different and no checks are made to convert the Excel
file formats. Because of the complexity of these examples they will be stored on the SAS Author page as
Appendix C.

Figure 11.4.1: Summary of SAS Macros to Process DDE Commands.

Macro Name General Description
Start_Excel Use the SAS X command to open an Excel workbook.
Open_cmd Open an Excel DDE-triplet to issue Excel commands from SAS.
Out_range Open an Excel DDE-triplet to transfer data between SAS and Excel.
Save_excel This macro will save an Excel workbook, overwriting an existing one.
Close_excel This macro will close an Excel workbook, preventing further updates

to this session.
SAS_2_Excel This macro uses all of the macros defined here to write out data from a

SAS dataset to an Excel workbook.

11.4.1 SAS Macro to Start Excel

Macro Name:
Start_Excel

FUNCTION:
Open an Excel workbook

PARAMETERS:
This macro accepts the following parameters:

● Full Excel Path and File name

• Length of time to wait for the Excel file to open

This macro accepts the full path and file name of an existing Excel file to open for use by SAS to interface
with Excel. The macro verifies that a path and file name were provided, but does not verify that the path or
file exists. The SAS code shows two possible locations of where the Excel executable file exists to aid the
user in finding the Excel application location.

When the “X” command is executed by SAS to start Excel, the SAS program pauses to allow Excel to
become fully operational before returning control back to the SAS runtime environment. If the default
waiting period of 8 seconds is not the right amount of time, then the “wait” parameter can be adjusted to
fine-tune the wait time needed.

172 Exchanging Data between SAS and Microsoft Excel

Result:
This macro opens the Excel file, but does not establish any filename connections to the Excel file. In other
words, no DDE-triplets are opened by this macro. No data ranges or command paths are established by this
macro.

RESTRICTIONS:
If this macro fails to start the Excel workbook, it may be because the time for the operating system to
respond exceeded the wait time parameter. Increase the amount of time for the wait time parameter and
resubmit.

11.4.2 SAS Macro to SAS to Issue Commands to Excel

Macro Name:
Open_cmd

FUNCTION:
Open an Excel DDE-triplet to issue Excel commands from SAS.

PARAMETERS:
This macro accepts the following parameters:

● Full Excel Path and File name

• Length of time to wait for the FILENAME command

This macro accepts a fileref name used to build an Excel DDE-triplet to issue commands to Excel from
SAS. The macro verifies that a FILEREF name was provided, but does not verify that the FILEREF is
valid. Any valid SAS FILEREF can be provided. If the FILEREF is the same as one already used, the new
FILEREF will override the previous FILEREF and DDE-triplet if the FILEREF pointed to a DDE-triplet.

After the SAS FILENAME command is executed, the SAS program waits to allow Excel to become fully
operational before returning control back to the SAS runtime environment. If the default waiting period of
eight seconds is not the right amount of time, then the “WAIT” parameter can be adjusted to fine-tune the
wait time needed.

Result:
This macro establishes a FILENAME connection to the Excel file using the DDE “excel|system” triplet to
open a command path to Excel.

RESTRICTIONS:
If this macro fails to start the Excel workbook, it may be because the time for the operating system to
respond exceeded the wait time parameter. Increase the amount of time for the wait time parameter and
resubmit.

11.4.3 SAS Macro to Define a Range of Excel Cells for Processing

Macro Name
Out_range

FUNCTION:
 Open an Excel DDE-triplet to transfer data between SAS and Excel.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 173

PARAMETERS:
This macro accepts the following parameters:

● file_ref - FILEREF name up to 8-character SAS reference name
● path_name - full path of Excel file
● file_name - full name of Excel file
● Sheet_name - Workbook sheet name (default name = Sheet1)
● Start_row_Col - Starting input/output data row and column (top-left of Excel range)
● End_row_col - Ending input/output data row and column (bottom-right of Excel range)
● no_tab - YES/NO answer, where YES = use notab option and NO = do not use

 notab

• L_REC_L - Logical Record Length value in the range of 1 byte to 1 gigabyte-1

This macro accepts a fileref name used to build an Excel DDE-triplet to point to a data range of Excel
worksheet cells from SAS. The macro verifies that a FILEREF name was provided, but does not verify that
the FILEREF is valid. Any valid SAS fileref can be provided. If the FILEREF is the same as one already
used, it will override the previous FILEREF and DDE triplet if the FILEREF pointed to a DDE triplet.

The second parameter is the full path and file name of an existing Excel file to open for use by SAS to
interface with Excel. The macro verifies that a path and file name are provided, but does not verify that the
path or file exists.

The third parameter is the full file name of an existing Excel file to open for use by SAS to interface with
Excel. The macro verifies that a path and file name are provided, but does not verify that the path or file
exists.

The Sheet_name parameter is optional and points to the sheet name “Sheet1” as the default sheet name in
the Excel file. The macros were not tested with file or sheet names that had embedded blanks; this was left
as an enhancement that you can work on to make the macros your own.

The “Start_row_col” parameter points to the upper left Excel cell in the DDE range to be defined. The
format of these values must be the R1C1 Excel formula format. The value used to point to cell “A1” as the
upper left cell is “R1C1” and the cell “D10” is referenced as “R10C4” for the lower right cell of the range.
(The notation stands for “Row” number “Column” number.)

The “End_row_col” parameter points to the lower-right Excel cell in the DDE range to be defined. The
format of these values must be the R1C1 Excel formula format. The value used to point to cell “A1” as the
upper left cell is “R1C1” and the cell “D10” is referenced as “R10C4” for the lower right cell of the range.
(The notation stands for “Row” number “Column” number.)

The NOTAB parameter accepts a value of “NO” to apply the NOTAB feature to the SAS FILENAME
command. Any other value for the parameter will suppress the “NOTAB” option on the FILENAME
statement. This parameter is optional.

The L_REC_L parameter allows you to change the size of the output character fields from 256 bytes to the
amount you specify in this parameter. (L_REC_L stands for Logical Record Length). The Excel default
length is 256 bytes.

Result:
This macro resets the FILENAME to point to a specific set of cells in the Excel workbook. SAS INPUT
and PUTcommands control whether data is read from Excel or written to Excel.

RESTRICTIONS:
The format of the row and column values must be the R1C1 excel formula format.

174 Exchanging Data between SAS and Microsoft Excel

11.4.4 SAS Macro to Save the Contents of an Excel Workbook

Macro Name:
Save_Excel

FUNCTION:
This macro issues an Excel “SAVE.AS” command after turning off the Excel error messages. This will
overwrite an existing Excel file without notifying you that the file was overwritten.

PARAMETERS:
This macro accepts the following parameters:

● file_ref - FILEREF name up to 8-character SAS reference name
● path_name - full path of Excel file

• file_name - full name of Excel file

This macro accepts an open fileref name, which is used to issue commands to Excel via DDE. The
FILEREF must point to an “excel|system” triplet that is currently open. The macro verifies that a FILEREF
name was provided but does not verify that the FILEREF is valid.

The second parameter is the full path of an existing Excel file that is opened for use by SAS to interface
with Excel. The macro verifies that a path is provided, but does not verify that the path exists.

The third parameter is the file name of an existing Excel file that is opened for use by SAS to interface with
Excel. The macro verifies that a file name is provided, but does not verify that the file exists.

Result:
The contents of the Excel workbook are saved.

RESTRICTIONS:
Directory paths and file names are assumed to have spaces within the values and are quoted within the
macro. Enclosing parameters in quotes may produce unpredictable results.

11.4.5 SAS Macro to Close Excel Workbook

Macro name:
Close_excel

FUNCTION:
This macro issues an Excel “QUIT” command after turning off the Excel error messages. This will exit the
Excel file without notifying you that the Excel is closing.

PARAMETERS:
This macro accepts an open fileref name, which is used to issue commands to Excel via DDE. The
FILEREF must point to an “excel|system” triplet that is currently active. The macro verifies that a
FILEREF name is provided but does not verify that the FILEREF is valid.

Results:
This macro will close the Excel workbook to further activity.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 175

RESTRICTIONS:
The FILEREF provided to this macro must be open, or unpredictable results may occur.

11.4.6 SAS Macro to Write All or Selected Variables to an Excel Output
Workbook

Macro Name:
SAS_2_Excel

FUNCTION:
This macro is designed only to transfer data from SAS to Excel. The macro inspects the contents of the
input SAS file and builds the DDE commands required to write the selected variables from the input SAS
dataset to the output Excel workbook and worksheet. All records are written to the output Excel file, but
not all variables need to be selected from the input SAS file. The order of the variables selected is the same
as the order of the variables in the source SAS dataset. Therefore, if a specific order is required for the
output variables, it must be established within the source SAS file prior to using this macro. A RETAIN
statement can usually work to create the proper order if it needs to be changed.

PARAMETERS:
● SAS_input_file - SAS input file
● Excel_template_path - Excel format file path
● Excel_template_name - Excel format file name
● Excel_template_sheet - Excel format sheet name
● Excel_output_path - Excel output file path
● Excel_output_name - Excel output file name
● Excel_starting_row - First Excel output row
● Excel_starting_column - First Excel output col

• notab=notab - switch tab/notab output

The first parameter, “SAS_input_file”, is the name of a SAS file. This is a fully qualified SAS name. It can
be a file from the Work library, or another predefined libref, or from the USER libref or from a user-
defined libref. This macro allows the inclusion of SAS dataset options that deal with dataset variable names
like DROP, KEEP, or RENAME. But, data set options that deal with the data values are not acceptable to
this macro, like the WHERE= clauses. You could add a feature to this macro that would make those
acceptable.

The “Excel_template_path” parameter refers to a directory path where an input Excel file exists that can
have preexisting formatting to be used as a template for the output Excel file layout of the output Excel
dataset.

The “Excel_template_name” parameter refers to an input Excel file that can have preexisting formatting to
be used as a template for the output Excel file layout of the output Excel dataset.

The “Excel_template_sheet” parameter is optional and points to the sheet name. The name “Sheet1” is used
as the default sheet name in the Excel file.

The “Excel_output_path” parameter is the directory path of the output file. This can be the same as the
input parameter “Excel_template_path” because there is no restriction on the usage. This macro was not
tested with file or sheet names that had embedded blanks.

The “Excel_output_name” parameter is the file name of the output file. This can be the same as the input
parameter “Excel_template_name” because there is no restriction on the usage. This macro was not tested
with file or sheet names that had embedded blanks.

176 Exchanging Data between SAS and Microsoft Excel

The “Excel_starting_row” parameter is an integer that specifies the row number of the “Top Left Cell” of
the Excel range. Only the numeric portion of the R1C1 format of the cell formula is needed for the
parameter. These values are substituted into the R1C1 excel formula format. The value used to point to cell
“A1” as the upper left cell is “R1C1” and the lower right hand cell location is calculated from the PROC
CONTENTS listing of the input SAS file. This also implies that the macro will not work with SAS files
that are stored on sequential storage devices, like magnetic tape.

The “Excel_starting_column” parameter is an integer that specifies the Column number of the “Top Left
Cell” of the Excel range. Only the numeric portion of the R1C1 format of the cell formula is needed for the
parameter. These values are substituted into the R1C1 excel formula format. The value used to point to cell
“A1” as the upper left cell is “R1C1” and the lower right hand cell location is calculated from the PROC
CONTENTS listing of the input SAS file. This also implies that the macro will not work with SAS files
that are stored on sequential storage devices, like magnetic tape.

The NOTAB parameter for this macro provides a switch to turn on or off the placement of a tab character
between output data records when writing to the DDE destination.

FUNCTION:
This macro inspects the contents of the input SAS file and builds the DDE commands required to write the
selected variables from the input SAS dataset to the output Excel workbook and worksheet. All records are
written to the output Excel file but not all variables need to be selected from the input SAS file. The order
of the variables selected is the same as the order of the variables in the source SAS dataset. Therefore, if a
specific order is required for the output variables, it must be established within the source SAS file prior to
using this macro. A RETAIN statement can usually work to create the proper order if it needs to be
changed.

The NOTAB parameter for this macro provides a default value of “NOTAB=NOTAB” and can be changed
by providing the parameter in the macro call as “NOTAB=”. The FILENAME statement in the
SAS_2_Excel macro uses the NOTAB parameter macro value in the FILENAME statement proper.
Providing a null value for the NOTAB parameter just placed a space into the FILENAME statement. The
default is to place the characters “NOTAB” into the FILENAME statement. This applies the NOTAB
feature to the SAS FILENAME command. Any other value for the parameter will cause a syntax error in
the FILENAME statement. This parameter is optional.

Results:
Data from a SAS dataset will be written to an Excel workbook in the specified rows and columns of the
output Excel worksheet.

RESTRICTIONS:
This macro makes use of SAS macro variable names that begin or end with an underscore to avoid conflicts
with user-selected variable names. If a specific order is required for the output variables, it must be
established within the source SAS file prior to using this macro. All of the parameters except
“Excel_template_sheet” and “NOTAB” are checked to see if they are provided, but are not checked for
validity.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 177

11.5 List of Examples

Figure 11.5.1: List of Examples for PROC EXPORT.

Example Number General Description

11.6.1 The Hello World Project. Write the simple phrase “Hello world” to
an Excel workbook using DDE when the workbook is open.

11.6.2 The Hello World Project When the Excel Workbook Is
Closed. Write the simple phrase “Hello World” to an Excel workbook
using DDE when the workbook is closed.

11.6.3 The Hello World Project Using NOTAB and LRECL= Options.
11.6.4 Writing “Hello World” to an Excel File Using DDE Macros.
11.6.5 Writing a SAS Dataset to an Excel File Using the SAS_2_EXCEL

DDE Macro.

Many of the examples below use the path to Excel to open the Microsoft Office EXCEL.EXE program.
These paths are the typical default paths for the EXCEL.EXE program. These may be needed to execute
Excel from within SAS by using the SAS “X” commands to access an operating system command.

Figure 11.5.2: Common Default Locations for Excel Software.

Common Default Locations for Microsoft Excel Software

Excel 2013 C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE
Excel 2010 C:\Program Files\Microsoft Office\Office14\EXCEL.EXE
Excel 2007 C:\Program Files\Microsoft Office\Office12\EXCEL.EXE
Excel 2010 (32-bit) C:\Program Files (x86)\Microsoft Office\Office14\EXCEL.EXE
Excel 2007 (32-bit) C:\Program Files (x86)\Microsoft Office\Office12\EXCEL.EXE

NOTE: When using Excel 2013, I found that I needed to suppress the “Splash Screen” by using an Excel
command line switch when starting Excel. The switch I used was “/x” to suppress the splash screen. In
addition, I was not able to get the DDE process to work with any spaces in the file path or name. My testing
was not exhaustive, so you may find other combinations that work. This “/x” switch and/or unquoted file
path and name may not be required for other versions of Excel.

11.6 Examples

Example 11.6.1 The Hello World Project
Figure 11.6.1 shows how to write the words “Hello” and “World” to an open Excel spreadsheet. Note that
the code does not have a defined path to find the Excel file. This will work only if the open Excel
workbook file is located in the same directory that SAS is using. The SAS display window has a small icon
and directory path shown in the bottom tray that indicates the current folder (see Figure 11.6.2). I found
that by double-clicking on the folder name I could get a dialogue box to allow me to change the current
folder. This is in lower left corner for SAS 9.3 and in the lower right corner for 9.2 and 9.4. The code in
Figure 11.6.1 does not open an Excel file; the Excel file Book1 must have been opened in the current SAS
directory prior to running this SAS code.

178 Exchanging Data between SAS and Microsoft Excel

Figure 11.6.1: SAS Code for the DDE Hello World Test.

* this worked on 32 and 64 bit o/s with Excel 97-2010 (xls, and xlsx);
* this code looks for the Excel file in the current folder;
* The Excel file must be open when the SAS code is executed;
FILENAME ddewrite DDE 'excel|[book1.xls]Sheet1!r1c1:r1c2';
DATA OUT;
 FILE ddewrite;
 x='Hello World';
 PUT x;
RUN;

Figure 11.6.2: SAS Code Window with Current Directory Location Highlighted in Red
Circle.

A double-click on the folder name in the SAS window causes a window similar to the following to appear.
These screens are from SAS 9.4.

Figure 11.6.3: SAS Window to Allow You to Change the Current SAS Folder.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 179

Figure 11.6.4: Excel File with “Hello” “World” in Cells R1C1 and R1C2 (A1:B1).

Being able to find the words “Hello” and “World” in Excel completes this project. In fact, the words appear
while the SAS program executes or shortly after it finishes running. The space between the words caused
the data to be placed into two separate cells in the Excel worksheet. This simple example made two
assumptions:

● The Excel file was in the same directory that SAS was using.

• The Excel file was open.

The SAS FILENAME syntax that will point to an open Excel file in another directory follows:

Figure 11.6.5: SAS FILENAME Statement to Assign ddewrite to a File.

FILENAME ddewrite DDE 'excel|C:\Excel_Files\[Book1.xls]Sheet1!r1c1:r1c2';

Example 11.6.2 The Hello World Project When the Excel Workbook Is
Closed
This example is very similar to the first example except that it starts with the Excel file closed. The SAS
“X” command is used to issue an operating system command to start the Excel application before running
the DDE commands from SAS. Some of the newer versions of Microsoft Excel take several seconds to
open and activate the add-ins that are installed. The number and type of add-ins may vary for each
computer installed in your area. Since SAS and Excel must both be running at the same time, it is important
to wait long enough for Excel to be fully active before issuing a DDE command.

Figure 11.5.2 has a list of common default locations for where Microsoft Excel is installed. Your location
may be different. Ask your Information Technologies Department if your location is different.

The SAS code in Figure 11.6.6 shows how to open an Excel workbook using the SAS X command, and
then how to write “Hello World” to the Excel worksheet. This example is using Excel 2013 on a 64-bit
system. One of the new features of Excel 2013 is “Splash Screen” that allows you to choose the type of
workbook or template you want to open. Previous versions of Excel also had “Splash Screens”, but none of
them waited until you entered a response.

180 Exchanging Data between SAS and Microsoft Excel

Figure 11.6.6: SAS Code to Process the “Hello World” Project with a Closed Excel File as
Input.

OPTIONS NOXWAIT NOXSYNC;
/* Use to X command to start Excel 2013*/

%let Excel_path =
'C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE';

* no spaces in unquoted file path or name;
%let Excel_file = C:\Excel_Files\Book2.xlsx;

X "&Excel_Path. /x &excel_file.";

DATA _NULL_;
 x = sleep(10); * Allow enough seconds for Excel to open;
RUN;

FILENAME ddewrite DDE 'excel| C:\Excel_Files\[Book2.xlsx]Sheet1!r1c1:r1c2';

DATA OUT;
 FILE ddewrite;
 x='Hello World';
 PUT x;
RUN;

Once again, the simple act of finding the words “Hello” and “World” complete this exercise. Note here that
each word is in a separate cell of the Excel worksheet, just like they were in Figure 11.6.4. Also, this
example opened Excel before writing the output text, and did not close Excel when finished. Figure 11.6.7
shows the results.

Figure 11.6.7: Excel File with “Hello” “World” in Cells R1C1 and R1C2 (A1:B1).

Example 11.6.3 The Hello World Project Using NOTAB and LRECL= Options
This example is also very similar to the first example except that it starts with the Excel file closed. The
SAS “X” command is used to issue an operating system command to start the Excel application before
running the DDE commands from SAS. Some of the newer versions of Microsoft Excel take several
seconds to open and activate the add-ins that are installed. The number and type of add-ins may vary for
each computer installed in your area. Since SAS and Excel must both be running at the same time, it is
important to wait long enough for Excel to be fully active before issuing a DDE command.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 181

Figure 11.5.2 has a list of common default locations for where Microsoft Excel is installed; your location
may be different. Ask your Information Technologies Department if your location is different.

This example also introduces two new features of the DDE commands. The options NOTAB and LRECL
are introduced in this example. The NOTAB option limits the output of ASCII tab characters (‘09’x).
Typically, the tab characters cause the data following a tab to be placed into the next Excel cell of the
worksheet. The LRECL (Logical RECord Length) option limits the number of characters output into an
individual cell in the Excel worksheet. The word “World” is truncated to “Worl” because the constant
“Hello World” is 11 bytes long and the LRECL=10 allowed only 10 bytes to be output.

Figure 11.6.8a: SAS DDE Code to Write 10 Characters “Hello Worl” to the Output Excel File
in One Cell.

OPTIONS NOXWAIT NOXSYNC;
/* Use to X command to start Excel 2013*/

%let Excel_path =
'C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE';

* no spaces in file path or name;
%let Excel_file = C:\Excel_Files\Book3.xlsx;

X "&Excel_Path. /x &excel_file.";

DATA _NULL_;
 x = sleep(10); * Allow enough seconds for Excel to open;
RUN;

FILENAME ddewrite DDE 'excel|C:\Excel_Files\[Book3.xlsx]Sheet1!r1c1:r1c2'
 NOTAB LRECL=10;

/* using NOTAB will 'Hello World' text to be placed on one cell */
/* using LRECL=10 to write 11 characters will truncate the string */
DATA OUT;
 FILE ddewrite;
 x='Hello World';
 PUT x;
RUN;

Figure 11.6.8b: SAS DDE Code to Write 10 Characters “Hello Worl” to the Output Excel File
in One Cell.

182 Exchanging Data between SAS and Microsoft Excel

Example 11.6.4 Writing “Hello World” to an Excel File Using DDE Macros
In general, computer programs have the following steps:

1. Start running.
a. Open input files.
b. Open output files.

i. Read input values.
ii. Calculate values.

iii. Output values.
iv. Repeat until there is no more input.

c. Close output files.
d. Close input files.

2. End.

A SAS DATA step usually takes care of most of these operations for you. Therefore, many SAS
programmers rarely do more than start a DATA step (which names an output file), declare a SET statement
(which names an input file), and calculate the values needed. At the end of the DATA step, a RUN or a
PROC statement outputs the data records. When SAS runs out of input data, it closes the input and output
files for you. When you use DDE, you have to open and close the files yourself. You also have to find a
way to determine where the input and output data exists in your Excel files.

Examples 11.6.4 and 11.6.5 will use the macros described in Section 11.4 and explain how to automate
some of the input/output processed. This will give you a framework upon which to build your own DDE
interface tools. Before we examine the next example, you might want to review Section 11.4 to better
understand the macros presented in this chapter and stored on my SAS Author’s page. They are used to
move data from SAS to Excel.

In Example 11.6.4, the five macros (start_Excel, Open_cmd, out_range, save_Excel, and Close_Excel)
defined in Section 11.4 above will be used to write two sets of data to an Excel workbook. The commands
used to do the writing are exactly the same, but the DDE-triplet defined by the macro is different. The
NOTAB option is set differently for each of the DDE-triplets. The data will be written to the same Excel
workbook, but in different locations on the same worksheet. We will start with a blank Excel workbook.
The following SAS macro calls invoke the macros described in Section 11.4 above. The implementation of
the code is stored on the SAS website for my Author’s page. More elaborate and feature-rich macros exist
to do the similar DDE functions, but these are good enough to get you started.

http://support.sas.com/publishing/authors/benjamin.html

Figure 11.6.9: SAS DDE Code to Write “Hello World” to the Output Excel File Twice.

***;
** Example 4 - Simple Execution Code Example **;
***;

*==;
* Define the file name *;
*==;
 %let my_file = "C:\Excel_Files\Book1.xls";

*==;
* Start Excel and open the file defined above as My_file *;
*==;
 %start_excel (file_name=&my_file,wait=5); /* Excel output file name */

*==;
* Set up a filename to use to issue commands to Excel via DDEs *;
*==;
 %Open_cmd(file_ref=commands,wait=5); /* command stream excel fileref*/

http://support.sas.com/publishing/authors/benjamin.html

Chapter 11: Using DDE to Read and Write to Excel Workbooks 183

*==;
* Set up a filename command to point to a range of Excel cells *;
*==;
 %out_range
 (file_ref = Hello_W, /* fileref to use for output */
 path_name = C:\Excel_Files\, /* Excel file path */
 file_name = Book1.xls, /* Excel file name */
 Start_row_Col = R1C1, /* must use the R1C1 format */
 End_row_col = R1C2, /* must use the R1C1 format */
 no_tab = YES, /* change tab setting option */
 L_REC_L = 20); /* change output Logical len */

*==;
* Set up a filename command to point to a range of Excel cells *;
*==;
 %out_range
 (file_ref = Hello_X, /* fileref to use for output */
 path_name = C:\Excel_Files\, /* Excel file path */
 file_name = Book1.xls, /* Excel file name */
 Start_row_Col = R4C1, /* must use the R1C1 format */
 End_row_col = R4C2, /* must use the R1C1 format */
 no_tab = NO, /* change tab setting option */
 L_REC_L = 30); /* change output Logical len */

*==;
* This data step writes data to the defined Excel range using the file*;
* command and the put command. Filerefs "Hello_w" and "Hello_x" are *;
* defined by the out_range macro *;
*==;
 data _null_;

 Hello = 'Hello';
 World = 'World';

 file Hello_w;
 put hello $char6. World $char6.;

 file Hello_x;
 put hello $char6. World $char6.;
 run;
*==;
* This macro saves the output file *;
*==;
 %save_Excel
 (file_ref = commands, /* fileref to use for output*/
 path_name = C:\Excel_Files\, /* Excel file path */
 file_name = Book1.xls); /* Excel file name */
*==;
* This macro closes the Excel file. *;
*==;
 %Close_Excel (file_ref = commands); /* fileref to close */
run;

184 Exchanging Data between SAS and Microsoft Excel

Figure 11.6.10: The Excel Output of the DDE Macros.

Yes, this looks like it is more trouble than it is worth! But the five macros used here and described in
Section 11.4 are just building blocks. They can be used independently, or they can be combined to form a
more comprehensive tool that allows the work to be abstracted to the level of “start here and do the work”.
The next example will demonstrate what I mean by reducing all of this work into a single macro call.

Example 11.6.5 Writing a SAS Dataset to an Excel File Using the
SAS_2_EXCEL DDE Macro
This example will once again use the Sashelp.shoes dataset; however, it will be processed by using PROC
MEANS to create an output file with a summary of some of the variables found in the original file. Since
for this example we are also assuming that you need a formatted report for periodic delivery to other users,
we will also create an output format template that the data will be inserted into for the report. Below is a
sample report layout. (Column E is for showing the row number on the right side of the report.) The final
macro (SAS_2_EXCEL) in the DDE macro set described in Section 11.4 does not hard code any values.
All values used by the macro are either derived by the macro or sent to it by you. The output data spaces
start at Row 6 and Column 1. Figure 11.6.11 is the Excel template file. It is simply an Excel workbook with
a predefined format and space for the new data to be placed. This Excel workbook template is provided as
Shoe_Summary_Template.xlsx.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 185

Figure 11.6.11: The Excel Template for the Example 11.5 Report.

Figure 11.6.13 includes SAS code to execute PROC MEANS, a list of the SAS_2_EXCEL macro default
values, and the coded parameters to execute the example.

Figure 11.6.12: Parameters Descriptions for the SAS_2_EXCEL Macro.

Parameter Name / Default Description
SAS_input_file SAS input data to send to Excel
Excel_template_path Directory path to the input Excel file
Excel_template_name File name of the Input (template) Excel file
Excel_template_sheet =Sheet1 Sheet name of the Excel input (Template) worksheet
Excel_output_path Directory path to the output Excel file
Excel_output_name File name of the Output (final) Excel file
Execl_starting_row Top left row of the output field
Excel_starting_column Top left column of the output field
NOTAB = NOTAB NOTAB suppresses the output of tabs until requested

Figure 11.6.13: The SAS Macro Call and Parameters for the DDE Macro SAS_2_EXCEL.

**;
* Example 5 - Writing a full SAS file using a template and DDE macros *;
**;
proc means data=sashelp.shoes(keep=region sales inventory returns)
 noprint sum nway;
by region;
output sum=sales inventory returns out=means_output;
run;

**;
**;
* Sample macro call with notes about parameters *;
**;

186 Exchanging Data between SAS and Microsoft Excel

macro SAS_2_Excel / SAS Macro Name */
 (SAS_input_file =, /* SAS input data to send to Excel */
 Excel_template_path =, /* Excel file path */
 Excel_template_name =, /* Excel file name */
 Excel_template_sheet =Sheet1, /* Excel file sheet name */
 Excel_output_path =, /* Output Excel file Path */
 Excel_output_name =, /* Name of the output Excel file */
 Execl_starting_row =, /* Top left cell of Excel output range */
 Excel_starting_column=, /* Bottom right cell of Excel output */
 notab=notab /* turn off the tab output option */
);

**;
** Actual macro call with parameters **;
**;

%SAS_2_Excel /* SAS_input_File - may include dataset options*/
 (SAS_input_file = means_output(drop=_TYPE_ _FREQ_),
 Excel_template_path = C:\Excel_Files\,
 Excel_template_name = Shoe_Summary_Template.xlsx,
 Excel_template_sheet = Summary,
 Excel_output_path = C:\Excel_Files\,
 Excel_output_name = Current_Shoe_Summary.xlsx,
 Execl_starting_row = 6,
 Excel_starting_column= 1,
 notab=notab
);
run;

Figure 11.6.14 is the output from executing the SAS_2_EXCEL macro. When I wrote the macro, I was
using a computer based on Windows XP and using SAS 9.2 writing to Microsoft Excel 2007. When
working on my final draft of this chapter I was using Microsoft Windows 8.1, SAS 9.4, and Microsoft
Excel 2013. The only change I needed to make to the macro was to point the macro to the new directory
path for Microsoft Excel 2013.

Figure 11.6.14: Output of DDE Processing.

Chapter 11: Using DDE to Read and Write to Excel Workbooks 187

In Example 11.6.4, the five macros defined in Section 11.4 are building blocks that the SAS_2_EXCEL
macro uses. Example 11.6.5 used the SAS_2_EXCEL macro, which in turn uses all five of those building
block macros.

11.7 Conclusion
DDE is an old technology, but many people still find it useful. I have often found that generating code that
can be reused is far more useful than rewriting the same code. I build libraries of reusable code; then I
include and use the code. I set it up so that one piece of code can be used for many applications. SAS
macros work well to provide reusable code. The SAS_2_EXCEL macro described in this chapter is one of
those pieces of code. I can use any input Excel file and produce any output Excel file with minimal changes
to the parameters. The SAS_2_EXCEL macro call identifies the input and output files, the locations to
change, the movement of data, and the formatting of the data. The macro call does not say how it will be
done. The pages of SAS code that define the DDE macro SAS_2_EXCEL fills in the “HOW”. DDE is the
kind of application that requires small changes to do just about everything, These macros help to make that
job simpler.

188 Exchanging Data between SAS and Microsoft Excel

Chapter 12: Building a System of Excel Macros
Executable by SAS

12.1 Introduction ... 189

12.2 Purpose ... 190

12.3 General Design of a Tool to Control Excel Macros from SAS 190
12.3.1 Prepare a SAS File and Execute Excel to Process the Output 191
12.3.2 Prepare Excel to Open the File Output by SAS .. 192
12.3.3 Prepare Excel Macros to Reformat the Excel Workbooks 194

12.4 Automate the Tool So That SAS Creates a Formatted Excel Output

Workbook .. 197
12.4.1 Eliminate the Manual Steps from the Processing ... 197
12.4.2 Create a SAS Output File with More Data and Control Information.................. 202
12.4.3 Create an Excel Macro to Process the Output SAS File 203
12.4.4 Build an Excel Graph Using an Excel Macro .. 207

12.5 Conclusion .. 209

12.1 Introduction
Chapters 12, 13, and 14 each define separate, but increasingly powerful tools that combine SAS and Excel
features and that integrate your ability to transfer data between SAS and Excel. At the beginning of each of
these chapters I have placed a short list of all of the tools--just in case you look at only one of the chapters
today.

This chapter presents SAS code and Excel code that creates a fully integrated system to generate macro-
free Excel workbooks, without downloading any external data or code from the Internet, using SAS 8 and
Excel 97 and later. Software advances today have moved more and more to what I like to call “Push-
Button” processes. I prefer to write software that allows me to turn over the processing to someone who
only needs to know how to push the button. Not too long ago it would have taken a lot of effort to connect
to a network; today you open the box for a new device, turn on the power, and often see more than one
network.

When you use the ODS tagset template “EXCELXP”, the output file is a *.xml text file that Excel can open
by double-clicking on the file. This is great for many things, but SAS cannot include SAS graphs in *.xml
files. This chapter will introduce a simple ‘Hello World’ project that will demonstrate how to use the SAS
ODS tagset template EXCELXP to create a simple *.xml file, have SAS start Excel, use the *.xml file as
input, and then modify the file and display the resulting graph for us to examine. The only action required
on the part of the SAS user (after the initial setup of the code) is to run the SAS code. All of the Excel
activity will be pre-programmed.

190 Exchanging Data between SAS and Microsoft Excel

Table 12.1.1: Tools Described in Chapters 12, 13, and 14.

Tool Chapter Description

Personal Workbook Tool
SAS tool to run personal Excel
macros, already included in Excel
(under Macros  Record Macro 
Store macro in).

12 This tool uses the SAS “X” command to execute
Excel macros in your Personal Excel “Xstart”
directory. It allows Excel workbooks to be
delivered without embedded macros.

Macro Library Tool
SAS tool to run externally stored Excel
macros. You can use the “Macro
Library Tool” within Excel to take the
same macro you would have created in
the Personal Workbook Tool and
export it to a departmental library.

13 This tool uses the SAS “X” command and the
Windows operating system scripting language to
control processing of Excel macros. It allows
Excel workbooks to be delivered without
embedded macros.

Excel Workbook Tool
An Excel tool to store parameters for
SAS programs and either execute the
SAS code or place the code into a
directory for execution.
(My_Excel_Tool, available in the
example code and data folder on the
author’s SAS Press page)

14 This Excel workbook tool will save parameters
for a SAS program and either execute or copy
the code to a directory. It uses features of the
other two tools and allows for storage of SAS
code in a production-type area so the original
code is not modified when the reports are
processed. .

12.2 Purpose
On a computer, a “Hello World” project is a proof-of-concept program demonstrating the ability to do
something like write to a disk and read it back. What I will show is the ability to retain control of program
execution starting within a SAS program and continuing after Excel begins processing. That will be
followed by Excel processing the code I want to execute. This ability to establish a process in which you
can maintain control is an advantage you can exploit. It gives programmers a path from which they can
branch out and do more.

12.3 General Design of a Tool to Control Excel Macros from SAS
The code we will develop here is a push-button process. There are several steps that need to be
programmed to make the code work. The object of the tool is to run a SAS program, have the SAS program
load a file into Excel, and take control of processing the workbook and all of its worksheets before Excel
allows the user to modify anything. This is the dream of every programmer who has ever lost a leading zero
when Excel opened his or her workbook. But, enough of the dreaming. Let’s define this concept and put it
into action.

Here we will describe two processes. The first is the “Hello World” program, and the second is a real-world
application of the steps. The task of having SAS create an Excel workbook is simple when you use ODS.
The tagset “EXCELXP” is designed directly for this task. The next part is getting Excel to do what you
want it to do. This is accomplished with Excel macros that you store on your computer, not in the generated
workbooks. Table 12.3.1 shows a list of the tasks needed for this “Hello World” project.

Chapter 12: Building a System of Excel Macros Executable by SAS 191

Table 12.3.1: Tasks to Create a “Hello World” Project.

Task System Comments
Create SAS program SAS Use ODS tagset EXCELXP to create a *.xml file with a label

containing “Greetings World” in cell A1 and “Hello” in cell A2.
Create an Excel macro Excel Record a personal Excel macro to write “World” in cell B2.
Create a VBA code
module

Excel Write a personal VBA code module to run the Excel macro.

Run SAS program to
create the *.xml file

SAS Create the input *.xml file to be sent to Excel.

Run Excel using *.xml
file as input

SAS Use the SAS “X” command to start Excel.

12.3.1 Prepare a SAS File and Execute Excel to Process the Output
The first thing we need to do is create a simple SAS program to run the ODS tagset EXCELXP. This step
will generate a *.xml file that we can open with Excel by using the SAS “X command”. All we need is one
variable and one observation. We will use PROC PRINT to add a LABEL to the variable. The following
SAS code will create the SAS dataset, open the *.xml file using ODS, print the data to the *.xml file, and
open the *.xml file using Excel.

Figure 12.3.1: SAS Code to Create and Open an Excel File.

** Create a simple SAS File **;
DATA Hello_to_the_world;
 Greeting = 'Hello';
RUN;

** Default paths to program Excel.exe – your path may vary **;
* 2003 = C:\Program Files\Microsoft Office\OFFICE11\EXCEL.EXE;
* 2007 = C:\Program Files(x86)\Microsoft Office\Office12\EXCEL.EXE;
* 2010 = C:\Program Files (x86)\Microsoft Office\Office14\EXCEL.EXE;
* 2013 = C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE;

** Start ODS and name the output xml file **;
ODS TAGSETS.EXCELXP FILE="c:\my_excel_files\Hello_world_test.xml";

** Set up ods options to call the print procedure **;
ODS TAGSETS.EXCELXP OPTIONS(Sheet_Name='Greeting') Style=minimal;

** Create an xml file using ods output and proc print **;
PROC PRINT data = Hello_to_the_world
 label split = '*' noobs;

 Label greeting = 'Greetings*World';
 * increase row 1 font size;
 Var greeting / style(head) = {Font_Size = 2};
RUN;

** Close the ExcelXP tagset to release the output file **;
ODS TAGSETS.EXCELXP close;

** Choose a version of Excel to run - pick default path **;
** NOTE The file name needs to be quoted if it contains spaces, etc **;

* Excel 2013 64-Bit;
X ' "C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE"
 "c:\my_excel_files\Hello_world_test.xml" ';

RUN;

192 Exchanging Data between SAS and Microsoft Excel

The final result is an Excel workbook with a label that reads “Greetings World” in cell A1 and the word
“Hello” in cell A2, as shown in Figure 12.3.2a. The background view in this Excel file is slightly different
than usual because the ODS option “Style=minimal” was used when creating the *.xml file. Other style
options are available and produce different results. The font size of the headers and the text in the cells is
also different in each cell.

Figure 12.3.2a: Excel Output of the Code from Figure 12.3.1.

12.3.2 Prepare Excel to Open the File Output by SAS
The SAS code was the easy part; now on to the Excel setup. Most Excel users know that Excel will record
a macro, and the macro can be associated with a key-stroke command that will run the macro. These
macros are usually stored within the current workbook, or deleted before exiting Excel. What most users do
not know is that Excel has a way to store macros so that they are available to be used on all workbooks on a
given computer, and not stored with the workbook. Furthermore, there is a way to give those macros
control of Excel before the spreadsheets are visible to the user. An Excel Personal Macro Workbook is
stored in a location that Excel loads before accessing the spreadsheets. See Figure 12.3.2b. These
commands (macros) are available before other workbooks are loaded into Excel. The Windows default file
names and locations are listed in Table 12.3.2.

Chapter 12: Building a System of Excel Macros Executable by SAS 193

Figure 12.3.2b: Excel Record Macro Window to Input Macro Name, Hot-Key, and Storage
Location.

Table 12.3.2: Default Locations of Excel Personal Macro Workbooks.

Software Usual Default Location - Your location may vary by either Excel version or
operating system version. Check with your IT Department to verify the
location.

Common paths on older operating systems.
Excel 2003 C:\Program Files\Microsoft Office\Office11\XLSTART
Excel 2007 C:\Program Files\Microsoft Office\Office12\XLSTART

The XLSTART directory is considered a trusted location. To locate it, check the following.
For Excel = To locate the XLSTART directory path:
2007, 2010, and 2013 With Excel open, select “Excel Options”, and then select the “Trust Center”

button.
 Select “Trust Center Settings”, and then select the “Trusted Locations” button.
 Look for the path for the Excel XLSTART file. (See Figure 12.3.3a.)

194 Exchanging Data between SAS and Microsoft Excel

Figure 12.3.3a: Excel Trusted Locations Window.

When you create or update your Personal Macro Workbook (it can hold data, too), you will be prompted in
the following way if your Personal Macro Workbook has changes that need to be saved when you exit
Excel. (See Figure 12.3.3b.) As mentioned above, this workbook can store many macros and make them
available every time you open Excel. When you no longer need to access these macros, locate and delete
the PERSONAL.XLS (or PERSONAL.XLSB) file in your XLSTART directory, as mentioned above. Any
Excel file in the XLSTART directory will be opened every time you open Excel.

Figure 12.3.3b: Excel Notice When Creating First Macro in Personal Macro Workbook.

This notice appears when you are exiting Excel and reminds you that it will be available the next time you
open Excel. Macros stored here will be available every time you open Excel until the macro is deleted or
the PERSONAL.xlsb (or .xls) file is deleted. The VBA code shown will reference only the
“PERSONAL.XLSB” Excel files.

12.3.3 Prepare Excel Macros to Reformat the Excel Workbooks
The next step is to record a macro. We started recording MACRO1 in Figure 12.3.2b. Now we will
continue with that process. We started by assigning the name “Macro1” and the hot-key CNTL/SHIFT/H to
the Excel macro we wanted to create. If we do this in a new workbook called “Book1,” all that needs to be
done is type “World” in cell “B2” and then stop recording. The results look like Figure 12.3.4.

Chapter 12: Building a System of Excel Macros Executable by SAS 195

Figure 12.3.4: The Results of the Recorded Named Macro1.

When we choose the “Personal Macro Workbook” as shown above in Figure 12.3.2b, the output macro is
stored as a macro in a module. In this case it is called “Macro1” in “Module1.” This macro will be stored in
a hidden workbook called PERSONAL.XLS (or PERSONAL.XLSB) in your XLSTART directory.

Figure 12.3.5: VBA Code for MACRO1.

196 Exchanging Data between SAS and Microsoft Excel

The Excel Project window (Figure 12.3.5) shows that the Macro1 code is stored in Module1 of the
PERSONAL.XLSB workbook. Now we have the beginning SAS code and the Excel ending VBA code of
the project. So, we can run the SAS program listed in Figure 12.3.1 the results are listed below in Figure
12.3.6a.

Figure 12.3.6a: Results of Running the SAS Code in Figure 12.3.1.

Figure 12.3.6a shows the way that Excel looks when the *.xml file opens. Note that the heading “Greetings
World” is on two lines in the Excel output file because the PROC PRINT SPLIT= option wrote the label on
two lines. We are almost there, but to get the word “World” into cell “B2” the hot key CNTL-SHIFT-H still
needs to be typed by the user. The result of entering the “HOT-KEY” is shown in Figure 12.3.6b.

Figure 12.3.6b: Results of Typing the Hot-Key Combination CNTL-SHIFT-H.

Chapter 12: Building a System of Excel Macros Executable by SAS 197

Now that we know the “Hello World” project can be done, we can move forward and take some of the
manual steps out of the process.

12.4 Automate the Tool So That SAS Creates a Formatted Excel Output
Workbook

The reason that computer programmers write programs is so that they do not have to do things manually.
So, the next question becomes “How do we get this to run seamlessly?” Well, in order for us to take control
so that we can make Excel do what we want, we need to find:

“The First Place a Programmer Can Get Control of Excel”

It turns out that once your PERSONAL.XLSB (or .xls) Macro Workbook is created, it is always the first
workbook opened when Excel is started. The PERSONAL.XLSB (or .xls) workbook also contains our
modules with our macros and an Excel structure called “ThisWorkbook” (see Figure 12.3.5). The VBA
code module “ThisWorkbook” is given control of the Excel start-up activities. If there is a subroutine called
“Workbook_open”, is executed. This is where a programmer can capture control of Excel. The VBA code
shown will reference only the “PERSONAL.XLSB” Excel files.

For this “Hello World” project, we will insert code into the “Workbook_open” subroutine to execute our
macro to write “World” in cell B2 of the current sheet. See Figure 12.4.1 for the code.

12.4.1 Eliminate the Manual Steps from the Processing
The VBA code in Figure 12.4.1 defines a counter and two character (string) variables, and then checks the
name of all open workbooks. If the name of the workbook is, in this case, “PERSONAL.XLSB”, then no
action is taken. If any other workbook is open, then Macro1 would execute and place the word “World”
into cell B2 of the first worksheet. When opened from our SAS program, the generated workbook opens
and the macro executes.

Figure 12.4.1: VBA Code to Run the Workbook_open Subroutine.

198 Exchanging Data between SAS and Microsoft Excel

Figure 12.4.2a shows the results of running our SAS code and letting our macro (Macro1) execute. Like
most other SAS programmers who are also Excel users, I determined that Excel likes to dance to its own
tune, which means that as soon as someone tells you what Excel will do in a particular situation, it will
seem to do something else. This is the case with getting the macros listed here to execute correctly
(meaning how you want them to execute, not how Excel thinks they should run). To that end, it should be
pointed out that if you double-click on an Excel file to open it, Excel may do its processing slightly
differently than if the SAS System executes an “X” command to run Excel. Yes, that does not sound right,
but try it for yourself.

Figure 12.4.2a: Resulting Excel File When the SAS Program with the “X” Command Runs.

The code reproduced below includes a clever little trick. It is like the code that was shown in Figure 12.4.1
as the VBA subroutine called Workbook_Open. The upgraded version in Figure 12.4.2b below includes
two message boxes to display information about what occurs when the code is running. This will display
information contained in VBA code variables and pause the program. Since this is the first VBA code to
execute, you do not have access to the Excel VBA debugger yet. However, you can print values in the
message box so that you can examine them. This neat little debugging tool can be useful in figuring out
what is going on with Excel at the start of the program (when you cannot start the debugger) to give you
guidance about how to process the code. The VBA code shown will reference only the
“PERSONAL.XLSB” Excel files.

Figure 12.4.2b: Sample VBA Code to Trace the Path Through the VBA Code.

Private Sub Workbook_open()
Dim my_count As Integer, my_book As String, my_sheet As String

 My_count = Workbooks.Count

 'Define message
 Msg = "sub=workbook_open - workbook count= " + Str(my_count)

 'Define buttons
 Style = vbOKOnly

 'Define title
 Title = "Workbook name = " + ThisWorkbook.Name

Chapter 12: Building a System of Excel Macros Executable by SAS 199

 'wait for user
 Response = MsgBox(Msg, Style, Title)

 For I = 1 To my_count
 my_book = Workbooks(i).Name
 my_sheet = Workbooks(i).Sheets(1).Name

 Msg = "sub=workbook count loop - workbook counter= " + Str(i)
 Title = "Workbook name = " + my_book
 Response = MsgBox(Msg, Style, Title)

 if my_book <> "PERSONAL.XLSB" Then
 Call Macro1
 End If
 Next
End Sub

An Explanation of the “Workbook_Open” Excel Macro in Figure 12.4.2b
● The code above (called Excel subroutine “Private Sub Workbook_open()”) seems a little more

complex than needed, and it is a little (but the message boxes can go away). If the macro had been
a simple call to “Macro1”, you might think it would have worked--but remember that now your
computer has a new hidden workbook that Excel will always (yes, always) open.

● The Excel VBA desktop in Figure 12.4.1 above has TWO workbooks open, “PERSONAL.XLSB”
and “Hello_World_Test.xml”.

● One thing that has been relatively consistent is that when SAS uses the “X” command, both
workbooks will be open (“Hello_World_Test.xml” and “PERSONAL.XLSB”) when the
“WORKBOOK_OPEN” macro runs.

● This will allow the “Macro1” code to execute. However, a double-click on an Excel file icon will
usually have only one workbook open. Then the Excel macro “WORKBOOK_OPEN” runs (that
workbook is “PERSONAL.XLSB”). So, we will assume for the purposes of this explanation that
all calls to Excel come from SAS and the “X” command.

● Figure 12.4.1 above sets up two message boxes to be displayed. The first shows the executing
subroutine, and the second shows the code is on the processing loop and the file index counter that
is being used. See Figures 12.4.3 and 12.4.4.

● The second time through the workbook count loop, the code for MACRO1 executes and displays
word “World”. See Figure 12.4.5.

• Figure 12.4.6 is the workbook after the “Workbook_open” processing is complete, and the
workbook is ready for you to use.

200 Exchanging Data between SAS and Microsoft Excel

Figure 12.4.3: Message Box Displayed Before Entering the Workbook Count Loop.

Figure 12.4.4: Message Box Displayed in the First Workbook Count Loop.

Chapter 12: Building a System of Excel Macros Executable by SAS 201

Figure 12.4.5: Message Box Displayed in the Second Workbook Count Loop.

Figure 12.4.6: After All Workbook_open Processing Is Complete and Ready for You to Use.

Figure 12.4.6 gives us a fully automated method to run a SAS program and complete a task in Excel. When
we take away the VBA message box routines, the full task will run without intervention. Now we can
control Excel from our SAS program.

202 Exchanging Data between SAS and Microsoft Excel

12.4.2 Create a SAS Output File with More Data and Control Information
Since we do not want every Excel workbook to have “World” in cell “B2,” the next step is to enhance the
Excel macro “WORKBOOK_OPEN” so that it is more selective when it runs. So, we will take out the
message boxes and add in control language to interpret information sent from SAS. By sending commands
to Excel from SAS, we can control what actions our Excel macro takes when it gets control of the system.

First, let’s upgrade our SAS code.

Figure 12.4.7a: New SAS Code to Summarize the SASHELP.SHOES Dataset and Send the
Data to Excel.

** Total sales by region, and put it into a file **;
Proc summary data= SASHELP.Shoes nway;
weight sales;
var sales;
output out=sales(where=(_stat_ = "SUMWGT"));
by region;
run;
** Create path macro variable to Excel.exe – your path may vary **;

* 2003 = C:\Program Files\Microsoft Office\OFFICE11\EXCEL.EXE;
* 2007 = C:\Program Files(x86)\Microsoft Office\Office12\EXCEL.EXE;
* 2010 = C:\Program Files (x86)\Microsoft Office\Office14\EXCEL.EXE;
* 2013 = C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE;

** Start ODS and name the output xml file **;
ODS TAGSETS.EXCELXP FILE="c:\my_excel_files\Pie_Chart_test.xml";

** Set up ods options to call the print procedure **;
ODS TAGSETS.EXCELXP OPTIONS(Sheet_Name='Greeting') Style=minimal;

** Run Proc print using labels and noobs. **;
PROC PRINT data = sales noobs label;
* add control value to the label value for Excel to use here;
label region = "?graph_1?Region";
var region sales ;
run;

** Close the ExcelXP tagset to release the output file **;
ODS TAGSETS.EXCELXP close;

** Choose a version of Excel to run - pick default path **;
** NOTE The file name needs to be quoted if it contains spaces, etc **;

* Excel 2013 64-Bit;
X ' "C:\Program Files\Microsoft Office 15\root\office15\EXCEL.EXE"
 "C:\My_Excel_Files\Pie_Chart_test.xml" ';

RUN;

The code in Figure 12.4.7a has been upgraded to do the following:

● Use PROC SUMMARY to create an NWAY summary of the SASHELP.SHOES dataset. The
output SAS work file is weighted by the variable SALES.

● Open ODS with the TAGSET EXCELXP to output data to file
C:\My_Excel_Files\Pie_Chart_test.xml.

● Use PROC PRINT to write the SAS dataset to the *.xml test file. Set up the label that the phrase
"?graph_1?Region" is placed into the Excel cell A1. The “?graph_1? is information we will pass
to the Excel macro.

• Use the SAS “X” command to run Excel and open C:\My_Excel_Files\Pie_Chart_test.xml.

Chapter 12: Building a System of Excel Macros Executable by SAS 203

The object is to send information to Excel to tell Excel what to do next. It is nice to have a constant
location; I always use cell “A1” of the first sheet of the Excel workbook, and bracket the code with
characters not normally found in titles or variable names. The same thing can be accomplished by changing
the variable name to “_graph_1_Region” for the first column of the first sheet. Your Excel macro will need
to remove any control information that you send for the Excel macro.

When we run this SAS code and send the data to Excel, our new output Excel workbook looks something
like Figure 12.4.7b.

Figure 12.4.7b: Excel Results for Output When New SAS Routine Is Executed.

Since we have not re-written the Excel “Workbook_open” macro, we still find the word “World” in cell B2
of the Excel document. Remember that the PERSONAL.XLSB (or *.XLS) workbook is always opened.
Since this workbook was opened with the SAS “X” command, the Excel MACRO1 was also executed. You
will see the messages boxes described in Figures 12.4.3 to Figure 12.4.6 also were visible. Now that we are
confident that our little message boxes are doing their job, we will eliminate them. If you use the code by
cutting or copying and then pasting the code, you may not get exactly what you want. This process does
not always convert the quotation marks correctly. You may need to retype them.

12.4.3 Create an Excel Macro to Process the Output SAS File
Now we have something automated, even though we still have to press Enter when the text boxes appear.
We now have a procedure that starts by running SAS code and ends by displaying an active Excel
workbook that not only has our data, but has made a change to our data. But, since we do not want to
change cell “B2” to the word “World” for every workbook we create, let’s change the VBA code for the

204 Exchanging Data between SAS and Microsoft Excel

 “Workbook_Open” VBA subroutine. The change we need to make is to have the Excel Workbook_Open
VBA subroutine be selective in choosing which workbooks to modify.

The VBA code in Figure 12.4.8 below shows the code for the new “Workbook_Open” VBA subroutine.
This macro will test cell A1 of the first worksheet and determine if it contains a special code to trigger
processing a VBA macro. The message box calls are also removed from the updated “Workbook_Open”
VBA subroutine. There is also a new subroutine required for Module1. Here we will just put the code in
Figure 12.4.9 as a place holder. This subroutine will display only a message box to indicate that the routine
was executed. This example is designed to detect the special code “graph_1” (case-sensitive) after stripping
off two question marks from the front and back of the string. Failure to find either question mark will leave
the contents of cell A1 undisturbed and return control to Excel. If the question marks are found, the data
between the question marks will be removed and the remainder of the cell value restored. This can be
changed to suit your needs.

Figure 12.4.8: Excel Workbook_open Code to Process an Excel Macro Based Upon a
Control Field.
Private Sub Workbook_Open()
 Dim my_count As Integer, my_book As String, my_sheet As String
 my_count = Workbooks.Count

 For i = 1 To my_count
 my_book = Workbooks(i).Name
 my_sheet = Workbooks(i).Sheets(1).Name
 If my_book <> "PERSONAL.XLSB" Then

 my_cell_a1 = Workbooks(i).Sheets(1).Range("A1").Value
 my_cell_size = Len(my_cell_a1)

 ' look for a second ? from right side of value '
 my_flag_size = InStrRev(my_cell_a1, "?") - 1

 ' if my_flag_size is greater than 1 then two ? were found
 ' this is a special processing workbook
 ' so get the info and process the workbook
 ' else ignore and return control to Excel and the user
 If my_flag_size > 1 Then

 ' get left ? character and data between the two ?’s
 my_report = Left(my_cell_a1, my_flag_size)

 ' remove the left ?
 my_data_size = Len(my_report) - 1
 my_report = Right(my_report, my_data_size)

 ' remove control characters from Cell A1 value
 ' and store in cell A1
 Workbooks(i).Sheets(1).Range("A1").Value = _
 Right(my_cell_a1, (my_cell_size - (my_flag_size + 1)))

 ' add new cases to process new reports
 Select Case my_report
 Case "graph_1"
 Call Module1.my_graph_1(my_sheet)
 Case Else
 End Select

 End If
 End If
 Next
End Sub

Chapter 12: Building a System of Excel Macros Executable by SAS 205

Figure 12.4.9a: Excel Subroutine in Module1 to Trace Activity.

Sub my_graph_1(my_sheet As String)

 Msg = "got to subroutine my_graph_1"
 Title = "Sheet Name = " + my_sheet
 Response = MsgBox(Msg, Style, Title)

End Sub

Figure 12.4.9b shows the output of a message box that is used to track the progress of the executing VBA
program. This is very much like using PRINT statements or PUT statements in your SAS code to track the
progress of the program. The code that produced the message box is in Figure 12.4.9a.

Figure 12.4.9b: Verification the My_graph_1 Subroutine Was Executed.

Figure 12.4.9b shows the message box, in the lower right hand corner, that output the trace message when
the My_graph_1 subroutine was executed. A description of the new “Workbook_Open” VBA Code
Described in Figure 12.4.8. follows to help you understand both the structure and flow of the VBA macro.

● The name of this macro is Workbook_Open. It is a private subroutine stored in the VBAProject
area of the workbook called “PERSONAL.XLS” (Excel 2003) or “PERSONAL.XLSB” (Excel
2007, 2010, 2013). This subroutine has no parameters. Using the keyword “Private” will only
allow this subroutine to execute when Excel starts; the macro will not be available at other times
to execute. Remove the keyword “Private” to use at other times, like for debugging.

206 Exchanging Data between SAS and Microsoft Excel

• This subroutine defines several local variables. They are named here.

◦ Variable my_count is defined as an integer variable. This variable is set to the number of
workbooks that Excel currently has open. The VBA “For” loop is similar to the SAS “DO”
loop, and will execute once for each open workbook. Information about workbooks and sheets
is stored in arrays,

◦ Variable my_book is defined as string variable. This variable is set equal to the name of the
currently open workbook Information about workbooks and sheets are stored in arrays.

◦ Variable my_sheet is defined as string variable. This variable is set equal to the name of the
currently active worksheet. The name of the workbook is tested to make sure it is not
"PERSONAL.XLSB" or “PERSONAL.XLS”. If it is one of these workbooks, then no action
is taken. If the workbook name test is false, then the rest of the “if-then” condition is executed
and the contents of Cell “A1” of sheet one of the current user workbook is placed into the
Excel variable my_cell_a1. The VBA code shown will reference only the
“PERSONAL.XLSB” Excel files.

◦ Variable my_cell_1 is a string variable. This variable is a work space for processing cell A1 in
the worksheet. The Excel variable my_cell_a1 is tested for a “?” by looking at all of the
characters in the variable except the first character and loading the location of the “?” into the
variable my_flag_size. If the length of my_flag_size is greater than 1, then there is more than
one character between the two question marks on the left side of cell A1 of the worksheet. If
there is no question mark on the left side of the cell A1 value, then the value of variable
my_report generated later will not match a “CASE” test value.

◦ Variable my_cell_size is an integer variable. This variable is set to the number of characters
that are in Excel variable my_cell_a1.

◦ Variable my_report is derived by getting the left part of the value without the question mark
and calculating the size of the temporary value of my_report. To get the final contents of the
variable my_report with no question marks, the left question mark is removed. This returns the
original value of cell A1 to the workbook cell A1 without the left most control characters.

● This code looks first to find a non “PERSONAL.XLSB” workbook. If you are using Excel 2003,
then code “PERSONAL.XLS” as the workbook name.

● This “Select Case” command works much like a SAS “SELECT” statement, “Select Case
my_report”, which is the same as “Select When(my_sas_variable_name)”. The ‘Case “graph_1”’
value and the next line are the same as the ‘When(“value”) SAS_command;’ code. The “Case
Else” command is the same as the SAS “Otherwise” command. This code structure is also case
sensitive like the SAS SELECT statement.

● This VBA subroutine is sensitive to parameters passed to Excel in cell “A1” of the Excel
workbook that is opened. This code is looking for exactly “?graph_1?” in the first nine characters
of cell “A1” of the first sheet of the workbook. The test is a case-sensitive test and anything except
“?graph_1?” will fail the test. No other processing is done to the workbook when the test fails; the
workbook is just displayed for you to examine or update the workbook.

● When SAS writes variable name labels as the first row of the XML file sent to Excel, the label of a
variable can contain special characters and spaces that are not valid in SAS variable names. The
Excel VBA code can search for these special characters and use their presence or absence to
control actions in the Excel VBA subroutine. The control information ("?graph_1?) that we
inserted into the label of the “Region” variable ("?graph_1?Region") will be stripped off to
become the value of the VBA variable “my_report”, and it will be used as the test case in the VBA
“Select Case” command. The question marks are removed, too. The rest of the SAS variable
names or labels are output in row one and used as column header names.

• The Select command from the end the “Workbook_Open” VBA subroutine and is currently set up
to process one report type, namely graph_1. It should be easy enough to add more. The Excel
my_graph_1 subroutine called is the subject of the nest section of this chapter.

Chapter 12: Building a System of Excel Macros Executable by SAS 207

12.4.4 Build an Excel Graph Using an Excel Macro
The object of this task is to create a simple graph. In Section 12.2.3 of this chapter I described how to
record an Excel macro. The same process was used here to record an Excel macro to create a graph. The
steps are listed here to aid you in creating an Excel macro to build a graph.

● Open Excel.
● Turn on Macro recording.
● Select all of the data in columns A and B.
● Select the pie chart graph from the Excel toolbar.
● Add a title.
● Add a legend.
● Apply the minor name change edits described in Figure 12.4.10.
● Save the macro in your Personal Macro Workbook (PERSONAL.XLSB) Module1 as

“my_graph_1”.
● This graph is neither pretty nor optimized; it always uses cells A1:B11 and must be the first graph

in the workbook. As noted, only the Chart1 name was changed.

• The four lines that begin with Activesheet.shapes may not copy correctly with a “Copy and Paste”
and may need to be adjusted with either a continuation character (“_”) at the end of the line or by
moving the data back one line for each of the four lines affected.

Figure 12.4.10: My_graph_1 Excel Macro Code.

Sub my_graph_1(my_sheet As String)
'
' my_graph_1 Macro
'
' This VBA macro generates a pie chart with minimal number of extras
' The code is reproduced here exactly as it was produced by the
' Excel Macro Record feature – except the name values were adjusted

 Range("A1:B11").Select
 Charts.Add
 ActiveChart.ChartType = xl3DPie
 ActiveChart.SetSourceData Source:=Sheets(my_sheet).Range("A1:B11"), _
 PlotBy :=xlColumns
 ActiveChart.Location Where:=xlLocationAsObject, Name:=my_sheet
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "My_new_Pie_chart"
 End With
 ActiveChart.HasLegend = True
 ActiveChart.Legend.Select
 Selection.Position = xlBottom
 ActiveChart.Legend.Select
 Selection.AutoScaleFont = True
 With Selection.Font
 .Name = "Times New Roman"
 .FontStyle = "Regular"
 .Size = 11
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ColorIndex = xlAutomatic
 .Background = xlAutomatic
 End With
 Selection.Position = xlLeft

208 Exchanging Data between SAS and Microsoft Excel

 ActiveChart.ChartArea.Select
 With ActiveChart
 .Elevation = 35
 .Perspective = 30
 .Rotation = 0
 .RightAngleAxes = False
 .HeightPercent = 100
 End With

 ' changed "Chart 1" to the numeric location of the chart - not the chart
name
 ActiveSheet.Shapes(1).ScaleHeight 1.25,

msoFalse, msoScaleFromTopLeft
 ActiveSheet.Shapes(1).ScaleHeight 1.5,

msoFalse, msoScaleFromBottomRight

 'ActiveSheet.Shapes("Chart 1").ScaleHeight 1.25,

msoFalse, msoScaleFromTopLeft
 'ActiveSheet.Shapes("Chart 1").ScaleHeight 1.5,

msoFalse, msoScaleFromBottomRight

 Application.CommandBars("Task Pane").Visible = False
End Sub

The Excel macro code in Figure 12.4.10 is described here.

● The code module name is my_graph_1. It is a public subroutine stored in the “Module1” area of
the workbook called “PERSONAL.XLSB” Excel 2007, 2010, 2013 or “PERSONAL.XLS” (Excel
2003). This subroutine has one parameter that is created in the “ThisWorkbook” area of
“PERSONAL.XLSB”.

● The code from Figure 12.4.8 above “Call Module1.my_graph_1(my_sheet)” executes this macro
from within the “Select Case” statement. The value of “my_sheet” is the name of the Excel sheet
to process.

● The selected range of cells is always A1:B11 on the first sheet of the workbook.

• This data comes from the output from the SAS program, and the range is “Hard-Coded” to be
exactly the data that was output by the PROC PRINT command. Because this is a proof-of-
concept program, no effort was put into making the subroutine flexible enough to accept a variable
size graph space. This Excel command adds a chart to the workbook.

The ActiveChart commands shown in Figure 12.4.10 define several features of the chart.

Table 12.3.3: Active Chart Actions from Figure 12.4.10.

ActiveChart Excel Object
names

Function

ChartType Defined the chart as a pie chart.
SetSourceData Define the sheet name, data range, how to plot the data.
Location Define where to place the chart.
HasTitle Toggle a title on.
ChartTitle.Characters.text The text of the title.
HasLegend Toggle a legend on.
Position Put legend on the bottom of the chart.
AutoScaleFont Toggle automatic font scaling on.
Font Select several items about the font.
ChartArea.Select Set several items that relate to the screen location of the charts.

Chapter 12: Building a System of Excel Macros Executable by SAS 209

Figure 12.4.11: Final Chart and Graph.

The graph in Figure 12.4.11 is the graph produced by the VBA subroutine my_graph_1. The SAS style
option STYLE=minimal produced the Excel worksheet with no border lines. While it is not a pretty graph,
it is proof that a SAS code routine can send data to Excel and direct Excel to run an Excel routine, and that
is what I wanted to do.

12.5 Conclusion
This example is a proof-of-concept example, and has shown that, with relatively simple tools, it is possible
to extend the reach of the programmer’s ability to automate output. It is my hope that this process can be an
insight into the possibilities that are available. Of course, any Excel code can be accessed using this
method, and this truly means any code. Excel uses Visual Basic for Applications code and has access to
routines that can output any file format that Excel can write. The user-coded macros can also include code
to read files, run “Microsoft Word”, “Microsoft Access”, or even SAS applications. With proper control
structures, the formatting of multiple page workbooks can be automated, page titles can be added, column
formatting and highlighting can be done, and of course anyone can make a better graph.

210 Exchanging Data between SAS and Microsoft Excel

Chapter 13: Building a System of Microsoft
Windows Scripts to Control Excel Macros

13.1 Introduction ... 211

13.2 Purpose ... 212

13.3 Guidelines for Building and Using a VBS/VBA Macro Library 214
13.3.1 Create Naming Conventions for Storing and Executing VBS/VBA Macros...... 214
13.3.2 Set Up Workstation Options .. 215
13.3.3 Where to Store VBS/VBA Scripts and Macros ... 217
13.3.4 SAS Code to Execute a Visual Basic Script ... 219
13.3.5 Build a Parameter-Driven VBS Script to Control the Execution of Excel 220
13.3.6 Build a Control Macro for Each Excel Report .. 223

13.4 Conclusion .. 229

13.1 Introduction
Chapters 12, 13, and 14 each define separate, but increasingly powerful tools that combine SAS and Excel
features and that integrate your ability to transfer data between SAS and Excel. At the beginning of each of
these chapters I have placed a short list of all of the tools--just in case you look at only one of the chapters
today.

Computer systems and software packages like SAS and Excel are really great at crunching numbers. They
even consider letters to be a number. An eight-bit computer byte can contain a letter in the form of a
number between 0 and 255. Most software packages start out as stand-alone packages. After they mature
and become accepted, the software developers work to interface with other software systems. Operating
systems, on the other hand, need to communicate with the applications and must have methods of passing
data between the different software packages. On Windows, one of those methods of passing and
controlling data movement between computer systems, software packages, and the operator is called Visual
Basic Scripting (VBS). SAS can communicate with this feature through the “X” command.

The Visual Basic Scripting capability, included in the Windows operating systems, is very powerful. It can
open, manipulate, control, and close an Excel program and other Microsoft products. This power permits
libraries of Excel macros to be stored as individual code modules such as files with the extensions *.vba,
*.vbs, *.bas, *.cls, *.frm, *.frx, and others. When stored in a common directory, the code can be used by
any team member on a project. The ability to call these macros at any time allows the creation of a
standardized set of macros in a library for report formatting. Community-level routines can be stored in a
macro library for departmental use, while report-specific macros can be stored in separate code files,
thereby creating a departmental set of standards and reports that can survive personnel changes.

Table 13.1.1: Tools Described in Chapters 12, 13, and 14.

Tool Chapter Description

Personal Workbook Tool
SAS tool to run personal Excel
macros, already included in Excel
(under Macros ► Record Macro ►
Store macro in).

12 This tool uses the SAS “X” command to execute
Excel macros in your Personal Excel “Xstart”
directory. It allows Excel workbooks to be
delivered without embedded macros.

212 Exchanging Data between SAS and Microsoft Excel

Tool Chapter Description
Macro Library Tool
SAS tool to run externally stored Excel
macros. You can use the “Macro
Library Tool” within Excel to take the
same macro you would have created in
the Personal Workbook Tool and
export it to a departmental library.

13 This tool uses the SAS “X” command and the
Windows operating system scripting language to
control processing of Excel macros. It allows
Excel workbooks to be delivered without
embedded macros.

Excel Workbook Tool
An Excel tool to store parameters for
SAS programs and either execute the
SAS code or place the code into a
directory for execution.
(My_Excel_Tool, available in the
example code and data folder on the
author’s SAS Press page)

14 This Excel workbook tool will save parameters
for a SAS program and either execute or copy
the code to a directory. It uses features of the
other two tools and allows for storage of SAS
code in a production-type area so the original
code is not modified when the reports are
processed. .

13.2 Purpose
In Chapter 12 the concept of maintaining control of the execution of a task was introduced. The procedures
shown in Chapter 12 introduced the idea that a programmer can create a system of software commands to
control the capability of multiple software packages. The ability to control and cause multiple tools to work
together enables you as a programmer to create far more powerful tools using what you already know. This
chapter will build upon the concepts of Chapter 12 and enable us to create a system of tools that will be
expandable and flexible enough for departmental rather than simply individual use.

Here is the basic program model, as described in Chapter 12.

● Excel pre-processing setup

◦ Open Excel.
◦ Write/Store Excel macro to process control information.

● SAS processing

◦ Start SAS.
◦ Run SAS program.
◦ Set up control information for Excel.
◦ Create *.xml file.
◦ Use “X” command to start Excel and open the generated workbook.

● Excel processing

◦ Locate the control information.
◦ Execute the Excel macro.
◦ Release control to Excel.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 213

SAS features we have seen:

● PROC EXPORT produces Excel files in native Excel format, but the number of columns and rows
that can be output are limited by the Microsoft JET and ACE engines. PROC EXPORT has
limited file formatting options.

● DDE can use a template to build an output Excel file with great (pre-assigned) formatting, but
running multiple reports can cause timing issues and the job stream may fail. The template *.xls
file may have Excel macros that need to be removed.

● ODS output files that are generated with TAGSET TEMPLATE processes (CSVALL, HTLM,
EXCELXP, and others) whether using PROC PRINT, PROC REPORT, or other processes
generate *.xml files (not *.xls files).

● Methods of placing graphs into Excel files are limited, and some formatting options are either not
available to SAS programs, or customers need to purchase software packages that may exceed
their needs.

● Many Excel formats are not available in SAS. While it is possible to generate code with SAS
PROC TEMPLATE, it is not for the faint of heart. Programmers unfamiliar with PROC
TEMPLATE may find the code difficult to update or write.

• Some companies do not use all SAS products that are available and therefore do not have access to
some of the more powerful features of SAS. The routines described here do not require SAS
Enterprise Guide, SAS Business Intelligence, JMP, or SAS Add-In for Microsoft Office.

New Concepts to Be Introduced
This chapter builds upon Chapter 12, which introduced the program model in which SAS produces an
output file with control information. Excel uses that information to determine which Excel macro to
execute. When Excel starts, the Excel macro is executed. The tool developed in this chapter is based upon a
model that passes control information to a Windows operating system script. That script then controls all of
the Excel processing. The script opens Excel, loads the macros, executes the macros, unloads the macros,
and closes the Excel workbook. This tool can even reformat the Excel output--say from an xml file--to an
xls or xlsx file format. The Excel macros that the tool uses can be stored in a departmental directory rather
than on an individual computer.

The Updated Program Model
● Excel pre-processing setup

◦ Open Excel.
◦ Write/Store Excel macro in a disk file *.bas.

● SAS processing

◦ Start SAS.
◦ Run SAS program.
◦ Define the file name and path of a Windows *.xbs script to execute.
◦ Define the file name and path of generated *.xml file.
◦ Define the file name and path of final *.xls output file.
◦ Define the file name and path of stored Excel macros (*.bas code).
◦ Define the name of the Excel macro to execute.
◦ Create *.xml file.
◦ Use “X” command to start running a VBS routine to process the generated workbook.

214 Exchanging Data between SAS and Microsoft Excel

● VBS routine

◦ Open Excel.
◦ Locate and load VBA code into Excel workbook.
◦ Execute the VBA code modules.
◦ Remove the VBA code modules.
◦ Close and convert the *.xml file to a *.xls (or *.xlsx) file.
◦ Terminate Excel.
◦ Terminate the VBS script.

This chapter will explain this new method and why building a system of directories, *.BAS files, and
*.VBS code is important. Then, I will show how to execute these macros from SAS to format Excel
reports. A basic working knowledge of Excel Visual Basic for Applications (VBA) is assumed. The rest of
the concept will be sketched out here to allow you to build and expand upon your project needs. Previously,
PROC EXPORT, ODS, DDE, the EXCELXP tagset template, and other methods of creating an Excel file
have been discussed and examples provided. The concepts shown here will allow you to process Excel and
other types of files in many different ways.

13.3 Guidelines for Building and Using a VBS/VBA Macro Library
When individuals have a tool that enables them to easily process multifaceted computer programs, they can
be more productive to their company. Linking tasks together with software can eliminate human interaction
with the data. This can eliminate errors related to manually entering or moving data. But, as we saw in
Chapter 12, some software can be restricted to use on one computer. The XLSTART directory used by
Excel is available only on the computer where Excel is installed. Hardware failure or upgrades can cause
the loss of all of these tools.

The process described in this chapter stores the Excel macros in a directory as separate code modules that
are used only while the macro is processing the workbook sheets. These macros can be stored in a Read-
only directory with limited Update access that will make them more secure and allow a wider access to the
report processing when new data is available. These VBA macros will allow you to take control of Excel or
other products as a computer programmer and make it do your bidding. The process is simple and can be
set up using the following general guidelines.

● Establish a disk directory where the VBA and VBS code modules can be stored. If multiple users
need access, it works best to have it available somewhere like a server location, where everyone
can read the directory.

● Publish a standard set of parameters that the VBS routine users can use to access the VBA code
modules.

● Unique code modules for individual reports can be placed into the directory and called from the
VBS script by using parameters set up by a SAS routine.

● SAS can use the “X” command to start the VBS routine and assign the parameter values to process
the report.

• SAS can process the data files to be used as input to the VBS control module. The output from
SAS can be any format that the VBA code modules can write.

13.3.1 Create Naming Conventions for Storing and Executing VBS/VBA
Macros
Let’s think about naming conventions for a minute. We can ask the simple questions about them like a
newspaper reporter would ask--questions like “Who”, “What”, “When”, “Where”, and “Why”.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 215

Table 13.3.1: Questions and Answers About Why You Need Naming Conventions.

Question Answer
Who All data systems should have naming conventions.
What These are written definitions of where data, code, and output files are stored.
When Naming conventions should be defined before any code or data is prepared.
Where These should apply to all source data providers, programmers, and users of the system.
Why So you can find what you need when you need it.

Of course, Table 13.3.1 is just a little light-hearted humor about naming conventions. But, those simple
phrases speak volumes. The proper naming conventions can make or break a software system. When you
walk into a programming job where the system has no naming conventions, it may be hard to find two
people who think the data is in the same place. Some guidelines that I use when setting up a system of
naming conventions is to look at how and when the data is processed. I look for the following.

● How often is the data processed? Is it updated hourly, daily, weekly, monthly, quarterly, semi-
annually, annually, or even every x number of years?

● How is the data grouped? Is it by task, file, report, company, department, individual, state, county,
zip code, country, or not at all?

● Are project data and code files stored in development directories, source directories, work
directories, data directories, production directories, archive directories, or any other directories?

• Has the project team created either a project task flow or a written definition of the project? Sorry,
I know I am just dreaming.

When working on a team to define naming conventions, I tend to place parts of the naming convention that
are most stable in the first directory position and work from there. Common code source libraries should be
separate, but project- or report-level source code should be near the project. It is hard to build a naming
convention that is wrong if first you think about how your data inputs, master data files, and project output
flow. But, remember that some operating systems have limits on the number of characters that can be in a
file path and name.

13.3.2 Set Up Workstation Options
Why is there a section in this book about setting up workstation options? The reason is simple; the code is
not simple. The Macro Library Tool reaches beyond where most programmers ever venture in their
programming experience. Occasionally, you may see a job posting asking for someone who knows
something about the “Internal Workings” of system x or software y. What they are really asking for is
someone who can make the system do what they want, not someone who knows how to use a system to get
output. I know that sounds almost the same, but let me explain. Getting SAS to write a *.csv file, and then
manually opening Excel to read the file and create a graph is getting output from a set of programs. But,
writing a SAS program that will pass data to Excel and maintain control while Excel creates a graph that is
ready to print is making a system do what you want.

The features described here were accessible to me both on my own system and at locations where tools
similar to these were installed for departmental use. That does not mean that your system will allow all of
these changes. Digital signatures can be added to programs you write for use on your own computer. This
section is designed to prepare you for some of the actions you may need to perform to make these tools
work properly.

Other messages that may appear could be something like the ones in Figure 13.3.2. This message talks
about trusting the Visual Basic Project code. If you see a similar message, it may be slightly different
depending upon the version of Excel and the operating system you are using. Figure 13.3.2 is a message
displayed when Excel was called from a *.VBS script. Figures 13.3.3, and 13.3.4 show you what actions
you need to take to correct this issue. Once you get this fixed, you should not see it again on the same
computer.

216 Exchanging Data between SAS and Microsoft Excel

Figure 13.3.2: Windows Message About the Visual Basic Project Not Being Trusted.

You may be able to eliminate this message by changing the Trust Center options for your computer. If your
system administrator has restricted these commands from being modified, then you will need to ask him or
her for help. Select the “Trust Center Settings” button shown in Figure 13.3.3 to continue.

Figure 13.3.3: The Windows Trust Center Window.

Figure 13.3.4 is shown with the checkbox “Trust access to the VBA project object model” selected. This
setting will allow the macros that you create to execute. Remember that Figure 12.3.3a in Chapter 12
describes “Trusted Locations”. You may be required to add the location of your VBS/VBA scripts and
macros to the list of trusted locations. Use the “Add new location”, “Remove”, and “Modify” buttons
shown in Chapter 12, Figure 12.3.3a, to adjust your list of trusted locations and their subfolders. When you
are using these buttons, a pop-up screen will be shown to permit the updates.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 217

Figure 13.3.4: Windows Trust Center Macro Settings Window.

On the Excel screen shown in Figure 13.3.4, selecting the “Trust access to the VBA project object module”
checkbox will turn on access to running of VBA code on your computer. It is always wise to verify if you
are permitted to modify these settings. Some companies have strict policies about modifying PC settings
without permission. Most software that is written or executed from trusted directories on your computer
will be allowed to execute. These adjustments allow you to create tools that can control several steps and
eliminate manual steps. These tools should be behind strong firewalls. You might even consider Write-
protecting the macro code to prevent the code from unauthorized changes.

13.3.3 Where to Store VBS/VBA Scripts and Macros
So far, in this chapter we have discussed naming conventions, and workstation setup options to allow
macros to run. Before we look at how we create visual basic scripts, Excel data files, or VBA macros, let’s
look at how to store and reference them. As was mentioned before, naming conventions should be defined
before any code is written. No programmer wants to be the person named when something breaks. It can be
hard on your job or working relationship within the company or department. Consider including both a
“Production” and a “Development” environment into the naming conventions. In addition, to prevent code
changes from promoting code from the development environment to the production environment, the
naming convention should have something like “PROD” or “DEVL” built into the names.

The type of tool that we are building in this chapter is a little different from the one in Chapter 12. The tool
in Chapter 12 pushed control information from SAS directly to an Excel macro. The Excel macro then had
to decide whether or not to process a predefined set of Excel macros or do nothing. That tool was built for
one user and had to be duplicated if multiple users wanted to use the tool. This type of a tool lends itself to
being modified for each copy of the tool. The following table compares the two tools.

218 Exchanging Data between SAS and Microsoft Excel

Table 13.3.2: Comparison of Tools Described in Chapter 12 and Chapter 13.

Function
Program

Chapter 12 Personal Workbook Tool

Individual Macro Storage

Chapter 13 Macro Library Tool

Excel Macros Stored in Departmental
Directory

SAS 1. Build *.xml file.
2. Set control value in cell A1 label of

first sheet.
3. Use “X” command to send output file

name to Excel for execution by
Excel.

1. Build *.xml file or xls file.
2. Define path and file for *.xml file.
3. Define path and file for *.xls file.
4. Define path and name of *.vbs file.
5. Define path and name of *.BAS file.
6. Define name of Excel macro to execute.
7. Send path, file, and macro names to

windows *.vbs.
VBS NO VBS routines are used 1. Open Excel.

2. Load report specific macro.
3. Load project common macros.
4. Execute report specific macro.
5. Delete all Excel macros loaded.
6. Save updated file.
7. Close Excel.
8. End VBS script.

Excel
workbook
built by
SAS

First sheet, Cell A1, contains control
information

Any xml, xls, or other file that can be read
into Excel at Excel start-up time.

Excel
Personal
Workbook

1. The code module ThisWorkbook
stored in the user’s “Personal Macro
Workbook” contains VBA code to
select the requested macro
processing. Each computer may have
different code here.

2. An Excel “module” is used to store
recorded Excel macros.

NOT USED

VBS code
library

NONE 1. Stores the VBS code.
2. Write-protect the file if necessary.
3. Store on departmental drive.
4. Is accessible to many users.

BAS code
library

All BAS code is stored in the “Personal
Macro Workbook” on the user’ computer.
Each user’s macros are independent of
any other user’s.

1. Stores the VBA code.
2. Write-protect the file if necessary.
3. Store on departmental drive.
4. Is accessible to many users.

As shown in Table 13.3.2, the tools that are defined in chapters 12 and 13 store the Excel macros in
different places. Chapter 12 uses the Personal Workbook that is stored in a system-defined location on the

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 219

computer that is currently being used. However, the macros used by the Macro Library Tool in this chapter
can be stored neatly anywhere. This difference also allows better control of the actual code used in the
macros. So, it really does not matter where you store the macros; just leave a place in your naming
convention for them.

13.3.4 SAS Code to Execute a Visual Basic Script
The SAS code shown in Figure 13.3.5 does not need to appear in the order listed in this figure. The only
prerequisite for it to operate is that the “X” command has to have everything else defined before it can
work.

Figure 13.3.5: SAS Code to Prepare Data and Parameters and Then Call a VBS Script
Module.

proc sort data=sashelp.class out=class; ➊
by sex Height;
run;

ods tagsets.ExcelXP body='C:\MY_Excel_Files\my_sorted_class_data.xml'; ➋
proc print data=class noobs;
run;

ods tagsets.ExcelXP close; ➌

* VBA subroutine name to execute ;
%let vbs_code = C:\My_VBA_macros\VBS_Execute_script.vbs ; ➍

* Full File path and Input file name ;
%let Input_Excel = C:\MY_Excel_Files\my_sorted_class_data.xml; ➎

* Full File path and Output file name ;
%let output_excel = C:\MY_Excel_Files\my_sorted_class_data.xlsx; ➏

* Full File path Location of bas file ;
%let bas_code_path= C:\My_VBA_Macros\Chapter_13\; ➐

* VBA Module name (without the bas) ;
%let vba_module = Class_Graph; ➑

* VBA subroutine name to execute ;
%let vba_code = Class_Graph; ➒

X "'&VBS_code.' ""&Input_Excel"" ""&output_excel""
 ""&bas_code_path"" ""&vba_module"" ""&vba_code"" "; ➓

Here is an explanation of the code in Figure 13.3.5.

➊ Use any SAS code to create a dataset to work with.
➋ This step creates a *.xml file. Any code that can produce a dataset that will open using Excel will work

here.
➌ This line of code closes the ODS output routine and releases the output file for use by other programs.
➍ This defines the path and file name of the VBS module that will process the Excel macros and file

formatting. The details of the code referenced here are explained in Figure 13.3.7a.
➎ This is the name of the file to be input to Excel and processed by the macros.
➏ This is the name of the output file given to the saved output when the Excel macros have finished

processing the input file. If this file path and name are the same as the input file, then the file is saved
and replaced the original file.

➐ This is the path to the directory where the Excel macros are stored. Only a path is defined here so that
many different macro files (*.bas) can be stored here. This file is a candidate for being placed into a
secure location and Write-protected.

220 Exchanging Data between SAS and Microsoft Excel

➑ This is the name of the VBA code module to load into Excel and execute. The code described in Figure
13.3.7a also reads in a file of common reusable VBA macros. This other file holds reusable code that
can be called from the module in item ➐ above to aid programming by having standardized formatting
routines.

➒ This is the name of the macro to execute in the module described in item ➑.
➓ This command uses the SAS “X” command to execute the VBS routine listed in item ➍.

13.3.5 Build a Parameter-Driven VBS Script to Control the Execution of
Excel
Let’s dig a little deeper to see how those guidelines can be used to make a working system of VBS/VBA
macros. In Chapter 12 we saw the SAS “X” command demonstrate its power to control Excel. In addition
to running Excel, the SAS “X” command can execute nearly any operating system command by starting it
from within the SAS program code. Directories can be listed, other SAS jobs can be started, Excel
workbooks can be opened, and files can be copied or deleted. Now we will discuss how a Windows built-in
operating system function can be used to control Microsoft products like Excel and Word.

The VBS scripting language is similar to the VBA code language, but it does have a few minor differences.
You can execute the commands stored in a VBS code module (any_file_name.vbs) simply by double-
clicking on the filename. For instance, if you double-clicked a file named “broken_command_file.vbs” that
contained the words “this does not do anything and produces an error message”, the windows operating
system would produce something like the following output.

Figure 13.3.6: VBS Error Message Output Window.

We will look at the details of a VBS script shown in Figure 13.3.7a a little later in the chapter. In Chapter
12, we saw that a VBA macro can be built by recording the macro from within the Excel workbook. These
recorded macros generally have a lot of default commands embedded into the macro. Some of these
commands are not required for a final macro. A recorded macro may also have a lot of workbook- and
worksheet-specific cell references that may be too specific for a general purpose macro.

SAS has the feature of being a programming language, which prepares the code to execute and then starts
running at the first executable instruction. What that means to me is that code has to be defined before it
can be used. Code is presented to SAS as a text stream, and each macro, DATA step, and procedure call
must be executed one group at a time. Code at the bottom of the text file is not executed until the step it is
contained within is executed, usually at end of the job. However, object-oriented programming languages
like VBA read in the whole set of code routines, compile them, and then pass control of the program to a
routine that waits for something to happen. This is similar to a user moving a mouse pointer, clicking on a
menu, or pressing a key on the keyboard: each object has its own list of things you can make it do or do to
it. These are beyond the scope of this book, but some simple things will be explored to show how to start
building a set of your own VBA macros to use to create your reports.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 221

Virtually anything that you can do using Excel you can do using VBA. After all, Excel was written using
the VBA language. So, you can modify cells by adding data to them, outlining them, moving them, copying
them, or clearing them. You can manipulate rows or columns of data. Files can be read, written, or
converted from one format to another. By writing the VBA code yourself, you control the order of the
actions that Excel takes. The intent here is to show you how to create formatted Excel output files that are
ready for delivery to your user to execute in minutes instead of spending much more time doing it manually
yourself. Making them high quality will be left to you. Of course, you need to write the VBA code.

A Sample VBS Script to Open Excel; Load, Execute, and Delete a VBS Macro
Now, for the fun part, we need a VBS routine to do the work. We need it to open the XML file, load our
VBA macros, build our graph, and save our data in the XLS format. The code is in Figure 13.3.7a, with a
detailed description of how it works following the code.

Figure 13.3.7a: The Contents of the VBS Script File VBS_Execute_script.vbs.
Dim Input_Excel, output_excel, bas_code_path, vba_module, vba_code, objxl, objwk,
vbCom, myMod ➊

Input_Excel = WScript.Arguments(0) 'Full File path and Input file name
output_excel = WScript.Arguments(1) 'Full File path and Output file name
bas_code_path= WScript.Arguments(2) 'Full File path Location of .bas file
vba_module = WScript.Arguments(3) 'VBA module name (without the .bas)
vba_code = WScript.Arguments(4) 'VBA subroutine name to execute ➋

set objxl = CreateObject("Excel.Application") 'Start Excel ➌

set objwk = objxl.Workbooks.Open(Input_Excel) 'Open the input file ➌

'Activate special software
set vbCom = objxl.ActiveWorkbook.VBProject.VBComponents ➍

objxl.DisplayAlerts = wdAlertsNone 'Turn off error messages ➎

if vba_module <> "" then 
 vbCom.Import ("" & bas_code_path & vba_module & ".bas") 'Import VBA Code
 vbCom.Import ("" & bas_code_path & "Common.bas") 'Import Common Routines

 objxl.Run "" & vba_module & "." & vba_code & "" 'Run VBA Code

 'Remove VBA modules
 Set myMod = objxl.ActiveWorkbook.VBProject.VBComponents("" & vba_module & "")
 objwk.VBProject.VBComponents.Remove myMod

 Set myMod = objxl.ActiveWorkbook.VBProject.VBComponents("Common")
 objwk.VBProject.VBComponents.Remove myMod

end if ➏

'Save as Excel *.xls workbook
if Input_Excel <> output_excel then objxl.ActiveWorkbook.SaveAs output_excel, 51 '
56=xlExcel8, 51=xlsx format ➐

if Input_Excel = output_excel then objxl.ActiveWorkbook.Save ➑

objxl.Workbooks.Open(output_excel).Close ➒
objxl.Quit
set objxl = nothing
set objwk = nothing

Here is a step-by-step explanation of the VBS code in Figure 13.3.7a. These descriptions highlight the
function of the VBS command without regard to the syntax. The general form of the commands that begin
with “SET” are to create a user-named object or instance of whatever is on the right side of the equals sign.
Then the name created on the left side of the equals sign can be used as a shorthand definition of the thing
on the right side. This is similar to the way a LIBNAME or FILENAME statement works in SAS. Other
code (with an equals sign) is an assignment of values. The code in Figure 13.3.7a

222 Exchanging Data between SAS and Microsoft Excel

must be delivered to the Visual Basic Script processor on one line. Some of the code (like lines (1) and (7)
wrapped unintendedly and should be on one line.

➊ The code starts by defining the names of input parameters, object names, or variables to be used by the
VBS routine. This is done without giving these names any data type or usage definition at the
beginning of the routine.

➋ The five lines describing the WScript arguments include a number in parentheses that defines the input
parameters number. We will send these parameters to the VBS routine as part of the “X” command
when the VBS code is executed from SAS. The parameters are numbered starting from zero and will
have the usage as described in the comments on the right of each line.

➌ The VBS command CreatObject actually starts running Excel, and the Workbooks.open command
opens the Excel workbook named in the parameter sent from SAS. The workbook is called
“Input_Excel”. The SAS program provided the full path and filename of the *.xml file created by the
ODS tagset template EXCELXP. You still do not see anything; it is all hidden.

➍ The SET command that creates vbCom is providing access to extra Windows software available from
the operating system. This is required for some of the other commands to work.

➎ The “objxl.DisplayAlerts = wdAlertsNone” command turns off all messages that VBS may send.
➏ The VBS code from the IF statement to the END IF statement is described here.

a. If the parameter called vbs_module, which is passed in argument 3 of the SAS X command, is
not empty, then the code between the “IF” and “END IF” commands is executed. When the
parameter has a value, it is the name of a *.bas file to include into the processing. The
parameter called bas_code_path contains the location of the *.bas code modules.

b. The vbCom.Import VBS commands each open a *.bas module. The code in parentheses
concatenates characters to build the full path and file name of the *.bas files.

c. The first *.bas file read is the Excel macro you want to execute.
d. The second *.bas module is where some common macro subroutines are stored. This code

exists optionally to provide standardized and optimized code to all of the users of your
system. This could be considered optional, but it is well worth the effort to create this library
of basic Excel macros to perform small tasks. This frees your time and makes writing a
program faster.

e. The objxl.run command executes the Excel macros.
f. When the VBA macros finish running, the “.VBProject.VBComponents.Remove” command

deletes the Excel macros from the workbook.
g. The “END IF” command finishes the block of VBS code that executes the Excel macro. Steps

7 through 12 are optional. If no *.bas module is passed, this routine can be used to just rename
a file or convert the input file into a *.xlsx Excel file format. This routine converts to a *.xlsx
output file, but the ActiveWorkbook.SaveAs command described in Step 7 can be modified to
do other conversions.

➐ If the Input_Excel and Output_Excel parameter values are the same, then the Output_Excel file is just
saved in its updated form. The design of this VBS code routine was to accept a *.xml output from the
SAS ODS tagset EXCELXP. After processing the Excel VBA macros, the VBS code module will
provide an Excel *.xlsx file in native Excel format.

➑ This step is executed if the Input_Excel parameter equals the Output_Excel parameter. If the
parameters are equal than no conversion has been requested. If the file paths and names are the same,
the input file is saved in the same format as it was opened..

➒ After you save any changes made, the Excel workbook is closed and the Visual Basic Script is shut
down. Control of the computer is returned to the next process. When this *.vbs code module is called
from SAS using the “X” command and when the SAS options XWAIT and XSYNC are active, the
SAS program will wait for the VBA code to complete and solve some timing issues that could
otherwise cause errors.

Depending upon the size of your Excel XML file and how well your VBA macros are written, it can take
from a few seconds to a couple of hours to format your file. But, for this process to take a couple of hours it
will need a workbook with several hundred pages or very poorly written VBA macros. The good thing is

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 223

that the next time you process the same file, the formatting will be exactly the same, with no more effort or
programming on your part to make it happen that way.

13.3.6 Build a Control Macro for Each Excel Report
The result of running the SAS code in Figure 13.3.5 is shown here. We are going to build a macro to
produce a bar chart showing all five variables listed in this data.

Figure 13.3.7b: The SASHELP.CLASS Dataset Sorted by SEX and HEIGHT, Displayed in
Excel.

We will start here by recording a macro and saving it into any of the available workbooks. We can save it
anywhere because we are going to export the macro to the disk file C:\My_VBA_macros\ with the name
Class_Graph.

224 Exchanging Data between SAS and Microsoft Excel

Figure 13.3.8: The Record Macro Excel Window.

Figure 13.3.8 shows the macro name as being Macro1. We will see how to change that a little later. Once
you press the “OK” button, the recording of your actions will start. We want the macro to do the following
things.

● Select all of the data cells and adjust the column widths so that each is the minimum size.
● Select all of the data fields and create a 3-dimensional column chart.
● Change the location of the chart to be near the top right of the screen.
● Widen the Excel window.

• Scale the graph so that legends are clear. Sometimes the graph will not scale correctly the first
time you execute the code. However, the second time you execute the macro it may appear better
because the Excel window was updated when the macro ran the first time.

The graph produced in Figure 13.3.9 was produced by the Excel macro shown in Figure 13.3.10a.
The Macro Library Tool executed the code to produce the graph before the SAS program finished running.
When the SAS options XWAIT and XSYNC are active, the SAS programs wait for the Windows command
window to finish executing before returning control to SAS.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 225

Figure 13.3.9: Finished Graph of SASHELP.CLASS Data.

Figure 13.3.10a: Finished Visual Basic Code Module.

Also notice that the name of the workbook and/or the worksheet ‘Table 1 – Data Set WORK.CLASS’ may
appear embedded in the Excel macro code as part of the range of cells used as the data source for the chart
shown in Figure 13.3.10a. As shown above, the workbook name is not present, but the worksheet name is
shown. This will also cause the macro to force the debug mode to open and cause the macro to fail to finish
building the graph if the page name ever changes. When the workbook name (and the “!”) are removed, the

226 Exchanging Data between SAS and Microsoft Excel

reference defaults to the active worksheet in the current workbook. In an effort to keep things simple here,
we will not delete the worksheet name--just remember that it could become an issue. Here is the caveat for
this paragraph and Figure 13.3.10a. This paragraph will never adequately describe what you need to do to
build a graph you would like. So, just turn on the Excel macro recording and make your favorite graph
using an Excel graph wizard and see what you have. There will be extra lines of code because the Excel
macro recording will generate code to set all of the default values. You can throw away a lot of the code.
Just do one line at a time by making the line a comment. Then, check to see if you still have what you want.

Figure_13.3.10b: Excel Property Window for the Class Graph VBA Code Module.

To correct this module name issue, we need to change the name of the macro from Module1 to something
easy to remember, such as Class_Graph. We do that by typing a new name into the Properties window in
the name attribute field. See Figure 13.3.11 below. Once we have renamed the VBA code module, we can
export this Excel VBA code into a macro library for later use. To change the name, we edit the name
property (if it is not already named correctly) on the left side to the Visual Basic for Applications window,
as shown in Figure 13.3.10b. By using the “Export file” option on the File menu, we can place the new
Class_Graph macro into any directory we want to use. The one used here is the Chapter_13 macro
directory created for the example.

Figure 13.3.11: Export Window Showing the Export of File ClassGraph.bas.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 227

The last step here in Excel will be to record another macro called “make_thick_red_outside_border”. The
module name is changed to “Common”. While this VBA code module has only one VBA subroutine, it
could contain many subroutines, since all VBA modules can contain many subroutines. This code is to
show you how to establish a pattern of how to build these modules and subroutines for generic use. If you
can do it for one module, you can do it for many.

Figure 13.3.12: Define Macro to Make a Thick Red Border Around the Data.

This macro shown in Figure 13.3.13 does the following:

● Selects the data cells (A1:E20).
● Sets the inside diagonal borders to no line.
● Sets the outside top, bottom, left, and right edges to a medium thickness red line.
● Sets the inside vertical and horizontal lines to a thin white line.

• Selects cell A1 when done.

228 Exchanging Data between SAS and Microsoft Excel

Figure 13.3.13: The Macro to Make a Thick Red Border Around the Data.

Now that we have a main routine to build our graph and a common routine that will put a red border around
selected cells, we should update our VBA macro to use both pieces of code. The simple way to execute the
subroutine to make red borders is to call it by name as in the following command:

“CALL make_thick_red_outside_border”

All we need to do is insert this command into our original code, as shown in Figure 13.3.14.

Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros 229

Figure 13.3.14: Updated Class_Graph Macro to Process the Thick Red Border.

13.4 Conclusion
Like Chapter 12, this chapter presents a complete tool that allows you to control all aspects of a task. But
this chapter shows you how to expand a single user tool and make one that anyone in the department can
use. Some of the features of the Macro Library Tool include the following:

● The Macro Library Tool can easily be included when creating naming conventions.
● The output file has no macros and can be saved as a *.xlsx file.
● The SAS code is limited and flexible. It can be placed into just about any SAS program.
● The VBS code is limited and also has some flexibility with respect to saving files and renaming

output files.
● The Excel macros can be easily created by recording macros and exported to your macro library.

• Optimized VBA macros can be stored and available for general use by anyone in your department.
These do not need to do big things. For example, some might just create small red boxes.

New concepts that can be made available because of the Macro Library Tool include, but may not be
limited to, some of these options. Feel free to dream up some of your own.

● The Macro Library Tool has no manual intervention steps, and the output file is closed when the
job is finished. This can allow other data to be added to the file and other macro processing to
occur.

● The macros can be Write-protected and saved in a secure location.
● A set of standardized VBA macros can be used to increase programmer productivity.
● Each report or task can have a different set of macros, but if data is formatted, the same one macro

can process several reports.

• The VBS routines are not restricted to processing only Excel files.

230 Exchanging Data between SAS and Microsoft Excel

Chapter 14: Create an Excel Workbook That Runs
SAS Programs

14.1 Introduction ... 231

14.2 Purpose ... 232

14.3 Guidelines for Building an Excel User Form Interface 233
14.3.1 Common Excel and Excel User Form Terms ... 233
14.3.2 Introduction to the Integrated Development Environment (IDE) 235
14.3.3 Using the Integrated Development Environment (IDE) Toolbox Menu 236
14.3.4 Building a Sample Integrated Development Environment (IDE) Menu 237
14.3.5 Linking the Integrated Development Environment (IDE) Menu and the Data .. 239
14.3.6 Storing Control Information in the Excel Workbook Worksheets 240
14.3.7 Set Up Control Variables to Access Data Stored in the Workbook 241
14.3.8 Learn How to Make the Excel UserForm Execute ... 245

14.4 Excel VBA Routines to Make the Workbook UserForm Active 248
14.4.1 Initialize the User Form ... 248
14.4.2 Write the User Parameters to a File in a Working Directory 253
14.4.3 Copy Source Program from a Production Directory to the Working
Directory .. 253
14.4.4 Verify the Output Batch File Points to the Correct SAS Run Time Module 254
14.4.5 A Routine to Save the Changes and Exit the Program 255
14.4.6 Directory Structure Associated with the Processing .. 255
14.4.7 Common Issues That Might Occur. .. 257
14.4.8 Prepare a VBA Macro to Process Your Output Report 258

14.5 Conclusion .. 259

14.1 Introduction
Chapters 12, 13, and 14 each define separate, but increasingly powerful tools that combine SAS and Excel
features and that integrate your ability to transfer data between SAS and Excel. At the beginning of each of
these chapters I have placed a short list of all of the tools--just in case you look at only one of the chapters
today.

This chapter will describe and show you how to build a simple set of Excel forms and macros. It could
provide a starter system to allow you to store parameters in an Excel workbook and run SAS code using
only Base SAS and Excel. The tool described here is not intended to replace any SAS software and has
some limitations that do not exist in SAS applications. The intended user audience for this Excel workbook
application will need to know how to program in both SAS and Microsoft Visual Basic languages. Some of
the limitations of this Excel workbook are listed below.

● If the workbook is on a user’s computer, only the user has access to the workbook.
● If the workbook is on a server drive, many people can use the workbook one at a time.
● If the workbook is on a server drive, any changes are visible by the next user.
● Knowledge of VBA and VBS is required to install the workbook and add new programs.

• Setting up the workbook for someone new to use requires working knowledge of Excel options.

232 Exchanging Data between SAS and Microsoft Excel

Table 14.1.1: Tools Described in Chapters 12, 13, and 14.

Tool Chapter Description

Personal Workbook Tool
SAS tool to run personal Excel
macros, already included in Excel
(under Macros  Record Macro 
Store macro in).

12 This tool uses the SAS “X” command to execute
Excel macros in your Personal Excel “Xstart”
directory. Allowing Excel workbooks to be
delivered without embedded macros.

Macro Library Tool
SAS tool to run externally stored Excel
macros. You can use the “Macro
Library Tool” within Excel to take the
same macro you would have created in
the Personal Workbook Tool and
export it to a departmental library.

13 This tool uses the SAS “X” command and the
Windows operating system scripting language to
control processing of Excel macros. Allowing
Excel workbooks to be delivered without
embedded macros.

Excel Workbook Tool
An Excel tool to store parameters for
SAS programs and either execute the
SAS code or place the code into a
directory for execution.
(My_Excel_Tool, available in the
example code and data folder on the
author’s SAS Press page)

14 This Excel workbook tool will save parameters
for a SAS program and either execute or copy
the code to a directory. It uses features of the
other two tools and allows for storage of SAS
code in a production-type area so the original
code is not modified when the reports are
processed. .

14.2 Purpose
This approach starts with the following assumptions:

1. You store all of your “Good” [think departmental final report level] code in a source directory.
You may want to Write-protect this directory to prevent accidental updates.

2. You have a set of periodic working libraries that you can use to save your current monthly version
of code files and output data for each report.

3. The input data is also stored in a set of monthly directories that have an established naming
convention that allows systematic access with minimal path name changes. Multiple monthly
libraries can be used to write quarterly or annual reports by accessing these data files from within
the individual report programs.

4. The code in your source library uses macro variable values to provide the data file path names,
dates, variable file names, or other data to the individual reports at run time.

5. Data paths within the report programs are defined with macro variables to prevent the “hard
coding” of information that can change. This way, the programs do not change; only the names of
the data files for input or output change.

6. You write your programs using standardized macro variables, so that the Excel file or the options
on the Excel form can pass macro variables with known names and common data values to each
program. This will help standardize the programs and aid in making maintenance easier.

7. The Excel program can store segments of SAS code to set up report-unique macro variables that
will be inserted into the output files.

8. The Excel tool is set up to store SAS code in a directory. The code can then be executed by either
running SAS and executing the program or by double-clicking on a Windows batch job file (*.bat)
to execute the SAS code.

9. Each program has been set up to store the output log and list files into a disk file for audit and job
validation processing.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 233

10. The department or programming group has set up a SAS source code library with common
routines that can be reused by all of the programmers in the department. The types of SAS code
routines that can be stored here include code to generate formats, perform tests, read data files,
write data files, and any other code that is used more than once. By placing code here, you ensure
that, if the system requirements change, only one code file needs to change and all of the programs
are updated. It is also important to verify that changes made are universally acceptable.

This system described here is a simple set of Excel user forms, Excel VBA macros, SAS code files, and
Windows *.bat files. The task of building a system to meet your needs is left up to you. This workbook
stores and executes the parameters to run SAS programs, but the number of common parameters and extra
features installed into the tool is limited.

14.3 Guidelines for Building an Excel User Form Interface

14.3.1 Common Excel and Excel User Form Terms
So, let’s get started. The first step will be to create an Excel Graphical User Interface (GUI). That may
sound important and hard, but it really is not hard at all. First there’s a description of what we need to do,
and then we will look at some screen shots that will show how to perform the tasks. We need to create an
Excel file into which we can place a macro. That means that either an *xls, *.xlsb, or *xlsm Excel
formatted file will be created. Excel 2007, 2010, and 2013 files (*.xlsx) do not permit macros. This can be
done by opening a new Excel workbook since we do not need any special things in the output file. We can
build everything we need in a few minutes. Before we get started, we need a few simple term definitions
for the Excel structures that will be in the tool. See Figure 14.3.1.

Note: A detailed explanation of this process was presented in Benjamin, William E., Jr. 2013. “Give the
Power of SAS to Excel Users Without Making Them Write SAS Code.” Proceedings of the SAS Global
Forum 2013 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings13/010-2013.pdf

Figure 14.1: Glossary of Common Terms Used When Building an Excel UserForm and GUI.

Term Structure Use in the Tool

Safe Mode A method of executing Excel from a
command line within a Windows *.bat
file.

This will start Excel using
command switches that turn off
some of the features of Excel.

Integrated
Development
Environment (IDE)

Excel screen that appears when you type
the Alt+F11 keys with a spreadsheet
open.

This is the Excel tool we will use to
build our reporting tool to run our
SAS programs.

User Form (spelled
UserForm)

A program “Object” used by Excel to
store tool components.

Used to display the components of
the tool.

Label A component of a UserForm that stores
text that cannot be changed.

UserForm field describing another
Form component; used here to
describe screen fields.

TextBox A component of a UserForm that stores
text that can be changed.

A box on the UserForm that
contains a value that can be
changed; this value is used later.
We will enter fields or show data
we update.

ComboBox A component of a UserForm that stores
a list of text values that can be selected.
It provides lists of valid option values.

We will use this to store a list of
valid programs and prevent the user
from picking an invalid value.

234 Exchanging Data between SAS and Microsoft Excel

Term Structure Use in the Tool

CommandButton A component of a UserForm that, when
pressed, activates an action.

The Command buttons will be used
to initiate some action requested by
the user (You).

CheckBox A component of a UserForm that toggles
between the on and off states.

Here we will use this to toggle the
on and off states of a requested
condition.

Properties Window A window on the Integrated
Development Environment (IDE) that
shows the state of each element of an
item on the UserForm.

We will use this window to
associate data elements on an Excel
spreadsheet with text fields on the
UserForm.

PropertySheet A window on the Integrated
Development Environment (IDE) that
shows the state of each element of an
item on the UserForm.

Property sheets associate Excel
spreadsheet data elements with text
fields on the UserForm, or apply
values to the item.

ControlSource A field on the PropertySheet that points
to an Excel cell that is used to store the
contents of the item at run time.

We will use this to point to where
the data value for this UserForm
item is stored in the Excel
spreadsheet.

Name A field on the PropertySheet that
describes the name of a component.

We will not use this field for most
items on the UserForm, making the
component items and types clearly
identifiable. However, some items
on the UserForm will have the
name changed, so we can reference
specific spreadsheet values, cell, or
other items without special coding.

The object of this workbook tool is to be able to double-click on an icon on your desktop to start Excel,
store parameters, and access information about SAS programs. This tool can be selected to create a user
copy of a departmental report program. When the SAS code runs, it will produce the requested output
based upon periodic execution parameters entered or stored in the Excel workbook. The tool presented here
will be a simple implementation with a minimum number of features to demonstrate the concept and show
you some basic steps that may be needed to build your own enhanced version of the tool. The general
process we will use is the following.

1. Identify the IDE and how to use it to build an Excel UserForm.
2. Identify the Excel objects needed to be placed upon the UserForm.
3. Build storage locations within the Excel tool to store program-unique parameters.
4. Set up objects to access system-global and program-unique data stored in the workbook.
5. Learn how to make the Excel UserForm run.
6. Link the data from worksheet “Common_Parm_Text” to the UserForm1 data fields.
7. Build Excel VBA routines to make the tool work.
8. Build Excel VBA routines to format the output files for printing.
9. Learn how to enter data and execute commands stored in the VBA code supporting the tool.
10. Build data structures that will support the input, output, and working directories.
11. Set up the programs to store output log and list files for audit purposes.
12. Show a step-by-step process to execute the tool and produce a report.
13. Build a command file (*.bat) to execute the tool by clicking on an icon.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 235

The workbook will be built to contain two jobs that can be set up to run periodically. One is called JOB_01
that will write the SASHELP.Shoes file to an Excel workbook and then format it using the VBS/VBA tools
described earlier in the book. The second program, called JOB_02, will read an Excel file that contains the
output from JOB_01 and place that data into a SAS dataset. Of course, the object of this chapter is not
JOB_01 or JOB_02, but rather the tool to run the jobs.

This process can be set up using Base SAS and any version of Excel that is written using Visual Basic for
Applications (VBA). Excel should also be able to both store a macro and contain more than one Excel
worksheet. By writing this code and creating the UserForm yourself, you can answer the question, “Did
you download this from the web?” with a resounding, “NO!” This is another reason why this version of the
tool is simple.

OK, let’s get started. The version of Excel used here is Excel 2010, and the workbook type is an *xlsm
workbook. Next, we will open Excel and save the workbook as
“My_Excel_Tool_To_Run_SAS_Jobs.xlsm”. We will save the workbook in directory
“Q:\My_Excel_Tool”.

14.3.2 Introduction to the Integrated Development Environment (IDE)
We start by opening the new Excel file (this version is Excel 2010 with the ribbon minimized to conserve
space on the page).

Figure 14.2: A Blank Excel Macro-Enabled Workbook with the Ribbon Minimized.

To locate the Integrated Development Environment (IDE), first select the worksheet, and then press the
keypad buttons “ALT” and “F11” at the same time. This will open another screen, shown below, which is
virtually the same for all versions of Excel that can open the IDE.

236 Exchanging Data between SAS and Microsoft Excel

Figure 14.3: A Blank Excel Workbook with the Integrated Development Environment (IDE)
Visible.

14.3.3 Using the Integrated Development Environment (IDE) Toolbox Menu
From here, we need to add a UserForm. That is done by selecting the Insert toolbar option and, on the drop-
down menu, selecting the UserForm object to add. The result will look something like the next figure.

Figure 14.4: A Blank Excel UserForm and Excel Toolbox.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 237

In the Toolbox pop-up window, there are 16 pictures of control items. Here, for simplicity, we can identify
them in a 4-by-4 grid that is the same as the layout of the pop-up menu. (See Figure 14.6a below.) To
install an object onto the UserForm1 object, click on one of the toolbox items, and then move the cursor to
the UserForm. Hold the left mouse button down, and drag the mouse until the object is the size that you
want it to appear. The IDE allows you to position and size items on the UserForm with a great deal of ease.
If the item is not exactly how you want it, then highlight it and press Delete.

Figure 14.5: The Excel UserForm Toolbox.

Figure 14.6a: An Explanation of the Icons on the Excel Toolbox Shown in Figure 14.5.

IDE Controls on the Toolbox Pop-up Menu

Menu option to select a

control item

Label

TextBox

ComboBox

ListBox

CheckBox

OptionButton

ToggleButton

Frame

CommandButton

TabStrip

MultiPage

ScrollBar

SpinButton

Image

RefEdit

14.3.4 Building a Sample Integrated Development Environment (IDE) Menu
Our little tool will be using only a few of these controls to make the GUI work. We will use the Label,
TextBox, ComboBox, CommandButton, and the CheckBox controls. The next screen has one of each
control item on the UserForm1 work area. When you click on the blank UserForm1 work area, it becomes
the active component and you can click on the corner and expand the form. Controls are added to the
UserForm1 workspace by clicking on the Tool icon in the toolbox, right-clicking on an anchor spot in the
UserForm1 space, and enlarging the control before releasing the right mouse button. Oh yes--and the
Toolbox menu floats around the screen, so you can put it anywhere.

238 Exchanging Data between SAS and Microsoft Excel

Figure 14.6b: The Graphical User Interface UserForm Shown in the IDE.

The next screen image has all of the controls for the tool added to the UserForm1 Excel object. This will
look similar to the finished GUI form and will not have the control names in the image. The final tool will
have two of the TextBox objects hidden. These will be used by the VBA code to make the program easier
to code. Note that Figure 14.6b has some notes about the Font, ControlSource, Text values, and the need to
initialize the ComboBox. These notes refer to the Properties window contents. This window shows the
properties for the UserForm. Most of the items on the Properties window can be changed either by typing
over the current value, or right-clicking of the right side of the line item you want to change. We will also
use some VBA code to change some of the ControlSource values to make our coding easier. The following
items are ones we are likely to change for this tool. All of these items can also be changed using VBA code.

1. Name – This property is the name of the control. If you change the object name, then when
referencing the object within the VBA code you should refer to the object (Label1) using the new
label name (like – My_New_Label_Name),

2. Font – The font property allows you to right-click on the property item and select the type face,
font size, and other font items.

3. Text – Information can be typed here to be displayed on the GUI.
4. ControlSource – This property can be set for the cell in a spreadsheet that contains the current

value of the control. No matter how that cell is changed, it will be the current value of the control.
We will use this feature to permit direct updating of the program-unique values (parameters,
program working directly, and the program SAS name) directly into the spreadsheet where this
information is stored.

5. TextAlign – Positions the text on the control (left, right, center).

Chapter 14: Create an Excel Workbook That Runs SAS Programs 239

14.3.5 Linking the Integrated Development Environment (IDE) Menu and the
Data
Figure 14.7 displays final UserForm layout for your tool. We are now ready to dig into the details about
how to link the data to the UserForm boxes and create variable values usable directly by VBA code
routines.

Figure 14.7: The Graphical User Interface UserForm Shown in the IDE.

Identify the Excel objects needed to be placed on the UserForm
Figure 14.7 is our main menu, so let’s look at the menu layout (Figure 14.8) to examine the components on
the menu and how they will be used. We will identify each element in Figure 14.8, and describe each
control by its relative position as shown in the table below (as in TextBox1 or CommandButton2).

240 Exchanging Data between SAS and Microsoft Excel

Figure 14.8: A Text Description of the Items on the UserForm, Relative to the Location on
the UserForm.

Label1 – text -- Contains the title, and is not used for anything else.

Label2 – text
“Year”, no other
use.

TextBox1 – Contains
the value for variable
Year linked to an
Excel cell.

Label4 – “Program
Name”, no other use.

TextBox3 – Renamed to
Program_name. Contains the
value for variable
Program_Name linked to an
Excel cell.

Label3 – text
“Month”, no other
use.

TextBox2 – Contains
the value for variable
Month linked to an
Excel cell.

Label5 – “Work
Directory”, no other use.

TextBox4 – Contains the
value for variable
Work_Directory linked to an
Excel cell.

Label6 – text
“Program ID”, no
other use.

ComboBox1 –
Contains the list of
programs installed in
the tool; this is
initialized by VBA
code and linked to
cells in the Excel
workbook.

CommandButton1 –
“Load Parameters”; this
control is linked to a
VBA routine that copies
data from a worksheet to
TextBox5 below.

CommandButton2 – “Run
Program”; this control is
linked to a VBA routine that
executes the VBA code to do
the processing.

Label7 – text
“Unique
Parameters”, no
other use.

TextBox7 – Renamed to Program_directory so
that we can take advantage of the properties of a
TextBox without writing special code to do the
work; we will not make this visible on the GUI
screen.

CheckBox1 – A flag that is
true (when checked) to be
used in the VBA code to
control processing.

TextBox5 – Renamed ‘Program_Parms’ to take advantage of TextBox properties without special code;
this Excel control (like TextBox3, TextBox6, and TextBox7) points to cells on the JOB_xx_PARMS
worksheets. The contents of the ControlSource field will be pointed to the current JOB_xx_Parms
spreadsheet.

CommandButton3
– “Back-up
Parameters”; this
control is linked
to a VBA routine
that copies data
from TextBox5 to
a backup
worksheet.

CommandButton4 –
“Restore Parameters”;
this control is linked
to a VBA routine that
copies data from a
backup worksheet to
TextBox5

TextBox6 – Renamed to
Program_Number so that
we can take advantage of
the properties of a
TextBox without writing
special code to do the
work. We will not make
this visible on the GUI
screen.

CommandButton5 – “Save
and Exit” this control is
linked to a VBA routine that
saves the contents of the
workbook and exits Excel.
Because VBA runs a macro
there are always workbook
changes.

14.3.6 Storing Control Information in the Excel Workbook Worksheets
Now that we know what the menu looks like (see Figure 14.7) and have some idea about how to put it to
work, let’s define some worksheets to use for the data storage of parameters and control information for the
tool. For this version of the tool, we will need six worksheets in our workbook. The Excel sheet names
(Sheet1, Sheet2, etc.) do not need to be in order because we will be using the user-assigned names of the
sheets for all of the references to the sheets. The list below describes their functions:

1. Sheet1 – “Control_Info” Storage for tool information like variable values.
2. Sheet2 – “Common_Parm_Text” Storage for text output by the tool to control jobs.
3. Sheet3 – “Job_01_Parms” Storage for Job 01 parameters.
4. Sheet4 – “Job_01_Backup” Backup Storage for Job 01 parameters.
5. Sheet5 – “Job_02_Parms” Storage for Job 02 parameters.
6. Sheet6 – “Job_02_Backup” Backup Storage for Job 01 parameters.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 241

The next figure shows that the VBA Project window has been updated to show the new worksheets. These
worksheets were added by creating a new worksheet in the workbook and renaming them to the user-
assigned names.

Figure 14.9: The Graphical User Interface UserForm Shown in the IDE with Data Linked to
the Boxes.

14.3.7 Set Up Control Variables to Access Data Stored in the Workbook

Step 1 – The Global Parameter worksheet – “Control_info”
The next figure is a suggested way to lay out the “Control_info” worksheet of our new tool, followed by a
description of the layout and cell contents. This purpose of this part of the project is to determine the
different aspects of the project you will need. If you have more common variables like the quarter number
or specific source file names, you may want to allow more room in the common parameter section. Also,
realize that as you add more programs to the tool, you will need more space under the JOB_xx list area that
is used to fill the ComboBox with job names. So, make sure you have room to allow your tool to grow
without redesigning it too soon. Remember, this “Control_info” worksheet was specifically designed to fit
into one screen shot for this page.

242 Exchanging Data between SAS and Microsoft Excel

Figure 14.10: The control_Info Worksheet and the Data Layout of the Control Information.

On Figure 14.10 there are four areas highlighted with bold lines around the cells. These bold boxes are not
needed for the tool, but are used here to visually group the data so that it can be easily discussed. Also,
most of the information on this worksheet consists of comments about what the data usage is for the cells.
The following describes what function the groups of cells perform.

Control_info Worksheet – Group 1 – Cells A1 to B3.
● The cells A2 and A3 are the only cells that are not comments.
● Cell A2 is linked to TextBox1 and holds the value for the current processing year.

• Cell A3 is linked to TextBox2 and holds the value for the current processing month.

Control_info Worksheet – Group2 – Cells A5 to A6.
● Cell A5 is a comment.

• Cell A6 is the value for the CheckBox1 control on the screen.

Control_info Worksheet – Group 3 – Cells A11 to B11.
● Cell A11 is not a comment.
● Cell A11 is linked to TextBox4 and holds the first part of the value for the current User Work

Project directory path.
● The value in this textbox is the root directory of the output path where the code files produced by

this tool will be sent.
● This directory is used along with the year, month, and JOB number, as well as program name

values to preserve the SAS code, logs, list, Excel output, and local job files for the JOB_xx
program when it runs.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 243

● This value is used when the VBA code processes the outputs when the “Run Program”
(CommandButton2) is clicked.

• Cell B11 is a comment.

Control_info Worksheet – Group 4 – Cells C3 to D7.
● Cells C3 to C7 are not comments.
● Cell C3 is cell that holds the information about the unique parameters that are loaded and for the

program that will be executed.
● Cells C4 is part of the ComboBox list of programs and is the initial value of no program loaded.
● Cell C4 to C7 is the full list of active programs that you can choose.
● Cell C7 is an end of list marker but still part of the list area.
● Cells D4 to D7 are mixed use; some cells are used by the tool, and some cells are comments.
● Cell D3 is the cell that holds the description of the program that will be executed.
● Cell D4 is a comment.
● Cells D5-D6 are program descriptions.

• Cell D7 is a comment.

One of the features of this tool that makes it stand out is that the code is written as two *.sas files. One file
is written by the tool that contains the following:

● SAS code to preset several system options.
● SAS code to create several macro variables.
● SAS code to display the macro variable values on the SAS log.
● PROC PRINTTO statements to save the log and list outputs.
● A program-unique audit value that is set in the JOB_xx…..sas code file and tested in the

“Job_xx_Parm_Code.sas” file to prevent using the wrong “Job_xx_Parm_Code.sas” and
JOB_xx…..sas code file together.

● SAS Macro “Init_Global_Macro_Variables”.

• Code at the end of the “Job_xx_Parm_Code.sas” includes and executes the JOB_xx…..sas code
file.

The other *.sas file is the program that uses the definitions from the “Job_xx_Parm_Code.sas” file to
process the current data files. When you use this method, you will find that once a program is written,
tested, and debugged if it fails in the future it is usually because the data value ranges, variables, or contents
have changed.

Figure 14.11 shows the contents of the Common_Parm_Text worksheet of the tool. This worksheet
contains the beginning and the end of a macro definition (the init_Global_Macro_Variables macro). This
macro is run at the start of each program to install both the common and program-unique SAS macro
variables. By running this code, you will ensure that the changeable code parts of the program are defined
by the user before the code is set aside for execution.

244 Exchanging Data between SAS and Microsoft Excel

Figure 14.11: Contents of the “Common_Parm_Text” Worksheet of the Reporting Tool.

Each of the programs installed into the tool (as it is designed here) has two spreadsheets: one for current
data, and one for backup data. The names here are simple Job_xx_Parms and Job_xx_Backup. We will
install a routine associated with the CommandButtons 3 and 4 to back up and restore data using the
Job_xx_Backup worksheets.

Common_Parm_Text Worksheet – Part 1
The data on this worksheet is used to build a piece of SAS code that is used as the starting routine of the
program. This is a SAS macro that defines the global parameters that are used to define the data this project
uses. Since we are writing code to avoid having it change, we will use this macro to define the code and
directory changes needed to run the code for the current processing period, without modifying the
production code.

Column A of this worksheet
● Cell A1 has a number that is the number of lines to write to a text output file named

Job_xx_Parm_Code.sas.
● Cells A2 - A11 will be written out to the Job_xx_Parm_Code.sas file. Yes, cells A7 to A11 are

blank; I like white space.

Column B of this worksheet
● Cell B1 has a number that is the number of lines to write to a text output file named

Job_xx_Parm_Code.sas.
● This column of cells names the macro and the common parameters. You can put as many common

parameters here as you like. There are separate %Global commands so that the housekeeping is
simple and so that every line can be easily enclosed in a quoted string.

● Cells B2-B16 will be written out to the Job_xx_Parm_Code.sas file. (Yes, Cell B16 is blank; I like
white space).

● Cell B3 in this column of cells turns off the macro print options (symbolgen, mlogic, and mprint),
and then prints the values of the common macro variables to the log. Turning off the macro print
options allows the macro variable values to be spotted easily within the log listing. You can put as
many common parameters here as you like. There are separate %put commands so that the
housekeeping is simple and so that every line can be easily enclosed in a quoted string.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 245

● Cells B12 and B13 at the end of the code segment turns on the macro print options to aid with
debugging and audit requirements for the code. Remember, these jobs can be run in a Windows
batch mode without a user interface. So, we need to be able to determine what really happened.
The line is duplicated because the first line turns the option back on, and the second line echoes
the command on the screen. It would not be visible without the second command.

• The last line (cell B15) ends the macro definition.

14.3.8 Learn How to Make the Excel UserForm Execute

Learn how to make the Excel UserForm run
Now we have this neat GUI interface that is inside of an Excel workbook, but how do you use it? The
following VBA code segment will cause the UserForm1 to execute when the spreadsheet is opened. This
code is stored only in this workbook, so it is not visible to any other Excel workbook. This code is placed
into the “ThisWorkbook” area of the Excel workbook.

Figure 14.12: The VBA Macro “Workbook_open” with VBA Code to Load and Show a VBA
UserForm.

'''
'' My company name and code header here
'''
'' Subroutine function:
''
'' Load and show the Excel User Form "UserForm1"
'' on the full screen
'''
'' last update:
'''
Private Sub Workbook_Open()
 Load UserForm1
 UserForm1.Zoom = 100
 UserForm1.Show
End Sub

Figure 14.13: Workbook_open VBA Subroutine to Open the UserForm1 GUI Shown in the
Excel IDE.

246 Exchanging Data between SAS and Microsoft Excel

Notice that the item “ThisWorkbook” is highlighted in the IDE Project window. That indicates that it is the
active window, and you can enter your VBA code into the workspace on the right. Once that code is
entered, you can click on the title of the subroutine and select Run>Run Macro option on the IDE toolbar.
You can also save the workbook, exit and re-open the workbook, or press the “F5” function key to make
the form execute. If the UserForm1 image does not appear, then check your security settings to ensure that
you have Excel macros enabled. Once the workbook opens, the form should appear on your screen and
look similar to Figure 14.14.

Figure 14.14: UserForm1 Is the Graphical User Interface Displayed While the Tool Is
Running.

This form looks great all by itself, but it still does not do anything. So, let’s work on getting the data from
the worksheet to the form.

Link the data from worksheet “Common_Parm_Text” to the UserForm1 data fields
Select TextBox1 by clicking on the empty field next to the word “Year”, and then enter “Control_info!A2”
in the Properties window in the “ControlSource” field. The data in Cell A2 of worksheet “Control_info”
will become linked to the UserForm1 control called TextBox1, and will be visible. We’ll do the same thing
with the other text boxes. See Figure 14.10 to find out what cell to assign to each text box.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 247

Figure 14.15: UserForm1, Showing How to Set the ControlSource Value.

When complete, the form should look something like Figure 14.16.

Figure 14.16: UserForm1 Running After All Five ControlSource Values Are Set.

.

248 Exchanging Data between SAS and Microsoft Excel

The information in the form in Figure 14.16 will be used to create the Working directories for executing the
tool reports. The fields “Work directory”, “Year”, and “Month” will be used in the naming structure where
the Tool will send the working copies of the SAS code file, Tool-Unique Parameter file, and the *.bat job
file that can execute the SAS code in a batch mode. Listing output options for SAS 9.3 and later could send
the listing output to the “Results” window, which may prevent the listing from going to the List output file.
This is due to a change in the default shipping value on the listing output from list to html in SAS 9.3. You
can change this value in SAS on the Tool ribbon by selecting “Options/Preferences/Results”.

Figure 14.17: Directory Path for the Working Copies of the Report Code and Temp Files.

14.4 Excel VBA Routines to Make the Workbook UserForm Active
Now comes the fun part--creating VBA routines to make all of these switches and buttons work. The initial
task is to figure out what routines we need to write. Since Visual Basic is an object-oriented language,” we
do not really need to worry about the order of the tasks. We just need to write them so that they are
independent of each other. By looking at the GUI, we can get a good idea of the types of code routines we
need to have. Let’s give it a whirl. Here are some of the things we need to do.

1. Initialize the UserForm.
2. Write the user parameters to a file in a working directory.
3. Copy source programs from a production directory to the working directory.
4. Verify the output batch file points to the correct SAS run-time module.
5. Write a routine to save the changes and exit the program.
6. Set up the directory structure associated with the processing.
7. Prepare for common issues that might occur.
8. Prepare a VBA macro to process your output report.

Each of these groups of VBA routines will have several subroutines and can run in any given order. They
need to operate independently because the user (you) will have the ability to select any part of the screen to
update or execute in any given order. The descriptions in the rest of this section will give general guidelines
about what the code will be designed to accomplish. The actual code will be available for download in the
example code and data folder, accessible from the SAS Press author page
at http://support.sas.com/publishing/authors/benjamin.html

14.4.1 Initialize the User Form

14.4.1.1 Install VBA Code to Start the UserForm When Excel Begins
First we need to gain control of the Excel routines and start our UserForm. The following VBA in Figure
14.18 shows how to gain control of Excel.

http://support.sas.com/publishing/authors/benjamin.html

Chapter 14: Create an Excel Workbook That Runs SAS Programs 249

Figure 14.18: Excel VBA Code to Start the UserForm1 Software When Excel Starts.

The process of initializing the UserForm is a multi-step process that requires several types of actions. The
following is a list of the type of actions required for setup. Some actions are passive, which means they are
set up when the UserForm is built. Other actions must be coded to occur when the workbook opens and the
UserForm executes.

UserForm Initialization Processing
Initialization
Type Field Function Source

Passive Year Part of directory path Control Source cell
Passive Month Part of directory path Control Source cell
Passive Work directory Full work directory path Control Source cell
Passive Build Code Only Boolean flag Control Source cell
Active Program ID Program ID value Loaded into ComboBox
Active Program Name Program name value Loaded from selected

worksheet
Active Unique Parameters Unique run-time parameters Loaded from selected

worksheet

14.4.1.2 Initializing Passive UserForm Values
Passive parameters are set up when the UserForm is designed. Figure 14.19 shows how the year value is
assigned to the worksheet named “Control_Info” in cell A2. If something is typed into the TextBox1 area
of the UserForm when the tool is running, the value is placed directly into cell A2 of worksheet
Control_info.

250 Exchanging Data between SAS and Microsoft Excel

Figure 14.19: How to Assign a Passive Parameter to a UserForm and Worksheet Cell.

14.4.1.3 Initializing Active UserForm Values
Active parameters are set up when the UserForm is designed. Figure 14.20 shows the active value of
ComboBox1. The value is “JOB_01”. The value is entered into the ComboBox using VBA code when the
workbook is activated. The current value is stored in the “Control_Info” worksheet in cell C3, as shown by
the property value for the “ControlSource”.

Figure 14.20: How to Assign an Active Parameter to a UserForm and Worksheet Cell.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 251

Figure 14.21: VBA Code Counts Number of Valid ComboBox Entries and Loads the VBA
Object.

' count the number of job names in the list for ComboBox1
Max = 0
Do Until test = "###"
 idx = 4 + Max
 i = Trim(Str(idx))
 test = Worksheets("Control_info").Range("C" + i).Value 'skip first space
 Max = Max + 1
 If test = "" And idx > 4 Then test = "###"
Loop

' Load the job names into ComboBox1
idx = 4 ' Cell C4 - the first ComboBox1 value
Do Until idx > Max + 2
 i = Trim(Str(idx))
 UserForm1.ComboBox1.AddItem(Worksheets("Control_info").Range("c"+i).Value)
 idx = idx + 1
Loop

14.4.1.4 Loading Data to the UserForm from a Selected Worksheet
One of the most useful things about the VBA code that supports this workbook is that the VBA
“ControlSource” fields of the workbook can be modified at run time. That means that the workbook has the
ability to change where the ControlSource value points, and therefore what is displayed on the UserForm.
So the ability to store several sets of SAS program variables allows the user (you) to select and store code
to be executed into different working directories. The figures below (14.22 to 14.24) show the actions.

Figure 14.22: UserForm1 Before Any Action and After Initialization.

252 Exchanging Data between SAS and Microsoft Excel

Figure 14.23: UserForm1 After Pressing the Load Parameter Button.

Figure 14.24: UserForm1 After Selecting JOB_02 and Pressing the Load Parameter Button.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 253

Figure 14.25: Worksheet Job_01_Parms, Source of Parameters Shown in Figure 14.23.

14.4.2 Write the User Parameters to a File in a Working Directory
The result of pressing the “RUN PROGRAM” button is that the workbook will write three output files. All
three of these files are placed into the same directory. A sample output file name for the tool as designed
here is “Q:\My_Monthly_Projects\2012_07\JOB_01_Write_data_to_Excel_File”. The
“WORK_DIRECTORY”, “YEAR”, and “MONTH” variables from the input fields on the UserForm
become part of the directory name. The last part of the directory name is the SAS program name without
the “.SAS” extension.

Output files Sent to the Working Directory
File Type Function
User Parameter SAS file (.sas) Pass user-defined parameters from the Excel workbook UserForm to

the User SAS Program. Set up output log and list files and execute
the User SAS Program.

User Program SAS file (.sas) This is the production code for the process. No periodic processing
parameters should be in this program. All variances in LIBNAME
statements and period-unique code should be in the User Parameter
SAS file. This SAS program can call Excel to send output back for
formatting using VBA code.

Executable Windows Batch file
(.bat)

This is a Windows Batch command file. It contains commands to
start SAS and write log and list files. It also starts the SAS System
and submits the User Parameter SAS file for execution. Double-
clicking on this file will start the process in a batch mode to run SAS
and any steps defined in the User Program SAS file.

14.4.3 Copy Source Program from a Production Directory to the Working
Directory
Figure 14.26 shows the “Run Program” button and the “Build Code Only ?” check box circled in red.
These two buttons control the output of the workbook. When these buttons are pressed, three files are

254 Exchanging Data between SAS and Microsoft Excel

output. Section 14.4.2 describes these files. Two of the files are written directly from the information in the
Excel workbook. The third file is copied from a directory that stores production SAS code into the working
directory for the current processing period.

Figure 14.26: UserForm Showing Button and Switch to Controls Copying the Production
SAS Code.

Figure 14.27: VBA Code in the UserForm That Copies the SAS Code from the Production
Directory.

'''
'' Copy source SAS Code from the production directory to the work area
'''
 'object.Copy destination[, overwrite]
 Set sas_O = CreateObject("Scripting.FileSystemObject")

 Prod_path = Worksheets("Control_info").Range("a15").Value

 sas_code_file = Prod_path + "\" + Worksheets(Program_Number.Value + _
 "_Parms").Range("a3").Value

 new_code_file = Full_Path + "\" + Worksheets(Program_Number.Value + _
 "_Parms").Range("a3").Value

 overwrite = True
 sas_O.copyfile sas_code_file, new_code_file, overwrite
 Set sas_O = Nothing

14.4.4 Verify the Output Batch File Points to the Correct SAS Run Time
Module
The VBA code in the UserForm1 code module of the workbook contains VBA code to write data out to a
file with the command “Print #2, “some text to output”. This code writes the Windows Batch file (*.bat)

Chapter 14: Create an Excel Workbook That Runs SAS Programs 255

that you can double-click on to execute the SAS code. The path to the program SAS.exe is embedded in
this code and needs to point to the program SAS.exe. Older versions of the path are similar to "C:\Program
Files\SAS\SASFoundation\9.2\SAS.exe", but newer versions of SAS software may include your site
number in the path. Therefore, I am not including my path here. Contact your IT Department if you are not
able to find the correct path to the SAS.exe program. It needs to be installed into the VBA code for
UserForm1 in your version of the workbook.

14.4.5 A Routine to Save the Changes and Exit the Program
This workbook updates the ComboBox features of the tool and makes changes to the workbook every time
the code executes. When you press the “Save and Exit” button highlighted in red and shown in Figure
14.28, the workbook will be saved and closed. If you choose not to save the changes, then click on the “X”
in the upper right corner and exit without saving.

Figure 14.28: The Position of the “Save and Exit” Button.

The code box shows the VBA code to save the workbook and exit.

Private Sub CommandButton5_Click()
 ActiveWorkbook.Save
 Application.Quit
End Sub

14.4.6 Directory Structure Associated with the Processing
Here is a suggested list of the types of directories you might want to create. Company or departmental
standards might dictate more rigid naming structures, but you get the idea. Here are some thoughts about
how to use these directories.

256 Exchanging Data between SAS and Microsoft Excel

Directory Structure used for Processing
Directory File type Function

Y My_BAS_Files

This directory stores the VBA and VBS
code for the project. Also, Excel will let
you export the UserForm1 code module.
This would be a good place to store the
download.

Y My_Excel_Tool This directory stores the workbook tool.

Y My_Production_SAS_Code_Source_Directory

This directory stores the SAS code for
the individual SAS programs in the
project. The fully tested SAS code files
can be stored here. Additional
directories could be created for backup
copies of SAS code that are being
developed.

Y My_Monthly_Projects

This directory stores subdirectories that
contain the monthly working files. Place
a directory here for each of the periodic
report groups. We are using monthly
directories here, but they could be daily
or quarterly. In this periodic directory,
place a folder for each of the reports.

Note: Other directories can be defined as needed to meet your departmental needs.

 My_Department_Macro_code
Here would be a good place to store
common SAS files that can be included
in more than one program.

 Any_Other_Departmental_directories

This is where your data files reside. It
would be a good idea to put any variable
into the tool that could be used to
describe a part of the directory path. The
more flexible this part of the tool can be,
the more helpful it will be later in the
program execution.

The folder names are not important, as long as the reporting tool knows what they are and how to access
them. Most of these file names come directly from data entered into the screens on the tool. The only
notable exceptions to that are the name of the folder that holds the source code and the path names to
Excel.exe and SAS.exe.

Start by mapping to a directory space that is common for all users of the tool:

Q:\My_Tool
Any_Other_Departmental_Directories
My_BAS_Files
My_Department_Macro_code
My_Excel_Tool
My_Monthly_Projects

2012_07
JOB_01_Write_data_to_Excel_File
JOB_02_Read_data_from_Excel_File

2012_08
JOB_01_Write_data_to_Excel_File
JOB_02_Read_data_from_Excel_File

My_Production_SAS_Code_Source_Directory
Backup_Code_Copies

Chapter 14: Create an Excel Workbook That Runs SAS Programs 257

14.4.7 Common Issues That Might Occur.
Because a few people in the world take things because they can, the rest of us have to put up with many
annoying things to prevent us from doing something we would not do anyway. One of those items is shown
in Figure 14.29. While some systems will allow you to sign a program that you write for use on your own
computer, others will not allow this. Some systems will allow you to use the Excel “OPTIONS” to assign
“Trusted” status to programs. This will allow VBA macro code to execute on your computer. Other
systems will not allow this either. Older systems are not as good at preventing or trapping attempts to run
Excel workbooks with embedded *.bas VBA macros. A message such as that in Figure 14.29 appears
typically because the workbook you are trying to execute is not trusted. You may have to ask your IT
Department to help you solve these issues.

Figure 14.29: Security Warning, Workbook VBA Code Probably Not Trusted.

Figure 14.30: Security Warning, Workbook VBA Code Disabled. Enable Content to
Continue.

258 Exchanging Data between SAS and Microsoft Excel

Figure 14.31: Security Warning: Press “Yes” to Convert the Workbook to a Trusted
Document.

Some versions of Excel will issue this type of a message, however, the newer versions just ask if you want
to make the document a trusted document when you open it.

14.4.8 Prepare a VBA Macro to Process Your Output Report
This part of the project is really geared toward working with the individual reports. Not all of the reports or
processes will need printed output or a formatted spreadsheet. JOB_02 of this group of programs just
creates a SAS dataset, while JOB_01 creates a formatted Excel workbook. Other jobs could be created to
process data files, print reports directly, or input data from text files or any other job you have ever run on a
computer. To work with this file, we need a copy of the output Excel workbook created by JOB_01 so that
we can format the report for printing.

This process involves opening the output file and then opening the IDE (with an Alt/F11 keystroke
combination). Any Excel VBA macro can be recorded to do the work for us. These VBA code modules can
then be exported to our “My_BAS_Files” directory to be used later. Here, we will create several files that
will be used to do the processing and make the whole process run from start to finish without intervention.
The VBS script “Q:\My_BAS_Files\VBS_Execute_script.vbs” can load and execute VBA macros within
an Excel workbook. The following four steps describe that processing.

1. SAS code (to be stored in each SAS program) sets up SAS macro variables and executes an “X”
command to link the SAS program to the Excel file using the VBS routine below such as
JOB_01_Write_data_to_Excel_File.sas.

2. A VBS program “Q:\My_BAS_Files\VBS_Execute_script.vbs” controls the execution of Excel
and the VBA macro code modules to format the report. This process does not leave Excel macros
in the final Excel file, so they can be given to anyone as workbooks without embedded macros.

3. The VBA program “Q:\My_BAS_Files\Dept_common.bas” houses commonly used VBA
subroutines for departmental use.

4. The VBA program “Q:\My_BAS_Files\JOB_01.bas” stores the VBA subroutines to format the
report.

The object of a system of reporting or processing tools like this is to have stable code programs that work
right every time. The programs just use different data each time. Big IT departments have been doing this
for 50 years, since the early 1960s. Now we can bring the processes to your desktop PC. Of course, stable
programs like stable data, so this might not be for everyone. But, front-end processes can make the data
ready for the tools. A tool like the one we just described here is simple to operate. After the data is ready,
there are just a few steps in the process.

Chapter 14: Create an Excel Workbook That Runs SAS Programs 259

14.5 Conclusion
The code in this chapter builds an Excel workbook that brings Programming with SAS and Reporting with
Excel together. This chapter presents a unified tool that allows both a programmer and an analyst to use and
understand the same processes. It also brings it to a level that gives the company full control of all steps of
the process. I hope that the examples and code available for this chapter will be useful to anyone. A
summary of the process follows.

1. Run the tool by double-clicking on the desktop icon.
2. Answer any questions about security and enable macros to allow the macros to run.
3. Periodically update the Year and Month fields.
4. Select the program to execute from the ComboBox.
5. Press the “Load Parameters” button.
6. Press the “Run Program” button.
7. Press “OK” in the message box asking if you are really ready to run the program.
8. Press the “Save and Exit” button.
9. Navigate to the directory that the JOB files were sent to by the reporting tool.
10. Double-click on the “run_JOB_xx.bat” file to execute the report program.
11. Review the logs and listing output files for accuracy, and correct any errors.
12. Review the output files or reports, and print any reports that are needed.
13. Repeat for the next report.

Most system administrators have implemented a lot of security measures and restrict the use of outside
code or embedded macros, especially with tools available to more than one person. If you store this tool
with all of its macros on your computer, you can usually get away with leaving the macros enabled. But,
that may be a different story on systems where you may need to have more than one person access the tool.
If the tool will not run because of security / VBA macro issues, check with your system administrator to get
help. If your copy of the tool will run, but gives a message similar to one or more of the figures in Section
14.4.7, Common Issues That Might Occur, it is because your security settings are checking before you run
code with macros embedded. Since you wrote the tool and know what is in it and that you can trust it, then
follow your company guidelines for how to proceed.

260 Exchanging Data between SAS and Microsoft Excel

Index

A

ABSOLUTE_COLUMN_WIDTH option 130, 134–
138

Access Connectivity Engine (ACE) 1, 159
accessing

data from SAS Explorer window/toolbar 9–18
data stored in workbooks 241–245
Excel data from SAS Explorer window 9–18
Excel files with LIBNAME 48–49
Excel files with SQL procedure 157–166
Excel from SAS Enterprise Guide 68
Excel with OLE DB or ODBC application program

interfaces (APIs) 149–156
Excel with OLE DB/ODBC APIs 149–156
SAS Export/Import wizards 15–16

activating UserForm 248–258
Add-In for Microsoft Office

See SAS Add-In for Microsoft Office
applying Excel “AUTOFILTER” to selected output

columns 136–137
ASCII_DOTS option 131
assigning

LIBNAME statement 160–161
Libref 52, 151–152

ATTRIB command 48
AUTOFILTER option

about 131, 136–137
applying to selected output columns 136–137

AUTOFILTER_TABLE option 131
AUTOFIT_HEIGHT option 131
automating processing 197–201
AUTO_SUBTOTALS option 131

B

bar charts
building using SAS Enterprise Guide 99–100
exporting as *.srx files 100–102

BLACKANDWHITE option 131
BLANK_SHEET option 132
building

bar charts using SAS Enterprise Guide 99–100
Excel macros 189–209
Excel user form interface 233–248
VBS scripts 220–223

BY statement 143
BYGROUP setting 143–144
BYLINES option 112

C

calculating variables within SQL code 165
cell ranges

defining 171, 172–173
reading from Excel workbooks 163–165
reading with Import Data option 80–83

CENTER_HORIZONTAL option 131
CENTER_VERTICAL option 131
changes, saving 255
character fields

about 2
saving leading zeros in 123–124

CheckBox 234
client-server environment (Dynamic Data Exchange

(DDE)) 168–170
Close_Excel macro 171, 174–175
closing Excel workbooks 171, 174–175
COLUMN_REPEAT option 130
columns

adjusting width with tagset template options 134–
135

hiding 135–136
selecting 42–43

ComboBox 233
CommandButton 234
commands, issuing to Excel 171, 172

See also specific commands
comparing Excel files 161–162
complex file formats 4
Component Object Model (COM) software package 91
CONNECTION option, LIBNAME statement 50–53
CONNECTION TO statement 158–159
CONTENTS option 132, 139
CONTENTS procedure

about 57, 165–166
examining Excel workbook with 60–62
verifying Excel to OLE DB connection with 154–

156
CONTENTS_WORKBOOK option 132
ControlSource 234
CONVERT_PERCENTAGES option 131
“Copy Contents to Clipboard” option (SAS Explorer

window) 11–12
copy-and-paste techniques

about 4
converting Excel tables to text 9
converting text data to Excel column data fields 5–

7

262 Index

copying data to SAS Enhanced Editor window 7–8
highlighting cut/copy and then paste 5
saving multiple lines of text 8

copying
data to SAS Enhanced Editor window 7–8
source programs 253–254

CREATE TABLE command 166
creating

Excel files 161–162
Excel workbooks 231–258
naming conventions 214–215
output files 108–148, 202–203
“ready-to-print” spreadsheet 137–138
table of contents in Excel workbook 138–139
worksheets 143–145

CSS_TABLE option 125
CSV option

about 109, 111–112
changing delimiters when outputting data with

120–123
examples 113–123
file default output differences 113–115
overview of examples 113
saving leading zeros in character fields 123–124
title and footnotes output differences 115–118
writing currency values as unformatted numbers

118–120
CSVALL option

about 109, 111–112
examples 113–123
file default output differences 113–115
overview of examples 113
saving leading zeros in character fields 123–124
title and footnotes output differences 115–118
writing currency values as unformatted numbers

118–120
currency values, writing as unformatted numbers 118–

120
CURRENCY_AS_NUMBER option 112
CURRENCY_FORMAT option 131
CURRENCY_SYMBOL option 112, 131

D

data
access methods for Excel files supported by

IMPORT procedure 33–34
accessing from SAS Explorer window/toolbar 9–

18
copying to Excel files via HTML files with “View

in Excel” option 13–14
copying to SAS Enhanced Editor window 7–8
exporting to Excel 4/5 format files 23–24
exporting to Excel files with no column headers 28
exporting to network Windows computers 28

loading to UserForms 251–253
options for in SAS Add-In for Microsoft Office

96–99
ranges of in Excel 4
reading from Excel to JMP 88–89
sharing with Excel using JMP 85–89
types of 2, 50–51
writing from JMP to Excel 89
writing to external files and Excel workbooks with

EXPORT procedure 19–29
Data Base Management System (DBMS) 31
DATAFILE statement 17
dataset options

processing date and time values with 62–63
processing variable type conversions with 63–64

datasets, opening 94–96
date values, processing with dataset options 62–63
DBCREATE_TABLE_OPTS option 53
DBDSOPTS= option 39
DBENCODING option 53
DBFORCE option 53
DBGEN_NAME option 53, 163–165
DBLABEL option 53
DBMAX_TEXT option 53
DBMS mode 21–22
DBMS=DLM option

EXPORT procedure 24–25
IMPORT procedure 35–37

DBMS=EXCEL option
EXPORT procedure 25–27
IMPORT procedure 37–40

DBMS=EXCEL4 option, IMPORT procedure 35
DBMS=EXCEL5 option, IMPORT procedure 35
DBMS=EXCELCS option

EXPORT procedure 27–28
IMPORT procedure 40–41

DBMS=XLS option, IMPORT procedure 42–45
DBMS=XLSX option, IMPORT procedure 42–45
DBSASLABEL option 53
DBSASTYPE option 53, 63–64
DBTYPE option 53
DDE

See Dynamic Data Exchange (DDE)
DECIMAL_SEPARATOR option 112, 131
DEFAULT_COLUMN_WIDTH option 130
defining

cell ranges 171, 172–173
physical file locations 51–52

DELIMITER option 112
delimiters, changing 120–123
directories, structure of 255–256
DOC option 112, 125, 132
DPI option 131
DRAFTQUALITY option 131

Index 263

DROP option 54
Dynamic Data Exchange (DDE)

about 167, 213
client-server environment 168–170
examples 177–187
Hello World project 177–181
list of examples 177
macros for 171–177
purpose of 167–168
reading and writing to Excel workbooks with 167–

187
syntax of 168–170
writing “Hello World” to Excel files 182–184
writing SAS datasets to Excel files 184–187

E

EMBEDDED_FOOTNOTES option 130
EMBEDDED_TITLES option 130
EMBED_TITLES_ONCE option 130, 146
Enhanced Editor window, copying data to 7–8
Enterprise Guide

See SAS Enterprise Guide
examples

CSV option 113–123
CSVALL option 113–123
Dynamic Data Exchange (DDE) 177–187
EXCELXP option 133–146
JMP 87–89
LIBNAME statement 56–65
MSOFFICE2K option 126–128
OLE DB/ODBC APIs 151–156
SAS Add-In for Microsoft Office 94–105
SAS Enterprise Guide 69–83
SQL procedure 160–66

Excel
See also Excel files
See also workbooks (Excel)
See also worksheets (Excel)
accessing from SAS Enterprise Guide 68
accessing with OLE DB or ODBC application

program interfaces (APIs) 149–156
building control macros for reports 223–229
building graphs with macros 207–209
building macros 189–209
building user form interface 233–248
converting tables to text 9
data ranges 4
data types 2
executing UserForm 245–248
guidelines for building user form interface 233–

248
importing *.srx files into 102–105
issuing commands to 171, 172
LIBNAME assignments to access Excel using SQL

procedure 160–161

purpose of 2
reading data to JMP from 88–89
selecting ranges 44–45
sharing data with using JMP 85–89
sharing methods between JMP and 86–87
starting 171–172
verifying to OLE DB connection with CONTENTS

procedure 154–156
workbook formatting groups 3–4
workbook limitations 2–3
writing data from JMP to 89

Excel files
accessing with LIBNAME 48–49
accessing with SQL procedure 157–166
comparing 161–162
copying data to via HTML files with “View in

Excel” option 13–14
creating 161–162
data access methods for files supported by

EXPORT procedure 21–22
data access methods for files supported by

IMPORT procedure 33–34
exporting data to 23–24, 28
exporting data to with no column headers 28
processing with LIBNAME statement 47–65
processing with pass-through facilities using SQL

procedure 162–163
reading 161–162
writing “Hello World” to 182–184
writing SAS datasets to 184–187

EXCEL ODS destination, for writing workbooks 147–
148

EXCEL option 109
Excel Workbook Tool 212, 232
Excel-readable files 4
Excel-specific dataset options 53–54
EXCELXP option 109, 189–190

adjusting column width with tagset template
options 134–135

applying Excel “AUTOFILTER” to selected output
columns 136–137

building worksheets with titles 146
creating “ready-to-print” spreadsheet 137–138
creating table of contents in Excel workbook 138–

139
examples 133–146
generating XML output files with no options 133–

134
hiding columns 135–136
naming Excel worksheets 140
overview of examples 132–133
placing labels in names of Excel worksheets 142–

143
splitting reports onto multiple Excel worksheets

141
syntax of 128–130

264 Index

tagset options 130–132
executing

Excel UserForm 245–248
VBS/VBA macros 214–215
Visual Basic Script 219–220

exiting programs 255
Explorer window

See SAS Explorer window
Export method

outputting graphs or reports with 75–77
using with SAS Enterprise Guide 69–70

EXPORT procedure
about 9, 213
data access methods for Excel files supported by

21–22
DBMS=DLM option 24–25
DBMS=EXCEL option 25–27
DBMS=EXCELCS option 27–28
examples 23–28
exporting data to Excel 4/5 format files 23–24
exporting data to Excel files with no column

headers 28
exporting data to network Windows computers 28
list of examples 23, 150, 177
overview of examples 22–23
purpose of 20
syntax of 20–21
writing SAS data to external files and Excel

workbooks with 19–29
Export wizard

accessing 15–16
selecting from SAS Explorer window “Export”

menu 11
using in 32/64-bit mixed environment 17–18

exporting bar charts as *.srx files 100–102
external files

reading into SAS with IMPORT procedure 31–45
writing SAS data to with EXPORT procedure 19–

29

F

file format groups 3
File option (SAS Toolbar) 15–16
file output, opening 192–194
FILENAME statement 50–51, 177–179
FILEREF 173
files

See Excel files
See external files
See HTML files
See output files

FITTOPPAGE option 131
formulas 2
FORMULAS option 131
FROZEN_HEADERS option 130, 137–138

FROZEN_ROWHEADERS option 130

G

GETNAMES= statement 38, 39, 41, 43–44
graphs, outputting 71–77
GRIDLINES option 131
GUESSINGROWS option 57

H

hardware configuration 49
HEADER option, LIBNAME statement 49, 50, 56–57
HEADER_DATA_ASSOCIATIONS option 125
HEADER_DOTS option 125
Hello World project 177–181, 189–190
HIDDEN_COLUMNS option 131, 135–136
hiding columns 135–136
highlighting cut/copy and then paste 5
HTML files

copying data to Excel files via with “View in
Excel” option 13–14

generating with no options 126–127
generating with Summary_Vars option 127–128
writing 124–125, 126–128, 133–146

HTML option 109

I

IDE
See Integrated Development Environment (IDE)

Import Data option (SAS Toolbar) 16–17, 80–83
Import option, reading Excel workbooks with 77–80
IMPORT procedure

about 9, 31–32
data access methods for Excel files supported by

33–34
DBMS=DLM option 35–37
DBMS=EXCEL option 37–40
DBMS=EXCEL4 option 35
DBMS=EXCEL5 option 35
DBMS=EXCELCS option 40–41
DBMS=XLS option 42–45
DBMS=XLSX option 42–45
examples 35–45
list of examples 34–35
overview of examples 34
purpose of 32
reading external data files and Excel workbooks

into SAS with 31–45
syntax of 32

Import wizard
accessing 15–16
using in 32/64-bit mixed environment 17–18

importing *.srx files into Excel 102–105
IN option 54

Index 265

INDEX option 132
INFILE statement 7
initializing

active UserForm values 250–251
passive UserForm values 249–250
UserForm 248–249

Insert group (SAS Add-In for Microsoft Office) 93
INSERT_SQL option 53
Integrated Development Environment (IDE)

about 233, 235–236
accessing data stored in workbooks 241–245
building sample menus 237–238
executing Excel UserForm 245–248
linking menu and data 238–239
setting up control variables 241–245
storing control information in Excel workbook

worksheets 240–241
Toolbox menu 236–237

issuing commands to Excel 171, 172

J

JMP
about 85
examples 87–89
list of examples 87
purpose of 85–86
reading data from Excel to 88–89
setting preferences 87–88
sharing data with Excel using 85–89
sharing methods between Excel and 86–87
writing data to Excel from 89

Joint Engine Technology (JET) database engine 1, 159

K

KEEP option 54

L

Label 233
labels, placing in Excel worksheet names 142–143
leading zeros, saving in character fields 123–124
LIBNAME statement

about 16, 47–48
assigning to access Excel using SQL procedure

160–161
building OLE-DB connection with prompt mode

152–153
CONNECTION option 50–53
examining Excel workbooks with CONTENTS

procedure 60–62
examples 56–65
Excel-specific dataset options 53–54
Excel-specific features of 48–49
HEADER option 49, 50, 56–57
LINUX option 54
MIXED option 49, 50–51, 57

overview of examples 55
PATH option 49, 51–52, 58, 162–163
processing date and time values with dataset

options 62–63
processing Excel files with 47–65
processing on 64-bit operating system 64–65
processing variable type conversions with dataset

options 63–64
PROMPT option 50, 52
purpose of 48
64-bit Windows connection option 54
syntax of 49–50
UNIX option 54
uses for 49
using named literals with 59–60
VERSION option 50, 52, 58–59

Libref
assigning 52, 151–152
assigning to Excel worksheets with OLE-DB dialog

box 151–152
LINUX option 54
loading data to UserForms 251–253
LRECL= option 180–181

M

Macro Library Tool 212, 232
macros

building Excel graphs with 207–209
building for Excel 189–209
controlling with Microsoft Windows scripts 211–

229
for Dynamic Data Exchange (DDE) 171–177

MERGE_TITLES_FOOTNOTES option 130
Microsoft Excel

See Excel
Microsoft Windows scripts, controlling with macros

211–229
MINIMIZE_STYLE option 132
MISSING_ALIGN option 130
MIXED option, LIBNAME statement 49, 50–51, 57
MSOFFICE2K option

about 109
examples 126–128
generating HTML files with no options 126–127
generating HTML files with Summary_Vars option

127–128
overview of examples 126
syntax of output processes 124–125
tagset template options 125

N

Name 234
named literals, using with LIBNAME statement 59–60
NAMEROW= statement 43–44
naming conventions, creating 214–215

266 Index

naming Excel worksheets 140
network Windows computers, exporting data to 28
NEWFILE= option 27, 28
NONE option, SHEET_INTERVAL option 143
NOTAB option 180–181
NOTES option 112
numeric values 2
NUMERIC_TEST_FORMAT option 131

O

ODS
See Output Delivery System (ODS)

OLE DB LIBNAME, syntax of 150
OLE DB/ODBC APIs

accessing Excel with 149–156
assigning Libref to Excel worksheets with OLE-DB

dialog box 151–152
building OLE-DB connection with LIBNAME

prompt mode 152–153
concept of processes 149
examples 151–156
list of examples 150
opening Excel workbooks with OLE-DB init_string

154
setting up connections 150
verifying Excel to OLE DB connection with

CONTENTS procedure 154–156
OLE-DB dialog box, assigning Libref to Excel

worksheets with 151–152
OPEN option, reading Excel workbooks with 77–80
Open_cmd macro 171, 172
opening

datasets 94–96
Excel workbooks with OLE-DB init_string 154
file output 192–194
report datasets (*.srx) using SAS Add-In for

Microsoft Office 99–105
options

See specific options
ORIENTATION option 130, 137–138
output

graphs 71–77
processing 191–192
processing reports 258
reports 71–75, 75–77
sorting 165
verifying batch files 254–255

Output Delivery System (ODS)
about 108
creating output files with 108–148
ODS tagset compared with ODS destination 111
purpose of 108–109
SAS Tagset templates 109–110
syntax of CSV and CSVALL output processes 111

output files
creating 108–148, 202–203
creating with ODS (Output Delivery System) 108–

148
processing 203–206

Out_range macro 171, 172–173

P

PAGE option, SHEET_INTERVAL option 143
PAGE_BREAK option 125, 131
PAGE_ORDER_ACROSS option 131
PAGES_FITHEIGHT option 131
PAGES_FITWIDTH option 131
“PASS-THROUGH” processing 160
PATH option, LIBNAME statement 49, 51–52, 58,

162–163
PCFILES special query 159, 165–166
PERCENTAGE_AS_NUMBER option 112
PERCENTAGE_FONT_SIZE option 125
Personal Workbook Tool 211, 232
physical file locations, defining 51–52
placing labels in Excel worksheet names 142–143
preferences (JMP) 87–88
PREPEND_EQUALS option 112
PRINT procedure 5, 115, 143, 191, 196, 202, 208
PRINT_FOOTER option 130
PRINT_FOOTER_MARGIN option 130
PRINT_HEADER option 130
PRINT_HEADER_MARGIN option 130
PROC option, SHEET_INTERVAL option 143, 144–

145
processing

automating 197–201
date and time values with dataset options 62–63
Excel files with LIBNAME statement 47–65
Excel files with pass-through facilities using SQL

procedure 162–163
output 191–192
output files 203–206
output reports 258
on 64-bit operating system 64–65
variable type conversions with dataset options 63–

64
PROC_TITLES option 112
production directories, copying source programs to

working directories from 253–254
programs, exiting 255
PROMPT option, LIBNAME statement 50, 52
proof-of-concept program 190
Properties Window 234
PropertySheet 234
PUTNAMES=NO option 28, 36

Index 267

Q

QUOTE_BY_TYPE option 112
QUOTED_COLUMNS option 112

R

RANGE= statement 37, 41, 43–44
READBUFF option 53
reading

cell ranges from Excel workbooks 163–165
cell ranges with Import Data option 80–83
data from Excel to JMP 88–89
Excel files 161–162
to Excel workbooks with Dynamic Data Exchange

(DDE) 167–187
Excel workbooks with Open or Import options 77–

80
external data files and Excel workbooks into SAS

with IMPORT procedure 31–45
pre-defined cell ranges from Excel workbooks

163–165
subsets of records from Excel workbooks with SQL

procedure 162
variable names 50

“ready-to-Print” spreadsheet, creating 137–138
reformatting Excel workbooks 194–197
RENAME option 39, 54
report datasets (*.srx), opening using SAS Add-In for

Microsoft Office 99–105
reports

outputting 71–75, 75–77
splitting onto multiple Excel worksheets 141

ROWCOLHEADINGS option 131
ROW_HEIGHT_FUDGE option 131
ROW_HEIGHTS option 131
ROW_REPEAT option 131
rows, selecting 43–44

S

Safe Mode 233
SAS Add-In for Microsoft Office

about 91
data options for 96–99
examples 94–105
list of examples 94
methods of sharing data using 92–93
opening datasets using 94–96
opening report datasets (*.srx) using 99–105
purpose of 91

SAS Enhanced Editor window, copying data to 7–8
SAS Enterprise Guide

about 67–68
accessing Excel from 68
building bar charts using 99–100
examples 69–83
exporting bar charts as *.srx files from using 100–

102
list of examples 68–69
methods 67–83
overview of examples 68
reading cell ranges with Import Data option 80–83
reading Excel workbooks with Open or Import

options 77–80
“Send To” method 71–75
using Export method with 69–77

SAS Explorer window
about 10–11
accessing Excel data from 9–18
“Copy Contents to Clipboard” option 11–12
“Save as Html” option 12–13
selecting Export wizard from “Export” menu 11

SAS Toolbar
File option 15–16
“Import Data” option 16–17

SAS_2_Excel macro 171, 175–176, 184–187
SASDATEFMT option 53
“Save as Html” option (SAS Explorer window) 12–13
Save_Excel macro 171, 174
saving

changes 255
Excel workbook contents 171, 174
leading zeros in character fields 123–124
lines of text 8

SCALE option 131
SELECT statement, ordering of clauses in 158–159
selecting

columns 42–43
data types 50–51
Excel ranges 44–45

Selection group (SAS Add-In for Microsoft Office) 93
“Send To” method 71–75
SET statement 59
setup, workstation options 215–217
sharing

data using SAS Add-In for Microsoft Office 92–93
data with Excel using JMP 85–89

SHEET_INTERVAL option
about 131
creating worksheets with BYGROUP setting 143–

144
creating worksheets with PROC setting 144–145

SHEET_LABEL option 132, 142–143
SHEET_NAME option 132, 140, 141
simple file formats 4
64-bit operating system

processing on 64–65
using Export/Import wizards in 17–18
Windows connection option 54

SKIP_SPACE option 132
software configuration 49
sorting output 165
source programs, copying 253–254

268 Index

splitting reports onto multiple Excel worksheets 141
SQL procedure

about 57, 157
accessing Excel files with 157–166
calculating variables within SQL code 165
comparing Excel files 161–162
creating Excel files 161–162
examples 160–166
LIBNAME assignments to access Excel using

160–161
list of examples 160
“PASS-THROUGH” processing 160
“PCFILES::” special query 165–166
processing Excel files with pass-through facilities

162–163
purpose of 158
reading Excel files 161–162
reading pre-defined cell ranges from Excel

workbooks 163–165
reading subsets of records from Excel workbooks

with 162
sorting output 165
syntax of 158–159

*.srx files
exporting bar charts as 100–102
importing into Excel 102–105

Start_Excel macro 171–172
starting Excel 171–172
statements

See specific statements
storing

VBS/VBA macros 214–215, 217–219
VBS/VBA scripts 217–219

structure, of directories 255–256
SUMMARY option 125, 130, 202
SUMMARY_AS_CAPTION option 125, 130
SUMMARY_BYVALS option 125, 130
SUMMARY_BYVARS option 125, 130
SUMMARY_PREFIX option 125, 130
Summary_Vars option, generating HTML files with

127–128
SUPPRESS_BYLINES option 132
syntax

of CSV and CSVALL output processes 111
of Dynamic Data Exchange (DDE) 168–170
of EXCELXP option 128–130
of EXPORT procedure 20–21
of IMPORT procedure 32
of LIBNAME statement 49–50
of MSOFFICE2K output processes 124–125
of OLE DB LIBNAME 150
of SQL procedure 158–159

T

table of contents, creating in Excel workbook 138–139
TABLE option, SHEET_INTERVAL option 143

TABLE_HEADERS option 112
tables, converting to text in Excel 9
tagset templates

about 109–110
EXCELXP option 130–132
MSOFFICE2K option 125

TEMPLATE procedure 109–110, 113
text

converting Excel tables to 9
converting to Excel column data fields 5–7
saving multiple lines of 8

TextBox 233
32-bit operating system, using Export/Import wizards in

17–18
THOUSANDS_SEPARATOR option 112, 131
time values, processing with dataset options 62–63
TITLE_FOOTNOTE_WIDTH option 130
titles, building worksheets with 146
TITLES option 112
toolbar processing method 10–11
Tools group (SAS Add-In for Microsoft Office) 93

U

unformatted numbers, writing currency values as 118–
120

UNIX option 54
user parameters, writing to files in working directories

253
UserForm

about 233
activating 248–258
initializing 248–249
loading data to 251–253

V

variables
calculating within SQL code 165
processing type conversions of with dataset options

63–64
reading names for 50
writing to Excel workbooks 171, 175–176

VBA routines 248–258
VBS/VBA macros

executing 214–215
guidelines for building and using 213–229
preparing 258
storing 214–215, 217–219

VBS/VBA scripts
building 220–223
storing 217–219

verifying output batch files 254–255
VERSION option, LIBNAME statement 50, 52, 58–59
“View in Excel” option, copying data to Excel files via

HTML with 13–14
Visual Basic Scripting (VBS) 211, 219–220

Index 269

W

WHERE statement 5, 54, 115
WIDTH_FUDGE option 131
WIDTH_POINTS option 131
Workbook_Open macro 198–201, 202–203
workbooks (Excel)

closing 171, 174–175
creating table of contents in 138–139
creating that runs SAS programs 231–258
examining contents and structure of 165–166
examining with CONTENTS procedure 60–62
formatting groups 3–4
limitations of 2–3
opening with OLE-DB init_string 154
reading into SAS with IMPORT procedure 31–45
reading pre-defined cell ranges from 163–165
reading subsets of records from with SQL

procedure 162
reading to with Dynamic Data Exchange (DDE)

167–187
reading with Open or Import options 77–80
reformatting 194–197
saving contents of 171, 174
writing 147–148
writing SAS data to with EXPORT procedure 19–

29
writing to with Dynamic Data Exchange (DDE)

167–187
writing variables to 171, 175–176

working directories
copying source programs to production directories

from 253–254
writing user parameters to files in 253

worksheets (Excel)
assigning Libref with OLE-DB dialog box 151–

152
building with titles 146
creating with SHEET_INTERVAL=BYGROUP

option 143–144
creating with SHEET_INTERVAL=PROC option

144–145
naming 140
placing labels in names of 142–143
splitting reports onto multiple 141

workstation options, setting up 215–217
WRAPTEXT option 130, 137–138
writing

currency values as unformatted numbers 118–120
data from JMP to Excel 89
to Excel workbooks with Dynamic Data Exchange

(DDE) 167–187
“Hello World” to Excel files 182–184
HTML files 124–125, 126–128, 133–146
SAS datasets to Excel files 184–187
user parameters to files in working directories 253
variables to Excel workbooks 171, 175–176

workbooks 147–148

X

X command 179–180, 202, 219–220
XLSTART directory 193–194
XML output files, generating with no options 133–134

Z

ZOOM option 130, 137–138

270 Index

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Preface
	Audience
	Approach

	About This Book
	Purpose
	Is This Book for You?
	Prerequisites
	Scope of This Book
	About the Examples
	Software Used to Develop the Book's Content
	Example Code and Data

	Additional Help
	Keep in Touch
	Contact the Author through SAS Press
	Purchase SAS Books
	Subscribe to the SAS Training and Book Report
	Publish with SAS

	About The Author
	Chapter 1: Easy Data Movement between SAS and Microsoft Excel
	1.1 Introduction
	1.2 Examination of Excel Files
	1.2.1 Purpose
	1.2.2 Excel Data Types
	1.2.3 General Excel Workbook Limitations
	1.2.4 Excel Workbook Formatting Groups
	1.2.5 Excel Data Ranges

	1.3 Examples of Copy-and-Paste Techniques
	1.3.1 Highlight, “Cut” or “Copy,” and Then “Paste”
	1.3.2 Convert Text Data to Excel Column Data Fields
	1.3.3 Copy Data to the SAS Enhanced Editor Window for Use in a SAS Program
	1.3.4 Save Multiple Lines of Text in a Single Excel Cell
	1.3.5 Converting Excel Tables to Text

	1.4 Accessing Excel Data from the SAS Explorer Window and Toolbar
	1.4.1 SAS Explorer Window and Toolbar Processing Method Descriptions
	1.4.2 Picking the Export Wizard from the SAS Explorer Window “Export” Menu
	1.4.3 Using the “Copy Contents to Clipboard” Option of the SAS Explorer Window
	1.4.4 Selecting the “Save as Html” Option of the SAS Explorer Window
	1.4.5 Using the “View in Excel” Option to Copy Data to Excel Files via HTML
	1.4.6 SAS Toolbar File Option, the Gateway to the SAS Export / Import Wizards
	1.4.7 Choosing the “Export Data” SAS Toolbar (Export Wizard) File Option
	1.4.8 Electing the “Import Data” SAS Toolbar (Import Wizard) File Option
	1.4.9 Using the Export / Import Wizards in a 32/64-Bit Mixed Environment

	1.5 Chapter Summary

	Chapter 2: Use PROC EXPORT to Write SAS Data to External Files and Excel Workbooks
	2.1 Introduction
	2.2 Purpose
	2.3 Syntax of the SAS EXPORT Procedure
	2.4 Data Access Methods for Excel Files Supported by PROC EXPORT
	2.5 Overview of the Examples
	2.6 List of Examples
	Example 2.1 SAS Code to Export Data to an Excel 4 or Excel 5 Format File
	Example 2.2 PROC EXPORT Using the DBMS=DLM Option
	Example 2.3 PROC EXPORT Using the DBMS=EXCEL Option
	Example 2.4 PROC EXPORT Using the DBMS=EXCELCS Option
	Example 2.5 SAS Code to Export Data to an Excel File with No Column Headers
	Example 2.6 SAS Code to Export Data to a Network Windows Computer

	2.7 Conclusion

	Chapter 3: Use PROC IMPORT to Read External Data Files and Excel Workbooks into SAS
	3.1 Introduction
	3.2 Purpose
	3.3 Syntax of the SAS IMPORT Procedure
	3.4 Data Access Methods for Excel Files Supported by PROC IMPORT
	3.5 Overview of the Examples
	3.6 List of Examples
	Example 3.1 PROC IMPORT Using the DBMS=EXCEL4 or EXCEL5 Option
	Example 3.2 PROC IMPORT Using the DBMS=DLM Option
	Example 3.3 PROC IMPORT Using the DBMS=EXCEL Option
	Example 3.4 PROC IMPORT Using the DBMS=EXCELCS Option
	Example 3.5 PROC IMPORT Using the DBMS=XLS or XLSX to Select Columns
	Example 3.6 PROC IMPORT Using the DBMS=XLS or XLSX to Select Rows
	Example 3.7 PROC IMPORT Using the DBMS=XLS or XLSX to Select Excel Ranges

	3.7 Conclusion

	Chapter 4: Using the SAS LIBNAME to Process Excel Files
	4.1 Introduction
	4.2 Purpose
	4.3 Excel-Specific Features of the SAS LIBNAME Statement
	4.4 Syntax of the SAS LIBNAME Statement
	4.5 LIBNAME Statement ENGINE CONNECTION OPTION Descriptions
	4.5.1 HEADER Option to Read Variable Names
	4.5.2 MIXED Option to Select Data Types
	4.5.3 PATH Option to Define Physical File Locations
	4.5.4 VERSION Option to Identify Excel File Version
	4.5.5 PROMPT Option to Interactively Assign a Libref
	4.5.6 Other Common SAS PC File LIBNAME Options

	4.6 Excel-Specific Dataset Options
	4.7 UNIX, LINUX, and 64-Bit Windows Connection Options
	4.8 Overview of the Examples
	4.8 List of Examples

	4.9 Examples
	Example 4.1 Using the Engine Connection HEADER Option
	Example 4.2 Using the Engine Connection MIXED Option
	Example 4.3 Using the Engine Connection PATH Option
	Example 4.4 Using the Engine Connection VERSION Option
	Example 4.5 Using Named Literals with the LIBNAME Statement
	Example 4.6 Using PROC CONTENTS to Examine an Excel Workbook
	Example 4.7 Using Dataset Options to Process Date and Time Values
	Example 4.8 Using Dataset Options to Process Variable Type Conversions
	Example 4.9 Processing on 64-Bit Operating Systems

	4.10 Conclusion

	Chapter 5: SAS Enterprise Guide Methods and Examples
	5.1 Introduction
	5.2 Purpose
	5.3 Typical Methods to Access Excel from SAS Enterprise Guide
	5.4 Overview of the Examples
	5.5 List of Examples
	5.6 Examples
	Example 5.1 Using the Export Method with Enterprise Guide
	Example 5.2 Using the “Send To” Method
	Example 5.3 Using the “Send To” Method to Output a Graph or Report
	Example 5.4 Using the “Export” Method to Output a Graph or Report
	Example 5.5 Using “Open” or “Import” Toolbar Options to Read Excel Workbooks
	Example 5.6 Using the “Import Data” Toolbar Option to Read a Range of Cells

	5.7 Conclusion

	Chapter 6: Using JMP to Share Data with Excel
	6.1 Introduction
	6.2 Purpose
	6.3 Methods of Sharing Data between JMP and Excel
	6.4 List of Examples
	6.5 Examples
	Example 6.1 Within Excel, Set the JMP Preferences for Loading Excel Data
	Example 6.2 Reading Data from Excel to JMP
	Example 6.3 Writing Data from JMP to Excel

	6.6 Conclusion

	Chapter 7: SAS Add-In for Microsoft Office (Excel)
	7.1 Introduction
	7.2 Purpose
	7.3 Methods of Sharing Data Using SAS Add-In for Microsoft Office
	7.4 List of Examples
	7.5 Examples
	Example 7.1 Open a SAS Dataset Using SAS Add-In for Microsoft Office
	Example 7.2 Open a SAS Report Dataset (*.srx) Using SAS Add-In for Microsoft Office

	7.6 Conclusion

	Chapter 8: Creating Output Files with ODS for Use by Excel
	8.1 Introduction
	8.2 Purpose
	8.3 An Introduction to SAS Tagset Templates That Create Files for Excel
	8.3.1 How to Locate a Tagset Template

	8.4 Difference Between an ODS Tagset and an ODS Destination
	8.5 Syntax of the ODS CSV and CSVALL Output Processes
	8.6 CSV and CSVALL Tagset Options
	8.7 Overview of CSV and CSVALL Examples
	8.8 CSV and CSVALL Examples to Write *.csv Files
	Example 8.8.1 Simple CSV and CSVALL File Default Output Differences
	Example 8.8.2 CSV and CSVALL Title and Footnote Output Differences
	Example 8.8.3 Write Currency Values as Unformatted Numbers
	Example 8.8.4 Change Delimiters When Outputting Data with CSV Tagset
	Example 8.8.5 Save Leading Zeroes in Character Fields Sent to Excel

	8.9 Syntax of ODS MSOFFICE2K Output Processes to Write HTML Files
	8.10 MSOFFICE2K Tagset Template Options
	8.11 Overview of MSOFFICE2K Examples
	8.12 MSOFFICE2K Examples to Write HTML Files
	Example 8.12.1 Generating an HTML Output File with No Options
	Example 8.12.2 Generating an HTML File Using the Summary_Vars Option

	8.13 Syntax of the ODS EXCELXP Tagset Template Output Processes
	8.14 ODS EXCELXP Tagset Options
	8.15 Overview of EXCELXP Examples
	8.16 EXCELXP Examples to Write XML Files
	Example 8.16.1 Generating an XML Output File with No Options
	Example 8.16.2 Adjusting Column Width Using Tagset Template Options
	Example 8.16.3 Tagset Option to Hide Columns While Writing the File
	Example 8.16.4 Apply an Excel “AUTOFILTER” to Selected Output Columns
	Example 8.16.5 Using Multiple Options to Produce a “Ready-to-Print” Spreadsheet
	Example 8.16.6 Creating a Table of Contents in an Excel Workbook
	Example 8.16.7 Methods of Naming Excel Worksheets
	Example 8.16.8 Splitting One Report onto Multiple Excel Worksheets
	Example 8.16.9 Methods of Placing Labels in Excel Worksheet Names
	Example 8.16.10 Use SHEET_INTERVAL= BYGROUP to Create Worksheets
	Example 8.16.11 Use SHEET_INTERVAL= PROC to Create Worksheets
	Example 8.16.12 Build Separate Worksheets with Titles on Each Sheet

	8.17 The New ODS Destination EXCEL for Writing Workbooks
	8.18 Conclusion

	Chapter 9: Accessing Excel with OLE DB or ODBC Application Program Interfaces (API Methods)
	9.1 Introduction
	9.2 Purpose
	9.3 Concept of the OLE DB or ODBC API Processes
	9.4 Guidelines for Setting Up OLE DB or ODBC Connections
	9.5 List of Examples
	9.6 Examples
	Example 9.1 Assign a Libref to an Excel Worksheet with the OLE-DB Dialog Box
	Example 9.2 Using LIBNAME Prompt Mode to Build an OLE-DB Connection
	Example 9.3 Using an OLE-DB init_string to Open an Excel Workbook
	Example 9.4 Using PROC CONTENTS to Verify Excel to OLE DB Connection

	9.7 Conclusion

	Chapter 10: Using PROC SQL to Access Excel Files
	10.1 Introduction
	10.2 Purpose
	10.3 Basic Syntax of the SQL Procedure
	10.4 A Simple Explanation of SQL “PASS-THROUGH” Processing
	10.5 Overview of the Examples
	10.5.1 List of Examples

	10.6 Examples
	Example 10.1 LIBNAME Assignments to Access Excel Using PROC SQL
	Example 10.2 Create an Excel File, Read It with SQL, and Then Compare the Files
	Example 10.3 Use PROC SQL to Read a Subset of Records from an Excel Workbook
	Example 10.4 Use PROC SQL Pass-Through Facilities to Process an Excel File
	Example 10.5 Read a Pre-defined Range of Cells from an Excel Workbook
	Example 10.6 Calculate a New Variable within the SQL Code and Sort the Output
	Example 10.7 Examine the Contents and Structure of an Excel Workbook with a “PCFILES::” Special Query

	10.7 Conclusion

	Chapter 11: Using DDE to Read and Write to Excel Workbooks
	11.1 Introduction
	11.2 Purpose
	11.3 Basic Concept of the DDE Client-Server Environment
	11.3.1 How the DDE Client-Server Relationship Works
	11.3.2 General DDE Syntax and Options

	11.4 List of User-Written SAS Macros That Can Enhance DDE Processing
	11.4.1 SAS Macro to Start Excel
	11.4.2 SAS Macro to SAS to Issue Commands to Excel
	11.4.3 SAS Macro to Define a Range of Excel Cells for Processing
	11.4.4 SAS Macro to Save the Contents of an Excel Workbook
	11.4.5 SAS Macro to Close Excel Workbook
	11.4.6 SAS Macro to Write All or Selected Variables to an Excel Output Workbook

	11.5 List of Examples
	11.6 Examples
	Example 11.6.1 The Hello World Project
	Example 11.6.2 The Hello World Project When the Excel Workbook Is Closed
	Example 11.6.3 The Hello World Project Using NOTAB and LRECL= Options
	Example 11.6.4 Writing “Hello World” to an Excel File Using DDE Macros
	Example 11.6.5 Writing a SAS Dataset to an Excel File Using the SAS_2_EXCEL DDE Macro

	11.7 Conclusion

	Chapter 12: Building a System of Excel Macros Executable by SAS
	12.1 Introduction
	12.2 Purpose
	12.3 General Design of a Tool to Control Excel Macros from SAS
	12.3.1 Prepare a SAS File and Execute Excel to Process the Output
	12.3.2 Prepare Excel to Open the File Output by SAS
	12.3.3 Prepare Excel Macros to Reformat the Excel Workbooks

	12.4 Automate the Tool So That SAS Creates a Formatted Excel Output Workbook
	12.4.1 Eliminate the Manual Steps from the Processing
	12.4.2 Create a SAS Output File with More Data and Control Information
	12.4.3 Create an Excel Macro to Process the Output SAS File
	12.4.4 Build an Excel Graph Using an Excel Macro

	12.5 Conclusion

	Chapter 13: Building a System of Microsoft Windows Scripts to Control Excel Macros
	13.1 Introduction
	13.2 Purpose
	13.3 Guidelines for Building and Using a VBS/VBA Macro Library
	13.3.1 Create Naming Conventions for Storing and Executing VBS/VBA Macros
	13.3.2 Set Up Workstation Options
	13.3.3 Where to Store VBS/VBA Scripts and Macros
	13.3.4 SAS Code to Execute a Visual Basic Script
	13.3.5 Build a Parameter-Driven VBS Script to Control the Execution of Excel
	13.3.6 Build a Control Macro for Each Excel Report

	13.4 Conclusion

	Chapter 14: Create an Excel Workbook That Runs SAS Programs
	14.1 Introduction
	14.2 Purpose
	14.3 Guidelines for Building an Excel User Form Interface
	14.3.1 Common Excel and Excel User Form Terms
	14.3.2 Introduction to the Integrated Development Environment (IDE)
	14.3.3 Using the Integrated Development Environment (IDE) Toolbox Menu
	14.3.4 Building a Sample Integrated Development Environment (IDE) Menu
	14.3.5 Linking the Integrated Development Environment (IDE) Menu and the Data
	14.3.6 Storing Control Information in the Excel Workbook Worksheets
	14.3.7 Set Up Control Variables to Access Data Stored in the Workbook
	14.3.8 Learn How to Make the Excel UserForm Execute

	14.4 Excel VBA Routines to Make the Workbook UserForm Active
	14.4.1 Initialize the User Form
	14.4.2 Write the User Parameters to a File in a Working Directory
	14.4.3 Copy Source Program from a Production Directory to the Working Directory
	14.4.4 Verify the Output Batch File Points to the Correct SAS Run Time Module
	14.4.5 A Routine to Save the Changes and Exit the Program
	14.4.6 Directory Structure Associated with the Processing
	14.4.7 Common Issues That Might Occur.
	14.4.8 Prepare a VBA Macro to Process Your Output Report

	14.5 Conclusion

	Index
	Additional Resources

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 267
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150311112241
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 771
 369
 None
 Up
 10.8000
 0.0000

 Both
 1
 SubDoc
 267

 CurrentAVDoc

 Uniform
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 266
 269
 266
 267

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20150312085226
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 771
 369

 None
 Up
 10.8000
 0.0000

 Both
 1
 AllDoc
 267

 CurrentAVDoc

 Uniform
 9.0000
 Right

 QITE_QuiteImposing3
 Quite Imposing 3.0c
 Quite Imposing 3
 1

 18
 290
 289
 290

 1

 HistoryList_V1
 qi2base

